
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Masters Theses 1896 - February 2014 Dissertations and Theses

2013

Protecting Network Processors with High
Performance Logic Based Monitors
Harikrishnan Kumarapillai Chandrikakutty
University of Massachusetts - Amherst, chandrikakut@ecs.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/theses

This Open Access is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted
for inclusion in Masters Theses 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Kumarapillai Chandrikakutty, Harikrishnan, "Protecting Network Processors with High
Performance Logic Based Monitors" (). Masters Theses 1896 - February 2014. Paper 1054.
http://scholarworks.umass.edu/theses/1054

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F1054&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F1054&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Ftheses%2F1054&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F1054&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

PROTECTING NETWORK PROCESSORS WITH HIGH PERFORMANCE

LOGIC BASED MONITORS

A Thesis Presented

by

HARIKRISHNAN KUMARAPILLAI CHANDRIKAKUTTY

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 2013

ELECTRICAL AND COMPUTER ENGINEERING

© Copyright by Harikrishnan Kumarapillai Chandrikakutty 2013

All Rights Reserved

PROTECTING NETWORK PROCESSORS WITH HIGH PERFORMANCE LOGIC

BASED MONITORS

A Thesis Presented

by

HARIKRISHNAN KUMARAPILLAI CHANDRIKAKUTTY

Approved as to style and content by:

Russell G. Tessier, Chair

Tilman Wolf, Member

Michael Zink, Member

C. V. Hollot, Department Head

Electrical and Computer Engineering

iv

ACKNOWLEDGMENTS

I would like to thank the National Science Foundation for funding the project and

giving me the opportunity to work on it. I am extremely thankful to Professor Russell Tessier

for his constant motivation and guidance. I am also grateful to Professor Tilman Wolf and

Professor Michael Zink for agreeing to be on my thesis committee. I would like to extend my

gratitude to Deepak Unnikrishnan of Reconfigurable Computing Group for his valuable

suggestions and support on the project. I would also like to thank my RCG lab mates-

Murtaza, Justin, Kekai, Cory and Jia for making it a wonderful experience. Finally, I would

like to thank my family for their encouragement and support during the course of my higher

studies here in the United States.

v

ABSTRACT

PROTECTING NETWORK PROCESSORS WITH HIGH PERFORMANCE LOGIC

BASED MONITORS

MAY 2013

HARIKRISHNAN KUMARAPILLAI CHANDRIKAKUTTY

 B.Tech, COLLEGE OF ENGINEERING, TRIVANDRUM, INDIA

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

Technological advancements have transformed the way people interact with the world.

The Internet now forms a critical infrastructure that links different aspects of our life like

personal communication, business transactions, social networking, and advertising. In order

to cater to this ever increasing communication overhead there has been a fundamental shift in

the network infrastructure. Modern network routers often employ software programmable

network processors instead of ASIC-based technology for higher throughput performance and

adaptability to changing resource requirements. This programmability makes networking

infrastructure vulnerable to new class of network attacks by compromising the software on

network processors. This issue has resulted in the need for security systems which can

monitor the behavior of network processors at run time.

This thesis describes an FPGA-based security monitoring system for multi-core

network processors. The implemented security monitor improves upon previous hardware

monitoring schemes. We demonstrate a state machine based hardware programmable monitor

which can track program execution flow at run time. Applications are analyzed offline and a

hash of the instructions is generated to form a state machine sequence. If the state machine

deviates from expected behavior, an error flag is raised, forcing a network processor reset.

vi

For testing purposes, the monitoring logic along with the multi-core network processor

system is implemented in FPGA logic. In this research, we modify the network processor

memory architecture to improve security monitor functionality. The efficiency of this

approach is validated using a diverse set of network benchmarks. Experiments are performed

on the prototype system using known network attacks to test the performance of the

monitoring subsystem. Experimental results demonstrate that out security monitor approach

provides an efficient monitoring system in detecting and recovering from network attacks

with minimum overhead while maintaining line rate packet forwarding. Additionally, our

monitor is capable of defending against attacks on processor with a Harvard architecture, the

dominant contemporary network processor organization. We demonstrate that our monitor

architecture provides no network slowdown in the absence of an attack and provides the

capability to drop packets without otherwise affecting regular network traffic when an attack

occurs.

vii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS .. iv

ABSTRACT .. v

TABLE OF CONTENTS .. vii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER

1. INTRODUCTION.. 1

1.1. Organization of the document ... 4

2. BACKGROUND AND RELATED WORK .. 5

2.1. Field-programmable gate array ... 5

2.2. Network Processors .. 6

2.3. Secure monitoring ... 7

2.3.1. Network attacks ... 7

2.3.2. Software based monitoring techniques .. 8

2.3.3. Hardware based monitoring techniques ... 9

2.4. NetFPGA 1G Infrastructure .. 9

2.5. Altera DE4 NetFPGA infrastructure ... 10

2.5.1. Altera DE4 FPGA board .. 10

2.5.2. Altera DE4 NetFPGA Infrastructure ... 10

2.5.3. Altera DE4 NetFPGA reference router .. 12

2.5.4. Altera DE4 NetFPGA packet generator ... 12

2.6. Related work ... 13

2.7. Summary ... 14

3. SECURITY MONITOR SYSTEM REVIEW ... 15

3.1. Address-based hardware security monitor system .. 16

3.2. Address-based hardware monitor operation ... 17

3.2.1. System components ... 18

3.3. Limitations of address-based hardware security monitor. 19

3.4. Programmable security monitor using instruction hashing 19

3.4.1. Programmable logic monitor operation ... 20

viii

3.4.2. System components ... 21

3.5. Limitations of programmable security monitor .. 24

3.6. Comparison of address-based hardware and programmable monitors 24

3.6.1. Resource overhead ... 24

3.7. Memory based programmable security monitor approach 25

3.8. Conclusion .. 28

4. SYSTEM ARCHITECTURE ... 29

4.1. Memory based programmable security monitor architecture 29

4.1.2. Memory based programmable security monitor operation 30

4.1.3. System components ... 32

4.2. Offline analysis ... 33

4.3. Non deterministic finite automata to deterministic finite automata 34

4.4. Network processor core .. 37

4.5. Network processor architecture .. 38

4.6. Von Neumann versus Harvard architecture .. 39

5. EXPERIMENTAL APPROACH ... 43

5.1. Network attack generation .. 43

5.2. Experimental Setup ... 45

5.3. Evaluation metrics .. 46

6. BENCHMARKS AND EXPERIMENTAL RESULTS 47

6.1. Evaluation benchmarks ... 47

6.2. Experimental results.. 49

6.2.1. Attack Detection .. 49

6.2.2. Throughput performance ... 50

6.2.3. Resource Utilization... 54

7. CONCLUSION AND FUTURE WORK ... 58

BIBLIOGRAPHY .. 60

ix

LIST OF TABLES

Table Page

1. Resource utilization comparison .. 25

2. NpBench Benchmark applications [43]. .. 48

3. Hash size versus DFA states .. 55

4. Hash size versus state machine memory .. 55

5. Evaluation of monitoring approaches for our proposed DFA approach

 and a previous NFA approach.. 56

6. Resource utilization for single core network processor system 57

7. Resource utilization comparison between NFA based and DFA

 based security monitors.. 57

x

LIST OF FIGURES

Figure Page

1. Internet Users per 100 Inhabitants [1] ... 1

2. Attack on packet processing system in network router data plane [33] 2

3. Structure of an FPGA [9] ... 5

4. Processor design space ... 6

5. Simple network processor architecture .. 7

6. Network processor system with hardware monitor ... 9

7. Altera DE4 board ... 11

8. Altera DE4 NetFPGA Architecture ... 11

9. Reference router pipeline ... 12

10. Basic block representation ... 16

11. Address-based hardware security monitor architecture [2] 17

12. Undetectable network attack .. 20

13. Programmable security monitor architecture ... 20

14. Jump logic implementation .. 24

15. DFA state machine ... 26

16. DFA single memory representation ... 26

17. DFA parallel memory representation ... 27

18. Memory based programmable security monitor architecture 29

19. Grouping of states .. 30

20. Offline analysis .. 34

21. NFA state machine ... 35

22. Powerset construction algorithm.. 36

23. DFA state machine using powerset construction ... 37

xi

24. Network processor core ... 38

25. Network processor integrated with security monitor ... 38

26. Single-core network processor system with security monitor in Altera

 DE4 NetFPGA pipeline. .. 39

27. von Neumann architecture ... 40

28. Code injection attack.. 40

29. Harvard architecture... 41

30. Congestion management header insertion ... 43

31. Integer overflow vulnerable code .. 44

32. Test topology ... 45

33. Experimental test setup .. 45

34. Simulation waveform showing attack packet propagation in the network

 processor system. ... 49

35. Simulation waveform showing the identification of the attack packet

 and successful forwarding of the subsequent packet. .. 50

36. Single-core network processor throughput performance (IPV4) 51

37. Single-core network processor throughput performance with security

 monitor under attack packets ... 52

38. Maximum possible input rate for all normal packets to be forwarded

 successfully .. 53

1

CHAPTER 1

INTRODUCTION

Communication is an essential aspect of modern human society. Rapid advancements

in modern technology have brought about significant improvements in fields of personal

communication, business transactions, entertainment, and digital government. The Internet

forms a central aspect in many of these communication requirements. This ever growing

dependence on the Internet has resulted in the need to improve different attributes of

communication infrastructure like network functionality, throughput performance, reliability

and security. The growth of Internet usage based on data from the International

Telecommunications Union is illustrated in Figure 1.

Figure 1: Internet Users per 100 Inhabitants [1]

There has been a fundamental shift in network infrastructure in order to support the

need for high performance routing resources. Network routers constitute the core of network

infrastructure and perform most of the packet processing applications. The lack of flexibility,

2

programmability and manageability of existing network routers, implemented using

application specific integrated circuit (ASIC) technology, highlights the need to consider

other networking infrastructures. The need to experiment and adapt newer networking

protocols and services has resulted in a shift to software programmable network processor

based systems [29]. Network processors [10] have multiple processor cores that can be

programmed to adapt to different networking requirements. The software programmability of

network processor also makes it vulnerable to network attacks. This inherent vulnerability

can be exploited to generate in-network denial of service attacks, as illustrated in Figure 2.

Internet

router
router

router

router

end-

system

packet processing system in data plane

network processor

o
ff

-c
h

ip
 m

e
m

o
ry

processor

core

processor

core

processor

core

processor

core

I/O interface

interconnect

control

processor

m
e

m
o

ry
 i
n

te
rf

a
c
e

m
e

m
o

ry
 i
n

te
rf

a
c
e

memory

memory

memory

o
ff

-c
h

ip
 m

e
m

o
ry

network interface switch fabric interface

packet

attack

end-

system

end-

system

router

Figure 2: Attack on packet processing system in network router data plane [33]

The existing network security mechanisms for end systems like virus scanners and

firewalls are not suitable for network processor based systems since these mechanisms need

3

the support of operating systems. Network processors can benefit from dedicated monitors

that can quickly and efficiently detect attacks with minimum resource overhead. A novel

hardware based monitoring strategy has been proposed to reduce the vulnerability of network

processor based systems [2] [3]. These hardware monitors keep track of program execution

flow in the processor. Processor operation is compared to expected program behavior using

information stored in the monitor memory. Any deviation from the expected behavior is

detected and suitable recovery procedures are initiated. The experimental results highlight

the benefits of using hardware monitors for monitoring network processor systems, like fast

attack detection and low overhead.

Although the potential of hardware security monitors has been demonstrated in

previous approaches, there is still room for improvement in terms of monitor detection

accuracy, resource utilization and attack detection speed. Moreover, in multi-core network

processor systems, there is an opportunity for sharing monitor resources when multiple

processors execute the same application. In this document we present a programmable logic

based monitoring system for monitoring multi-core network processor systems. The specific

contributions of this work are:

1. The design of a high-performance programmable security monitor which uses hashes of

network processor instructions to detect unintended processor behaviour. The application

is analyzed offline and an efficient state machine is created which tracks program

execution during runtime. If an expected sequence of instructions (represented as hash

values) is not followed, an execution error is detected. The state machine can be

implemented as either a non-deterministic finite automaton (NFA) or a deterministic finite

automaton (DFA). In this research, we investigate security monitors based on DFA state

machine implementations [6] [7].

4

2. A single-core network processor system with security monitor is implemented on an

Altera DE4 system. The competence of our proposed system to detect known network

attacks is evaluated.

3. We evaluated the resource requirements and throughput performance of our proposed

architecture using a diverse set of networking benchmarks [43].

4. Network attacks on network processors based on Harvard architecture [47] are

considered. We demonstrate an in-network attack through the data plane of the network

that exploits an integer overflow vulnerability to smash the processor stack and launch a

return-to-library attack. This attack propagates the attack packet and crashes the processor

system. We also show that our hardware monitor is effective in defending against this

attack and allowing for continued router operation after attack identification and recovery.

1.1. Organization of the document

The rest of the thesis document is organized as follow. Chapter 2 provides a detailed

overview on the general background of network processors, hardware security monitors and

the related work in this field. Chapter 3 describes two previous hardware security monitoring

approaches and the subsequent improvements introduced in the work. Chapter 4 describes the

four-core system architecture with security monitors. Chapter 5 explains the experimental

setup for testing the prototype system. Chapter 6 discusses the benchmarks and the obtained

results. Chapter 7 concludes the thesis with directions for future work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, an overview of the technologies needed to perform the proposed

research is provided. These technologies include field-programmable gate array (FPGA)

chips, embedded systems based on FPGAs, and network processors.

2.1. Field-programmable gate array

 A field-programmable gate array is a semiconductor device that can be programmed

by a user after it is manufactured. FPGAs contain programmable components called logic

blocks and a hierarchy of interconnect elements (wires) which can be configured to connect

these logic blocks, as illustrated in Figure 3. Hardware description languages (HDL), such as

Verilog and VHDL, can be used to configure the device for implementing specific

applications. Modern FPGAs also provide high speed transceivers, embedded memory blocks

and high-speed I/Os that help perform complex computational operations [8]. Compared to

application specific integrated technology, FPGAs allow for rapid prototyping, faster

debugging, ability for easy reprogramming and shorter time to market.

Figure 3: Structure of an FPGA [9]

6

2.2. Network Processors

The tremendous growth of modern communication infrastructure, such as the Internet,

has resulted in the need for networking resources that can meet high throughput performance,

flexibility and security. Even though general purpose processors (GPP) can support newly-

introduced networking protocols and services, they often do not provide high throughput

performance. ASIC processors can provide high throughput but generally do not allow

straightforward functionality changes. Network processors (NP) represent the design space

between these two approaches, as illustrated in Figure 4.

ASIC

NP

GPP

P
e

rf
o

rm
a

n
c
e

Programmability

Figure 4: Processor design space

Network processors have multiple embedded processor cores which are software

programmable to provide real time programmability and high throughput performance. The

architecture of a simple network processor is illustrated in Figure 5.

Network processors consist of multiple processing elements and memory units

connected by an on-chip network [10]. A control system determines the interaction between

processors and memory elements and the processing required. Based on the workload,

7

software on network processors can be changed to adapt to the processor operation. There are

different performance metrics that need to be considered while designing network processors

like cost, throughput performance, and power [11] [12]. With promising technologies, like

network virtualization, for future internet architectures emerging, significant research is

ongoing on network processor based systems [13] [14] [15].

Figure 5: Simple network processor architecture

2.3. Secure monitoring

 The software programmability of network processors raises a serious security

concern. Network processor systems are vulnerable to network attacks that can remotely

exploit their programmable nature. In this section, we look at some network attacks and the

existing monitoring techniques for guarding against these attacks.

2.3.1. Network attacks

Network attacks [16] [17] [18] [19] exploit the vulnerabilities in network systems.

Sniffing or snooping are network attacks which allow intruders to listen to or interpret traffic.

If packets are not properly encrypted, sniffing attacks can give a full view of the ongoing

communications. This attack can be used to read the data or cause the network to crash or

become corrupted. Distributed denial-of-service attacks [20] occur when an attacker takes

Instruction

Memory

Data

Memory

Packet

Buffers

Embedded

Processor

Embedded

Processor

Embedded

Processor

8

control of a large number of machines and installs attack software in them. These machines

can then be used to bombard target attack sites with a large number of messages. This attack

can result in preventing normal system usage and can also lead to the abnormal behavior of

applications or services. Identity spoofing is another common network attack. Here, an

attacker uses special programs to construct IP packets that appear to originate from valid

addresses. This attack can also be used in combination with denial-of service attacks. The

attacker can first take down an existing network connection between two end systems by

denial of service attacks. A new connection can then be initiated with one of the end systems

by sequence number guessing. The attackers can then modify, reroute or delete the data after

taking control of network traffic. A routing attack is another kind of network attack which

reroutes network traffic through attack systems.

2.3.2. Software based monitoring techniques

There are many existing software techniques for protecting network systems against

attacks. Firewalls [21] and virus scanners are the most common solutions for Internet security

[22]. Firewalls help in filtering out traffic that might be harmful. This filtering can happen at

IP packet level, TCP session level or at the application level. Firewalls examine incoming

packets and filters out malformed or attack packets. They are useful against spoofing attacks

and denial-of-service attacks. Virus scanners are examples of intrusion detection systems [23].

These systems are devices or software applications that detect the presence of malicious

traffic or services. Firewalls try to prevent intrusions which originate from outside the

network. Intrusion detection systems detect suspected intrusions that have taken place and

look for attacks being generating from inside the network. Another security measure is the

use of encrypted packets for data communication. Here, cryptographic techniques are used to

encrypt the data while in transmit. Communication is implemented using Internet Protocol

Security (IPSec), a set of open Internet Engineering Task Force (IETF) standards. The

9

encrypted packets have the same format as unencrypted packets and they are transmitted on

the existing network framework.

2.3.3. Hardware based monitoring techniques

 Existing security mechanisms, like virus scanners and firewalls, generally require

powerful processors and operating systems. These resources are generally not associated with

network routers on programmable network processors. Instead, hardware monitors can be

used to protect network processors against vulnerabilities, as illustrated in Figure 6. Monitors

use run time processing information to look for deviations from expected processor behavior.

If an attack occurs, a deviation from the expected behavior is detected and a suitable recovery

process is initiated. In this thesis project, we introduce a new programmable logic based

security monitoring technique for detecting network attacks. In the next two sections we

describe two FPGA-based systems which can be used to prototype such a system.

Figure 6: Network processor system with hardware monitor

2.4. NetFPGA 1G Infrastructure

The NetFPGA 1G [24] is a programmable platform for networking research that can

operate at 1 Gbits per second line rate. The platform is actively used in networking research

with more than 2000 boards deployed worldwide. The system includes a Xilinx Virtex II pro

[25] based FPGA which can be configured to perform different networking applications.

These applications include a reference router, a packet generator, and a network interface.

Instruction

Memory

Data

Memory

Packet

Buffers

Embedded

Processor

Embedded

Processor

Embedded

Processor

Comparison

logic

Expected program

behaviour

Run time

information

Recovery

measures

Hardware

monitor

10

2.5. Altera DE4 NetFPGA infrastructure

Although the NetFPGA 1G is widely used, its logic capacity is limited, making it

unsuitable for research for this project. The Altera DE4 NetFPGA [37] platform is a suitable

alternative. This infrastructure will be heavily used for this thesis project. Important

components of the design including the Altera DE4 board, the DE4 NetFPGA software

infrastructure, and the reference router and packet generator modules, are described

subsequently since they are referenced in our discussion of the proposed security architecture

in coming chapters.

2.5.1. Altera DE4 FPGA board

The Altera DE4 FPGA board [26] is a research platform featuring an Altera Stratix IV

FPGA [27]. The DE4 board which will be used to complete the work described in this thesis

is shown in Figure 7. The main features of the DE4 board are:

 Stratix IV FPGA with 5x more logic and memory resources compared to a NetFPGA 1G

platform.

 PCI Express interface which allow for faster host PC to FPGA data transfers.

 Up to 8GB external DDR2 memory .

2.5.2. Altera DE4 NetFPGA Infrastructure

Altera DE4 NetFPGA is an open source port of the NetFPGA 1G infrastructure to an

Altera DE4 board. The DE4 NetFPGA provides network researchers with a powerful open

platform to build complex network applications. A high-level view of the DE4 NetFPGA

architecture is illustrated in Figure 8. We have successfully migrated the NetFPGA reference

router [44] and packet generator [45] designs to the Altera DE4 platform.

11

Figure 7: Altera DE4 board

Figure 8: Altera DE4 NetFPGA Architecture

1 GigE

1 GigE

1 GigE

1 GigE

Stratix IV

SSRAM

DDR

RAM

JTAG

SOPC SYSTEM

TSE MAC

TSE MAC

TSE MAC

TSE MAC

JTAG

MASTER

BRIDGE

C
U

S
T

O
M

 I
N

T
E

R
F

A
C

E

REFERENCE ROUTER

OR

PACKET GENERATOR

PCIe

H
O

S
T

 C
O

M
P

U
T

E
R

DE4 BOARD

12

2.5.3. Altera DE4 NetFPGA reference router

The Altera DE4 reference router system integrates the NetFPGA reference router

pipeline with Altera DE4 NetFPGA platform. The Altera DE4 NetFPGA reference router

system is illustrated in the Figure 9.

Figure 9: Reference router pipeline

The incoming packets from DE4 GigE MAC ports are stored in input queues (MAC

RxQ and CPU RxQ). The input arbiter then forwards these packets to the output port lookup

module. The output port look up module performs the network router operation. The output

queues forward the packets to corresponding output MAC ports (MAC TxQ and CPU TxQ).

The multi-core network processor system is implemented as part of the Altera DE4 NetFPGA

reference router pipeline, as explained in section 4.5.

2.5.4. Altera DE4 NetFPGA packet generator

Altera DE4 NetFPGA packet generator application allows for packet generation and

forwarded packet capture at line rate. The packet generator also provides packet transfer

MAC

RxQ

MAC

RxQ

MAC

RxQ

CPU

RxQ
CPU

RxQ

CPU

RxQ

CPU

RxQ

Input Arbiter

Output port lookup

MAC

TxQ

MAC

TxQ

MAC

TxQ

CPU

TxQ
CPU

TxQ

CPU

TxQ

CPU

TxQ

Output Queues

MAC

RxQ

MAC

TxQ

13

transmit and receive statistics. The Altera NetFPGA packet generator is used for testing the

prototype system functionality, as explained in section 5.2.

2.6. Related work

Modern high-speed network infrastructures utilize network processors since they offer

sophisticated packet processing capabilities and advanced protocol functionality. The

programmable nature of network processors allows for experimentation with new

architectures and protocols [10]. Research projects have examined improving network

processor throughput, resource management, power analysis, packet classification, and

deployment [28] [29]. Network processor based routers are commercially deployed by many

major device vendors (e.g., Intel IXP2400 [30], Cisco QuantumFlow [31], Cavium Octeon

[32]).

Network processor systems are vulnerable to remote attacks that target the software

on the processors. Chasaki et al. [33] demonstrated how network processor systems can be

exploited to launch denial-of-service attacks by using a single malformed packet. Protecting a

network infrastructure against such malicious attacks is an important concern in network

processor design. Hardware-assisted run-time monitoring techniques have been used in

protecting embedded processors. Arora et al. [4] [34] showed how dedicated hardware

monitors can be used to track and prevent unintended program behavior. The hardware

monitor observes the run time execution of the processor and compares it with statically

analyzed expected program behavior. Unexpected behavior is used to initiate appropriate

response mechanisms. Mao et al. [35] used hardware monitors with offline analyzed control

flow graph information to protect embedded processors.

The embedded nature of network processors allows for the use of hardware

monitoring schemes against in-system attacks. Wolf et al. [36] proposed using a secure

packet processing platform for network processors with hardware monitors. Using offline

14

analyzed monitoring graphs, the program execution of packet processors can be monitored

for attacks and suitable recovery measures taken. Chasaki et al. [2] have implemented a

hardware security monitoring model that can detect known network attacks.

2.7. Summary

This chapter introduced several concepts that are essential for understanding the

prototype system. We provide an overview of the Altera DE4 NetFPGA infrastructure used

for development and testing of the prototype system. Although hardware security monitoring

systems for network processors exist, there is still potential for improvement. The next

chapter outlines two specific previous monitoring approaches that are limited in their

capabilities. Subsequent chapters describe enhancements to overcome these limitations.

15

CHAPTER 3

SECURITY MONITOR SYSTEM REVIEW

 This chapter introduces two previous hardware security monitoring techniques for

network processors. We will first look at the implementation details of an existing hardware

security monitor [2]. The limitations of this hardware security monitor motivate us to develop

a programmable hardware security monitor. We will compare the advantages and drawbacks

of these two security monitoring approaches. Based on these observations, we outline the

important security monitoring features implemented in the new monitoring system presented

in this thesis.

To provide a basis for comparing the two approaches, we state the main design

challenges that need to be met when using hardware security monitors.

1. Correct detection: The monitoring system needs to correctly identify malicious attacks.

There is a variety of information available for security monitors to keep track of processor

operation at run time:

 Instruction address: The security monitor can follow the instruction addresses of

the application binary, since the feasible address sequences can often be

predetermined.

 Opcode: The security monitor can track the operations performed by the

processor.

 Instruction hash: The monitor can use a sequence of instruction hash values to

verify processor behaviour.

The main tradeoff for choosing a monitoring strategy depends on the availability of

hardware resources and the difficulty in defeating the effectiveness of the monitoring

behavior by an attacker. The security monitor can utilize one or more of the above

mentioned monitoring options to correctly detect unintended behavior.

16

2. Resource overhead: Security monitors need to be designed while considering the limited

resource availability of their implementation platform. Increasing the resource usage can

adversely affect power consumption and design complexity.

3. Fast detection: Programmable network processor operation can be changed by altering the

software on the processor. Hence, it is desirable to detect malicious behaviour quickly,

preferably within one or a small number of clock cycles.

3.1 Address-based hardware security monitor system

An address-based hardware security monitor [2] uses instruction address information

for monitoring processor behavior. The processor application binary is analyzed offline and

instructions are classified into different basic blocks. Each basic block represents a set of

instructions, before a branch instruction is encountered as illustrated in Figure 10.

Figure 10: Basic block representation

The fifth instruction is a conditional jump instruction, and hence all instructions from

memory locations 1 to 5 represent basic block zero. Similarly, instruction eight is an

unconditional jump instruction. All instructions from memory locations 6 to 8 represent basic

1

5

2

3

4

6

7

8

9

11

12

Basic block 0

Basic block 1

Basic block 2

Basic block 3

Non conditional

instruction

 Conditional

jump instruction

Non conditional

jump instruction

17

block one and so on. The basic block information for each instruction is used to validate the

processor operation at runtime.

The high level architecture of the address-based hardware security monitor system is

illustrated in Figure 11.

BRAM

Index

generator

≠ ?

32-bit

processor

address

Next

hop

Previous

Basic

block

FIFO

Error

Current

Basic

block

Next-hop

address

Basic

block

Current

Basic

block

rd_en
wr_en

Current basic

block

Previous

block

BRAM

BRAM index

Next Basic

block

Basic

block

≠ ?

FIFO

Controller

Error

Stage 1

Stage 2

Stage 3

Stage 4

Figure 11: Address-based hardware security monitor architecture [2]

3.2. Address-based hardware monitor operation

The address-based hardware security monitor system is fashioned as a four stage

pipeline. Each pipeline stage takes one clock cycle to complete. In the first stage the

instruction address of the currently executed instruction in the processor is used to index a

block RAM (BRAM). The BRAM outputs the basic block number of the instruction as well

as the next-hop address, if there is one. In the second stage, we forward the basic block

number to the third stage. At the same time, the basic block number output is stored in a

FIFO block. During the third stage of the monitor operation, the current basic block number

input from the second stage as well as the block information for the just completed

instruction from the FIFO block are compared. If they are the same, the instructions belong to

18

the same basic block and the currently executed instruction is valid. If not, check if the

instruction is within the next basic block, which is a valid basic block jump (e.g. jump from

basic block 0 to basic block 1). If not, a check is required to determine whether the currently

executed instruction belongs to the basic block which contains the target instruction for a

jump. During the fourth stage the next-hop address for the just completed instruction is used

to once again index the basic block memory. If the basic block for this target is the same as

the basic block of the currently-executed instruction, a valid instruction sequence is

determined. Otherwise, an error signal is generated to stop processor operation.

3.2.1. System components

3.2.1.1. BRAM index generator module

The BRAM index generator module generates the index output to address the basic

block memory (BRAM) from the 32-bit processor instruction address. The first instruction

address from the processor represents address zero of the BRAM. This is used as the base

address to generate remaining index outputs.

3.2.1.2. FIFO controller module

The FIFO controller module generates the write signal to store the current basic block

information and the read signal to read the basic block information of the just completed

instruction.

3.2.1.3. Basic block memory (BRAM)

Each element in the basic block memory (BRAM) corresponds to an instruction in the

program sequence and is indexed by an instruction address of the application. The basic

block memory contains two entries per index, the basic block number to which each

instruction belongs and the next-hop address to where the instruction could jump. The next-

hop address entry is empty for unconditional instructions.

19

3.2.1.4. Basic block FIFO

The basic block FIFO stores the basic block numbers of the just completed and

currently executed instructions, as read from the basic block memory. These values are used

to keep track of the processor execution path.

3.3. Limitations of address-based hardware security monitor.

The basic block monitoring strategy for tracking processor behavior does not directly

validate individual instructions as they are executed by the processor. For example, malicious

instructions can go undetected if the instructions belong to the same basic block as the

expected instructions, as illustrated in Figure 12. In this example, malicious instructions (2

and 3) will not be detected as long as they follow the program memory address execution

sequence. Moreover, the inclusion of a next-hop address field, which is required only for

branch instructions, with the basic block information for all instructions in the basic block

memory increases on-chip memory utilization. To reduce memory utilization, the basic block

memory can be shared using multiple read ports. For example, the basic block memory can

be read simultaneously during both stage 4 and stage 1 of the pipeline. Such sharing does not

allow basic block memory sharing across multiple hardware monitors when multiple network

processor cores execute the same program. So, in multi-core network processor systems,

separate address-based hardware security monitors need to be generated when the processors

execute the same application.

3.4. Programmable security monitor using instruction hashing

The limitations of the fixed hardware security monitor motivate us to develop a new

monitoring strategy which can validate individual instructions and reduce the embedded

memory usage for the monitor.

20

Figure 12: Undetectable network attack

Hash Function

State counter

+1

Jump

 Logic

≠ ?

Hash

Value

432

Processor Instruction
Hash

Value

4

4

Stored Hash Value

Hash

Memory

Current State

Next State

Control

Control

Reset

Error
Stage 1

Stage 2

Stage 3

Control

Figure 13: Programmable security monitor architecture

3.4.1. Programmable logic monitor operation

The operation of the programmable logic monitor relies on compile-time analysis of

the program binary. An analysis tool determines the expected hash values for the binary and

generates the Verilog files needed to synthesize the programmable security monitor,

1

5

2

3

4

6

7

8

9

11

12

Basic block 0

Basic block 1

Basic block 2

Basic block 3

Non conditional

instruction

 Conditional

jump instruction

Non conditional

jump instruction

Attack

instruction

21

including the jump logic. As shown in Figure 13, the programmable logic monitor

infrastructure is fashioned as a three stage pipeline flow. Each 32-bit binary instruction

executed by the processor is input to the monitor. The first stage of security monitor

generates the four bit hash value from this 32-bit instruction. In the second stage, two parallel

operations are performed.

 The four bit hash value from the hash memory is fetched.

 The hash value is evaluated in the jump module. If the hash value does not match one of

the target hash values for the jump, an error signal is generated indicating that an

incorrect instruction has been executed.

In third stage, for unconditional instructions, a comparison is made between hash

value computed from stage 1 and the value retrieved from hash memory. A reset signal is

generated if there is a mismatch or if stage 2 generated an error signal.

3.4.2. System components

3.4.2.1. Hash function module

The hash function module computes a multi-bit hash value for the 32-bit processor

instruction. In our initial experimentation we use a hash function which generates a modulo-

16 value from the sum of all individual bits in the instruction to form a four-bit hash value.

3.4.2.2. Hash memory module

The hash memory module is a 2-port ROM block that stores the hash values generated

during offline analysis. The hash values are used to keep track of processor behaviour during

run time.

22

3.4.2.3. Jump logic module

The jump logic module provides the next-hop hash memory addresses for branch

instructions when a branch is taken. The processor typically executes three different types of

instructions.

1. An unconditional instruction is followed by execution of the next consecutive instruction

in the processor memory.

1. An unconditional branch instruction will result in a jump to a non-consecutive memory

location in instruction memory.

2. A conditional branch instruction can result in a jump to a new address location following

the evaluation of the branch condition. If the branch is not taken, the next consecutive

instruction is executed.

Since a branch condition for a conditional branch instruction can only be evaluated at

run time, both possible hash values for target address locations need to be considered by the

jump logic module. During runtime, the hash values of the instruction after the conditional

branch are compared with the possible hash values of the branch targets to determine if a

valid instruction is being executed. The jump logic module then determines the address in the

hash memory for the appropriate target instruction.

3.4.2.4. Control module

The control module (the multiplexer and +1 adder) determines the address for the

hash memory. For unconditional instructions, the hash value for the next instruction is stored

in the next consecutive address location. In case of conditional instructions, the address value

for the hash memory is output from the jump module.

3.4.2.5. Programmable security monitor advantages

The key improvements of the programmable security monitor using instruction hashing over

the address-based monitor include:

23

1. The programmable security monitor uses a hash of each instruction to monitor processor

behaviour instead of storing basic block information for each instruction. A hash value is

computed for each program instruction and stored in a hash memory. As instructions are

executed, the hash of the currently-executed instruction is compared against a stored hash

value for the instruction. The hash value of the first instruction is located in hash memory

at location 0x0, the second at 0x1, and so forth. A state counter is used to point to the

hash of the currently executed instruction. The strength of the monitoring scheme

improves with hash value bit width since the probability of hash collisions (collision

probability is 1/2
x
, where x is the number of bits) is reduced. To keep hardware

requirements reasonable, the width of the hash values is constrained to the minimum size

which allows the required security. A four-bit hash value is chosen for monitoring

purposes as this size provides a strong monitoring pattern (collision probability 0.0625)

which limits memory overhead.

2. Next instruction addresses for conditional instructions are determined in the jump logic,

reducing memory resource utilization. Combinational logic is used to determine the

address of the next location in the hash memory for conditional instructions which are

taken. For conditional instructions where a branch is not taken or for unconditional

instructions, the next desired location in the hash memory is the next consecutive location

in the memory.

3. The design of the programmable security monitor allows for sharing of the hash memory

monitoring resource. The hash values are stored in a 2-port ROM memory block which is

utilized only once during each instruction evaluation cycle. The two ports allow for the

sharing of the hash memory, a critical resource, by two monitors that are evaluating the

same executing program.

24

3.5. Limitations of programmable security monitor

The jump logic module can require significant logic resource utilization. The

instruction at memory location 0 is a conditional jump instruction, with next-hop address

location (1 or 4) evaluated based on the hash values (x and y). An offline analysis tool

generates a state machine to perform this evaluation, initiated every time the memory address

input is zero. Once a next state (1 or 4) is reached, the state machine will continue to

evaluate. If there are n conditional branch instructions (with 2 next states), 2n possible state

transitions need to be considered. Additionally since the jump logic is implemented in logic,

we need to re-synthesize the design for each different application.

0

1

4

Reset

Memory

address

x

y

0

1

2

3

4

5

x

y

Binary Offline analysis

Figure 14: Jump logic implementation

3.6. Comparison of address-based hardware and programmable monitors

3.6.1. Resource overhead

We compared the resource utilization of the programmable security monitor to the

address-based hardware security monitor technique. Table 1 provides the comparison results

from MiBench [42][42] benchmarks and two other packet processing applications (IPV4 [39]

and CM [40]). Since the next-hop addresses are not stored in block memory, the

programmable security monitor approach results in a considerable reduction in memory

utilization compared to the fixed hardware monitoring technique. The logic resources

(ALUTs and registers) show a considerable increase in the programmable security monitor

25

approach with program size, which results from the jump logic implementation illustrated in

Figure 14.

 Instructions Address-based Monitor Programmable logic monitor

Benchmark Total Control

Flow

ALUs Registers Memory

bits

ALUs Registers Memory

bits

Des

factorial

fir

iquant

IPV4(1core)

CM (1core)

IPV4(4core)

CM(4core)

739

141

175

371

327

289

327

289

15

10

13

13

17

21

17

21

40

40

40

40

40

40

160

160

35

33

33

34

34

34

136

136

12416

3200

3200

6272

6272

6272

25088

25088

238

217

252

314

313

329

863

974

147

137

146

170

159

167

486

529

4096

1024

1024

2048

2048

2048

2048

2048

Table 1: Resource utilization comparison

3.7. Memory based programmable security monitor approach

This section presents an introduction to a memory based technique for representing

hash based state machines. Figure 15 illustrates a hash based state machine. Here (0,1,2,3,4...)

represent the states and (a,b,c,d...) represent the input (hash values) to the states. The state

machine is traversed based on the current state and the hash input.

Consider such a state machine with a two bit hash input. For any state there are at

most four outgoing edges possible based on the input values (00, 01, 10, 11). A naïve way to

store the state machine in RAM would be to store each state and all possible edge transitions

as illustrated in Figure 16. The current state and the input hash pattern can be used to index

the memory to find the next state transition. Since for most states, the next state transition

may not be present for all input patterns, a valid bit is provided to verify the state transition.

26

For example in Figure 15, state 0 has only 1 state transition, state 2 hash 2 transitions, state3

has 3 transitions and so on.

0 1 2

4

3 5

6

7

a b

c

d

e

f

g

Figure 15: DFA state machine

State 0

State 1

State 2

V Next state

State Input

Hash input

If V = 1

Next state

Figure 16: DFA single memory representation

27

The memory representation illustrated in Figure 16 is not a cost effective solution

since it results in a large number of unused memory locations. This is since there is a memory

location for each possible input combination. An alternative solution is to provide separate

memory logic for multiple next states as illustrated in Figure 17. For example in Figure 15 ,

for states (0, 1 and 2) we index only a single memory (memory for one state). When state 2 is

indexed, the jump bit (J) is set high to indicate more than 1 next state. In the next step we

index all the parallel memory blocks (memory for multiple states) simultaneously. If the valid

bit (V) is set and the hash input matches (either c or d), we move to the corresponding state

(either 3 or 4). For a four bit hash input we need 16 parallel memory blocks.

Hash Next stateJ Hash Next stateJ Hash Next stateJ VV

State

Next state

logic

If V = 1

If V = 1

Memory for

one state

Memory for

multiple

states

If J = 1
No

Yes

Hash input

RAM1

Figure 17: DFA parallel memory representation

The memory representation illustrated in Figure 17, requires simultaneous memory

access (2
h
, where h is the input bit width) and in many cases there are unused memory

locations. We need a compact solution which requires only single memory lookup during

every state transition and does not result in unused memory locations. Thus, state transitions

need to be implemented with no more than one memory access per instruction (to keep up

with the network processor core) and be as compact as possible (to minimize the

28

implementation overhead of the monitor). In the next chapter we introduce the proposed

security monitoring approach which presents a compact solution to represent a state machine

in memory.

3.8. Conclusion

Based on the two monitoring techniques mentioned above, we outline the following

important features of the two monitoring approaches:

1. Four-bit instruction hashes can be utilized to monitor processor behaviour since it provides

a compact representation for each instruction.

2. It is desirable to limit or eliminate target instruction address locations for conditional

branches.

3. The evaluation circuitry for incorrect hash values should be efficiently implemented. In

the programmable monitor case, this circuitry is implemented using combinational logic.

In the next chapter, a memory-based implementation is presented.

29

CHAPTER 4

SYSTEM ARCHITECTURE

In this chapter, we present a new high performance security monitor system for multi-

core network processors. The generation of security monitors for a multi-core system begins

with the offline analysis of packet processing application binaries. In this chapter we describe

an automated process to generate these binaries and configure available monitors fashioned

from hardware. We implemented our prototype system as part of a reference router on the

Altera DE4 NetFPGA platform. This chapter describes the individual components in the

development of the prototype system.

4.1. Memory based programmable security monitor architecture

The high level view of our proposed memory based programmable security monitor

architecture is illustrated in Figure 18.

Group 1

Group 2

Next

states

Valid hash values

on outgoing edges

Group 3

Group 4

Offset

in state

group base

address

Processor

instruction
0x0000

0x0002

0x0007

State 0

State 1

State 0

State 1

State 0

State 0

k

2 0 0084

2 1 0808

3 0 0080

1 3

a

c

b

f

f

h

g

1

1

1

4

5

6

4

Bit

compare

16

One hot

encode

16

Base address

4

Mem

index

Hash

function

32

Hash value

group 1

group 2

group 3

group 16

reset/

recovery

- 1

e

d

0200

0025

0200

state machine memory

Valid bit generator Mem index

generator

Figure 18: Memory based programmable security monitor architecture

 We introduce the following enhancements over the previous two security monitor

models.

30

1. The processor operation is monitored using four-bit instruction hashes. The limitations of

address-based hardware monitoring scheme, as explained in section 3.3, motivated this

choice. This change allows the validation of individual instructions, and reduces the

embedded memory usage of the monitor.

2. The programmable security monitor scheme discussed in previous chapter suffers from

logic increase in the jump logic unit due to a need to determine next hop addresses for the

hash memory, as illustrated in section 3.5. Additionally it requires re-synthesizing the

design for different application. In order to overcome these issues, we utilize a memory

based approach to store hash values. This will provide for a more compact monitor

solution.

4.1.2. Memory based programmable security monitor operation

The information that needs to be stored in the monitoring memory is illustrated on the

left side of Figure 19. Each state represents an instruction and an outgoing transition edge

from this state represents the hash value of the next expected instruction in the execution

sequence. For example, the state c has two next states, d and e, with hash values 11 and 3,

respectively.

a

b

c

d

e

f

g

h

2

7

3

11

2

14

0

7

9
a

b

c

d

e

f

g

h

2

7

3

11

2

14

0

7

9

grouping

Group 1

Group 2

Group 3

Figure 19: Grouping of states

Our main idea to compactly represent DFA states with varying numbers of outgoing

edges is to encode all the necessary information in a single table entry and to group states by

the number of outgoing edges. The main challenge in achieving compactness is to allocate

31

exactly the amount of memory that is needed for each state to store next state information

while still being able to index this memory without degrading to a linear search. In our

representation, we group states if they have same previous state. A state belongs to group g if

the previous state has g outgoing edges. For a monitor with 4-bit hash value, there are 16

possible groups. For example, in Figure 19 on the right side, groups are shown with different

colors. Note that a state can belong to multiple groups (e.g., state f belongs to group 2

(because a has two outgoing edges, one to b and one to f) and to group 3 (because e has three

outgoing edges)).

The memory contains tuples of {number of next states, offset in state group, valid

hash values on outgoing edges} and is logically divided into groups. The base addresses for

each group are stored in register file with 16 entries. Within a group the sets of states that

share the previous state are grouped together (e.g., b and f are together and d and e are

together). Within a set, states are ordered by the hash value on the incoming edge (e.g., e

before d because hash value 3 is smaller than hash value 11).

 To illustrate the operation of the monitor, we describe an example transition. As

shown in Figure 18, each 32-bit binary instruction executed by the processor is also input to

our security monitor during the fetch stage of the processor. Assume the monitor is in state a

and the processor reports an instruction that leads to a hash value of 7. To perform the

transition, the memory row labeled a is read. The tuple in this row indicates that there are two

outgoing edges. The valid hash values of these two edges are stored in the 16-bit vector. To

verify that the transition is valid, the hash comparison unit checks if bit 7 is set in the bit

vector (which it is). If this bit is not set, then an invalid transition takes place, indicating an

attack, and the processor is reset. After the check, the next state (i.e., state f) in the DFA

needs to be found in memory. To determine the address of that state, the base address of the

group of the next state is looked up in the register file (i.e., 0x002 since the next state belongs

32

to group 2). To this base address, the product of the set size (i.e., group number) and the

offset in the state group is added (to index the correct set within this group). Finally, k is

added, which is the position of the matching hash in the bit vector (in our case 1 since 2 is the

first matching hash (i.e., k=0) and 7 is the second matching hash (i.e., k=1)). Thus the

memory location of state f is 0x002 + 2*0 + 1 = 0x003.

Note that any state transition takes only one memory read from state machine memory

and a lookup into a fixed-size register file. The DFA is represented compactly without

wasting any memory slots. Thus, this representation lends itself to high-performance

implementation.

4.1.3. System components

4.1.3.1. Hash function module

The hash function module generates the four bit hash value for the 32-bit processor

instruction. For our experimentation, we used a hash function which generates a modulo-16

value from the sum of all individual bits in the instruction.

4.1.3.2. Group base address module

The group base address module stores the base address of the different groups in the

state machine memory module. The number of states value read from memory is used to

index the group base address module. The corresponding base address value output is

forwarded to the memory index generation module.

4.1.3.3. Valid bit generation module

This module compares the 4-bit hash value generated by the hash function module

with all the read hash values from the memory to determine the position of the matching hash

value. If no hash match occurs, an error signal is generated.

33

4.1.3.4. Memory index generation module

 This module generates the memory address for indexing the state machine memory

module. The general equation for memory index calculation is base address + number of

states*offset in state group + k. The base address value is generated by the group base

address module, number of states and offset in state group values are read from memory and

k is generated by the valid bit generation module

4.1.3.5. State machine memory module

The state machine memory module stores the hash values and next state values in a

compact manner as explained in section 4.1.2. The RAM block is divided into different

groups, which store the states having same number of next states. Each memory entry

contains tuples of {number of states, offset in state group, valid hash values on outgoing

edges}. For our experimentation we selected a 4096 deep RAM block as the state machine

memory module. So the total size of the state machine memory block is 4096*(4+12+16) =

131K memory bits.

4.2. Offline analysis

The automated offline analysis tool for security monitor generation is illustrated in

Figure 20. The application source code is first passed through a MIPS-GCC compiler. The

compiler generates the 32-bit binary information for each instruction and the branch

information for conditional instructions. The branch information contains all possible target

addresses for the conditional instruction. In our current implementation, all possible branch

targets and return instructions are analyzed at compile time. Then the DFA-to-NFA

conversion starts with a non-deterministic NFA representation obtained from the compiler

information. Through powerset construction, a DFA is constructed. This DFA is then

converted into a memory initialization file and is loaded into the monitor when the processing

34

binary is installed in the processor. The NFA to DFA conversion module will be explained in

detail in section 4.3.

MIPS-GCC

compiler

Benchmark

Source code

 Memory generator module

NFA to DFA conversion

module

Instruction

Info

Branch

Info

Instruction

 Info
Branch

Info

Memory initialization file

Figure 20: Offline analysis

4.3. Non deterministic finite automata to deterministic finite automata

Tracking nondeterministic finite automata is difficult to implement in practice since

the automaton can have multiple active states. This leads to high bandwidth requirements

between the monitoring logic and the memory that maintains the NFA since next-state

information for all active states has to be fetched in each iteration. As illustrated in Figure 21,

state 4 and 6 can be reached from state 3 for input condition (z). When using a DFA, in

contrast, only one state is active and implementation becomes much easier. During offline

analysis, state assignments must be made so that the control flow is distinct.

35

Figure 21: NFA state machine

 Powerset construction [50] is a standard method used to convert an NFA to a DFA.

The algorithm for NFA to DFA transformation using powerset construction is illustrated in

Figure 22.

1. The algorithm begins by constructing an NFA state machine, with the each state node

having the following elements: number of inputs, number of outputs, input list and output

list (for example state 3 has number of inputs: 1, number of outputs: 2, input list: [state 2]

and output list: [state 4, state 6]).

2. The algorithm then progresses to check for conditional branch instructions (number of

outputs > 1). In the NFA state machine in Figure 21, states 2, 3, 4 and 7 satisfy this

condition.

3. The algorithm then proceeds to check for states exhibiting NFA property (hash1 = hash2).

In the above example state 3 has two output states (4 and 6) both reachable by the same

input (z), which represents the hash value of the next state. The algorithm replaces states 4

and 6 in the output list of state 3 with a new single state ({4, 6}), distinct for the input

value (z). The node elements of the states involved are updated (state 3 now has number of

inputs: 1, number of outputs: 1, input list: [state 2] and output list: [state {4, 6}]. Similarly

new state {4, 6} has number of inputs: 1, number of outputs: 2, input list: [state 3] and

output list: [state 5, state 7]).

4. This procedure is continued until all outputs of the present state (if there are more than 2

outputs) and all states of the NFA state machine are traversed. Both state 3 and new state

1 2 3 4 5 6 7 8
x y z

a

x y x b

a

z

9
a

c

NFA

36

{4, 6} exhibit NFA properties (for input values z and x respectively). This results in two

additional states being included in the DFA state machine (state {4, 6} and state {5, 7}).

The resulting DFA transformation using Powerset construction for the above NFA

example is shown in Figure 23.

Start

Create NFA with

state structure

{ no: of i/p,

no: of o/p,

input list,

output list}

No: of outputs

>1

Hash1 = Hash2

Replace output states

with common state

and

update state elements

States

exhausted

DFA

State

machine

No

Yes

No

Yes

No

Outputs

exhausted

No

Yes

Yes

Figure 22: Powerset construction algorithm

37

In Figure 23, the states (1, 2, 3, 4, 5, 6, 7, 8, 9...) in the state machine represent the

address locations of the hash memory. The hash values (0000 to 1111) are represented by the

inputs to the state machine (x, y, z, a, b, c...).

Figure 23: DFA state machine using powerset construction

The NFA to DFA transformation using powerset construction can result in states

having more than two next-hop values (e.g. {5, 7}). The proposed security monitor

architecture described in section 4.1 needs to be enhanced to support multiple next-hop

address lookups. As part of the proposed work we will evaluate possible modifications to the

CAM module to accommodate these multiple next-hop address lookups. This transformation

is performed during offline analysis using software to convert the NFA state machine

representation to a DFA representation.

4.4. Network processor core

The high level architecture of our network processor core is illustrated in Figure 24.

The processor core consists of a 32-bit open source embedded Plasma processor [38] which is

implemented in Verilog HDL and based on the MIPS architecture. The Plasma processor

executes all MIPS user mode instructions except unaligned load and store instructions. The

network processor core has a memory unit for storing program binaries and for storing data

1 2
x

3
y

{4,6}
z

{5,7}
x

6
y

7
x

a

8
b

9
a

b

c

DFA

a

c

4 5
x

y

a

38

during program execution. It also has packet buffers to store the incoming network packet

data.

Figure 24: Network processor core

The network processor core integrated with a single security monitor system is shown

in Figure 25. The security monitor keeps track of the instructions executed by the processor

core. A reset signal is generated when a malicious behavior is detected.

Figure 25: Network processor integrated with security monitor

4.5. Network processor architecture

A high level overview of the single-core network processor system with the security

monitor incorporated in the Altera DE4 NetFPGA pipeline is illustrated in Figure 26. The

Plasma

Processor

Instruction

Memory

Data

Memory

Packet buffers

Network

Processor

Security

Monitor

Network

packets

Network

packets

Instruction Reset

39

packets arrive at the four Ethernet ports on DE4 board and are inserted into input queues

(MAC RX Q). The input arbiter forwards these packets to the flow classification module. The

flow classifier module assigns the incoming packet data to the network processor core. The

instructions executed by the processor core are input to the monitor subsystem

simultaneously. The security monitor can generate reset signal to the network processor core.

The processed packets are forwarded by the output arbiter to the output queues. The packets

output from the processor system are forwarded by the output queues to the corresponding

MAC transmit ports (MAC TX Q).

Figure 26: Single-core network processor system with security monitor in Altera DE4

NetFPGA pipeline.

4.6. Von Neumann versus Harvard architecture

The MIPS plasma processor used in our proposed network processor design utilizes a

von Neumann [46] memory architecture, as illustrated in Figure 27. In a von Neumann

architecture, a single physical memory is shared by both code and data. The processor does

40

not make any distinction between whether the data or code is read or written. A memory

interface arbitrates the memory access between the instruction read and data access.

Figure 27: von Neumann architecture

This implementation style of von Neumann architecture makes it inherently

vulnerable to code injection [48] attacks. A typical code injection attack is illustrated in

Figure 28. The processor keeps track of the instructions it executes using the program counter.

In a code injection attack, an attacker initially injects a malicious code into the processor’s

address space and directs the program counter to the address space where the malicious code

resides. Attackers often employ different memory error techniques like stack overflow [52],

format string vulnerability [53] and integer overflow [54] to trigger code injection attacks.

Figure 28: Code injection attack

In a Harvard architecture [47], the code and data are placed in separate physical

address spaces. The Harvard memory architecture is illustrated in Figure 29. Separate buses

CPU

Address

Data/Instruction

Memory

Instruction

Data

Stack

Malicious code

Instruction Instruction

Data Data

Stack Stack

PC

PC

41

provide instruction and data access, with each potentially having different word widths,

timing and memory address structures. The processor can perform both the instruction read

and the data memory access at the same time. The instructions are usually stored in read only

memory while data is stored in read-write memory. Since a program counter cannot point to

addresses in the data memory, code injection attacks are difficult to perform in a Harvard

memory architecture. Even if an attacker successfully writes a malicious code in the stack, it

will not be executed.

Figure 29: Harvard architecture

Even though general memory error techniques (integer overflow, heap overflow etc.)

cannot be used to generate code injection attacks, Francillon et al. [49] demonstrated that

code injection attacks are still feasible on Harvard architecture processors using return-

oriented programming technique [55]. Here an attacker sends several specifically crafted

packets to build a malicious stack one byte at a time. Once the stack is built, the attacker

sends another specifically crafted packet that copies the malware to program memory using a

return-oriented programming technique.

As part of the proposed work we evaluated a possible attack on a Harvard architecture

and the ability of our proposed security monitor to detect it. The memory architecture of the

CPU

Address

Data

Data Memory

Instruction

Data

Stack

Instructions
Address

Instuction

Memory

42

plasma processor was modified to have separate instruction and data memory. The instruction

memory was made read-only while data memory was made read-write.

43

CHAPTER 5

EXPERIMENTAL APPROACH

This chapter describes the experimental approach used for testing the prototype

system. In the first section, we describe how a Harvard architecture attack can be constructed

for the networking environment. The later section discusses the experimental setup,

implemented utilizing Altera DE4 NetFPGA infrastructure. Finally, we outline the different

evaluation metrics used for verifying the prototype system functionality.

5.1. Network attack generation

In this section, we describe how a Harvard memory architecture attack can be

constructed for the networking environment and how our monitor can detect it. Figure 31

shows a portion of congestion management protocol (CM) and IPV4 packet forwarding

application used to build an attack on the network processor system. The network attack used

for testing the prototype system functionality exploits a simple integer overflow vulnerability

of the congestion management [40] protocol application. A congestion management protocol

inserts a custom protocol header in the packet header space between IP header and UDP

header as illustrated in Figure 30.

Link

Hdr

IP

Hdr

UDP

Hdr
payload

CM

application

Link

Hdr

IP

Hdr

UDP

Hdr
payload

CM

Hdr

Original packet

New packet

len1 len2

Figure 30: Congestion management header insertion

44

The application during this process needs to make sure the new packet size (len1 +

len2) does not exceed the maximum datagram length. In certain cases, this maximum packet

size check can be exploited to create an integer overflow.

CM protocol IPV4 application

Figure 31: Integer overflow vulnerable code

The variable sum is of type unsigned short. The CM application uses this variable to

check whether the packet size (sum = len1 + len2) after inserting the custom header has

exceeded the maximum packet size limit (sum > MAX_PKT_SIZE). Any packet which

satisfies the size check is then copied to processor data memory. However, an attacker can

send a carefully crafted malformed UDP packet that can trigger an integer overflow. For

example, an attack packet with malformed UDP length field (16 bit value 0xfffe (decimal

value 65534)) will pass the maximum packet size check (since 65334 + 12 = 10, due to

integer overflow). This will result in 65334 bytes of packet data to be copied to the processor

memory space.

The packet payload of the attack packet is crafted in such a way that the return

address is overwritten to direct the control flow to the IPV4 packet forwarding application

(which is the library code on the processor) and the value of ip_dst_low field is 0xff. The port

information gets updated with this value (the boxed instruction in the IPV4 code), forwarding

the attack packet to all the outgoing ports and then crashing the processor system. As a result,

45

the attack packet gets forwarded to all outgoing interfaces before the system crashes, thus

propagating the attack through the network.

5.2. Experimental Setup

The test topology that will be used to verify the performance of our monitoring

system is shown in Figure 32.

Figure 32: Test topology

Altera DE4 packet generator is used to generate network packets, and to capture

packets forwarded from the prototype system. The packet generator tool allows for

customizing the size, the number of iterations, and the throughput rate for the test packet. The

packet generator code is downloaded to one Altera DE4 board. The single core network

processor system with security monitor, integrated along with the Altera DE4 NetFPGA

packet generator pipeline is downloaded to another DE4 board. Ethernet MAC-PHY registers

are configured through the JTAG cable. The experimental test setup is illustrated in Figure 33.

Figure 33: Experimental test setup

46

5.3. Evaluation metrics

The prototype system is tested in simulation using a ModelSim-Altera simulator [41],

and in hardware using an Altera Signal-tap logic generator [56]. The different evaluation

metrics for verifying the prototype system are listed below.

1. Throughput performance: Using IPV4 packet forwarding application [39], the single-

core network processor system without that security monitor is tested for throughput

performance for different packet sizes. The single core network processor system with

security monitor illustrated in Figure 26 is tested for throughput performance using the

attack model described in section 5.1.

2. Attack Detection: The prototype system described in Figure 26 is tested for attack

detection capability, using the attack model mentioned in section 5.1. The security monitor

system should detect any unintended processor behaviour and trigger appropriate recovery

mechanisms to the processor.

3. Resource overhead: The resource utilization of the security monitor system is evaluated

using a diverse set of network applications, as explained in next chapter. The resource

savings facilitated by the proposed security approach over existing monitoring schemes is

estimated.

47

CHAPTER 6

BENCHMARKS AND EXPERIMENTAL RESULTS

In this chapter we discuss the benchmarks used for testing the network processor

system and the results of the experiments performed on the proposed security monitor

architecture.

6.1. Evaluation benchmarks

Network workloads can be logically divided into data plane workloads and control

plane workloads. The data plane is where data traffic is handled using actions such as packet

forwarding, packet dropping, and encapsulation. The control plane handles complex packet

management tasks like flow management, signaling, and routing updates. Control plane

operations are usually less time critical, while data plane operations take place in real time on

the network data path. Although network processors mostly target data plane applications,

they are equally applicable to control plane operations. NpBench [43] is a benchmark suite

targeting modern network processor applications. The benchmark applications are

categorized into three specific functional groups - traffic management and quality of service

group (TQG), security and media processing group (SMG) and packet processing group

(PPG). The applications in these groups belong to either the data plane, control plane or both.

The TQG benchmark falls in the category of both control plane and data plane processing,

and includes applications related to routing, scheduling, switching, signaling and quality of

service. The SMG benchmark is related to security applications like firewalls, admission

control, encryption algorithms and media processing applications like media trans-coding.

The PPG benchmark includes data plane processing applications like IP packet fragmentation,

packet marking, editing and classification. The proposed network processor architecture will

be evaluated using these diverse benchmark applications. Table 2 summarizes the different

benchmarks provided by NpBench.

48

Group Applications Data
plane

Control
plane

TQG

Routing X X

Scheduling X X

Content-based Switching X X

Weighted pair queuing X X

Traffic shaping X X

Load Balancing X X

VLAN X

MPLS X X

SMG

Block cipher algorithm X

Message cipher algorithm X

Firewall application X X

IPSec X X

Virtual private network X X

Public encryption X

Usage-based accounting X X

H.323 X

Media transcoding X X

Duplicate data suppression X

PPG

IP-packet fragmentation X

Packet encapsulation X

Packet marking/editing X

Packet classification X

Checksum calculation X

Table 2: NpBench Benchmark applications [43].

49

6.2. Experimental results

6.2.1. Attack Detection

This section explains the experiments performed to test the ability of our proposed

security monitoring system to detect and recover from an attack. We observed the security

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware

using an Altera Signal-tap logic generator [56].

6.2.1.1. Network processor without security monitor

We initially tested the single-core network processor operation without the security

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the

simulation results for the behavior of the processor system. The attack packet was received

through MAC port Rx0, and then forwarded to the network processor. The processor then

forwards the attack packet to all the outgoing ports of the router and then crashes the router.

This behavior was also verified in hardware.

Figure 34: Simulation waveform showing attack packet propagation in the network

processor system.

6.2.1.2. Network processor with security monitor

We then repeated the previous experiment after including the security monitor as

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the

network processor system when an attack packet and normal packet are sent simultaneously.

50

After the monitor was included, the attack packet was successfully identified, the network

processor was reset, and subsequent normal packets were routed successfully.

Figure 35: Simulation waveform showing the identification of the attack packet and

successful forwarding of the subsequent packet.

6.2.2. Throughput performance

This section explains the experiments performed to measure the throughput of our

proposed network processor system. The experimental setup mentioned in section 5.2 was

implemented to perform these measurements.

6.2.2.1. Single-core network processor throughput performance

The single-core network processor system illustrated in Figure 26 was implemented,

without the security monitor, on the Altera DE4 NetFPGA platform. Using a standard IPV4

packet forwarding application in the processor core, the throughput performance of the

single-core system was tested. Network packets of different packet sizes were generated from

the Altera DE4 packet generator, and send through the 1Gbps MAC ports of the Altera DE4

board. The forwarded packets were received back at the packet generator and the prototype

system’s transmit-receive statistics were measured. The resulting throughput performance is

illustrated in Figure 36.

The throughput of our network processor system improves as the packet size increases.

The packet forwarding application works by comparing destination IP address in each packet

header with IP address values stored in processor memory to select an output port. A

51

reduction in packet size increases the per packet processing operation, and thus reduces the

overall throughput performance.

Figure 36: Single-core network processor throughput performance (IPV4)

6.2.2.2. Single-core network processor throughput performance under attack

In this experiment, we evaluate the throughput performance of our single-core

network processor system illustrated in Figure 26 when attack packets are sent

simultaneously along with normal packets. Normal packets are received at one Ethernet-

MAC port (Rx0) of the network processor system; while attack packets are received

simultaneously at another receive port (Rx1). Both normal packets and attack packets are

generated at the same rate from the packet generator system. The forwarded packets are

received back at the packet generator and the throughput is measured. Figure 38 shows the

throughput performance of the network processor system for two different packet sizes for

varying ratios of normal packets to attack packets. The vulnerable application shown in

Figure 31 was used for testing purpose. When no attack packets are send the throughput of

the network processor system increases and reaches a maximum. When attack packets are

included the throughput reaches a maximum, and then decreases slightly before settling down.

52

Figure 37: Single-core network processor throughput performance with security

monitor under attack packets

As we increase the ratio of the attack packets sent to the processor system, the overall

throughput of the system is reduced. This effect occurs because whenever an attack packet is

detected, the security monitor generates a reset signal. The network processor and the packet

buffer are reset before the processor can continue with the next packet.

0

5

10

15

20

25

30

35

40

45

50
0 1 3 5

1
0

2
0

3
0

4
0

5
0

6
0

8
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

O
u

tp
u

t
ra

te
 (

M
b

p
s)

Input rate (Mbps)

100 bytes

Normal Packets

Packet Ratio 100:1

Packet Ratio 25:1

Packet Ratio 10:1

0

5

10

15

20

25

30

35

40

45

50

0 1 3 5

1
0

2
0

3
0

4
0

5
0

6
0

8
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

O
u

tp
u

t
ra

te
 (

M
b

p
s)

Input rate (Mbps)

256 bytes

Normal Packets

Packet Ratio 100:1

Packet Ratio 25:1

Packet Ratio 10:1

53

Figure 38: Maximum possible input rate for all normal packets to be forwarded

successfully

Figure 38 shows the maximum rate at which packets can be received by the network

processor system so that all normal packets are forwarded successfully. Only attack packets

are dropped by the processor, while all the regular packets are forwarded successfully. The

latency for the 100-byte packet is 24us while for 256-byte packet the latency is 104us.

When testing the throughput performance using larger packet sizes (512 bytes, 1500

bytes), the network processor does not forward the packets and the packets are lost. The

reason for this packet loss could be either of the following two cases below.

1. For the application used for testing throughput performance under attack (CM protocol),

the processor copies the packets to the data memory before forwarding the packets. The

data memory may not be sufficient for processing large packets. So we may need to look

at different applications to overcome this problem.

2. Packet generator sends packets to the network processor with a small inter packet delay.

Since CM application operates on the entire packet, the inter packet delay becomes

insufficient (as packet size increases) for the single core processor to effectively route the

0

5

10

15

20

25

30

35

40

45

100 256

M
ax

im
u

m
 in

p
u

t
ra

te
 (

M
b

p
s)

Packet size in bytes

Normal Packet

Packet ratio 100:1

Packet ratio 25:1

Packet ratio 10:1

54

packets, resulting in packet loss. A solution for this could be multi-core network

processors.

6.2.3. Resource Utilization

This section explains the different resource utilization details of our proposed network

processor system. The synthesis results were provided by Altera Quartus tool while the DFA

memory resource utilization details were provided by the offline analysis tool explained in

section 4.2.

6.2.3.1. Hash size and memory requirement

We initially explored the relation between hash size, DFA states, and state machine

memory requirement for three different hash sizes. Table 3 shows the relation between hash

size and DFA states. As hash size increases the probability of hash collision decreases (1/2
h
,

where h is the hash size), which reduces the number of DFA states. For example, for a three

bit hash, if the sum of instruction bits for the multiple active states on the output of a control

flow instruction in an NFA differ by a value of 8, we combine them to form a DFA state (e.g.,

if the sums are 2 and 10, then modulo 8 of both values is 2). When we move to higher hash

sizes, this hash collision is avoided and the DFA states get reduced. For the benchmarks

tested, most of the NFA states combined to form DFA have the same hash value, so they

remain even when we increase the hash size. For the few states where hash collisions are

avoided, we get a reduction in DFA states by increasing the hash size.

Table 4 shows the relationship between hash size and state machine memory.

Increasing the hash size increases the size of memory entries exponentially since the valid

hash values on outgoing edges field depends on hash size as explained in section 4.1. The

memory overhead increases by 42% as we move from three bit hash to four bit hash and by

56% as we move from four bit hash to five bit hash. Having a larger hash size reduces the

number of DFA states (probability of hash collision reduces) when the benchmark has a

55

potentially large number of control flow instructions and memory accesses. We selected a

four bit hash for our proposed security monitoring system since it provides sufficiently low

collision probability (0.0625) without much memory overhead.

Benchmarks NFA states DFA states

 Three bit hash Four bit hash Five bit hash

frag 573 594 592 591

red 802 808 808 807

ssld 828 836 836 833

wfq 905 921 921 918

mtc 2427 2460 2460 2459

Table 3: Hash size versus DFA states

Benchmarks NFA states Three bit hash Four bit hash Five bit hash

 Mem.

entries

Mem.

bits

Mem.

entries

Mem.

bits

Mem.

entries

Mem.

bits

frag 573 629 13209 627 18810 626 29422

red 802 857 17997 857 25710 854 40138

ssld 828 879 18459 879 26340 871 40937

wfq 905 980 20580 978 29340 969 45543

mtc 2427 2584 59432 2584 82688 2581 126469

Table 4: Hash size versus state machine memory

6.2.3.2. DFA versus NFA monitoring graph comparison

The results of generating instruction-level monitoring graphs for both our approach

and the previously mentioned approach in section 3.1 are illustrated in Table 5. The number

56

of entries in the state machine memory is shown in the Mem. entries column. A clear benefit

of our proposed approach is speed. In all cases, only one access to the monitor memory is

required for any benchmark (including the five shown here). The previous NFA-based

approach requires up to three memory accesses for the benchmarks tested and potentially up

to 16 for other benchmarks. The conversion from NFA to a DFA does incur a memory

overhead of 7.7% on average for the benchmarks.

 Chasaki[2] Proposed system

Net.

application

No: of

instructions

NFA states Max mem.

accesses

DFA states Mem.

entries

Mem.

overhead

frag 573 573 3 592 627 9.4%

red 802 802 2 808 857 6.8%

ssld 828 828 3 836 879 6.2%

wfq 905 905 2 921 978 8.0%

mtc 2427 2427 3 2460 2584 6.4%

Table 5: Evaluation of monitoring approaches for our proposed DFA approach and a

previous NFA approach.

6.2.3.3. Monitoring speed and resource utilization

The network processor system along with the security monitoring module was

successfully implemented on the DE4 platform. The lookup table (LUT), flip flop (FF), and

memory resources required for the single network processor core, monitor, and other

interface circuitry for the router (e.g. buffers, input arbiter, queuing control) are shown in

Table 6. The NP memory includes space for up to 4096 monitor memory entries. All circuitry

operated at 125 MHz, the same clock speed for the system without the monitor.

57

Resources Secure monitor Network proc. DE4 interface Available

LUTs 140 3,792 37,803 182,400

FFs 26 2,120 38,444 182,400

Mem. bits 131,072 201,216 2,550,800 14,625,792

Table 6: Resource utilization for single core network processor system

The lookup table (LUT), flip flop (FF), and memory resources required for both our

approach and the previously mentioned approach in section 3.1 are illustrated in Table 7. The

security monitor memory includes space for up to 4096 memory entries. The DFA based

monitor has the advantage of evaluating 16 next states during every instruction cycle.

Resources NFA based security

monitor (basic blocks)

DFA based security

monitor (4-bit hash)

LUTs 40 140

FFs 35 26

Memory bits 49,664 131,072

Table 7: Resource utilization comparison between NFA based and DFA based security

monitors

This chapter summarized the evaluation benchmarks and the experimental results

performed to test the functionality of our proposed network processor with the security

monitoring system. Next chapter concludes the thesis and provides future directions.

58

CHAPTER 7

CONCLUSION AND FUTURE WORK

The thesis has outlined a new network processor architecture with a high-performance

security monitor for detecting in-network attacks. The network processor requires only a

single memory lookup per network processor instruction. This single memory lookup is

maintained regardless of the complexity of the network processor program using NFA-to-

DFA translation of the monitoring graph. Our monitor, which tracks individual processor

instructions, has been verified in hardware using a network processor with a Harvard

architecture. The presence of monitoring does not slow down the processor operation since it

is performed outside the operational paths of the processor.

The network processor with security monitoring system was implemented as part of

the Altera DE4 NetFPGA infrastructure. Results show that the throughput of the single-core

network processor system increases as the packet size increases. The network processor was

able to achieve line rate forwarding at packet size of 1500 bytes for IPV4 packet forwarding

application. We demonstrated the ability of our security monitor system to detect and recover

from network attacks without affecting the performance of the processor. Only the attack

packets get dropped, while the regular packets are forwarded successfully. We illustrated the

benefits of our security monitoring system over existing techniques in both memory access

and resource utilization. Our evaluation of hash size to memory resource requirement showed

that a four bit hash size provides sufficiently less collision probability without increasing the

memory overhead.

In the future, we plan to evaluate our monitoring approach using a multi-core network

processor. We also plan to look into the possibility of sharing monitoring logic between

different processor cores when they execute the same application. We hope that the

59

developed security monitor framework will facilitate rapid design space exploration of

security monitor architectures for network processor systems.

60

BIBLIOGRAPHY

[1] http://en.wikipedia.org/wiki/History_of_the_Internet

[2] D. Chasaki and T. Wolf, “Design of a secure packet processor,” in Proc. of

ACM/IEEE Symposium on Architectures for Networking and Communication

Systems (ANCS), San Diego, CA, Oct. 2010.

[3] S. Mao and T. Wolf, “Hardware support for secure processing in embedded

systems,” IEEE Transactions on Computers, vol. 59, no. 6, pp. 847–854, Jun.

2010.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded processing

through hardware-assisted runtime monitoring,” in Proc. of the Design,

Automation and Test in Europe Conference and Exhibition (DATE’05), Munich,

Germany, Mar. 2005, pp. 178–183.

[5] Q. Wu and T. Wolf, “On runtime management in multi-core packet processing

systems,” in Proc. of ACM/IEEE Symposium on Architectures for Networking

and Communication Systems (ANCS), San Jose, CA, Nov. 2008, pp. 69–78.

[6] http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

[7] Bremler-Barr, D. Hay and Y. Koral, "CompactDFA: Generic State Machine

Compression for Scalable Pattern Matching," in Proc of IEEE (INFOCOM), vol.,

no., pp.1-9, 14-19 March 2010

[8] http://www.altera.com/products/fpga.html

[9] http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

[10] Q. Wu, D. Chasaki, and T. Wolf, “Implementation of a simplified network

processor,” in Proc. of IEEE International Conference on High Performance

Switching and Routing (HPSR), Richardson, TX, June 2010

[11] T. Wolf and M.A. Franklin, “Performance models for network processor design,"

IEEE Transactions on Parallel and Distributed Systems, vol.17, no.6, pp.548-

561, June 2006.

[12] Papaefstathiou, G. Kornaros and N. Zervos, "Software processing performance in

network processors," in Proc. of the Design, Automation and Test in Europe

Conference and Exhibition (DATE’04), vol.3, no., pp. 186- 191 Vol.3, 16-20 Feb.

2004.

[13] C. Tzi-Cker and P. Pradhan, "Cache memory design for network processors," in

Proc. of Sixth International Symposium on High-Performance Computer

Architecture (HPCA-6), vol., no., pp.409-418, 2000.

http://en.wikipedia.org/wiki/History_of_the_Internet
http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
http://www.altera.com/products/fpga.html
http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

61

[14] X. Hong and W. Di, "A Component Model for Network Processor Based

System," in IEEE/ACS International Conference on Computer Systems and

Applications (AICCSA '07), vol., no., pp.47-50, 13-16 May 2007.

[15] T.Wolf, W. Ning and T. Chia-Hui, "Design considerations for network processor

operating systems," in Symposium on Architecture for networking and

communications systems (ANCS '05), vol., no., pp.71-80, 26-28 Oct. 2005.

[16] D. Geer, “Malicious bots threaten network security,” Computer, vol. 38, no. 1,

pp. 18–20, 2005.

[17] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the spread and

victims of an Internet worm,” in IMW ’02: Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet measurement, Marseille, France, Nov. 2002,

pp. 273–284.

[18] http://technet.microsoft.com/en-us/library/cc959354.aspx

[19] Z. Shi, "The automaton modeling of typical network attacks," in IEEE

International Conference on Computer Science and Automation Engineering

(CSAE), vol.1, no., pp.243-246, 10-12 June 2011.

[20] P. Owezarski, "On the impact of DoS attacks on Internet traffic characteristics

and QoS," in Proc. of 14th International Conference on Computer

Communications and Networks (ICCCN '05), vol., no., pp. 269- 274, 17-19 Oct.

2005.

[21] Y. Xin, C. Wei and W. Yantao, "The research of firewall technology in computer

network security," in Asia-Pacific Conference on Computational Intelligence and

Industrial Applications (PACIIA '09), vol.2, no., pp.421-424, 28-29 Nov. 2009.

[22] G. Manimaran, "Internet infrastructure security," in Proc. of 12th Annual IEEE

Symposium on High Performance Interconnects (CONECT '04), vol., no., pp.

109, 25-27 Aug. 2004.

[23] M. Garuba, L. Chunmei and D. Fraites, "Intrusion Techniques: Comparative

Study of Network Intrusion Detection Systems," in Fifth International

Conference on Information Technology: New Generations (ITNG '08), vol., no.,

pp.592-598, 7-9 April 2008.

[24] “NetFPGA,” http://netfpga.org/

[25] http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

[26] http://www.altera.com/education/univ/materials/boards/de4/unv-de4-board.html

[27] http://www.altera.com/devices/fpga/stratix-fpgas/stratix-iv/stxiv-index.jsp

http://technet.microsoft.com/en-us/library/cc959354.aspx
http://netfpga.org/
http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf
http://www.altera.com/education/univ/materials/boards/de4/unv-de4-board.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-iv/stxiv-index.jsp

62

[28] D. Srinivasan and F. Wu-chang, "Performance analysis of multi-dimensional

packet classification on programmable network processors," in 29th Annual IEEE

International Conference on Local Computer Networks, vol., no., pp. 360- 367,

16-18 Nov. 2004.

[29] T. Wolf, "Challenges and Applications for Network-Processor-Based

Programmable Routers," in IEEE Sarnoff Symposium, vol., no., pp.1-4, 27-28

March 2006.

[30] Intel Corporation. Intel Second Generation Network Processor, 2005.

http://www.intel.com/design/network/products/npfamily/.

[31] Cisco Systems, Inc. The Cisco QuantumFlow Processor: Cisco’s Next

Generation Network Processor. San Jose, CA, Feb. 2008.

[32] Cavium Networks. OCTEON Plus CN58XX 4 to 16-Core MIPS64-Based SoCs.

Mountain View, CA, 2008.

[33] D. Chasaki, W. Qiang and T. Wolf, "Attacks on Network Infrastructure," in Proc.

of 20th International Conference on Computer Communications and Networks

(ICCCN), vol., no., pp.1-8, July 31 2011-Aug. 4 2011.

[34] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, "Hardware-Assisted Run-

Time Monitoring for Secure Program Execution on Embedded Processors," in

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.14,

no.12, pp.1295-1308, Dec. 2006.

[35] M. Shufu and T. Wolf, "Hardware Support for Secure Processing in Embedded

Systems," in 44th ACM/IEEE Design Automation Conference (DAC '07), vol.,

no., pp.483-488, 4-8 June 2007.

[36] T. Wolf and R. Tessier, "Design of a Secure Router System for Next-Generation

Networks," in Third International Conference on Network and System Security

(NSS '09), vol., no., pp.52-59, 19-21 Oct. 2009.

[37] “AlteraDE4 NetFPGA,” http://keb302.ecs.umass.edu/de4web/DE4_NetFPGA/

[38] “Plasma processor,” http://opencores.org/project,plasma

[39] K.Ravindran, N. Satish, J. Yujia and K. Keutzer, "An FPGA-based soft

multiprocessor system for IPv4 packet forwarding," in International Conference

on Field Programmable Logic and Applications (FPL '05), vol., no., pp. 487-

492, 24-26 Aug. 2005.

[40] H. Balakrishnan, H.S. Rahul and S. Seshan, "An integrated congestion

management architecture for internet hosts," in Proc. of the conference on

Applications, technologies, architectures, and protocols for computer

communication (SIGCOMM '99), Cambridge, MA, pp. 175–187, Sept. 1999.

http://www.intel.com/design/network/products/npfamily/
http://keb302.ecs.umass.edu/de4web/DE4_NetFPGA/
http://opencores.org/project,plasma

63

[41] “Using ModeSim-Altera in Quartus II design flow”

http://home.eng.iastate.edu/~zzhang/courses/cpre581-f05/resources/modelsim.pdf

[42] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and R.B.

Brown, "MiBench: A free, commercially representative embedded benchmark

suite," in IEEE International Workshop on Workload Characterization (WWC-4),

vol., no., pp. 3- 14, 2 Dec. 2001.

[43] B.K. Lee and L.K. John, "NpBench: a benchmark suite for control plane and data

plane applications for network processors," in Proc of 21st International

Conference on Computer Design, vol., no., pp. 226- 233, 13-15 Oct. 2003.

[44] “NetFPGA reference router,” http://netfpga.org/foswiki/bin/view/NetFPGA/

OneGig/Guide#Walkthrough_the_Reference_Design

[45] “NetFPGA packet generator,” http://netfpga.org/foswiki/bin/view/NetFPGA/

OneGig/PacketGenerator

[46] L. Dadda, "The evolution of computer architectures," in Proc. of 5th Annual

European Computer Conference on Advanced Computer Technology, Reliable

Systems and Applications (CompEuro '91), vol., no., pp. 9-16, 13-16 May 1991.

[47] “Architecture,” http://ww1.microchip.com/downloads/en/devicedoc/31004a.pdf

[48] R. Riley, J. Xuxian and X. Dongyan, "An Architectural Approach to Preventing

Code Injection Attacks," in IEEE Transactions on Dependable and Secure

Computing, vol.7, no.4, pp.351-365, Oct.-Dec. 2010.

[49] A. Francillon and C. Castelluccia, “Code injection attacks on harvard architecture

devices,” in Proc. of ACM CCS, pp. 15-26, 2008.

[50] “Powerset construction,” http://en.wikipedia.org/wiki/Powerset_construction

[51] “Altera TriMatrix Embedded Memory Blocks in Stratix IV Devices”,

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51003.pdf

[52] “Stack overflow attacks”, http://www.techrepublic.com/blog/security/basics-of-

stack-smashing-attacks-and-defenses-against-them/2755

[53] “Format string attacks”, http://www.defcon.org/images/defcon-18/dc-18-

presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf

[54] G. Qijun, F. Christopher and N. Rizwan, “A study of self-propagating mal-packets

in sensor networks: Attacks and defences,” in Computers and Security, vol. 30,

pp. 13-27, 2011.

[55] R. Roemer, E. Buchanan, H. Shacham and S. Savage, “Return-Oriented

Programming: Systems, Languages, and Applications,” in ACM Transactions on

Information and Systems Security, vol. 15, no. 1, Mar. 2012

http://home.eng.iastate.edu/~zzhang/courses/cpre581-f05/resources/modelsim.pdf
http://netfpga.org/foswiki/bin/view/NetFPGA/%20OneGig/Guide#Walkthrough_the_Reference_Design
http://netfpga.org/foswiki/bin/view/NetFPGA/%20OneGig/Guide#Walkthrough_the_Reference_Design
http://netfpga.org/foswiki/bin/view/NetFPGA/%20OneGig/PacketGenerator
http://netfpga.org/foswiki/bin/view/NetFPGA/%20OneGig/PacketGenerator
http://ww1.microchip.com/downloads/en/devicedoc/31004a.pdf
http://en.wikipedia.org/wiki/Powerset_construction
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51003.pdf
http://www.techrepublic.com/blog/security/basics-of-stack-smashing-attacks-and-defenses-against-them/2755
http://www.techrepublic.com/blog/security/basics-of-stack-smashing-attacks-and-defenses-against-them/2755
http://www.defcon.org/images/defcon-18/dc-18-presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf
http://www.defcon.org/images/defcon-18/dc-18-presentations/Haas/DEFCON-18-Haas-Adv-Format-String-Attacks.pdf

64

[56] “Design debugging using Altera Signal Tap II Logic Analyzer,”

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	2013

	Protecting Network Processors with High Performance Logic Based Monitors
	Harikrishnan Kumarapillai Chandrikakutty

