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ABSTRACT 

PROTECTING NETWORK PROCESSORS WITH HIGH PERFORMANCE LOGIC 

BASED MONITORS 

 

MAY 2013 

 

HARIKRISHNAN KUMARAPILLAI CHANDRIKAKUTTY 

 

 B.Tech, COLLEGE OF ENGINEERING, TRIVANDRUM, INDIA 

 

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell G. Tessier 

 

Technological advancements have transformed the way people interact with the world. 

The Internet now forms a critical infrastructure that links different aspects of our life like 

personal communication, business transactions, social networking, and advertising.  In order 

to cater to this ever increasing communication overhead there has been a fundamental shift in 

the network infrastructure. Modern network routers often employ software programmable 

network processors instead of ASIC-based technology for higher throughput performance and 

adaptability to changing resource requirements. This programmability makes networking 

infrastructure vulnerable to new class of network attacks by compromising the software on 

network processors. This issue has resulted in the need for security systems which can 

monitor the behavior of network processors at run time.  

This thesis describes an FPGA-based security monitoring system for multi-core 

network processors. The implemented security monitor improves upon previous hardware 

monitoring schemes. We demonstrate a state machine based hardware programmable monitor 

which can track program execution flow at run time. Applications are analyzed offline and a 

hash of the instructions is generated to form a state machine sequence. If the state machine 

deviates from expected behavior, an error flag is raised, forcing a network processor reset. 
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For testing purposes, the monitoring logic along with the multi-core network processor 

system is implemented in FPGA logic. In this research, we modify the network processor 

memory architecture to improve security monitor functionality. The efficiency of this 

approach is validated using a diverse set of network benchmarks. Experiments are performed 

on the prototype system using known network attacks to test the performance of the 

monitoring subsystem. Experimental results demonstrate that out security monitor approach 

provides an efficient monitoring system in detecting and recovering from network attacks 

with minimum overhead while maintaining line rate packet forwarding. Additionally, our 

monitor is capable of defending against attacks on processor with a Harvard architecture, the 

dominant contemporary network processor organization. We demonstrate that our monitor 

architecture provides no network slowdown in the absence of an attack and provides the 

capability to drop packets without otherwise affecting regular network traffic when an attack 

occurs. 
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CHAPTER 1 

INTRODUCTION 

 

Communication is an essential aspect of modern human society. Rapid advancements 

in modern technology have brought about significant improvements in fields of personal 

communication, business transactions, entertainment, and digital government. The Internet 

forms a central aspect in many of these communication requirements. This ever growing 

dependence on the Internet has resulted in the need to improve different attributes of 

communication infrastructure like network functionality, throughput performance, reliability 

and security. The growth of Internet usage based on data from the International 

Telecommunications Union is illustrated in Figure 1. 

 

Figure 1: Internet Users per 100 Inhabitants [1] 

 

There has been a fundamental shift in network infrastructure in order to support the 

need for high performance routing resources. Network routers constitute the core of network 

infrastructure and perform most of the packet processing applications.  The lack of flexibility, 
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programmability and manageability of existing network routers, implemented using 

application specific integrated circuit (ASIC) technology, highlights the need to consider 

other networking infrastructures. The need to experiment and adapt newer networking 

protocols and services has resulted in a shift to software programmable network processor 

based systems [29]. Network processors [10] have multiple processor cores that can be 

programmed to adapt to different networking requirements. The software programmability of 

network processor also makes it vulnerable to network attacks. This inherent vulnerability 

can be exploited to generate in-network denial of service attacks, as illustrated in Figure 2. 
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Figure 2: Attack on packet processing system in network router data plane [33] 

 

The existing network security mechanisms for end systems like virus scanners and 

firewalls are not suitable for network processor based systems since these mechanisms need 
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the support of operating systems. Network processors can benefit from dedicated monitors 

that can quickly and efficiently detect attacks with minimum resource overhead. A novel 

hardware based monitoring strategy has been proposed to reduce the vulnerability of network 

processor based systems [2] [3]. These hardware monitors keep track of program execution 

flow in the processor. Processor operation is compared to expected program behavior using 

information stored in the monitor memory. Any deviation from the expected behavior is 

detected and suitable recovery procedures are initiated.  The experimental results highlight 

the benefits of using hardware monitors for monitoring network processor systems, like fast 

attack detection and low overhead.  

Although the potential of hardware security monitors has been demonstrated in 

previous approaches, there is still room for improvement in terms of monitor detection 

accuracy, resource utilization and attack detection speed. Moreover, in multi-core network 

processor systems, there is an opportunity for sharing monitor resources when multiple 

processors execute the same application. In this document we present a programmable logic 

based monitoring system for monitoring multi-core network processor systems. The specific 

contributions of this work are: 

1. The design of a high-performance programmable security monitor which uses hashes of 

network processor instructions to detect unintended processor behaviour. The application 

is analyzed offline and an efficient state machine is created which tracks program 

execution during runtime. If an expected sequence of instructions (represented as hash 

values) is not followed, an execution error is detected. The state machine can be 

implemented as either a non-deterministic finite automaton (NFA) or a deterministic finite 

automaton (DFA). In this research, we investigate security monitors based on DFA state 

machine implementations [6] [7]. 
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2. A single-core network processor system with security monitor is implemented on an 

Altera DE4 system. The competence of our proposed system to detect known network 

attacks is evaluated. 

3. We evaluated the resource requirements and throughput performance of our proposed 

architecture using a diverse set of networking benchmarks [43].  

4. Network attacks on network processors based on Harvard architecture [47] are 

considered. We demonstrate an in-network attack through the data plane of the network 

that exploits an integer overflow vulnerability to smash the processor stack and launch a 

return-to-library attack. This attack propagates the attack packet and crashes the processor 

system. We also show that our hardware monitor is effective in defending against this 

attack and allowing for continued router operation after attack identification and recovery. 

1.1. Organization of the document 

The rest of the thesis document is organized as follow. Chapter 2 provides a detailed 

overview on the general background of network processors, hardware security monitors and 

the related work in this field. Chapter 3 describes two previous hardware security monitoring 

approaches and the subsequent improvements introduced in the work. Chapter 4 describes the 

four-core system architecture with security monitors. Chapter 5 explains the experimental 

setup for testing the prototype system. Chapter 6 discusses the benchmarks and the obtained 

results. Chapter 7 concludes the thesis with directions for future work.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

In this chapter, an overview of the technologies needed to perform the proposed 

research is provided. These technologies include field-programmable gate array (FPGA) 

chips, embedded systems based on FPGAs, and network processors.  

2.1. Field-programmable gate array 

 A field-programmable gate array is a semiconductor device that can be programmed 

by a user after it is manufactured. FPGAs contain programmable components called logic 

blocks and a hierarchy of interconnect elements (wires) which can be configured to connect 

these logic blocks, as illustrated in Figure 3. Hardware description languages (HDL), such as 

Verilog and VHDL, can be used to configure the device for implementing specific 

applications. Modern FPGAs also provide high speed transceivers, embedded memory blocks 

and high-speed I/Os that help perform complex computational operations [8].  Compared to 

application specific integrated technology, FPGAs allow for rapid prototyping, faster 

debugging, ability for easy reprogramming and shorter time to market.  

 

Figure 3: Structure of an FPGA [9] 
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2.2. Network Processors 

The tremendous growth of modern communication infrastructure, such as the Internet, 

has resulted in the need for networking resources that can meet high throughput performance, 

flexibility and security. Even though general purpose processors (GPP) can support newly-

introduced networking protocols and services, they often do not provide high throughput 

performance. ASIC processors can provide high throughput but generally do not allow 

straightforward functionality changes. Network processors (NP) represent the design space 

between these two approaches, as illustrated in Figure 4.   

ASIC
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GPP

P
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rf
o

rm
a

n
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Figure 4: Processor design space 

Network processors have multiple embedded processor cores which are software 

programmable to provide real time programmability and high throughput performance. The 

architecture of a simple network processor is illustrated in Figure 5. 

Network processors consist of multiple processing elements and memory units 

connected by an on-chip network [10]. A control system determines the interaction between 

processors and memory elements and the processing required. Based on the workload, 
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software on network processors can be changed to adapt to the processor operation. There are 

different performance metrics that need to be considered while designing network processors 

like cost, throughput performance, and power [11] [12]. With promising technologies, like 

network virtualization, for future internet architectures emerging, significant research is 

ongoing on network processor based systems [13] [14] [15].  

 

 

Figure 5: Simple network processor architecture 

2.3. Secure monitoring 

  The software programmability of network processors raises a serious security 

concern. Network processor systems are vulnerable to network attacks that can remotely 

exploit their programmable nature. In this section, we look at some network attacks and the 

existing monitoring techniques for guarding against these attacks. 

2.3.1. Network attacks 

Network attacks [16] [17] [18] [19] exploit the vulnerabilities in network systems.   

Sniffing or snooping are network attacks which allow intruders to listen to or interpret traffic. 

If packets are not properly encrypted, sniffing attacks can give a full view of the ongoing 

communications. This attack can be used to read the data or cause the network to crash or 

become corrupted. Distributed denial-of-service attacks [20] occur when an attacker takes 
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control of a large number of machines and installs attack software in them. These machines 

can then be used to bombard target attack sites with a large number of messages. This attack 

can result in preventing normal system usage and can also lead to the abnormal behavior of 

applications or services. Identity spoofing is another common network attack. Here, an 

attacker uses special programs to construct IP packets that appear to originate from valid 

addresses. This attack can also be used in combination with denial-of service attacks. The 

attacker can first take down an existing network connection between two end systems by 

denial of service attacks. A new connection can then be initiated with one of the end systems 

by sequence number guessing. The attackers can then modify, reroute or delete the data after 

taking control of network traffic. A routing attack is another kind of network attack which 

reroutes network traffic through attack systems.  

2.3.2. Software based monitoring techniques 

There are many existing software techniques for protecting network systems against 

attacks. Firewalls [21] and virus scanners are the most common solutions for Internet security 

[22]. Firewalls help in filtering out traffic that might be harmful. This filtering can happen at 

IP packet level, TCP session level or at the application level. Firewalls examine incoming 

packets and filters out malformed or attack packets. They are useful against spoofing attacks 

and denial-of-service attacks. Virus scanners are examples of intrusion detection systems [23]. 

These systems are devices or software applications that detect the presence of malicious 

traffic or services. Firewalls try to prevent intrusions which originate from outside the 

network. Intrusion detection systems detect suspected intrusions that have taken place and 

look for attacks being generating from inside the network. Another security measure is the 

use of encrypted packets for data communication. Here, cryptographic techniques are used to 

encrypt the data while in transmit. Communication is implemented using Internet Protocol 

Security (IPSec), a set of open Internet Engineering Task Force (IETF) standards. The 
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encrypted packets have the same format as unencrypted packets and they are transmitted on 

the existing network framework.  

2.3.3.  Hardware based monitoring techniques 

 Existing security mechanisms, like virus scanners and firewalls, generally require 

powerful processors and operating systems. These resources are generally not associated with 

network routers on programmable network processors. Instead, hardware monitors can be 

used to protect network processors against vulnerabilities, as illustrated in Figure 6. Monitors 

use run time processing information to look for deviations from expected processor behavior. 

If an attack occurs, a deviation from the expected behavior is detected and a suitable recovery 

process is initiated. In this thesis project, we introduce a new programmable logic based 

security monitoring technique for detecting network attacks. In the next two sections we 

describe two FPGA-based systems which can be used to prototype such a system. 

 

Figure 6: Network processor system with hardware monitor 

2.4. NetFPGA 1G Infrastructure 

The NetFPGA 1G [24] is a programmable platform for networking research that can 

operate at 1 Gbits per second line rate. The platform is actively used in networking research 

with more than 2000 boards deployed worldwide. The system includes a Xilinx Virtex II pro 

[25] based FPGA which can be configured to perform different networking applications. 

These applications include a reference router, a packet generator, and a network interface. 
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2.5. Altera DE4 NetFPGA infrastructure 

Although the NetFPGA 1G is widely used, its logic capacity is limited, making it 

unsuitable for research for this project. The Altera DE4 NetFPGA [37] platform is a suitable 

alternative. This infrastructure will be heavily used for this thesis project. Important 

components of the design including the Altera DE4 board, the DE4 NetFPGA software 

infrastructure, and the reference router and packet generator modules, are described 

subsequently since they are referenced in our discussion of the proposed security architecture 

in coming chapters.  

2.5.1. Altera DE4 FPGA board 

The Altera DE4 FPGA board [26] is a research platform featuring an Altera Stratix IV 

FPGA [27].  The DE4 board which will be used to complete the work described in this thesis 

is shown in Figure 7. The main features of the DE4 board are: 

 Stratix IV FPGA with 5x more logic and memory resources compared to a NetFPGA 1G 

platform. 

 PCI Express interface which allow for faster host PC to FPGA data transfers. 

 Up to 8GB external DDR2 memory . 

2.5.2. Altera DE4 NetFPGA Infrastructure 

Altera DE4 NetFPGA is an open source port of the NetFPGA 1G infrastructure to an 

Altera DE4 board. The DE4 NetFPGA provides network researchers with a powerful open 

platform to build complex network applications. A high-level view of the DE4 NetFPGA 

architecture is illustrated in Figure 8.  We have successfully migrated the NetFPGA reference 

router [44] and packet generator [45] designs to the Altera DE4 platform.  
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Figure 7: Altera DE4 board 

 

 

Figure 8: Altera DE4 NetFPGA Architecture 
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2.5.3. Altera DE4 NetFPGA reference router 

The Altera DE4 reference router system integrates the NetFPGA reference router 

pipeline with Altera DE4 NetFPGA platform. The Altera DE4 NetFPGA reference router 

system is illustrated in the Figure 9. 

 

Figure 9: Reference router pipeline 
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transmit and receive statistics. The Altera NetFPGA packet generator is used for testing the 

prototype system functionality, as explained in section 5.2. 

2.6. Related work 

Modern high-speed network infrastructures utilize network processors since they offer 

sophisticated packet processing capabilities and advanced protocol functionality. The 

programmable nature of network processors allows for experimentation with new 

architectures and protocols [10]. Research projects have examined improving network 

processor throughput, resource management, power analysis, packet classification, and 

deployment [28] [29]. Network processor based routers are commercially deployed by many 

major device vendors (e.g., Intel IXP2400 [30], Cisco QuantumFlow [31], Cavium Octeon 

[32]). 

Network processor systems are vulnerable to remote attacks that target the software 

on the processors. Chasaki et al. [33] demonstrated how network processor systems can be 

exploited to launch denial-of-service attacks by using a single malformed packet. Protecting a 

network infrastructure against such malicious attacks is an important concern in network 

processor design. Hardware-assisted run-time monitoring techniques have been used in 

protecting embedded processors. Arora et al. [4] [34] showed how dedicated hardware 

monitors can be used to track and prevent unintended program behavior. The hardware 

monitor observes the run time execution of the processor and compares it with statically 

analyzed expected program behavior. Unexpected behavior is used to initiate appropriate 

response mechanisms. Mao et al. [35] used hardware monitors with offline analyzed control 

flow graph information to protect embedded processors.  

The embedded nature of network processors allows for the use of hardware 

monitoring schemes against in-system attacks. Wolf et al. [36] proposed using a secure 

packet processing platform for network processors with hardware monitors. Using offline 
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analyzed monitoring graphs, the program execution of packet processors can be monitored 

for attacks and suitable recovery measures taken. Chasaki et al. [2] have implemented a 

hardware security monitoring model that can detect known network attacks.  

2.7. Summary 

This chapter introduced several concepts that are essential for understanding the 

prototype system. We provide an overview of the Altera DE4 NetFPGA infrastructure used 

for development and testing of the prototype system. Although hardware security monitoring 

systems for network processors exist, there is still potential for improvement. The next 

chapter outlines two specific previous monitoring approaches that are limited in their 

capabilities. Subsequent chapters describe enhancements to overcome these limitations.  
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CHAPTER 3 

SECURITY MONITOR SYSTEM REVIEW 

 This chapter introduces two previous hardware security monitoring techniques for 

network processors. We will first look at the implementation details of an existing hardware 

security monitor [2]. The limitations of this hardware security monitor motivate us to develop 

a programmable hardware security monitor. We will compare the advantages and drawbacks 

of these two security monitoring approaches. Based on these observations, we outline the 

important security monitoring features implemented in the new monitoring system presented 

in this thesis.  

To provide a basis for comparing the two approaches, we state the main design 

challenges that need to be met when using hardware security monitors.  

1. Correct detection: The monitoring system needs to correctly identify malicious attacks. 

There is a variety of information available for security monitors to keep track of processor 

operation at run time: 

 Instruction address: The security monitor can follow the instruction addresses of 

the application binary, since the feasible address sequences can often be 

predetermined. 

 Opcode: The security monitor can track the operations performed by the 

processor. 

 Instruction hash: The monitor can use a sequence of instruction hash values to 

verify processor behaviour.  

The main tradeoff for choosing a monitoring strategy depends on the availability of 

hardware resources and the difficulty in defeating the effectiveness of the monitoring 

behavior by an attacker. The security monitor can utilize one or more of the above 

mentioned monitoring options to correctly detect unintended behavior. 
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2. Resource overhead: Security monitors need to be designed while considering the limited 

resource availability of their implementation platform. Increasing the resource usage can 

adversely affect power consumption and design complexity. 

3. Fast detection: Programmable network processor operation can be changed by altering the 

software on the processor. Hence, it is desirable to detect malicious behaviour quickly, 

preferably within one or a small number of clock cycles. 

3.1 Address-based hardware security monitor system 

An address-based hardware security monitor [2] uses instruction address information 

for monitoring processor behavior. The processor application binary is analyzed offline and 

instructions are classified into different basic blocks. Each basic block represents a set of 

instructions, before a branch instruction is encountered as illustrated in Figure 10.  

 

Figure 10: Basic block representation 
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block one and so on. The basic block information for each instruction is used to validate the 

processor operation at runtime.  

The high level architecture of the address-based hardware security monitor system is 

illustrated in Figure 11. 
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Figure 11: Address-based hardware security monitor architecture [2] 

3.2. Address-based hardware monitor operation 

The address-based hardware security monitor system is fashioned as a four stage 

pipeline. Each pipeline stage takes one clock cycle to complete. In the first stage the 

instruction address of the currently executed instruction in the processor is used to index a 

block RAM (BRAM). The BRAM outputs the basic block number of the instruction as well 

as the next-hop address, if there is one. In the second stage, we forward the basic block 

number to the third stage. At the same time, the basic block number output is stored in a 

FIFO block. During the third stage of the monitor operation, the current basic block number 

input from the second stage as well as the block information for the just completed 

instruction from the FIFO block are compared. If they are the same, the instructions belong to 
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the same basic block and the currently executed instruction is valid. If not, check if the 

instruction is within the next basic block, which is a valid basic block jump (e.g. jump from 

basic block 0 to basic block 1). If not, a check is required to determine whether the currently 

executed instruction belongs to the basic block which contains the target instruction for a 

jump. During the fourth stage the next-hop address for the just completed instruction is used 

to once again index the basic block memory. If the basic block for this target is the same as 

the basic block of the currently-executed instruction, a valid instruction sequence is 

determined. Otherwise, an error signal is generated to stop processor operation.  

3.2.1. System components 

3.2.1.1. BRAM index generator module 

The BRAM index generator module generates the index output to address the basic 

block memory (BRAM) from the 32-bit processor instruction address. The first instruction 

address from the processor represents address zero of the BRAM. This is used as the base 

address to generate remaining index outputs. 

3.2.1.2. FIFO controller module 

The FIFO controller module generates the write signal to store the current basic block 

information and the read signal to read the basic block information of the just completed 

instruction. 

3.2.1.3. Basic block memory (BRAM) 

Each element in the basic block memory (BRAM) corresponds to an instruction in the 

program sequence and is indexed by an instruction address of the application. The basic 

block memory contains two entries per index, the basic block number to which each 

instruction belongs and the next-hop address to where the instruction could jump. The next-

hop address entry is empty for unconditional instructions. 
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3.2.1.4. Basic block FIFO 

The basic block FIFO stores the basic block numbers of the just completed and 

currently executed instructions, as read from the basic block memory. These values are used 

to keep track of the processor execution path.  

3.3. Limitations of address-based hardware security monitor. 

The basic block monitoring strategy for tracking processor behavior does not directly 

validate individual instructions as they are executed by the processor. For example, malicious 

instructions can go undetected if the instructions belong to the same basic block as the 

expected instructions, as illustrated in Figure 12. In this example, malicious instructions (2 

and 3) will not be detected as long as they follow the program memory address execution 

sequence. Moreover, the inclusion of a next-hop address field, which is required only for 

branch instructions, with the basic block information for all instructions in the basic block 

memory increases on-chip memory utilization. To reduce memory utilization, the basic block 

memory can be shared using multiple read ports. For example, the basic block memory can 

be read simultaneously during both stage 4 and stage 1 of the pipeline. Such sharing does not 

allow basic block memory sharing across multiple hardware monitors when multiple network 

processor cores execute the same program. So, in multi-core network processor systems, 

separate address-based hardware security monitors need to be generated when the processors 

execute the same application. 

3.4. Programmable security monitor using instruction hashing 

The limitations of the fixed hardware security monitor motivate us to develop a new 

monitoring strategy which can validate individual instructions and reduce the embedded 

memory usage for the monitor.  

 



20 

 

 

Figure 12: Undetectable network attack 
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Figure 13: Programmable security monitor architecture 

3.4.1. Programmable logic monitor operation 

The operation of the programmable logic monitor relies on compile-time analysis of 

the program binary. An analysis tool determines the expected hash values for the binary and 
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including the jump logic. As shown in Figure 13, the programmable logic monitor 

infrastructure is fashioned as a three stage pipeline flow. Each 32-bit binary instruction 

executed by the processor is input to the monitor. The first stage of security monitor 

generates the four bit hash value from this 32-bit instruction. In the second stage, two parallel 

operations are performed. 

 The four bit hash value from the hash memory is fetched. 

 The hash value is evaluated in the jump module. If the hash value does not match one of 

the target hash values for the jump, an error signal is generated indicating that an 

incorrect instruction has been executed. 

In third stage, for unconditional instructions, a comparison is made between hash 

value computed from stage 1 and the value retrieved from hash memory. A reset signal is 

generated if there is a mismatch or if stage 2 generated an error signal.  

3.4.2. System components 

3.4.2.1. Hash function module 

The hash function module computes a multi-bit hash value for the 32-bit processor 

instruction. In our initial experimentation we use a hash function which generates a modulo-

16 value from the sum of all individual bits in the instruction to form a four-bit hash value. 

3.4.2.2. Hash memory module 

The hash memory module is a 2-port ROM block that stores the hash values generated 

during offline analysis. The hash values are used to keep track of processor behaviour during 

run time. 
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3.4.2.3. Jump logic module 

The jump logic module provides the next-hop hash memory addresses for branch 

instructions when a branch is taken. The processor typically executes three different types of 

instructions.  

1. An unconditional instruction is followed by execution of the next consecutive instruction 

in the processor memory.  

1. An unconditional branch instruction will result in a jump to a non-consecutive memory 

location in instruction memory. 

2. A conditional branch instruction can result in a jump to a new address location following 

the evaluation of the branch condition. If the branch is not taken, the next consecutive 

instruction is executed. 

Since a branch condition for a conditional branch instruction can only be evaluated at 

run time, both possible hash values for target address locations need to be considered by the 

jump logic module. During runtime, the hash values of the instruction after the conditional 

branch are compared with the possible hash values of the branch targets to determine if a 

valid instruction is being executed. The jump logic module then determines the address in the 

hash memory for the appropriate target instruction. 

3.4.2.4. Control module 

The control module (the multiplexer and +1 adder) determines the address for the 

hash memory. For unconditional instructions, the hash value for the next instruction is stored 

in the next consecutive address location. In case of conditional instructions, the address value 

for the hash memory is output from the jump module. 

3.4.2.5. Programmable security monitor advantages 

The key improvements of the programmable security monitor using instruction hashing over 

the address-based monitor include: 
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1. The programmable security monitor uses a hash of each instruction to monitor processor 

behaviour instead of storing basic block information for each instruction. A hash value is 

computed for each program instruction and stored in a hash memory. As instructions are 

executed, the hash of the currently-executed instruction is compared against a stored hash 

value for the instruction. The hash value of the first instruction is located in hash memory 

at location 0x0, the second at 0x1, and so forth. A state counter is used to point to the 

hash of the currently executed instruction. The strength of the monitoring scheme 

improves with hash value bit width since the probability of hash collisions (collision 

probability is 1/2
x
, where x is the number of bits) is reduced. To keep hardware 

requirements reasonable, the width of the hash values is constrained to the minimum size 

which allows the required security. A four-bit hash value is chosen for monitoring 

purposes as this size provides a strong monitoring pattern (collision probability 0.0625) 

which limits memory overhead. 

2. Next instruction addresses for conditional instructions are determined in the jump logic, 

reducing memory resource utilization. Combinational logic is used to determine the 

address of the next location in the hash memory for conditional instructions which are 

taken. For conditional instructions where a branch is not taken or for unconditional 

instructions, the next desired location in the hash memory is the next consecutive location 

in the memory.  

3. The design of the programmable security monitor allows for sharing of the hash memory 

monitoring resource. The hash values are stored in a 2-port ROM memory block which is 

utilized only once during each instruction evaluation cycle. The two ports allow for the 

sharing of the hash memory, a critical resource, by two monitors that are evaluating the 

same executing program. 
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3.5. Limitations of programmable security monitor 

The jump logic module can require significant logic resource utilization. The 

instruction at memory location 0 is a conditional jump instruction, with next-hop address 

location (1 or 4) evaluated based on the hash values (x and y). An offline analysis tool 

generates a state machine to perform this evaluation, initiated every time the memory address 

input is zero. Once a next state (1 or 4) is reached, the state machine will continue to 

evaluate. If there are n conditional branch instructions (with 2 next states), 2n possible state 

transitions need to be considered.  Additionally since the jump logic is implemented in logic, 

we need to re-synthesize the design for each different application. 
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Figure 14: Jump logic implementation 

3.6. Comparison of address-based hardware and programmable monitors 

3.6.1. Resource overhead 

We compared the resource utilization of the programmable security monitor to the 

address-based hardware security monitor technique. Table 1 provides the comparison results 

from MiBench [42][42] benchmarks and two other packet processing applications (IPV4 [39] 

and CM [40]). Since the next-hop addresses are not stored in block memory, the 

programmable security monitor approach results in a considerable reduction in memory 

utilization compared to the fixed hardware monitoring technique. The logic resources 

(ALUTs and registers) show a considerable increase in the programmable security monitor 
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approach with program size, which results from the jump logic implementation illustrated in 

Figure 14.   

 Instructions Address-based Monitor Programmable logic monitor 
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Table 1: Resource utilization comparison 

3.7. Memory based programmable security monitor approach 

This section presents an introduction to a memory based technique for representing 

hash based state machines. Figure 15 illustrates a hash based state machine. Here (0,1,2,3,4...) 

represent the states and (a,b,c,d...) represent the input (hash values) to the states. The state 

machine is traversed based on the current state and the hash input. 

Consider such a state machine with a two bit hash input. For any state there are at 

most four outgoing edges possible based on the input values (00, 01, 10, 11). A naïve way to 

store the state machine in RAM would be to store each state and all possible edge transitions 

as illustrated in Figure 16. The current state and the input hash pattern can be used to index 

the memory to find the next state transition. Since for most states, the next state transition 

may not be present for all input patterns, a valid bit is provided to verify the state transition. 
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For example in Figure 15, state 0 has only 1 state transition, state 2 hash 2 transitions, state3 

has 3 transitions and so on. 
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Figure 15: DFA state machine 
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Figure 16: DFA single memory representation 
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The memory representation illustrated in Figure 16 is not a cost effective solution 

since it results in a large number of unused memory locations. This is since there is a memory 

location for each possible input combination.  An alternative solution is to provide separate 

memory logic for multiple next states as illustrated in Figure 17. For example in Figure 15 , 

for states (0, 1 and 2) we index only a single memory (memory for one state). When state 2 is 

indexed, the jump bit (J) is set high to indicate more than 1 next state. In the next step we 

index all the parallel memory blocks (memory for multiple states) simultaneously. If the valid 

bit (V) is set and the hash input matches (either c or d), we move to the corresponding state 

(either 3 or 4). For a four bit hash input we need 16 parallel memory blocks.  
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Figure 17: DFA parallel memory representation 

The memory representation illustrated in Figure 17, requires simultaneous memory 

access (2
h
, where h is the input bit width) and in many cases there are unused memory 

locations. We need a compact solution which requires only single memory lookup during 

every state transition and does not result in unused memory locations. Thus, state transitions 

need to be implemented with no more than one memory access per instruction (to keep up 

with the network processor core) and be as compact as possible (to minimize the 
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implementation overhead of the monitor). In the next chapter we introduce the proposed 

security monitoring approach which presents a compact solution to represent a state machine 

in memory. 

3.8. Conclusion 

Based on the two monitoring techniques mentioned above, we outline the following 

important features of the two monitoring approaches:  

1. Four-bit instruction hashes can be utilized to monitor processor behaviour since it provides 

a compact representation for each instruction. 

2. It is desirable to limit or eliminate target instruction address locations for conditional 

branches. 

3. The evaluation circuitry for incorrect hash values should be efficiently implemented. In 

the programmable monitor case, this circuitry is implemented using combinational logic. 

In the next chapter, a memory-based implementation is presented.   
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CHAPTER 4 

SYSTEM ARCHITECTURE 

In this chapter, we present a new high performance security monitor system for multi-

core network processors. The generation of security monitors for a multi-core system begins 

with the offline analysis of packet processing application binaries. In this chapter we describe 

an automated process to generate these binaries and configure available monitors fashioned 

from hardware. We implemented our prototype system as part of a reference router on the 

Altera DE4 NetFPGA platform. This chapter describes the individual components in the 

development of the prototype system. 

4.1. Memory based programmable security monitor architecture 

The high level view of our proposed memory based programmable security monitor 

architecture is illustrated in Figure 18. 
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Figure 18: Memory based programmable security monitor architecture 

 We introduce the following enhancements over the previous two security monitor 

models. 
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1. The processor operation is monitored using four-bit instruction hashes. The limitations of 

address-based hardware monitoring scheme, as explained in section 3.3, motivated this 

choice. This change allows the validation of individual instructions, and reduces the 

embedded memory usage of the monitor. 

2. The programmable security monitor scheme discussed in previous chapter suffers from 

logic increase in the jump logic unit due to a need to determine next hop addresses for the 

hash memory, as illustrated in section 3.5. Additionally it requires re-synthesizing the 

design for different application. In order to overcome these issues, we utilize a memory 

based approach to store hash values. This will provide for a more compact monitor 

solution. 

4.1.2. Memory based programmable security monitor operation 

The information that needs to be stored in the monitoring memory is illustrated on the 

left side of Figure 19. Each state represents an instruction and an outgoing transition edge 

from this state represents the hash value of the next expected instruction in the execution 

sequence. For example, the state c has two next states, d and e, with hash values 11 and 3, 

respectively. 
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Figure 19: Grouping of states 

Our main idea to compactly represent DFA states with varying numbers of outgoing 

edges is to encode all the necessary information in a single table entry and to group states by 

the number of outgoing edges. The main challenge in achieving compactness is to allocate 
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exactly the amount of memory that is needed for each state to store next state information 

while still being able to index this memory without degrading to a linear search. In our 

representation, we group states if they have same previous state. A state belongs to group g if 

the previous state has g outgoing edges. For a monitor with 4-bit hash value, there are 16 

possible groups. For example, in Figure 19 on the right side, groups are shown with different 

colors. Note that a state can belong to multiple groups (e.g., state f belongs to group 2 

(because a has two outgoing edges, one to b and one to f) and to group 3 (because e has three 

outgoing edges)). 

The memory contains tuples of {number of next states, offset in state group, valid 

hash values on outgoing edges} and is logically divided into groups. The base addresses for 

each group are stored in register file with 16 entries. Within a group the sets of states that 

share the previous state are grouped together (e.g., b and f are together and d and e are 

together). Within a set, states are ordered by the hash value on the incoming edge (e.g., e 

before d because hash value 3 is smaller than hash value 11). 

 To illustrate the operation of the monitor, we describe an example transition. As 

shown in Figure 18, each 32-bit binary instruction executed by the processor is also input to 

our security monitor during the fetch stage of the processor. Assume the monitor is in state a 

and the processor reports an instruction that leads to a hash value of 7. To perform the 

transition, the memory row labeled a is read. The tuple in this row indicates that there are two 

outgoing edges. The valid hash values of these two edges are stored in the 16-bit vector. To 

verify that the transition is valid, the hash comparison unit checks if bit 7 is set in the bit 

vector (which it is). If this bit is not set, then an invalid transition takes place, indicating an 

attack, and the processor is reset. After the check, the next state (i.e., state f) in the DFA 

needs to be found in memory. To determine the address of that state, the base address of the 

group of the next state is looked up in the register file (i.e., 0x002 since the next state belongs 
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to group 2). To this base address, the product of the set size (i.e., group number) and the 

offset in the state group is added (to index the correct set within this group). Finally, k is 

added, which is the position of the matching hash in the bit vector (in our case 1 since 2 is the 

first matching hash (i.e., k=0) and 7 is the second matching hash (i.e., k=1)). Thus the 

memory location of state f is 0x002 + 2*0 + 1 = 0x003.  

Note that any state transition takes only one memory read from state machine memory 

and a lookup into a fixed-size register file. The DFA is represented compactly without 

wasting any memory slots. Thus, this representation lends itself to high-performance 

implementation. 

4.1.3. System components 

4.1.3.1. Hash function module 

The hash function module generates the four bit hash value for the 32-bit processor 

instruction. For our experimentation, we used a hash function which generates a modulo-16 

value from the sum of all individual bits in the instruction. 

4.1.3.2. Group base address module 

The group base address module stores the base address of the different groups in the 

state machine memory module. The number of states value read from memory is used to 

index the group base address module. The corresponding base address value output is 

forwarded to the memory index generation module. 

4.1.3.3. Valid bit generation module 

This module compares the 4-bit hash value generated by the hash function module 

with all the read hash values from the memory to determine the position of the matching hash 

value. If no hash match occurs, an error signal is generated. 
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4.1.3.4. Memory index generation module 

  This module generates the memory address for indexing the state machine memory 

module. The general equation for memory index calculation is base address + number of 

states*offset in state group + k. The base address value is generated by the group base 

address module, number of states and offset in state group values are read from memory and 

k is generated by the valid bit generation module 

4.1.3.5. State machine memory module 

The state machine memory module stores the hash values and next state values in a 

compact manner as explained in section 4.1.2. The RAM block is divided into different 

groups, which store the states having same number of next states. Each memory entry 

contains tuples of {number of states, offset in state group, valid hash values on outgoing 

edges}. For our experimentation we selected a 4096 deep RAM block as the state machine 

memory module. So the total size of the state machine memory block is 4096*(4+12+16) = 

131K memory bits. 

4.2. Offline analysis 

The automated offline analysis tool for security monitor generation is illustrated in 

Figure 20. The application source code is first passed through a MIPS-GCC compiler. The 

compiler generates the 32-bit binary information for each instruction and the branch 

information for conditional instructions. The branch information contains all possible target 

addresses for the conditional instruction. In our current implementation, all possible branch 

targets and return instructions are analyzed at compile time. Then the DFA-to-NFA 

conversion starts with a non-deterministic NFA representation obtained from the compiler 

information. Through powerset construction, a DFA is constructed. This DFA is then 

converted into a memory initialization file and is loaded into the monitor when the processing 
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binary is installed in the processor.  The NFA to DFA conversion module will be explained in 

detail in section 4.3. 
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Figure 20: Offline analysis 

 

4.3. Non deterministic finite automata to deterministic finite automata 

Tracking nondeterministic finite automata is difficult to implement in practice since 

the automaton can have multiple active states. This leads to high bandwidth requirements 

between the monitoring logic and the memory that maintains the NFA since next-state 

information for all active states has to be fetched in each iteration. As illustrated in Figure 21, 

state 4 and 6 can be reached from state 3 for input condition (z). When using a DFA, in 

contrast, only one state is active and implementation becomes much easier. During offline 

analysis, state assignments must be made so that the control flow is distinct.  
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Figure 21: NFA state machine 

 Powerset construction [50] is a standard method used to convert an NFA to a DFA. 

The algorithm for NFA to DFA transformation using powerset construction is illustrated in 

Figure 22.  

1. The algorithm begins by constructing an NFA state machine, with the each state node 

having the following elements: number of inputs, number of outputs, input list and output 

list (for example state 3 has number of inputs: 1, number of outputs: 2, input list: [state 2] 

and output list: [state 4, state 6]).  

2. The algorithm then progresses to check for conditional branch instructions (number of 

outputs > 1). In the NFA state machine in Figure 21, states 2, 3, 4 and 7 satisfy this 

condition. 

3. The algorithm then proceeds to check for states exhibiting NFA property (hash1 = hash2). 

In the above example state 3 has two output states (4 and 6) both reachable by the same 

input (z), which represents the hash value of the next state. The algorithm replaces states 4 

and 6 in the output list of state 3 with a new single state ({4, 6}), distinct for the input 

value (z). The node elements of the states involved are updated (state 3 now has number of 

inputs: 1, number of outputs: 1, input list: [state 2] and output list: [state {4, 6}]. Similarly 

new state {4, 6} has number of inputs: 1, number of outputs: 2, input list: [state 3] and 

output list: [state 5, state 7]).  

4.  This procedure is continued until all outputs of the present state (if there are more than 2 

outputs) and all states of the NFA state machine are traversed. Both state 3 and new state 
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{4, 6} exhibit NFA properties (for input values z and x respectively). This results in two 

additional states being included in the DFA state machine (state {4, 6} and state {5, 7}). 

The resulting DFA transformation using Powerset construction for the above NFA 

example is shown in Figure 23. 

Start

Create NFA with 

state structure

{ no: of i/p,

no: of o/p,

input list,

output list}

No: of outputs

>1

Hash1 = Hash2

Replace  output states 

with common state 

and 

update state elements

States

exhausted

DFA 

State 

machine

No

Yes

No

Yes

No

Outputs

exhausted

No

Yes

Yes

 

Figure 22: Powerset construction algorithm 
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In Figure 23, the states (1, 2, 3, 4, 5, 6, 7, 8, 9...) in the state machine represent the 

address locations of the hash memory. The hash values (0000 to 1111) are represented by the 

inputs to the state machine (x, y, z, a, b, c...).  

 

 

Figure 23: DFA state machine using powerset construction 

 

The NFA to DFA transformation using powerset construction can result in states 

having more than two next-hop values (e.g. {5, 7}). The proposed security monitor 

architecture described in section 4.1 needs to be enhanced to support multiple next-hop 

address lookups. As part of the proposed work we will evaluate possible modifications to the 

CAM module to accommodate these multiple next-hop address lookups. This transformation 

is performed during offline analysis using software to convert the NFA state machine 

representation to a DFA representation.  

4.4. Network processor core 

The high level architecture of our network processor core is illustrated in Figure 24. 

The processor core consists of a 32-bit open source embedded Plasma processor [38] which is 

implemented in Verilog HDL and based on the MIPS architecture. The Plasma processor 

executes all MIPS user mode instructions except unaligned load and store instructions. The 

network processor core has a memory unit for storing program binaries and for storing data 
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during program execution.  It also has packet buffers to store the incoming network packet 

data. 

 

Figure 24: Network processor core 

 

The network processor core integrated with a single security monitor system is shown 

in Figure 25. The security monitor keeps track of the instructions executed by the processor 

core. A reset signal is generated when a malicious behavior is detected.  

 

Figure 25: Network processor integrated with security monitor 

4.5. Network processor architecture 

A high level overview of the single-core network processor system with the security 

monitor incorporated in the Altera DE4 NetFPGA pipeline is illustrated in Figure 26. The 
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packets arrive at the four Ethernet ports on DE4 board and are inserted into input queues 

(MAC RX Q). The input arbiter forwards these packets to the flow classification module. The 

flow classifier module assigns the incoming packet data to the network processor core. The 

instructions executed by the processor core are input to the monitor subsystem 

simultaneously. The security monitor can generate reset signal to the network processor core. 

The processed packets are forwarded by the output arbiter to the output queues. The packets 

output from the processor system are forwarded by the output queues to the corresponding 

MAC transmit ports (MAC TX Q). 

 

Figure 26: Single-core network processor system with security monitor in Altera DE4 

NetFPGA pipeline.  

 

4.6. Von Neumann versus Harvard architecture 

The MIPS plasma processor used in our proposed network processor design utilizes a 

von Neumann [46] memory architecture, as illustrated in Figure 27. In a von Neumann 

architecture, a single physical memory is shared by both code and data. The processor does 
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not make any distinction between whether the data or code is read or written. A memory 

interface arbitrates the memory access between the instruction read and data access.  

 

Figure 27: von Neumann architecture 

 

This implementation style of von Neumann architecture makes it inherently 

vulnerable to code injection [48] attacks. A typical code injection attack is illustrated in 

Figure 28. The processor keeps track of the instructions it executes using the program counter. 

In a code injection attack, an attacker initially injects a malicious code into the processor’s 

address space and directs the program counter to the address space where the malicious code 

resides. Attackers often employ different memory error techniques like stack overflow [52], 

format string vulnerability [53] and integer overflow [54] to trigger code injection attacks.  

 

Figure 28: Code injection attack 

In a Harvard architecture [47], the code and data are placed in separate physical 

address spaces. The Harvard memory architecture is illustrated in Figure 29. Separate buses 
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provide instruction and data access, with each potentially having different word widths, 

timing and memory address structures. The processor can perform both the instruction read 

and the data memory access at the same time. The instructions are usually stored in read only 

memory while data is stored in read-write memory. Since a program counter cannot point to 

addresses in the data memory, code injection attacks are difficult to perform in a Harvard 

memory architecture. Even if an attacker successfully writes a malicious code in the stack, it 

will not be executed.  

 

Figure 29: Harvard architecture 

 

Even though general memory error techniques (integer overflow, heap overflow etc.) 

cannot be used to generate code injection attacks, Francillon et al. [49] demonstrated that 

code injection attacks are still feasible on Harvard architecture processors using return-

oriented programming technique [55]. Here an attacker sends several specifically crafted 

packets to build a malicious stack one byte at a time. Once the stack is built, the attacker 

sends another specifically crafted packet that copies the malware to program memory using a 

return-oriented programming technique. 

As part of the proposed work we evaluated a possible attack on a Harvard architecture 

and the ability of our proposed security monitor to detect it. The memory architecture of the 
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plasma processor was modified to have separate instruction and data memory. The instruction 

memory was made read-only while data memory was made read-write.  
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CHAPTER 5 

EXPERIMENTAL APPROACH 

This chapter describes the experimental approach used for testing the prototype 

system. In the first section, we describe how a Harvard architecture attack can be constructed 

for the networking environment. The later section discusses the experimental setup, 

implemented utilizing Altera DE4 NetFPGA infrastructure. Finally, we outline the different 

evaluation metrics used for verifying the prototype system functionality.  

5.1.  Network attack generation 

In this section, we describe how a Harvard memory architecture attack can be 

constructed for the networking environment and how our monitor can detect it. Figure 31 

shows a portion of congestion management protocol (CM) and IPV4 packet forwarding 

application used to build an attack on the network processor system. The network attack used 

for testing the prototype system functionality exploits a simple integer overflow vulnerability 

of the congestion management [40] protocol application. A congestion management protocol 

inserts a custom protocol header in the packet header space between IP header and UDP 

header as illustrated in Figure 30.  
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Figure 30: Congestion management header insertion 
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The application during this process needs to make sure the new packet size (len1 + 

len2) does not exceed the maximum datagram length. In certain cases, this maximum packet 

size check can be exploited to create an integer overflow.  

CM protocol IPV4 application
 

Figure 31: Integer overflow vulnerable code 

The variable sum is of type unsigned short. The CM application uses this variable to 

check whether the packet size (sum = len1 + len2) after inserting the custom header has 

exceeded the maximum packet size limit (sum > MAX_PKT_SIZE). Any packet which 

satisfies the size check is then copied to processor data memory. However, an attacker can 

send a carefully crafted malformed UDP packet that can trigger an integer overflow. For 

example, an attack packet with malformed UDP length field (16 bit value 0xfffe (decimal 

value 65534)) will pass the maximum packet size check (since 65334 + 12 = 10, due to 

integer overflow). This will result in 65334 bytes of packet data to be copied to the processor 

memory space.   

The packet payload of the attack packet is crafted in such a way that the return 

address is overwritten to direct the control flow to the IPV4 packet forwarding application 

(which is the library code on the processor) and the value of ip_dst_low field is 0xff. The port 

information gets updated with this value (the boxed instruction in the IPV4 code), forwarding 

the attack packet to all the outgoing ports and then crashing the processor system. As a result, 
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the attack packet gets forwarded to all outgoing interfaces before the system crashes, thus 

propagating the attack through the network. 

5.2. Experimental Setup 

The test topology that will be used to verify the performance of our monitoring 

system is shown in Figure 32.  

 

Figure 32: Test topology 

Altera DE4 packet generator is used to generate network packets, and to capture 

packets forwarded from the prototype system. The packet generator tool allows for 

customizing the size, the number of iterations, and the throughput rate for the test packet. The 

packet generator code is downloaded to one Altera DE4 board. The single core network 

processor system with security monitor, integrated along with the Altera DE4 NetFPGA 

packet generator pipeline is downloaded to another DE4 board. Ethernet MAC-PHY registers 

are configured through the JTAG cable. The experimental test setup is illustrated in Figure 33. 

 

Figure 33: Experimental test setup 
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5.3. Evaluation metrics 

The prototype system is tested in simulation using a ModelSim-Altera simulator [41], 

and in hardware using an Altera Signal-tap logic generator [56]. The different evaluation 

metrics for verifying the prototype system are listed below. 

1. Throughput performance: Using IPV4 packet forwarding application [39], the single-

core network processor system without that security monitor is tested for throughput 

performance for different packet sizes. The single core network processor system with 

security monitor illustrated in Figure 26 is tested for throughput performance using the 

attack model described in section 5.1.  

2. Attack Detection: The prototype system described in Figure 26 is tested for attack 

detection capability, using the attack model mentioned in section 5.1. The security monitor 

system should detect any unintended processor behaviour and trigger appropriate recovery 

mechanisms to the processor.   

3. Resource overhead: The resource utilization of the security monitor system is evaluated 

using a diverse set of network applications, as explained in next chapter. The resource 

savings facilitated by the proposed security approach over existing monitoring schemes is 

estimated. 
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CHAPTER 6 

BENCHMARKS AND EXPERIMENTAL RESULTS 

 

In this chapter we discuss the benchmarks used for testing the network processor 

system and the results of the experiments performed on the proposed security monitor 

architecture.  

6.1. Evaluation benchmarks 

Network workloads can be logically divided into data plane workloads and control 

plane workloads. The data plane is where data traffic is handled using actions such as packet 

forwarding, packet dropping, and encapsulation. The control plane handles complex packet 

management tasks like flow management, signaling, and routing updates. Control plane 

operations are usually less time critical, while data plane operations take place in real time on 

the network data path. Although network processors mostly target data plane applications, 

they are equally applicable to control plane operations.  NpBench [43] is a benchmark suite 

targeting modern network processor applications. The benchmark applications are 

categorized into three specific functional groups - traffic management and quality of service 

group (TQG), security and media processing group (SMG) and packet processing group 

(PPG). The applications in these groups belong to either the data plane, control plane or both.  

The TQG benchmark falls in the category of both control plane and data plane processing, 

and includes applications related to routing, scheduling, switching, signaling and quality of 

service. The SMG benchmark is related to security applications like firewalls, admission 

control, encryption algorithms and media processing applications like media trans-coding. 

The PPG benchmark includes data plane processing applications like IP packet fragmentation, 

packet marking, editing and classification. The proposed network processor architecture will 

be evaluated using these diverse benchmark applications. Table 2 summarizes the different 

benchmarks provided by NpBench.  
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Group Applications Data 
plane 

Control 
plane 

 

 

 

 

TQG 

Routing X X 

Scheduling X X 

Content-based Switching X X 

Weighted pair queuing X X 

Traffic shaping X X 

Load Balancing X X 

VLAN  X 

MPLS X X 

 

 

 

 

SMG 

Block cipher algorithm X  

Message cipher algorithm X  

Firewall application X X 

IPSec X X 

Virtual private network X X 

Public encryption X  

Usage-based accounting X X 

H.323 X  

Media transcoding X X 

Duplicate data suppression X  

 

 

PPG 

IP-packet fragmentation X  

Packet encapsulation X  

Packet marking/editing X  

Packet classification X  

Checksum calculation X  

Table 2: NpBench Benchmark applications [43]. 
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6.2. Experimental results 

6.2.1. Attack Detection 

This section explains the experiments performed to test the ability of our proposed 

security monitoring system to detect and recover from an attack. We observed the security 

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware 

using an Altera Signal-tap logic generator [56]. 

6.2.1.1. Network processor without security monitor 

We initially tested the single-core network processor operation without the security 

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the 

simulation results for the behavior of the processor system. The attack packet was received 

through MAC port Rx0, and then forwarded to the network processor. The processor then 

forwards the attack packet to all the outgoing ports of the router and then crashes the router. 

This behavior was also verified in hardware. 

 

Figure 34: Simulation waveform showing attack packet propagation in the network 

processor system.   

6.2.1.2. Network processor with security monitor 

We then repeated the previous experiment after including the security monitor as 

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the 

network processor system when an attack packet and normal packet are sent simultaneously. 
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After the monitor was included, the attack packet was successfully identified, the network 

processor was reset, and subsequent normal packets were routed successfully.  

 

Figure 35: Simulation waveform showing the identification of the attack packet and 

successful forwarding of the subsequent packet. 

6.2.2. Throughput performance 

This section explains the experiments performed to measure the throughput of our 

proposed network processor system. The experimental setup mentioned in section 5.2 was 

implemented to perform these measurements. 

6.2.2.1. Single-core network processor throughput performance 

The single-core network processor system illustrated in Figure 26 was implemented, 

without the security monitor, on the Altera DE4 NetFPGA platform. Using a standard IPV4 

packet forwarding application in the processor core, the throughput performance of the 

single-core system was tested. Network packets of different packet sizes were generated from 

the Altera DE4 packet generator, and send through the 1Gbps MAC ports of the Altera DE4 

board. The forwarded packets were received back at the packet generator and the prototype 

system’s transmit-receive statistics were measured. The resulting throughput performance is 

illustrated in Figure 36. 

The throughput of our network processor system improves as the packet size increases. 

The packet forwarding application works by comparing destination IP address in each packet 

header with IP address values stored in processor memory to select an output port. A 
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reduction in packet size increases the per packet processing operation, and thus reduces the 

overall throughput performance. 

 

Figure 36: Single-core network processor throughput performance (IPV4) 

6.2.2.2. Single-core network processor throughput performance under attack 

In this experiment, we evaluate the throughput performance of our single-core 

network processor system illustrated in Figure 26 when attack packets are sent 

simultaneously along with normal packets. Normal packets are received at one Ethernet-

MAC port (Rx0) of the network processor system; while attack packets are received 

simultaneously at another receive port (Rx1). Both normal packets and attack packets are 

generated at the same rate from the packet generator system. The forwarded packets are 

received back at the packet generator and the throughput is measured. Figure 38 shows the 

throughput performance of the network processor system for two different packet sizes for 

varying ratios of normal packets to attack packets. The vulnerable application shown in 

Figure 31 was used for testing purpose. When no attack packets are send the throughput of 

the network processor system increases and reaches a maximum. When attack packets are 

included the throughput reaches a maximum, and then decreases slightly before settling down. 
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Figure 37: Single-core network processor throughput performance with security 

monitor under attack packets 

As we increase the ratio of the attack packets sent to the processor system, the overall 

throughput of the system is reduced. This effect occurs because whenever an attack packet is 

detected, the security monitor generates a reset signal. The network processor and the packet 

buffer are reset before the processor can continue with the next packet. 
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Figure 38: Maximum possible input rate for all normal packets to be forwarded 

successfully 

Figure 38 shows the maximum rate at which packets can be received by the network 

processor system so that all normal packets are forwarded successfully. Only attack packets 

are dropped by the processor, while all the regular packets are forwarded successfully. The 

latency for the 100-byte packet is 24us while for 256-byte packet the latency is 104us. 

When testing the throughput performance using larger packet sizes (512 bytes, 1500 

bytes), the network processor does not forward the packets and the packets are lost. The 

reason for this packet loss could be either of the following two cases below. 

1. For the application used for testing throughput performance under attack (CM protocol), 

the processor copies the packets to the data memory before forwarding the packets. The 

data memory may not be sufficient for processing large packets. So we may need to look 

at different applications to overcome this problem. 

2. Packet generator sends packets to the network processor with a small inter packet delay. 

Since CM application operates on the entire packet, the inter packet delay becomes 

insufficient (as packet size increases) for the single core processor to effectively route the 
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packets, resulting in packet loss.  A solution for this could be multi-core network 

processors. 

6.2.3. Resource Utilization 

This section explains the different resource utilization details of our proposed network 

processor system. The synthesis results were provided by Altera Quartus tool while the DFA 

memory resource utilization details were provided by the offline analysis tool explained in 

section 4.2. 

6.2.3.1. Hash size and memory requirement 

We initially explored the relation between hash size, DFA states, and state machine 

memory requirement for three different hash sizes. Table 3 shows the relation between hash 

size and DFA states. As hash size increases the probability of hash collision decreases (1/2
h
, 

where h is the hash size), which reduces the number of DFA states. For example, for a three 

bit hash, if the sum of instruction bits for the multiple active states on the output of a control 

flow instruction in an NFA differ by a value of 8, we combine them to form a DFA state (e.g., 

if the sums are 2 and 10, then modulo 8 of both values is 2). When we move to higher hash 

sizes, this hash collision is avoided and the DFA states get reduced. For the benchmarks 

tested, most of the NFA states combined to form DFA have the same hash value, so they 

remain even when we increase the hash size. For the few states where hash collisions are 

avoided, we get a reduction in DFA states by increasing the hash size. 

Table 4 shows the relationship between hash size and state machine memory. 

Increasing the hash size increases the size of memory entries exponentially since the valid 

hash values on outgoing edges field depends on hash size as explained in section 4.1. The 

memory overhead increases by 42% as we move from three bit hash to four bit hash and by 

56% as we move from four bit hash to five bit hash. Having a larger hash size reduces the 

number of DFA states (probability of hash collision reduces) when the benchmark has a 



55 

 

potentially large number of control flow instructions and memory accesses. We selected a 

four bit hash for our proposed security monitoring system since it provides sufficiently low 

collision probability (0.0625) without much memory overhead.  

 

Benchmarks NFA states DFA states 

  Three bit hash Four bit hash Five bit hash 

frag 573 594 592 591 

red 802 808 808 807 

ssld 828 836 836 833 

wfq 905 921 921 918 

mtc 2427 2460 2460 2459 

Table 3: Hash size versus DFA states 

 

Benchmarks NFA states Three bit hash Four bit hash Five bit hash 

  Mem. 

entries 

Mem. 

bits 

Mem. 

entries 

Mem. 

bits 

Mem. 

entries 

Mem. 

bits 

frag 573 629 13209 627 18810 626 29422 

red 802 857 17997 857 25710 854 40138 

ssld 828 879 18459 879 26340 871 40937 

wfq 905 980 20580 978 29340 969 45543 

mtc 2427 2584 59432 2584 82688 2581 126469 

Table 4: Hash size versus state machine memory 

6.2.3.2. DFA versus NFA monitoring graph comparison 

The results of generating instruction-level monitoring graphs for both our approach 

and the previously mentioned approach in section 3.1 are illustrated in Table 5. The number 
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of entries in the state machine memory is shown in the Mem. entries column. A clear benefit 

of our proposed approach is speed. In all cases, only one access to the monitor memory is 

required for any benchmark (including the five shown here). The previous NFA-based 

approach requires up to three memory accesses for the benchmarks tested and potentially up 

to 16 for other benchmarks. The conversion from NFA to a DFA does incur a memory 

overhead of 7.7% on average for the benchmarks. 

 

 Chasaki[2] Proposed system 

Net. 

application 

No: of 

instructions 

NFA states Max mem. 

accesses 

DFA states Mem. 

entries 

Mem. 

overhead 

frag 573 573 3 592 627 9.4% 

red 802 802 2 808 857 6.8% 

ssld 828 828 3 836 879 6.2% 

wfq 905 905 2 921 978 8.0% 

mtc 2427 2427 3 2460 2584 6.4% 

Table 5: Evaluation of monitoring approaches for our proposed DFA approach and a 

previous NFA approach.  

6.2.3.3. Monitoring speed and resource utilization 

The network processor system along with the security monitoring module was 

successfully implemented on the DE4 platform.  The lookup table (LUT), flip flop (FF), and 

memory resources required for the single network processor core, monitor, and other 

interface circuitry for the router (e.g. buffers, input arbiter, queuing control) are shown in 

Table 6. The NP memory includes space for up to 4096 monitor memory entries. All circuitry 

operated at 125 MHz, the same clock speed for the system without the monitor.  
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Resources  Secure monitor Network proc. DE4 interface Available 

LUTs 140 3,792 37,803 182,400 

FFs 26 2,120 38,444 182,400 

Mem. bits 131,072 201,216 2,550,800 14,625,792 

Table 6: Resource utilization for single core network processor system 

 

The lookup table (LUT), flip flop (FF), and memory resources required for both our 

approach and the previously mentioned approach in section 3.1 are illustrated in Table 7. The 

security monitor memory includes space for up to 4096 memory entries. The DFA based 

monitor has the advantage of evaluating 16 next states during every instruction cycle.   

 

Resources NFA based security 

monitor (basic blocks) 

DFA based security 

monitor (4-bit hash) 

LUTs 40 140 

FFs 35 26 

Memory bits 49,664 131,072 

Table 7: Resource utilization comparison between NFA based and DFA based security 

monitors 

 

This chapter summarized the evaluation benchmarks and the experimental results 

performed to test the functionality of our proposed network processor with the security 

monitoring system. Next chapter concludes the thesis and provides future directions. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

The thesis has outlined a new network processor architecture with a high-performance 

security monitor for detecting in-network attacks. The network processor requires only a 

single memory lookup per network processor instruction. This single memory lookup is 

maintained regardless of the complexity of the network processor program using NFA-to-

DFA translation of the monitoring graph. Our monitor, which tracks individual processor 

instructions, has been verified in hardware using a network processor with a Harvard 

architecture. The presence of monitoring does not slow down the processor operation since it 

is performed outside the operational paths of the processor. 

The network processor with security monitoring system was implemented as part of 

the Altera DE4 NetFPGA infrastructure. Results show that the throughput of the single-core 

network processor system increases as the packet size increases. The network processor was 

able to achieve line rate forwarding at packet size of 1500 bytes for IPV4 packet forwarding 

application. We demonstrated the ability of our security monitor system to detect and recover 

from network attacks without affecting the performance of the processor. Only the attack 

packets get dropped, while the regular packets are forwarded successfully. We illustrated the 

benefits of our security monitoring system over existing techniques in both memory access 

and resource utilization. Our evaluation of hash size to memory resource requirement showed 

that a four bit hash size provides sufficiently less collision probability without increasing the 

memory overhead.  

In the future, we plan to evaluate our monitoring approach using a multi-core network 

processor. We also plan to look into the possibility of sharing monitoring logic between 

different processor cores when they execute the same application. We hope that the 
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developed security monitor framework will facilitate rapid design space exploration of 

security monitor architectures for network processor systems. 
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