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ABSTRACT

CORRECTIONMETHODS, APPROXIMATE BIASES, AND INFERENCE FOR

MISCLASSIFIED DATA

May 2009

Meng-Shiou Shieh, B.A., Fu Jen Catholic University

M.A.,Syracuse University

M.A., University of Massachusetts, Amherst

Ph.D., University of Massachusetts, Amherst

Directed by Professor John Staudenmayer

When categorical data are misplaced into the wrong category, we say the data is affected

by misclassification. This is common for data collection. It is well-known that naive

estimators of category probabilities and coefficients for regression that ignore misclas-

sification can be biased. In this dissertation, we develop methods to provide improved

estimators and confidence intervals for a proportion when only a misclassified proxy

is observed, and provide improved estimators and confidence intervals for regression

coefficients when only misclassified covariates are observed.

Following the introduction and literature review , we develop two estimators for a

proportion , one which reduces the bias, and one with smaller mean square error. Then

we will give two methods to find a confidence interval for a proportion, one using op-

timization techniques, and the other one using Fieller’s method. After that, we will

focus on developing methods to find corrected estimators for coefficients of regression

with misclassified covariates, with or without perfectly measured covariates, and with
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a known estimated misclassification/reclassification model. These correction methods

use the score function approach, regression calibration and a mixture model. We also

use Fieller’s method to find a confidence interval for the slope of simple regression with

with misclassified binary covariates. Finally, we use simulation to demonstrate the per-

formance of our proposed methods.
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C H A P T E R 1

INTRODUCTION AND LITERATURE REVIEW

We begin with a brief general introduction to the problems of interest and terminol-

ogy. A description of the contents of the thesis and a more complete literature review

follow.

1.1 Introduction

In studies involving categorical data, there is always the possibility that the data

may be affected by misclassification, which occurs when an observed category does not

match the true category. This is common for data collected from surveys, or error-prone

measurements. A specific example of misclassified data comes from a case control study

of prescription of antibiotics during pregnancy and subsequent occurrence of Sudden

Infant Death Syndrome (SIDS) (Greenland, 1988, 2008). This data includes a main study

data among women from whom only interview data were examined, and a seperate

data set from a validation study from medical records. The interview data is subject to

misclassification.

A secondmotivating example concerns the estimation of howphysically active a per-

son is. A metabolic equivalent (MET) is a measure of a person’s physical activity level at

a given point in time. It is defined as the ratio of a person’s metabolic rate to her resting

metabolic rate, where the resting metabolic rate is defined as consuming 3.5 mL O2/

kg of body weight / minute. It is believed that the amount of time spent at > 3 METs
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(moderate activity) has important health implications (Pate et al, 1995), but it is diffi-

cult to measure the fraction of time someone spends above 3 METs accurately, precisely,

and cheaply outside a lab or without burdensome equipment (Sirard and Pate, 2001).

One method to address the problem involves affixing an accelerometer that records evi-

dence of motion on a dense time scale to a person’s hip; other methods, such as surveys,

calorimetry, and doubly labeled water, are reviewed in Levine (2005), for instance. Ac-

celerometer data, known as counts, can then be processed in one of a number of ways

to estimate a person’s energy expenditure over time, and this is an ongoing area of re-

search (Pober et al, 2006). One simple and widely used processing method relates the

total accelerometer counts in a minute to the average METs in the minute with linear re-

gression (Freedson, Melanson, and Sirard, 1998). That relation then can define cutpoints

to classify each minute into two categories ≤ 3 METs (sedentary or light activity) > 3

METs (at least moderately active). These binary data can be subject to misclassification.

It is well-known that naive estimators of category probabilities and coefficients for

regression that ignore misclassification can be biased. Suppose Xi, i = 1, . . . , n are

i.i.d. discrete random variables, each with K categories. Let πj = P (Xi = j), and

πππ = (π0, . . . , πK−1)
T. Instead of observing Xi, we observe Wi. Let λj = P (Wi = λj)

and λλλ = (λ0, . . . , λK−1)
T. The relationship between Xi and Wi can be defined in one

of two ways: through a misclassification model, P, or a reclassification model, Q. The

misclassification model is P = (θlm)l=0,...,K−1,m=0,...,K−1, where θlm = P (Wi = l|Xi =

m), and λλλ = Pπππ. The reclassification model is Q = (γlm)l=0,...,K−1,m=0,...,K−1, where

γlm = P (Xi = l|Wi = m), and πππ = Qλλλ. Throughout, we use zero-based indexing for

matrices, so that aK×K matrix has elements




a00 . . . a0(k−1)

. . .
. . . . . .

a(K−1)0 . . . a(K−1)(K−1)


 . This is so

we can use notation like θ00 to indicate the values of X,W etc. Reclassification models

are analogous to a Berkson model in general measurement error models (a general ref-

erence for measurement error terms is Carroll et al., 2006), and misclassification models
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are analogous to a classical model. In either case, knoowledge of the misclassification

or reclassification model can help reduce the bias in estimators of πππ or regression coef-

ficients when Wi is observed. Either of those models can be estimated from validation

data.

Most correction methods for misclassification in research require auxiliary data or

some knowledge about misclassification or reclassification matrices. One exception is

Li et al. (2004), who assume the surrogate has a Poisson distribution. In that case, the

mean and variance of a Poisson distribution are the same, and the true parameters are

recoverable without additional data or known misclassification/reclassification model.

There are four common types of auxiliary data to adjust for the bias due to misclassi-

fication. They are internal/external validation data (X is observable directly), replicated

values (replicates ofW are available) and instrumental variables (another available S is

observable in addition to W ). External validation data are independent observations

from the main study, but we have to make sure the external validation data are trans-

portable across different study populations. Internal validation data is also known as

two stage or doubling sampling (Tenenbein, 1970). Through repeated measures of the

surrogate we can recover the misclassification probabilities if there is no identifiability

problem (Harper, 1964, Hui and Walter, 1980, White et al., 2001). Quade et al. (1980),

Walter and Irwig (1988) present the expectation-maximization (EM) algorithm to recover

misclassification probabilities using replicated data. Walter and Irwig (1988) also review

how to use replicated data to recover misclassification probabilities in various designs.

Data collection practicalities sometimes determine whether a reclassification or misclas-

sification validation sample can be collected. Reclassification based models are often

more efficient.

Let Y be the response variable. The measurement error model of W given X is

non-differential if the distribution of Y given (X,W ) is the same as the distribution of

Y given X, where W is the observed value for X. Otherwise, it is called differential

3



mismeasurement. Non-differential mismeasurement means the misclassification prob-

abilities do not depend on Y . For example, Greenland (1998) studies the association

of antibiotic use in mothers during pregnancy (X) and sudden infant death syndrome

(SIDS) which is Y . The observed data (W ) is self-reported by the mother. If P (W |X,Y )

does not depend on Y , the misclassification is non-differential. Otherwise, it is differen-

tial.

The odds ratio and relative risk are very important in epidemiology studies. If an

event E has probability P (E), the odds of the event is P (E)/(1 − P (E)). In general

if two events E1 and E2 have respective probabilities P (E1) and P (E2), the odds ratio

comparing E1 with E2 is the ratio of the odds of E1 to the odds of E2. In case-control

studies, let Y (= 0, 1) denote disease status and X(= 0, 1) denote exposure status. The

odds ratio is

P (Y = 1|X = 1)(1 − P (Y = 1|X = 0))

P (Y = 1|X = 0)(1 − P (Y = 1|Y = 0))
.

The relative risk is defined as

P (Y = 1|X = 1)

P (Y = 1|X = 0)
.

If we observeW instead of X, then the naive estimators of odds ratio and relative risk

are biased, and we would need some information about misclassification probabilities

to do correction.

1.2 Purpose of Thesis Contents

The purposes of this dissertation are:

1. To provide improved estimators and confidence intervals for P (Xi = j)when only

a misclassified proxy forXi is observed, and

2. to provide improved estimators and confidence intervals for regression coeffi-

cients when only misclassified covariates are observed.
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The main focus of this dissertation is to account for the effects of an estimated mis-

classification model.

Following this introduction, we review literature on correcting for misclassification

when the observed data are misclassified and when misclassified data are used as co-

variates in regression models. Chapter 2 will consider the case when πππ is of interest. We

will discuss existing estimators of πππ and introduce some estimators which are not un-

biased but have smaller mean square errors. In Chapter 3, we will develop confidence

intervals for π in the case whenK = 2 . In Chapter 4, we will focus on regression mod-

els with misclassified covariates. We present a correction method when one of P or Q

is known, and explore the approximate bias of that method when P or Q is estimated

from external data. In Chapter 5, we use simulation to evaluate the performance of the

methods described above, and in Chapter 6 we will present our conclusions.

1.3 Literature Review: Misclassified Categorical Data

The problem of misclassified categorical data has been considered for over 50 years.

An early reference is Bross (1954) who discusses the biases caused by misclassification

in binary data. Bross (1954) shows that when misclassification is ignored, the estimated

difference between two proportions of interest of two different populations (e.g., case

and control) is biased toward the null of no difference, the significance level is correct

if both populations have the same misclassification probabilities (non-differential) and

power is reduced. Tests about the difference are discussed further by Rubin et al. (1956),

Katz (1979), and Zellen and Haitozsky (1991) for the binary case, and Mote and Ander-

son (1965) for the multinomial case. In these articles, it is shown that the power of the

χ2 test will decrease under misclassification (differential or non-differential), and the

false positive probabilities (P (W = 1|X = 0)), the false positive probability in a dif-

ferential misclassification model, for two populations plays an important role in how
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much the power reduces when π is less than 0.5. Reducing the false positive probability

can improve the efficiency of the test if π is small. When π is big, the roles of false-

positive and false-negative will switch. Schwartz (1985) also states the bias of the naive

estimator and how the misclassification probabilities affect the coverage probability of

conventional confidence intervals for misclassified binary data.

Kuha et al. (1998) give a concise summary of the development of correction methods

for misclassified data in different epidemiological models. Quade et al. (1980) present

the bias of a naive estimator and the bias of the estimator that treats estimated misclas-

sification probabilities as known. Chen (1989) presents a review of methods for misclas-

sified categorical data in epidemiology, and also shows that the usual misclassification

models are a subclass of log-linear models. Tenenbein (1970) uses double sampling (i.e.

internal validation data) to get a maximum likelihood estimator for the true proportion

and the asymptotic variance for misclassified binomial data. Espeland and Hui (1987)

demonstrate how to model misclassified data with validation data as an incomplete

data problem using a log-linear model and estimate using the Fisher scoring algorithm.

Barron (1977) uses the misclassification model, also known as the matrix method (Mor-

rissey and Spiegelman, 1999) or indirect method (Marshall, 1990), to obtain unbiased

estimators from misclassified 2 × 2 table data, and he uses the results to correct rela-

tive risk estimates. This work assumes the misclassification model is known. Marshall

(1990) compares the relative efficiency of the direct method (also known as reclassifi-

cation or inverse matrix method) with the indirect method and shows that the direct

method is more efficient than the indirect method. Greenland (1988) derives the vari-

ance of corrected estimators when themisclassification model is estimated from external

or internal validation data. In van den Hout and van der Heijden (2002), it is shown that

under known misclassification probabilities, the maximum likelihood estimator (MLE)

and moment estimator are the same if the moment estimator is in the interior of the

parameter space.

6



Other articles related to misclassified data itself include Copeland et al. (1977) and

Hofler (2005), who discuss the bias of relative risk for misclassified data when misclassi-

fication is non-differential or differential. Gladen and Rogan (1979) show that the power

of statistical tests about relative risk is reduced when data are affected by misclassifica-

tion. Morrissey and Spiegelman (1999) compare the matrix method and inverse matrix

method to correct estimates of the odds-ratio of misclassified binary data. They con-

clude that the inverse method estimator performs better. Lyles (2002) points out that

the inverse matrix estimator used in Morrissey and Spiegelman (1999) is the MLE under

differential misclassification. Greenland (2008) shows that the matrix method estima-

tors in Barron (1997) and Greenland (1998) are MLEs under the assumptions given by

those authors. Selén (1986) uses a matrix method to correct estimates of group means

for misclassified data and derives the variance of the corrected estimator.

1.4 Literature Review: Misclassified Covariates in Regression

For the regression model, Fuller (1987) and Carroll et al. (2006) are book length

reviews of measurement error models, and Carroll (1998) has a summary for epidemi-

ologists. Most of the literature that provides correction methods for regression models

with mismeasured covariates focuses on continuous cases, and does not apply gener-

ally to categorical data. Cochran (1968) shows how to model binary misclassified data

from a measurement error model perspective. This work also shows that, in some sim-

ple situations, binomial misclassified data can be modeled with a non-standard type of

continuous measurement error.

It is well known that the coefficient estimators usually are inconsistent for regression

modelswhen discrete covariates are misclassified. Christopher and Kupper (1995) study

the bias of the least squares estimator in multiple linear regression models with mis-

classified covariates, perfectly measured covariates and a known reclassification model.
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They also explore the impact on certain test statistics and show that misclassification

will cause the power of such tests to be reduced. In the situation of continuous mismea-

sured coavariates, it is known that the naive coefficient estimates corresponding to the

perfectly measured covariates will be unbiased if the mismeasured covariates and the

perfectly measured covariates are uncorrelated (Carroll et al., 1985). Buonaccorsi et al.

(2005) prove this is also true for misclassified covariates. Davidov et al. (2003) study the

effect of misclassification on the parameters of a logistic regression with misclassified

binary covariates and Veierød and Laake (2001) derive the bias for Poisson regression

with misclassified and perfectly measured covariates.

Common correction methods for regression include the method of moments, like-

lihood methods, regression calibration, simulation extrapolation (SIMEX), estimating

equation approaches and Bayesian approaches. Reade-Christopher and Kupper (1991)

study logistic and log-linear regression with misclassified covariates. They use known

or estimated reclassification models and use maximum likelihood to get a naive esti-

mator, then follow the method of moments to perform the correction. Spiegelman et

al. (2000) present likelihood-based computational strategies for logistic regression with

both covariate measurement error and reclassification models on one ormore covariates.

Linear regression with misclassified covariates and a known misclassification model is

considered by van den Hout and Kooiman (2006). They use the idea in Spiegelman et

al. (2000) and implement the EM algorithm to find corrected estimators.

When it is hard to find the maximum of a likelihood that involves many parameters,

a pseudo likelihood method can be used. Gong and Samanjego (1981) define pseudo

maximum likelihood estimation and get the asymptotic distribution of pseudo MLE.

A pseudo method estimates some parameters from validation data first, then treats

those parameters as known and finds the maximum likelihood estimators for the re-

maining parameters. Parke (1986) has a simpler expression for the asymptotic variance

of a pseudo MLE. Liu and Liang (1991) use quasi-likelihood scores and the pseudo ap-
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proach for generalized linear models with only categorical covariates, misclassified or

not, and non-differential misclassification. They derive the variance for the corrected

estimator that accounts for the variation due to estimation of the parameters in the mis-

classification model. They estimate the misclassification parameters from replicate data

and discuss how many replicates are needed to reach a desired efficiency.

Rosner et al. (1989) apply regression calibration, data imputation and likelihood ap-

proximation methods to logistic regression with a mismeasured covariate. Frost and

Thompson (2000) compare moment-based and regression methods to correct the cor-

rection factor (the inverse of the correction factor is the attenuating factor or reliability

ratio (Carroll et al. 2006)) of a simple regression slope with a mismeasured covariate,

and the simulations show that the moment-based method performed better. White et al.

(2001) demonstrate how to use replicated data to correct using regression calibration in

the regression model with measurement error in binary and continuous covariates.

Nakamura (1990) proposes a corrected score approach. This work develops a score

function whose conditional expectation given the response and true covariates is the

usual log likelihood based on the response and the unknown true covariates. This ar-

ticle also includes a proof that the solution of a corrected score function is a consistent

estimator under some regularity conditions. An unbiased score function is a score func-

tion whose expectation is zero at the true parameter, and it is not necessarily based on

the likelihood function. We should note that an unbiased score function is not neces-

sarily a corrected score function. Akazawa et al. (1998), prove that a corrected score

function always exists for a regression model with misclassified covariates, but it does

not necessarily exist in the case of mismeasured continuous covariates. The existence

of a corrected score function assumes the misclassification matrix is known. Recently,

Zucker and Speigelman (2008) apply the idea of Akazawa et al. (1998) to a hazard model

with misclassified covariates. Stefanski and Carroll (1987) study conditional score esti-

mators for the generalized linear model, and they obtain an unbiased score function
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by conditioning on sufficient statistics. Buonaccorsi (1996) uses a modified estimating

equation approach which can be applied when the measurement error variances and

covariances differ across units. The measurement error variances and covariances for

this approach can be known or estimated.

Cook and Stefanski (1994) propose the idea of the simulation-extrapolation (SIMEX)

correction method for the measurement error model. The method adds more measure-

ment error to the mismeasured variables (covariates or response), then gets regression

parameters corresponding to the extra error, studies the trend of the parameters, and

then extrapolates this trend back to get a SIMEX estimator of the parameter of inter-

est. Küchenoff et al (2006) develops an innovative SIMEX approach for misclassified

data (MC-SIMEX). They assume that the misclassification matrix P is known or can

be estimated from validation data. The way they add extra errors to the misclassified

data is interesting: in each simulation step ξ, they construct a new misclassification ma-

trix Pξ = EDξE−1 where D is the diagonal matrix of eigenvalues of P, and E is the

corresponding matrix of eigenvectors. Note that P1+ξ = PPξ and we can simulate

misclassified data using the observed as true data and Pξ as the misclassification rule.

Küchenoff et al (2007) derives the asymptotic variance estimators for the MC-SIMEX es-

timator when the misclassification model is estimated from external data. MC-SIMEX

can also apply to prevalence estimation.

Gustafson (2004) has a general discussion about the Bayesian method for epidemio-

logical data with mismeasurement error and misclassification. Stamey et al. (2007) and

Perez et al. (2007) use a Bayesian approach to addressmisclassifiedmultinomial/binomial

data. Stamey et al. (2007) compare Bayesian estimation of an intervention effect with the

maximum likelihood estimators in Lin et al. (2005), and they find the Bayesian estima-

tor’s coverage is better. Perez et al. (2007) provide a Bayesian method for multinomial

data with misclassification. Prescott and Garthwaite (2002) use a two-stage Bayesian

method for the odds-ratio of a case-control study, and compare their method with the
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methods of Morrissey and Spiegelman (1999).

In the Bayesian approach, the unobserved true value is latent. Kuha (1997) uses

data augmentation in generalized linear models with mismeasured covariates and mis-

classified covariates. Stephens and Dellaportas (1992) apply a Bayesian method to gen-

eralized linear models with mismeasured covariates. Müller and Roeder (1997) use a

Dirichlet process prior on the joint distribution of covariates and the true unobserved

variable, and they use a Gibbs sampling scheme to estimate the parameters of a logistic

regression with a mismeasured covariate or a misclassified covariate and some valida-

tion data.
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C H A P T E R 2

ESTIMATORS FOR πππ

LetX1,X2, . . . ,Xn be independent and identically distributed binary (0 or 1) random

variables with π = P (Xi = 1). Instead of observing Xi, we observeWi. There are two

commonways to describe the relationship betweenWi andXi.One is a misclassification

model where P (Wi = 1|Xi = 1) = θ11 (sensitivity), and P (Wi = 0|Xi = 0) = θ00

(specificity) which is similar to the classical model for additive measurement error. The

reclassification model approach is analogous to a Berkson model and specifies P (Xi =

1|Wi = 1) = γ11 (positive predictive value) and P (Xi = 0|Wi = 0) = γ00 (negative

predictive value) .The bias of the naive estimator, π̂naive =
∑n

i=1 Wi/n, can be shown to

be π(θ00+θ11−2)−θ00+1 or π(2−γ00−γ11)+γ00−1
γ00+γ11−1 expressed in terms of themisclassification

and reclassification models respectively. One consequence of these bias expressions is

that a misclassification or reclassification parameter closer to one (the case of no error of

a particular type) can actually result in more bias. See Section 2.2 for more discussion

of bias. Recent reviews of this problem, including important extensions to two by two

tables and odds ratios, can be found in Greenland (2008), van den Hout and van der

Heijden (2002), Chen (1999), and Kuha et al. (1998). The Bayesian approach is discussed

in Gustafson (2004, Chapter 5) and Prescott and Garthwaite (2002). We take a relative

frequentist approach.

With either a known misclassification model or a known reclassification model, the

respective bias expressions can be used to develop unbiased method of moments esti-
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mators of π. In the case of the misclassification model the estimator is:

π̂corrected,M =
π̂naive + θ00 − 1

θ00 + θ11 − 1
,

and in the case of the reclassification model it is:

π̂corrected,R = (γ00 + γ11 − 1)π̂naive − γ00 + 1.

The first correction method is the matrix method, and the second correction method

is the inverse matrix method (Morissey and Spiegelman, 1999). Zelen and Haitovsky

(1991) point out that the true and observed values have a positive correlation when

θ00 + θ11 − 1 > 0.

If π̂corrected,M is modified by making it zero or one if π̂corrected,M < 0 or π̂corrected,M >

1 respectively, then the resulting estimator is also a maximum likelihood estimator (van

denHout and van derHeijden, 2002, Section 5). π̂corrected,R is also amaximum likelihood

estimator (Lyles, 2002).

When the misclassification and reclassification parameters are known, the reclassi-

fication estimator generally has a smaller variance than the misclassification estimator

since |θ00 + θ11 − 1| < 1 and |γ00 + γ11 − 1| < 1. On the other hand, the misclassifica-

tion model can be estimated from a validation sample that is designed to contain a fixed

number of X = 1 and X = 0 cases. That is the situation in which we are primarily

interested, but when a reclassification model is available, π̂corrected,R should be used.

In the typical case when the misclassification model is unknown, it needs to be esti-

mated. We consider the case of external validation data whereWi is observedN.0 when

Xi = 0 and N.1 times when Xi = 1.With Njj denoting the number of times wi = xi =

j, j = 0, 1 in each sample, estimators of θ00, θ11 are θ̂00 = N00

N.0
and θ̂11 = N11

N.1
. Note that in

these data we do not require the relative frequencies ofX = 0 orXi = 1 to have any con-

nection to Pr(Xi = 0) or Pr(Xi = 1).As a result, these validation data cannot be used to

estimate a reclassification model. Using the estimates of θ00 and θ11 above, an estimator

of π is π̂P lugIn =
π̂naive + θ̂00 − 1

θ̂00 + θ̂11 − 1
. If estimates of γ00 and γ11 are available, then the plug-
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in version of the reclassification estimator is π̂P lugIn,Re = (γ̂00 + γ̂11−1)π̂naive− γ̂00 +1. It

can be shown that these are maximum likelihood estimators from the nmain study and

N.0 and N.1 validation study data points. Jensen’s inequality can be used to show that

π̂P lugIn is biased whenN.0 andN.1 are finite. We develop two novel alternatives to these

estimators next. One is a bias reduced version of π̂P lugIn (Section 2.1), and the other is a

“partially corrected” estimator in Section 2.2.

Section 2.1 will be devoted to the bias reduced estimator, and section 2.2 is the par-

tially corrected estimator, both for the binary case. In section 2.3, we will generalize

these results to the case of categorical data with k categories.

2.1 Bias Reduced Estimator

In this section, we will discuss the bias of π̂P lugIn. We begin with the following

theorem that approximates the bias of π̂P lugIn as a function of the validation sample

size.

Theorem 2.1.1 Assume θ00 + θ11 − 1 6= 0, and θ∗00 + θ∗11 − 1 6= 0 for all θ∗00, θ
∗
11 in the

rectangular box formed by θ00, θ̂00 and θ11, θ̂11, then

E (π̂P lugIn) = π+V ar(θ̂00)
(πnaive − θ11)

(θ00 + θ11 − 1)3
+V ar(θ̂11)

(πnaive + θ00 − 1)

(θ00 + θ11 − 1)3
+O(min(N.1,N.0)

−2).

Proof Let f(πnaive, θ00, θ11) = πnaive+θ00−1
θ00+θ11−1 . Then from Taylor’s expansion, we will have:

f(π̂naive, θ̂00, θ̂11) = f(πnaive, θ00, θ11) + ∇f(πnaive, θ00, θ11)
T




π̂naive − πnaive

θ̂00 − θ00

θ̂11 − θ11




+




π̂naive − πnaive

θ̂00 − θ00

θ̂11 − θ11




T

∇2f(πnaive, θ00, θ11)

2




π̂naive − πnaive

θ̂00 − θ00

θ̂11 − θ11




+R3(π̂naive, θ̂00, θ̂11),
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where

R3(π̂naive, θ̂00, θ̂11) =
∑

i1+i2+i3=3

∂3f(π̃naive, θ̃00, θ̃11)

3!∂πi1
naive∂θi2

00∂θi3
11

(π̂naive−πnaive)
i1(θ̂00−θ00)

i2(θ̂11−θ11)
i3 ,

with θ̃00 between θ00 and θ̂00, θ̃11 between θ11 and θ̂11. Since
∂2f

∂π2

naive
= 0, θ̂11, θ̂00 are un-

correlated,

∣∣∣∣∣
∂3f(π̃naive, θ̃00, θ̃11)

∂πi1
naive∂θi2

00∂θi3
11

∣∣∣∣∣ < M for someM since the third order partial deriva-

tives of f are continuous on a closed region, and E(θ̂ii − θii)
3 =

2θ3
ii − 3θ2

ii + θii

N2
.i

, i = 0, 1,

we will have ∣∣∣∣E
{

f(π̂naive, θ̂00, θ̂11)

}
−
{

f(πnaive, θ00, θ11)+

∂2f(πnaive, θ00, θ11)

2∂θ2
00

Var(θ̂00) +
∂2f(θ00, θ11, πnaive)

2∂θ2
11

Var(θ̂11)

}∣∣∣∣ ≤ 12Mmin(N.1,N.0)
−2,

which yields

E (π̂P lugIn) = π+ Var(θ̂00)
(πnaive − θ11)

(θ00 + θ11 − 1)3
+ Var(θ̂11)

(πnaive + θ00 − 1)

(θ00 + θ11 − 1)3
+O(min(N.1,N.0)

−2).

As a consequence of the preceding result, we can create a first order bias corrected

estimator:

π̂corrected,P I = π̂P lugIn − θ̂00(1 − θ̂00)(π̂naive − θ̂11)

N.0(θ̂00 + θ̂11 − 1)3
− θ̂11(1 − θ̂11)(π̂naive + θ̂00 − 1)

N.1(θ̂00 + θ̂11 − 1)3
.

Also note that

π̂corrected,P I = π̂P lugIn − V̂ar(θ̂00)(1 − π̂P lugIn)

(θ̂00 + θ̂11 − 1)2
− V̂ar(θ̂11)π̂P lugIn

(θ̂00 + θ̂11 − 1)2

= π̂P lugIn +
V̂ar(θ̂00)π̂P lugIn

(θ̂00 + θ̂11 − 1)(π̂naive + θ00 − 1)
− V̂ar(θ̂00 + θ̂11 − 1)π̂P lugIn

(θ̂00 + θ̂11 − 1)2
,

and the estimator π̂corrected,P I can be rewritten as

π̂corrected,P I = π̂P lugIn

{
1 +

Ĉov(θ̂00 + θ̂11 − 1, π̂naive + θ̂00 − 1)

(θ̂00 + θ̂11 − 1)(π̂naive + θ̂00 − 1)
− V̂ar(θ̂00 + θ̂11 − 1)

(θ̂00 + θ̂11 − 1)2

}
.

This estimator has the same structure as Tin’s (1965) ”modified ratio estimator”. Our

situation is more complicated than Tin’s, since our ratio is a function of π̂naive, θ̂00, and

θ̂11, each of which may have different sample sizes, and our estimator also is derived
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by a different method. We find the similarities between the estimators surprising. Tin’s

estimator has been studied theoretically and via simulation by a number of subsequent

authors, e.g. Hutchison (1971), Rao & Rao (1971), Dalabehera & Sahoo (1995), and they

found Tin’s estimator generally to be less biased andmore efficient compared with other

proposed ratio estimators. We use simulation to investigate the bias of π̂P lugIn and the

performance of π̂corrected,P I in Chapter 5.

2.2 Partially Corrected Estimator

Theorem 2.2.1 For any 0 ≤ π ≤ 1, if (θ00, θ11) satisfy the relationship π(θ00 + θ11 − 2) −

θ00 + 1 = 0 for values inside the unit cube, then the bias of the naive estimator, π̂naive, is

zero. Similarly, if (γ00, γ11) satisfy
π(2−γ00−γ11)+γ00−1

γ00+γ11−1 = 0 for values in the unit cube (and

γ00 + γ11 6= 1), then the bias of the naive estimator, π̂naive, is zero. Figure 1 illustrates these

results.

As noted before, since |θ00+θ11−1| < 1, the corrected estimator has a larger variance

than the naive estimator, even if the misclassification model were known. The implica-

tion of that fact and the result above is that for certain combinations of π, θ00, and θ11

the validation data should be ignored since the naive estimator is unbiased and has a

lower sample variance. Although we would need to know π in order to use that fact

directly (and if we knew π, we would be done!), we can create a “partially corrected”

estimator that is an affine combination of the naive estimator and the plug in estimator:

π̂pc = aπ̂naive + (1 − a)π̂P lugIn. The tuning parameter 0 ≤ a ≤ 1 needs to be estimated,

and we do that by finding one to minimize an estimate of MSE(π̂pc), subject to the

constraint that 0 ≤ a ≤ 1. Schafer (1986) used a similar idea in linear regression with

covariate measurement error. Gustafson (2004), section 5.1 demonstrates that the mean

squared error of naive estimator of a log odds ratio can be smaller than the corrected one

when the sample size is small. Finally, while it is tempting to use π̂corrected,P I instead of
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Lines show values of θ00 and θ11 that the naive estimator unbiased for different true π.

For each π, bias is positive above the line and negative below it.
θ00

θ 1
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0.0 0.2 0.4 0.6 0.8 1.0

0.
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π=0.1π=0.2π=0.3π=0.4π=0.5
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π=0.8

π=0.9

Figure 1. When the naive Estimator is Unbiased: this figure shows combinations

of π, θ00, and θ11 that result in zero bias for π̂naive.

π̂P lugIn, we found that a stable estimate of the variance of π̂corrected,P I (an involved ex-

pression derived via the the multivariate delta method) to be elusive.

The following two theorems give expressions for a, one for the case where the mis-

classification model is known, and the other for the case where the misclassification

model is estimated from external data. We discuss how to estimate a after the theorems.

Theorem 2.2.2 When θ00, θ11 are known,
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(i)MSE(π̂pc) has a minimum at

amin =
MSE(π̂P lugIn) − Cov(π̂naive, π̂P lugIn)

MSE(π̂naive) + MSE(π̂P lugIn) − 2Cov(π̂naive, π̂P lugIn)
.

(ii) 0 < amin < 1 if and only ifMSE(π̂P lugIn) > Cov(π̂naive, π̂P lugIn) andMSE(π̂naive) >

Cov(π̂naive, π̂P lugIn).

(iii) IfMSE(π̂P lugIn) < Cov(π̂naive, π̂P lugIn), then we set amin = 0, and ifMSE(π̂naive) <

Cov(π̂naive, π̂P lugIn), then we set amin = 1.

Proof

MSE(π̂pc) = E[aπ̂naive + (1 − a)π̂P lugIn − [aπ + (1 − a)π]]2

= a2 MSE(π̂naive) + (1 − a)2 MSE(π̂P lugIn) + 2a(1 − a)E[(π̂naive − π)(π̂P lugIn − π)]

= a2 MSE(π̂naive) + (1 − a)2 MSE(π̂P lugIn) + 2a(1 − a) Cov(π̂naive, π̂P lugIn) (2.1)

Let f(a) refer to equation 2.1. Since f(a) is a quadratic function of a with positive

leading coefficient MSE(π̂naive) + MSE(π̂P lutIn) − 2 Cov(π̂naive, π̂P lugIn) , f(a) has a

minimum. The derivative of f is

f
′

(a) = {MSE(π̂naive) + MSE(π̂P lugIn) − 2 Cov(π̂naive, π̂P lugIn)} a

−{MSE(π̂P lugIn) − Cov(π̂naive, π̂P lugIn)} , and

MSE(π̂pc) has a minimum when f
′

(a) = 0, that is when

amin =
MSE(π̂P lugIn) − Cov(π̂naive, π̂P lugIn)

MSE(π̂naive) + MSE(π̂P lugIn) − 2 Cov(π̂naive, π̂P lugIn)
.

So (i) follows.

By comparing amin with 0 and 1, we obtain (ii).

If f
′

(0) = −{MSE(π̂P lugIn) − Cov(π̂naive, π̂P lugIn)} > 0 if MSE(π̂P lugIn) < Cov(π̂naive, π̂P lugIn),

then we have f increasing on interval [0, 1]. So we set amin = 0 when MSE(π̂P lugIn) <

Cov(π̂naive, π̂P lugIn).Weuse the same argument for MSE(π̂naive) < Cov(π̂naive, π̂P lugIn),then

(iii) follows.
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When the misclassification model is known, we have

Cov(π̂naive, π̂P lugIn) ≤ 1

2
{MSE(π̂naive) + MSE(π̂P lugIn)} .

If MSE(π̂P lugIn) ≤ Cov(π̂naive, π̂P lugIn), we must have MSE(π̂P lugIn) ≤ MSE(π̂naive)

and it is natural to think that π̂P lugIn has the smallest mean square error among all par-

tial corrected estimators (i.e. a = 0). The same holds for the situation that MSE(π̂naive) ≤

Cov(π̂naive, π̂P lugIn). But if Cov(π̂naive, π̂P lugIn) is less than both MSE(π̂naive) and MSE(π̂P lugIn),

that means we can find a estimator with smaller mean square error.

Theorem 2.2.3 When θ̂00, θ̂11 are estimated from validation data,

(i)MSE(π̂pc) has a minimum at

amin =
MSE(π̂P lugIn) − [Cov(π̂naive, π̂P lugIn) + (λ − π) {E(π̂P lugIn) − π}]

MSE(π̂naive) + MSE(π̂P lugIn) − 2 [Cov(π̂naive, π̂P lugIn) + (λ − π) {E(π̂P lugIn) − π}] .

(ii) 0 < amin < 1 if and only ifMSE(π̂P lugIn) > Cov(π̂naive, π̂P lugIn)+(λ−π) {E(π̂P lugIn) − π}

andMSE(π̂naive) > Cov(π̂naive, π̂P lugIn) + (λ − π) {E(π̂P lugIn) − π} .

(iii) IfMSE(π̂P lugIn) < Cov(π̂naive, π̂P lugIn)+(λ−π) {E(π̂P lugIn) − π} , then we set amin =

0, and if MSE(π̂naive) < Cov(π̂naive, π̂P lugIn) + (λ − π) {E(π̂P lugIn) − π} , then we set

amin = 1.

Proof The proof proceeds as in the case when the misclassification model is known, but

now π̂P lugIn is not an unbiased estimator for π and we have

E {(π̂naive − π)(π̂P lugIn − π)}

= E [{(π̂naive − λ) + (λ − π)} {(π̂P lugIn − Eπ̂P lugIn) + (Eπ̂P lugIn − π)}]

= Cov(π̂naive, π̂P lugIn) + (λ − π) {E(π̂P lugIn) − π}

We notice the difference of these two theorems: (λ−π) {E(π̂P lugIn) − π}will be zero

if the misclassification model is known. From the above theorems, we know the a is a

function of the unknown π. To estimate a, we can use the following algorithm:

19



1. To make notation simple, we will assume θ̂ii = θii, i = 0, 1 when the misclassi-

fication model is known. Also we define δ as an indicator, where δ = 0 if the

misclassification model is known and δ = 1 if the misclassification is estimated

from external data. Following these, we have

V̂ar(θ̂00) = δ
θ̂00(1 − θ̂00)

N.0
, V̂ar(θ̂11) = δ

θ̂11(1 − θ̂11)

N.1
.

2. We use Theorem 2.1.1 to estimate the bias for π̂P lugIn, and define

B̂ias =
( V̂ar(θ̂00)(π̂naive − θ̂11)

(θ̂00 + θ̂11 − 1)3
+
V̂ar(θ̂11)(π̂naive + θ̂00 − 1)

(θ̂00 + θ̂11 − 1)3
.

3. We estimate the mean square error of π̂naive which is the sum of variance and

square of the bias of π̂naive. We treat π̂P lugIn as an estimator for π, we have

M̂SE(π̂naive) =
π̂naive(1 − π̂naive)

n
+ (π̂naive − π̂P lugIn)2.

4. We use the delta method to estimate the variance of π̂P lugIn. The square of bias of

π̂P lugIn will be small compared with the variance estimate of π̂P lugIn and we will

ignore it. That is :

M̂SE(π̂P lugIn) =

bλ(1−bλ)
n + V̂ar(θ̂00) − 2π̂P lugIn V̂ar(θ̂00) + π̂2

P lugIn

{
V̂ar(θ̂00) + V̂ar(θ̂11)

}

(θ̂00 + θ̂11 − 1)2

5. Using the independence of validation and main study data, and the delta method,

we will have the covariance estimate of π̂naive and π̂P lugIn:

Ĉov(π̂naive, π̂P lugIn) =
π̂naive(1 − π̂naive)

n(θ̂00 + θ̂11 − 1)

6. Combining the above together, we have our estimator for amin:

âmin =
M̂SE(π̂P lugIn) − Ĉov(π̂naive, π̂P lugIn) − (π̂naive − π̂P lugIn)B̂ias

M̂SE(π̂naive) + M̂SE(π̂P lugIn) − 2 Ĉov(π̂naive, π̂P lugIn) + (π̂naive − π̂P lugIn)B̂ias

We use simulation to investigate the performance of π̂pc in Chapter 5.
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2.3 K Category Misclassified Data with External Validation Data

In this section, we will consider categorical data with categories 0, . . . ,K − 1. All the

matrices are using zero-based indices.

As before, let X1, . . . ,Xn be independent and identically multinomial distributed

random variables, with πj = P (Xi = j), j = 0 . . . K − 1. Wi is the observed value of Xi

with λj = P (Wi = j). Define πππ = (π1, . . . , πK)T, λλλ = (λ1, . . . , λK)T. Let P be a K × K

matrix with m, lth element θml = P (Wi = m|Xi = l).We assume P−1 exist. Let Q be a

K × K matrix with m, lth element γml = P (Xi = m|Wi = l). P is the misclassification

model and Q is the reclassification model. With π̂ππnaive = (π̂0
naive, . . . , π̂

K−1
naive)

T where

π̂k
naive = 1

n

n∑

i=1

1{Wi=k} and a known misclassification or reclassification model, we also

can develop unbiased method of moments estimators of πππ, and the misclassification

model requires some adjustment.

Unlike the binary case which only estimates one random variable, we are estimating

multivariate correlated random variables when k ≥ 3. If one of the elements of π̂ππ is

outside the parameter space, we no longer can just set that element to 0 or 1. We need

to have the sum of all elements equal to 1. The method of moments estimator can run

into that problem. In that case, we can use the maximum likelihood estimator (MLE). In

van den Hout and van der Heijden (2002), it is proven that when the moment estimator

is in the interior of the parameter space, the MLE is equal to the method of moments

estimator P−1π̂ππnaive. They also develop an EM algorithm for this situation.

Now we have a correction method with known misclassification model:

π̂ππcorrected,M = P−1π̂ππnaive.

and with known reclassification model,

π̂ππcorrected,R = Qπ̂ππnaive.

π̂ππcorrected,M , π̂ππcorrected,R are both MLEs. When the reclassification model is estimated

from independent external validation data, the correction estimator is still unbiased.
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When the misclassification model is estimated from external data, π̂ππP lugIn = P̂−1π̂ππnaive

is biased, due to the fact that EP̂−1 6= (EP̂)−1.We will prove an unbiased estimator of

P−1 does not exist in section 2.3.1. We will still focus on the misclassification model.

Section 2.3.2 contains a reduced bias estimator and section 2.3.3 discusses a partially

corrected estimator.

2.3.1 The Proof of No Unbiased Estimator for P−1

In this section, we will prove that there does not exist an unbiased estimator forP−1.

This generalizes a similar result for 1
p for binary data with unknown probability p.

P is a misclassification matrix of dimensionK if P is aK ×K matrix with the value

of each entry between 0 and 1, and the sum of each column equal to 1. Let PK = {P|P

is aK × K misclassification matrix }.

Theorem 2.3.1 Let A = (a0,a1, . . . ,aK−1) be a K × K random matrix with a distribution

such that ai is multinomial (N.i, θθθi) where ai =




a0i

...

a(K−1)i


 , θθθi =




θ0i

...

θ(K−1)i


 , and P =

(θθθ0, . . . θθθK−1) is an unknown misclassification matrix. Then there is no unbiased estimator of

P−1

Proof First we will prove that { det(P−1)|P ∈ PK} is unbounded. If we assume there

does exist an unbiased estimator for P−1, then we can have { det(P−1)|P ∈ PK} is

bounded, which leads to a contradiction.

Form ∈ N, let

Pm =




1 0 0 0 . . . m−1
m(K−1)

0 1 0 0 . . . m−1
m(K−1)

0 0 1 0 . . . m−1
m(K−1)

0 0 0
. . . . . . m−1

m(K−1)

0 0 . . . . . . . . . 1
m




Pm ∈ PK and det(Pm) = 1
m , and therefore { det(P−1)|P ∈ PK} is unbounded.
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Assume T is an unbiased estimator for P−1 with element Tij =

nij∑

l=0

Gl
ij(A), i, j =

0 . . . K − 1where Gl
ij(A) is a polynomial of elements inA with degree l. Let the sum of

the absolute value of coefficients of Gl
ij(A) be C l

ij . Then,

E[Tij ] = (P−1)ij = E[

nij∑

l=0

Gl
ij(A)] ≤

nij∑

l=0

C l
ij from the property of multinomial distri-

bution, P (

K−1⋂

i=0

j=1

{0 ≤ ai,j ≤ 1}) = 1.

So P−1
ij is bounded for all P ∈ P and all i, j = 0 . . . K − 1 As a result, det(P−1) is

bounded above for all P ∈ P which contradicts our earlier statement, therefore there is

no unbiased estimator for P−1.

2.3.2 Bias Reduced Estimator for k ≥ 3

In this section, we will discuss the bias for π̂ππP lugIn for misclassified data with K

categories.

Assume we have K categories with misclassification model

P =




θ00 θ01 . . . θ0(K−1)

θ10 θ11 . . . θ1(K−1)

. . .

1 −∑K−2
i=0 θi0 1 −∑K−2

i=0 θi1 . . . 1 −∑K−2
i=0 θi(K−1)



.

Assume P̂ is an estimator for P from external data for P and det(P̂) 6= 0. Then

P̂−1π̂ππnaive is a simple estimator for πππ. It is a biased estimator since EP̂−1 6= P−1.

Let f(θθθ, πππnaive) = P−1πππnaive and letMij be aK×K matrix with 0 everywhere except

in position i, j which a 1 , and K − 1, j which contains a −1, i, j = 0, . . . K − 1. Then

using the delta method and any scalar variable x,
∂P−1

∂x
= −P−1 ∂P

∂x
P−1 (Harville, 197,

Section 15.8) we will have

Eπ̂ππP lugIn = πππ +

K−1∑

j=0

K−2∑

i=0

Var(θ̂ij)P
−1MijP

−1MijP
−1πππnaive
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+
K−1∑

j=0

K−2∑

i<i′

Cov(θ̂ij, θ̂i′ j)
{
P−1Mi′ jP

−1MijP
−1πππnaive

+P−1MijP
−1Mi′ jP

−1πππnaive

}
+ O(mini(N

−2
.k ))

where N.k is the sample of validation size in category k. This result gives a first order

bias corrected estimator:

π̂ππcorrected,P I = π̂ππP lugIn −
K−1∑

j=0

K−2∑

i=0

Var(θ̂ij)P̂
−1MijP̂

−1MijP̂
−1π̂ππnaive

−
K−1∑

j=0

K−2∑

i<i′

Cov(θ̂ij, θ̂i′ j)
{
P̂−1Mi′ jP̂

−1MijP̂
−1π̂ππnaive

+P̂−1MijP̂
−1Mi′ jP̂

−1π̂ππnaive

}

Even though π̂ππcorrected,P I can reduce the bias, we can’t guarantee that it is in the

parameter space. Unlike the binary case in whichwe knowhow to adjust if the estimator

is not in the parameter space, we do not know how to adjust in this situation ifK ≥ 3. If

π̂ππcorrected,P I is outside the parameter space, we should compare it with the pseudoMLE

estimator (i.e. treat P̂ as known and use the EM algorithm to get MLE).

2.3.3 Partially Corrected Estimator

When the dimension K is greater than 2, we have more than one parameter to esti-

mate in πππ. We will define the mean square error as the sum of mean square error of each

parameter.

Definition Assume π̂ππ is an estimator for πππ, then

MSE(π̂ππ) = E(π̂ππ − πππ)T(π̂ππ − πππ) = trace(Var(π̂ππ)) + (Eπ̂ππ − πππ)T(Eπ̂ππ − πππ).

As before, we define the partially corrected estimator π̂ππpc = aπ̂ππnaive + (1 − a)π̂ππplugIn.

Lemma 2.3.2 When the misclassification model P is known,
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(i)MSE(π̂ππpc) has a minimum at

amin =
MSE(π̂ππP lugIn) − trace( Cov(π̂ππnaive, π̂ππP lugIn))

MSE(π̂ππnaive) + MSE(π̂ππP lugIn) − 2trace(Cov(π̂ππnaive, π̂ππP lugIn))
.

(ii) 0 < amin < 1 if and only ifMSE(π̂ππP lugIn) > trace(Cov(π̂ππnaive, π̂ππP lugIn)) andMSE(π̂ππnaive) >

trace(Cov(π̂ππnaive, π̂ππP lugIn)).

(iii) IfMSE(π̂ππP lugIn) < trace(Cov(π̂ππnaive, π̂ππP lugIn)), then we set amin = 0, and ifMSE(π̂ππnaive) <

trace(Cov(π̂ππnaive, π̂ππP lugIn)), then we set amin = 1.

Proof

MSE(π̂ππpc)

= E [aπ̂ππnaive + (1 − a)π̂ππP lugIn − {aπππ + (1 − a)πππ)}]T [aπ̂ππnaive + (1 − a)π̂ππP lugIn − {aπππ + (1 − a)πππ}]

= a2 MSE(π̂ππnaive) + (1 − a)2 MSE(π̂ππP lugIn) + 2a(1 − a)E(π̂ππnaive − πππ)T(π̂ππP lugIn − πππ)

= a2 MSE(π̂ππnaive) + (1 − a)2 MSE(π̂ππP lugIn) + 2a(1 − a) trace( Cov(π̂ππnaive, π̂ππP lugIn))

is a quadratic function of a as before. The only difference is instead of Cov(π̂ππnaive, π̂ππP lugIn),

we have trace( Cov(π̂ππnaive, π̂ππP lugIn)). So we can use the proof of Theorem 2.2.2 to prove

this lemma.

Lemma 2.3.3 When misclassification model P̂ is estimated from validation data,

(i)MSE(π̂ππpc) has a minimum at

amin =
MSE(π̂ππP lugIn) −

[
C + (λλλ − πππ)T {E(π̂ππP lugIn) − πππ}]

MSE(π̂ππnaive) + MSE(π̂ππP lugIn) − 2 [C + (λλλ − πππ)T {E(π̂ππP lugIn) − πππ}] ,

where C = trace(Cov(π̂ππnaive, π̂ππP lugIn)).

(ii) 0 < amin < 1 if and only if MSE(π̂ππP lugIn) > trace( Cov(π̂ππnaive, π̂ππP lugIn)) + (λλλ −

πππ)T {E(π̂ππP lugIn) − πππ} andMSE(π̂ππnaive) > trace(Cov(π̂ππnaive, π̂ππP lugIn))+(λλλ−π)T {E(π̂ππP lugIn) − πππ} .

(iii) IfMSE(π̂ππP lugIn) < trace(Cov(π̂ππnaive, π̂ππP lugIn))+(λλλ−π)T {E(π̂ππP lugIn) − πππ} , then we

set amin = 0, and ifMSE(π̂ππnaive) < trace(Cov(π̂ππnaive, π̂ππP lugIn))+(λλλ−πππ)T {E(π̂ππP lugIn) − πππ} ,

then we set amin = 1.
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As in the binary case, to estimate a, we need to evaluate some estimators involving

the unknown parameters:

1. To make notation simple, we will assume P̂ = Pwhen the misclassification model

is known. Also we define δ as an indicator, δ = 0 if the misclassification model is

known and δ = 1 if themisclassification is estimated from external data. Following

these, we have V̂ar(π̂ππnaive) = δ〈v̂ij〉i,j=0...K−1,where

v̂ij =





−π̂i
naiveπ̂

j
naive/n if i 6= j

π̂i
naive(1 − π̂j

naive)/n if i = j

2. We use section 2.3.2 to estimate the bias for π̂ππP lugIn, and define

B̂ias =
K−1∑

j=0

K−2∑

i=0

V̂ar(θ̂ij)P̂
−1MijP̂

−1MijP̂
−1π̂ππnaive

+

K∑

j=0

K−2∑

i<i
′

Ĉov(θ̂ij, θ̂i′ j)
{
P̂−1Mi′ jP̂

−1MijP̂
−1πππnaive

+P̂−1MijP̂
−1Mi′ jP̂

−1π̂ππnaive

}
.

3. We estimate the mean square error of π̂ππnaive . Treating π̂ππP lugIn as an estimator for

πππ, we have

M̂SE(π̂ππnaive) =

K−1∑

i=0

λ̂i(1 − λ̂i)/n + (π̂ππnaive − π̂ππP lugIn)T(π̂ππnaive − π̂ππP lugIn).

4. We use the delta method to estimate the variance of π̂P lugIn. The inner product

part of the bias of π̂P lugIn will be too small compared with the trace of variance

estimate of π̂P lugIn and we will ignore it. That is :

M̂SE(π̂ππP lugIn) = trace

(
P̂−1 Var(π̂ππnaive)(P̂

T)−1

+
K−1∑

j=0

K−2∑

i=0

Var(θ̂ij)P̂
−1MijP̂

−1(P̂−1MijP̂
−1)T

)

5. Using the independence of validation and main study data, and the delta method,

we will have the covariance estimate of π̂naive and π̂P lugIn:

Ĉov(π̂ππnaive, π̂ππP lugIn) = Var(π̂ππnaive)(P̂
T)−1, and Ĉ = trace( Ĉov(π̂ππnaive, π̂ππP lugIn)).
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6. Combining the above together, we have our estimator for amin:

âmin =
M̂SE(π̂ππP lugIn) −

{
Ĉ + (π̂ππnaive − π̂ππP lugIn)TB̂ias

}

M̂SE(π̂ππnaive) + M̂SE(π̂ππP lugIn) − 2
{
Ĉ + (π̂ππnaive − π̂ππP lugIn)TB̂ias

} .
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C H A P T E R 3

CONFIDENCE INTERVALS FOR π

In this chapter, we will focus on methods to find confidence intervals for the proba-

bility of interest of misclassified binary data with an estimated misclassification model.

As we noted earlier, Schwartz (1985) describes how misclassification will affect the cov-

erage probability of the traditional Wald 95% confidence interval. Without correction,

the Wald confidence interval is not reliable for misclassified data.

FromChapter 2, with external validation data, we consider π̂P lugIn =
π̂naive + θ̂00 − 1

θ̂00 + θ̂11 − 1
as an estimator for π, the proportion of interest. We consider two novelways to get a con-

fidence interval for π. One way is to get the confidence intervals for πnaive, θ00, and θ11,

and then proceed to get the Bonferroni joint confidence interval for π (πnaive, θ00, and θ11

are parameters from independent binary distributions and there are a number of ways

to get confidence intervals for each of those parameters). This idea is also adapted from

Buonaccorsi (2010). It is known thatWald confidence intervals for a binomial proportion

perform poorly in terms of coverage probability when π is near 0 or 1. Vollset (1993),

Newcombe (1998), Brown et al. (2001) and many other authors compare different confi-

dence intervals for the population of proportion, usingmethods includingWald, Wilson,

Agresti, Jefferys, Clopper-Pearson and continuity correction. Brown et al. (2001) show

that due to the nature of discreteness and skewness in the binomial distribution, the ac-

tual coverage of theWald interval can be significantly smaller than the nominal level for

moderate and even large sample sizes (such as 1876) and not just for π near 0 or 1.

A second way to get a confidence interval in our situation is Fieller’s method (de-
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rived by Fieller (1954); see Buonaccorsi (2001) for a detailed discussion). As von Luxburg

and Franz (2008) point out, the confidence interval constructed by Fieller’s theorem is in

fact a projected confidence region of bivariate normal data. Guiard (1989) and Milliken

(1982) contains related results.

In the following, we introduce two interval estimators for π when the misclassifi-

cation model is estimated from external validation data. Both intervals account for the

potentially substantial variability that is introduced by the validation data. Section 3.1

will be devoted to the confidence interval for π using projection and Bonferroni correc-

tion. We will use Fieller’s method in Section 3.2. Different methods to get confidence

intervals for π̂naive, θ00 and θ11 are described in Appendix A. We assess the performance

of these methods and compare them to a SIMEX approach (Kuchenhoff et al, 2007), a

multivariate delta method approach, and an interval that does not include variability

from validation data in Chapter 5.

3.1 Optimization Based Projected Interval

Since π =
πnaive + θ00 − 1

θ00 + θ11 − 1
, one way to find a 100(1−α)% confidence interval for π is

to find confidence intervals for πnaive, θ00, and θ11, each with 100(1 − α)1/3% confidence

level. Denote these intervals as [Lπnaive , Uπnaive ], [L00, U00], and [L11, U11] respectively

(See Appendix A for different methods to find those intervals). Let

R = {π|π =
πnaive + θ00 − 1

θ00 + θ11 − 1
, πnaive ∈ [Lπnaive , Uπnaive ], θ00 ∈ [L00, U00], θ11 ∈ [L11, U11]}.

Then P (R) ≥ α, since π̂naive, θ̂00 and θ̂11 are independent, and the mapping f : [0, 1]3 →

[0, 1], (πnaive, θ00, θ11) 7→ πnaive+θ00−1
θ00+θ11−1 is not one-to one. Therefore, R is a 100(1 − α)%

confidence set for π. In the following, we would like to determine conditions under

which R is an interval, and determine its upper and lower bounds. This is a constrained

optimization problem. An interval is optimal if it contains R and is as short as pos-

sible while maintaining level 1 − α. We find the interval by solving two optimization
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problems. First, we find the left endpoint by minimizing π subject to the constraints:

πnaive ∈ [Lπnaive , Uπnaive ], θ00 ∈ [L00, U00] and θ11 ∈ [L11, U11]. The right endpoint is

found by maximizing π subject to the same constraints. The proof below uses compact-

ness to show that every π between the two endpoints is in the interval. It is tempting to

use
[

Lπnaive+L00−1

U00+U11−1 ,
Uπnaive+U00−1

L00+L11−1

]
, but this does not necessarily solve the optimization

problems above since the same θ00 must be used in the numerators and denominators

in both end points. As a result, we use constrained optimization to find the interval.

The following example illustrates the problem with the tempting interval. Sup-

pose we have [Lπnaive , Uπnaive ] = [0.37, 0.51], [L00, U00] = [0.871, 0.975], and [L11, U11] =

[0.662, 0.838], then the tempting interval is [0.30, 0.91] as a confidence interval for π. But

if we use the optimization method, we will get R = [0.34, 0.761] as a confidence interval

for π.

Theorem 3.1.1 Define f(πnaive, θ00, θ11) = πnaive+θ00−1
θ00+θ11−1 for πnaive ∈ [Lπnaive , Uπnaive ], θ00 ∈

[L00, U00], θ11 ∈ [L11, U11] and assume (L00+L11−1)(U00+U11−1) > 0. Then the maximum

and minimum values of f, M, and m respectively, occur at endpoints of these intervals. The

optimal interval of R is [m,M ].

Proof Since (L00 + L11 − 1)(U00 + U11 − 1) > 0, f is continuous on [Lπnaive , Uπnaive ] ×

[L00, U00] × [L11, U11], a compact set, so f([Lπnaive , Uπnaive ] × [L00, U00] × [L11, U11]) is

compact too. That means f has maximum/minimum values on this region. Assume f

attains its minimum at (π∗
naive, θ

∗
00, θ

∗
11).

f is defined on the region [Lπnaive , Uπnaive ]× [L00, U00]× [L11, U11], and the region can

transfer to the constraints:




g1(πnaive, θ00, θ11)

g2(πnaive, θ00, θ11)

g3(πnaive, θ00, θ11)


 =




(πnaive − Lπnaive)(πnaive − Uπnaive)

(θ00 − L00)(θ00 − U00)

(θ11 − L11)(θ11 − U11)


 ≤




0

0

0




According to Kuhn-Tucker conditions (Luenberger, 1973), there exist ai ≥ 0, i =

30



1 . . . 3 such that :

(∇f+a1∇g1+a2∇g2+a3∇g3)|π∗

naive,θ∗
00

,θ∗
11

= 0 and aigi(π
∗
naive, θ

∗
00, θ

∗
11) = 0 for i = 1 . . . 3.

From aigi(π
∗
naive, θ

∗
00, θ

∗
11) = 0, we have :

either a1 = 0 or π∗
naive = Lπnaive or πnaive = Uπnaive ,

either a2 = 0 or θ∗00 = L00 or θ00 = U00,

either a3 = 0 or θ∗11 = L11 or θ11 = U11.

(∇f + a1∇g1 + a2∇g2a3∇g3)|π∗

naive,θ∗
00

,θ∗
11

=




1
θ∗
00

+θ∗
11
−1 + a1[2π

∗
naive − (Lπnaive + Uπnaive)]

θ∗
11
−π∗

naive
(θ∗

00
+θ∗

11
−1)2

+ a2[2θ
∗
00 − (L00 + U00)]

−(π∗

naive+θ∗
00
−1)

(θ∗
00

+θ∗
11
−1)2

+ a3[2θ
∗
11 − (L11 + U11)]




= 0,

Therefore, we have a1 6= 0 and π∗
naive = Lπnaive or πnaive = Uπnaive .

If a2 = 0, then θ∗11 = π∗
naive, and f(π∗

naive, θ00, θ
∗
11) = 1 for all θ00 ∈ [L00, U00] and we

have θ∗00 = L00 or θ
∗
00 = U00.

If a3 = 0, then π∗
naive + θ∗00 − 1 = 0, and f(π∗

naive, θ
∗
00, θ11) = 0 for all θ11 ∈ [L11, U11]

and we have θ∗11 = L11 or θ
∗
11 = U11.

So the minimum values of f occur at endpoints of these intervals.

Using the same argument for h = −f , if h has a minimum value, it is at an endpoint

of these intervals. So the maximum/minimum values of f occur at endpoints of these

intervals.

From the above theorem, we know all the ai are non-zero and positive with respect

to the endpoints of these intervals, that is, the relative minimum values of f . We can

find necessary conditions for an endpoint to have a minimum value by solving for ai in

the gradient equations and get

a1 = − 1

{(θ∗00 + θ∗11 − 1)2π∗
naive − (Lπnaive + Uπnaive)}

> 0,
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a2 = − θ∗11 − π∗
naive

(θ∗00 + θ∗11 − 1)2 {2θ∗00 − (L00 + U00)}
> 0,

a3 =
π∗

naive + θ∗00 − 1

(θ∗00 + θ∗11 − 1)2 {2θ∗11 − (L11 + U11)}
> 0.

So 2π∗
naive − (Lπnaive + Uπnaive) and θ∗11 + θ∗00 − 1 have different signs, θ∗11 − π∗

naive and

2θ∗00 − (L00 + U00) have different signs, and π∗
naive + θ∗00 − 1 and 2θ∗11 − (L11 + U11)

have the same sign. We can find some similar relationship for endpoints with relative

maximum values. By observing the relationships of the signs, we will summarize the

necessary conditions for an endpoint to have a relative minimum /maximum value in

the following lemma.

Lemma 3.1.2 This table summarizes the necessary conditions for an endpoint of confidence in-

tervals of πnaive, θ00, θ11 to have a relative minimum/maximum value of f . The upper one is for

relative minimum, and the lower one is for relative maximum:

Endpoints Sign Pattern

πnaive θ00 θ11 θ00 + θ11 − 1 θ11 − πnaive πnaive + θ00 − 1

Uπnaive U00 U11 -**/+** -/+ +**/-**

Lπnaive U00 U11 +/- -/+ +/-

Uπnaive L00 U11 -*/+* +*/-* +*/-*

Lπnaive L00 U11 +/- +/- +/-

Uπnaive U00 L11 -/+ -/+ -/+

Lπnaive U00 L11 +*/-* -*/+* -*/+*

Uπnaive L00 L11 -/+ +/- -/+

Lπnaive L00 L11 +**/-** +/- -**/+**

* indicates sign pattern is impossible

** indicates function value is negative, therefore is not a probability

The above are mathematical results, but the resulting interval is not necessarily con-

tained in [0, 1]. The algorithm to find the upper and lower bound for π is present in

Appendix B.
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3.2 Fieller’s Method Based Interval

Fieller’s method provides a way to develop a confidence interval for the ratio of two

parameters, such as

π =
πnaive + θ00 − 1

θ11 + θ00 − 1
:=

N

D
.

A recent paper by von Luxburg and Franz (2009) reviews the literature on Fieller’s

method comprehensively. That paper also provides the following geometric interpre-

tation of the method: an elliptical confidence region can be developed forN andD such

that Fieller’s interval is equivalent to the set of all N/D that are in the ellipse. Simi-

lar results can be found in Guiard (1989) and Milliken (1982). We slightly modify that

procedure and use the interval that is the intersection of Fieller’s interval and [0,1], the

domain for our ratio.

In our situation, Fieller’s procedure can result in four types of confidence sets for the

ratio: a simple bounded interval that is contained in [0,1], an ”unbounded interval” that

becomes [0,1] when intersected with the domain of the ratio, a disjoint interval, or an

empty interval. Figure 2 illustrates the first three of these cases. The first type (simple

bounded) of set can occur when the confidence ellipse for N and D is in quadrant 1

or quadrant 3 and does not intersect the y-axis. The second type of set (unbounded)

occurs when the origin is in the ellipse. The third type of set (disjoint) occurs when

the ellipse intersects the y-axis, but does not contain the origin. The fourth type of set

(empty) occurs when all of the ratios formed by the set of Ns and Ds inside the ellipse

are outside of the [0,1] domain for the ratio. As the main study and validation sample

sizes become large, the intervals will be of the simple bounded type. In our case, from

the central limit theorem, we have


π̂naive + θ̂00 − 1

θ̂11 + θ̂00 − 1


 D−→ MV N








πnaive + θ00 − 1

θ00 + θ11 − 1


 ,




σ11 σ12

σ12 σ22








with σ11 = πnaive(1−πnaive)
n + θ00(1−θ00)

N11
, σ22 = θ11(1−θ11)

N11
+ θ00(1−θ00)

N11
, σ12 = θ00(1−θ00)

N11
, and

zα/2 the 1 − α/2 quantile of the standard normal distribution, the ellipse for a 1 − α
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interval is




N,D :




N − N̂

D − D̂




T


σ11 σ12

σ12 σ22




−1


N − N̂

D − D̂


 ≤ z2

α/2





.

Note that the zα/2 comes from the approximate normality of N̂−πD̂. An alternate region

could be defined using the approximate χ2
2 distribution of the quadratic form.

Algebraically, Fieller’s interval is from

P

(
| N̂ − πD̂

σ̂11 + π2σ̂22 − 2πσ̂12
| ≤ zα/2) = P (f0 − 2f1π + f2π

2 ≤ 0

)
≈ 1 − α

since N̂−πD̂
D−→ N(0, σ11+π2σ22−2πσ12), where f0 = N̂2−z2

α/2σ̂11, f1 = D̂N̂−z2
α/2σ̂12,

and f2 = D̂2 − z2
α/2σ̂22. Further, let C = f2

1 − f2f0, r1 = (f1 +
√

C)/f2, and r2 =

(f1−
√

C)/f2. If C ≥ 0 and f2 ≥ 0, then the confidence interval is [r2, r1]∩ [0, 1]. If C ≥ 0

and f2 < 0, then the confidence interval is [0, r1] ∪ [r2, 1]. If C < 0, then the confidence

interval is [0, 1]. We evaluate the performance of this method in a simulation experiment

in Chapter 5.
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C H A P T E R 4

REGRESSIONMODELS WITHMISCLASSIFIED COVARIATES

In this chapter, we will focus on linear regressionmodels with mismeasured discrete

covariates, that is, misclassified covariates. It is known that coefficient estimators of a

simple regression model with mismeasured covariates will always be biased unless the

slope is zero. Section 3.2 of Carroll et al. (2006) and Buonaccorsi et al. (2005), both give

a bias expression for a linear regression model with misclassified binary covariates and

a possibly perfectly measured univariate covariate.

Akazawa et al. (1998) prove that the corrected score function for a generalized linear

model with misclassified covariates exists if the misclassification modelP is known (see

Section 2.3 for definition of P). In this case, we can use a corrected score function to ob-

tain asymptotically unbiased estimators for the true coefficients (Nakamura, 1990). We

should note that a corrected score function does not always exist for regression models

with mismeasured continuous covariates (Nakamura, 1990, Section 4.6).

The corrected score function for a regressionmodel with misclassified covariates will

involve P−1. We have proven that P̂−1 is not an unbiased estimator for P−1 when P̂ is

an unbiased estimator for P (except in trivial cases), and, in fact, an unbiased estimator

of P−1 does not exist (see Section 2.3.1). If the misclassification model P̂ is estimated

from validation data, a “corrected” score function that plugs in P̂−1 for P−1 without

modification, is not a corrected score function.

In this chapter, we will use the approach of Akazawa et al. (1998) and study the

impact of corrected estimators using the score function approach when the misclassifi-
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cation model is estimated from external data. We will provide improved methods for

estimating the regression coefficients and making inference if a reclassification model is

known or estimated. We also develop confidence intervals for the slope of simple linear

regression with misclassified binary covariates.

This chapter is organized as follows: first we will establish the notation, then in sec-

tion 4.1 we will study the bias of the naive least squares estimator for coefficients of

linear regression models with misclassified covrariates. We will use Fieller’s method to

find confidence intervals for the slope of a regression model with misclassified binary

data in section 4.2. In section 4.3 we will discuss a corrected score function approach,

and in section 4.4 we will explore using the reclassification model to correct the coeffi-

cients of regression models with misclassified covariates. Sections 4.1 through 4.4 deal

with linear regression models with only misclassified covariates. In section 4.5 we will

discuss linear regression with misclassified data and perfectly measured data.

In this chapter, we assume that the categorical data hasK categories, from 0, . . . K−1.

We will use a K × 1 vector with 1 in the position of the category and 0 elsewhere to

represent a single categorical random variable. Throughout the chapter, all vectors will

be underlined, and all matrices will be bold.

We will useX for a true value, andW for an observation that is subject to misclassi-

fication.

ForW = (w0, . . . , wK−1)
T, we will refer toW = m forW in themth category, that is

wm = 1 and wj = 0 for j 6= m.

Also forX = (x0, . . . , xK−1)
T, we will refer toX = m forX in themth category, that

is xm = 1 and xj = 0 for j 6= m.

We will use the notation ek to denote a K × 1 vector with a 1 in kth position and 0

elsewhere, k = 0, . . . K−1.We also letMml be aK×K matrix with 0 everywhere except

in positionm, l which is 1 , and in positionK, l which contains a −1, m, l = 0 . . . K − 1.
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As we defined in Section 2.3, θml = P (W = m|X = l), γml = P (X = m|W = l),

P =




θ00 θ01 . . . θ0(K−1)

...
...

. . .
...

θ(K−1)0 θ(K−1)1 . . . θ(K−1)(K−1)


 = (θ0, θ1, . . . , θK−1), and

Q =




γ00 γ01 . . . γ0(K−1)

...
...

. . .
...

γ(K−1)0 γ(K−1)1 . . . γ(K−1)(K−1)


 = (γ

0
, γ

1
, . . . , γ

K−1
).

P andQ are themisclassification model and reclassification model respectively. Also we

define πj = P (X = j), λj = P (W = j), π = (π0, . . . , πK−1)
T, and λ = (λ0, . . . , λK−1)

T.

We know λ = Pπ and π = Qλ.

From the definition of P and Q, θml = P (W = m|X = l), γml = P (X = m|W = l),

we do not have P = Q−1. Let Dλ be a diagonal matrix with λ along the diagonal and

Dπ be a diagonal matrix with π along the diagonal. Using

θml = P (W = m|X = l) = P (W = m)P (X = l|W = m)/P (X = l) = λmγml/πl,

the relationship betweenP andQ is

P = DλQ
TD−1

π , orQ = DπP
TD−1

λ .

In this chapter, we will assume P is invertible and πk 6= 0, k = 0 . . . K − 1.

4.1 Naive Estimators

In this section, we derive the behavior of least squares estimators of linear regression

coefficients in the presence of misclassified covariates.

Consider the linear regressions E(Y |X) = XTβ and E(Y |W ) = WTβ
W
, where

β = (β0, . . . , βK−1)
T, and β

W
is the coefficient vector under the observed data. Lin-

ear regression with covariates that have K categories is like a one factor experimental

design model with K levels. As a result, the regression model that we consider can be
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written as a cell means model. Of course, we could write the regression model as a fac-

tor effect model (see Christopher and Kupper (1995) for that approach). Next, we will

derive the relationship between β and β
W
when reclassification modelQ is available.

Theorem 4.1.1 We consider the observed data yi,W i, i = 1 . . . n where the dimension ofW i is

K × 1, andW i is the observed for X i. Let

W =




WT

1

WT

2

...

WT

n




,X =




XT

1

XT

2

...

XT

n




, Y =




y1

y2

...

yn




.

We have the linear regression E(Y |X) = XTβ and E(Y |W ) = WTβ
W
, then the least squares

naive estimator β̂
W

= (WTW)−1WTY
P−→ QTβ.

Proof From the model assumption, E
(
β̂

W
|W,X

)
= (WTW)−1WTXβ.

Also, E
{
(WTW)−1WTX|W

}
= (WTW)−1WTWQT = QT, and we have

Eβ̂
W

= QTβ.

Therefore, β̂
W
is an unbiased estimator for QTβ. Since β̂

W
is a least squares esti-

mator, it is, a consistent estimator for β
W
(see Shaw, 2003, Theorem 3.11 for additional

technical conditions), and β̂
W

P−→ QTβ.

Christopher and Kupper (1995) also have a result that is similar to Theorem 4.1.1,

but ours is proven differently.

Remark Wenote thatWTW is a diagonal matrix with diagonal the number of observed

data in each category, that is E(WTW) = nDλ. We also observe that

E(WTX)ij =
n∑

l=1

E(wilxjl) =
n∑

l=1

P (W l = i,X l = j) = nP (W = i,X = j)

= nγjiλi = n
(
DλQ

T

)
ij

, and we have E(WTY ) = nDλQ
Tβ.
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We could have used β
w

= Var(W )−1 Cov(W,Y )to derive the relationship between

β
W
and β. But Var(W ) is singular, sinceW is multinomial distributed with parameter

λ. We would need to use a factor effect model, that is, a regressionmodel with intercept.

From Theorem 4.1.1, ifQ is known and invertible, we can have a consistent corrected

estimator β̂
c
= (QT)−1β̂

W
. IfQ is estimated from external validation data and Q̂ is con-

sistent forQ, (Q̂T)−1β̂
W
is not a consistent estimator for β unless the validation sample

size also goes to infinity.

IfP is known, we can use the relationship betweenP andQ and get Q̂ = DbπP
TD−1

bλ
.

Then we can have β̂
c
= (Q̂T)−1β̂

W
as an estimator for β. If P is estimated from external

data, and P̂ is an unbiased estimator forP, we still can get Q̂ = DbπP̂
TD−1

bλ
, then use the

same formula above to get a correction estimator for β. To use this method, we need an

estimate of π (see Chapter 2).

4.2 Confidence Interval for the Slope

In this section, we will do two things. We will derive the relationship between the

naive estimators and true coefficients in the simple linear regressionmodelwithmisclas-

sified binary covariates and a misclassification model. After that, we will use Fieller’s

method to get a confidence interval for the slope. Note that this is another application

of the general method we described in the Section 4.1.

Now we considerK = 2 and π = P (X = 1).

Corollary 4.2.1 Consider the model y = β0 + β1x + ǫ, where x = 0 or 1, and ǫ ∼ N(0, σ2).

Observe wi instead of xi, wi = 0 or 1. Given the observed data and letting β̂wi be the naive least

square estimator, then lim
n→∞

β̂w1 =
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
β1.

Proof

lim
n→∞

β̂w1 =
Cov(W,Y )

Var(W )
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=
E(WY ) − EWEY

λ(1 − λ)

=
λβ0 + θ11β1π − λ(β0 + β1π)

λ(1 − λ)

=
β1(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
,

where

E(WY ) = E[E (WY |X)]

= E [E (W |X) (β0 + β1X)]

= E[ {(1 − θ00) (1 − X) + θ11X} (β0 + β1X)]

= β0(1 − θ00)(1 − π) + θ11β0π + θ11β1π

= λβ0 + θ11β1π,

from λ = θ11π + (1 − θ00)(1 − π) and θ11 − λ = (1 − π)(θ00 + θ11 − 1).

We should make a note that when λ = 1 or λ = 0, the slope of a naive estimator can

not be calculated since then there is a unique value forW.We also note that

β1 = E[Y |X = 1] − E[Y |X = 0].

From Corollary 4.2.1, we can make the following remarks:

Remark As a result, the coefficient causing bias in the slope is
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
.

In simple linear regression with a continuous covariate that suffers from nondifferen-

tial additive error, the coefficient that causes bias is an attenuation factor that biases β̂1

toward zero. For the misclassification case, this is also true. We prove that in the follow-

ing corollary. After the corollary, we also investigate when the inequality in the result is

strict.

Corollary 4.2.2

∣∣∣∣
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)

∣∣∣∣ ≤ 1.
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Proof Assume

∣∣∣∣
(θ00+θ11−1)π(1−π)

λ(1−λ)

∣∣∣∣ > 1, and without loss of generality, we will assume

θ00 + θ11 − 1 > 0. Using the fact that π =
λ + θ00 − 1

θ00 + θ11 − 1
,we will have

(θ00 + θ11 − 1)π(1 − π) > λ(1 − λ)

(λ + θ00 − 1)(θ11 − λ) > (θ00 + θ11 − 1)λ(1 − λ)

−λ2 + (θ11 − θ00 + 1)λ − θ11(1 − θ00) > (1 − θ00 − θ11)λ
2 + (θ00 + θ11 − 1)λ

(2 − θ00 − θ11)λ
2 − 2(1 − θ00)λ + θ11(1 − θ00) < 0.

Let f(λ) = (2−θ00−θ11)λ
2−2(1−θ00)λ+θ11(1−θ00). Then f(λ) is a quadratic equation

with non-negative leading coefficients. If 2 − θ00 − θ11 = 0, we have θ00 = θ11 = 1, and

we will have the result. If 2 − θ00 − θ11 > 0, f(λ)will achieve a negative value if

(1 − θ00)
2 − (2 − θ00 − θ11)θ11(1 − θ00) ≥ 0

(1 − θ00) − (2 − θ00 − θ11)θ11 ≥ 0 or θ00 = 1

θ2
11 − θ11(1 − θ00) + (1 − θ00 − θ11) ≥ 0 or θ00 = 1

(1 − θ00 − θ11)(1 − θ11) ≥ 0 or θ00 = 1.

Since θ00 + θ11 − 1 > 0, we should have θ11 = 1 or θ00 = 1. If θ11 = 1, we have λ =

θ00π + (1 − θ00), and 1 − λ = θ00(1 − π). Then

(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
=

θ00π(1 − π)

{θ00π + (1 − θ00)}θ00(1 − π)
=

π

θ00π + (1 − θ00)
> 1

and we will have π > 1 which is impossible. We will do the same argument for θ00 = 1.

So we have ∣∣∣∣
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)

∣∣∣∣ ≤ 1.

Remark β̂w1 is an unbiased estimator for β1 if either β1 = 0 or θ00 + θ11 − 1 = 1 (trivial

case and no misclassification) or
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
= 1. We will prove the latter

case is impossible in the following corollary.

Corollary 4.2.3

(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
6= 1 if θ00 + θ11 − 1 6= 1.
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Proof Assume
(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
= 1, and θ00 + θ11− 1 6= 1. From the assumption,

we will have:

θ00 + θ11 − 1 > 0, π 6= 0, π 6= 1 and

(θ00 + θ11 − 1)π(1 − π) = λ(1 − λ).

Since π =
λ + θ00 − 1

θ00 + θ11 − 1
,we have:

(λ + θ00 − 1)(θ11 − λ) = (θ00 + θ11 − 1)λ(1 − λ)

(2 − θ00 − θ11)λ
2 + 2(θ00 − 1)λ + (1 − θ00)θ11 = 0. (4.1)

In order to have a solution for λ in Equation 4.1, we should have

(1 − θ00)
2 − θ11(1 − θ00)(2 − θ00 − θ11) = (1 − θ00)(1 − θ11)(1 − θ00 − θ11) ≥ 0.

Since θ00 + θ11 − 1 > 0,we will have θ00 = 1 or θ11 = 1. If θ00 = 1, then λ = 0 and π = 0.

If θ11 = 1, then λ = 1 and π = 1. This proves that we cannot have the attenuation factor

(θ00 + θ11 − 1)π(1 − π)

λ(1 − λ)
= 1 for the nontrivial case.

As a result, β̂w1 is a always biased estimator for β1, unless β1 = 0 or there is no misclas-

sification in the data.

Remark If the conditional variance of Y given X is constant, the conditional variance

of Y given W is not necessarily constant. It is constant if P (X = 1|W = 1) = P (X =

1|W = 0) or P (X = 1|W = 1) = P (X = 0|W = 0) (assuming the misclassification is

non-differential, i.e., the conditional distribution of W |X,Y is the same asW |X). This

result can be seen from:

Var(Y |W )

= E[ Var(Y |W,X)|W ] + Var[E(Y |W,X)|W ]

= E[ Var(Y |X)|W ] + Var[E(Y |X)|W ]

= σ2 + β2
1 {P (X = 1|W = 1)P (X = 0|W = 1)W + P (X = 1|W = 0)P (X = 0|W = 0)(1 − W )}

= σ2 + β2
1

{
θ11πθ10(1 − π)

λ2
W +

θ01πθ00(1 − π)

(1 − λ)2
(1 − W )

}
.
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We can use Var(Y ) = E[ Var(Y |W )]+ Var[E(Y |W )] and the above expression of Var[Y |W ]

to estimate σ2.

Also from Corollary 4.2.1, we can define a corrected estimator for the slope

β̂c1 =
λ̂(1 − λ̂)

π̂(1 − π̂)(θ̂11 + θ̂00 − 1)
β̂w1.

See sections 2.1, 2.2 for methods of estimating π.

We will use Fieller’s method to get a confidence interval for the corrected slope

β1 =
λ(1 − λ)βw1

π(1 − π)(θ00 + θ11 − 1)
=

λ(1 − λ)(θ00 + θ11 − 1)βw1

(λ + θ00 − 1)(θ11 − λ)
.

See Section 3.2 for a more general discussion of Fieller’s method. Let the numerator

be N̂ = λ̂(1 − λ̂)(θ00 + θ11 − 1)β̂w1 when the misclassification is known, (and N̂ =

λ̂(1 − λ̂)(θ̂11 + θ̂00 − 1)β̂w1 when misclassification is estimated from external data). Let

the denominator be D̂ = (λ̂ + θ00 − 1)(θ11 − λ̂) when the misclassification is known,

(and D̂ = (λ̂ + θ̂00 − 1)(θ̂11 − λ̂) when the misclassification is estimated from external

data). Let σ11 = Var(N̂), σ22 = Var(D̂) and σ12 = Cov(N̂ , D̂). As before, we compute

f0 = N̂2 − z2
α/2σ̂11, f1 = D̂N̂ − z2

α/2σ̂12, f2 = D̂2 − z2
α/2σ̂22, C = f2

1 − f2f0 and r1 =

f1 + C .5

f2
, r2 =

f1 − C .5

f2
. If D ≥ 0 and f2 ≥ 0, then [r1, r2] is a 100(1 − α)% confidence

interval for β1. If C ≥ 0 and f2 < 0,then (−∞, r2] ∪ [r1,∞) is a 100(1 − α)% confidence

interval for β1. If C < 0, then the confidence interval is (−∞,∞).

When the misclassification is estimated from external data. We can rewrite

N̂ =
(θ̂11 + θ̂00 − 1)

∑
i Yi(Wi − λ̂)

n
=

Z1(θ̂11, θ̂00)Z2(Y,W)

n
,

D̂ = Z3(λ̂) + Z4(λ̂, θ̂11, θ̂00) + Z5(θ̂11, θ̂00),

where

Z1(θ̂11, θ̂00) = θ̂11 + θ̂00 − 1,

Z2(Y,W) =
∑

i

Yi(Wi − λ̂)
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Z3(θ̂11, θ̂00) = θ̂11(θ̂00 − 1),

Z4(λ̂, θ̂11, θ̂00) = (θ̂11 − θ̂00)λ̂ and

Z5(λ̂) = λ̂(1 − λ̂).

The following lemmas develop the computations we need for σ11 = Var(N̂), σ22 =

Var(D̂) and σ12 = Cov(N̂ , D̂).

Lemma 4.2.4 V ar(h1h2) = V ar(h1)V ar(h2) + V ar(h1)[E(h2)]
2 + [E(h1)]

2 Var(h2) where

h1, and h2 are independent random variables.

Proof

Var(h1h2) = E[ Var(h1h2|h1)] + Var[E (h1h2|h1) ] = E(h2
1) Var(h2) + Var[h1E (h2) ]

= [ Var(h1) + (Eh1)
2] Var(h2) + Var(h1)(Eh2)

2.

Lemma 4.2.5 If (h1, h2) and (g1, g2) are independent, then

Cov(h1g1, h2g2) = Cov(h1, h2)Cov(g1, g2)+E(h1)E(h2)Cov(g1, g2)+Cov(h1, h2)E(g1)E(g2).

Proof

Cov(h1g1, h2g2) = E[ Cov (h1g1, h2g2|h1, h2) ] + Cov[E (h1g1|h1, h2) , E (h2g2|h1, h2) ]

= E(h1h2) Cov(g1, g2) + Cov(h1, h2)E(g1)E(g2)

= Cov(h1, h2) Cov(g1, g2) + E(h1)E(h2) Cov(g1, g2) + Cov(h1, h2)E(g1)E(g2).

Lemma 4.2.6

E(Z2) = (n − 1)λ(1 − λ)βw1,

V ar(Z2) = β2
w1V ar[nλ̂(1 − λ̂)] +

{
σ2 +

β2
1θ01πθ00(1 − π)

(1 − λ)2
(n − 1)λ(1 − λ)

}

+nβ2
1

{
θ11πθ10(1 − π)

λ2
− θ01πθ00(1 − π)

(1 − λ)2

}
E(λ̂ − 2λ̂2 + λ̂3)

Cov(Z2, λ̂) = nβw1Cov[λ̂(1 − λ̂), λ̂]

Cov[Z2, λ̂(1 − λ̂)] = nβw1V ar[λ̂(1 − λ̂)]
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Proof

E(Z2) = E

[
E

{∑

i

Yi(Wi − λ̂)|W
}]

= E

[∑

i

(Wi − λ̂)(βw0 + βw1Wi)

]

= nβw1E[λ̂(1 − λ̂)]

= = (n − 1)βw1λ(1 − λ)

Var(Z2) = E

[
Var

{∑

i

Yi(Wi − λ̂)|W
}]

+ Var

[
E

{∑

i

Yi(Wi − λ̂)|W]

]

= E

[∑

i

(Wi − λ̂)2
{

σ2 + β2
1 [

θ11πθ10(1 − π)

λ2
Wi +

θ01πθ00(1 − π)

(1 − λ)2
(1 − Wi)]

}]

+ Var

[∑

i

(βw0 + βw1Wi)(Wi − λ̂)

]

= β2
w1 Var

[
nλ̂(1 − λ̂)

]
+

{
σ2 +

β2
1θ01πθ00(1 − π)

(1 − λ)2

}
(n − 1)λ(1 − λ)

+nβ2
1

{
θ11πθ10(1 − π)

λ2
− θ01πθ00(1 − π)

(1 − λ)2

}
E(λ̂ − 2λ̂2 + λ̂3)

Cov(Z2, λ̂) = E

[
Cov

{∑

i

Yi(Wi − λ̂), λ̂

∣∣∣∣W
}]

+ Cov

[
E

{∑

i

Yi(Wi − λ̂)|W
}

, E
{
λ̂|W

}]

= Cov

[∑

i

(βw0 + βw1Wi)(Wi − λ̂), λ̂

]

= nβw1 Cov[λ̂(1 − λ̂), λ̂]

Lemma 4.2.7

Eλ̂3 =
(n − 1)(n − 2)λ3 + 3(n − 1)λ2 + λ

n2

Eλ̂4 =
(n − 1)(n − 2)(n − 3)λ4 + 6(n − 1)(n − 2)λ3 + 7(n − 1)λ2 + λ

n3

Cov[λ̂(1 − λ̂), λ̂] =
λ(1 − λ)(1 + λ)

n
+ λ3 − Eλ̂3

Var[λ̂(1 − λ̂)] =
λ(1 − λ)

n
+ 2

{
λ3 +

λ2(1 − λ)

n
− Eλ̂3

}
+ Eλ̂4 −

{
λ2 +

λ(1 − λ)

n

}2

From those lemmas, when the misclassification model is estimated, we will have

σ11 =

{
θ11(1−θ11)

N.1
+ θ00(1−θ00)

N.0

}{
Var(Z2) + (EZ2)

2
}

+ (θ00 + θ11 − 1)2 Var(Z2)

n2
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σ12 =
Cov(Z1Z2, Z3) + Cov(Z1Z2, Z4) + Cov(Z1Z2, Z5)

n

=
1

n

{
E(Z2) Cov(Z1, Z3) + E(Z1) Cov(Z2, Z5) + Cov(Z1, θ̂11 − θ̂00) Cov(Z2, λ̂)

+E(Z1)(θ11 − θ00) Cov(Z2, λ̂) + Cov(Z1, θ̂11 − θ̂00)E(Z2)λ
}

=
1

n

[
E(Z2)

{
Var(θ̂11)(θ00 − 1) + θ11 Var(θ̂00)

}
+ (θ00 + θ11 − 1) Cov(Z2, Z5)

+
{
Var(θ̂11) − Var(θ̂00)

}{
Cov(Z2, λ̂) + λE(Z2)

}

+(θ00 + θ11 − 1)(θ11 − θ00) Cov(Z2, λ̂)
]

σ22 = Var(Z3) + Var(Z4) + Var(Z5) + 2 { Cov(Z3, Z4) + Cov(Z3, Z5) + Cov(Z4, Z5)}

= Var(θ̂11)
{
Var(θ̂00) + (1 − θ00)

2
}

+ θ2
11 Var(θ̂00)

+
{
Var(θ̂11) + Var(θ00)

}{
Var(λ̂) + λ2

}
+ (θ11 − θ00)

2 Var(λ̂) + Var[λ̂(1 − λ̂)]

+2
{

(θ00 − 1) Var(θ̂11) − θ11 Var(θ̂00)
}

λ + 2(θ11 − θ00) Cov(λ̂, 1 − λ̂)

=
θ11(1 − θ11)θ00(1 − θ00)

N.1N.0
+

θ00(1 − θ00)

N.0

{
λ(1 − λ)

n
+ (λ − θ11)

2

}

+2(θ11 − θ00) Cov[λ̂, λ̂(1 − λ̂)] +
θ11(1 − θ11)

N.1

{
λ(1 − λ)

n
+ (1 − λ − θ00)

2

}

+(θ11 − θ00)
2 Var(λ̂) + Var[λ̂(1 − λ̂)]

When the misclassification matrix is known, using the above lemmas, we will have :

σ11 =
(θ00 + θ11 − 1)2 Var(Z2)

n2
,

σ12 =
(θ00 + θ11 − 1) Cov[Z2, λ̂(1 − λ̂)] + (θ00 + θ11 − 1)(θ11 − θ00) Cov(Z2, λ̂)

n
, and

σ22 = Var[λ̂(1 − λ̂)] + (θ11 − θ00)
2 Var(λ̂) + 2(θ11 − θ00) Cov[λ̂(1 − λ̂), λ̂].

4.3 Score Function Approach

In this section, we will first use the result from Akazawa et al. (1998) to get the

corrected score for linear regression model with misclassified covariates when the mis-

classification model P is known, and show how it can be used to estimate β. Then

we extend the approach to the case when the misclassification model is estimated from
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external data.

Assume the linear regressionmodel Y = XTβ + ǫ =

K−1∑

k=0

xkβk + ǫwhere ǫ ∼ N(0, σ2)

with unknown σ2. Instead of observingX, we observeW = (w0, ...., wK−1)
T.

Assume we have data (y1,W 1), (y2,W 2), . . . , (yn,W n). Let

Y =




y1

...

yn


 ,WT =




WT

1

WT

2

...

WT

n




.

Then ℓ(β, Y ,W) = −n
2 log(2πσ2)−(2σ2)−1

n∑

i=1

(yi−WT

i β)2 is the log-likelihood function,

S(β, Y ,W) = ∂ℓ
∂β is the score function, and I(β,W) = E ∂S

∂β is the Fisher information. We

should note that the solution of S(β, Y ,W) = 0 is an estimator of β
W

, and it is often

biased for β.

We note that g(β, Y ,W) is called a corrected log likelihood function if

E[g(β, Y ,W)|Y ,X] = ℓ(β, Y ,X),

for β in an open convex subset of the parameter space and whereX = (X1,X2 . . . ,Xn)

are the true (unobserved) values ofW. In this case,
∂g(β, Y ,W)

∂β
is called a corrected

score function (Nakamura, 1990).

Let

ℓP(β, Y ,W) = −n

2
log(2πσ2)−(2σ2)−1

n∑

i=1

[
y2

i −2yiβ
TP−1W i+βT

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k β

]
,

whereP is the knownmisclassificationmodel. We note that
n∑

i=1

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k

is the diagonal matrix with estimated true category frequencies on the diagonal, that is

n∑

i=1

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k = nDbπ with π̂ = P−1λ̂.

Using that fact thatE[W i|X i = m] =




θ0m

...

θ(K−1)m


 = θm, andP−1P = I = P−1(θ0, θ1, . . . , θK−1),
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we have P−1θm = em and E[P−1W i|X i = m] = P−1θm = em. So,

E[ℓP(β, Y ,W)|Y ,X]

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

E

[
y2

i − 2yiβ
TP−1W i + βT

K−1∑

k=0

{(P−1W i)
Tek}eke

T

k β|yi,X i

]

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

E

[
y2

i − 2yiβ
TP−1W i

+βT

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k β|yi,X i = m

]
1Xi=m

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

[
y2

i − 2yiβem + βT

K−1∑

k=0

{(em)Tek}eke
T

k β

]
1Xi=m

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

(y2
i − 2yiβm + β2

m)1Xi=m (4.2)

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

(yi − XT

i β)2

= ℓ(β, σ2Y ,X)

Therefore ℓP(β, Y ,W,P) is a corrected log likelihood function and

SP(β, Y ,W,P) =
∂ℓP
∂β

= σ−2

[ n∑

i=1

yiP
−1W i −

n∑

i=1

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k β

]

= σ−2(P−1WTY − nDbπβ)

is a corrected score function for β. The solution of SP(β, Y ,W,P) = 0 is

β̂
P

=

[ n∑

i=1

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k

]−1

(
n∑

i=1

yiP
−1W i) (4.3)

= D−1
bπ P−1WTY /n.

This gives an asymptotically unbiased estimator for β. Actually β̂
P
is an unbiased esti-

mator for β (further explanation follows in the remark at the end of this section). Naka-

mura (1990) proves that under certain regularity conditions, the solution of a corrected

score function is asymptotically normal withmean β, the true parameter, and covariance
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matrix I(β,W)−1C(β,W )I(β,W)−1whereC(β,W ) is the unconditional covariance ma-

trix of SP.

Next, we will find the estimator for σ2, then use Nakamura (1990) to find the covari-

ance matrix of β̂
P
. To make notation simpler, we will let X̂i = P−1W i, then

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k = D bXi
.Letting

X̂ =




X̂
T

1

. . .

X̂
T

n


 = W(P−1)T,

by differentiating corrected loglikelihood function lP, an estimate for σ
2 is

σ̂2
P =

n∑

i=1

(y2
i − 2yiβ̂

T

P
X̂i + β̂

T

P
DbXi

β̂
P
)/n.

The corrected observed information IP is

IP(β,Y,W) = σ̂−2
P

n∑

i=1

K−1∑

k=0

{
(P−1W i)

Tek

}
eke

T

k = nDbπ/σ̂2
P.

According to Nakamura (1990), there are two ways to estimate the covariance matrix

of β̂
P
. We will first use the simple one. Let

V(β, Y ,W) =
n∑

i=1

[
yiX̂i − D bXi

β

][
yiX̂i − D bXi

β

]
T

/σ̂4
P,

then the asymptotic covariance matrix of β̂
P
is

Σ̂
1(bβ

P
)

= IP(β̂
P
,Y,W)−1V(β̂

P
, Y ,W)IP(β̂

P
,Y,W)−1

= D−1
bπ

n∑

i=1

[
yiX̂i −D bXi

β

][
yiX̂ i − D bXi

β

]
T

D−1
bπ /n2,

which is equation (4) of Nakamura (1990).

Nakamura (1990) points out that if there is ω(β, y,W ) such that

E[ω(β, y,W )|y,X ] = S(β, y,X)S(β, y,X)T
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where S(β, y,X) =
∂ℓ(β,y,X)

∂β and ℓ(β, y,X) is the log-likelihood function of β given data

y,X, then we can use

Σ
2(bβ

P
)

= IP(β̂
P
,Y,W)−1

{
V(β̂

P
, Y ,W) −

n∑

i=1

ω(β
P
, yi,W i)

}
IP(β̂

P
,Y,W)−1

+IP(β̂
P
,Y,W)−1

as an asymptotic covariance matrix for β̂
P
. Nakamura (1990) also uses simulation to

demonstrate that the covariance matrix involving ω(β, y,W ) is more efficient than using

the other one.

We should note that such ω(β, y,W ) is not always available. Also in our case

S(β, y,X) = (y − XTβ)X/σ2,

S(β, y,X)S(β, y,X)T = (y − XTβ)2XXT/σ4.

In the following lemma, we will prove ω(β, y,W ) exists for our case.

Lemma 4.3.1 Let

ω(β, y,W ) =

K−1∑

k=0

[{
y2 − 2yβTek + βTeke

T

k β
}

(P−1W )Tek

]
eke

T

k /σ4.

Then

E[ω(β, y,W )|y,X ] = (y − XTβ)2XXT/σ4.

Proof Following the lines in equations 4.2, we should have

E

[
K−1∑

k=0

{
P−1W )Tek

}
eke

T

k |y,X

]
= XXT

and βTek = βk, so we have E[ω(β, y,W )|y,X ] = (y2 − 2yβX + βXβX)XXT/σ4.

We should note that

ω(β, y,W ) 6=
[
yP−1W −

K−1∑

k=0

{
(P−1W )Tek

}
eke

T

k

][
yP−1W −

K−1∑

k=0

{
(P−1W )Tek

}
eke

T

k

]T

/σ4,

and E[SP(β, y,W ,P)SP(β, y,W ,P)T|y,X ] 6= S(β, y,X)S(β, y,X)T.

Wewill use simulation to to compare the efficiency of Σ̂
1(bβ

P
)
and Σ̂

1(bβ
P

)
in Chapter 5.
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Remark We could regress yi on X̂i and estimate regression coefficients. This is a regres-

sion calibration method. The least squares estimator for regression calibration is β̂
PR

=

(X̂TX̂)−1X̂TY . By comparing the structure of β̂
P
and β̂

PR
, nDbπ is a diagonal matrix but

X̂TX̂ is not necessarily diagonal. We should note again that XTX is a diagonal matrix

due to the nature of categorical data. Also Eβ̂
P

= D−1
π P−1DλQ

Tβ = (Q−1)TQTβ = β,

using E(WTY ) = nDλQ
Tβ from the remark after Theorem 4.1.1, so β̂

P
is an unbiased

estimator for β̂, even for small sample size.

Eβ̂
PR

=
{
n(P−1)Dλ(P−1)T

}−1
P−1nDλQ

Tβ = PTQβ is not an unbiased estimator

for β unless P = Q−1.

Remark In the above we assume normality, but it is not really necessary. Using the least

squares approach, we get the estimating equation

WT(Y − Wβ) = 0.

E[WT(Y −Wβ)|X, Y ] = PXTY −nDbλ
β assuming the misclassification inW is non-

differential with y. Then E[WT(Y −Wβ)] = nPDπβ − nDbλ
β.We can use the modified

estimation equation approach (Buonaccorsi,1996), and solve for β in

WT(Y − Wβ) − (nPDπβ − nDλβ) = 0.

This gives β̂ = D−1
bπ P−1WTY /n. So we do not really need the normality assumption if

we just want to get an estimator for the coefficient.

4.3.1 Inference for β When P is Estimated

Sometimes the misclassification model P is not known, and it is often estimated

from some validation data. In this section, we will assume P is estimated from external

validation data, and we will derive sampling covariance of β̂ bP
that includes variability

from the validation data.
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WhenP is estimated from external data, (P̂)−1 is not an unbiased estimator forP−1,

and ℓbP
(β, Y ,W) from previous section is not a corrected log likelihood function. Simi-

larly, SbP
(β) =

∂ℓbP

∂β is not a corrected score function, and any corrected function involving

P̂−1 is not a corrected score function. In section 2.3.1 we prove that an unbiased estima-

tor for P−1 does not exist.

Let (Y n,Wn, P̂Nn) be a sequence of data where (Y n,Wn) is the observed data with

sample size n, and P̂Nn is an unbiased estimator for Pwith Nn the minimum of valida-

tion size over all categories. Then we have P̂−1
Nn
as a sequence of consistent estimators

for P−1 as Nn → ∞. We know β̂
P

p−→ β when the main study size n goes to infinity.

Then we have β̂ bPNn

p−→ β as Nn, n → ∞ according to the generalized Slutsky theorem

(Demidenko, 2004).

We should use the sandwich method or pseudo likelihood approach to get the vari-

ance for β̂ bP
. We know the misclassification model

P =




θ00 θ01 . . . θ0(K−1)

θ10 θ11 . . . θ1(K−1)

. . . . . . . . . . . .

1 −∑K−2
i=0 θi0 1 −∑K−2

i=0 θi1 . . . 1 −∑K−2
i=0 θi(K−1)




is a function of

(θ00, . . . , θ(K−2)0, θ01, . . . , θ(K−2)1, . . . , θ0(K−1), . . . , θ(K−2)(K−1))
T = θ.

The corrected observed information matrix for (βT,p) is

(
H11 H12

H21 H22

)
where

H11 = − ∂2ℓ∗

∂β∂βT
,H12 = HT

21 =
∂2ℓ∗

∂β∂θT
,H22 =

∂2ℓ∗

∂θ∂θT
.

Also the covariance estimate for θ is

Σθ =




Σ0 0 . . . 0

0
¯

Σ2 . . . 0

0 0
. . . 0

0 0 . . . ΣK−1




,where
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Σk =
1

N.k




θ̂0k(1 − θ̂0k) −θ̂0kθ̂1k . . . −θ̂0kθ̂(K−2)k

−θ̂1kθ̂0k θ̂1k(1 − θ̂1k) . . . −θ̂1kθ̂(K−2)k

. . . . . . . . . . . .

−θ̂(K−2)kθ̂0k −θ̂(K−2)kθ̂1k . . . θ̂(K−2)k(1 − θ̂(K−2)k)




Assume ΣK is the asymptotic covariance matrix of β
P
if P is known using Σ̂

1(bβ
P

)
or

Σ̂
2(bβ

P
)
. Then, from Parke (1986), we can estimate the covariance of β̂bP

by:

Σ
(bβ

bP
)
= ΣK + H−1

11 H12ΣθH
T

12(H
−1
11 )T, whereHij are

H11 = σ̂−2
bP

nDbπ, and

H12 = (h00, h10, . . . , h(K−2)0, h01, . . . , h(K−2)1, . . . , h0(K−1), . . . , h(K−2)(K−1)K)where

hml = σ̂−2
bP

[
P̂−1MmlP̂

−1WTY − nDbπ∗ β̂ bP

]
with

π̂∗ = P̂−1Mmlπ̂.

4.4 Reclassification Model

In this section, we will focus on a reclassification model, where the relationship be-

tween X and W is specified by γij = P (X = i|W = j). From Section 4.1, we know

Eβ̂
W

= QTβ where β
W
is the least squares naive estimator andQ is the reclassification

model. IfQ is known, (QT)−1β̂
W
is a method of moments correction estimator . If Q is

estimated from external data and Q̂ is an unbiased estimator forQ, (Q̂T)−1β̂
W
is not an

unbiased estimator for β.

In Section 4.4.1, we will make a connection between regression with misclassified

covariates and mixture models. In section 4.4.2, we will use a regression calibration

approach to get an unbiased corrected estimator for the regression coefficients.
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4.4.1 Likelihood Function Approach: Mixture

We will use the likelihood approach to find a corrected estimator that is appropriate

when a reclassification model is available. We reindex the observed data yi,W i such

that yk(1), . . . , yk(nk) withW k(j) = k for k = 0 . . . K − 1, j = 1 . . . nk.

We assume Q is known. If we assume non-differential measurement error, then the

conditional density function for y givenW = j is

f(y|W = j) =

K−1∑

k=0

f(y|W = j,X = k)P (X = k|W = j)

=
K−1∑

k=0

f(y|X = k)P (X = k|W = j)

=

K−1∑

k=0

(
1

2πσ2
)

1

2 exp(−(y − βk)
2

2σ2
)γkj.

The log likelihood function of β given Y ,W is

ℓ(β|Y ,W,Q) =

K−1∑

m=0

nm∑

j=1

log

[
K−1∑

k=0

(
1

2πσ2
)

1

2 exp

{
−

(ym(j) − βk)2

2σ2

}
γkm

]
.

Note that the dataW appears in the index of ym(j).

This can be shown to be a mixture problem. LetXm(j) = (xm(j)0 . . . xm(j)(K−1) )T

be the unobserved value ofWm(j) form = 0 . . . K − 1, j = 1 . . . nm. Then the log density

of ym(j) givenXm(j) is

K−1∑

k=0

xm(j)k

{
1

2
log(

1

2πσ2
) −

(ym(j) − βk)
2

2σ2

}

and the log likelihood for the complete data is

ℓ(β|Y ,X,W,Q) =

K−1∑

m=0

nm∑

j=1

K−1∑

k=0

xm(j)k

{
log(γkm) +

1

2
log(

1

2πσ2
) −

(ym(j) − βk)
2

2σ2

}
.

First, we want to find the density of X = l givenW = m, y:

f(X = l|W = m, y) =
f(X = l,W = m, y)

K−1∑

k=0

f(X = k,W = m, y)
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=

f(X = l,W = m, y)f(X = l,W = m)

f(X = l,W = m)
K−1∑

k=0

f(X = k,W = m, y)f(X = k,W = m)

f(X = k,W = m)

=
f(y|X = l)f(X = l,W = m)

K−1∑

k=0

f(y|X = k)f(X = k,W = m)

=
f(y|X = l)γlm

K−1∑

k=0

f(y|X = k)γkm

.

The EM algorithm can be applied to fit mixture models (McLachlan and Basford,

1988). Let

τm(j)k = P (xm(j)k = 1|W = m,Ym(j)) = E(xm(j)k|W = m, ym(j)) =
f(ym(j)|Xm(j) = k)γkm

K−1∑

l=0

f(ym(j)|X = l)γlm

.

We should note that τm(j) is not necessary equal to γkm = P (X = k|W = m). For the

EM algorithm, we need to have initial value of τ
(0)
m(j)k and after pth iteration, we have

(τ
(p)
m(j)k, β

(p)
k ) form = 0 . . . K − 1, j = 1 . . . nm, k = 0 . . . K − 1. For the (p + 1)th iteration,

the E-step is

E[ℓ(β|Y ,X,W,Q)|Y,W] =
K−1∑

m=0

nm∑

j=1

K−1∑

k=0

τ
(p)
m(j)k

{
[log(γkm) +

1

2
log(

1

2πσ2
) −

(ym(j) − βk)
2

2σ2

}

and in the M-step, we will solve βk in

∂E[ℓ(β|Y ,X,W,Q)|Y,W]

∂βk
=

K−1∑

m=0

nm∑

j=1

τ
(p)
m(j)k

(ym(j) − βk)

σ2
= 0.

Solving it, we have

β
(p+1)
k =

K−1∑

m=0

nm∑

j=1

τ
(p)
m(j)kymj

K−1∑

m=0

nm∑

j=1

τ
(p)
m(j)k

,

σ2(p+1)
=

K−1∑

m=0

nm∑

j=1

K−1∑

k=0

τ
(p)
m(j)k(ym(j) − β

(p+1)
k )2

K−1∑

m=0

nm∑

j=1

K−1∑

k=0

τ
(p)
m(j)k

,
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and

τ
(p+1)
m(j)k =

f(ym(j), β
(p+1)
k )γkm

K−1∑

l=0

f(ym(j), β
(p+1)
l )γlm

with

f(ym(j), β
(p+1)
l , σ2(p+1)

) =
1

2πσ2(p+1)
exp

{
−

(ym(j) − β
(p+1)
l )2

2σ2(p+1)

}
.

Let β(p)
EM

= (β
(p)
0 . . . β

(p)
K−1 )T . The EM algorithm ensures the log likelihood val-

ues increase monotonically: ℓ(β(p+1)
EM

|Y ,W,Q) ≥ ℓ(β(p)
EM

|Y ,W,Q). The convergence of

β(p)
EM
is consistent for the MLE of β (McLachlan and Peel, 2000), and we will denote it by

β
EM

.

The observed information matrix is:

I(β
EM

) = −
∂2ℓ(β|Y ,W,Q)

∂β∂βT
|β=β

EM
.

We could use the observed information to get an asymptotic covariance estimator for

β̂
EM

, but the computation is hard. Louis (1982) shows that the observed information

can be expressed in terms of complete-data gradeint vector or second derivative ma-

trix. Since we have independent data, the observed information matrix can be approxi-

mated in terms of the gradient of the complete-data log likelihood, where the unobserv-

able variables are replaced by their fitted conditional expectations (McLachlan and Peel,

2000):

Σ̂β
EM

= σ̂2
EM





K−1∑

m=0

nm∑

j=1

hm(j)h
T

m(j)





−1

,

where hm(j) = ( τ̂m(j)0(ym(j) − β̂EM1
) . . . τ̂m(j)(K−1)(ym(j) − β̂EMK−1

) )T .

Remark In the above, we assume the reclassification model Q is known, and we can

use the probabilities γkm to get τm(j)k. It would be interesting to know when the reclas-

sification model Q is not available, whether or not we can recover γkm from the EM

algorithm. We will leave this a topic for future research.
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Remark We could use the likelihood approach when a misclassification model P is

available. From the non-differential assumption, we have the density function f(y,X,W ) =

f(y|X)P (X,W ). Let ηmk = P (W = m,X = k). So the complete-data log likelihood is:

ℓ(β|Y ,X,W) =

K−1∑

m=0

nm∑

j=1

K−1∑

k=0

xm(j)k

{
log(ηmk) + log(f(ym(j)|Xm(j) = k)

}
.

We could have τm(j)k = P (xm(j)k = 1|W = m, ym(j)) =
f(ym(j)|Xm(j) = k)ηmk

K−1∑

l=1

f(ym(j)|X = l)ηml

, and we

could estimate ηml by η̂ml = θmlπ̂l.

4.4.2 Imputed Data and Regression Calibration

In this section, we develop a regression calibration approach to get a corrected es-

timator when a reclassification model is available. First, we assume the reclassification

modelQ is known.

We impute X̂ i = QW i, and set X̂ =




X̂
T

1

...

X̂n


 = WQT, the least squares estimator

β̂
RQ
from regressing yi on X̂ i is

β̂
RQ

= (X̂TX̂)−1X̂TY

= (QWTWQT)−1QWTY

= (QT)−1(WTW)−1WTY

= (QT)−1β̂
W

where β̂
W
is the least squares naive estimator. Now, since

E
{

β̂
RQ

}
= E

{
(QT)−1(WTW)−1WTY

}

= (QT)−1(nDλ)−1nDλQ
Tβ

= β,

β̂
RQ
is an unbiased estimator for β.
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The asymptotic covariance matrix of β̂
RQ
is

Σ̂bβ
RQ

= (QT)−1Σ̂bβ
W

(Q)−1

where

Σ̂bβ
W

= σ̂2
W (WTW)−1

and σ̂2
W = (Y − Wβ̂

W
)T(Y − Wβ̂

W
)/n.

We should note that σ2
W is not an estimator of σ

2. Since

Var(y) = E{ Var(y|X)} + Var{E(y|X)}

= σ2 + Var(βTX)

= σ2 + βT Var(X)β,

we could get an estimator for σ2 :

σ̂2 = V̂ar(y) − β̂
T

RQ
V̂ar(X)β̂

RQ
,

where V̂ar(y) =

K−1∑

i=0

ni∑

j=1

(yij − ȳ..)
2

K−1∑

i=0

ni

, y.. =

K−1∑

i=0

ni∑

j=1

yij

K−1∑

i=0

ni

, and

V̂ar(X) =




π̂0(1 − π̂0) −π̂0π̂1 . . . π̂0π̂K−1

−π̂1π̂0 π̂1(1 − π̂1) . . . −π̂1π̂K−1

. . . . . .
. . . . . .

−π̂K−1π̂0 −π̂K−1π̂0 . . . π̂K−1(1 − π̂K−1)




.

4.4.3 Inferences WhenQ is Estimated

In this section, we want to discuss the situation when the reclassification model is

estimated from external data. We will use the sandwich method to get an asymptotic

covariance matrix to account the variability that comes from an estimatedQ.

Wewill only develop the asymptotic covariance matrix for the regression calibration

estimator. The asymptotic covariance of the EM estimator uses the same technique.
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SupposeQ is estimated from external data and Q̂ is an unbiased estimator forQ. We

know the reclassification model

Q =




γ00 γ01 . . . γ0(K−1)

γ10 γ11 . . . γ1(K−1)

. . . . . . . . . . . .

1 −
K−2∑

k=0

γk0 1 −
K−2∑

k=0

γk1 . . . 1 −
K−2∑

k=0

γk(K−1)




is a function of

(γ00, . . . , γ(K−2)0, γ01, . . . , γ(K−2)1, . . . , γ0(K−1), . . . , γ(K−2)(K−1))
T = γ.

As a result, the regression calibration estimator β̂
R bQ

= (Q̂T)−1β̂
W
is still a consistent

estimator for β if the validation sample size and main study size go to infinity, and the

estimating equation is

S(β|Y ,W,Q) = QWTY − QWTWQTβ.

Let

H11 =
∂S(β|Y ,W,Q)

∂β
= −QWTWQT,

H12 =
∂S(β|Y ,W,Q)

∂γ

∣∣∣∣
β=bβ

R
bQ

= (h00, h10, . . . , h(K−2)0, h01, . . . , h(K−2)1, . . . , h0(K−1), . . . , h(K−2)(K−1)),

with hml = MmlW
TY − MmlW

TWQTβ − QWTWMT

mlβ.

Then the asymptotic covariance matrix of β̂
R bQ

is

Σ̂bβ
R bQ

= Σ̂K + H−1
11 H12ΣγHT

12(H
−1
11 )T, where

Σ̂K is the asymptotic covariance matrix of β̂R bQ

, treating Q̂ as known, and

Σγ = Σbγ =




Σ0 0 . . . 0

0 Σ1 . . . 0

0 0
. . . 0

0 0 . . . ΣK−1



with
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Σk =
1

N.k




γ̂0k(1 − γ̂0k) −γ̂0kγ̂1k . . . −γ̂0kγ̂(K−2)k

−γ̂1kγ̂0k γ̂1k(1 − γ̂1k) . . . −γ̂1kγ̂(K−2)k

. . . . . . . . . . . .

−γ̂(K−2)kγ̂0k −γ̂(K−2)kγ̂1k . . . γ̂(K−2)k(1 − γ̂(K−2)k)



where

N.k is the validation size for category k.

4.5 Linear Regression with Categorical Covariates and Perfectly Measured

Covariates

In this section, we will study regression with misclassified covariates and perfectly

measured covariates. In section 4.5.1, we will study the bias of the naive least squares

estimator. In 4.5.2, we use the score function approach to create a consistent estimator,

and in 4.5.3 we will demonstrate how to use the reclassification model to get a corrected

estimator.

4.5.1 Bias of Naive Estimator

Assume Y = XTβ + ZTβ
Z

+ ǫ where X is a categorical variable with K categories,

Z is a vector of variables with no measurement error, and ǫ is random error with mean

0, and independent from X, and Z.

Let yi,W i, Zi, i = 1 . . . nwhere the dimension ofW i is k × 1 (These are the observed

values forXi), and the dimension of Zi is p × 1. Let

W =




WT

1

WT

2

...

WT

n




,X =




XT

1

XT

2

...

XT

n




,Z =




ZT

1

ZT

2

...

ZT

n




, Y =




y1

y2

...

yn




.

It is easy to show that for linear regressionmodels with mismeasured continuous co-

variates and perfectly measured covariates, the bias of the naive least squares estimator(
β̂

W

β̂
ZW

)
for

(
β

β
Z

)
is a function of β, and if X and Z are uncorrelated, the naive least
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squares estimator β̂
ZW
is also an unbiased estimator for β

Z
. Gustafson (2004) proves

the above statement is true for binary misclassified covariates and a perfectly measured

covariate with a nondifferential misclassification model. Christopher and Kupper (1995)

prove that if the reclassification model is nondifferential (or independent from Z), then

β̂
ZW
is an unbiased estimator for β

Z
. Buonaccorsi et al (2005) demonstrate that if a mis-

classification model is independent of the perfectly measured Z, and X is independent

of Z, then there will be no bias in the naive estimator of the coefficients associated with

the perfectly measured covariates. The following lemma restates the result of Christo-

pher and Kupper (1995) for misclassified data, with a different proof.

Lemma 4.5.1 Assume Y = XTβ + ZTβ
Z

+ ǫ where X is a categorical variable with K cat-

egories, Z is a vector of variables with no measurement error, and ǫ is random error with mean

0, and independent from X and Z. Suppose we observe yi,W i, Zi, i = 1 . . . n where W i is the

observed value of Xi. Then the bias of the naive least squares estimator

(
β̂

W

β̂
ZW

)
for

(
β

β
Z

)
is

a function of β, not a function of β
Z
. If E[X |W,Z] = E[X |W ], i.e. the reclassification model is

nondifferential , then the naive least squares estimator β̂
Z
is an unbiased estimator for β

Z
.

Proof The least squares naive estimator is

(
β̂

W

β̂
ZW

)
=

{(
WT

ZT

)
(W Z )

}−1(
WT

ZT

)
Y ,

and

E

{(
β̂

W

β̂
ZW

) ∣∣∣∣W,X,Z

}

= E



{(

WT

ZT

)
(W Z )

}−1(
WT

ZT

)
Y

∣∣∣∣W,X,Z




=

{(
WT

ZT

)
(W Z )

}−1(
WT

ZT

)
(X Z )

(
β

β
Z

)

=

{(
WT

ZT

)
(W Z )

}−1(
WT

ZT

)
[ (W Z ) + (X− W 0 ) ]

(
β

β
Z

)

=

(
β

β
Z

)
+

(
WTW WTZ

ZTW ZTZ

)−1(
WT(X− W)β

ZT(X −W)β

)
.

So the bias of naive estimator is a function of β only, not β
Z
.
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If E[X |W,Z] = E[X |W ] = QW whereQ is the reclassification model, then

E

{(
β̂

W

β̂
ZW

)
|W,Z

}
=

(
β

β
Z

)
+

(
WTW WTZ

ZTW ZTZ

)−1(
WTW(QT − I)β

ZTW(QT − I)β

)
.

Using the fact:
(

A B

C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
,

we have E

{(
β̂

W

β̂
ZW

)
|W,Z

}
=

(
β

β
Z

)
+

(
(QT − I)β

0

)
. So,

E

{(
β̂

W

β̂
ZW

)
|W,Z

}
=

(
Qβ

β
Z

)
,

and β̂
ZW
is an unbiased for β

Z
if the reclassification is nondifferential.

4.5.2 Score Function Approach

In this section, we will assume a misclassification model is available, and we will use

a score function approach like in section 4.3 to get a corrected estimator. Since P (W |X)

might depend on the value of Z , we need to have a misclassification model for each

value of Z in the range of the perfectly measured variables.

We define

θijZ = P (W = j|X = j, Z).

Let

PZ =




θ00Z θ01Z . . . θ0(K−1)Z

...
...

. . .
...

θ(K−1)0Z θ(K−1)1Z . . . θ(K−1)(K−1)Z


 = (θ0Z , θ1Z , . . . , θ(K−1)Z)

be amisclassification model for each Z in the range of the perfectly measured covariates.

We will have P−1
Z θmZ = em.

Yi = XT

i β + ZT

i β
Z

+ ǫ where ǫ ∼ N(0, σ2), i = 1 . . . n, and σ2 is unknown. From the

observed data yi,W i, Zi, the log-likelihood function is

ℓ(β, β
Z
, Y ,W,Z) = −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

(yi − WT

i β − ZT

i β
Z
)2. Let
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ℓ∗(β, β
Z
, Y ,W,Z) = −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

[
y2

i − 2yi(β
TP−1

Zi
W i + ZT

i β
Z
)

+2ZT

i βZβTP−1
Zi

W i + βT

K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k β + (ZT

i β
Z
)2
]
.

As in section 4.3,

E[ℓ∗(β, σ2, Y ,W,Z)|Y ,X,Z]

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

E

[
y2

i − 2yi(β
TP−1

Zi
W i + ZT

i β
Z
) +

2ZT

i βZβTP−1
Zi

W i + βT

K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k β + (ZT

i β
Z
)2
∣∣∣∣yi,X i, Zi

]

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

E

[
y2

i − 2yi(β
TP−1

Zi
W i + ZT

i β
Z
) +

2ZT

i βZβTP−1
Zi

W i + βT

K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k β + (ZT

i β
Z
)2
∣∣∣∣yi,X i = m,Zi

]
1Xi=m

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

[
y2

i − 2yi(β
Tem + ZT

i β
Z
) +

2ZT

i βZβTem + βT

K−1∑

k=0

{
eT

mek

}
eke

T

k β + (ZT

i β
Z
)2
]
1Xi=m

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

K−1∑

m=0

[
y2

i − 2yi(βm + ZT

i β
Z
) + 2ZT

i βZβ
m

+ β2
m + (ZT

i β
Z
)2
]
1Xi=m

= −n

2
log(2πσ2) − (2σ2)−1

n∑

i=1

(yi − XT

i β − ZT

i β
Z
)2

= ℓ(β, β
Z
, Y ,X,Z).

So ℓ∗ is a corrected log likelihood function and

( ∂ℓ∗

∂β

∂ℓ∗

∂β
Z

)
is a corrected score function for

(βT βT

Z
)T . If we solve

( ∂ℓ∗

∂β

∂ℓ∗

∂β
Z

)

= −(2σ2)−1




n∑

i=1

[
−2yiP

−1
Zi

W i + 2P−1
Zi

W iZ
T

i β
Z

+ 2
K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k β

]

n∑

i=1

[
−2yiZi + 2ZiW

T

i (P−1
Zi

)Tβ + 2Z iZ
T

i β
Z

]




= 0,
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i.e.




n∑

i=1

K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k

n∑

i=1

P−1
Zi

W iZ
T

i

n∑

i=1

ZiW
T

i (P−1
Zi

)T ZTZ



(

β

β
Z

)
=

( n∑

i=1

yiP
−1
Zi

W i

ZTY

)
.

Then we have

=




n∑

i=1

K−1∑

k=0

{
(P−1

Zi
W i)

Tek

}
eke

T

k

n∑

i=1

P−1
Zi

W iZ
T

i

n∑

i=1

ZiW
T

i (P−1
Zi

)T ZTZ




−1( n∑

i=1

yiP
−1
Zi

W i

ZTY

)

as a consistent estimator for

(
β

β
Z

)
. Without knowing the correlation between X and

Z, we cannot get E

[(
β̂

s

β̂
Zs

)]
like in Section 4.3. Therefore, we do not know if

(
β̂

s

β̂
Zs

)

is an unbiased estimator or not for

(
β

β
Z

)
.

The corrected estimator looks complicated, but if we usePZi
to impute X̂i = P−1

Zi
W i

and X̂ =




X̂1

...

X̂n


 , then it can be rewritten as

(
β̂

s

β̂
Zs

)
=

(
nDbπ X̂TZ

ZTX̂ ZTZ

)−1(
X̂TY

ZTY

)

with π̂ =
∑n

i=1 P−1
Zi

W i/n.

Notice nDbπ in the corrected score estimator is an estimate ofX
TX.

If PZ = P for all values of Z , the above calculations will be much simpler, andW,Z

will be independent givenX . We should note that ifPZ = P, then it does not necessarily

follow thatQZ = Q.

Differentiating the corrected log likelihood function ℓ∗ with respect to σ2, we will

have an estimator for σ2,

σ̂2
∗ =

n∑

i=1

{
y2

i − 2yi(X̂
T

i β̂
s
+ ZT

i β̂
Z
) + 2ZT

i β̂
Zs

X̂
T

i β̂
s
+ β̂

T

s
D bXi

β̂
s
+ (ZT

i β̂
Zs

)2
}

/n.

Next, we want to find an estimated variance-covariance matrix for

(
β̂

s

β̂
Zs

)
.

65



The corrected observed information matrix I∗ is

I∗(β, β
Z
, Y ,W,Z) =




n∑

i=1

D bXi

n∑

i=1

X̂ iZ
T

i

n∑

i=1

ZiX̂
T

i

n∑

i=1

ZiZ
T

i


 =

(
Dbπ X̂Z

ZTX̂ ZTZ

)
/σ̂2

∗ ,

and let

V(β, β
Z
, Y ,W,Z)

=
n∑

i=1

( −yiX̂i + X̂ iZ
T

i β
Z

+ D bXi
β

−yiZi + ZiX̂
T

i β + ZiZ
T

i β
Z

)( −yiX̂i + X̂iZ
T

i β
Z

+ D bXi
β

−yiZi + ZiX̂
T

i β + ZiZ
T

i β
Z

)T

/σ̂4
∗ .

As in Section 4.3, we will first find ω(β, β
Z
, y,W ,Z) such that

E[ω(β, β
Z
, y,W ,Z)|y,X,X ] = S(β, β

Z
, y,X,Z)S(β, β

Z
, y,X,Z)T

with S(β, β
Z
, y,X,Z) =

( ∂ℓ(β,β
Z

,y,X,Z)

∂β

∂ℓ(β,β
Z

,y,X,Z)

β
Z

)
.

For our case,

S(β, β
Z
, y,X,Z) = (y − XTβ − ZTβ

Z
)

(
X

Z

)
/σ2

S(β, β
Z
, y,X,Z)S(β, β

Z
, y,X,Z)T = (y − XTβ − ZTβ

Z
)2

(
XXT XZT

ZXT ZZT

)
/σ4.

Let

ω((β, β
Z
, y,W ,Z,PZ) =

K−1∑

k=0

{
y2 − 2y(βTek + ZTβ

Z
) + 2βTekZ

Tβ
Z

+ (βTek)
2

+(ZTβ
Z
)2
}(

{
(P−1

Z W )Tek

}
eke

T

k P−1
Z WZT

Z(P−1
Z W )T ZZT

)
/σ4,

then [E[ω(β, β
Z
, y,W ,Z,PZ)|y,X,X ] = (y − XTβ − ZTβ

Z
)2

(
XXT XZT

ZXT ZZT

)
/σ4, and

we can use

V̂ar2

(
β̂

s

β̂
Zs

)
= I∗(β̂

s
, β̂

Zs
, Y ,W,Z)−1

{
V(β̂

s
, β̂

Zs
, Y ,W,Z)

−
n∑

i=1

ω(β̂
s
, β̂

Zs
, yi,W i, Zi,PZi

)

}
I∗(β̂

s
, β̂

Zs
, Y ,W,Z)−1

+I∗(β̂
s
, β̂

Zs
, Y ,W,Z)−1

as an asymptotic covariance matrix for

(
β̂

s

β̂
Zs

)
.

66



4.5.2.1 When the Misclassification Model is Estimated

In this section, wewill assume themisclassification model is estimated from external

data, like in section 4.3.1, and we investigate how the asymptotic covariance matrix of(
β̂

s

β̂
Zs

)
changes.

When PZ are estimated from external data, and P̂Z is a consistent estimator for

PZ for every Z, then

(
β̂

s

β̂
Zs

)
is a consistent estimator if the validation size for each Z

and main study sample size all go to infinity. Assume ΣK is the asymptotic covariance

matrix of

(
β̂

s

β̂
Zs

)
, if P̂Zi

are assumed to be known (see section 4.3.1). We can estimate

the covariance of

(
β̂

s

β̂
Zs

)
:

V̂ar

(
β̂

s

β̂
Zs

)
= Σk +

n∑

i=1

H−1
11Zi

H12Zi
ΣZi

HT

12Zi
(H−1

11Zi
)T, where

ΣZi
=




Σ0Zi
0 . . . 0

0
¯

Σ1Zi
. . . 0

0 0
. . . 0

0 0 . . . Σ(K−1)Zi




, and

ΣkZi
=

1

N.kZi




θ̂0kZi
(1 − θ̂0kZi

) −θ̂0kZi
θ̂1kZi

. . . −θ̂0kZi
θ̂(K−2)kZi

−θ̂1kZi
θ̂0kZi

θ̂1kZi
(1 − θ̂1kZi

) . . . −θ̂1kZi
θ̂(K−2)kZi

. . . . . . . . . . . .

−θ̂(K−2)kZi
θ̂0kZi

−θ̂(K−2)kZi
θ̂1kZi

. . . θ̂(K−2)kZi
(1 − θ̂(K−2)kZi

)




H11Zi
= (σ̂2)−1

(
D bXi

P̂−1
Zi

W iZ
T

i

ZiW
T

i (P̂T

Zi
)−1 ZT

i Zi

)

H12Zi
= (h00Zi

, h10Zi
, . . . , h(K−2)0Zi

, h01Zi
, . . . , h(K−2)1Zi

, . . . , h0(K−1)Zi
, . . . , h(K−2)(K−1)Zi

)where

hmlZi
= (σ̂2)

−1

(−yiP̂
−1
Zi

MmlP̂
−1
Zi

W i + P̂−1
Zi

MmlD bXi
β̂

s
+ ZT

i β̂
Zs

P̂−1
Zi

MmlP̂
−1
Zi

W i

WT

i (P̂−1
Zi

MmlP̂
−1
Zi

)Tβ
s
Zi

)
with

D bXi
=

K−1∑

k=0

{
(P̂−1

Zi
W i)

Tek

}
eke

T

k .
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4.5.3 Reclassification Case

Now, we will consider how to use a reclassification model to get a corrected estima-

tor for regression with misclassified covariates and perfectly measured covariates. Just

like in section 4.5.2, if P (X |W ) depends on Z.

Define

P (X = i|W = j, Z) = γijZ andQZ =




γ00Z γ01Z . . . γ0(K−1)Z

...
...

. . .
...

γ(K−1)0Z γ(K−1)1Z . . . γ(K−1)(K−1)Z




for each Z . Let X̂ i = QZi
W i and X̂ = ( X̂1 . . . X̂n )T. From Section 4.4, we could

regress yi on X̂i, Zi, then use the least squares method to get a corrected estimator:

(
β̂

R

β̂
ZR

)
=

(
X̂TX̂ X̂TZ

ZTX̂ ZTZ

)−1(
X̂TY

ZTY

)
.

IfQZ = Q for all Z, then

(
β̂

Q

β̂
ZQ

)
=

(
QWTWQT QWTZ

ZTWQT ZTZ

)−1(
QWTY

ZTY

)

=

{(
Q 0

0 I

)(
WTW WTZ

ZTW ZTZ

)(
QT 0

0 I

)}−1(
QWTY

ZTY

)

=

(
Q 0

0 I

)−1( β̂
W

β̂
ZW

)
,

and from the proof of Lemma 4.5.1, E

[(
β̂

W

β̂
ZW

)]
=

(
Qβ

β
Z

)
. As a result,

E

[(
β̂

Q

β̂
ZQ

)]
=

(
β

β
Z

)
.

Again, this method assumesQZ does depend on Z.

The asymptotic covariance matrix of

(
β̂

Q

β̂
ZQ

)
is

V̂ar

(
β̂

Q

β̂
ZQ

)
=

(
Q 0

0 I

)−1

V̂ar

(
β̂

W

β̂
ZW

)(
QT 0

0 I

)−1

,
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where

V̂ar

(
β̂

W

β̂
ZW

)
= σ̂2

W

(
WTW WTZ

ZTW ZTZ

)−1

and σ̂2
W = (Y − Wβ

W
− Zβ

ZW
)T(Y − Wβ

W
− Zβ

ZW
)/n.

σ̂2
W is not an estimator for σ

2. From

Var(y) = E { Var(y|X,Z)} + Var {E(y|X,Z)}

= σ2 + Var(XTβ + ZTβ
Z
),

without knowing the correlation betweenX and Z, we can not estimate σ2. If X and Z

are uncorrelated, then we could get an estimator for σ2 :

σ̂2 = V̂ar(y) − β̂
T

Q
V̂ar(X)β̂

Q
− β̂

T

ZQ
V̂ar(Z)β̂

ZQ
.

Sometimes the reclassification model is not available, and we need to estimate it from

external data. If Q is estimated from external data, and Q̂ is a consistent estimator for

Q, then ( β̂
T

bQ
β̂

T

Z bQ

)T is a consistent estimator for (βT βT

Z
)T if the validation sample

size and the main study sample size both go to infinity.

The estimating equation for

(
β̂

Q

β̂
ZQ

)
is

S(β, γ) =

(
QWT

ZT

)
Y −

(
QWTWQT QWTZ

ZTWQT ZTZ

)(
β

β
Z

)
.

Using the same notation as in Section 4.4 and applying Parke’s (1986) method, the

asymptotic covariance matrix of

(
β̂ bQ

β̂
Z bQ

)
is

V̂ar

(
β̂ bQ

β̂
Z bQ

)
= ΣK + H−1

11 H12ΣγHT

12(H
−1
11 )T where

H11 = −
(

Q̂WTWQ̂T Q̂WTZ

ZTWQ̂T ZTZ

)

H12 = (h00, h10, . . . , h(K−2)0, h01, . . . , h(K−2)1, . . . , h0(K−1), . . . , h(K−2)(K−1)) with

hml =

(
MmlW

TY

0

)
−
(

MmlW
TWQT + QWTWMT

ml MmlW
TZ

ZTWMT

ml 0

)(
β̂ bQ

β̂
Z bQ

)
,

and ΣK is the covariance estimate of

(
β̂ bQ

β̂
Z bQ

)
if we assume Q̂ is known.
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C H A P T E R 5

SIMULATION

In this chapter, we use computer simulation to generate data, compare and evaluate

the performance of some of themethods described in this dissertation. The order of sim-

ulations is not necessarily the same as the order in which the methods were presented.

We use equal validation size for each category in all the simulation.

5.1 Bias Reduced Estimator, Partially Corrected Estimator

The first simulation addresses the problem of estimating a single proportion. We

introduce the bias reduced estimator in Section 2.1, and reduced mean square error

estimator/partial correction estimator in Section 2.2 for proportion of interest. In this

section, we will use simulation to demonstrate the performance of these two estimators.

We should make a note that not all naive estimators are biased. From Section 2.2, we

know that the bias of a naive estimator is (θ00 + θ11 − 2)π +(1− θ00). Also from Figure 1,

we can see that there is a linear equation of (θ00, θ11), for every π, such that the naive

estimator has bias 0. For this reason, we have chosen values for θ00, θ11 to give different

levels of bias in naive estimators. Table 1 summarizes the levels of θ00 and θ11 we will

use in this section.

Wewill denote bias 0.2 as a high level of bias , an absolute bias of 0.075 as themedium

level of bias and bias 0 as the unbiased level. Along with the bias levels, the main

study sample sizes are n = 50, 100, 1000, and validation sizes are either half, same, or
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π bias θ00 θ11

0 0.85 0.4
0.2 0.075 0.85 0.775

0.2 0.75 1

0 0.75 0.75
0.5 -0.075 0.9 0.75

0.2 0.55 0.95

Table 1. Parameter Settings for the First Simulation Experiment that Compares

Estimators of Prevalence

double the main study size. We also include the case where the misclassification model

is known. For each combination of parameters settings, we repeat 2000 times.

Figure 3 compares theMonte Carlo estimate of the root of mean square error (RMSE)

of π̂naive, π̂P lugIn, π̂corrected,P I and π̂pc. Figure 4 contains the absolute values of the Monte

Carlo estimate of bias for π̂naive, π̂P lugIn,π̂corrected,P I and π̂pc. Table 2 and Table 3 contain

the same information in tabular form as Figures 3 and 4 respectively. From these figures,

we can see that the RMSE of π̂corrected,P I and π̂pc are smaller than or close to the RMSE

of π̂P lugIn for the high and medium bias levels and when the validation sizes are half or

the same as the main study size. The π̂pc performed much better than π̂P lugIn in terms

of both absolute bias and RMSE when the naive estimators is unbiased. The absolute

biases of π̂corrected,P I are about the same as π̂P lugIn for the high and medium bias levels.

The performance of π̂naive depends on the level of bias. By looking at the tables, for

π = 0.5, π̂Corrected,P I has smaller RMSE than π̂P lugIn, and has absolute bias smaller than

or almost equal to the absolute bias of π̂P lugIn. For π = 0.2, n = 50, π̂Corrected,P I has not

performed as expected for the unbiased parameter setting. We suspect this is because of

large remainder terms in the asymptotic expansion on which the estimator is based.

5.1.1 Overall Comparison with Different Misclassification Probabilities

In this section we compare π̂naive, π̂P lutIn, π̂corrected,P I and π̂pc for different πs. We

use two misclassification models: one is θ11 = 0.90, θ00 = 0.95, and the other is θ11 =
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π N L
π̂naive π̂P lugIn π̂C,PI π̂pc π̂naive π̂P lugIn π̂C,PI π̂pc π̂naive π̂P lugIn π̂C,PI π̂pc

n = 50 n = 100 n = 1000

0.2 0.5 H 0.211 0.111 0.111 0.117 0.205 0.090 0.089 0.090 0.201 0.029 0.029 0.029
0.2 0.5 M 0.097 0.116 0.112 0.098 0.087 0.093 0.090 0.082 0.076 0.031 0.030 0.033
0.2 0.5 N 0.056 0.227 0.316 0.122 0.040 0.180 0.227 0.109 0.012 0.073 0.072 0.048
0.2 1.0 H 0.212 0.103 0.103 0.107 0.205 0.078 0.078 0.078 0.201 0.025 0.025 0.025
0.2 1.0 M 0.100 0.113 0.110 0.102 0.087 0.083 0.082 0.081 0.076 0.027 0.027 0.028
0.2 1.0 N 0.057 0.219 0.245 0.130 0.039 0.161 0.156 0.101 0.013 0.062 0.061 0.042
0.2 2.0 H 0.212 0.098 0.098 0.100 0.208 0.073 0.072 0.073 0.201 0.023 0.023 0.023
0.2 2.0 M 0.099 0.108 0.107 0.103 0.089 0.078 0.078 0.083 0.076 0.025 0.025 0.025
0.2 2.0 N 0.058 0.203 0.198 0.128 0.041 0.153 0.149 0.098 0.013 0.058 0.058 0.040
0.2 Inf H 0.209 0.087 0.087 0.090 0.206 0.067 0.067 0.068 0.201 0.021 0.021 0.021
0.2 Inf M 0.097 0.095 0.095 0.106 0.087 0.070 0.070 0.080 0.076 0.023 0.023 0.023
0.2 Inf N 0.057 0.176 0.176 0.111 0.039 0.135 0.135 0.085 0.013 0.051 0.051 0.036
0.5 0.5 H 0.210 0.165 0.154 0.155 0.205 0.124 0.118 0.122 0.200 0.040 0.039 0.040
0.5 0.5 M 0.101 0.142 0.133 0.114 0.092 0.099 0.097 0.091 0.077 0.031 0.031 0.033
0.5 0.5 N 0.070 0.188 0.170 0.119 0.052 0.140 0.133 0.096 0.016 0.043 0.043 0.032
0.5 1.0 H 0.211 0.158 0.152 0.159 0.206 0.111 0.109 0.115 0.201 0.034 0.034 0.034
0.5 1.0 M 0.102 0.127 0.125 0.114 0.089 0.088 0.087 0.087 0.077 0.028 0.028 0.029
0.5 1.0 N 0.070 0.173 0.166 0.119 0.050 0.119 0.117 0.085 0.016 0.038 0.038 0.028
0.5 2.0 H 0.210 0.139 0.137 0.147 0.207 0.101 0.101 0.107 0.200 0.032 0.032 0.032
0.5 2.0 M 0.099 0.115 0.114 0.110 0.089 0.082 0.081 0.086 0.077 0.026 0.026 0.027
0.5 2.0 N 0.068 0.152 0.149 0.105 0.050 0.111 0.110 0.080 0.016 0.035 0.035 0.025
0.5 Inf H 0.214 0.130 0.130 0.142 0.205 0.089 0.089 0.094 0.201 0.029 0.029 0.030
0.5 Inf M 0.100 0.107 0.107 0.115 0.088 0.074 0.074 0.082 0.076 0.025 0.025 0.025
0.5 Inf N 0.070 0.140 0.140 0.097 0.048 0.096 0.096 0.065 0.016 0.032 0.032 0.022

T
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π N L
π̂naive π̂P lugIn π̂C,PI π̂pc π̂naive π̂P lugIn π̂C,PI π̂pc π̂naive π̂P lugIn π̂C,PI π̂pc

n = 50 n = 100 n = 1000

0.2 0.5 H 0.199 0.020 0.032 0.064 0.199 0.007 0.012 0.033 0.200 0.001 0.000 0.003
0.2 0.5 M 0.074 0.017 0.026 0.048 0.075 0.003 0.007 0.033 0.074 0.001 0.001 0.008
0.2 0.5 N 0.000 0.080 0.181 0.038 0.001 0.058 0.119 0.032 0.000 0.000 0.002 0.001
0.2 1.0 H 0.200 0.013 0.019 0.043 0.200 0.000 0.002 0.017 0.200 0.000 0.000 0.002
0.2 1.0 M 0.077 0.012 0.015 0.044 0.075 0.001 0.002 0.029 0.075 0.001 0.001 0.005
0.2 1.0 N 0.003 0.075 0.126 0.040 0.001 0.041 0.058 0.024 0.000 0.001 0.000 0.000
0.2 2.0 H 0.200 0.005 0.007 0.026 0.202 0.002 0.003 0.013 0.200 0.000 0.000 0.001
0.2 2.0 M 0.075 0.006 0.008 0.038 0.077 0.005 0.005 0.032 0.075 0.000 0.000 0.004
0.2 2.0 N 0.001 0.060 0.078 0.031 0.002 0.037 0.042 0.022 0.000 0.000 0.001 0.000
0.2 Inf H 0.197 0.000 0.000 0.011 0.200 0.001 0.001 0.006 0.200 0.000 0.000 0.001
0.2 Inf M 0.073 0.001 0.001 0.036 0.075 0.000 0.000 0.023 0.075 0.000 0.000 0.003
0.2 Inf N 0.000 0.044 0.044 0.021 0.001 0.014 0.014 0.008 0.000 0.001 0.001 0.001
0.5 0.5 H 0.201 0.006 0.015 0.068 0.200 0.011 0.002 0.037 0.200 0.001 0.000 0.005
0.5 0.5 M 0.075 0.006 0.001 0.030 0.077 0.002 0.005 0.031 0.076 0.001 0.001 0.008
0.5 0.5 N 0.000 0.001 0.001 0.000 0.002 0.005 0.005 0.004 0.001 0.001 0.001 0.001
0.5 1.0 H 0.201 0.004 0.005 0.056 0.201 0.003 0.001 0.032 0.200 0.001 0.001 0.003
0.5 1.0 M 0.074 0.003 0.000 0.032 0.074 0.001 0.001 0.027 0.075 0.001 0.001 0.005
0.5 1.0 N 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000
0.5 2.0 H 0.201 0.002 0.002 0.048 0.202 0.002 0.004 0.030 0.200 0.001 0.000 0.003
0.5 2.0 M 0.071 0.007 0.005 0.030 0.074 0.002 0.001 0.025 0.075 0.001 0.001 0.004
0.5 2.0 N 0.002 0.003 0.003 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.5 Inf H 0.204 0.007 0.007 0.046 0.201 0.001 0.001 0.022 0.200 0.000 0.000 0.002
0.5 Inf M 0.072 0.004 0.004 0.035 0.074 0.001 0.001 0.023 0.075 0.000 0.000 0.002
0.5 Inf N 0.003 0.006 0.006 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
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Figure 3. Comparison of Root Mean Square Errors in the First Simulation Exper-

iment (Prevalence): this figure compares the root of mean square error

among π̂naive, π̂P lugIn, π̂corrected,P I and π̂pc. Circle is for π̂naive, triangle
point-up is for π̂P lugIn, ′∗′ is for π̂corrected,P I, and square is for π̂pc. The
number in each area is the main study sample size.’H’, ’M’, ’N’ are lev-

els of high, medium, no bias respectively. ’0.5’,’1’,’2’ are validation size

which are half, same, doublemain study size respectively; ’k’ means the

misclassification is known (please note that the y−axes have different
scales).
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Figure 4. Comparison of Biases in the First Simulation Experiment (Prevalence):

this figure compares biases among π̂naive, π̂P lugIn, π̂corrected,P I and π̂pc.
Circle is for π̂naive, triangle point-up is for π̂P lugIn, ′∗′ is for π̂corrected,P I,
and square is for π̂pc. The number in each area is the main study sam-
ple size. ’H’, ’M’, ’N’ are levels of high, medium, no bias respectively.

’0.5’,’1’,’2’ are validation size which are half, same, double main study

size respectively; ’k’ means the misclassification is known (please note

that the y−axes have different scales).
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0.90, θ00 = 0.75. For bothmisclassificationmodels, we use π = (0.01, 0.081, 0.161. . . . , 0.961),

main study sizes n = 50, 200, 1000, and validation sizes N = 25, 100. We consider full

factorial combinations of these parameters, and the Monte Carlo sample size is 2000.

Figure 5 shows the results for the first misclassification model, and Figure 6 has

the results for the second misclassification model. From both figures, we can see that

when N = 25, there is a wide range of π for which the root of mean square error of

π̂pc is smaller than π̂P lugIn. When θ11 = 0.9, θ00 = 0.75,N = 25, when the main study

size increases, and when π = 0.401, 0.481, 0.561, both RMSE and the absolute bias of

π̂corrected,P I are smaller than π̂P lugIn.

5.2 Comparison of Optimization Method and Fieller’s Method

In this section, we will present the simulation results for confidence intervals for π,

the proportion of interest. We use optimization method and Fieller’s methods. We de-

veloped these methods in Chapter 3, and we compare them with delta method. The pa-

rameter settings are factorial combinations of π = (0, 0.05, . . . , 1),misclassification prob-

abilities θ11 = (0.6, 0.8, 0.95), θ00 = (0.5, 0.58, . . . , 0.98), main study sizes (100, 500, 1000),

and with equal validation sizes (10, 20 . . . , 150). We use α as 0.05 and αi = 1− (0.95)1/3.

We simulate 1000 Monte Carlo replicates for each parameter setting. This results in

19,845,000 iterations.

In the optimization method, if we use exact or score confidence intervals, the av-

erage coverage and confidence interval length will be bigger than Wald’s confidence

intervals. Since the exact and score confidence interval have coverage levels that are

nominal or higher, the joint confidence interval’s coverage will be even higher if w use

these methods. As a result, we use Wald’s confidence interval in optimization program-

ming projection methods. We will refer to this as Wald’s interval.
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Figure 5. Comparison of Root Mean Square Error and Bias for θ11 = 0.9, θ00 =
.95 (Prevalence): this figure compares the root of mean square er-
ror and absolute of bias when θ11 = 0.9, θ00 = 0.95, among
π̂naive, π̂P lugIn, π̂corrected,P I and π̂pc. Circle is for π̂naive, triangle point-up
is for π̂P lugIn, ′∗′ is for π̂corrected,P I, and square is for π̂pc.
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Figure 6. Comparison of Root Mean Square Error and Bias for θ11 = 0.9, θ00 =
.75 (Prevalence): this figure compares the root of mean square er-
ror and absolute of bias when θ11 = 0.9, θ00 = 0.75, among
π̂naive, π̂P lugIn, π̂corrected,P I and π̂pc. Circle is for π̂naive, triangle point-up
is for π̂P lugIn, ′∗′ is for π̂corrected,P I, and square is for π̂pc.
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Using the multivariate delta method we have

V̂ar(π̂P lugIn) =
π̂naive(1 − π̂naive)

n(θ̂00 + θ̂11 − 1)2
+

1

(θ̂00 + θ̂11 − 1)2

[
θ̂00(1 − θ̂00)

N.0
− 2π̂

θ̂00(1 − θ̂00)

N.0

+π̂2

{
θ̂00(1 − θ̂00)

N.0
+

θ̂11(1 − θ̂11)

N.1

}]
,

and the 100(1 − α)% confidence interval for π using delta method is

π̂P lugIn ± zα/2 V̂ar(π̂P lugIn)0.5.

Figure 7 shows the results of this simulation. The average is taken over all possible

combinations of parameter settings for each of the following cases: fixed π, fixed val-

idation size, or fixed θ00. We also considered a naive confidence interval as : π̂naive ±

zα/2{π̂naive(1 − π̂naive)/n}1/2. The length of that confidence interval is small, but its av-

erage coverage is too small to compare with the other methods, so it is not in Figure 7.

It will be in Table 4.

From Figure 7, we can draw three conclusions from the simulation. First, the con-

fidence intervals from optimization are too conservative: the coverage is too high and

length is too big. Second, the coverage of Fieller’s method and the deltamethod are both

very close to the nominal level, and the coverage of delta method is always higher than

the coverage of Fieller’s method. When the validation size increases to 110, Fieller’s

method is at the nominal level, but the coverage for the delta method is above the nom-

inal level. Third, the length of confidence intervals using Fieller’s method are generally

shorter than those of the delta method. When the misclassification probability θ00 in-

creases, the coverage drops, and the lengths of the confidence interval decrease signifi-

cantly. As we mentioned in Chapter 3, Fieller’s method is the projection of an elliptical

confidence region, so when the sample size and validation size increase we can expect

the coverage will be close to the nominal level, since the normal approximation becomes

more accurate.

Table 4 compares the average coverage for sample size n = 500 and validation size

N = 100 using naive intervals, Fieller’s method, and the delta method. From the ta-
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Fieller Delta Naive
H

H
H

H
HH

θ00

θ11 0.6 0.8 0.95 0.6 0.8 0.95 0.6 0.8 0.95

0.5 0.9491 0.9498 0.9462 0.9759 0.9629 0.9549 0.0910 0.1070 0.0902

0.58 0.9494 0.9478 0.9453 0.9673 0.9590 0.9506 0.0985 0.1231 0.1109

0.66 0.9520 0.9474 0.9464 0.9623 0.9573 0.9536 0.1096 0.1469 0.1434

0.74 0.9479 0.9493 0.9427 0.9600 0.9560 0.9492 0.1208 0.1753 0.1940

0.82 0.9492 0.9470 0.9475 0.9612 0.9543 0.9503 0.1320 0.2106 0.2821

0.9 0.9500 0.9473 0.9460 0.9569 0.9530 0.9499 0.1323 0.2515 0.4466

0.98 0.9415 0.9449 0.9428 0.9481 0.9481 0.9451 0.0769 0.2197 0.6655

Table 4. Average Coverage for n = 500,N = 100

ble, we can see that the coverage for the naive confidence interval will increase as both

misclassification probabilities θ00, θ11 increase, but when the misclassification probabil-

ities are θ00 = 0.98, θ11 = 0.95, the average coverage for the naive interval is only 67%.

The delta method also shows some what higher than nominal coverage unless the mis-

classification parameters θ00, θ11 are high. The average coverage for Fieller’s method is

generally less than the nominal level, but it is very close to it.

5.3 Confidence Interval for the Slope

In this section, we will consider the method of confidence interval using Fieller’s

method that we developed in Section 4.2 for the slope of simple linear regression. We

compare its coverage with the naive confidence interval, Fieller’s method’s confidence

interval with a known misclassification matrix, a SIMEX confidence interval, and the

delta method.

Küchenhoff et al (2006) described how to use the SIMEX method to correct the co-

efficients in a regression with misclassified covariates or response and a known mis-

classification model. Küchenhoff et al (2007) incorporated the variability of estimated

misclassification parameters. The simulation in this section will compare three situa-
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Figure 7. Comparison of Optimization Method, Filler’s Method and the Delta

Method (Prevalence): this figure compares the average coverage and av-

erage length of confidence interval for π using optimization with Wald
intervals, Fieller’s and delta methods. ’w’ is for optimization with Wald

intervals, ’f’ is for Fieller’s method, and ’d’ is for delta method.
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tions: a known misclassification model, estimated misclassification parameters that are

treated as known, and a misclassification model that is estimated and treated as such.

The delta method is derived in Appendix C.

The simulation estimates coverage, and confidence interval length for the slope. We

consider simple linear regression with misclassified covariates and K = 2. Due to the

long computation time for the SIMEX procedure, we simulate 250 Monte Carlo repli-

cates of 16 parameter settings. The parameter settings are factorial combinations of θ11 =

(0.7, 0.9), θ00 = (0.8, 0.95), validation sizes (50, 50), (200, 200), π = (0.00001, 0.08001, . . . , 0.96001),

and Var(Y |X) = (1, 10). The main study size is 1000, true intercept is 10 and true slope

is 20.

Figure 8 summarizes the coverage results. Since the coverage for the naive confi-

dence is close to 0, we exclude it from this figure. Also, the case of known misclassifica-

tion model was dropped for Fieller’s and the delta method, since each of those results

were very similar to the corresponding case of an estimated misclassifiction model that

is treated approximately. When we account for the variability of the estimated mis-

classification model, Fieller’s method can give us coverage very close to nominal. The

coverage for the SIMEX method depends on π = P (X = 1), θ00, θ11 and variance of

Y |X. The coverage of the delta method is lower than nominal level when π is close to

0 or 1. If we assume the estimated misclassification model to be known, the coverage is

below the nominal level.

Figure 9 shows length of 95% confidence intervals for the above simulation. When

π is close to 0, the length of the delta method’s interval is too big, so we do not include

that case in the figure. We can see that in general SIMEX can give a smaller confidence

interval.

If we know the misclassification matrix, Fieller’s method can produce a better con-

fidence interval than the SIMEX method. If the misclassification matrix is estimated,

Fieller’s method that accounts for the variability of θij can achieve the nominal level. In
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general, the SIMEXmethod’s confidence interval is shorter, but the coverage is low. The

coverage of the delta’s method is too small when π is close to zero or one. It is very time

consuming to use the SIMEX method to do correction. Our simulation took us 10 days.

Not surprisingly, if we do not do any correction, the coverage of the naive confidence

interval is very close to zero.

5.4 Score Approach and Regression Calibration

We use the score approach in Section 4.3, and the regression calibration approach in

Section 4.4.2 to correct the coefficients of regression with misclassified covariates. In this

section, we will use simulation to assess the performance of those methods.

We will use binary covariates with π = 0.2, 0.5, and θ11 = 0.9, θ00 = 0.75 as high

level of misclassified, θ11 = 0.9, θ00 = 0.85 as medium level of misclassified, and θ11 =

0.9, θ00 = 0.95 as low level of misclassified. We also use the relationship between mis-

classification /reclassification models: Q = DπP
TD−1

λ to find the corresponding reclas-

sification parameters. Table 5 summarizes the parameters we use.

π Level θ00 θ11 γ00 γ11

H 0.75 0.9 0.968 0.474
0.2 M 0.85 0.9 0.971 0.6

L 0.95 0.9 0.974 0.818

H 0.75 0.9 0.882 0.783
0.5 M 0.85 0.9 0.895 0.857

L 0.95 0.9 0.905 0.947

Table 5. Parameter Settings for the Simulation of Regression

The model for the simulated data is :

y|X = 0 ∼ N(β0, σ
2), y|X = 1 ∼ N(β1, σ

2)with β0 = 3, β1 = −4 and σ2 = 2.

The main study sizes are 50, 200, 1000, the validation sizes are 50, 100. We also

include the case when the parameters are known. For each unique parameter combina-
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Figure 8. Coverage for Interval Estimates of Regression Slopes: this figure com-

pares the average coverage for slope of simple regression under differ-

ent settings and using different methods. ’FU’ is Fieller’s method ac-

counting for the estimated MC model;’FA’ is Fieller’s method with the

MC model estimated and assumed known; ’SU’ is SIMEX method ac-

counting for the MC model;’SA’ SIMEX method with the MC model

estimated and assumed known; ’SK’ is SIMEX method with known
MC matrix;’DU’ is the delta’s method accounting the the estimated MC

model;’DA’ is the delta’s method with the MC model estimated and as-

sumed known. The first two rows have variance 1 and the last 2 rows

variance is 10. Validation size for first and third row is 50, the other 2

rows is 200.
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Figure 9. Length of Interval Estimates of Regression Slopes: this figure compares

the the length of confidence interval for slope of simple regression un-

der different settings and using different methods. ’FU’ is Fieller’s
method accounting for the estimated MCmodel;’FA’ is Fieller’s method

with the MC model estimated and assumed known; ’SU’ is SIMEX

method accounting for the MC model;’SA’ SIMEX method with the

MC model estimated and assumed known; ’SK’ is SIMEX method with

known MC matrix. The first two rows have variance 1 and the last 2

rows variance is 10. Validation size for first and third row is 50, the

other 2 rows is 200.
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tion, we replicate the experiment 4000 times. Tables 6, 7, 8 and 9 contain summaries of

the results of the simulation for score corrected estimators. The entry β̂ denotes the me-

dian of the 4000 observed score corrected estimators, σβ̂ denotes the observed standard

deviation of the 4000 β̂’s, and σ̂4(β̂), and σ̂5(β̂) denote the mean of the 4000 standard

deviations using Equations (4) and (5) on Nakamura (1990) respectively.

From Table 6, we see if the misclassification parameters are at the high level of mis-

classification, n = 50 and π = 0.2, then the estimated and the observed standard de-

viation do not close to each other. This is due to the fact that many (21%) of the σ̂2’s

are negative in that case. Since the error of regression with misclassified covariates

is not additive, we can not just use the usual methods (see Bock and Peterson,1975,

Amemiya,1985) to correct for this problem. Equation (5) of Nakamura (1990) is less bi-

ased than Equation (4) of Nakamura (1990) for estimating the standard deviation of the

slope when there is a low level of misclassification.

From Tables 7, and 8 we can see that, as might be expected, increasing of the main

study size and validation size makes the coefficient estimators closer to the true estima-

tors on average. Note that though that increasing the main study sample size alone does

not make inference better. Increasing the validation size is also necessarily to increase

the efficiency of inference.

Table 9 is the median of the 4000 variance estimators using the score function ap-

proach. As mentioned before, even though there is some chance that the variance es-

timate will be negative, the estimate of the variance is still close to true variance on

average as the validation size and the main study size both increase.

Tables 10 and 11 are regression calibration results using the same simulation data.

From the tables, we can see that even when main study and validation size are small,

the estimated and the observed standard deviation are very close to each other. Also the

regression variance is still negative fairly often, but in this case, inference is unaffected

because the regression variance is not necessary in this case. See Section 4.4.2.
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π level n β̂0 σ(β̂0) σ̂4(β̂0) σ̂5(β̂0) β̂1 σ̂(β̂1) σ̂4(β̂1) σ̂5(β̂1)

0.2

H
50 3.013 0.391 0.37 0.405 -3.919 10.883 16.881 17.192
200 3.005 0.19 0.186 0.183 -3.987 2.108 1.899 1.923
1000 3.001 0.083 0.084 0.082 -4.016 0.727 0.705 0.708

M
50 3.005 0.345 0.33 0.348 -4.029 7.407 7.882 8.151
200 3.003 0.17 0.166 0.163 -3.984 1.341 1.219 1.236
1000 3.001 0.075 0.075 0.074 -4.002 0.497 0.501 0.502

L
50 3.004 0.312 0.3 0.294 -4.112 2.052 1.682 1.842
200 3.002 0.154 0.151 0.149 -4.018 0.662 0.638 0.651
1000 3.001 0.068 0.068 0.068 -4.009 0.28 0.281 0.282

0.5

H
50 3.049 0.781 0.757 0.768 -4.051 1.159 1.101 1.123
200 3.02 0.381 0.372 0.373 -4.005 0.508 0.51 0.512
1000 3.001 0.169 0.166 0.166 -3.998 0.227 0.225 0.225

M
50 3.046 0.674 0.656 0.666 -4.044 0.791 0.767 0.785
200 3.018 0.334 0.326 0.327 -4.006 0.377 0.375 0.377
1000 3.001 0.148 0.146 0.146 -4 0.17 0.167 0.167

L
50 3.04 0.597 0.581 0.594 -4.051 0.485 0.457 0.472
200 3.013 0.299 0.291 0.293 -4.004 0.241 0.235 0.236
1000 3 0.132 0.13 0.13 -4.001 0.106 0.106 0.106

Table 6. Score Function Approach with KnownMisclassification Parameters

5.5 Mixture Method and Regression Calibration Method

In this section, we will use simulation to compare the mixture method and the re-

gression calibration method that we developed in Section 4.4 for regression with mis-

classified covariates and a known reclassification model. We use the same parameter

settings and model assumptions as in Section 5.4, and the Monte Carlo sample size is

4000.

Table 12 and Table 13 show the results of simulation. The entry β̂ in Table 12 de-

notes the median of the 4000 observed corrected estimators, σ(β̂) denotes the observed

standard deviation of the 4000 values of β̂, and σ̂(β̂) denotes the mean of the 4000 es-

timated standard deviations for each β̂. Some of the observed standard deviations and

the estimated standard deviation are somewhat different. If we use a robust estimator

of standard deviation median (median of absolute deviation, MAD), they are very close

to each other though. This is not shown in the table. Table 13 contains the median of
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π level n β̂0 σ(β̂0) σ̂4(β̂0) σ̂5(β̂0) β̂1 σ̂(β̂1) σ̂4(β̂1) σ̂5(β̂1)

0.2

H
50 3.023 0.417 0.387 0.433 -3.544 7.227 9.838 10.038
200 3.003 0.225 0.202 0.206 -3.768 13.76 12.509 12.641
1000 2.996 0.147 0.11 0.106 -3.914 19.401 10.023 10.078

M
50 3.009 0.367 0.342 0.373 -3.846 6.387 6.775 7.015
200 3.001 0.197 0.179 0.179 -3.97 10.197 6.358 6.46
1000 2.998 0.127 0.096 0.093 -3.889 17.356 6.566 6.602

L
50 3.004 0.329 0.308 0.314 -4.036 3.03 2.193 2.363
200 3 0.176 0.162 0.159 -3.903 2.637 1.098 1.122
1000 2.997 0.113 0.086 0.084 -3.916 1.601 0.592 0.595

0.5

H
50 3.059 1.158 0.905 0.928 -4.045 2.041 1.442 1.474
200 2.984 0.711 0.49 0.49 -4.024 1.132 0.67 0.676
1000 2.981 0.566 0.331 0.33 -3.977 0.887 0.4 0.401

M
50 3.06 0.923 0.756 0.772 -4.026 1.097 0.871 0.892
200 2.992 0.592 0.42 0.419 -4.019 0.711 0.459 0.462
1000 2.982 0.476 0.283 0.282 -3.972 0.562 0.278 0.278

L
50 3.046 0.78 0.656 0.673 -4.021 0.577 0.491 0.506
200 2.994 0.511 0.369 0.37 -3.999 0.376 0.268 0.268
1000 2.988 0.411 0.247 0.247 -3.982 0.293 0.155 0.154

Table 7. Score Function Approach with Validation Size = 50

variance estimates for both methods and for each parameter setting. We should note

that even when the reclassification model is known, there is still a small chance that the

variance estimate from regression calibration will be negative, but the variance estimate

from the mixture method is always non-negative.

5.6 Corrected Score Estimator for Regression with Misclassified Covariates

and Perfectly Measured Covariates

In this section, we will simulate data from Z|X = 0 ∼ N(µ0, σ
2
Z), Z| X = 1 ∼

N(µ1, σ
2
Z), and Y |X,Z ∼ N

{
(1 − Xβ0) + Xβ1 + ZβZ , σ2

Y

}
. From the assumed model,

we have

Var(Z) = E { Var(Z|X)} + Var {E(Z|X)}

= σ2
Z + Var {µ0(1 − X) + µ1X} ,
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π level n β̂0 σ(β̂0) σ̂4(β̂0) σ̂5(β̂0) β̂1 σ̂(β̂1) σ̂4(β̂1) σ̂5(β̂1)

0.2

H
50 3.036 0.398 0.377 0.421 -3.822 10.953 16.695 17.005
200 3.003 0.208 0.194 0.196 -3.917 8.507 6.249 6.331
1000 3 0.118 0.097 0.094 -3.977 10.088 3.633 3.661

M
50 3.027 0.352 0.335 0.361 -3.992 8.335 8.894 9.173
200 3.002 0.185 0.173 0.172 -3.976 4.528 2.316 2.364
1000 2.999 0.104 0.086 0.083 -3.961 2.669 0.977 0.988

L
50 3.02 0.315 0.303 0.302 -4.083 3.134 2.187 2.363
200 3.005 0.166 0.157 0.154 -3.985 1.173 0.774 0.792
1000 2.998 0.093 0.077 0.076 -3.983 0.863 0.44 0.442

0.5

H
50 3.04 0.92 0.825 0.846 -3.99 1.379 1.186 1.208
200 3.013 0.524 0.431 0.43 -4.017 0.759 0.577 0.581
1000 2.985 0.387 0.256 0.255 -4.001 0.569 0.315 0.315

M
50 3.043 0.778 0.706 0.719 -4.009 0.925 0.805 0.825
200 3.013 0.452 0.374 0.375 -3.998 0.524 0.412 0.415
1000 2.985 0.332 0.221 0.221 -3.991 0.394 0.226 0.226

L
50 3.041 0.681 0.622 0.639 -4.023 0.526 0.473 0.487
200 3.01 0.396 0.331 0.333 -4.009 0.296 0.251 0.251
1000 2.99 0.291 0.195 0.195 -3.986 0.218 0.132 0.132

Table 8. Score Function Approach with Validation Size = 100

= σ2
Z + (µ1 − µ0)

2π(1 − π)

Var(X) = π(1 − π), and

Cov(Z,X) = Cov {E(Z|X), E(X|X)} + E { Cov(Z,X|X)}

= (µ0 − µ1)π(1 − π).

As a result, we have

Cor(Z,X) =
sign(µ0 − µ1)

(1 +
σ2

Z

(µ0 − µ1)2π(1 − π)
)1/2

,

a function of µ0 − µ1, π and σ2
Z .

In this simulation, we will use the same misclassification parameters as before, i.e.

θ11 = 0.9, θ00 = 0.75 for high level of misclassification, θ11 = 0.9, θ00 = 0.85 for medium

of misclassification and θ11 = 0.9, θ00 = 0.95 for low level of misclassification. We use

π = 0.4, main study sizes 100,200, and 1000 and validation sizes 50 and 100. We also

include the case with known misclassification parameters. The regression parameters
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level 0.2 0.5
H

H
H

H
HH

n
N ∞ 50 100 ∞ 50 100

H
50 1.758 2.233 1.747 1.392 1.081 1.39
200 1.954 2.145 2.013 1.856 1.683 1.793
1000 1.947 2.053 1.949 1.983 1.923 1.961

M
50 1.667 1.88 1.63 1.518 1.373 1.525
200 1.952 1.94 1.948 1.824 1.731 1.871
1000 1.973 2.07 1.986 1.991 1.972 1.982

L
50 1.63 1.745 1.564 1.654 1.599 1.639
200 1.93 2.035 1.971 1.884 1.863 1.914
1000 1.973 2.068 2.02 1.977 2.011 2.026

Table 9. Variance Estimate from Score Function Approach

are β0 = −3, β1 = 4, βz = 2, σ2 = 1, µ0 = 1, µ1 = 9 and σ2
Z = 100. This results in

Cor(Z,X) = 0.365. The Monte Carlo sample size is 4000.

Table 14 contains the simulation results. Since Equation (5) of Nakamura (1990) pro-

duces too many negative definite matrix estimates in this case, we use Equation (4) of

Nakamura (1990) instead. The entry β̂ in Table 14 denotes the median of the 4000 ob-

served corrected estimators, σ(β̂) denotes the observed standard deviation of the 4000

values of β̂, σ̂(β̂) denotes the mean of the 4000 estimated standard deviations for each

β̂, and σ̂2 denotes the median of the 4000 observed corrected estimates of the variance.

From this table, we can see that, on the average, score corrected coefficients estimators

are very close to the true coefficients for any misclassification level, any main study size,

and any validation size. But the variance estimator is not as impressive unless there is a

medium level of misclassification with a known misclassification model and n = 1000,

or low level of misclassification, with a known misclassification model or large vali-

dation size, n = 1000. The estimated and observed standard deviations of β̂ are very

close to each other when the misclassification is known. When validation size is 100, as

main study size increases, the inference worsens. We suspect this is because some of the

estimates of σ̂2 are negative.
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H M L

n N π β̂0 σ(β̂0) σ̂(β̂0) β̂0 σ(β̂0) σ̂(β̂0) β̂0 σ(β̂0) σ̂(β̂0)

50

∞
0.2

3.001 0.379 0.533 3.003 0.337 0.45 3.002 0.305 0.349
50 3.004 0.43 0.584 2.996 0.383 0.493 2.997 0.343 0.389
100 3.02 0.404 0.557 3.013 0.359 0.47 3.008 0.32 0.368
∞

0.5
3.04 0.704 0.773 3.036 0.618 0.637 3.028 0.551 0.501

50 3.043 0.814 0.883 3.024 0.722 0.741 3.015 0.65 0.607
100 3.027 0.749 0.831 3.039 0.663 0.692 3.025 0.592 0.559

200

∞
0.2

3.003 0.186 0.266 3.002 0.166 0.226 3.001 0.15 0.176
50 2.99 0.282 0.341 2.99 0.247 0.29 2.988 0.223 0.238
100 2.999 0.238 0.304 2.997 0.214 0.261 2.999 0.192 0.211
∞

0.5
3.014 0.348 0.386 3.011 0.307 0.319 3.006 0.276 0.253

50 3.017 0.545 0.564 3.016 0.487 0.487 3.005 0.436 0.418
100 3.001 0.456 0.478 3.004 0.406 0.409 3.003 0.363 0.344

103

∞
0.2

3.002 0.082 0.119 3 0.073 0.101 3 0.066 0.079
50 2.98 0.232 0.235 2.983 0.204 0.203 2.982 0.183 0.173
100 2.99 0.168 0.184 2.989 0.149 0.161 2.989 0.135 0.138
∞

0.5
3.002 0.157 0.172 3.002 0.138 0.143 3.001 0.123 0.113

50 2.98 0.445 0.434 2.978 0.397 0.384 2.987 0.357 0.344
100 2.983 0.312 0.324 2.984 0.283 0.287 2.98 0.259 0.255

n N π β̂0 σ(β̂1) σ̂(β̂1) β̂1 σ(β̂1) σ̂(β̂1) β̂1 σ(β̂1) σ̂(β̂1)

50

∞
0.2

-3.983 1.998 1.51 -3.994 1.714 1.16 -4.075 1.198 0.803
50 -3.878 2.432 1.996 -3.979 1.95 1.488 -4.033 1.277 0.951
100 -3.987 2.255 1.753 -4.02 1.873 1.325 -4.106 1.25 0.869
∞

0.5
-4.023 0.825 0.77 -4.012 0.672 0.636 -4.043 0.464 0.504

50 -4.03 1.025 0.983 -4.001 0.814 0.777 -4.009 0.523 0.563
100 -4.022 0.933 0.877 -4.014 0.749 0.709 -4.019 0.502 0.535

200

∞
0.2

-3.978 0.978 0.753 -3.98 0.826 0.578 -4.012 0.581 0.398
50 -4.011 1.613 1.437 -3.991 1.224 1.054 -3.997 0.76 0.628
100 -3.981 1.347 1.12 -3.993 1.068 0.842 -4.013 0.678 0.524
∞

0.5
-4.002 0.409 0.385 -4.004 0.333 0.319 -4.005 0.234 0.253

50 -3.996 0.717 0.702 -3.996 0.548 0.539 -3.989 0.332 0.347
100 -3.994 0.582 0.557 -4.001 0.449 0.439 -4.002 0.288 0.304

103

∞
0.2

-4 0.437 0.337 -3.999 0.364 0.259 -4.003 0.251 0.178
50 -4.029 1.358 1.258 -4.039 1.011 0.923 -3.999 0.563 0.514
100 -4.008 0.961 0.886 -3.997 0.719 0.658 -3.988 0.426 0.38
∞

0.5
-3.998 0.186 0.172 -4 0.151 0.143 -4.002 0.103 0.113

50 -3.989 0.619 0.601 -3.978 0.461 0.447 -3.981 0.262 0.258
100 -3.992 0.445 0.433 -3.99 0.34 0.33 -3.996 0.197 0.201

Table 10. Regression Calibration Results
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level 0.2 0.5
H

H
H

H
HH

n
N ∞ 50 100 ∞ 50 100

H
50 1.988 2.123 1.909 1.895 1.937 2.033
200 1.977 2.091 2.059 1.955 2.048 2.008
1000 1.969 2.074 2.051 2.003 2.117 2.135

M
50 1.934 2.056 1.865 1.91 2.024 2.059
200 1.977 2.074 2.037 1.933 2.057 2.029
1000 1.984 2.064 2.066 2.012 2.209 2.085

L
50 1.898 2.011 1.817 1.935 2.058 2.012
200 1.996 2.118 2.032 1.958 2.087 1.982
1000 1.987 2.107 2.058 1.994 2.104 2.061

Table 11. Variance Estimate for Regression Calibration Method
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0.2 0.5

n MD β̂0 σ(β̂0) σ̂(β̂0) β̂1 σ(β̂1) σ̂(β̂1) β̂0 σ(β̂0) σ̂(β̂0) β̂1 σ(β̂1) σ̂(β̂1)

H

50
MIX 3.002 0.232 0.16 -4.009 0.58 0.381 3 0.313 0.211 -3.999 0.312 0.21
RC 3.012 0.374 0.534 -4.07 1.997 1.511 3.031 0.705 0.777 -4.006 0.837 0.77

200
MIX 3 0.113 0.08 -4.005 0.238 0.169 2.998 0.152 0.103 -3.998 0.151 0.103
RC 3.004 0.183 0.266 -4.013 0.962 0.753 3.006 0.346 0.385 -4.008 0.417 0.385

103 MIX 3 0.051 0.036 -3.998 0.104 0.074 2.997 0.066 0.046 -3.999 0.066 0.046
RC 3.003 0.082 0.119 -4.003 0.428 0.337 3 0.155 0.172 -3.998 0.182 0.172

M

50
MIX 3.001 0.229 0.16 -4.012 0.525 0.38 2.999 0.3 0.21 -4.001 0.297 0.209
RC 3.009 0.332 0.451 -4.081 1.685 1.157 3.029 0.614 0.636 -4.027 0.676 0.635

200
MIX 3.001 0.113 0.08 -4.004 0.235 0.168 2.997 0.151 0.103 -3.998 0.15 0.103
RC 3.005 0.165 0.226 -4.034 0.821 0.578 3.011 0.305 0.318 -4.011 0.338 0.318

103 MIX 3 0.051 0.036 -3.999 0.103 0.074 2.997 0.067 0.046 -3.999 0.067 0.046
RC 3.002 0.073 0.101 -3.997 0.362 0.259 3 0.136 0.143 -4.001 0.148 0.143

L

50
MIX 3.002 0.227 0.16 -4.008 0.491 0.378 3.002 0.296 0.209 -4.001 0.292 0.208
RC 3.004 0.301 0.349 -4.099 1.165 0.798 3.027 0.553 0.502 -4.028 0.476 0.503

200
MIX 3.001 0.113 0.08 -4.003 0.232 0.166 2.997 0.148 0.102 -4 0.148 0.102
RC 3.003 0.148 0.176 -4.042 0.56 0.398 3.003 0.274 0.252 -4.007 0.233 0.252

103 MIX 2.999 0.051 0.036 -3.998 0.101 0.073 2.998 0.065 0.046 -3.999 0.065 0.046
RC 3.001 0.067 0.079 -4.001 0.252 0.178 3.001 0.122 0.113 -4.001 0.102 0.113
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MIX RC

level
H

H
H

H
HH

π
n

50 200 1000 50 200 1000

H
0.2 1.9 1.97 1.996 1.785 1.925 1.979
0.5 1.893 1.968 1.998 1.882 1.916 1.992

M
0.2 1.898 1.97 1.996 1.817 1.926 1.979
0.5 1.894 1.968 2 1.905 1.927 2

L
0.2 1.902 1.97 1.996 1.843 1.941 1.999
0.5 1.892 1.967 1.999 1.916 1.951 1.995

Table 13. Variance Estimate FromMixture Method and Regression Calibration

N L n β̂0 σ(β̂0) σ̂(β̂0) β̂1 σ(β̂1) σ̂(β̂1) β̂z σ(β̂z) σ̂(β̂z) σ̂2

∞

H
100 -3.060 0.407 0.405 4.167 1.696 1.204 1.996 0.070 0.053 0.409
200 -3.022 0.269 0.274 4.042 0.997 0.856 1.999 0.042 0.037 0.8
103 -3.003 0.118 0.117 3.992 0.403 0.395 2.001 0.018 0.017 1.002

M
100 -3.042 0.338 0.343 4.071 1.006 0.917 1.998 0.045 0.041 0.747
200 -3.022 0.227 0.234 4.066 0.674 0.648 1.998 0.031 0.029 0.777
103 -3.002 0.101 0.102 4.013 0.288 0.290 1.999 0.013 0.013 0.961

L
100 -3.019 0.294 0.296 4.077 0.560 0.557 1.997 0.030 0.029 0.783
200 -3.008 0.203 0.206 4.014 0.388 0.388 1.999 0.021 0.020 0.922
103 -3.002 0.092 0.090 4.004 0.172 0.171 2.000 0.009 0.009 0.991

50

H
100 -3.069 0.517 0.777 4.163 3.216 2.679 1.994 0.110 0.103 0.327
200 -3.049 0.410 0.620 4.074 1.970 2.223 1.997 0.064 0.079 0.607
103 -3.011 0.324 0.501 4.058 1.548 1.845 1.998 0.043 0.063 0.754

M
100 -3.065 0.436 0.551 4.193 1.503 1.641 1.996 0.055 0.066 0.358
200 -3.033 0.342 0.450 4.099 1.198 1.386 1.997 0.041 0.054 0.655
103 -3.025 0.278 0.359 4.063 0.991 1.126 1.998 0.030 0.042 0.735

L
100 -3.048 0.368 0.417 4.125 0.744 0.841 1.996 0.034 0.043 0.646
200 -3.027 0.293 0.332 4.117 0.629 0.673 1.997 0.026 0.034 0.688
103 -3.016 0.244 0.245 4.052 0.517 0.502 1.999 0.019 0.025 0.857

100

H
100 -3.073 0.462 0.412 4.189 2.483 1.169 1.995 0.091 0.051 0.365
200 -3.043 0.342 0.279 4.070 1.543 0.818 2.000 0.053 0.036 0.701
103 -3.010 0.240 0.121 4.051 1.051 0.371 1.999 0.032 0.016 0.840

M
100 -3.052 0.385 0.346 4.115 1.290 0.904 1.997 0.051 0.041 0.631
200 -3.025 0.296 0.239 4.078 0.971 0.635 1.998 0.036 0.029 0.710
103 -3.012 0.208 0.104 4.043 0.729 0.283 1.999 0.023 0.013 0.882

L
100 -3.030 0.332 0.299 4.102 0.662 0.561 1.997 0.032 0.029 0.683
200 -3.028 0.255 0.207 4.077 0.508 0.389 1.997 0.023 0.020 0.751
103 -3.011 0.182 0.091 4.024 0.398 0.172 1.999 0.015 0.009 0.930

Table 14. Simulation Results for Regression with Misclassified and Perfectly

Measured Covariates
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C H A P T E R 6

CONCLUSION

In this dissertation, we show how to use external validation data to correct estimates

of a proportion when the main study data are misclassified, and coefficients of linear

regression with misclassified covariates (both with and without perfectly measured co-

variates).

We introduce two estimators for a proportion, π̂Corrected,P I with reduced bias, and

π̂pc with smaller mean square error. Simulation suggests that π̂pc performs quite well

in general. We use Fieller’s method and optimization techniques to find a confidence

interval for proportion of interest. Simulation shows that Fieller’s method performs

better than the optimization techniques.

For regression with misclassified covariates, we can use a score function approach,

regression calibration, or a mixture model method. If a misclassification model is avail-

able, known or estimated, we can use the score function approach. If a reclassification

model is available, known or estimated, we can use regression calibration or themixture

model method.

In the process of writing this dissertation, we have observed that there are some

interesting topics that can be explored further as future research.

• In the simulation, sometimes σ̂2 is negative after correction. It is not clear how to

do correction in this case. For a regression model with misclassified covariates,

the error model is not additive. In general, under the additive error model, there
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are methods that can apply to correct in the case when the covariance estimate is

non-positive definite. Perhaps these methods can be adapted to our setting.

• We used mixture methods in linear regression with misclassified covariates, and

a reclassification model. It would be nice to generalize this approach to address a

wider variety of regression models.

• When we use the mixture model, we require information about the reclassification

model to use the EM algorithm to do the correction. It is unclear to us under

which conditions we can recover the reclassification model from the EM algorithm

without a known/estimated reclassification model.

• For a regression model with misclassified covariates and a konwn misclassifica-

tion/reclassification modelv, the corrected score estimator and the regression cali-

bration estimator are all unbiased. This is not so in the case of regression models

with misclassified and perfectly measured covariates. It is not clear that we can

find an unbiased estimator for a regressionmodel with misclassified and perfectly

measured covariates.

• We would like to extend our methods to generalized linear models.

• When π is of interest, the reclassification model is always more efficient. When

one has a misclassification model only, it would be interesting, to evaluate the

following procedure:

1. Use θ00, θ11 to evaluate π.

2. Use θ00, θ11, π̂ to estimate a reclassification model: γ00, γ11.

3. Use γ00, γ11 to estimate π.

Steps 2 and 3 could be iterated also. We wonder if, in this way, we could produce

a more efficient estimator.
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A P P E N D I X A

Different Types of Proportional Confidence Intervals

Let p̂ denote the sample proportion of a binomial distribution of sample sizem for a

binomial parameter p. A 100(1 − α)%Wald confidence interval for p is

p̂ ± zα/2

√
p̂(1 − p̂)

m

where zα is the 1 − α quartile of the standard normal distribution.

A 100(1 − α)% exact confidence interval for p is

 1

1 +
m − x + 1

x
F2(m−x+1),2x,α/2

,

x + 1

m − x
F2(x+1),2(m−x),α/2

1 +
x + 1

m − x
F2(x+1),2(m−x),α/2




where x is the total number in the sample equal to 1 and Fν1,ν2,α is the upperα percentile

from F distribution with degree ν1, ν2. This is an exact interval, not the result of a large

sample. It is based on the result of Casella and Berger’s Exercise 9.2.1.

A 100(1 − α)% score confidence interval for p is

p̂ +
z2
α/2

2m
± zα/2

√

[p̂(1 − p̂) +
z2
α/2

4m
]/m

1 +
z2

α/2

m

.

The endpoints of the score confidence interval are the solutions p0 to the equations

bp−p0√
p0(1−p0)/m

= ±zα/2. The score confidence interval is the inversion of score test for p.

See Agresti and Coull (1998). The exact confidence interval will have average coverage

too large, Wald confidence interval will have average coverage too small and score con-

fidence interval will have average coverage close to the nominal confidence interval. See

Agresti and Coull (1998).
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A P P E N D I X B

Algorithm to Find Upper/Lower Bound for π

In this appendix, we will give an algorithm of using the results of Section 3.1 to find

the upper and lower bound for π. f is defined in Section 3.1. Let A be the boundary

values (eight of them) of f on this region. Here are the steps that we will follow :

1. If (L00 + L11 − 1)(U00 + U11 − 1) > 0:

• if length(A ≥ 0) = 0, then min = max = 0

• else min = min(min(A ≥ 0), 1),max = min(max(A ≥ 0), 1)

• the interval is [min,max].

2. If (L00 + L11 − 1)(U00 + U11 − 1) < 0 and (Uλ + U00 − 1) ∗ (Lλ + L00 − 1) ≥ 0) and A

has no valid value:

• if length(A ≥ 0) = 0min = 0 else min=min(min(A ≥ 0), 1)

• max=1

• the interval is {0} ∪ [min,max]

3. If (L00 + L11 − 1)(U00 + U11 − 1) < 0 and (Uλ + U00 − 1) ∗ (Lλ + L00 − 1) < 0) and A

has no invalid value:

• relative minimum value will be greater than or equal to 1, the relative maximum

value will be less than or equal to 1
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• max=relative maximum value

• the interval is [0,max] ∪ {0}

4. If U00 + U11 − 1 = 0 and Lλ + L00 − 1 ≥ 0:

• min=0, max=0, length=0

• the interval is {0}

5. If U00 + U11 − 1 = 0 and Uλ + U00 − 1 ≤ 0:

• min=0 if no relative minimum else min=min(max(relative min,0),1)

• max=1

• the interval is [min,max]

6. if U00 + U11 − 1 = 0 and (Uλ + U00 − 1)(Lλ + L00 − 1) < 0:

• min=0, max=1,length=1

• the interval is [0, 1]

7. if L00 + L11 − 1 = 0 and Uλ + U00 − 1 ≤ 0:

• min=0, max=0, length=0

• the interval is {0}

8. if L00 + L11 − 1 = 0 and Lλ + L00 − 1 ≥ 0:

• min=0 if no relative minimum else min=min(max(relative min,0),1)

• max=1

• the interval is [min,max]

9. if L00 + L11 − 1 = 0 and (Uλ + U00 − 1)(Lλ + L00 − 1) < 0:
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• min=0, max=1,length=1

• the interval is [0, 1]

10. if L00 + U11 − 1 = 0 or U00 + L11 − 1 = 0 and (Uλ + U00 − 1)(Lλ + L00 − 1) ≥ 0:

• if (length(A > 0)) = 0) min=0 else min=min(min(A > 0),1)

• max=1

• the interval is [min, 1] ∪ {0}

11. if L00 + U11 − 1 = 0 or U00 + L11 − 1 = 0 and (Uλ + U00 − 1)(Lλ + L00 − 1) < 0:

• min=0, max=1,length=1

• the interval is [0, 1]
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A P P E N D I X C

Using the Delta method to Estimate Variance for the Slope

From Corollary 4.2.1,

β1 =
λ(1 − λ)(θ00 + θ11 − 1)βw1

(λ + θ00 − 1)(θ11 − λ)
= f(βw1, λ, θ00, θ11)

Using the delta method, we can estimate the variance of β̂1:

V̂ar(β̂1) = ∇f(β̂w1, λ̂, θ̂00, θ̂11)
T Ĉov(




β̂w1

λ̂

θ̂00

θ̂11




)∇f(β̂w1, λ̂, θ̂00, θ̂11).

In the following, we will show the detailed computations that we need for the above

formula.

Lemma C.0.1 Cov(β̂w1, λ̂) = 0.

Proof

Cov(β̂w1, λ̂) = E
{
Cov(β̂w1, λ̂|W)

}
+ Cov

{
E(β̂w1|W), E(λ̂|W)

}

= Cov

[
E

{∑
i yi(Wi − λ̂)

nλ̂(1 − λ̂)
|W
}

, λ̂

]

= Cov

{∑
i(βw0 + βw1Wi)(Wi − λ̂)

nλ̂(1 − λ̂)
, λ̂

}

= Cov(βw1, λ̂)

= 0.

101



Since (θ̂00, θ̂11) are independent from (β̂w1, λ̂), and we have

Ĉov(




β̂w1

λ̂

θ̂00

θ̂11




) =




V̂ar(β̂w1) 0 0 0

0 V̂ar(λ̂) 0 0

0 0 V̂ar(θ̂00) 0

0 0 0 V̂ar(θ̂11)




.

By direct computation, we will have

∇f(β̂w1, λ̂, θ̂00, θ̂11)

=




λ̂(1 − λ̂)

(λ̂ + θ̂00 − 1)(θ̂11 − λ̂)

β̂w1(θ̂00 + θ̂11 − 1)
{
−λ̂2(θ̂11 − θ̂00) + θ̂11(θ̂00 − 1)(1 − 2λ̂)

}

(λ̂ + θ̂00 − 1)2(λ̂ − θ̂11)2

− λ̂(1 − λ̂)β̂w1

(λ̂ + θ00 − 1)2

− λ̂(1 − λ̂)β̂w1

(λ̂ − θ̂11)2




.
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