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ABSTRACT

DESIGN OF AN OPEN-SOURCE SATA CORE FOR VIRTEX-4 FPGAS

SEPTEMBER 2013

CORY W. GORMAN, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell G. Tessier

Many hard drives manufactured today use the Serial ATA (SATA) protocol to 

communicate with the host machine, typically a PC. SATA is a much faster and much 

more robust protocol than its predecessor, ATA (also referred to as Parallel ATA or IDE). 

Many hardware designs, including those using Field-Programmable Gate Arrays 

(FPGAs), have a need for a long-term storage solution, and a hard drive would be ideal. 

One such design is the high-speed Data Acquisition System (DAS) created for the NASA 

Surface Water and Ocean Topography mission. This system utilizes a Xilinx Virtex-4 

FPGA. Although the DAS includes a SATA connector for interfacing with a disk, a SATA

core is needed to implement the protocol for disk operations. 

In this work, an open-source SATA core for Virtex-4 FPGAs has been created. 

SATA cores for Virtex-5 and Virtex-6 devices were already available, but they are not 

compatible with the different serial transceivers in the Virtex-4. The core can interface 

with disks at SATA I or SATA II speeds, and has been shown working at rates up to 

180MB/s. It has been successfully integrated into the hardware design of the DAS board 

so that radar samples can be stored on the disk. 
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CHAPTER 1 

INTRODUCTION

SATA (Serial ATA) is one of the current technologies for high speed data transfer 

between a computer and a peripheral. Nearly all consumer hard drives manufactured 

today use SATA [1]. It replaced the older Parallel ATA (PATA, also known as IDE), which

was the dominant standard for many years. SATA has some significant advantages over 

the older technology, including higher speeds and greater reliability. The fastest transfer 

rate possible with PATA is 133MB/s, while the first generation of SATA is capable of 

150MB/s [2].

A system that has a large amount of data that needs to be stored quickly will likely

find a SATA hard drive to be a viable solution. The NASA SWOT radar Data Acquisition 

System (DAS) is one such system.

The Surface Water and Ocean Topography (SWOT) mission seeks to monitor the 

levels of various water bodies using a satellite-mounted radar system. To achieve this 

goal, an FPGA-based board using a Ka-band radar interferometer (KaRIN) was designed 

at the University of Massachusetts Amherst [3]. This board features a Xilinx Virtex-4 

FPGA and connectors for various high speed peripherals, including SATA-compatible 

drives. In the final version of the board, all components will be radiation-hardened for use

in space [4].
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This DAS board is capable of acquiring samples at a rate of 3 Giga-samples per 

second. For some applications, it may be desirable to store the acquired data for later 

analysis. However, the amount of data would quickly exceed the on-board storage 

capacity of the FPGA (only 9,936 Kb—see Chapter 5 for more details), so it is necessary 

to store the data on a dedicated storage device such as a hard drive. To do so, one of the 

industry-standard hard drive interfaces must be used. Thus, SATA seems to be a suitable 

choice, since it features high throughput for storage, as shown in Table 1.

SATA Version Maximum Speed

SATA Generation 1 (SATA I) 1.5Gb/s, 150MB/s

SATA Generation 2 (SATA II) 3.0Gb/s, 300MB/s

SATA Generation 3 (SATA III) 6.0Gb/s, 600MB/s

Table 1: SATA Generations and Speeds

The SATA protocol uses a layered approach, wherein each layer uses services of 

the layer below it and presents services to the layer above it. At the highest level, a fairly 

simple Read/Write interface is presented to applications wishing to store data, while the 

lower layers do many complex transformations, synchronization, and hand-shaking. The 

architecture of SATA will be discussed in more detail shortly.

In this thesis, we have developed a Virtex4-compatible SATA host controller. This

module can store data from the radar at high speeds, while implementing the full SATA 

protocol stack to maintain compatibility with available drives. The core will also be 

released as open-source, so that other designs with Virtex-4 devices can benefit from it. It

will be the first open-source Virtex-4 SATA core available.
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CHAPTER 2 

BACKGROUND

2.1 The DAS Board for NASA

The SATA controller developed for this thesis will be used in a radar data 

acquisition board, previously designed here at UMass Amherst. This prototype board is 

meant to be used as part of a Data Acquisition System, or DAS. A DAS is designed to 

measure, process, and analyze a quantity of interest. The board was designed with real-

time acquisition and processing in mind.

The DAS board was designed for NASA's Surface Water and Ocean Topology 

(SWOT) mission. The goal of this mission is to monitor water levels and circulation 

characteristics of Earth's oceans [4]. The system uses a Ka-Band Radar Interferometer 

(KaRIN) to make measurements, which are fed into high-speed Analog-to-Digital 

Converters (ADCs) on the board. The digital data can then be processed, stored, or fed to 

another system over a compact PCI (cPCI) interface.

The board contains two Xilinx Virtex-4 Field Programmable Gate Arrays 

(FPGAs). An FPGA is a reprogrammable chip that can implement any sort of digital 

logic. FPGAs are flexible, and they allow for high-speed data processing through 

specialization of hardware and parallelization. One of the Virtex-4s is used to handle 

communication over cPCI, and the other is used for acquiring and processing data (the 

“Data FPGA”, see Figure 2).
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Figure 1 is from [4].

The Data FPGA on the board is connected to a SATA interface connector. Using 

its built-in RocketIO Multi-Gigabit Transceiver (MGT), this FPGA can communicate 

using a variety of high-speed protocols. One of the supported protocols is SATA, which 

allows for a large amount of data to be stored for later use on a hard drive. Due to the 

4
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parallelizable nature of the FPGA, this data storage capability can be added without 

slowing down the other processing.

Figure 2 is from [4].

In addition to the DAS Board, the ML405 Evaluation Board is used in the work

[5]. This is a development board created by Xilinx that contains a Virtex-4 FPGA, and is 

the primary development board for this project. Because this board is mass-produced, it is

significantly less expensive than the DAS board; therefore it would be less of a setback if 

it were damaged in any way. Also, it has two SATA connectors instead of one, making 

loopback debugging possible. This has been useful during development.
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2.2 SATA Overview

Serial ATA is a peripheral interface created in 2003 to replace Parallel ATA, also 

known as IDE. Hard drive speeds were getting faster, and would soon outpace the 

capabilities of the older standard—the fastest PATA speed achieved was 133MB/s, while 

SATA began at 150MB/s and was designed with future performance in mind [2]. Also, 

newer silicon technologies used lower voltages than PATA's 5V minimum. The ribbon 

cables used for PATA were also a problem; they were wide and blocked air flow, had a 

short maximum length restriction, and required many pins and signal lines [2].

SATA has a number of features that make it superior to Parallel ATA. The 

signaling voltages are low and the cables and connectors are very small. SATA has 

outpaced hard drive performance, so the interface is not a bottleneck in a system. It also 

has a number of new features, including hot-plug support.

SATA is a point-to-point architecture, where each SATA link contains only two 

devices: a SATA host (typically a computer) and the storage device. If a system requires 

multiple storage devices, each SATA link is maintained separately. This simplifies the 

protocol and allows each storage device to utilize the full capabilities of the bus 

simultaneously, unlike in the PATA architecture where the bus is shared.

To ease the transition to the new standard, SATA maintains backward 

compatibility with PATA. To do this, the Host Bus Adapter (HBA) maintains a set of 

shadow registers that mimic the registers used by PATA. The disk also maintains a set of 

these registers. When a register value is changed, the register set is sent across the serial 
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line to keep both sets of registers synchronized. This allows for the software drivers to be 

agnostic about the interface being used.

SATA uses a layered architecture, depicted in Figure 3.The highest layer is the 

Application Layer, which represents the software using the SATA device. Below that is 

the Command Layer, which triggers series of Transport Layer actions to implement a 

PATA command. Next is the Transport Layer, which handles creating and formatting 

Frame Information Structures (FISes), and the valid sequences of FISes. Beneath that is 

the Link Layer, which encodes the FISes, handles control signals, and checks for FIS 

integrity. The lowest layer is the Physical Layer, which handles the transmission and 

reception of the actual electrical signal and maintains alignment. It also takes care of 

establishing the link, using what is known as Out-of-band (OOB) signaling.

7
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Each layer provides services to the layer above it. This allows for each layer to 

“abstract away” the details of the layers below it and simplify the design process. The 

layers will be discussed in more depth shortly.

2.2.1 Notes on Terminology

When discussing SATA, there are multiple words that can refer to the same thing, 

and words could have different meanings in other contexts. To avoid ambiguity, in this 

document, we will try to be consistent in the use and meaning of the following terms.

Dword: Although this term is typically used in the context of a particular processor or 

processor family, here it refers to 32 bits of data, or 4 bytes. This is consistent with other 

SATA literature, such as [2] and [6]. However, note that a Dword is encoded as 40 bits 

while on the line. Despite the size change, this is still referred to as a “Dword” because 

the encoded data is never manipulated directly, and once decoded, will again be 32 bits.

Core, Host Bus Adapter (HBA): This refers to the SATA design being presented in this 

work. That is, the hardware that interfaces with a disk and handles the SATA protocol.

Host: This refers to the system that is interfacing with the disk, and includes the HBA. 

An example of a host would be a PC, or the DAS board. Since the SATA protocol is 

asymmetric, “Host” can also refer to the host's side of the protocol.

Disk, device: This refers to the hard drive with which we are communicating. Although 

disk is unambiguous, device could refer to any number of things, including a Virtex-4 

device. In this work, “device” refers to the hard disk, unless context indicates otherwise.
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Frame Information Structure (FIS): A Frame Information Structure, or FIS, is a single 

data payload that is sent over the SATA link. These are analogous to “packets” in network

terminology. There are multiple types of FISes, and all of them are wrapped by Start of 

Frame (SOF) and End of Frame (EOF) primitives. The protocol defines valid sequences 

of FISes for data transfer. One or more of these FISes will be Data FISes, that actually 

contain the data to be read or written. The maximum size of a single FIS is 8KB.
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CHAPTER 3 

SATA DETAILS

3.1 Physical Layer

The physical layer is the lowest layer of the SATA protocol stack. It handles the 

electrical signal being sent across the cable. The physical layer also handles some other 

important aspects, such as resets and speed negotiation.

SATA uses low-voltage differential signaling (LVDS). Instead of sending 1's and 

0's relative to a common ground, the data being sent is based on the difference in voltage 

between two conductors sending data. In other words, there is a TX+ and a TX- signal. A 

logic 1 corresponds to a high TX+ and a low TX-; and vice versa for a logic 0. SATA uses

a ±125mV voltage swing [2][6].

This scheme was chosen for multiple reasons. For one, it improves resistance to 

noise. A source of interference will likely affect both conductors in the same way, since 

they are parallel to each other. However, a change in voltage on both conductors does not 

change the difference between them, so the signal will still be easily recovered. Low-

voltage differential signaling also reduces electromagnetic interference (EMI), and the 

lower signaling voltages means that less power is used [2].

3.1.1 Out-of-Band Signaling

As stated earlier, the physical layer is also responsible for link initialization and 

resets. But how can a host and a device communicate to initialize the link if they don't 
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have a link with which to communicate? The scheme that SATA uses is called out-of-

band (or OOB) signaling.

Under this scheme, it is assumed that the host and the device can detect the 

presence or absence of a signal, even if they cannot yet decode that signal. OOB signals 

are essentially that—whether or not an in-band signal is there. By driving TX+ and TX- 

to the same common voltage (so not a logic 1 or a logic 0), one party can transmit an 

OOB “lack of signal.”

 Link initialization is performed by sending a sequence of OOB primitives, which 

are defined patterns of signal/no-signal. There are three defined primitives: COMRESET, 

COMINIT, and COMWAKE. Each primitive consists of six “bursts” of a present signal, 

with idle time in between. The times of each burst are defined in terms of “Generation 1 

Unit Intervals” (U), which is the time to send 1 bit at the SATA I rate of 1.5Gb/s, or 666 

ps [2].

Table 2 shows the definitions of the primitives. There are also fairly loose 

tolerances defined for each signal [6]. Note also that COMRESET and COMINIT have 

the same definition—the only difference is that COMRESET is sent by the host, and 

COMINIT is sent by the device.

OOB Signal Burst Length Inter-burst Idle Time

COMRESET 106ns (160U) 320ns (480U)

COMINIT 106ns 320ns

COMWAKE 106ns 106ns

Table 2: OOB Primitive Definitions
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The COMRESET signal, sent by the host, is used to reset the link. Following a 

COMRESET, the OOB initialization sequence is performed again. COMRESET can also 

be sent repeatedly to hold the link in a reset state.

3.1.1.1 The OOB Sequence

The initialization state machine for the host follows this sequence to establish 

communications with the disk. This sequence is illustrated in Figure 4.

First, a COMRESET is sent. The host then waits for a COMINIT from the device.

If no COMINIT is received, the host can send more COMRESETs until it receives one, 

and assume that no device is connected until it does. After receiving COMINIT, the host 

is given time to optionally calibrate its receiver and transmitter. For example, it may be 

necessary to adjust signal parameters or termination impedances. The host then sends a 

COMWAKE to the device, and expects the same in return. After this, the host waits to 

receive an ALIGN primitive (an in-band signal which will be explained shortly). 

Meanwhile, it sends a “dial-tone” to the device: an alternating pattern of 1's and 0's. This 

was intended as a cost-saving feature, so that disks with cheap oscillators could instead 

use the dial-tone as a reference clock for locking [2].

12



It is also at this stage that speed negotiation is performed. The device will send 

ALIGN primitives at the fastest speed it supports, and wait for the host to acknowledge 

them. If it does not receive an acknowledgment, then it tries the next lowest speed, and so

on until an agreement is found. Alternatively, if the host supports faster speeds than the 

device, then ALIGN primitives it receives will appear “stretched”; the host can then slow 

down to accommodate.

13
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When the host receives valid ALIGN primitives, it sends ALIGNs back to 

acknowledge. Both parties then send SYNC or other non-ALIGN primitives, and the link 

is ready.

3.1.2 8b/10b Encoding

The Physical Layer also handles encoding the data before sending it. The scheme 

used in SATA is 8b/10b encoding, which is also used in PCI Express, USB 3.0, and many 

other high speed protocols [6]. 8b/10b Encoding has a number of properties that make it 

useful for this purpose.

One primary function of 8b/10b encoding is clock recovery. Under this scheme, 

there are never more than five ones or zeros in a row. In other words, there are many bit 

transitions in the data stream. This allows the receiver to recover the clock using a PLL or

by oversampling the data. This is important for serial data, as otherwise a stream of 12 

ones in a row, for example, could be interpreted as 11 or 13 ones instead.

The encoding of data maps each byte to a 10-bit character, instead of an 8-bit one.

Only 10-bit characters that have enough transitions are used. Also, the scheme tries to 

maintain DC Balance, and uses the 10-bit patterns with an equal number of ones and 

zeros. However, there are not enough of these to accommodate the 256 possible values of

a byte, so also those patterns with 6 zeros and 4 ones (or vice versa) are used [2].

The encoder keeps track of the running disparity to maintain DC Balance. The 

running disparity changes each time an uneven pattern is sent. For example, if a 10-bit 
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character with 6 zeros and 4 ones was just sent, the running disparity is now negative. 

The next character therefore must have positive disparity (4 zeros and 6 ones) or neutral 

disparity (5 and 5). Thus, many of the bytes actually have two encodings—one positive 

and the other negative. The current running disparity determines which encoded value to 

use. Running disparity also acts as a means to detect transmission errors.

In this encoding example, note that the number of ones and zeros in the output is different
depending on the current disparity. Both of the encodings correspond to the same data

byte (0x06, or D6.0 in the encoding table).

3.1.2.1 The Comma and the ALIGN primitive.

In addition to the 256 valid data encodings for each byte (referred to as Dx.x 

symbols), there are also special control symbols that can be sent. These do not correspond

to a data byte and are referred to as Kx.x symbols, or K characters. SATA uses two K 

15
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characters: K28.3 and K28.5. The first is used to distinguish link layer primitives, and the

other is the comma character.

The comma is a special character that is used to determine byte alignment in the 

data stream. We've already discussed how 8b/10b encoding provides enough transitions 

in the stream to recover a clock (essentially providing bit alignment), but it would not be 

possible to decode the actual characters being sent if it is not known where they begin 

and end.

The comma is a special character because it is the only place in the data stream 

where there are five zeros or five ones in a row (depending on disparity), followed by two

bits of the opposite. Thus, the receiver can detect this unique pattern and know that it is a 

comma, and therefore find the 10-bit boundaries between the symbols.

16
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In SATA, the comma is used as part of the ALIGN primitive. Link Layer 

primitives, which will be discussed shortly, are 4 bytes long and always begin with a K 

character. The ALIGN is the only one to contain the comma, K28.5. That is why it is used

as part of the link initialization procedure, so that byte boundaries can be determined 

before attempting to send data.

The SATA protocol also specifies that at least two ALIGNs must be sent every 

256 Dwords, and they must be sent in pairs. This happens even when data is being sent. 

This ensures that the byte boundary is not lost, and both the host and the disk must send 

these ALIGNs. It also acts as a way to manage small frequency differences between the 

sender and receiver. For example, if the sender's clock is running a bit faster than the 

receiver's, the receiver's buffer may eventually overflow. Since ALIGNs are sent 

periodically and they are not data-important, they can be dropped to prevent this from 

occurring [2].

3.1.3 Spread-Spectrum Clocking

To further reduce EMI, the SATA specification requires that a receiver be able to 

lock to a bitstream that uses spread-spectrum clocking (SSC). SSC is a scheme where-in 

the line rate does not stay constant, but varies slightly over time. This spreads the 

emissions over a wider frequency range [2]. The transceivers on the Virtex-4 are able to 

receive SSC signals, but does not use it when transmitting [12].

17



3.2 Link Layer

The link layer is the next layer and is directly above the physical layer. This layer 

is responsible for encapsulating data payloads and manages the protocol for sending and 

receiving them. A data payload that is sent is called a Frame Information Structure (FIS). 

The link layer also provides some other services for ensuring data integrity, handling flow

control, and reducing EMI.

The host and the disk each have their own transmit pair in a SATA cable, and 

theoretically data could be sent in both directions simultaneously. However, this does not 

occur. Instead, the receiver sends “backchannel” information to the sender that indicates 

the status of the transfer in progress. For instance, if an error were to be detected mid-

transmission, such as a disparity error, the receiver could notify the sender of this.

The link layer uses a set of defined Link Layer Primitives to perform these 

functions. Primitives are each 4 Dwords long and start with the control character K28.3 

(except for ALIGN, as discussed above). The following table lists most of the defined 

primitives and their value in hexadecimal before encoding. The usage of these will be 

discussed in more detail.

Primitive Hex Representation

ALIGN 0x7B4A4ABC

SYNC 0xB5B5957C

X_RDY 0x5757B57C

R_RDY 0x4A4A957C

18



Primitive Hex Representation

SOF 0x3737B57C

R_IP 0x5555B57C

HOLD 0xD5D5AA7C

HOLD_ACK 0x9595AA7C

EOF 0xD5D5B57C

WTRM 0x5858B57C

R_OK 0x3535B57C

R_ERR 0x5656B57C

CONT 0x9999AA7C

Table 3: Link Layer Primitives

ALIGN: This primitive, as discussed in the previous section, allows the receiver 

to determine the byte boundaries in the data stream. A pair of them is sent at least every 

256 Dwords regardless of what state the link layer is in.

SYNC: SYNC is used to indicate that the line is idle. When frames are not being 

sent, both the host and the disk will send this primitive. This primitive also has a special 

function called the “SYNC Escape.” If the host sends a SYNC, the line is forced to go 

idle, terminating all current transfers [2]. The disk must respond SYNC. This way, if the 

host needs to issue a soft reset, it can do so.

X_RDY: This primitive indicates that there is data that is ready to be sent. It will 

be sent repeatedly by the disk or host until it is acknowledged. If both parties are 

simultaneously sending X_RDY, it is expected that the host will back down [2].
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R_RDY: Indicates that the party is ready to receive a FIS. This primitive is used 

to acknowledge X_RDY, or can be sent preemptively if a transfer is expected.

SOF: A primitive that signals the start of a FIS (Start of Frame). The next Dwords

sent after this are data.

R_IP: Receive In Progress. This is a backchannel primitive that is used by a 

receiver to indicate that it is currently receiving the FIS.

HOLD: The HOLD primitive is used for flow control management, which will be

discussed in more detail shortly.

HOLD_ACK: Acknowledges a HOLD.

EOF: A primitive that signals the end of a FIS. No more data will be sent until a 

new FIS transfer is started. It also indicates that the previous Dword was the CRC.

WTRM: Waiting for Termination. This is sent repeatedly after EOF by the sender

of a FIS. It indicates that the sender is waiting for acknowledgment of the frame.

R_OK: This primitive is sent by the receiver to indicate that the FIS was received

correctly, and that the CRC was correct.

R_ERR: This primitive indicates that there was an error with the reception of the 

FIS. Most likely, the CRC was incorrect. However, it could also indicate a parity error.

CONT: The CONT primitive is used to reduce EMI created by primitives. There 

are many times where the same primitive is sent repeatedly, and this would cause certain 
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frequencies to have more EMI noise [2]. The CONT primitive eliminates that problem by

using pseudo-randomly-generated garbage data. If a sender would send many repeated 

primitives, instead it can send CONT. The receiver should then treat the CONT, and all 

the following random data, as if the original primitive was still being sent. This continues

until a new valid primitive is received (none of the junk data are K characters). For 

example, a sender may send SYNC, SYNC, CONT, XXXX, XXXX, …., X_RDY. The 

CONT indicates that the receiver should “pretend” that SYNCs are still being sent, up 

until the next valid primitive (X_RDY). By using garbage data instead of repeated 

primitives, the EMI is distributed across a broader spectrum.

In this screen capture from the Chipscope debugging tool, we see that the host is sending
WTRM while the disk sends R_IP. It then sends CONT followed by some garbage data,

which should be treated as a continued R_IP. 

PMREQ_P/PMREQ_S/PMACK/PMNAK: These primitives facilitate power 

management. However, they are not implemented in this work nor are they necessary for 

correct SATA operation. Thus, they will not be discussed further. For more information 

regarding these primitives, see [2] or [6].

A typical FIS transfer happens as follows. The sender indicates that they have data

to send using X_RDY. The sender then waits for R_RDY from the receiver. The sender 

then sends a (single) SOF, followed by the data to be sent. When the receiver sees the 

SOF, it will switch from sending R_RDY to R_IP. Once all of the data in the FIS has been
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sent, the CRC is sent, followed by EOF. The sender then starts sending WTRM until it 

gets R_OK, R_ERR, or SYNC. The latter two indicate an error, with SYNC meaning a 

protocol or unknown error. The receiver, upon getting EOF, checks the CRC, which it 

knows is the previous Dword. It then replies either R_OK or R_ERR. The sender 

acknowledges the R_OK or R_ERR by sending SYNC. The receiver then also sends 

SYNC, the line has returned to idle, and the transfer is complete. This process is 

illustrated in Figure 8.

3.2.1 Flow Control

As stated before, HOLD and HOLD_ACK are the primitives used for flow 

control. They are used in two situations to temporary pause the transmission of data in the

middle of a FIS.

The first situation is if the receiver's buffer is getting full and can't accept any 

more data. For example, this could happen if a hard drive cannot write data as fast as the 

protocol allows. The receiver would then change from sending R_IP to HOLD. The 

sender would then pause the sending of data and respond with HOLD_ACK. When there 

is once again enough room in the buffer, the receiver sends R_IP again, and the sender 

can resume sending the data.
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The second situation occurs when the transmitter is waiting for more data to send.

In this case, the sender sends HOLD until it is ready to continue to send data. Once again,

HOLD_ACK is sent in reply.

23

Figure 8: FIS Transfer



Of course, these primitives do not travel down the cable instantaneously. There is 

a delay between the time that a HOLD is sent and the time that the HOLD is received. 

But this could lead to data loss if the sending party was not yet aware of the requested 

HOLD and continued to send data. Thus, the protocol specifies a maximum delay, 

referred to as the maximum signal latency or the HOLD latency. This latency includes not

only the time on the wire, but also the time to decode, interpret, and react to the HOLD.

The HOLD latency is specified as the time to send 20 Dwords [2]. Thus, a 

receiver can send a HOLD when there are 20 Dwords of space left in its buffer and no 

data will be lost. Before 20 more Dwords of data arrive, the sender will have switched to 

HOLD_ACK.

3.2.2 CRC

SATA uses a Cyclic Redundancy Check (CRC) on each and every FIS to ensure 

data integrity. The CRC used is CRC-32, the same that is used for Ethernet and some 

other protocols [6]. This CRC can reliably detect up to two bit errors on data blocks as 

large as 2064 Dwords. Thus, the CRC places a limit on the maximum size of a FIS. The 

limit is defined to be 2049 Dwords for SATA [2].

3.2.3 Scrambling

As stated in section 3.2, one of the functions that the link layer performs is EMI 

reduction. The CONT primitive does this for primitives, but it is also done for FISes. The 

contents of a frame, including the CRC, are scrambled before being sent. To do this, the 
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data is XORed (a bitwise exclusive OR operation) with a pseudo-random number 

generator. Specifically, the PRNG used is a Galois Linear Feedback Shift Register 

(LFSR) [6].

At the start of each frame, the scrambler is reset. The receiver, using the same 

Galois LFSR, can then descramble the data by again XORing the data with the output of 

the scrambler. Primitives are never scrambled, even those sent in the middle of a frame 

(such as HOLD and ALIGN).

3.3 Transport Layer

The transport layer is responsible for constructing, delivering, and receiving 

Frame Information Structures. It defines the format of each FIS and the valid sequence of

FISes that can exchanged. 

The first byte of each FIS defines the type. The second byte contains type-

dependent control fields. The following table lists some of the types of FISes that are 

defined, and the value of their type field.

FIS Type Type Value

Register – Host to Device 0x27

Register – Device to Host 0x34

Data 0x46

DMA Activate 0x39

Table 4: FIS Types
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A number of other FIS types are defined, but they are not implemented in this 

work. For more details on other FIS types, see [2] or [6].

The Register FIS types are used to transfer the contents of the shadow registers to 

the device, and the device registers back to the host. These registers mirror those used for 

PATA, and are the means by which commands are triggered. Some of the relevant fields 

are the Command field, which holds the PATA command to be executed; the addressing 

fields; and the sector count fields. A sector is 512 bytes [10].

The Data FIS is a very simple FIS. After the type field, the remainder of the first 

Dword is reserved. Following that is the actual data to be delivered. The maximum length

of the data for a single FIS is 8KB. This is to ensure that the CRC is capable of checking 

the data.

The DMA Activate FIS is sent by the device to indicate that it is ready to receive 

data. After a write request has been made, the disk may need to prepare itself before it 

can receive data. For example, it may need to flush its buffer or move the head to the 

correct location. It is a very short FIS, consisting only of a single Dword. It contains the 

FIS type and the rest of the bits are reserved.

For read and write operations, the sequence of valid FISes is fairly simple. To 

perform a read, the host sends a Register – Host to Device (H2D Register) FIS to the disk

with the PATA read command in the Command field. It then waits to receive one or more 

Data FISes (depending on the length of the operation) from the disk. After that, the 

device will send a D2H Register FIS to indicate its status.

26



Write operations are fairly similar. The host again sends an H2D Register FIS to 

the disk, but now with the PATA write command. It then awaits a DMA Activate FIS, 

indicating that the disk is ready. It then sends a Data FIS. If the operation is larger than 

8KB, the host must wait for a new DMA Activate before sending each Data FIS. After the

operation is complete, the device will again send a D2H Register FIS with status 

information.

3.4 SATA Conclusion

Overall, SATA is a very suitable protocol for the NASA SWOT mission. It allows 

for high speed storage compatible with almost any hard drive or SSD available on the 

market. Also, it is a very robust protocol, making it suitable for use in space. Each and 

every frame has a CRC to protect against bit errors. Low-voltage differential signaling 

adds noise immunity and decreases power consumed. There are also numerous methods 

employed to reduce EMI.

This section talked about SATA in general. Later sections will discuss the 

implementation of SATA on the Virtex-4. Note that the Command Layer was not 

discussed in detail. This is because, for the basic Read and Write operations that have 

been implemented, the Command Layer protocol is quite simple and consists mainly of 

transferring data to/from the Transport layer and checking to see if the operations have 

completed. For more details about the Command Layer, see [2] or [6].
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CHAPTER 4 

PREVIOUS WORK

4.1 XAPP 716

XAPP 716 is a Xilinx application note that describes an embedded SATA system 

for the ML405 evaluation board [7]. This system, referred to as the Embedded SATA 

storage reference system (ESS), was released in October 2006. The Application note 

contains details of the system and usage instructions, as well as some files for 

implementation and testing.

The ESS design makes use of the Virtex-4's embedded PowerPC processor, 

running a lightweight distribution of Linux. The design also includes an Ethernet 

interface, DDR memory, a memory controller, and a SATA hard drive interface. The core 

was tested with five different hard drives to ensure compatibility [7]. Included with the 

application note is a demonstration bitstream for the ML405 that will run for 10 minutes.

Unfortunately, the ESS design makes use of a proprietary SATA controller IP 

core, developed by ASICS World Services, which has a significant licensing cost [8]. 

This core handles the link layer and above of the SATA protocol. Without purchasing the 

license, this SATA core cannot be used in other designs. 

However, the application note does include Verilog files and Constraints for some 

of the physical layer modules.  Of note are the MGT initialization module, the OOB 

controller, and the DSOTDM (Dynamic SATA OOB Threshold Detector Module).
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The DSOTDM is a solution to a problem in the silicon of the Virtex-4. The 

RocketIO parameter that determines the threshold for an out-of-band signal is named 

RXCDRLOS. However, this parameter does not have the accuracy intended, and a value 

that corresponds to one voltage level on one MGT may correspond to a different value on

another MGT [7]. Thus, the correct value for this parameter must be found for each MGT

and for each Virtex-4.

The DSOTDM solves this problem by changing the value of RXCDRLOS using 

the MGT's Dynamic Reconfiguration Port (DRP) before starting link initialization. By 

trying a range of values, the module can find a suitable value for the parameter. This 

module relies on the fact that a drive must always respond to a COMRESET OOB 

primitive with a COMINIT primitive. For each value to test, the module sends a 

COMRESET and checks for a response from the disk. A response indicates that this value

of RXCDRLOS is valid.

The ESS's OOB controller includes a significant innovation. The Virtex-4 is 

unable to lock to the incoming data stream in the time specified by the SATA protocol. 

However, the OOB controller continues with the OOB sequence anyway, as if it is 

locked. This is possible because later in the start-up sequence, the device will wait for a 

long time for the host to respond. It is at this point that the host can wait for the lock to be

acquired. Essentially the host is tricking the device; it indicates that it has acquired a lock 

by moving to the next step, but actually acquires the lock much later. 
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The ESS’s MGT Initialization module is not used, because the newer Xilinx tools 

now include the RocketIO wizard, which generates modules to perform the required 

initialization procedure [9].

While the provided Verilog code is not used (in part because some files are 

missing), XAPP 716 has been a very useful resource for this work. The ESS reference 

design shows how to overcome some of the challenges associated with doing SATA on a 

Virtex-4. And perhaps even more importantly, it shows that it is possible.

4.2 The UNC Core

An open-source SATA core was created at the University of North Carolina at 

Charlotte by Ashwin Mendon, Bin Huang, and Ron Sass [10]. This core targets the 

Virtex-6, specifically the ML605 board. As such, the physical layer is quite different, 

since the high speed transceivers on the Virtex 4 and the Virtex 6 differ substantially.

The UNC Core implements all layers of the SATA protocol, and combines the 

Link Layer and Transport Layer into one module. The physical layer includes an 

instantiation of the transceiver and an OOB sequence controller. The Application Layer is

a simple, FIFO-like interface that allows other hardware modules to easily read and write 

data.
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There are some significant differences between the RocketIO MGT present on the

Virtex-4 and the GTX transceivers found on the Virtex-6. The most notable is support for 

OOB primitives. The RocketIO includes a signal that simply indicates the presence or 

absence of a signal; the GTX contains detectors for the actual primitives. It also includes 

generators for transmitting the OOB primitives. Another significant difference is the lack 

of a need for an initialization module. The GTX transceivers can also acquire a lock to 

the incoming data much more quickly and do not have problems with the OOB detection 

threshold [11].
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The UNC Core implements the DMA Read and DMA Write commands. At the 

highest layer, the interface is presented as a simple FIFO. It does not support the PIO 

mode of SATA (a legacy mode added for ATA backwards-compatibility) or other 

commands and features, such as power management. However, reading and writing data 

is the primary purpose of the SATA interface, and other commands can be added if 

needed.

The link layer and transport layers of the protocol are combined in this 

implementation into a single module. This module contains submodules for performing 

scrambling, descrambling, and generating the CRC. It detects and generates link layer 

primitives. There are three state machines: one for the receive datapath, one for the 

transmit datapath, and one to control the sequence of FISes (referred to as the Master 

FSM).

The upper layers of the UNC core were used in this work and thus were pivotal 

for completion of the design. A new physical layer was created, but the interface to the 

link layer was designed to match that used by the original physical layer. Also, the layers 

were reorganized to make debugging easier. However, most of the logic remains intact, 

and thus we would like to take this opportunity to thank the developers of the UNC Core 

for their important contribution to the open-source community and to this work.
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CHAPTER 5 

THE VIRTEX-4

Virtex-4 refers to a series of devices in the Xilinx Virtex family. Virtex-4 devices 

contain a number of embedded, specialized blocks, including PowerPC processors, 

Ethernet MACs, Digital Signal Processing Slices, and blocks for high-speed clock 

management. And they also have, of special interest to this work, high-speed serial 

transceivers. Virtex-4 devices are created using a 90nm process and are 40% faster than 

Xilinx’s older devices [13].

 The board used for development in this work is an ML405 evaluation board. This

board contains a Virtex-4 XCV4FX20 device. This device contains 19,224 logic cells and

1224Kb of block RAM. It also contains 8 RocketIO transceivers [13].

The DAS board is designed to use a radiation-hardened device from the Virtex-

4QV family. The board actually holds two FPGAs—one for data processing and the other

to handle the PCI interface. The Data FPGA is a Virtex-4 XC4VFX140. This device has 

142,128 logic cells and 6,768 Kb of block RAM [13]. As can be noted, this is 

significantly larger than the device on the ML405. Thus, if a SATA design can be 

implemented on the ML405 without using a significant percentage of the resources, then 

it is very likely that the design will fit on the DAS Board, even alongside the other 

processing logic.
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As stated, the Virtex-4 devices contain a number of high speed serial transceivers 

referred to as RocketIO MGTs (multi-gigabit transceivers). These transceivers can handle

line rates from 622 Mb/s to 6.5 Gb/s [12]. Recall that the line rate of SATA I is 1.5 Gb/s, 

which falls into this range. The MGTs also have their own specialized clocking resources 

on the FPGA.

5.1 RocketIO

The RocketIO transceivers, being central to this work, will be discussed in some 

detail in this section. Further information can be found in the “Virtex-4 RocketIO Multi-

Gigabit Transceiver User Guide” [12]. The MGTs have many other features, not relevant 

to SATA, which will not be discussed here.

RocketIO MGTs are built-in hard blocks on the FPGA for handling high speed 

serial data. Each MGT has its own set of pins on the FPGA, which can be routed to a 

variety of different connectors. The ML405 board has two SATA connectors 

corresponding to two MGTs in the FPGA. Thus, on the ML405, two SATA devices can be

used simultaneously, or they can be connected to each other with a special SATA 

loopback cable. This is very useful for testing. The DAS board has a single SATA 

connector, and the other MGT in that tile is connected to a small form-factor pluggable 

(SFP) connector.

The MGTs also have their own clocking resources. Another built-in block in the 

Virtex-4 is the GT11CLK module. Each of these modules has their own clocking pins on 

the FPGA. On both the ML405 and the DAS board, this is a 150MHz, low-jitter clock. 
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This clock speed allows the transceiver to run at SATA I speeds. SATA II speeds require a

300MHz reference clock (see Table 2-5 in the User Guide [12]). MGTs in the FPGA are 

organized into tiles, where each tile contains two MGTs. These MGTs share clocking 

resources. Thus, a single 150MHz oscillator can run both of the SATA MGTs on the 

ML405, as both MGTs share a tile.

It may at first seem wasteful that a separate clock is needed just to run the MGTs. 

However, the MGTs also provide clocks that can be used for FPGA logic. One is the TX 

clock, which is derived from the 150MHz oscillator on the board. The other is the RX 

clock, which is recovered from the incoming data stream using a PLL. Internal clock 

dividers in the RocketIO make these clocks the right speed for the interface width being 

used.

RocketIO MGTs are logically separated into a Physical Media Attachment (PMA)

and a Physical Coding Sublayer (PCS). The PMA handles the actual serial interface, and 

the PCS is between the PMA and the FPGA fabric. The PMA contains the 

Serializer/Deserializer (SERDES) blocks to serialize and deserialize the data coming 

from and going to the FPGA fabric. It also handles clock generation and recovery. For 

SATA, the PLL’s oscillator runs at 3000MHz, and this is divided down to a 750Mhz 

clock. The SERDES uses both edges of this clock to achieve the line rate of 1.5Gb/s. The 

PCS handles the clock domain crossing from the FPGA logic to the PMA. It also includes

TX and RX buffers.
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The RocketIO also includes a built-in 8b/10b encoder and decoder block. If 

selected for use, the bytes are encoded in the PCS before being placed in the buffer or 

being passed to the PMA. Another interesting feature in the RocketIO is the built-in CRC 

generator and checker. Unfortunately, this block cannot be used for SATA. That is, the 

CRC is scrambled along with the rest of the frame, and thus the RocketIO would need a 

built-in scrambler as well for this to be useful for SATA.

Another important feature of the RocketIO is its out-of-band signaling support. 

The MGT provides two ports to handle sending and receiving OOB signals. One port 

indicates whether or not a signal is detected on the line, and the other is used to send an 

OOB signal by driving the pins to a common voltage. Also, both of these signals can be 

used regardless of whether the receiver and transmitter are locked. This is important for 

link initialization.

The RocketIO also includes a loopback testing feature. In addition to testing using

a loopback SATA cable on both the ports, this feature allows for testing using a single 

MGT. Data that is sent on the TX datapath is returned on the RX datapath, without going 

out over the cable. Furthermore, a second loopback mode allows for cutting out the PMA 

entirely to help isolate problems.

Virtex-4 RocketIO MGTs also include a Dynamic Reconfiguration Port (DRP). 

This allows for many of the MGT attributes to be changed at runtime. One use of this is 

to find the correct OOB voltage threshold for the receiver, as was done in XAPP 716.
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A useful tool for creating the high-speed serial design is the RocketIO Wizard (a 

screenshot of the Wizard is shown in Figure 10). The wizard is a piece of software 

included in the Xilinx ISE tool kit. It contains a number of built-in protocol files that set 

the very numerous RocketIO parameters. For example, by selecting the SATA I protocol 

file and changing some settings, the wizard will determine the correct values for things 

like the clock dividers and electrical characteristics of the PMA. The wizard is actually 

necessary for developing with RocketIO, since the correct usages of many of the 

attributes are not documented anywhere in the User Guide. It also generates initialization 

modules and wrappers for the MGT blocks. These wrappers hide some of the unused 

ports to make working with the MGT easier.
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The following table lists some of the ports and attributes that are particularly 

important for SATA. A complete list of the ports and their functions is available in the 

User Guide [12].

Port/Attribute Description

RXN / RXP The differential receiver pins.

TXN / TXP The differential transmitter pins.
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Port/Attribute Description

RXLOCK This port indicates whether or not the PLL has acquired a 
lock to the incoming datastream.

RXRECCLK1 The recovered and divided clock from the datastream. It 
uses the local oscillator as a reference.

TXOUTCLK1 A clock derived from the local 150 MHz oscillator.

RXSIGDET This signal indicates the detection of an OOB signal.

TXENOOB This port is used to send OOB signals.

RXCHARISK This indicates that the received character, after passing 
through the 8b/10b decoder, is a K character.

TXCHARISK This indicates to the 8b/10b encoder that the 
corresponding character should be encoded as a K 
character.

ENMCOMMAALIGN / 
ENPCOMMAALIGN

These ports enables the received data to be re-aligned to 
commas. For SATA, these should always be 1.

RXDATA The received data, after being decoded.

TXDATA The data to be sent, before encoding.

RXUSRCLK2 This is an input port that handles the clocking of data 
between the MGT and the FPGA fabric.

TXUSRCLK2 This handles clocking for the transmit data.

LOOPBACK This port sets the internal loopback mode for the MGT. 
This is very useful for testing.

REFCLK1 This input is for the local reference clock. The 150MHz 
oscillator drives a GT11CLK module, which creates this 
signal.

RXCDRLOS This attribute determines the voltage threshold for the 
boundary between an OOB signal and an in-band signal.

ALIGN_COMMA_WORD Determines which byte boundary commas align to. A 
value of 1 means that commas align to any byte, while a 
value of 4 means that commas will be Dword-aligned.

MCOMMA_32B_VALUE / 
PCOMMA_32B_VALUE

These attributes define the comma value for alignment for
positive and negative parity. For SATA, these values are 
set to K28.5.

MCOMMA_DETECT / 
PCOMMA_DETECT

If set to true, a flag will be raised whenever a comma is 
detected.
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Port/Attribute Description

RX_BUFFER_USE This attribute can be used to bypass the receiver's buffer.

TX_BUFFER_USE Whether or not to bypass the transmit buffer.

Table 5: Important RocketIO Ports and Attributes

As stated, this is only a partial list, and the RocketIO MGT contains many more 

ports and attributes. Most of these are unchanged from the values given to them from the 

RocketIO Wizard.

The MGT has a variable-width interface. A width of 1 byte, 2 bytes, 4 bytes, or 8 

bytes can be selected. This selection determines the bus width of RXDATA and 

TXDATA, as well as the CHARISK ports (each byte could be a K character). Internal 

dividers then modify the clock speeds (RXRECCLK1 and TXOUTCLK1) to be 

appropriate for that data width. For example, for a 1-byte datapath width, the clocks 

available at the FPGA fabric would be 150 MHz. This is because the line rate is 1.5Gb/s, 

but each byte is encoded to ten bits instead of eight (See 3.1.2 for details of 8b/10b 

encoding). So 1.5Gb/s divided by 10 is 150MB/s. The RocketIO samples new data from 

the FPGA fabric at every clock tick, so the clock speed must be 150Mhz. By a similar 

calculation, we find that a 4-byte datapath width yields a clock speed of 37.5MHz.

These output clocks can be used to drive the entire design by buffering them on 

the FPGA's global clock net. That way, everything can be in synchronization with the 

MGT. The USRCLK2 ports are inputs to the MGT, and the same clock used to drive the 

logic should be connected to these ports. Thus, the clocks are generated from within the 
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MGT, buffered globally and used to drive the logic, and then fed back to keep the 

MGT/FPGA interface synchronized.
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CHAPTER 6 

DESIGN DETAILS

We will now begin a discussion of the design of the SATA core itself. In short, 

this design uses a newly-created physical layer alongside the upper layers of the UNC 

Core. The upper layers have been augmented with new error detection and correction 

features to improve reliability. This new core has been extensively tested on both the 

ML405 board and the DAS board. Newly-created debugging modules were used to assist 

the design and testing of the core.

At the top level, the SATA core presents a simple, FIFO-like interface that other 

modules could use to store and retrieve data. The complicated workings of the SATA 

protocol are abstracted away to make the core easy to use.

The Physical Layer instantiates two RocketIO MGTs, one for each SATA 

connector on the board. This allows for loopback debugging. Also instantiated is the CLK

module and the initialization modules. The actual SATA logic drives one of the 

connectors, and the other is tied to a simple state machine created for debugging. This 

state machine sends a repetitive pattern of link layer primitives that exercise most states 

of the SATA core.

It would also be possible to instantiate two SATA cores simultaneously, with each 

driving one MGT. This would allow for simultaneous communication with two separate 

disks.
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As stated earlier, the core must be able to respond to a HOLD within 20 Dwords 

being sent. To meet this timing constraint, the RocketIO MGTs are instantiated with the 

TX and RX buffers bypassed. The RocketIO wizard creates the initialization modules that

are necessary to use the MGTs in this mode. With loopback cable testing, we find that the

time between sending a HOLD and receiving it is 16 Dword clocks (this could vary with 

the length of the cable). Thus, the bufferless mode can meet the HOLD time constraint.

For this design, we have selected a 32-bit datapath for the RocketIO. The reason 

for this is that all link layer primitives are 32-bits wide; thus, it makes transmitting and 

detecting the primitives easier if the interface has this width. Also, the UNC core uses a 
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32-bit datapath, and therefore using the same width makes integrating the physical layer 

easier. 

6.1 OOB Sequence Controller

The OOB sequence contains the primary logic for the physical layer. It handles 

the initial handshaking sequence and ALIGN insertion. 

As shown in Figure 12, the OOB controller consists of multiple smaller modules 

that handle the creation and detection of OOB primitives. The detection modules use a 

simple state machine to check the timing of OOB pulses on the RXSIGDET port. If the 
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pulses match an OOB primitive within some tolerances, they assert a flag indicating 

detection.

The transmission modules work in a similar manner. They use a state machine to 

time the sending of OOB pulses using the TXENOOB port of the MGT. The two 

transmission modules, tx_comreset and tx_comwake, are wrapped in another module that

prevents them from interfering with each other (for example, by trying to send both types 

of OOB primitive at once). It also controls TXENOOB in between the sending of 

primitives. Per the specification, TXENOOB should be high between the primitives, but 

low once the host starts sending the dial tone pattern.
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The OOB sequence has 8 states, which closely follow the initialization procedure 

discussed previously. Note that the state machine flow is cyclical; once it starts, the 

controller will repeatedly attempt to initialize communications until it is successful or 

reset.

The first state is the idle state. Here, the controller simply waits and acknowledges

any flags from the OOB primitive detectors. The reason for this is because many drives 

will send COMINIT periodically, even when not prompted by COMRESET, to announce 

that they are connected. However, this OOB controller waits for instruction from the rest 

of the core before moving forward.

The core triggers the start of the OOB sequence by asserting the link_reset signal. 

The sequence controller then moves to the send_comreset state. This state asserts the 
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comreset_send signal, which triggers the transmission module. It then waits for the 

transmission of COMRESET to complete and moves to the wait_cominit state.

The wait_cominit state, as expected, waits for a COMINIT to be detected. It then 

acknowledges the detection module and moves on to the next state. However, if no 

COMINIT is detected after 880us, it moves back to the send_comreset state, restarting 

the sequence.

The next state is send_comwake. It triggers the tx_comwake module, waits for it 

to finish, and then moves to the next state.

 Wait_comwake is almost identical to wait_cominit, except, of course, that it 

looks for COMWAKE. It also has a timeout that restarts the sequence. One difference is 

that, when COMWAKE is detected, it turns OOB signaling off, since the rest of the 

sequence uses in-band signals.

The wait_align state is the first that uses in-band signals. In this state, the 

controller sends the “dial tone” pattern of alternating ones and zeros to the device. 

Meanwhile, it waits for an ALIGN primitive. Since the host only operates at SATA I 

speeds, we do not need to worry about speed negotiation. The device may try sending at a

faster rate at first, but this will appear to the core as garbage. Once we are able to 

positively identify an ALIGN primitive, the controller moves to send_align.

In this state, the controller sends ALIGN to the device to acknowledge this speed. 

The device will respond with SYNC and expects that the host will then send SYNC as 
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well. However, this state does not only wait for SYNC, it waits for rx_lock as well. This 

signal indicates whether or not a lock to the incoming data stream has been acquired. The 

controller sends ALIGN until the lock is acquired and SYNC primitives are detected. The

device will send repeated SYNCs for a long enough time that the lock can be obtained. If 

an OOB signal is detected, an error has occurred and the drive has returned to the 

beginning of the sequence. If this happens, the controller moves back to send_comreset to

restart the process.

Once SYNC is detected and the lock is ready, the controller moves to the 

link_ready state. It sends SYNC back to the disk and indicates to the rest of the core that 

the link is up.

In this implementation, the OOB controller also handles the necessary insertion of

ALIGN primitives every 256 DWords once the link is ready. A counter keeps track of the 

number of DWords sent and asserts align_en for 2 cycles out of every 256. This signal is 

sent to the upper layers of the core one cycle in advance so that processing can be paused 

without loss of data. Otherwise, an actual Dword may be “overwritten” by an ALIGN.

6.2 Interface

This design uses the upper layers of the UNC core to handle the Link Layer, 

Transport Layer, and Command Layer of the SATA protocol. As stated, the UNC core 

was originally designed for a Virtex-6 FPGA, and thus is not readily compatible with the 

Virtex-4. However, the layered design of SATA makes integrating the new physical layer 
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with the upper layers rather easy. As long as the interface between the physical layer and 

the link layer remains the same, the upper layers’ logic will still work.

Therefore, the new physical layer has many of the same ports as the original UNC

physical layer. The MGT-specific ports are different, but the ports for the interface 

between the physical layer and the link layer are the same. What follows is a description 

of the physical layer's ports.

Port(s) Description

UPPER_MGTCLK_PAD_N_IN,
UPPER_MGTCLK_PAD_P_IN

These are the outputs of the 150MHz oscillator that 
drives the GT11CLK module.

CLK_100_IN A separate, 100MHz clock. The UNC core, which 
targeted the ML605 board, used a 150MHz clock. 
The DAS board has a 60MHz oscillator, so this will 
need to be changed when porting the design.

TX_SYSTEM_RESET_IN,
RX_SYSTEM_RESET_IN

Resets for the TX and RX datapaths.

MGT_RXLOCK_OUT, 
MGT_TXLOCK_OUT

Outputs that indicate whether the RocketIO's PLL 
has locked. For TXLOCK, which uses the local 
150MHz oscillator, this lock occurs almost 
immediately. RXLOCK must wait for part of the 
OOB startup sequence, as described above. Before 
locking to the data, this signal will toggle on and off. 
Both of these ports are useful for debugging.

RX1N_IN, RX1P_IN;
TX1N_OUT, TX1P_OUT

The differential receiver and transmitter pins for 
SATA.

tx_datain A 32-bit input from the link layer, which is the data 
to be sent. Data is transmitted every cycle.

tx_charisk_in A signal indicating whether the last byte of tx_datain 
should be encoded as a K character. This is passed to 
the MGT.

LINKUP, LINKUP_led Outputs that indicate completion of the OOB start-up
sequence. This signal triggers activity on the upper 
layers.
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Port(s) Description

align_en_out Indicates that an align is being inserted, as per the 
specification. This allows the link layer to pause its 
processing.

sata_user_clk The divided clock that is output from the MGT. This 
clock drives all the logic in the upper layers.

rx_dataout 32-bit data that has been received.

rx_charisk_out A 4-bit signal indicating if any of the bytes in 
rx_dataout were received as K-characters.

rxelecidle_out RXSIGDET; whether or not an in-band signal is 
present. 

oob_state The current state of the OOB sequence controller 
state machine. Used only for debugging, this signal 
has no bearing on the logic of the upper layers.

force_ready Used for loopback debugging, this signal bypasses 
the OOB start-up sequence.

sata_phy_ila_control, 
sata_loopback_ila_control

These ports are for the Chipscope ILA debugging 
cores. Debugging will discussed shortly.

Table 6: Physical Layer Interface

6.3 Clocking

The physical layer also handles clock management. As stated in section 5.1, the 

RocketIO MGTs have two output ports for clocking: RXRECCLK1, which is recovered 

from the incoming bitstream, and TXOUTCLK1, which is derived from the local 

oscillator. These clocks can be used to drive the SATA hardware. 

As it turns out, choice of clocking configuration is very important for reliability. 

One possibility would be to use both clocks, one to drive the receive datapath and the 

other for the transmit datapath. However, the UNC core runs on a single clock, so 
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implementing this configuration would necessitate significant changes in the upper 

layers. Thus, we need to use a single clock to drive the SATA logic.

The choice that seems correct at first would be to use RXRECCLK1, because of 

spread-spectrum clocking (SSC). As discussed in section 3.1.3, the RocketIO is able to 

receive spread-spectrum clocking signals but does not use it when transmitting. Since 

SSC only occurs downspread, this means that the receive clock will be slightly slower on 

average than the transmit clock. Using the slower clock would ensure that no received 

data is missed.

Unfortunately, we find that the SATA core does not operate reliably using this 

clocking configuration, as Figure 15 shows. The clock derived from the incoming 

bitstream is not stable enough to drive the core. 
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Figure 15: SATA Core Performance using RXRECCLK1
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This data was generated by sending 500 sequential write operations of varying 

sizes. The number of clock cycles taken to complete the transfer is used to determine the 

average throughput (MB/s). Transfers that do not complete correctly are not counted for 

the throughput. 

Here, reliability is measured as the percentage of SATA operations that terminate 

correctly. Note that this decreases as the block size of the write operation increases. This 

is because larger writes require sending more FISes (recall that the maximum size of a 

FIS is 8KB, or 16 sectors). Therefore, there are more chances for a FIS transfer to fail.

We would also expect that the throughput (MB/s) would increase with the block 

size, since there is less protocol overhead. Here, the throughput increases gradually to a 

maximum of 30MB/s, before reaching a point where no operations can complete 

correctly.

Since the performance of the core under this configuration is quite poor, other 

configurations were also tried. The next most obvious clocking scheme is to use 

TXOUTCLK1. The results of this test are shown in Figure 16.

Here, the reliability is much improved, but still dips below 99%. The throughput 

is significantly improved, especially for write sizes of 16 sectors (exactly one data FIS 

per operation). 
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However, as stated previously, the transmit clock runs slightly faster on average 

than the receive clock, so some incoming data is lost with this configuration. If part of a 

FIS (such as a DMA Activate) is lost, the transfer will not complete. This also means that 

read operations would likely be missing some data.

The solution is to use both TXOUTCLK1 and RXRECCLK1. Incoming data is 

written to a small clock-domain-crossing FIFO. Data in this FIFO is written using the 

receive clock and read using the transmit clock. In this way, we can use the stable 

TXOUTCLK1 to drive the logic of the core, while ensuring that no incoming data is lost.
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Figure 16: SATA Core Performance using TXOUTCLK1
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Of course, this raises the question: what happens when this FIFO underflows? As 

stated, the transmit clock is faster on average than the receive clock, so data will be read 

slightly faster than it is written. A small module in the physical layer monitors for this 

underflow condition, and inserts an ALIGN primitive in the datastream when it occurs. 

ALIGN primitives are already present in the stream since the protocol requires that they 

be sent every 256 Dwords, and the Link Layer simply filters them out. These new 

ALIGN primitives are filtered as well, and thus this insertion does not have any negative 

impact on the operation of the core.

The performance of the core using this clocking scheme is shown in Figure 17.
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Figure 17: SATA Core Performance using the superior clocking scheme
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With this configuration, the core has a reliability of greater than 99.99%. The 

throughput achieves a maximum of 130MB/s, close to the theoretical maximum of first 

generation SATA (150MB/s).

6.4 Error Detection and Recovery

Although most data write transfers will finish without problems, we found that a 

small number (less than 0.001%) would result in error. As written, the UNC core does not

have any error detection features. Errors cause the core to pause (or “hang”) until it is 

reset. It is desirable for the core to recovery from these errors gracefully, preferably in a 

way that is invisible to the rest of the design. 

To facilitate this, a replay buffer has been added to the Command Layer. The 

replay buffer mirrors the most recently sent Data FIS. When an error occurs, a flag is 

raised. If the error occurred on a Register Host to Device FIS, the Command Layer 

simply sends it again. If the error occurred on a Data FIS, then the Command Layer sends

the data from the replay buffer instead of the User FIFO. Thus, to the rest of the hardware

design, it appears as if there was no error; instead, it seems that the SATA core is 

operating more slowly.

A new handshaking signal has been added to the Link Layer that indicates 

successful transmission of a FIS. When this happens, the command layer flushes the 

replay buffer and sends the next FIS to the Link Layer. Of course, this new data is also 
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mirrored in the replay buffer in case of an error. The replay buffer is 8KB in size, which 

is the maximum allowable size for a single FIS.

The simplest error and the easiest to recover from is a bit error. This occurs when 

the device reports a bad CRC or a parity error by sending the R_ERR primitive. The 

original UNC core would simply hang in this case, requiring a reset of the entire core. 

With the new error detection features, the Command Layer simply starts a new transfer 

using the replay buffer, as described above.

The Error Detection module monitors for other types of errors as well., but these 

are not as easy to recover from. One such error is a framing error, where a SOF or EOF 

primitive was received incorrectly, causing the host and device to be out of sync. To 

recover from this, the link must first be reset. A flag is raised at the Command Layer, 

indicating the error, and the Link Layer and Physical Layer are issued a reset. The 

Command Layer is not reset, so that the replay buffer can be used and no data is lost.

Unfortunately, resetting the link in this way results in a performance hit. The 

physical layer has to undergo the entire OOB sequence once again. From testing, this 

takes around 45000 SATA user clock cycles, or about 1.2ms.

As mentioned in section 3.2, there is a mechanism called the “SYNC Escape” that

can be used to issue a soft reset for the link. Using this, the link can be returned to the idle

state after a frame error in less than 10 cycles. Unfortunately, the disk takes a long time to

respond after this operation; over 9,000,000 cycles pass before it will send R_RDY to 

receive any type of FIS. It also causes the disk to switch to a mode that does not use the 
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CONT primitive, which appears to be undocumented behavior. The hard reset operation 

is much better in comparison.

The error detection module can also detect a loss of link condition. This can 

happen when the disk enters an error state and stops communicating. The detection 

module can detect when this happens because the Physical Layer will report a “linkup” 

state, but the rxsigdet port will also be high, indicating no incoming signal. In this case, a 

hard reset is the only option.

The error detection and correction module adds robustness to the SATA core. 

Without it, the entire core would need to be reset in the case of any type of error. This 

would require an outside module to detect that the core is stuck, which typically means 

waiting for a significant amount of time. This could also lead to data loss. These new 

features make the SATA core much more reliable.
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CHAPTER 7 

TESTING METHODOLOGY

Testing has been very important at each stage of the design. Because of the high 

speed of the serial communication, and because the behavior of the disk cannot be 

controlled or changed, debugging the design has been rather difficult.  There are many 

places where a bug could originate—the disk itself, the physical set-up, the MGT (recall 

the numerous parameters), or the design logic. Therefore isolating and resolving bugs can

be arduous. This section will describe some of the methods and resources that were used 

for debugging and testing, as well as performance tests on the ML405 evaluation board.

7.1 Simulation

Simulation is the preferred method of debugging a hardware design. It allows the 

designer to have a complete view of all signals in the system. Also, the compilation time 

is significantly shorter, since the design does not need to be fully synthesized to the 

FPGA. To test a design, a simulation testbench is used to exercise some aspect of the 

design by driving the input signals.

Each module of the OOB sequence controller was simulated individually to check

for the correct behavior. A simulation testbench was created that exercises the 

RXSIGDET signal in the same pattern as the COMINIT and COMWAKE primitives. The

width of the pulses was also varied to check if the module could handle the protocol-

specified tolerances. 
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The primitive transmission modules were tested similarly. The send_en signal was

asserted and the resulting pulses on TXENOOB were checked to make sure that they 

were correct.

After each individual module was tested, the OOB sequence controller was 

simulated as a whole. A testbench containing the entire start-up sequence was created to 

exercise the controller. The simulation waveforms showed that the controller was 

successfully able to complete the sequence.

The above screenshot from the Xilinx ISim simulator shows the OOB sequence controller
completing the first part of the sequence.

Unfortunately, no simulation testing was done beyond the OOB sequence. The 

entire SATA protocol is quite complicated, and there is no complete simulation model for 

hard drive behavior. While it would be possible to create a hard drive model, this would 

take a significant amount of time and it would be extremely difficult to verify correctness.

And if the hard drive model did turn out to be incorrect, then much of the time spent 

designing and testing would have been a waste, since it was done based on the wrong 

assumptions. Therefore, further testing of the core uses an actual SATA hard drive, with 

the design being synthesized in hardware.
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Figure 18: OOB Simulation Results



7.2 Chipscope

Chipscope is a set of tools used for debugging Xilinx hardware designs. 

Chipscope cores, including logic analyzers and virtual I/O ports, can be inserted into a 

design. These cores can capture and store internal signals in the logic. The signals can 

then be viewed using the Chipscope Pro Analyzer, a piece of software running on a PC 

that interfaces with the cores. The designer can set up trigger events to capture the data, 

and then view and save them on the PC. 

Multiple Chipscope cores can be instantiated simultaneously in a design. This 

allows for the debugging of multiple modules and sub-modules without the need to re-

synthesize the design. The signals that have been chosen to be captured are sampled at 

the clock rate, and then stored in Block RAM. Thus the number of samples is limited by 

the amount of available memory on the chip.

The Chipscope tools have been crucial for the work in this project. The integrated 

logic analyzer  (ILA) cores give a clear view of what is happening internally. An ILA is 

instantiated in the module for each layer, adding debugging capability to each aspect of 

the design. Many problematic bugs have been discovered via Chipscope.

The different Loopback modes of the RocketIO MGT were also used alongside 

Chipscope for debugging. Since the internal MGT signals cannot be accessed, the 

60

Figure 19: OOB Sequence Chipscope Screenshot



different modes were very helpful in isolating problems and determining if the cause was 

physical, with the MGT parameters, or in the design logic.

7.3 SATA Event Logger

Although Chipscope has been extremely useful, it does have its limitations. As 

stated in the previous section, the number of samples that can be recorded is limited by 

the available memory of the device. Since SATA events are often separated by a 

significant amount of time, and since any operation will involve numerous frames being 

sent and received, this limitation makes debugging higher-level problems difficult. Also, 

although multiple ILAs can be used simultaneously, they cannot be set to trigger 

simultaneously. This means one cannot easily correlate events across different modules. 

For example, the physical layer ILA shows exactly what is being sent and received, but 

not the current state of the link layer state machine. That could be captured with the link 

layer ILA but would require a separate trigger. It is impossible to see what is happening 

in different ILAs at the same time.

To get a wider view of what happens in the core, we have created a new 

debugging tool. This tool, called the SATA event logger, utilizes the serial port to transfer 

debugging information to the PC. This way, the limited memory resources on the FPGA 

are not used.

As stated, SATA events are often separated in time, and since SATA runs at such a

high speed, it is not possible to send all the data over the serial port. Instead, we only 
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consider the SATA events. These events include sending and receiving FISes, responses 

from the disk such as R_OK or R_ERR, and successful read/write operations. 

For the design of the event logger, the events are encoded as 8 ASCII characters, 

to make them readable in a terminal. A monitor checks for occurrences in the link layer 

module and pass the encoded event to the SATA event logger module. These events can 

come from multiple sources in the link layer module, so it is necessary to arbitrate 

between them. When a new event arrives, the event logger adds a timestamp and places 

the event in a FIFO. The timestamp is a simple counter that is wide enough to not 

overflow. The arbiter simply checks the timestamps of events coming from the FIFO and 

selects the earliest one. The timestamp is then ASCII-encoded, and passed to the serial 

interface module.

The SATA event logger has four FIFOs, so it can receive events from four 

sources. One source is a monitor that checks for new incoming primitives and also 

reports on the state of the RX lock. The other sources are the RX datapath, the TX 

datapath, and the Master FSM (which handles the sequence of FISes) of the Link Layer 

module. 

Unfortunately, due to the vastly different speeds between SATA and the serial 

port, these FIFOs often overflow, resulting in incorrect debugging information. However, 

the individual FIFOs can be turned off or on as needed, as can the events to monitor. 

Despite these limitations, the SATA event logger proved very useful for solving the 
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clocking problem in the physical layer and for adding the error correction and recovery 

features.

7.4 SATA Performance

After solving the reliability problems, the SATA core was tested on the ML405 

board, against three different hard drives. The makes and models of the hard drives used 

are shown in the table below.
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Figure 20: Design of the SATA Event Logger



Brand and Model Type

Corsair Nova SSD (Solid State Drive)

Seagate Momentus 5400.6 Spinning/Winchester

Western Digital Caviar SE WD1600JS Spinning/Winchester

Table 7: Test Hard Drives

A Microblaze soft core processor is used to perform the tests. A small control 

module was created to interface the SATA core with the Microblaze. This allows the 

processor to set various parameters, such as sector count and address, and initiate data 

transfers. The control module also gives status information to the processor.

A simple software test application runs the tests and returns data to the console 

window over the serial port. This application issues 500 write commands of varying 

block sizes. After each, the number of cycles taken to complete the transfer is stored and 

used to calculate the average throughput in MB/s. A transfer is considered a failure if it 

takes more than 3 seconds to complete. In this case, the application resets the SATA core 

and continues. 

The data written to the disk in the test is a simple counter fed into the user FIFO 

of the SATA core. The FIFO is always kept full so as to test the true maximum transfer 

rate.
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Figure 21: Corsair SSD Performance Test
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Figure 22: Seagate Performance Test
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Figure 23: Western Digital Performance Test
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Figure 24: Hard Drive Performance Comparison
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As can be seen in the above figures, the Seagate and the Corsair SSD have 

similarly-shaped performance curves. The Seagate does have a small spike at write sizes 

of 32 sectors (16KB), where it achieves its maximum performance of 85MB/s. The SSD 

has a maximum write speed of 130MB/s at block sizes of 1024 sectors (512 KB). 

The Western Digital has the worst performance and reliability of the three disks 

tested. For write sizes of 32 sectors or less, it is reliable, but then the reliability starts to 

drop off. It achieves its maximum throughput of 54MB/s at block sizes of 32, so it would 

seem that it is optimized in some way for writes of this size.

The failures at larger write sizes are caused by the disk sending the HOLD 

primitive continuously for longer than 3 seconds. The protocol specifies that the host 

must reply HOLD_ACK, so there isn't anything that the core can do to correct this. At 

write sizes of 16384, this disk will never send a DMA Activate FIS to allow the transfer, 

so none of the operations can be completed. It would seem that the Western Digital hard 

drive was designed only with small writes in mind.

These performance tests show that the SATA core can operate correctly with a 

variety of disks. The Western Digital disk does exhibit some quirky behavior, but this is 

not due to errors in the core itself.
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CHAPTER 8 

DESIGN INTEGRATION

Although much of the design and testing was done on the ML405 evaluation 

board, the SATA core was developed to be integrated into the design of the DAS board. 

Data sampled from the two ADCs can be stored on the disk using SATA. Figure X shows 

how the SATA core was added to the DAS hardware design on the Data FPGA.
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Figure 25: DAS Board Design Integration



Data from each of the ADCs is fed into 1:8 deserializers, which are then reordered

so that each byte corresponds to one data sample. 32 samples arrive on each 93.75MHz 

clock cycle, a rate of 3Gsamp/sec, for each ADC. Unfortunately, this rate is too high to 

store using SATA, so this data is fed into a decimator. The decimator selects samples at a 

rate chosen in software, with a minimum rate of 32 and a maximum of 65535. These 

samples are fed into a clock-domain-crossing FIFO, which connects to the SATA core. A 

control module handles movement of data between the ADC FIFOs and the core, as well 

as the triggering of SATA commands. It interfaces with the Microblaze processor via a set

of control and status registers. In software, a set of functions are available to access these 

registers.

8.1 SATA II

The Virtex-4's RocketIO MGTs are capable of supporting a line rate of 3 Gb/s, 

used by the second generation of SATA. Operation at this rate requires a 300MHz 

reference clock, which unfortunately the ML405 does have. The DAS board, however, 

has oscillators that can be easily replaced. Thus, a 300MHz oscillator can be used to drive

the core at SATA II speeds.

The results of testing the hard drives at SATA II speeds is shown in Figure 26 

below. Interestingly, the performance for the Seagate and WD drives is actually worse. 

Both drives send many HOLD primitives, reducing performance. The SSD is able to 

achieve a maximum rate of 182MB/s, greater than the highest rate supported by SATA I. 

Thus, the use of SATA II is considered a success. 
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One caveat is that the SATA core does not include speed negotiation logic. Thus, 

if a SATA I drive needed to be used, the core would have to be re-synthesized in SATA I 

mode to interface with this disk properly.

8.2 Data Acquisition Testing

The newly integrated SATA core was tested on the DAS board to see if data from 

the ADCs could be properly stored. Figure 27 shows data from a 62MHz sinusoid signal 

that was captured and stored on the Corsair Nova.
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Figure 26: SATA II Speed Test Results
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Ideally, a continuous stream of data could be captured and stored to the disk. 

However, this is not possible at a high transfer rate. Although writes to the disk can 

average a very high speed, due to caching on the disk these speeds are not constant. The 

disk controls the rate of any given transfer through the use of HOLDs or by waiting to 

send a DMA Activate. In testing, we find that the throughput for individual transfers can 

be as low as 0.0025 MB/s.  This was found by looking at the average transfer rate for the 

operation during which the post-decimator FIFOs overflow. The results of this test are 

shown in Figure 28.We can assume that this corresponds to the disk emptying its cache, 

so it must “pause” the transmission until it can ready itself again.
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Figure 27: Stored Data
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The solution to this problem would be to buffer the data. Unfortunately, there is 

not enough on-chip memory on the FPGA to do so. The length of the “pause” varies 

around an average of 127ms, but the longest observed was 528ms. As an example, if we 

wanted to continuously collect samples at a rate of 6MB/s (a decimation factor of 1000), 

the FPGA would potentially need to buffer 3MB of data. There is only about 1.2MB of 

memory on the chip [13], including the memory used by the SATA core and other logic. 

Thus, off-chip memory would be needed. The following table shows the amount of buffer

memory that would be necessary to continuously sample at various rates, assuming a 

pause time of 528ms. However, even more memory would be recommended, since it is 

possible that the pause time could exceed this.
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Figure 28: Transfer Rate when FIFOs Overflow
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Decimation Rate Effective Sampling Rate
(MB/s)

Necessary Buffer Size
(MB)

34 180 95.04

50 120 63.36

100 60 31.68

200 30 15.84

400 15 7.92

600 10 5.28

1200 5 2.64

3000 2 1.056

6000 1 0.528

12000 0.5 0.264

Table 8: Necessary Buffer Sizes

A test was conducted to find the minimum decimation rate that would allow for 

continuous sampling with the resources available on the DAS board. In this test, data was

sampled continuously for a minimum of 1 minute. If successful, the decimation rate 

would be lowered, and on an overflow, it would be increased. This was done in a “binary 

search” pattern, with starting bounds of 50 and 20000 for the decimation rate, until the 

lowest decimation rate that did not overflow was found. This test was then conducted 22 

times. The results are shown in Figure 29. The average minimum successful decimation 

rate is 8401, resulting in an effective sampling rate of 0.714 MB/s.
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We conducted another test to demonstrate that a large amount of data could be 

written to the SATA disk correctly. In other words, we tested to see if any data samples 

were dropped or missing from the data written to the disk.

For this experiment, a 2.3MHz sine wave was created on a signal generator and 

fed into the ADCs. The data was then collected with a decimation rate of 400 until an 

overflow occurred (a total of 84MB of data was collected). This data was then read in 

MATLAB and subtracted from a MATLAB-generated sine wave. If any samples are 

dropped, we would expect these residuals to have a large “jump”, because the captured 

signal would suddenly be out of phase with the generated wave. The results of this 

experiment are shown in Figure 30.
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Figure 29: Minimum Decimation Rates



The sine wave frequency used to create these residuals was 2.30000315MHz. The

residuals vary due to a slight frequency mismatch between the generated sine wave and 

the data. However, there is no “jump” in these residuals, so we can conclude that no 

samples are being dropped. Thus, the SATA core is successfully able to store all received 

data even in large amounts.
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Figure 30: Stored Data Residuals



CHAPTER 9 

FUTURE WORK

Although the SATA core is currently very functional, there are still a number of 

features that could be added. 

One feature currently not supported is power management. The SATA protocol 

includes the ability to switch between power states, but the core currently does not 

support it. This feature would conserve energy for applications where that is important, 

such as on a satellite.

Another feature would be speed negotiation support, allowing the core to be fully 

compatible with both SATA II and SATA I disks. This would require some extra steps 

during the OOB initialization sequence. 

Command queuing could also be implemented. This is a feature wherein multiple 

pending operations can be issued, and the disk can respond to them in any order. This 

feature can lead to significant performance improvements in spinning disks by reducing 

the seek time [10]. This feature would be fairly complicated to implement, as the core 

would need to keep track of outstanding operations and transmit or receive data out of 

order.

If the core was to be integrated into an embedded Linux system, it could benefit 

from an ATA interface. As mentioned in section 2.2, the Command Layer was designed to

emulate the parallel ATA interface. By implementing the set of shadow registers and 
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adding support for other ATA command types, the core could be easily utilized by a 

Linux system, since ATA drivers are readily available. A complete file system could be 

created on the disk.

Recall that the ESS design included a DSOTDM module to find the correct OOB 

threshold. The current design does not have such a module, and thus the correct threshold

needs to be found manually. A similar module could be incorporated into the new design 

to make it easier to use on other boards.

Finally, the SATA core could be made more robust by testing on other drives. 

Although the current error rate is very low, there are certainly hidden cases where an 

error could appear. Also, the incoming data could be verified. As is, the core does not 

check the CRC of received FISes. Doing so would ensure correctness of receive 

operations.
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CHAPTER 10 

CONCLUSION

A SATA core has been created that is compatible with Virtex-4 FPGAs. This core 

utilizes the RocketIO high-speed transceivers to achieve line rates of 1.5Gb/s or 3.0Gb/s. 

The core implements all layers of the SATA protocol so that it can communicate with any

SATA-compatible hard disk. It presents a simple Read/Write interface so that it can be 

easily integrated with other modules. This SATA core will be released as open-source, 

and will be the first freely-available SATA core for the Virtex-4. The core has been shown

to work on the ML405 board and a custom board developed for NASA, where it can be 

used to store a very large number of samples. It has been tested against three different 

hard drives from three different manufacturers to ensure that the SATA protocol has been 

implemented correctly.
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