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ABSTRACT

BOUNDARY DIVISORS IN THE MODULI SPACE OF

STABLE QUINTIC SURFACES

FEBRUARY 2014

JULIE RANA, B.S., MARLBORO COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jenia Tevelev

My research incorporates several central themes in algebraic geometry, including mod-

uli spaces and their compactifications, singular spaces, and deformation theory. I am es-

pecially interested in Gieseker’s moduli space MK2,χ of minimal surfaces of general type

with fixed numerical invariants, and its Kollár–Shepherd-Barron, Alexeev compactifica-

tion MK2,χ. Some of the questions I am interested in include describing which singular-

ities might appear on a stable surface with given invariants, finding concrete models for

singular surfaces, and describing the structure of MK2,χ along the boundary, especially

in the presence of obstructions to Q-Gorenstein deformations of stable surfaces.

In this thesis, I give a bound on which singularities may appear on stable surfaces for

a wide range of topological invariants, and use this result to describe all stable numerical

quintic surfaces, i.e. stable surfaces with K2 = χ = 5, whose unique non Du Val singular-

ity is a Wahl singularity. Quintic surfaces are the simplest examples of surfaces of general

type and the question of describing their moduli is a long-standing question in algebraic

geometry. I then extend the deformation theory of Horikawa in [Hor75] to the log setting

in order to describe the boundary divisor of the moduli space M5,5 corresponding to
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these surfaces.
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C H A P T E R 1

INTRODUCTION

My research incorporates several central themes in algebraic geometry, including mod-

uli spaces and their compactifications, singular spaces, and deformation theory. I am es-

pecially interested in Gieseker’s moduli space MK2,χ of minimal surfaces of general type

with fixed numerical invariants, and its Kollár–Shepherd-Barron, Alexeev compactifica-

tion MK2,χ. Some of the questions I am interested in include describing which singular-

ities might appear on a stable surface with given invariants, finding concrete models for

singular surfaces, and describing the structure of MK2,χ along the boundary, especially

in the presence of obstructions to Q-Gorenstein deformations of stable surfaces.

In this thesis, I give a bound on which singularities may appear on stable surfaces for

a wide range of topological invariants, and use this result to describe all stable numerical

quintic surfaces, i.e. stable surfaces with K2 = χ = 5, whose unique non Du Val singular-

ity is a Wahl singularity. Quintic surfaces are the simplest examples of surfaces of general

type and the question of describing their moduli is a long-standing question in algebraic

geometry. I then extend the deformation theory of Horikawa in [Hor75] to the log setting

in order to describe the boundary divisor of the moduli space M5,5 corresponding to

these surfaces.
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1.1 Background

Algebraic geometry is the study of algebraic varieties, spaces defined as the zero-set

of some polynomials. Smooth algebraic varieties over C can be thought of as complex

manifolds that are locally the zero-set of some polynomials. As manifolds, smooth al-

gebraic varieties are isomorphic to a subset of Cn, for some n, called the dimension of

the variety. For instance, dimension one algebraic varieties are called curves and those

of dimension two are called surfaces. However, algebraic geometry differs from the the-

ory of manifolds in many respects. One important difference is that algebraic geometry

allows us to work with singular varieties as well as smooth varieties. Moreover, complex

algebraic varieties are endowed with complex structure; two varieties may be the same

topologically, but have such different complex structures that they are not isomorphic

when viewed as algebraic varieties.

Some of the most important work that algebraic geometers do involves classifying

algebraic varieties of a given dimension. Every smooth projective algebraic curve is

topologically isomorphic to a compact closed orientable surface, and so may be visualized

as a sphere with g handles, where g is an invariant called the genus of the curve. Even as

algebraic varieties, every smooth projective curve of genus 0 is isomorphic to the Riemann

sphere. But in general two smooth genus g curves are not isomorphic as varieties. Indeed,

for curves of genus g ≥ 2, we can define a moduli space Mg, an algebraic space in its own

right, in which each point corresponds to a curve of genus g, unique up to automorphisms

of the curve. As an algebraic space Mg has dimension 3g − 3.

One of the properties of Mg is that it is not compact. This makes Mg difficult to

work with for several reasons. For example, one desires to know how limits of curves

behave “at infinity.” That is, we can take limits of smooth curves and obtain some-

thing singular that does not correspond to a point in Mg. Another difficulty arises when

we try to take intersections of subspaces of Mg. Such intersections are useful, because

they can help answer questions about enumerative geometry of curves exhibiting certain
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types of behavior, for example for computing Gromov-Witten invariants. But defining

a reasonable intersection theory on a non-compact space is difficult. This is true even

for spaces as simple as C2, where two lines may not intersect at all. To surmount this,

algebraic geometers work instead with compactified spaces. The compactification of C2

is the projective plane P2, where lines that were parallel on C2 now intersect on P2 “at in-

finity.” Unlike C2, there are many different and reasonable ways to compactify Mg. Each

compactification adds a boundary or wall to the space Mg. The ideal situation is when

the new space parametrizes curves with certain types of singularities. For example, the

Deligne-Mumford compactification Mg contains a divisor (or subspace of dimension one

less than that of Mg) whose points correspond to irreducible curves with a node [DM69].

Algebraic surfaces have a rough classification, due to Enriques and Kodaira, where

surfaces are classified according to an invariant called the Kodaira dimension κ. The

Kodaira dimension of an algebraic surface may be either −∞, 0, 1, or 2. Surfaces with

κ = −∞, 0, or 1 are isomorphic to a surface of one of nine types (for example, K3 surfaces,

ruled surfaces, hyperelliptic surfaces, etc.), each of which is well understood. Surfaces of

Kodaira dimension 2, known as surfaces of general type, can be much more complicated.

Smooth projective surfaces can also be assigned topological invariants K2, q and pg,

analogous to the genus g of a curve. These invariants may be related in various ways.

One important relation is Noether’s inequality, which states that every minimal surface

of general type satisfies K2 ≥ 2pg − 4. Letting χ = 1− q + pg, Gieseker defined, for each

pair of possible invariants K2 and χ, a moduli space MK2,χ whose points correspond

to surfaces of general type with the given invariants and mild singularities called Du

Val or ADE singularities. One of the pecularities of surfaces of general type is that

the moduli spaces MK2,χ can be arbitrarily singular [Vak06] and have many connected

components [Cat86]. Moreover, most of the moduli spacesMK2,χ have yet to be explicitly

described. That said, there are some very nice complete descriptions of these moduli

spaces for surfaces with nice invariants. For instance, for surfaces “on the Noether line”

3



with K2 = 2pg − 4 and q = 0, the moduli spaces MK2,χ were described in detail by

Horikawa [Hor76a,Hor76b,Hor78,Hor79,Hor81].

As is the case with Mg, the moduli space MK2,χ is not compact. There are two

known compactifications of MK2,χ. The better known of these is the Geometric Invariant

Theory (GIT) compactification M
GIT
K2,χ, which depends on some extra parameters. The

GIT compactification is nice in that gives an answer to the problem of compactifying

MK2,χ, using a classical construction that has many other important applications (for

instance, many of the compactifications of Mg also involve GIT). However, as a moduli

space M
GIT
K2,χ is not ideal. One reason is that even in simple cases, it is difficult to

describe all types of singularities that GIT semistable surfaces may have. Moreover,

many semistable points correspond to surfaces with singularities that are in some sense

too degenerate.

More recently, Kollár, Shepherd-Barron, and Alexeev constructed a different com-

pactification MK2,χ, called the KSBA compactification of MK2,χ [KSB88,Ale94]. As an

algebraic space MK2,χ is much more complicated than M
GIT
K2,χ. However, as a moduli

space, MK2,χ is more natural. Its points parametrize so-called stable surfaces, i.e., sur-

faces with ample canonical class and semi log canonical singularities. Semi log canonical

singularities are completely classified in [KSB88] and include a number of types of iso-

lated singularities, one type of which are the cyclic quotient singularities described below.

They also include orbifold double normal crossing singularities, which are locally analyt-

ically isomorphic to two surfaces intersecting transversally or in a curve that contains

mild singularities on each component surface.

In studying the moduli space MK2,χ, a natural question to ask is which types of

singularities actually appear on stable surfaces with given invariants. Even better, can

we describe loci in MK2,χ whose points correspond to surfaces with a given type of sin-

gularity? Two types of semi log canonical singularities in particular typically correspond

to divisors in the boundary of the moduli space MK2,χ, for example in the absence of
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obstructions to deformations. One type are the orbifold double normal crossing singular-

ities described above. Given a surface with orbifold double normal crossing singularities,

there is a condition on the curve of intersection of the two components which guaran-

tees that the singularity has a local one-parameter Q-Gorenstein smoothing. As long as

this smoothing is unobstructed, the equisingular deformations of the surface will give a

generically smooth divisor in the boundary of MK2,χ.

Surfaces with cyclic quotient singularities are also expected to give a divisor inMK2,χ.

A cyclic quotient singularity of type 1
n(1, a), where a and r are relatively prime, is locally

analytically isomorphic to a quotient of C2 by the cyclic group Z/nZ. Explicitly, the

action of Z/nZ on C2 is given by (x, y) 7→ (x, ζay), where ζ is a primitive nth root of

unity. An important subset of cyclic quotient singularities are those that admit at least

a one-parameter Q-Gorenstein smoothing, because only surfaces with these singularities

may actually occur in the boundary of MK2,χ as stable limits of families of surfaces in

MK2,χ. Of these, the ones that admit at most a one-parameter smoothing are called

Wahl singularities, and are the cyclic quotient singularities of type 1
n2 (1, na− 1) where a

and n are relatively prime. As long as there are no obstructions to deformations, surfaces

whose unique non Du Val (or ADE) singularity is a Wahl singularity will give divisors in

MK2,χ, corresponding to equisingular deformations of these surfaces.

One method to find surfaces with Wahl singularities is to try to explicitly construct

them by constructing their minimal resolutions, which are smooth and contain explicit

strings of rational curves with negative self-intersections. This method has been met

with some success, most notably by Y. Lee, H. Park, J. Park, and D. Shin with their

constructions of surfaces of general type with pg = q = 0 found in [LP07, PPS09b,

PPS11,PPS09a]. I use this method, together with bounds on which Wahl singularities

may appear on surfaces with certain invariants, to find and describe the divisor in M5,5

corresponding to surfaces whose unique non Du Val singularity is a Wahl singularity.
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1.2 Stable numerical quintic surfaces

The simplest examples of surfaces of general type are quintic surfaces, or surfaces

in P3 which are the zero-set of a polynomial of degree 5. The moduli space M5,5 of

numerical quintic surfaces, or surfaces with the same invariants as quintic surfaces, was

described by Horikawa in [Hor75]. This moduli space is a union of two 40-dimensional

irreducible components meeting, transversally at a general point, in a 39-dimensional

irreducible variety. Figure 1 gives a schematic diagram of M5,5. We should remark that

each component parametrizes smooth surfaces with K2 = χ = 5, although surfaces in

components IIa and IIb are not quintic surfaces in the usual sense.

Figure 1. On the left, a visualization of M5,5. Components I and IIa
are 40-dimensional; IIb is 39-dimensional. On the right, the
construction of a numerical quintic surface of type IIa (or IIb)
from a double cover of P1 × P1 (or F2).

I am interested in describing which types of singularities may appear on a stable

numerical quintic surface. As discussed above, the first natural singularities to look at

are Wahl singularities. In what follows, let X be a stable surface whose unique non Du

Val singularity is a Wahl singularity, and let X̃ be its minimal resolution. Let X̄ be the

minimal model of X, obtained by contracting all (−1) curves on X̃.

Lemma 1.1. If KX and KX̄ are big and nef, then K2
X > K2

X̄
.

Lemma 1.1 is similar to a result of Kawamata [Kaw92, 2.4, 4.6], but in his case the

surface X must be the central fiber of a Q-Gorenstein degeneration whose generic fiber is

6



a smooth connected surface. I study the case where the difference K2
X −K2

X̄
is as small

as possible: What happens when K2
X = K2

X̄
+ 1?

The minimal resolution X̃ of a surface X with a Wahl singularity contains a string of

exceptional curves with negative self-intersections, called the T-string of the singularity.

If the T-string of a certain singularity contains r exceptional curves, then we say that

the singularity has length r. It is tempting to try to bound the type of Wahl singularity

that may appear on a given surface by bounding its length. In fact, this is possible;

in [Lee99], Y. Lee shows that if X has a unique Wahl singularity of length r and at most

Du Val singularities otherwise, then r ≤ 400K2
X̄
. The following result greatly improves

Lee’s bound, although it applies only to those surfaces for which K2
X = K2

X̄
+ 1.

Theorem 1.2. Let X be a surface with a unique Wahl singularity p of length r and at

most Du Val singularities elsewhere, let X̃ be its minimal resolution, and X̄ the minimal

model of X̃. If KX and KX̃ are big and nef and if K2
X̃

= K2
X − 1, then r = 1 or 2. That

is, p is a 1
4(1, 1),

1
9(1, 2), or

1
9(1, 5) singularity.

Using Horikawa’s descriptions of surfaces lying on the Noether line [Hor76a], I can

improve the result further for surfaces near it:

Theorem 1.3. With the same hypotheses as in Theorem 1.2, assume moreover that

K2
X = 2pg − 3. If X̄ is of general type then p is a 1

4(1, 1) singularity. Moreover, if p is a

1
4(1, 1) singularity and K2

X > 3, then X̄ is of general type.

Theorem 1.3 suggests that it is possible to describe all stable surfaces lying one above

the Noether line whose unique non Du Val singularity is a 1
4(1, 1) singularity. In this

thesis, I do this for the case of stable numerical quintic surfaces by looking at the minimal

resolution X̃ of a stable numerical quintic surface X. I prove that the surface X̃, which

contains a rational curve of self-intersection −4, arises from the double cover of a smooth

or nodal quadric, with branch locus intersecting a given curve in one of a few specified

ways.

7



There are a few examples of stable numerical quintic surfaces with a unique 1
4(1, 1)

singularity that correspond to 38- and 39-dimensional loci in M5,5. Three important ones

are surfaces of types 1, 2a, and 2b. To construct a surface of type 1, take a double cover

of P1 × P1, branched over a sextic intersecting a given diagonal tangentially at 6 points.

The preimage of the diagonal is two (−4)-curves, intersecting at 6 points. Contracting

one of these (−4)-curves gives a stable numerical quintic surface of type 1. The other

important examples are surfaces of types 2a or 2b, the minimal resolutions of which arise

from double covers of P1 × P1 or a quadric cone, respectively. The branch curve of this

double cover is a sextic B intersecting a given fiber at two nodes of B and transversally

at two other points.

We remark that Friedman [Fri83] raises the question of describing deformations of 2b

surfaces. Theorem 1.4 answers this question.

Surfaces of types 1 and 2a in particular correspond to 39-dimensional loci inM5,5. For

these, I prove vanishing of the cohomology group in which obstructions to deformations

lie, and conclude that the closures of these loci give generically smooth Cartier divisors

in M5,5. Obstructions to deformations of 2b surfaces do not vanish. By extending the

deformation theory of Horikawa to log pairs, I prove in this thesis the following theorem.

Theorem 1.4. The locus of stable numerical quintic surfaces whose unique non Du

Val singularity is a 1
4(1, 1) singularity forms a divisor in M5,5 which consists of two

39-dimensional components 1̄ and 2a meeting, transversally at a general point, in a 38-

dimensional component 2b. This divisor is Cartier at general points of the 1̄, 2a, and

2b components. These components are the closures of the loci of 1, 2a, and 2b surfaces

described above. Moreover, the type 1̄, 2a, and 2b components belong to the closure of

the components in M5,5 of types I, IIa, and IIb, respectively.

The idea of the proof of Theorem 1.4 is as follows. I begin by showing that the

space of obstructions to Q-Gorenstein deformations of a 2b surface is one-dimensional.

Therefore, the moduli space of equisingular deformations of 2b surfaces is a hypersurface
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in some ambient space. I then locate a subfunctor of the functor of Q-Gorenstein de-

formations, corresponding to deformations of covers, and show that these deformations

are unobstructed. This shows that there is a smooth component in the moduli space of

equisingular deformations of a 2b surface. This observation implies that it is enough to

show that the second order part of the Kuranishi function, given by the Schouten bracket,

does not vanish and is not a square. I describe this bracket by extending the deformation

theory of Horikawa in [Hor75].

As described above, another type of singularity to consider are the orbifold double

normal crossing singularities. It is not obvious how to construct a family of stable numer-

ical quintic surfaces whose special fiber has orbifold double normal crossing singularities.

I use a construction of Dolgachev in [Dol96] involving certain weighted homogeneous sin-

gularities, called Fuchsian singularities, to construct surfaces with orbifold double normal

crossing singularities. To construct a Fuchsian singularity, take a tiling of the upper half

plane H by a polygon with angles π
p1
, π
p2
, · · · , πpr . Let Γ+ be the group of orientation-

preserving isometries of this tiling. Contracting the zero-section of the cotangent bundle

Ω1(H/Γ+) → H/Γ+ produces the desired singularity. See Figure 2 for a visualization.

Figure 2. The weighted homogeneous singularity K12. The triangular
tiling has angles π

2 ,
π
3 ,

π
7 .

Fuchsian singularities are not semi log canonical. However, for the 22 Fuchsian hy-

persurface singularities, we can obtain the stable limit of a smoothing by performing a

certain weighted blowup, described by Dolgachev [Dol96]. This results in a surface with

orbifold double normal crossing singularities, one component of which is a K3 surface

containing specific Du Val singularities. I have done this for a few examples, and expect
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to prove the following conjecture in the coming months.

Conjecture 1.5. Each of the 22 exceptional Fuchsian singularities corresponds to a

generically Cartier divisor in M5,5.

I should remark that P. Gallardo proved part of this conjecture independently in

his thesis [Gal], using different methods. To show smoothness, he uses a theorem of

Shustin and Tyomkin [ES99]. In the coming months, I hope to prove Conjecture 1.5 more

directly by showing that surfaces obtained from smoothings of Fuchsian singularities and

containing a K3 component as above have unobstructed Q-Gorenstein deformations.

1.3 Future directions

I would like to construct more examples of surfaces lying one above the Noether line

containing a unique 1
4(1, 1) singularity. I expect that most of these constructions will

be similar to the examples of degenerations of numerical quintic surfaces described in

this thesis. As a first step, this will likely involve describing the minimal resolutions.

For instance, if the minimal resolutions are themselves double covers, as is often the

case with surfaces on the Noether line, then one can describe the image of any (−4)-

curve under this double cover. A part of this classification, especially describing how the

branch divisors of such maps must intersect certain curves, would be a great project for

interested undergraduates, perhaps in the form of an REU. Armed with such examples,

I would like to extend Horikawa’s deformation theory and Theorem 1.4 to prove the

following conjecture.

Conjecture 1.6. The locus of stable surfaces with K2 = 2pg−3 and q = 0 whose unique

non Du Val singularity is a Wahl singularity of type 1
4(1, 1) forms a generically smooth

Cartier divisor in MK2,χ.

Another possible direction is to consider what happens when the minimal model is not

of general type. Then the minimal model is an elliptic surface with a certain configuration
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of singular curves. It would be interesting to try to construct elliptic surfaces with these

configurations.

I would also like to find more examples of surfaces with orbifold double normal crossing

singularities, and extend Conjecture 1.5 to other surfaces of general type.

As a final note, an interesting problem in algebraic geometry is the question of extend-

ing the Hassett-Keel program from curves to surfaces. The philosophy of the Hassett-Keel

program for curves is that many compactifications of Mg are related by divisorial con-

tractions and flips, and that these birational maps have a modular interpretation. One

can ask similar questions for surfaces. For instance, how are the compactifications M5,5

and M
GIT
5,5 related? In his thesis, P. Gallardo [Gal] considers this question from the point

of view of M
GIT
5,5 , by finding the semistable replacement of certain singularities. From

the other side of things, we can ask which boundary divisors on M5,5 are contractible?

Once contracted, is there a way to interpret the resulting space as a moduli space?

11



C H A P T E R 2

RESTRICTIONS ON SINGULARITIES

We give bounds on which Wahl singularities may appear on a stable surface with

limited invariants.

The two-dimensional quotient singularities which admit Q-Gorenstein smoothings are

called T-singularities, and are those cyclic quotient singularities of the form 1
dn2 (1, dna−

1) where a and n are coprime [KSB88]. Those which admit only a one-parameter Q-

Gorenstein smoothing are T-singularities with d = 1. They were studied first by Wahl

[Wah81] and so are called Wahl singularities.

The minimal resolution of a surface with a Wahl singularity of the form 1
n2 (1, na− 1)

contains a string of exceptional curves C1, . . . , Cr such that

Ci · Cj =























1 if i = j ± 1

−bi if i = j

0 otherwise

where [b1, · · · , br] is the Hirzebruch-Jung continued fraction expansion of n2

na−1 . We say

that the T-string C1, . . . , Cr and the singularity corresponding to it have length r.

The T-string of a Wahl singularity has an especially useful iterative description by

Wahl.

Proposition 2.1. [Wah81] The cyclic quotient singularity 1
4(1, 1) is a Wahl singularity

of length 1 with b1 = 4. Moreover, every Wahl singularity has a T-string C1, . . . , Cr

where [b1, · · · , br] is one of the following types:

12



i) if [b1, . . . , br−1] is a Wahl singularity then

[2, b1, . . . , br−1 + 1]

and

[b1 + 1, b2, . . . , br−1, 2]

are also Wahl singularities and

ii) The T-string of any Wahl singularity may be found by starting with the resolution

[4] and iterating the steps described in i).

Because they are quotient singularities, Wahl singularities are log terminal. Thus, if

W contains a unique Wahl singularity and is otherwise smooth, and if φ : X → W is its

minimal resolution containing the T-string C1, . . . , Cr, then we can write

KX = φ∗KW +
r
∑

i=1

aiCi

where−1 < ai < 0. There is a very simple relationship between K2
X and K2

W , also

discovered by Wahl.

Lemma 2.2. [Wah81] LetW be a surface with a unique Wahl singularity of length r and

possibly Du Val singularities and let X be is its minimal resolution. Then K2
X = K2

W −r.

To describe the possible Wahl singularities which may occur on a surface with given

invariants, one might hope to bound r in terms of K2
W and K2

S , where S is the minimal

model of X. The best known bound to date was discovered by Y. Lee.

Theorem 2.3. [Lee99, Th. 23] Suppose W is a surface of general type with a unique

Wahl singularity of length r. Let X be its minimal resolution and S the minimal model

of X. If KS is ample then r ≤ 400(K2
S)

4.

We prove a much nicer bound, at the cost of restricting to a much smaller class of

surfaces.

13



Let W be a surface with a unique Wahl singularity of length r and possibly Du

Val singularities, let φ : X → W be its minimal resolution, and π : X → S be the

minimal model of X as in Figure 5. If π contracts n (−1)-curves, then K2
X = K2

S−n. By

Lemma 2.2, we have K2
X = K2

W −r. We hope to bound r by investigating the relationship

between n and r. The following Lemma shows that if KW and KS are big and nef, then

r > n; that is, K2
W > K2

S .

Lemma 2.4. If KW and KS are big and nef then K2
W > K2

S .

Proof. Let W be a surface with a unique Wahl singularity of type 1
n2 (1, na− 1) at p and

at most Du Val singularities elsewhere. Since resolving the Du Val singularities on W

does not affect K2
W and nefness of KW , we can assume without loss of general that W is

smooth away from p. Choose m > 0 such that n|m. Then mKW is Cartier.

Since KS and KW are big and nef, we have

hi(S,mKS) = hi(S, (m− 1)KS +KS) = 0

and

hi(W,mKW ) = hi(W, (m− 1)KW +KW ) = 0

for i > 0 by Kawamata–Viehweg vanishing. In particular,

χ(S,mKS) = h0(S,mKS) and χ(W,mKW ) = h0(W,mKW ).

We claim that

h0(W,mKW ) > h0(X,mKX) = h0(S,mKS)

for m sufficiently large. To see this, write

KX = φ∗(KW ) +
∑

i

aiCi,

where −1 < ai < 0, because p is log terminal. Choose m sufficiently large and divisible

so that the denominators of the ai divide m for all i. Then

φ∗(mKW ) = mKX + C,
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where C = −m
∑

i aiCi is an effective Cartier divisor. Consider the restriction exact

sequence

0 → O(mKX) → O(φ∗(mKW )) → OC → 0.

To show that h0(W,mKW ) > h0(X,mKX), it suffices to show that the induced map

H0(X,φ∗(mKW )) → H0(C,OC)

is nonzero. By the Kawamata-Shokurov base point free theorem, we can choose a section

s of mKW , for m sufficiently large and divisible, such that s(p) 6= 0. Thus, the map is

indeed nonzero.

Since p has index n, the divisor mKW is Cartier and the usual Riemann–Roch The-

orem holds [Rei97]. Thus,

χ(W,OW ) +
m(m− 1)

2
K2
W = χ(W,mKW )

= h0(W,mKW )

> h0(S,mKS)

= χ(S,mKS)

= χ(S,OS) +
m(m− 1)

2
K2
S .

Since ψ is the resolution of a rational singularity, we have

χ(W,OW ) = χ(X,OX) = χ(S,OS),

and so K2
W > K2

S as we wished to show.

Remark 2.5. Kawamata makes a similar statement, but requires that W be the central

fiber of a Q-Gorenstein degeneration X → ∆ whose generic fiber is a smooth connected

surface [Kaw92, 2.4, 4.6].

Because it is difficult to give a useful bound on r without any assumptions on n, we

begin by restricting to the case that K2
W = K2

S+1. We will then use Noether’s inequality
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together with Lemma 2.4 to show that this holds in the case thatW is a stable numerical

quintic surface.

Theorem 2.6. Suppose W is a surface with a unique Wahl singularity p of length r and

at most Du Val singularities elsewhere. Let X be its minimal resolution, and π : X → S

the minimal model of X as in Figure 5. Suppose that K2
W = K2

S +1. If KW and KS are

big and nef, then p is a 1
4(1, 1),

1
9(1, 2), or

1
9(1, 5) singularity.

The proof of Theorem 2.6 requires two lemmas, but we begin with some notation.

Let us write π as a composition of birational maps, each of which contracts a single

(-1)-curve to a point xj ∈ Xj :

X = Xn
πn // Xn−1

πn−1 // · · ·
π2 // X1

π1 // X0 = S

For j ∈ {1, . . . , n}, let Fj = π−1
j (xj−1) ⊂ Xj be the (-1)-curve on Xj−1 obtained by

blowing up the smooth point xj−1 ∈ Xj−1. Let

Ej = (πj ◦ πj+1 ◦ · · · ◦ πn)
−1(xj−1) ⊂ X.

We call each Ej an “exceptional divisor” of π. With this notation, we can write

KX = π∗(KS) +
n
∑

i=1

Ej .

We note that because the maps πi are birational, the self-intersection of Ej is (−1)

and Ei · Ej = 0 for i 6= j. We have En = F for some (−1)-curve F . Moreover, each Ej

contains at least one (−1)-curve and Ej is not necessarily reduced, but its reduction is a

tree of rational curves. Finally, each Ej contains no loops of curves and pairs of curves

in Ej intersect at most once.

Lemma 2.7.
∑n

j=1

∑r
i=1Ej · Ci ≤ r.

Proof. By adjunction

KX ·
r
∑

i=1

Ci =

r
∑

i=1

(bi − 2).
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We claim that
r
∑

i=1

(bi − 2) = r + 1. (2.1)

The proof will be by induction on r. If r = 1 then the T-string consists of a single

(-4)-curve, and we have b1 − 2 = 4− 2 = 2.

Now suppose that for any T-string of length k we have
∑k

i=1(bi − 2) = k + 1. By

Proposition 2.1 any T-string of length k+1 is of the form {C1, · · · , Ck+1} with C2
i = −bi

such that [b1, . . . , bk+1] is either

1. [2, b′1, . . . , b
′
k + 1] or

2. [b′1 + 1, b′2, . . . , b
′
k, 2],

where [b′1, . . . , b
′
k] corresponds to a T-string C ′

1, . . . , C
′
k of length k. Thus

k+1
∑

i=1

(bi − 2) =
k
∑

i=1

(b′i − 2) + 1 = k + 2,

proving the claim.

Since KS is nef, we have

π∗KS ·
r
∑

i=1

Ci ≥ 1.

Therefore,

KX ·
r
∑

i=1

Ci =
r
∑

i=1

(π∗KS +
n
∑

j=1

Ej) · Ci ≥ 1 +
r
∑

i=1

n
∑

j=1

Ej · Ci (2.2)

and so
r
∑

i=1

n
∑

j=1

Ej · Ci ≤ KX ·
r
∑

i=1

Ci − 1.

Combining this with Equation (2.1) gives

r
∑

i=1

n
∑

j=1

Ej · Ci ≤
r
∑

i=1

Ci ·KX − 1

=

r
∑

i=1

(bi − 2)− 1

= r + 1− 1 = r.
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Lemma 2.8.
∑r

i=1

∑n
j=1Ej · Ci ≥ 2n.

Proof. The claim is obvious for n = 0. Fix an exceptional divisor E = Ej for some j and

a curve C = Ci for some i. If C ⊂ E, then C · Ej = −1 if and only if

(πj ◦ πj+1 ◦ · · · ◦ πn)(C) = xj

and

(πj+1 ◦ πj+2 ◦ · · · ◦ πn)(C) = Fj .

Otherwise, C ·Ej = 0. Thus,
∑r

i=1Ci ·E ≥ −1. Since we want
∑r

i=1Ci ·E ≥ 2, it suffices

to show that there are at least three points of intersection (counted with multiplicity)

among curves in the T-string which are not in E and curves in E.

Given a T-string C containing curves C1, . . . , Cr, let

• • · · · • •

be the dual graph of the T-string, where the ith vertex corresponds to the curve Ci. If

Ci ⊂ E, we replace the ith vertex in the above graph by a box, and denote the resulting

graph by ΓE . For instance, if ΓE is

� • � • �

then there are at least 4 points of intersection among curves in C\E and curves in E.

With this notation we can immediately see that if there are less than 3 such intersections

then ΓE must have one of the following forms:

1)

• · · · • � · · · � • · · · •

2)

� · · · � • · · · • � · · · �
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3)

� · · · � • · · · •

or

• · · · • � · · · �

Since n ≥ 1, there is a (-1)-curve F in E. Because C2
i < −1 for all i, we also have that

Ci ·F ≥ 0 for each i. We claim moreover that φ∗KW ·F > 0. Suppose for a contradiction

that φ∗KW · F ≤ 0. Since KW is nef, this implies that φKW · F = 0. The surface W

is a resolution of Du Val singularities on a stable surface W ′. Let θ : W → W ′ be the

resolution of Du Val singularities. Since KW ′ is ample, this implies that F is contracted

by θ. But then F is a (−2) curve, a contradiction.

Writing KX = φ∗KW +
∑r

i=1 aiCi, we have

r
∑

i=1

Ci · F ≥ −
r
∑

i=1

aiCi · F

= φ∗KW · F −KX · F

= φ∗KW · F + 1

> 1.

In particular,
r
∑

i=1

Ci · F ≥ 2. (2.3)

Thus F intersects at least two of the curves Ci, or one curve Ci with multiplicity at least

two. Moreover, if a curve Ci intersecting F is contained in E, then πk+1◦· · ·◦πn(Ci) = Fk

for some k. Thus, πk+1 ◦ · · · ◦ πn(Ci) is a smooth curve and so Ci · F = 1. Because E

does not contain loops of curves, we see that in Cases 1 and 3 the curve F must intersect

at least one Ci which is not in E. In Case 1, this gives our third point of intersection. In

Case 3 it gives a second.

We now have only to deal with Cases 2 and 3, for both of which we now have

r
∑

i=1

Ci · E ≥ 1.
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Suppose there are k exceptional curves E such that
∑r

i=1Ci · E = 1. We claim that

k = 0.

Suppose for a contradiction that k > 0. By the above argument and Lemma 2.7 we

have

r ≥
n
∑

j=1

r
∑

i=1

Ej · Ci ≥ 2(n− k) + k = 2n− k.

Since r = n + 1, we have that k ≥ n − 1. On the other hand, since En = F is a single

(−1)-curve, we have k ≤ n − 1. Thus, k = n − 1 = r − 2. In particular, this implies

that r ≥ 3, that all but two curves in C are contained in exceptional divisors, and that

all exceptional divisors other than En satisfy
∑r

i=1Ci · E = 1. This means that there is

only one (-1) curve which must therefore be contained in all of the exceptional divisors.

Let us begin with Case 2. If the (-1)-curve F intersects both a bullet and a box in

ΓE1
, then since ΓEi

is obtained from ΓE1
by replacing some boxes with bullets, this gives

the third intersection point for all Ei. So we can assume that it intersects two boxes as

in Figure 3.

Figure 3. ΓE1
. The curved line along the bottom represents the (-1)-curve

F .

Every exceptional divisor Ej other than En = F satisfies
∑r

i=1Ci · Ej = 1 and must

be a subset of E1. Each Ej also contains F , so the only possibility is that F intersects

C1 and Cr. However, by [Kaw92, 3.2] we have a1 + ar = −1, so

−1 = KX · F = (φ∗KW +

r
∑

i=1

aiCi) · F = φ∗KW · F − 1.

Therefore, KW · φ(F ) = 0. Since φ(F ) has positive arithmetic genus and KW is nef, this

is a contradiction.

The final case to consider is Case 3. Here ΓE1
must be of the form:

or
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where the curved line along the bottom represents the (−1)-curve F . Here, E1 is a chain

of curves with a (−1)-curve at the end. Contracting F under πn gives another (−1)-curve,

and so Cr is necessarily a (−2)-curve. Contracting πn(Cr) under πn−1 must also give a

(−1)-curve, so that Cr−1 must also be a (−2)-curve. Continuing in this way, we see that

E1 must consist of n−1 (−2)-curves and a (−1)-curve F . Thus, C must correspond to the

Wahl singularity with Hirzebruch-Jung continued fraction [r+3, 2, . . . , 2], [2, . . . , 2, 2, r+

3], [r, 5, 2, . . . , 2] or [2, . . . , 2, 5, r]. Without loss of generality, we need only consider the

cases [r + 3, 2, . . . , 2] and [r, 5, 2, . . . , 2].

Suppose first that b2 = 2. Then using the fact that KS is nef and that C1 ·F ≥ 1, we

have

0 = KX · C2 = π∗KS · C2 +

n
∑

j=1

Ej · C2 ≥ π∗KS · C2 + 1 ≥ 1

and we have a contradiction.

The only Wahl singularity left to consider is that with Hirzebruch-Jung continued

fraction [r, 5, 2, . . . , 2]. In this case, ΓE1
together with F is the graph shown in Figure 4.

Figure 4. The remaining possibility for ΓE1
.

Since KX · C2 = 3 and C2 ·
∑n

j=1Ej ≥ n we have

0 ≤ π∗KS · C2

= (KX −
n
∑

j=1

Ej) · C2

= 3−
n
∑

i=1

Ej · C2

= 3− n.
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This gives n ≤ 3, and so r ≤ 4. If r = 3, then C2
2 = −5. The image π(C2) has

self-intersection 0 and arithmetic genus 1. Therefore, by adjunction KS · π(C2) = 0,

contradicting the fact that KS is big and nef.

Similarly, if r = 4 then the π(C2) has self-intersection 1 and arithmetic genus 1. By

adjunction, we have KS · π(C2) = −1, contradicting the fact that KS is nef.

Since all possibilities lead to a contradiction, we conclude that k = 0.

We can now prove Theorem 2.6.

Proof of Theorem 2.6. We must show that r ≤ 2. By Lemma 2.7 we have

n
∑

j=1

r
∑

i=1

Ej · Ci ≤ r.

On the other hand, Lemma 2.8 tells us that

n
∑

j=1

r
∑

i=1

Ej · Ci ≥ 2n.

Since n = r − 1, we have that r ≤ 2, so p is a 1
4(1, 1),

1
9(1, 2), or

1
9(1, 5) singularity.

Now suppose that W be a stable surface whose unique non Du Val singularity is a

Wahl singularity p of length r. Let φ : X → W be the minimal resolution of W , and

let π : X → S be the minimal model of W , which is obtained from X by contracting n

(−1)-curves.

X
φ

~~

π

��
W S

Figure 5. The surfaces W , X, and S.

Theorem 2.9. Suppose that KW is big and nef and satisfies K2
W = 2pg − 3. If S is

of general type then p is a 1
4(1, 1) singularity. Moreover, if p is a 1

4(1, 1) singularity and

K2
W > 3, then S is of general type.
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We remark that Noether’s inequality (that for surfaces S of general type, we have

K2
S ≥ 2pg − 4) implies the following corollary of Lemma 2.4.

Corollary 2.10. If the surface W satisfies K2
W = 2pg − 4, then S is not of general type.

The significance of the equality K2
W = 2pg − 3 in Theorem 2.9 is that such surfaces

lie one above the “Noether line” K2
W = 2pg − 4. That is, this K2

W is the smallest it can

be and still have S be of general type.

For the proof of Theorem 2.9, we recall Horikawa’s description of minimal surfaces of

general type with K2 = 2pg − 4 in [Hor76a]. For d ≥ 0, the Hirzebruch surface Fd is

the P1-bundle over P1 whose zero section ∆0 has self-intersection −d. We denote by Γ a

generic fiber of Fd and note that F0 = P1 × P1.

Theorem 2.11. [Hor76a] Let S be a minimal algebraic surface with K2 = 2pg − 4 for

pg ≥ 3. Then S is the minimal resolution of one of either:

1. (K2 = 2) a double cover of P2 branched over a curve of degree 8,

2. (K2 = 8) a double cover of P2 branched over a curve of degree 10,

3. a double cover of Fd, where pg ≥ max(d + 4, 2d − 2) and pg − d is even, branched

over B ∼ 6∆0 + (pg + 3d+ 2)Γ, or

4. (K2 = 4, 6, or 8) a double cover of the Hirzebruch surface Fpg−2 branched over

B ∼ 6∆0 + (4pg − 4)Γ.

In each case, the branch curve has at most ADE singularities.

We call a surface as in Theorem 2.11 a Horikawa surface. These surfaces are key to

the proof of Theorem 2.9.

Proof of Theorem 2.9. By taking a resolution of Du Val singularities W ′ → W , we can

assume thatW has no Du Val singularities. We first show that if p is a 1
4(1, 1) singularity

and K2
W ≥ 3, then S is of general type. Since K2

W ≥ 3 and K2
W = 2pg−3, we have pg ≥ 3.
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Because p has length 1, we have K2
X = K2

W − 1 = 2pg − 4 ≥ 2. Thus, K2
S ≥ K2

X ≥ 2. By

the Enriques-Kodaira classification, S is of general type.

Now suppose that S is of general type. Then S satisfies Noether’s inequality K2
S ≥

2pg − 4. On the other hand, by Lemma 2.4, we have K2
S < K2

W = 2pg − 3. Therefore

K2
S = 2pg − 4. Since the maps π and φ in Figure 5 do not affect the invariants pg and q,

the surface S must be a Horikawa surface. Furthermore, we have that K2
W = K2

S − 1, so

by Theorem 2.6, the only possible Wahl singularities on W have length 1 or 2.

If p ∈W is a Wahl singularity of length 2, then the resolution of p in X is a T-string

{C1, C2} where, without loss of generality, C2
1 = −2 and C2

2 = −5. Since K2
X = K2

W−2 =

K2
S − 1, the surface X is the blowup of S in a single point. Let E be the exceptional

curve of π. We have:

KX = φ∗KW −
1

3
C1 −

2

3
C2 (2.4)

KX = π∗KS + E (2.5)

We multiply Equation (2.5) with C1 and C2 and use that KS is nef to find that

E ·C1 = 0 and E ·C2 ≤ 3. On the other hand, if we multiply Equation (2.4) with E and

use that KW is nef, we see that E · C2 ≥ 2.

If E ·C2 = 3, then π∗KS ·C2 = 0, so KS ·π(C2) = 0. Since KS is bif and nef, the only

possibility is that π(C2) is a (−2)-curve. But π(C2) is singular, so this is not possible.

Now suppose that E · C2 = 2. Then KS · π(C2) = 1 and π(C2)
2 = −1. This implies

that π(C2) is a nodal or cuspidal cubic. We will use the fact that S is a Horikawa surface

to show that in fact such a curve cannot exist on S.

By Theorem 2.11, the surface S is the minimal resolution of a surface Y with at

most Du Val singularities, which is in turn a double cover of Z where Z is either P2 or

a Hirzebruch surface Fd. Let ψ : S → Y be the minimal resolution of Y and f : Y → Z

the double cover branched over a curve B. See Figure 6.

We must consider four cases, corresponding to the cases in Theorem 2.11. Let C =

π(C2), and let D = f(ψ(C)) be the image of C on Z.
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X
φ

~~

π

��
W S

ψ // Y
f // Z

Figure 6. The surfaces W , X, S, Y and Z and their corresponding maps.
Here, Z is either P2 or Fd for some d.

Case I. (K2 = 2) Suppose that Z = P2 and B ∼ 8H, where H is a hyperplane class.

Then KY = f∗(−3H + 4H) = f∗(H), so

1 = KS · C = ψ∗KY · C (2.6)

= KY · ψ(C) (2.7)

= f∗(H) · ψ(C). (2.8)

Since f∗H · ψ(C) is odd, this implies that f∗H · ψ(C) = H ·D = 1, so D ∼ H.

But then ψ∗(f∗(f(ψ(C)))) is a union of smooth curves meeting transversally, one

component of which is C, whereas C is singular.

Case II. (K2 = 8) If Z = P2 and B ∼ |10H|, then KY = f∗(2H). In particular KY ·F

is even for any F . However, KY · ψ(C) = KS · C = 1, so this case is impossible.

Case III. Suppose that Z = Fd and B ∼ |6∆0 + (pg + 3d+ 2)Γ| where pg ≥ max(d+

4, 2d− 2) and pg − d is even. Then

KY = f∗
(

∆0 +
pg + d− 2

2
Γ

)

.

We know KY ·ψ(C) = 1, so if f(ψ(C)) ∼ (a∆0+bΓ) where a and b are nonnegative, then

a
m− d− 1

2
+ b = 1.

Since pg ≥ d + 4 and f(ψ(C)) is irreducible, there are two possibilities: f(ψ(C)) ∼ ∆0

or f(ψ(C)) ∼ Γ. But then in either case, ψ∗(f∗(f(ψ(C)))) is a union of smooth curves

meeting transversally, with C as one of the components, whereas C is singular. Therefore,

this case is impossible.
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Case IV. Suppose that Z = Fpg−2 and B ∼ 6∆0 + 4(pg − 1)Γ. In this case, KY =

f∗(∆0 + (pg − 2)Γ). If f(ψ(C)) ∼ (a∆0 + bΓ), where a and b are nonnegative, then

intersecting f(ψ(C)) with ∆0+(pg−2)Γ implies that b = 1. Since f(C) is irreducible, we

have that a = 0, and so f(ψ(C)) ∼ Γ. But again, ψ∗(f∗(f(ψ(C)))) is a union of smooth

curves meeting transversally, with C as one of the components, whereas C is singular,

and we have a contradiction.

Therefore the only possible length Wahl singularity on W has length 1, so is a 1
4(1, 1)

singularity.
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C H A P T E R 3

STABLE NUMERICAL QUINTIC SURFACES WITH A UNIQUE

1
4(1, 1) SINGULARITY

A stable numerical quintic surface W is a stable surface with K2 = 5, pg = 4 and

q = 0. We classify all stable numerical quintic surfaces W whose unique non Du Val

singularity is a 1
4(1, 1) singularity. By Theorem 2.9, the minimal resolution φ : X → W

is a minimal surface such that K2
X = K2

W − 1 = 4, pg = 4 and q = 0, so X is a Horikawa

surface. Moreover, X contains a (−4)-curve C, the exceptional divisor of φ. On the

other hand, given a Horikawa surface with K2 = pg = 4 and q = 0 and containing a

(−4)-curve, we can contract C to obtain a stable numerical quintic surface with a unique

1
4(1, 1) singularity. Thus, the classification of surfaces such as W becomes a question of

classifying all Horikawa surfaces with K2 = pg = 4 and q = 0 that contain a (−4)-curve.

Theorem 2.9 suggests that in order to describe surfaces W “one above the Noether

line” whose unique non Du Val singularity is a 1
4(1, 1) singularity, we might instead

describe pairs (X,C), where X is a Horikawa surface and C is a (−4)-curve contained in

X. Because Horikawa surfaces are all described as minimal resolutions of double covers

f : Y → Z, we can attempt to “find” a (−4) curve on a Horikawa surface by describing

how such a (−4) curve must arise from a curve on Z intersecting the branch locus in a

certain way.
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3.1 Double covers

Let f : Y → Z be a double cover of a smooth surface Z branched over a curve B with

at most ADE singularities, and let ψ : X → Y be the minimal model of Y , obtained by

resolving all Du Val singularities on Y . Then by [Hor75, Lemma 5], the surface X is the

double cover of a smooth surface Z̃ with smooth branch locus B′ obtained as follows:

Let p = p0 be a singular point of B = B0 and let σ1 : Z1 → Z = Z0 be the blowup

of Z at p. Let E1 be the exceptional divisor of σ1, and let B′
1 = σ∗(B) − 2E1. Define

f1 : Y1 → Z1 to be the double cover of Z1 branched over B′
1. Then there exists a map

ψ1 : Y1 → Z1 such that the following diagram is commutative.

Y1
f1 //

ψ1

��

Z1

σ1
��

Y
f // Z

If B′
1 is smooth, then Y1 is smooth and so we can take B′ = B′

1, X = Y1, Z̃ = Z and

f̃ = f1. Otherwise, repeat the process, taking p to be a singularity of B′
1. In this way,

we obtain a map σ : Z̃ → Z = Z0 which is a composition of maps σ1 ◦ · · · ◦ σm where

σi : Zi → Zi−1 is the blowup of a single smooth point pi−1 ∈ Zi−1, where pi−1 is singular

point of B′
i = σ∗i (B

′
i−1)− 2Ei.

We remark that the resolution given is not necessarily the log resolution of B, because

we consider singularities of the curves B′
i = σ∗i (B

′
i−1) − 2Ei, as opposed to non-nodal

singularities of the preimage of B.

Now suppose that D is a smooth curve contained in Z, and let D̃ be the proper

transform of D under the map σ. We denote by (B ·D)p the local intersection multiplicity

of B and D at p ∈ B ∩D. If p ∈ B ∩D is an ADE singularity of B, let Di be the proper

transform of D under σ1◦· · ·◦σi, and let qi be the point of Di such that σ1◦· · ·◦σi(qi) = p.

Then we can rearrange the blowups so that qj = pj for j ≤ l and qj 6= pj for j > l. That

is, l is the smallest integer for which either B′
l is smooth at ql or B

′
l does not contain ql.
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In addition, all maps σl+1, . . . , σm blowup points away from ql ∈ Dl, so that

(B′ · D̃)q = (B′
l ·Dl)ql .

We call l the separation number of p and note that l depends on both the singularity of

B at p as well as how the branches of B at p intersect D.

For reference, we list the number of branches for each ADE singularity in the following

table.

Singularity An (n even), E6, E8 An (n odd), Dn (n odd), E7 Dn (n even)

Branches 1 2 3

We state here three lemmas, the proofs of which are almost immediate, which will be

useful in Theorem 3.4 below.

Lemma 3.1. Suppose that p ∈ B ∩D is an ADE singularity of B and that D is smooth.

Then (B′
1 ·D1)q1 = (B ·D)p − 2. In particular, if l is the separation number of p, then

(B′ · D̃)q = (B ·D)p − 2l.

Proof. We have

(B′
1 ·D1)q1 = ((σ∗B − 2E1) · (σ

∗D − E)) = (B ·D)p − 2,

as desired.

Lemma 3.2. Suppose that the branch locus B of f is reducible and contains an irre-

ducible smooth curve D. Let B̄ = B−D and let p be a point of D∩B̄. Let B̄1 = B′
1−D1.

Then (B̄1 · D1)q1 = (B̄ · D)p − 1. In particular, the separation number of p is equal to

the local intersection (B̄ ·D)p.

Proof. Since D is smooth and B has ADE singularities, any singularity of B has either 2

or 3 branches at p, of which D is locally a smooth one. If B has two branches at p, then

p is either an An singularity of B for n odd, a Dn singularity of B for n odd, or an E7

singularity of B. If B has 3 branches at p, then p is a Dn singularity of B for n even.
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In each case, B′
1 = σ∗1(B̄)− E1 + σ∗1(D)− E1. Since

((σ∗1B̄ − E1) · (σ
∗
1D − E1))q1 = (B̄ ·D)p − 1,

we have obtained the desired result.

Lemma 3.2 says in particular that if B̄ ∩ D consists of r singularities An1
, . . . , Anr

of B, s singularities Dm1
, . . . , Dms of B with separation number 2 each, w singularities

Dk1 , . . . , Dkw of B with separation number ki
2 each, and t E7 singularities of B, then

2s+ 3t+
r
∑

i=1

(

ni + 1

2

)

+
w
∑

i=1

kw
2

= (B̄ ·D)

and

D̃2 = D2 −

(

2s+ 3t+
r
∑

i=1

(

ni + 1

2

)

+
w
∑

i=1

kw
2

)

= D2 − (B̄ ·D).

Given g(y) = yk(ak + ak+1y + h.o.t.) ∈ C[[y]], where ak ∈ C∗, we call k the minimal

degree of g(y), and take k = ∞ if g(y) = 0.

Lemma 3.3. Suppose that p ∈ B ∩D is an E8 singularity of B. Then (B ·D)p is either

3 or 5.

Proof. Note that B is unibranched and has multiplicity 3 at p. Thus, if the tangent cone

of B at p is transversal to D, then (B ·D)p = 3. On the other hand, if the tangent cone

of B at p is tangent to D, then choose coordinates on Z so that B has local equation

x3 + y5. Then D is locally given by x− f(y) where f(y) has minimal degree k ≥ 2.Then

(B ·D)p is the minimal degree of f(y)3 + y5. Since f(y) has minimal degree at least 2,

this implies that (B ·D)p = 5.

3.2 The classification

By Horikawa [Hor76a], there exist maps ψ̂ : X → Ŷ and f̂ : Ŷ → Ẑ, where Ŷ is the

canonical model of X and f̂ : Ŷ → Ẑ is a double cover of a singular or smooth quadric,

30



with branch locus away from the singularity of Ẑ. By resolving both A1 singularities of

Ŷ coming from the A1 singularity on Ẑ, we have maps ψ : X → Y and f : Y → Z where

Z is either F0 = P1 × P1 or F2, as in the diagram below.

W X
φoo ψ // Y

f // Z

Let Γ be a fiber of Z and ∆ an irreducible curve in the linear system |1, 1| on F0 or

|∆0 + 2Γ| on F2. Letting B denote the branch locus of f , we have B ∼ 6∆.

We describe all possible images of C under the maps ψ and f . Let D = f(ψ(C)) be

the image of C on Z and let p be a point of B ∩D.

In what follows, we use the notation of Section 3.1.

Theorem 3.4. There is a one-to-one correspondence between stable numerical quintic

surfaces with at most Du Val singularities and a unique 1
4(1, 1) singularity, and triples

(Z,B,D), where Z = Fd for d = 0 or 2, B ∼ 6∆ has at most ADE singularities, and

D ∼ Γ or D ∼ ∆ intersects B as follows:

1. D ∼ Γ, there exists p ∈ D ∩ B such that (B ·D)p is odd, and B has either 1 or 2

singularities along D and intersects D transversally elsewhere. Moreover,

(a) if two singularities of B are contained in D, then each singularity p has sepa-

ration number 1, and either (B ·D)p = 2 or (B ·D)p = 3.

(b) if one singularity p of B is contained in D, then p has separation number 2,

and either (B ·D)p = 4 or (B ·D)p = 5.

Figures 7, 8, and 9 show all possible ways B and D may intersect in this case.

2. D ∼ ∆, D 6⊂ B, and for all p ∈ D ∩B, (B ·D)p is even.

3. D ∼ ∆ and D ⊂ B.

Proof. Suppose that W is a stable numerical quintic surface whose unique non Du Val

singularity is a 1
4(1, 1) and let X be its minimal resolution. Then X is a Horikawa surface
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with K2 = pg = 4 and q = 0, containing a (−4)-curve C. Let ψ̂ : X → Ŷ be the canonical

model of X, so that Ŷ has at most Du Val singularities. As discussed above, Ŷ is a double

cover of a smooth or singular quadric Ẑ, with branch locus away from any singularity

of Ẑ. We resolve both A1 singularities of Ŷ lying over the singularity of Ẑ. Then there

exists a map ψ : X → Y , where Y is the double cover f : Y → Z of Z, where Z = F2 or

F0, branched over B ∼ 6∆ with at most ADE singularities [Hor76a]. We claim that the

curve D = ψ(f(C)) is linearly equivalent to either ∆ or Γ.

The canonical class KZ of Z is linearly equivalent to −2∆. Let L be a divisor

such that B ∼ 2L. Then since f is a double cover, the canonical class KY is given

by f∗(KZ + L) = f∗(∆). Thus, KY · f∗D = 2∆ ·D.

Let C̄ = ψ(C) ⊂ Y . If D is not contained in the branch locus B, then f∗(D) is either

a union of two curves C̄ and C̄ ′ or f∗D = C̄, depending upon how the curve D intersects

the branch locus B. More precisely, f∗(D) = C̄ + C̄ ′ if and only if the multiplicity of

B and D is even at each point of intersection. We consider the three cases, f∗(D) = C̄,

f∗(D) = C̄ + C̄ ′, and D ⊂ B, separately.

Case I. Suppose that there exists p ∈ D ∩ B such that (B · D)p is odd. Then

f∗(D) = C̄ and we have

2∆ ·D = KY · f∗(D) = KY · C̄ = 2,

so ∆ ·D = 1. Since C is irreducible the curve D is also irreducible. Thus, D ∼ Γ. Note

that B ·D = 6.

On the other hand, since f̃ is the double cover of a smooth surface and C2 = −4, the

curve f̃(C) is a (−2)-curve D̃ on Z̃. Since D̃ has genus 0 and f̃ is a double cover, the

Riemann–Hurwitz formula gives B′ · D̃ = 2. Because C is smooth, the branch divisor B′

intersects D̃ transversally. Commutativity of the diagram

X
f̃ //

ψ
��

Z̃

σ
��

Y
f // Z
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implies that σ(D̃) = D. Noting that D2 = 0 and D̃2 = −2 we see that the map σ blows

up exactly two points p1 and p2 on D, which may be infinitely near.

Suppose that p1 and p2 are distinct, and let p = p1. Then p has separation number

1. Moreover, because C is smooth, either B′ intersects D̃ transversally at q, or B′ and

D do not intersect at q. That is, (B′ · D̃)q = 0 or 1. By Lemma 3.1, this implies that

(B · D)p = 2 or 3. Conversely, if (B · D)p = 2 or 3, then since B is singular, p has

separation number 1.

If (B ·D)p = 2, then p is an An singularity of B, and any branches of B at p intersect

D transversally. See Figures 7(a) and 7(b) for the local intersection of B and D.

Now suppose that (B ·D)p = 3. If p is an An singularity of B for n odd, then since

(B ·D)p = 3, one branch of B intersects D transversally at p while the other intersects

D at p with multiplicity 2. For n > 1, both branches of B are tangent to each other,

so this is not possible. Thus, p is an A1 singularity of B and B intersects D at p as in

Figure 7(c).

If p is an An singularity for n even, then B has only one branch at p which must

intersect D with multiplicity 3. This implies that the tangent cone of B at p is tangent

to D. Choose local coordinates on Z so that B has local equation x2 − yn+1 and D has

local equation x− f(y) where f(y) has minimal degree k ≥ 2. Then (B ·D)p = 3 if and

only if n = 2. In this case, the proper transform B1 of B is smooth and transversal to

D, as desired. See Figure 7(d) for the local picture.

If B has a Dn singularity at p, where n is odd, then one branch of B is singular and

the other is smooth. Since (B ·D)p = 3, the smooth branch of B is transversal to D and

the singular branch intersects D with multiplicity 2. The local intersection of B and D

is shown in Figure 7(e).

If B has a Dn singularity at p, where n is even, then B has three smooth branches

at p. Since (B · D)p = 3, each branch of B intersects D transversally at p. The local

intersection of B and D is shown in Figure 7(f).
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If B has an E6 or E8 singularity at p then B has only one branch at p, and since

(B ·D)p = 3 the tangent cone B at p is transversal to D. The local intersection of B and

D are shown in Figure 7(g) and Figure 7(i).

Finally, suppose that B has an E7 singularity at p. Then both branches of B have the

same tangent cone, and since (B ·D)p = 3, the tangent cone of each branch is transversal

to D. The local intersection of B and D is shown in Figure 7(h).

Figure 7 summarizes all possible singularities of B along D that may occur if σ blows

up two distinct points.

Figure 7. The possible singularities of B along D if p1 6= p2. In each case,
the vertical line represents the curve D.

We now consider the case p1 = p2. Letting p = p1 = p2, the point p has separation

number 2. Moreover, because the curves D̃ and B′ are transversal at q, we have (B ·D)p =

4 or 5. We show that (B · D)p = 4 or 5 and p has separation number 2, if and only if

B and D intersect at p in one of the ways listed. In either case, by Lemma 3.1, p has

separation number at most 2. Thus, we need (B ·D)p = 4 or 5 and B′
1 singular at q1.

Consider the case (B ·D)p = 4. Suppose that p is an An singularity of B for n odd.

If n = 1, then B1 is smooth, so p has separation number 1. If n > 1, then both branches

of B at p have the same tangent cone, which must be tangent to D. Choose coordinates

so that the local equation of B is x2 − yn+1. Then the local equation of D is of the form

x− f(y), where the minimal degree k of f(y) is at least 2. Then (B ·D)p is the minimal

degree of the power series [f(y)]2 − yn+1. Thus, (B ·D)p = 4 if and only if

(1) n = 3 and k > 2 (Figure 8(a)),

(2) n = 3 and f(y) = ay2 + h.o.t. for a 6= 1 (Figure 8(b)), or
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(3) n > 3 and k = 2 (Figure 8(c)).

Note that in each case, B1 is singular at q1, so p has separation number 2.

If p is an An singularity of B for n even, then B has only one branch at p whose

tangent cone is tangent to D. We can choose coordinates so that B has local equation

x2 − yn+1 at p. Then D is locally of the form x − f(y) = 0, where f(y) has minimal

degree k ≥ 2. Then (B ·D)p is the minimum degree of [f(y)]2 − yn+1. Since n is even,

the local intersection (B · D)p is 4 if and only if k = 2 and n > 2. Since n > 2, B′
1 is

singular at q1, so p has separation number 2. Figure 8(d) shows the local intersection of

B and D.

Now suppose that (B · D)p = 4 and p is a Dn singularity of B for n odd. Then B

has two branches at p whose tangent cones are transversal to each other. Thus only one

of the branches of B has tangent cone parallel to D. Suppose it is the singular branch.

Then the multiplicity of the singular branch of B and D is (B · D)p − 1 = 3. Choose

coordinates so that the singular branch of B at p has local equation x2 − yn−2 and the

local equation of D is x − f(y), where f(y) has minimal degree k ≥ 2. Since n is odd,

the minimal degree of f(y)2 − yn−2 is either 2k or n− 2, and since (B ·D)p = 4, we have

n− 2 = 3. Thus, n = 5, so p is a D5 singularity of B. See Figure 8(e) for a visualization

of how B and D intersect at p. Since B′
1 is singular at q1, p has separation number 2.

Keeping with the case (B ·D)p = 4, suppose that p is a Dn singularity of B for odd n

such that the smooth branch of B at p is tangent to D. We can choose local coordinates

so that B is locally given by x(y2 − xn−2) and the local equation of D is of the form

x− f(y) = 0 where f(y) has minimal degree k ≥ 2. We note that since D 6⊂ B, we have

f(y) 6= 0. With these coordinates, the local intersection (B · D)p = 4 is the minimal

degree of f(y)[y2 − (f(y))n−2]. Since k > 1 and n ≥ 3, this implies that k = 2. Since

n ≥ 3, the curve B′
1 is singular at q1 as desired. See Figure 8(f) for the local intersection

of B and D at p.

If p is a Dn singularity of B for n even, then B has three smooth branches at p. Since
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Figure 8. The possible singularities of B along D if p1 = p2 and (B ·D)p = 4.
In each case, the dashed line represents D.

(B ·D)p = 4, two of the branches are transversal to D and the third is tangent to D with

multiplicity 2. For n ≥ 6, two branches of B have the same tangent cone, so the branch

locus B intersects D at p as in Figure 8(g). The local picture for n = 4 is similar, except

that two branches of B at p are transversal to D.

If p is an E6 singularity of B, then B has a single branch at p whose tangent cone is

tangent to D. Choose coordinates so that x3 − y4 is the local equation of B at p and the

local equation of D at p is of the form x− f(y), where the minimal degree of f(y) is at

least 2. Then (B · D)p is the minimal degree of f(y)3 − y4, so (B · D)p = 4 as desired.

The intersection of B and D at p is shown in Figure 8(h).

If p is an E7 singularity of B, then the tangent cone of each branch of B at p is

tangent to D. Choose coordinates so that B is locally given by x(x2 − y3) and D has

local equation x−f(y), where f(y) has minimal degree k ≥ 2. Then the local intersection

(B · D)p is the minimal degree of f(y)3 − y3f(y). Since there is no integer k for which

3k = k+3, the local intersection (B ·D)p is the minimum of 3k and k+3. But we require

(B ·D)p = 4, and since k ≥ 2, this is impossible.

By Lemma 3.3, p is not an E8 singularity.

See Figure 8 for a summary of the ways in which B and D intersect at p if p1 = p2

and (B ·D)p = 4.

We move on to the case (B ·D)p = 5. We describe all possible singularities of B along

D in this case. Noting that p has separation number 2, we see that at least one branch

36



of B at p must be tangent to D.

Suppose that p is an An singularity of B where n is odd. If n = 1, then the singularity

of B at p is resolved after a single blowup. Thus, we can assume that n > 1. Choose

coordinates so that the local equation of B near p is x2−yn+1−byn+2 for some b ∈ C, and

the local equation of D at p is x−f(y) where f(y) = 0 or f(y) = aky
k+ak+1y

k+1+ h.o.t.

for some k ≥ 2. Then (B ·D)p is the minimal degree of f(y)2−yn+1. Because (B ·D)p = 5

and n+1 is even, we know that f(y) 6= 0. In fact, (B ·D)p = 5 if and only if n+1 = 2k,

ak = 1, and ak+1 is nonzero. Then the minimal degree of f(y)2−yn+1 is 5 = 2k+1 = n+2,

so k = 2 and n = 3. The intersection of B and D at p is shown in Figure 9(a). In this

case, d1 = 2 and D1 is transversal to one branch of B1 at q1 and tangent to the other

branch with multiplicity 2.

If p is an An singularity of B where n is even, then the single branch of B at p

intersects D with multiplicity 5. Let x2 − yn+1 be the local equation of B and x− f(y)

the local equation of D, where f(y) or has minimal degree k ≥ 2. Since n is even, we

have n+1 6= 2k for all k, so (B ·D)p is the minimum of 2k and n+1. Thus (B ·D)p = 5

if and only if n = 4 and k ≥ 3. Then B1 has an A2 singularity at q1 and the tangent

cone of B1 at q1 is tangent to that of D1 with multiplicity 2. See Figure 9(b) for the local

picture.

Next, suppose that p is a Dn singularity of B where n is odd. Then B has two

branches at p whose tangent cones are transversal to each other. Suppose the tangent

cone of the singular branch S is tangent to D at p. Then the smooth branch is transversal

to B at p. Since (B ·D)p = 5, we have (S ·D)p = m− 1 = 4. Using the same analysis as

in previous cases, we let x2y − yn+1 be the local equation of B and we see that this case

occurs as long as n ≥ 5 and Dhas local equation of the form x − f(y), where f(y) has

minimal degree 2. See Figure 9(c) for the local picture of B and D. In this case, d1 = 3

and the tangent cone of each branch of B1 + E1 is transversal to D1 at q1 as desired.

If p is a Dn singularity of B for n odd such that the singular branch of B at p
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has tangent cone transversal to D, then the smooth branch is tangent to D at p with

multiplicity 3. See Figure 9(d) for the local picture. In this case, B1 is tangent to D1 at

q1 and d2 = 2.

If p is a Dn singularity of B where n is even, then B has three smooth branches at

p. Since (B ·D)p = 5, either two branches of B are tangent to D at p with multiplicity

2 each and the third is transversal, or two are transversal to D and the third is tangent

to D with multiplicity 3. In the former case, p is a D6 singularity and B intersects D at

p as in Figure 9(e). Here, d1 = 2 and B1 is smooth at q1 and is tangent to D1 at q1 with

multiplicity 2, so q ∈ B′. In the latter case, n has no further restrictions and the local

intersection is shown in Figure 9(f). In this case, both branches of B1 are transversal to

D1 at q1 and d1 = 3, so q ∈ B′.

We showed above that if B has an E6 singularity at p such that the tangent cone of B

at p is tangent to D, then (B ·D)p = 4, so this singularity does not occur if (B ·D)p = 5.

If p is an E7 singularity of B, then both branches of B at p are tangent to D. The

singular branch intersects D at p with multiplicity at least 3, and since D 6⊂ B, the

smooth branch must be tangent D at p with multiplicity at least 2. Thus, the smooth

branch of D at p is tangent to D with multiplicity 2 and the singular branch intersects

D with multiplicity 3. See Figure 9(g) for the local picture. In this case both branches

of B1 at q1 are transversal to D1. Since d1 = 3, we have q ∈ B′ as desired.

Finally, suppose that p is an E8 singularity of B. An analysis of the local equations

of B and D as above shows that as long as the tangent cone of B at p is tangent to D,

we will have (B ·D)p = 5. In this case, the proper transform B1 of B has a cusp at q1

with tangent cone perpendicular to D1 at q1. Thus, d1 = 3 and q ∈ B′ as desired. See

Figure 9(h) for the local picture of B and D at p.

See Figure 9 for a summary of the ways in which B and D intersect at p if p1 = p2

and (B ·D)p = 5. This completes our discussion of Case I.

Case II. Suppose that D 6⊂ B and f∗(D) = C̄ + C̄ ′. Then for each point p of B ∩D
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Figure 9. The possible singularities of B along D if p1 = p2 and (B ·D)p = 5.
In each case, the dashed line represents D.

the multiplicity (B ·D)p is even and C̄ and C̄ ′ are isomorphic and we have

∆ ·D =
1

2
KY · f∗D =

1

2
KY · (C̄ + C̄ ′) = 2.

Suppose that on F2, we have D ∼ a∆0 + bΓ, where a and b are nonnegative. Then

D · ∆ = b, so that b = 2. Multiplying a∆0 + 2Γ by ∆0, we see that in order for a

divisor in the linear system a∆0 + 2Γ to be irreducible, we must have a = 1. Thus,

D ∼ ∆0 + 2Γ = ∆. A similar calculation on P1 × P1 shows that in either case D ∼ ∆.

We now show that if D is an irreducible curve in the linear system ∆ such that at

each point p ∈ D ∩ B, the local intersection (B ·D)p is even, then f̃−1(D̃) is a union of

two (−4)-curves C and C ′.

Suppose that p1, . . . pj are the singular points of B lying on D. Let li be the separation

number of pi. Then

(C + C ′)2 = 2D̃2

= 2(D2 −

j
∑

i=1

li)

= 2(2−

j
∑

i=1

li),
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where the second equality follows by Lemma 3.1. On the other hand

(C + C ′)2 = 2C2 + 2C · C ′

= 2C2 +B′ · D̃

= 2C2 + 12−

j
∑

i=1

2li

= 2C2 + 2(6−

j
∑

i=1

li),

where we again use Lemma 3.1. Thus,

C2 + 6−

j
∑

i=1

li = 2−

j
∑

i=1

li,

so C2 = −4 as desired.

By Lemma 3.1, a singularity p of B along D can be either an An, Dn, E6, or E7

singularity, as long as the branches of B intersect D in such a way that the multiplicity

of B and D at p is even.

Case III. If C ⊂ R then f∗(D) = 2C, and so

2∆ ·D = KY · f∗D = KY · 2D = 4.

SinceD is irreducible, we must haveD ∼ ∆. The fact thatD ⊂ B implies that B = D+B̄

where B̄ is in the linear system |5∆|, so D · B̄ = 10. By Lemma 3.2, if p is a singularity of

B contained in D, then p is either an An (n odd), Dn or E7 singularity of B. Moreover, if

B̄∩D consists of r singularities An1
, . . . , Anr of B, s singularities Dm1

, . . . , Dms of B with

separation number 2 each, w singularities Dk1 , . . . , Dkw of B with separation number ki
2

each, and t E7 singularities of B, then

2s+ 3t+
r
∑

i=1

(

ni + 1

2

)

+
w
∑

i=1

kw
2

= (B̄ ·D) = 10.

Thus

D̃2 = D2 − (B̄ ·D)

= 2− 10

= −8
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as desired.

We remark that the generic B̄ intersects D intersect in 10 distinct points and so the

double cover Y has 10 A1 singularities.

3.3 Dimension counts

Let p be a 1
4(1, 1) singularity on a stable numerical quintic surface W , let X be its

minimal resolution, and let C denote the (−4) curve on X. We call W a surface of type

• 1 if Z = F0, D ∼ ∆ and B and D intersect as in Figure 10(d).

• 1’ if Z = F0, D ∼ ∆ and B and D intersect as in Figure 10(e).

• 1” if Z = F2, D ∼ ∆ and B and D intersect as in Figure 10(d).

• 1”’ if Z = F0, D ∼ ∆, there is a point p ∈ B ∩D with (B ·D)p = 4, and B and D

intersect as in Figure 10(f).

• 2a if Z = F0, D is a fiber, and B and D intersect as in Figure 10(a).

• 2a’ if Z = F0, D is a fiber and B and D intersect as in Figure 10(b).

• 2a” if Z = F0, D is a fiber, B has an A2 singularity along D and B and D intersect

as in Figure 10(c).

• 2b if Z = F2, D is a fiber, and B and D intersect as in Figure 10(a).

Figure 10. Six ways B and D may intersect.
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Lemma 3.5. Suppose that X and X ′ are the minimal resolutions of stable numerical

quintic surfaces W and W ′, each of which has a unique 1
4(1, 1) singularity and no other

non Du Val singularities. Let C and C ′ be the (−4)-curves on X and X ′, respectively.

Let [W ] and [W ′] be the points of M5,5 corresponding to W and W ′, respectively. The

following are equivalent:

1) [W ] = [W ′].

2) There is an isomorphism θ : X → X ′ such that θ(C) = C ′.

3) The triples (Z,B,D) and (Z ′, B′, D′) corresponding to X and X ′ are isomorphic;

that is, there is an isomorphism η : Z → Z ′ such that η(B) = B′ and η(D) = D′.

Proof. 1) ⇐⇒ 2) If [W ] = [W ′], then the surfaces W and W ′ are isomorphic. Since the

minimal model is unique, the minimal models of W and W ′ are also isomorphic. Letting

θ : X → X ′ denote this isomorphism, it is clear that θ(C) = C ′. On the other hand,

suppose that θ : X → X ′ is an isomorphism such that θ(C) = C ′. Since

(KX +
1

2
C) · C = 0

and

(KX′ +
1

2
C ′) · C ′ = 0,

the log canonical model of the pairs (X, 12C) and (X ′, 12C
′) are obtained by contracting

the curves C and C ′, respectively. Since the log canonical model is unique and the pairs

(X,C) and (X,C ′) are isomorphic, this implies that W is isomorphic to W ′.

3) ⇒ 2) follows by construction of X and X ′ from the triples given. For 2) ⇒ 3),

suppose that θ : X → X ′ is an isomorphism such that θ(C) = C ′. Let Y and Y ′ be

the canonical models of X and X ′, respectively, and denote by C̄ and C̄ ′ the images of

C and C ′, respectively. Then the isomorphism θ induces an isomorphism of Y sending

Y to Y ′ and C̄ to C̄ ′. The map φKY
is a double cover f : Y → Z, where Z is either

a quadric cone or a smooth quadric. Thus, the isomorphism θ induces an isomorphism
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η : Z → Z ′. Moreover, if (Z,B,D) and (Z ′, B′, D′) are the triples corresponding to X and

X ′ under the correspondence of Theorem 3.4, then since θ(C) = C ′, we have η(B) = B′

and η(D) = D′, so the triples are isomorphic.

Lemma 3.6. The stable numerical quintic surfaces of types 1 and 2a correspond to

39-dimensional loci in M5,5. Those of types 1’, 1”, 1”’, 2a’, 2a”, and 2b correspond to

38-dimensional loci in M5,5. All other types of stable numerical quintic surfaces with a

unique 1
4(1, 1) singularity correspond to loci of higher codimension.

Proof. Lemma 3.5 implies that each triple (Z,B,D) of Theorem 3.4 corresponds to a

unique stable numerical quintic surface, up to automorphisms of Z. We count the di-

mension of such triples in the given cases. The main difficulty is to check that requiring

that the branch divisor obtain different types of singularities at different points imposes

independent conditions on B.

To create a triple (Z,B,D):

1. Fix a smooth or singular quadric Z.

2. Choose a divisor D ∼ ∆ or D ∼ Γ. Then by Riemann-Roch, since KZ = −2∆ and

∆2 = 2, we have h0(Z,O(D)) = 4 ifD ∼ ∆ and h0(Z,O(D)) = 2 ifD ∼ Γ. Projectivizing

gives a 3-dimensional space of choices if D ∼ ∆ and a 1-dimensional space if D ∼ Γ.

3. Choose k points on D (through which B will eventually pass). Since D ' P1, we have

a k-dimensional space of choices for these points. (If Z is a cone, we can choose the k

points so that none of them are the singularity of Z.)

4. Choose a divisor B:

4a. To obtain D 6⊂ B, choose B ∼ 6∆. Again by Riemann-Roch, h0(Z,O(B)) = 49.

Projectiving gives a 48 dimensional space of possible branch curves B.

4b. To obtain D ⊂ B, choose B′ ∼ 5∆. By Riemann-Roch, h0(Z,O(B′)) = 36. Pro-

jectivizing gives a 35-dimensional space of possible branch curves B′. By abuse
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of notation, take B = B′ (and note that the resulting triple will be of the form

(Z,B′ +D,D), or with our abuse of notation, (Z,B +D,D)).

5. Consider the restriction exact sequence

0 → OZ(B −D) → OZ(B) → OD(B) → 0.

By Kodaira vanishing, H1(Z,OZ(B −D)) = 0. Thus, the map

H0(Z,OZ(B)) → H0(D,OD(B))

is surjective, and so we can find a curve B ∈ |6∆| (or B′ ∈ |5∆|) such that the restriction

of B to D passes through any m points on D, counted with multiplicities, where m =

(B · D). Thus, the requirement that B pass through the given m points, counted with

multiplicities, is a codimension m condition.

6. The group of automorphisms of Z is 6-dimensional if Z is smooth and 7-dimensional

if Z is a cone. Thus, modding out by automorphisms of Z is either a codimension 6

condition or codimension 7 condition.

Triples (Z,B,D) where D ⊂ B give a locus of dimension at most 3+10+35−10−6 =

32, so we can assume for the rest of the proof that D 6⊂ B.

7. There is at the moment no guarantee that the most general B is smooth at any given

point, nor is it immediate that imposing the condition that B obtain a certain mild

singularity at a given point does not impose conditions on B at the other k − 1 points.

Provided the multiplicity at each point is small enough, the fact that these conditions are

linearly independent follows from the fact that B is sufficiently big. That is, for n ≤ 5,

the divisor B − nD is big and nef, so the cohomology group H1(Z,OZ(B − nD)) is zero

by Kodaira vanishing. Thus, the map

H0(Z,OZ(B)) → H0(D,OnD(B))

induced by the restriction OZ(B) → OnD(B) is surjective. This means that we can

choose B in such a way that we can require the degree 1, 2, . . . , n−1 parts of the “Taylor
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expansion” of its equation

s|nD = s0 + s1d+ s2d
2 + ...

to be of any form we desire, where d ∈ H0(Z,OZ(D)) is the equation of D and si ∈

H0(D,OD(B − iD)).

Suppose we want to impose the condition that B acquires a node at a given point p

for which (B ·D)p = 2. This is equivalent to requiring that the linear term in its Taylor

expansion vanish at p, and that the discriminant of the quadratic term be non-vanishing

at p. Therefore, this condition has expected codimension 1. Since this is a requirement

on the degree 1 and 2 parts of the Taylor expansion, taking n = 3 implies that the

requirements that B be either smooth or obtain at most a node at each of its points are

linearly independent conditions. That is, the condition that B acquire a node at a point

with multiplicity 2 is indeed a codimension 1 condition.

Similarly, the requirement that B acquire an A2 singularity at a point p for which

(B ·D)p = 2 is equivalent to requiring that the linear term in its Taylor expansion vanish

at p, the discriminant of the quadratic term also vanish at p, and the cubic term be

nonvanishing. Since this is a requirement on the part of the Taylor expansion of degrees

1, 2, and 3, taking n = 4 implies that the requirement that B aquire an A2 singularity

at the desired point is a codimension 2 condition.

The requirement that B acquire a node at a point p for which (B ·D)p = 3 is equivalent

to requiring the linear term in its Taylor expansion to vanish at p, and the coefficient of

one monomial in the quadratic term to vanish at p. Again, this is a requirement on the

degree 2 part of the Taylor expansion, so taking n = 3 implies that this is a codimension

2 condition that does not impose conditions on the other points of B ∩D.

Let l be the dimension of the set of triples such that |B ∩D| = k (set theoretically).
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Then

l =



















































33 + k if D ∈ |∆| on F0

32 + k if D ∈ |∆| on F2

37 + k if D ∈ |Γ| on F0

36 + k if D ∈ |Γ| on F2

.

Thus, ifm is the codimension of the set of triples such that B has prescribed singularities,

then in order for the set of such triples to have dimension 38 or 39, we have

m = k − 6 or m = k − 5 if D ∈ |∆| on F0

m = k − 6 if D ∈ |∆| on F2

m = k − 1 or m = k − 2 if D ∈ |Γ| on F0

m = k − 2 or m = k − 3 if D ∈ |Γ| on F2

.

In particular, we see that if D ∼ ∆, then since k ≤ 6, we have m = 0 or 1. If D ∼ Γ,

then since k ≤ 4, we have m ≤ 3.

For instance, the dimension of the locus of type 1 surfaces is 3+6+48− 12− 6 = 39,

and of type 1’ surfaces is 3 + 6 + 48− 12− 1− 6 = 38.

The dimension of the locus of type 2a surfaces is 1 + 4+ 48− 6− 1− 1− 6 = 39, and

of type 2b surfaces is 1 + 4 + 48− 6− 1− 1− 7 = 38.

Working through each of the remaining possibilities in Theorem 3.4 gives the desired

result.

The proof of the following is incomplete, although the main ingredients are Theo-

rem 3.4 and Lemma 3.6, especially the proof of the latter.

Theorem 3.7. Let W be a stable numerical quintic surface corresponding to the pair

(Z,B,D), and let [W ] denote its corresponding point in M5,5. If D ∼ Γ, then [W ] is in

the closure of the locus of 2a surfaces. If D ∼ ∆, then [W ] is in the closure of the locus
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of surfaces of type 1. Thus, the closures of the loci of surfaces of types 1 and 2a contain

all surfaces whose unique non Du Val singularity is a 1
4(1, 1) singularity.
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C H A P T E R 4

DEFORMATIONS OF SURFACES OF TYPES 1 AND 2a

In this chapter, we describe the components of M5,5 corresponding to surfaces of

types 1 and 2a and show that their closures are generically Cartier divisors in the bound-

ary of the type I and IIa components of M5,5. In Chapter 4, Lemma 3.6, we showed that

these components are both 39-dimensional. In Section 4.1, we show that these compo-

nents are in the boundary of the respective components on M5,5 by constructing explicit

Q-Gorenstein families of numerical quintic surfaces whose stable limits are of the desired

form. In Section 4.3, we prove that the components 1̄ and 2a are generically Cartier divi-

sors by showing that there are no obstructions to Q-Gorenstein deformations of surfaces

of types 1 and 2a.

4.1 Families of stable quintic surfaces

We use the characterization of surfaces in Theorem 3.4 to construct families of nu-

merical quintic surfaces degenerating to a stable numerical quintic surface whose unique

non Du Val singularity is a 1
4(1, 1) singularity.

4.1.1 Type 1

We describe a family of quintic surfaces degenerating to a stable numerical quintic

surface of type 1. The fact that the stable limit of the family is a stable numerical

quintic surface of type 1 is not obvious, so one might wonder why we even considered
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the given family in the first place. The equation of the family was in fact suggested by a

computation during a summer REU involving the Craighero-Gattazzo surface.

A numerical Godeaux surface is a minimal surface of general type with pg = q = 0 and

K2 = 1. Examples of these surfaces include Godeaux surfaces, Barlow surfaces, and the

Craighero-Gattazzo surface. The Craighero-Gattazzo surface is the minimal resolution

of a quintic surface with 4 simple elliptic singularities of type z2 + x3 + y6 = 0.

The moduli space of numerical Godeaux surfaces with trivial H1(S,Z) is conjecturally

8 dimensional. It is unknown whether or not this moduli space is connected. For instance,

the Craighero-Gattazzo surface has ample canonical class, whereas Barlow surfaces do

not. Catanese and LeBrun [CL97] proved that Barlow surfaces deform to surfaces with

ample canonical class, but it remains unknown whether or not Barlow surfaces deform

to the Craighero-Gattazzo surface.

Motivated by this question, Charles Boyd computed a 7-adic model of the Craighero-

Gattazzo surface, which showed that the Craighero-Gattazzo surface acquires a 1
4(1, 1)

singularity in characteristic 7. Its form suggested the equation of the family in the

following theorem.

Theorem 4.1. Consider the family (X ,∆) of surfaces

St = {q2l + tqf3 + t2f5 = 0} ⊂ ∆t × P3
x0,x1,x2,x3

where f3 and f5 are general forms of degrees 3, and 5, respectively and such that the

surface St is a smooth quintic surface for t ∈ ∆∗. Suppose that the special fiber S0 is the

union of a double quadric Q given by q = 0 and a plane L given by l = 0 intersecting

transversally. Then the KSBA stable limit of the family (X ,∆) is a stable numerical

quintic surface of type 1. Moreover, the general stable numerical quintic surface of type

1 is the stable limit of such a family.

Proof. The singular locus of X is the surface Q, so X is not normal. To compute

the stable limit we first normalize the family. After normalization and an extremal
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contraction, we will see that the family of surfaces obtained has reduced special fiber and

ample canonical class.

Let ν : X ν → X be the normalization of X . We determine the structure of X ν .

First note that the normalization is an isomorphism away from Q.

Let U be a complex analytic neighborhood in X of a point p ∈ Q. Then on U , we

can write

q|U = q1 + q2, l|U = l0 + l1, f3|U =
3
∑

i=0

f3,i, f5|U =
5
∑

i=0

f5,i

where the subscripts indicate the degree of each term. Giving t weight 1, we can write

the equation of X ∩ U as

q21l0 + tq1f3,0 + t2f5,0 + higher order terms.

Let D ⊂ Q be the “discriminant curve” given by {f23 −4lf5 = 0} ⊂ Q∩U . If p 6∈ D, then

the equation of X ∩ U factors into the product of two linear terms which are not equal.

That is, (p ∈ X ) is locally analytically isomorphic to a threefold Y = (xy = 0) ⊂ A4.

Thus, over the open set Q\D ⊂ Q, the special fiber X ν
0 is an unramified double cover of

Q\D.

Now consider a point p ∈ D and let U be a complex analytic neighborhood of p ∈ X .

Since D(p) = 0, the equation of X ∩ U may be written locally analytically as

g = (q +
1

2
f3,0t)

2 + h.o.t.

if p 6∈ L and

g = t2 + h.o.t.

if p ∈ L. Thus, in order to determine the structure of X ν near p, we must consider the

degree three part of g. This is:

g3 = q21l1 + 2q1q2l0 + tq1f3,1 + tq2f3,0 + t2f5,1.

50



If p 6∈ L, then we assume that l0 = 1 and complete the square in the first few terms of g:

g = (q1 +
1

2
tf3,0)

2 + 2q2(q1 +
1

2
tf3,0) + q21l1 + tq1f3,1 + t2f5,1 + h.o.t.

= (q1 +
1

2
tf3,0 + q2)

2 + q21l1 + tq1f3,1 + t2f5,1 + h.o.t.

Let y = q1 +
1
2 tf3,0 and note that y is a linear form. This last equation now becomes

g = (y + q2)
2 + y2α+ ytβ + t2γ + h.o.t.

where

α = l1,

β = f3,1 − l1f3,0,

and

γ = f5,1 −
1

2
f3,0(f3,1 +

1

2
l1)

are linear forms. Finally we can rewrite this as

g = (y + q2)
2 + (y + q2)(yα+ tβ)− q2(yα+ tβ) + t2γ + h.o.t.

= [(y + q2) +
1

2
(yα+ tβ)]2 + t2γ + h.o.t.

= z2 + t2γ + h.o.t.

where z is a linear form. Thus, in a complex analytic neighborhood of any point p ∈ Q∩

D\L, the threefold X is locally analytically isomorphic to the threefold Y = {z2− t2γ =

0} ⊂ A4
γ,t,z,s which is the product of A1 with the Whitney umbrella, or pinch point. The

normalization of Y is A3
u,v,w with normalization map (u, v, w) 7→ (u2, v, uv, w).

The quadric Q corresponds to the locus (z = t = 0) ⊂ Y , so the normalization X ν
0

of X0 is the double cover of the smooth quadric Q, ramified along the discriminant curve

D. On the other hand, if Q is singular and D does not intersect the singularity of Q,

then X ν
0 is the double cover of a singular quadric. Resolving the singularity we see that

X̃0 is in fact a double cover of F2. Since the surfaces D0 and Q intersect in a curve of
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degree 12, the surface X ν
0 is the double cover of P1 × P1 or F2, ramified along a divisor

in the linear system |6∆|.

To determine what happens to the plane L under the normalization, we begin by

assuming that p ∈ L ∩ Q\D. Then l0 = 0 and f3,0 6= 0, so we can assume f3,0 = 1 and

we have

g = tq1 + t2f5,0 + q21l1 + tq1f3,1 + tq2 + t2f5,1 + h.o.t..

By choosing f5 sufficiently general, we can assume that f5,0 6= 0 and so take f5,0 = 1.

Thus, g factors as

g = tq1 + t2 + q21l1 + tq1f3,1 + tq2 + t2f5,1 + h.o.t.

= (t+ q1l1 + h.o.t.) · (t+ q1 − q1l1 + h.o.t.)

The linear term of each factor is unique up to multiplication by a nonzero constant.

In particular, we see that because the second factor contains the linear term q1 which

does not involved t or l1, the second factor does not vanish identically along L. Since

g(p) = 0 the second term must vanish along L. Thus, the normalization of (p ∈ X ) is an

unramified double cover of Q\D, of which one component (the component corresponding

to the first factor of g above) contains the entire proper transform of L\D.

For the six points p ∈ L ∩ Q ∩ D, we have l0 = 0 and f3,0 = 0. By choosing f5

sufficiently general, we can assume that f5,0 = 1 and so we can write the local equation

of X as

g = t2 + tq1f3,1 + q21l1 + t2f5,1 + h.o.t.

Completing the square gives

g = (t+
1

2
q1f3,1)

2 + q21l1 + t2f5,1 + h.o.t.

Let α = t+ 1
2q1f3,1 and note that we can write t = α− 1

2q1f3,1. Then g can be rewritten
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in terms of α as

g = α2 + q21l1 + (α−
1

2
q1f3,1)

2f5,1 + h.o.t.

= α2(1 + f5,1) + q21l1 + h.o.t.

= y2 + q21l1 + h.o.t.

Thus, the threefold X is again locally analytically isomorphic to the threefold Y =

{y2 − x2z = 0} ⊂ A4
x,y,z,s which is the product of A1 with the Whitney umbrella. The

normalization of Y is A3
u,v,w with normalization map (u, v, w) 7→ (u, uv, v2, w). In the

coordinates of A4
x,y,z,s the plane L corresponds to the plane P = (z = y = 0) ⊂ Y .

Because the normalization is an isomorphism over this locus, we have P ν is the plane

given by v = 0. The surface Q corresponds to the locus (x = y = 0) ⊂ Y , which under

the normalization becomes the plane u = 0. Thus, we see that the proper transforms Lν

and Qν of L and Q intersect transversally after the normalization.

The plane L intersects the quadric Q in a conic. Thus, for general q, l and D, the

curve L∩Q intersects the locus D ∩Q tangentially at 6 points. Taking the double cover

of Q branched over D gives a smooth surface W̃ with a smooth (−4)-curve C given by

the intersection of the plane L with the surface X ν
0 .

We now show that an extremal contraction of L results in a family of surfaces with

ample canonical class. The canonical class KX0
is given by KX ν |X0

. Since KX
ν |W̃ =

KW̃ + C and

KX ν |L = KL + C ∼ −2H +H ∼ −H,

we see that L ⊂ X ν can be contracted and that the surfaceW obtained after contracting

C ⊂ W̃ gives the stable limit. Note moreover that C is a (−4)-curve on W̃ , so this

contraction produces a 1
4(1, 1) singularity on W . Thus, the stable limit of the family is a

stable numerical quintic surface W with a 1
4(1, 1) singularity of type 1.

We claim that any stable numerical quintic surface of type 1 may be obtained as the

stable limit of such a family. By Lemma 3.5, it suffices to show that given any triple
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(Z,B,D) – where Z is a fixed smooth quadric and B ∼ 6∆ and D ∼ ∆ are smooth,

such that B intersects D with multiplicity 2 at 6 points – we can find a family of the

desired form whose stable limit is a stable numerical quintic surface W corresponding to

(Z,B,D) under the correspondence of Theorem 3.4.

Fix such a triple. Then Z is isomorphic to a smooth quadric in P3 given by q = 0.

Let l be the equation of the hyperplane L in P3 such that L ∩ Z = D. We claim that B

is also given by V ∩Z, where V is a hypersurface of degree 6 in P3. To see this, let H be

a general hyperplane section of P3 and consider the exact sequence

0 → OP3(−Z + 6H) → OP3(6H) → OZ(6H) → 0.

Since H1(P3,OP3(−Z + 6H)) = H1(P3,OP3(4H)) = 0, we see that global sections of

OP3(6H) surject onto global sections of OZ(6H). Noting that OZ(6H) ' OZ(6∆), this

implies that the element B ∈ |6∆| can be lifted to a hypersurface V of degree 6 in P3,

proving the claim.

Next consider the exact sequence

0 → OZ(V − L) → OZ(V ) → OZ∩L(V ) → 0.

Since B intersects D at 6 points with multiplicity 2 each, this implies that the equation

of V |L is of the form f23 , where the six points of B∩D are given by f3 = q = 0. Therefore

V can be chosen to have equation f23 − lf5, where f5 is a general form of degree 5. Then

taking

St = {q2l + tqf3 + t2f5 = 0} ⊂ ∆t × P3
x0,x1,x2,x3

gives the desired family.

4.1.2 Types 2a and 2b

Friedman [Fri83] constructed a family of stable numerical quintic surfaces with general

fiber a numerical quintic surface of type IIb and special fiber a stable numerical quintic
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surface of type 2b. His construction easily generalizes to give a family of stable numerical

quintic surfaces whose general fiber is a numerical quintic surface of type IIa and with

special fiber a stable numerical quintic surface of type 2a.

Before continuing with the construction of the family, we describe all Q-Gorenstein

deformations of 1
4(1, 1) singularities. This will enable us to see that Friedman’s family

induces a versal local Q-Gorenstein deformation of the 1
4(1, 1) singularity on the special

fiber.

Let (p ∈W ) be a germ of a 1
4(1, 1) singularity. Then (p ∈W ) is analytically isomor-

phic to the singularity

(xy = z2) ⊂
1

2
(1, 1, 1).

Any deformation of (p ∈ X) is analytically isomorphic to a deformation of the form

(xy = z2 + tα) ⊂
1

2
(1, 1, 1)× A1

t ,

for some integer α > 0 called the axial multiplicity of the deformation. The resolution

of the total space of such a deformation consists of two components intersecting with

multiplicity α. A versal local Q-Gorenstein deformation of (p ∈ X) has axial multiplicity

1; that is, its resolution consists of two components meeting transversally.

Theorem 4.2. [Fri83] There is a Q-Gorenstein deformation X → T where T is the

unit disk in C such that

1. Xt is a smooth numerical quintic surface of type IIa (respectively, IIb) for t 6= 0;

and

2. X0 is a stable numerical quintic surface with a 1
4(1, 1) singularity of type 2a (re-

spectively, 2b).

Furthermore, this deformation induces a versal local Q-Gorenstein deformation of a

1
4(1, 1) singularity.
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Proof. We follow Friedman’s construction, with slight modifications in order to construct

both deformations simultaneously. Let Fd for d ≥ 0 be the Hirzebruch surface with

0-section ∆0 and generic fiber Γ, and note that F0 ' P1 × P1.

We begin by recalling Horikawa’s construction of numerical quintic surfaces of types

IIa and IIb. Let Z be the surface F0 or F2 and let D be a fiber of Z. Let x and y be

distinct points on D which do not lie on ∆0 and let σ : Z̃ = Blx,yZ → Z be the blowup

of Z in x and y. Let Ex and Ey be the exceptional divisors. Denote by D̃ the proper

transform of D. Note that

D̃ ∼ σ∗(D)− Ex − Ey

and D̃2 = −2. By abuse of notation, we let ∆0 and Γ denote the proper transforms of

the respective divisors on Z and let ∆ ∼ ∆0 + dΓ be an irreducible curve on Z̃ = F̃d.

Let B = 6∆ + 2Γ − 4Ex − 4Ey and note that B · D̃ = −2. One can then write

B ∼ B1+D̃ where |B1| is basepoint free, B1 is smooth, and B1∩D̃ = ∅. Thus the double

cover f : X̃ → Z̃ branched over B1+ D̃ is smooth. Note that the preimage f−1(D̃) is 2C

where C is a (−1)-curve. Contracting C gives a minimal numerical quintic surface X of

type IIa if Z = P1 × P1 or of type IIb if Z = F2.

We now degenerate the branch locus B by splitting off another copy of D̃. That is,

take B ∼ B2+2D̃ where B2 ∼ 6∆−2Ex−2Ey. Then the linear system |B2| is basepoint

free and we can choose B2 to be smooth. We note that B2 · D̃ = 2.

The double cover Y of Z̃ branched over B2+2D̃ is the same as the double cover of Z̃

branched over B2 and is, by Theorem 3.4, the minimal resolution of a stable numerical

quintic surface of type 2a if Z = F0 or of type 2b if Z = F2.

The explicit construction of this family and its semistable model may be found

in [Fri83]. Following Friedman’s construction, we obtain a family

π : X̃ → T

whose generic fiber is a numerical quintic surface of type IIa if Z = F0 (respectively, IIb

if Z = F2). The special fiber X̃0 is a union of surfaces V ∪W intersecting transversally
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along a curve R, where V is the minimal resolution of a stable numerical quintic surface

of type 2a (respectively, 2b) and W ' P2. Moreover, the curve R|V is a (−4)-curve and

R|P2 is a conic.

By adjunction, we have

K
X̃

·R = (KV +R) ·R = −2,

so the family π : X̃ → T is not stable. Contracting the P2, we obtain a Q-Gorenstein

family X → T whose special fiber is a stable numerical quintic surface with a unique

1
4(1, 1) singularity of type 2a (respectively, 2b) if Z = F0 (respectively, Z = F2).

We note that the Q-Gorenstein deformation X → T induces a versal local Q-

Gorenstein deformation of a 1
4(1, 1) singularity, because the special fiber of the family

X̃ → T consists of two components meeting transversally.

Remark 4.3. In [Fri83, Corollary 1.2], Friedman uses Horikawa’s description of the

moduli space M5,5 to deduce the existence of a Q-Gorenstein family X̃ → T of smooth

quintic surfaces whose special fiber is an “accordion” of surfaces V ∪W1 ∪W2 ∪ · · · ∪Wn

where V is the minimal resolution of a stable quintic surface of type 2b, W1, . . . ,Wn−1

are copies of F4, and Wn is a copy of P2, intersecting transversally as in Figure 11.

Figure 11. The special fiber of Friedman’s Q-Gorenstein family of smooth
quintic surfaces. The surface V is the minimal resolution of a
2b surface, W1, . . . ,Wn−1 are copies of F4, and Wn is a copy of
P2.

Again, the canonical classK
X̃

is not ample, and the stable limit of X̃ → T is obtained

by contracting the surfaces W1, ...,Wn. We now recognize the resulting special fiber as a

stable numerical quintic surface of type 2b. Thus, Friedman’s family is a Q-Gorenstein
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smoothing of a 2b surface to a quintic surface. This family gives a local deformation of the

1
4(1, 1) singularity with axial multiplicity n, so unless n = 1, the induced deformation is

not versal. In Section 5.4, we show that given a 2b surface X, there exists a Q-Gorenstein

smoothing of X to a quintic surface with n = 1.

Friedman also raises the question of describing deformations of 2b surfaces explicitly.

Theorem 5.1 answers this question.

4.2 Some sheaf calculations

Let X be a smooth surface and D =
∑k

i=1Di a divisor in X with simple normal

crossings (in particular, each component divisor Di is smooth). Let Ω1
X(logD) denote

the sheaf of logarithmic differentials. There is a short exact sequence of sheaves

0 → Ω1
X → Ω1

X(logD) →
k
⊕

i=1

ODi
→ 0

where the map Ω1
X(logD) →

⊕k
i=1ODi

is the residue map.

Now let W be a surface whose only non Du Val singularity is a Wahl singularity

and let X be its minimal resolution. If D is the exceptional divisor on X, then one can

show that obstructions to Q-Gorenstein deformations of W lie in the cohomology group

H2(X,TX(− logD)) [LP07]. Thus, if the minimal resolution X of a stable numerical

quintic surface with exceptional (−4)-curve C satisfies H2(X,TX(− logC)) = 0, then the

locus of such surfaces is generically smooth in M5,5.

The calculation of H2(X,TX(− logC)) in Sections 4.3 and 5 requires the following

lemmas.

Lemma 4.4. Let σ : Y → Z be the blowup of a smooth surface at a point p lying in

the smooth locus of a divisor D ⊂ Z with normal crossings. Let D̃ ⊂ Y be the proper

transform of D. Then σ∗Ω
1
Y (log D̃) = Ω1

Z(logD)⊗Mp, where Mp is the ideal sheaf of p

on Z.
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Figure 12. The map σ.

Proof. It suffices to show the equality in a neighborhood of the exceptional divisor E.

Let V ⊂ Z be a coordinate neighborhood around p. Choose coordinates (z, w) on V so

that p is at the origin and the local equation of D is z. Then σ−1(V ) is covered by two

neighborhoods U1 and U2. Choose coordinates (x, y) on U1 so that σ(x, y) = (x, xy) and

the local equation of E ∩U1 is x. Note that D̃ does not appear in U1. Let coordinates on

U2 be (u, v) so that σ(u, v) = (uv, v). On U2, the local equation of E is v and the local

equation of D̃ is u. See Figure 12.

On U1, we have

Ω1
Y (log D̃)(U1) =

{

f
(

z,
w

z

)

dz + g
(

z,
w

z

)

d
(w

z

) ∣

∣

∣
f, g ∈ OZ(V )

}

(4.1)

=

{

[

f
(

z,
w

z

)

−
w

z2
g
(

z,
w

z

)]

dz +
1

z
g
(

z,
w

z

)

dw

∣

∣

∣

∣

f, g ∈ OZ(V )

}

.(4.2)

On U2

Ω1
Y (log D̃)(U2) =

{

p
( z

w
,w
) d
(

z
w

)

z
w

+ q
( z

w
,w
)

dw

∣

∣

∣

∣

∣

p, q ∈ OZ(V )

}

=

{

1

z
p
( z

w
,w
)

dz +

[

q
( z

w
,w
)

−
1

w
p
( z

w
,w
)

]

dw

∣

∣

∣

∣

p, q ∈ OZ(V )

}

.

These sections glue to a section of σ∗(Ω
1
Y (log D̃)) over V if coefficients of dz and dw are

equal:

1

z
g
(

z,
w

z

)

= q
( z

w
,w
)

−
1

w
p
( z

w
,w
)

(4.3)
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1

z
p
( z

w
,w
)

= f
(

z,
w

z

)

−
w

z2
g
(

z,
w

z

)

(4.4)

Replacing 1
zg(z,

w
z ) in Equation (4.4) with its equivalent expression coming from Equa-

tion (4.3) yields the equality

f
(

z,
w

z

)

=
w

z
q
( z

w
,w
)

.

From this last expression, we see that

f
(

z,
w

z

)

=
1

z
f ′(z, w)

and

q
( z

w
,w
)

=
1

w
f ′(z, w)

where f ′(z, w) is a polynomial with f ′(0, 0) = 0. Plugging these into Equation (4.3) and

multiplying through by zw gives

wg
(

z,
w

z

)

= z
(

f ′ (z, w)− p
( z

w
,w
))

.

Since the right hand side is a polynomial in z, we can write g
(

z, wz
)

= zg′(z, w) for some

polynomial g′ with g′(0, 0) = 0, and rewrite the above equality as

wg′(z, w) = f ′(z, w)− p
( z

w
,w
)

.

Therefore, p
(

z
w , w

)

= wg′(z, w)− f ′(z, w). We now have expressions for f , g, p, and q as

polynomials in z and w, which we can use in Equation (4.2). This gives us

σ∗(Ω
1
Y (log D̃))(V ) =

{[

1

z
f ′(z, w)−

w

z
g′(z, w)

]

dz + g′(z, w)dw

∣

∣

∣

∣

f ′, g′ ∈ OZ(V )

}

=

{

f ′(z, w)
dz

z
+ g′(z, w)dw

∣

∣

∣

∣

f ′, g′ ∈ OZ(V )

}

where the only restrictions on f ′(z, w) and g′(z, w) are that neither has a constant term;

that is, they both lie in the maximal ideal Mp = (z, w) ⊂ OZ(V ) ' C[z, w]. Thus,

σ∗(Ω
1
Y (log D̃)) = Ω1

Z(logD)⊗Mp.
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Lemma 4.5. Let f : X → Y be a double cover of a smooth surface Y , and let B denote

its smooth branch divisor. Let C = f−1(D) be the preimage of a smooth curve D on Y ,

and suppose that D intersects B transversally. Then

f∗(Ω
1
X(logC)) = Ω1

Y (logD)⊕ Ω1
Y ((logD +B)(−L))

and

f∗(TX(− logC)) = TY (− log(D +B))⊕ TY (− logD)(−L)

where B ∼ 2L. Moreover, these decompositions break the sheaves into their invariant

and anti-invariant subspace under the action of Z/2Z by deck transformations.

Remark 4.6. Lemma 4.5 is an extension of the double cover version of [Par91, Lemma

4.2] to the log tangent sheaf.

Proof. In order to compute f∗Ω
1
X(logC), note that it admits an action of Z/2Z via deck

transformations, so we can decompose it into its invariant and anti-invariant eigenspaces.

Let V be an open neighborhood of p ∈ D ∩B and choose coordinates (z, w) on V so

that p is at the origin and the local equation of D is z and the local equation of B is w.

Then we have an open neighborhood U of f−1(p) with local coordinates (x, y) so that

f(x, y) = (x, y2). Note that the ramification locus R of f has local equation y and the

curve C on X has local equation x. See Figure 13.

Figure 13. The map f .

On U we have

Ω1
X(logC)(U) =

〈

dx

x
, dy

〉

OX(U)

.
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Noting that OY (V ) ' C[x, y2], we have

f∗(Ω
1
X(logC))(V ) =

〈

dx

x
, y
dx

x
, dy, ydy

〉

OY (V )

The action of Z/2Z sends (x, y) to (x,−y). Therefore the invariant subspace of f∗(Ω
1
X(logC))(V )

is

f∗(Ω
1
X(logC))+(V ) =

〈

dx

x
, ydy

〉

OY (V )

=

〈

dz

z
, dw

〉

OY (V )

= Ω1
Y (logD)(V ).

The anti-invariant subspace of f∗(Ω
1
X(logC))(V ) is

f∗(Ω
1
X(logC))−(V ) =

〈

y
dx

x
, dy

〉

OY (V )

= y

〈

dx

x
,
dy

y

〉

OY (V )

= y

〈

dz

z
,
dw

w

〉

OY (V )

= Ω1
Y ((logD +B)(−L))(V ).

One checks easily that these modules extend to the expected sheaves over all of Y . The

proof for the log tangent bundle is similar.

4.3 Smooth boundary components of M5,5

We show that loci corresponding to surfaces of type 1 and 2a give generically smooth

loci in the moduli space M5,5. In both cases, we obtain this result by proving the

vanishing of the cohomology group in which obstructions to Q-Gorenstein deformations

lie. Because the type 1 and 2a loci are 39-dimensional (see Theorem 3.6), we conclude

that the closure of the 1 and 2a loci are generically smooth Cartier divisors in M5,5.
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4.3.1 The type 1 component

For this subsection, let W be a stable numerical quintic surface of type 1 or 1” and

denote by S its minimal resolution. Let f : S → Z be the double cover, where Z = P1×P1

or F2, and f is branched over a smooth curve B ∼ 6∆, tangent to D ∼ ∆ at six points.

Then f∗(D) = C1 + C2 and the curves C1 and C2 are (−4) curves on S. Let R = f∗B

denote the ramification locus of f , and let L ⊂ Z be a curve such that B ∼ 2L.

In order to show that deformations of W are unobstructed, it suffices to show that

H2(W,TW ) = 0. Equivalently, as described above, we show that H2(S, TS(− log(C1))) =

0.

Theorem 4.7. Let S be the minimal resolution of a stable numerical quintic surfaces of

type 1 or 1”, and let C1 and C2 be the (−4)-curves on S. Then H2(S, TS(− log(C1))) =

H2(S, TS(− logC2)) = 0.

Proof. Let K = KS . We have

Ω1
S(log(C1))(K) ⊂ Ω1

S(log(C1 + C2))(K).

Note that K = f∗(KZ + L). Since KZ ∼ −2∆ and L ∼ 3∆, we have

K ∼ f∗(∆) ∼ f∗(D) = C1 + C2.

Since C1 + C2 = f∗(D) ∼ K, we have

Ω1
S(log(C1 + C2))(K) ⊂ Ω1

S(C1 + C2 +K) = Ω1
S(2K).

Ideally, we would like H0(S,Ω1
S(2K)) to be zero, because Serre duality together with the

above inclusion would imply that H2(S, TS(− logC1)(K)) = 0. We will use a different

approach.

The double cover f : S → Z gives rise to an action of Z/2Z on

H0(S,Ω1
S(log(C1 + C2))(K))
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via deck transformations. This action interchanges C1 and C2. We claim that the groups

H0(S,Ω1
S(logC1)(K)) and H0(S,Ω1

S(logC2)(K)) both lie in the anti-invariant subspace

H0(S,Ω1
S log(C1 + C2)(K))−.

To see this, suppose that α ∈ Ω1
S(logC1)(K) is an invariant one-form. If α does not have

a pole along C1, then α is a global section of Ω1
S(logC1)(K). But

H0(S,Ω1
S(logC1)(K)) ' H2(S, TS)

∨,

and by Horikawa [Hor76a], H2(S, TS) = 0. Thus, α has a pole along C1. Then since the

action of Z/2Z interchanges C1 and C2, α must also have a pole along C2. Therefore

no such invariant one-form exists, so both cohomology groups H0(S,Ω1
S(logC1)(K)) and

H0(S,Ω1
S(logC2)(K)) must both lie in the anti-invariant subspace

H0(S,Ω1
S log(C1 + C2)(K))−.

We show that this subspace is zero.

By the projection formula, noting that K ∼ f∗(∆), we have

f∗(Ω
1
S log(C1 + C2)(K)) = f∗(Ω

1
S log(C1 + C2)(f

∗∆)) = (f∗Ω
1
S log(C1 + C2))(∆).

We claim that

f∗Ω
1
S(log(C1 + C2))− ⊂ ΩZ(logB)(−2∆).

To compute f∗(Ω
1
S log(C1 + C2))−, we need only consider a point in C1 ∩ C2 ∩ R.

Indeed, suppose that U is a neighborhood of p ∈ X such that U ∩ C1 ∩ C2 ∩R = ∅, and

let V denote the image of U under f . By Lemma 4.5, we have

f∗(Ω
1
S log(C1 + C2))−(V ) = Ω1

Z(log(B +D))(−3∆)(V )

= Ω1
Z(logB)(−3∆)(V )

⊂ Ω1
Z(logB)(−2∆)(V ).

where the second equality follows from the fact that D ∩ V = ∅.
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Now let U be an open subset of S containing p ∈ C1 ∩ C2 ∩ R, and let V an open

neighborhood of f(p). Choose coordinates (x, y) on U so that p is at the origin and the

local equation of R is y. We can then choose coordinates (w, z) on V such that the local

equation of B is z and the local equation of D is z −w2. Then the local equations of C1

and C2 are y− x and y+ x. With these coordinates, the cover f is given by the function

(x, y) 7→ (x, y2). See Figure 14.

Figure 14. The map f .

The OX(U)-module Ω1
S log(C1+C2)(U) is generated by

{

d(y−x)
y−x , d(y+x)y+x

}

. As a mod-

ule over OY (V ), we have that f∗Ω
1
S log(C1 + C2)(V ) is generated by

{

d(y − x)

y − x
, d(y − x),

d(y + x)

y + x
, d(y + x)

}

Since the action of Z/2Z sends y to −y, we see quickly that the anti-invariant submodule

is generated as an OY (V )–module by
{

d(y − x)

y − x
+
d(y + x)

y + x
, dy

}

⊂

{

1

y2 − x2
(−2ydx+ 2xdy),

1

y2 − x2
dy

}

=
1

y2 − x2
{(−2ydx+ 2xdy), dy}

=
y

y2 − x2

{

−2dx,
dy

y

}

=
y

z − w2

{

−2dw,
dz

z

}

This last module we recognize as Ω1
Z(logB)(−3∆+D)(V ) = Ω1

Z(logB)(−2∆)(V ). Thus,

f∗Ω
1
S(log(C1 + C2))− ⊂ Ω1

Z(log(B))(−2∆).

By the projection formula, using that K ∼ f∗∆, we have

f∗Ω
1
S(log(C1 + C2))(K)− ⊂ Ω1

Z(logB)(−∆).
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To show that H0(Z,Ω1
Z(logB)(−∆)) = 0, consider the exact sequence

0 → Ω1
Z → Ω1

Z(logB) → OB → 0

where Ω1
Z(logB) → OB is the residue map. Twisting by −∆ gives the exact sequence

0 → Ω1
Z(−∆) → Ω1

Z(logB)(−∆) → OB(−∆) → 0.

Looking at the corresponding long exact sequence in cohomology, it remains to show

that H0(Z,Ω1
Z(−∆)) = 0 and H0(B,OB(−∆)) = 0. Both of these are obvious, the first

becauseH0(Z,Ω1
Z(−∆)) ⊂ H0(Z,Ω1

Z) = 0 and the second because−∆·B = −12 < 0.

Remark 4.8. The proof of Theorem 4.7 extends easily to surfaces of type 1’, which

contain two (−4) curves C1 and C2 intersecting transversally at five points instead of

six. To see this, suppose that F is the (−2) curve on S intersecting each of C1 and C2

transversally. The map f is then a double cover of Z̃, the blowup σ : Z̃ → Z = P1 × P1

of a point q ∈ D. Let E denote the exceptional divisor of σ, and B̃, D̃, and L̃ the proper

transforms of the curves B ∼ 6∆, D ∼ ∆, and L ∼ 3∆ in Z = P1 × P1, respectively.

Then f is branched over B̃, f∗(D̃) = C1 + C2, and F = f∗E.

We claim that

f∗(Ω
1
S(log(C1 + C2)))− ⊂ ΩZ̃(log B̃)(−2∆̃− E),

where ∆̃ is the proper transform of a generic curve ∆ on Z = P1×P1. The same argument

as above implies that this holds in a neighborhood of any point p 6∈ F , so it suffices to

show the containment for a neighborhood U of p ∈ F . Since p 6∈ C1 ∩ C2, Theorem 4.5

implies that, if U = f−1(V ),

f∗(Ω
1
S(log(C1 + C2)))−(U) = ΩZ̃(log(B̃ + D̃))(−L̃)(V )

= ΩZ̃(log(B̃ + D̃))(−3D̃ − 3E)(V )

= ΩZ̃(log(B̃))(D̃ − 3D̃ − 3E)(V )

= ΩZ̃(log(B̃))(−2D̃ − 3E)(V )

= ΩZ̃(log(B̃))(−2∆̃− E)(V )
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where here we have used that D̃ ∼ ∆̃− E and L̃ ∼ 3D̃ + 3E.

By the projection formula, we have

f∗(Ω
1
S(log(C1 + C2)))(K)− = ΩZ̃(log(B̃))(−∆̃− E).

To show vanishing of H0(Z̃,ΩZ̃(log(B̃))(−∆̃− E)), we use the exact sequence

0 → Ω1
Z̃
(−∆̃− E) → Ω1

Z̃
(log B̃)(−∆̃− E) → OB̃(−∆̃− E) → 0.

The result then follows from the long exact sequence in cohomology, because

B̃ · (−∆̃− E) = −12− 2 = 14 < 0

and

H0(Z̃,Ω1
Z̃
(−∆̃− E)) ⊂ H0(Z̃,Ω1

Z̃
) = 0.

In Section 3.3, we showed that the locus of stable quintic surfaces of type 1 is 39-

dimensional, so Theorems 4.1 and 4.7 imply the following:

Corollary 4.9. The closure of the locus of surfaces of type 1 is a generically smooth

Cartier divisor in M5,5, lying in the closure of the type I component of M5,5.

4.3.2 The 2a component

Let W be a stable numerical quintic surface of type 2a, 2a’, or 2a” and let S denote

its minimal resolution. Then there is a map f̃ : S → Z̃, which is the double cover of the

blowup of Z = P1 × P1 in two points p and q lying on a fiber D. The branch locus B̃ of

f̃ is the proper transform of an irreducible curve B ∼ 6∆ which has either a node or an

A2 singularity at each of p and q and is smooth elsewhere. Denote by Γ1 and Γ2 generic

rulings of Z̃ so that Γ2 ∼ D̃ + E1 + E2, where D̃ is the proper transform of D ⊂ Z.

Theorem 4.10. Let W be a stable numerical quintic surface of type 2a, 2a’, or 2a”, let

S be its minimal resolution and C the (−4)-curve on S. Then H2(S, TS(− logC))) = 0.
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We begin with a lemma.

Lemma 4.11. H0(Z̃,Ω1
Z̃
(log D̃ + B̃)(KZ̃)) = 0.

Proof. We have the following exact sequence of sheaves on Z̃:

0 → Ω1
Z̃
→ Ω1

Z̃
(log(D̃ + B̃)) → OD̃ ⊕OB̃ → 0

where Ω1
Z̃
(log D̃ + B̃) → OD̃+B̃ is the residue map. Twisting by KZ̃ gives the exact

sequence

0 → Ω1
Z̃
(KZ̃) → Ω1

Z̃
(log D̃ + B̃)(KZ̃) → (OD̃ ⊕OB̃)(KZ̃) → 0. (4.5)

Note that

KZ̃ = σ∗(KP1×P1) + E1 + E1 = −2Γ1 − 2Γ2 + E1 + E2 ∼ −2Γ1 − 2D̃ − E1 − E2, (4.6)

and so −KZ̃ is effective. Thus H0(Z̃,Ω1
Z̃
(KZ̃)) ⊂ H0(Z̃,Ω1

Z̃
). Since the irregularity of Z̃

is zero, we have H0(Z̃,Ω1
Z̃
)(KZ̃) = 0. Moreover, noting that σ∗(B) = B̃+2E1+2E2 and

σ∗(KZ) = KZ̃ − E1 − E2, we have

KZ̃ · B̃ = −24 < 0

and

KZ̃ · D̃ = 0.

Therefore H0(Z̃, (OD̃ ⊕OB̃)(KZ̃)) = C, so the cohomology group H0(Z̃,Ω1
Z̃
(log(D̃+

B̃))(KZ̃)) is 0 if and only if the connecting homomorphism

δ : H0(Z̃, (OD̃ ⊕OB̃)(KZ̃)) → H1(Z̃,Ω1
Z̃
(KZ̃))

is injective.

Since −KZ̃ is effective, we have a section s ∈ H0(Z̃,Ω1
Z̃
(−KZ̃)), so we have a map

from the short exact sequence (4.5) to the short exact sequence

0 → Ω1
Z̃
→ Ω1

Z̃
(log(D̃ + B̃)) → OD̃ ⊕OB̃ → 0.
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where the map is given by tensoring with s. The connecting homomorphism

δ2 : H
0(Z̃,OD̃ ⊕OB̃) → H1(Z̃,Ω1

Z̃
)

of the corresponding short exact sequence is the first Chern class map. That is, if 1D̃ and

1B̃ are generators of H0(Z̃,OD̃ ⊕ OB̃), then δ2(1D̃) = c1(D̃) = D and δ2(1B̃) = c1(B).

Thus, the map δ2 is injective if and only if the curves D̃ and B̃ are linearly independent

in the Picard group of Z̃. Recalling that Pic(Z̃) is generated by Γ1, Γ2, E1 and E2, and

that B̃ ∼ 6Γ1 +6Γ2 − 2E1 − 2E2 and D̃ ∼ Γ2 −E1 −E2, we see that the two divisors are

indeed linearly independent.

Thus, we have a diagram

H0(Z̃, (OD̃ ⊕OB̃)(KZ̃))
δ //

⊗s

��

H1(Z̃,Ω1
Z̃
(KZ̃))

⊗s

��

H0(Z̃,OD̃ ⊕OB̃)
δ2 // H1(Z̃,Ω1

Z̃
)

where the bottom arrow is injective. We see that δ is injective as long as the map on the

left is injective. But this map simply takes a section of (OD̃ ⊕ OB̃)(KZ̃) and multiplies

it by s. Since s 6= 0, the map is injective.

Proof of Theorem 4.10. We show that H2(S, TS(− logC)) = 0, where S is the minimal

resolution of W and C is the (−4)-curve on S. By Serre duality, it is enough to show

that H0(S,Ω1
S(logC)(KS)) = 0. Recall that C = f∗D̃ and KS = f∗(KY + L̃). By the

projection formula

f∗(Ω
1
S(logC)(KS)) = (f∗Ω

1
S(logC))⊗ (KY + L̃).

Together with Lemma 4.5, this gives us

f∗(Ω
1
S(logC)(KS)) = Ω1

Y (log D̃)(KY + L̃)⊕ Ω1
Y (log D̃ + B̃)(KY ).

By Lemma 4.11, we have H0(Y,Ω1
Y (log D̃ + B̃)(KY )) = 0. It remains to show that

H0(Y,Ω1
Y (log D̃)(KY + L̃)) = 0, which we do via the projection formula. By Lemma 4.4,

69



we have σ∗Ω
1
Y (log D̃) = Ω1

Z(logD)⊗Mp,q, where Mp,q is the ideal sheaf of p and q which

are the centers of σ. Noting that (KY + L̃) = f∗(∆), the projection formula gives

σ∗(Ω
1
Y (log D̃)(KY + L̃)) = (Ω1

P1×P1(logD)⊗Mp,q)⊗O(∆)

= (Ω1
P1×P1(logD)⊗Mp,q)⊗O(∆)

= [(p∗1Ω
1
P1(logD)⊗Mp,q)⊕ (p∗2Ω

1
P1 ⊗Mp,q)]⊗O(∆)

= [O(−1, 0)⊗O(1, 1)⊗Mp,q]⊕ [O(0,−2)⊗O(1, 1)⊗Mp,q]

= (O(0, 1)⊗Mp,q)⊕ (O(1,−1)⊗Mp,q).

We have H0(P1×P1,O(1,−1)⊗Mp,q) = 0, because H0(P1×P1,O(a, b)) = 0 for a < 0

or b < 0. And H0(P1 × P1,O(0, 1)⊗Mp,q) = 0, since p and q lie on D ∈ |1, 0|.

By Theorem 3.6, the locus of 2a surfaces is 39-dimensional. Moreover, Theorem 4.2

shows that every 2a surfaces may be obtained as the stable limit of a family of numerical

quintic surfaes of type IIa. Together with Theorem 4.10, this implies the following

Corollary 4.12. The closure of the locus of surfaces of type 2a is a generically smooth

Cartier divisor in M5,5, lying in the closure of the type IIa component of M5,5.
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C H A P T E R 5

DEFORMATIONS OF 2b SURFACES

We study the versal Q-Gorenstein deformation space DefQG(W ) [Hac04] where W is

general 2b surface. All deformation functors considered are functors of Artinian rings.

However, becauseW is a stable surface, we often abuse notation and view DefQG(W ) as an

analytic germ of a point [W ] in the KSBA moduli space. The same notational ambiguity

applies to other deformation functors we consider which admit a moduli space. This

enables us to study the moduli space M using analytic methods of Horikawa [Hor75,

Hor76a]. The main theorem is

Theorem 5.1. The locus of stable numerical quintic surfaces whose unique non Du

Val singularity is a 1
4(1, 1) singularity forms a divisor in M5,5 which consists of two

39-dimensional components 1̄ and 2a meeting, transversally at a general point, in a 38-

dimensional component 2b. This divisor is Cartier at general points of the 1̄, 2a, and

2b components. These components are the closures of the loci of 1, 2a, and 2b surfaces

described at the beginning of Section 3.3. Moreover, the type 1̄, 2a, and 2b components

belong to the closure of the components in M5,5 of types I, IIa, and IIb, respectively.

The proof will consist of several pieces. Theorems 4.7 and 4.10 showed that obstruc-

tions to deformations of surfaces of types 1 and 2a vanish, and so the closures of their

corresponding 39-dimensional loci in M5,5 are generically smooth Cartier divisors. In

Section 5.1, Theorem 5.2, we show that deformations of 2b surfaces are obstructed and

that the obstruction space is one-dimensional. This implies that the space DefQG(W ) of
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Q-Gorenstein deformations of a generic 2b surface W is a hypersurface in some ambient

space.

By Theorem 4.2, there exists a Q-Gorenstein smoothing of a 2b surface to a numerical

quintic surface of type IIb which induces a versal deformation of the singularity. There-

fore, the map DefQG(W ) → DefQG,locp to local Q-Gorenstein deformations of the 1
4(1, 1)

singularity (p ∈ W ) is a submersion. Since this latter space is one-dimensional, this im-

plies that the space DefQG(W ) is analytically isomorphic to DefQG,e.s.(W ) × A1, where

DefQG,e.s.(W ) is the space of equisingular Q-Gorenstein deformations of W . There-

fore, the description of DefQG(W ) is complete as soon as we can describe the space

DefQG,e.s.(W ). Moreover, the space DefQG,e.s.(W ) is isomorphic to the deformation

space of pairs Def(S,C), where S is the minimal resolution of W , containing (−4)-curve

C.

In Section 5.2, we describe a subfunctor of the deformation functor of pairs Def (S,C),

and show that it has no obstructions. This will imply that the space Def(S,C) contains

a smooth component corresponding to the 2a locus. Thus, to prove that DefQG,e.s. is

a union of two 39-dimensional components meeting transversally in a 38-dimensional

component, it suffices to show that the degree two part of the Kuranishi map, given by

the Schouten bracket, is nonzero and not a square. Horikawa makes a similar argument

in [Hor75] and [Hor76a]. In Sections 5.3 and 5.4, we extend his work to the log setting.

It will be useful to understand the Kuranishi deformation space in more generality.

Suppose that S is a smooth surface, and let Def(S) be the space of deformations of S.

The tangent space to Def(S), that is the space of first order infinitesimal deformations

of S, is isomorphic via the Kodaira–Spencer map to the cohomology group H1(S, TS).

Let ρ1, . . . , ρn be a basis of H1(S, TS), and let t1, . . . tn be a dual basis. Then Def(S) is

locally analytically isomorphic to a subspace of C40 with coordinates t1, . . . , t40, and is

given by the kernel of the Kuranishi map k : H1(S, TS) → H2(S, TS), which is a certain

infinite series in t1, . . . tn. Catanese’s article [Cat] gives an excellent exposition of the
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construction of the Kuranishi map. For us, the important part is that the degree two

part of the Kuranishi map is given by the Schouten bracket, which we now describe.

The Schouten bracket is the bilinear map

[, ] : H1(S, TS)⊗H1(S, TS) → H2(S, TS)

defined as the composition of the cup product ∪ : H1(S, TS)⊗H
1(S, TS) → H2(S, TS⊗TS)

followed by the Lie bracket H2(S, TS ⊗ TS) → H2(S, TS). If Sρ is the infinitesimal

first order deformation corresponding, via the Kodaira–Spencer map, to ρ ∈ H1(S, TS),

then [ρ, ρ] is the cohomology class corresponding to the obstruction to extending the

deformation Sρ to the second order. More explicitly, the Schouten bracket is defined in

coordinates as follows: let {Ui} is a sufficiently fine open covering of S and let Uij =

Ui ∩Uj . Let zi = (z1i , z
2
i ) be holomorphic coordinates on Ui such that zi = bij(zj) on Uij ,

where bij are holomorphic functions. If the element ρ ∈ H1(S, TS) is represented by the

one-cocycle {ρij}, then the first-order deformation Sρ of S has holomorphic coordinates

on Ui given by

φi = bij(zj) + ρijt.

On Uij ∩ Ujk, the class [ρ, ρ] ∈ H2(S, TS) is represented by the 2-cocycle {ξijk} that is

given by the Lie bracket [ρij , ρjk]. If [ρ, ρ] = 0, then the first-order deformation extends

to the second order in t as

φi = bij(zj) + ρijt+ ρ̃ijt
2.

where {ρ̃ij} is a one-cochain with coefficients in TS whose Čech differential gives the

two-cocycle {ξijk}.

We use the following notation throughout this chapter. Let S be the minimal res-

olution of a surface of type 2b. We recall the construction of S. Let σ : F̃2 → F2 be

the blowup of F2 in two distinct points p and q lying on a fiber D. Denote by D̃ and Γ

the proper transforms of D and a generic fiber, respectively, and let E1 and E2 be the

exceptional divisors of σ. By abuse of notation, we denote by ∆0 the proper transform
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of the negative section ∆0 on F2. Let B be a reduced, irreducible divisor in the linear

system |6∆0 + 12Γ| on F2 which is smooth away from p and q and with simple nodes at

p and q. Let B̃ be its proper transform and note that B̃ ∼ 2L̃ for some smooth divisor L

on F̃2. Then S is given by the double cover of f : S → F̃2 branched over B̃. The curve

C given by f∗(D̃) is the (−4)-curve on S. Moreover S contains four (−2)-curves: F1 and

F2 mapping to ∆0, and Ē1 and Ē2 mapping to E1 and E2, respectively. We denote by

π : F2 → P1 and g : S → P1 the projection maps to P1.

5.1 The obstruction

To begin with, we show that the obstruction space is one-dimensional.

Theorem 5.2. Let S be the minimal resolution of a 2b surface, and let C denote the

(−4)-curve on S. Then H2(S, TS(− logC)) = C.

The proof of Theorem 5.2 requires two lemmas.

Lemma 5.3. Let Z = F2 and Z̃ the blowup of Z in p and q. Then H0(Z̃,Ω1
Z̃
(log(D̃ +

B̃ +∆0))(KZ̃)) = 0.

Proof. The proof is very similar to that of Lemma 4.11.

We have the following exact sequence of sheaves on Z̃:

0 → Ω1
Z̃
(KZ̃) → Ω1

Z̃
(log(D̃ + B̃ +∆0))(KZ̃) → (OD̃ ⊕OB̃ ⊕O∆0

)(KZ̃) → 0.

where Ω1
Z̃
(log D̃ + B̃) → OD̃+B̃ is the residue map. Twisting by KZ̃ gives the exact

sequence

0 → Ω1
Z̃
(KZ̃) → Ω1

Z̃
(log D̃ + B̃ +∆0)(KZ̃) → (OD̃ ⊕OB̃ ⊕O∆0

)(KZ̃) → 0. (5.1)
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Note that

KZ̃ = σ∗(KF2
) + E1 + E1

= −2∆0 − 4Γ + E1 + E2

∼ −2∆0 − 4D̃ − 3E1 − 3E2,

and so −KZ̃ is effective. Thus H0(Z̃,Ω1
Z̃
(KZ̃)) ⊂ H0(Z̃,Ω1

Z̃
). Since the irregularity of Z̃

is zero, we have H0(Z̃,Ω1
Z̃
)(KZ̃) = 0. Moreover, noting that σ∗(B) = B̃+2E1+2E2 and

σ∗(KZ) = KZ̃ − E1 − E2, we have

KZ̃ · B̃ = −24 < 0,

KZ̃ · D̃ = 0,

and

KZ̃ ·∆0 = 0.

ThereforeH0(Z̃, (OD̃⊕OB̃⊕O∆0
)(KZ̃)) = C2, so the cohomology groupH0(Z̃,Ω1

Z̃
(log(D̃+

B̃ +∆0))(KZ̃)) is 0 if and only if the connecting homomorphism

δ : H0(Z̃, (OD̃ ⊕OB̃ ⊕O∆0
)(KZ̃)) → H1(Z̃,Ω1

Z̃
(KZ̃))

is injective.

Since −KZ̃ is effective, we have a section s ∈ H0(Z̃,Ω1
Z̃
(−KZ̃)), so we have a map

from the short exact sequence (5.1) to the short exact sequence

0 → Ω1
Z̃
→ Ω1

Z̃
(log(D̃ + B̃ +∆0)) → OD̃ ⊕OB̃⊕O∆0

→ 0.

where the map is given by tensoring with s. The connecting homomorphism

δ2 : H
0(Z̃,OD̃ ⊕OB̃ ⊕O∆0

) → H1(Z̃,Ω1
Z̃
)

of the corresponding short exact sequence is the first Chern class map. That is, if 1D̃,

1B̃, and 1∆0
are generators of H0(Z̃,OD̃ ⊕ OB̃ ⊕ O∆0

), then δ2(1D̃) = c1(D̃) = D̃,
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δ2(1B̃) = c1(B̃) = B̃, and δ2(1∆0
) = c1(∆0) = ∆0. Thus, the map δ2 is injective if

and only if the curves D̃, B̃, and ∆0 are linearly independent in the Picard group of Z̃.

Recalling that Pic(Z̃) is generated by ∆0, Γ, E1 and E2, that B̃ ∼ 6∆0+12Γ−2E1−2E2

and that D̃ ∼ Γ−E1−E2, we see that the three divisors are indeed linearly independent.

Thus, we have a diagram

H0(Z̃, (OD̃ ⊕OB̃ ⊕O∆0
)(KZ̃))

δ //

⊗s

��

H1(Z̃,Ω1
Z̃
(KZ̃))

⊗s

��

H0(Z̃,OD̃ ⊕OB̃ ⊕O∆0
)

δ2 // H1(Z̃,Ω1
Z̃
)

where the bottom arrow is injective. We see that δ is injective as long as the map on the

left is injective. But this map simply takes a section of (OD̃ ⊕ OB̃)(KZ̃) and multiplies

it by s. Since s 6= 0, the map is injective.

Lemma 5.4. H0(F̃2,Ω
1
F̃2

(log D̃)(K
F̃2

+ L̃)) = C.

Proof. By the projection formula we have

σ∗(Ω
1
F̃2

(log D̃)(K
F̃2

+ L̃)) = σ∗(Ω
1
F̃2

(log D̃))(KF2
+ L)

= σ∗(Ω
1
F̃2

(log D̃))⊗O(∆0 + 2Γ).

Lemma 4.4 gives

σ∗(Ω
1
F̃2

(log D̃)) = Ω1
F2
(logD)⊗Mp,q.

Thus,

σ∗(Ω
1
F̃2

(log D̃)(K
F̃2

+ L̃)) = Ω1
F2
(logD)⊗Mp,q ⊗O(∆0 + 2Γ).

Let π : F2 → P1 be the projection map, and suppose that π(D) = a. We have the

short exact sequence

0 → π∗Ω1
P1(log a) → Ω1

F2
(logD) → OF2

(−2∆0 − 2Γ) → 0.

The sheaf OF2
(−2∆0 − 2Γ) is free, so Tor1(Mp,q ⊗ O(∆0 + 2Γ),OF2

(−2∆0 − 2Γ)) = 0.

Thus, tensoring Mp,q ⊗O(∆0 + 2Γ) with the above short exact sequence yields the new
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short exact sequence

0 → π∗Ω1
P1(log a)⊗Mp,q ⊗O(∆0 + 2Γ) → Ω1

F2
(logD)⊗Mp,q ⊗O(∆0 + 2Γ)

→ OF2
(−∆0)⊗Mp,q → 0.

Since F2 is projective, the sheaf OF2
(−∆0) ⊗ Mp,q has no global holomorphic sections,

and so

H0(F2, π
∗Ω1

P1(log a)⊗Mp,q ⊗O(∆0 + 2Γ)) ∼= H0(F2,Ω
1
F2
(logD)⊗Mp,q ⊗O(∆0 + 2Γ)).

The sheaf Ω1
P1 is isomorphic to OP1(−2), so by the projection formula we have

H0(F2, π
∗Ω1

P1(log a)⊗Mp,q ⊗O(∆0 + 2Γ)) = H0(F2,OF2
(∆0 + Γ)⊗Mp,q).

The divisor ∆0 satisfies ∆0 · (∆0+Γ) = −1, so that ∆0 is a fixed part of the linear system

|∆0 + Γ|. Since D is the only fiber containing both p and q, this implies that

H0(F2,OF2
(∆0 + Γ)⊗Mp,q) = C,

completing the proof.

We can now prove the theorem.

Proof of Theorem 5.2. By Serre duality, it suffices to show that

H0(S,Ω1
S(logC)(KS)) = C.

By Lemma 4.5 and the projection formula, we have

f∗(Ω
1
S(logC)(KS)) = Ω1

F̃2

(log D̃)(K
F̃2

+ L̃)⊕ Ω1
F̃2

(log(D̃ + B̃))(K
F̃2
).

By Lemma 5.4, we have H0(Ω1
F̃2

(log D̃)(K
F̃2

+ L̃)) = C. Moreover,

Ω1
F̃2

(log(D̃ + B̃))(K
F̃2
) ⊂ Ω1

F̃2

(log(D̃ + B̃ +∆0))(KF̃2
).

Thus, H0(Ω1
F̃2

(log(D̃ + B̃))(K
F̃2
)) = 0 by Lemma 5.3.
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5.2 Deformations of pairs and the equisingular locus

Let f : X → Y be the double cover of a smooth surface Y branched over a smooth

curve B. Define DefX→Y to be the space of deformations of X that are double covers of

deformations of Y . The group Z/2Z acts on X by deck transformations, and the sheaf

f∗TX decomposes into invariant and anti-invariant subspaces as

f∗TX ' TY (− logB)⊕ TY (−L),

where 2L ∼ B [Par91].

Theorem 5.5. [CvS06] Via the decomposition of f∗TX into its invariant and anti-

invariant subspaces, the deformation space Def(X → Y ) of double covers of deformations

of Y may be identified with the deformation space Def(Y,B) of deformations of pairs,

where B is the branch divisor of f .

The proof of Theorem 5.5 involves identifying the space of infinitesimal deformations

of double covers of deformations of Y with the anti-invariant subspace H1
+(X,TX) ⊂

H1(X,TX). Then using the decomposition of f∗(TX) above, this space is isomorphic to

H1(Y, TY (− logB)).

Using Lemma 4.5, the same analysis works in the presence of the curves C ⊂ X and

D ⊂ Y , as long as D intersects B transversally. More explicitly, define Def
(X,C)→(Y,D)

to be the functor of Artinian local rings which associates to an Artinian local ring A the

set of isomorphism classes of deformations over A of squares

X // Y

C
?�

OO

// D
?�

OO

where the top and bottom maps are double covers and the left and right maps are

embeddings of the smooth curves C and D into X and Y , respectively. Then the func-

tor Def
(X,C)→(Y,D)

may be identified with the functor Def
(Y,B,D)

of deformations of
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triples. The space of first-order infinitesimal deformations of triples (Y,B,D) is therefore

H1
+(X,TX(− logC)). By Lemma 4.5, we have

H1
+(X,TX(− logC)) ' H1(Y, TY (− log(B +D))).

There is a forgetful map α : Def
(X,C)→(Y,D)

→ Def
(X,C)

. This map is an analytic

embedding, because the differential

dα : H1(Y, TY (− log(B +D))) → H1
+(X,TX(− logC)) ⊂ H1(X,TX(− logC))

is an isomorphism onto its image.

Suppose now that W is a stable numerical quintic surface of type 2b, S its minimal

resolution, and C the (−4) curve on S. Then we have the commutative square

S
f̃ // Z̃

C
?�

OO

// D̃
?�

OO

where f̃ is the double cover of Z̃, where Z̃ is the blowup of Z = F2 in two points lying

on a fiber D. The branch curve of f̃ is a smooth curve B̃, which intersects the proper

transform D̃ of D transversally. By the discussion above, deformations of this square can

be identified with deformations of the triple (Z̃, B, D̃). The following lemma shows that

in this case, the image of α is a neighborhood of [W ] in the 2a component of M5,5. We

note that Lemma 5.3 implies that there are no obstructions, so the image of α is smooth.

Theorem 5.6. Let W → T be a stable family whose fibers are all 2a or 2b surfaces and

X → W be its simultaneous minimal resolution over T , which exists by [KM98, Theorem

7.68]. Then there exists a double cover j : X → Z̃ of smooth schemes over T , where Z̃

is a smooth family of Hirzebruch surfaces of type F2 or F0 blown up at two points on a

fiber.

Proof. Let ψ : X → Y be the canonical model of X . Then the canonical map given by

the linear system |ωY /T | is a double cover f : Y → Z over T , where fibers of Z → T are

79



either smooth or singular quadrics. Let B denote the branch divisor of f and suppose

that Zt0 is singular for some t0 ∈ T . Then because the fibers of X → T are 2a or 2b

surfaces, the branch divisor Bt0 of the map f |t0 is disjoint from the node in Zt0 .

Let σ1 : Z1 → Z be a simultaneous resolution of singularities of Z over T . Then the

simultaneous resolutions σ1 and ψ are locally analytically isomorphic in a neighborhood

of each singularity of Z , because the branch divisor B does not intersect the singularities

of Z . Thus, no finite base change of T is required to construct Z1. Letting Y1 denote the

double cover f1 of Z1 branched over the preimage B1 of B, there is a map ψ1 : Y1 → Y

such that the following diagram is commutative:

Y1
f1 //

ψ1

��

Z1

σ1
��

Y
f // Z

Now let B1 denote the preimage of B under σ1. On each fiber, B1 has two A1 singu-

larities. Let S denote the double section of B1 → T passing through these singularities,

and let σ2 : Z̃ → Z1 be the blowup of Z1 in S. Then σ2 is a simultaneous embedded

resolution of singularities of B1. Thus, no finite base change of T is required to construct

Z , and the map j : X → Z̃ defined by σ1 ◦ σ2 ◦ j = f ◦ ψ is a double cover over T .

Thus, the space of equisingular deformations of W contains a smooth 39-dimensional

component corresponding to the closure of the 2a locus in M5,5.

5.3 Three technical lemmas

Our goal is to describe the degree two part of the Schouten bracket. We use a method

is similar to [Hor75,Hor76a]. In this section, we prove three technical lemmas, analogous

to Lemmas 24, 29, and 31 in [Hor75].
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Lemma 5.7. The map

ζ∗ : H
1(S, TS(− logC)) → H1(F1 q F2,NF1qF2

)

induced by the surjection TS |F1qF2
→ NF1qF2

is surjective.

Proof. It suffices to show that

H1(F̃2, f∗(TS(− logC))) → H1(∆0, f∗(NF1qF2
))

is surjective. To do this, recall that the surface F̃2 admits an action of Z/2Z via deck

transformations. By Lemma 4.5, the sheaf f∗(TS(− logC)) decomposes into invariant

and anti-invariant eigenspaces as

f∗(TS(− logC))+ = T
F̃2
(− log(D̃ + B̃)) and f∗(TS(− logC))− = T

F̃2
(− log D̃)⊗O(−L̃).

We have a similar decomposition of f∗(NF1qF2
) as follows. By the projection formula,

we have

f∗(NF1qF2
) = f∗(f

∗(N∆0
)) = N∆0

⊗ (O
F̃2

⊕O
F̃2
(−L̃)).

Thus,

f∗(NF1qF2
))+ = N∆0

and f∗(NF1qF2
))− = N∆0

⊗O(−L̃) ' N∆0
.

We show that the maps

ζ+ : H1(F̃2, TF̃2
(− log(D̃ + B̃))) → H1(∆0,N∆0

)

and

ζ− : H1(F̃2, TF̃2
(− log D̃)⊗O(−L̃)) → H1(∆0,N∆0

)

are surjective.

To show the first, we have the exact sequence

0 → T
F̃2
(− log(∆0 + D̃ + B̃)) → T

F̃2
(− log(D̃ + B̃)) → N∆0

→ 0
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and so it suffices to show that H2(F̃2, TF̃2
(− log(∆0 + D̃ + B̃))) = 0. By Serre duality,

this is equivalent to the vanishing of H0(F̃2,Ω
1
F̃2

(log(∆0 + D̃+ B̃))⊗O(K)). This is the

statement of Lemma 5.3.

For the second, note that we have the exact sequence

0 → T
F̃2
(− log D̃ +∆0)⊗O(−L̃) → T

F̃2
(− log D̃)⊗O(−L̃) → N∆0

→ 0.

By Lemma 5.4, we have H2(T
F̃2
(− log D̃) ⊗ O(−L̃)) = C. Moreover, H2(N∆0

) = 0,

and thus the map ζ− is surjective as long as H2(F̃2, TF̃2
(− log D̃ + ∆0) ⊗ O(−L̃)) = C.

Equivalently, we show that H0(F̃2,Ω
1
F̃2

(log D̃ +∆0)⊗O(K + L̃)) = C.

By Lemma 4.4 and the projection formula, we have

σ∗Ω
1
F̃2

(log(D̃ +∆0))⊗O(K + L̃) = Ω1
F2
(log(D +∆0))⊗O(∆)⊗Mp,q.

So we now want

H0(F2,Ω
1
F2
(log(D +∆0))⊗O(∆)⊗Mp,q) = C.

We claim that the sheaf TF2
(− log(D +∆0)) fits into an exact sequence as

0 → O(G) → TF2
(− log(D +∆0)) → π∗TP1(−a) → 0

where G is a divisor on F2 and π(D) = a ∈ P1. To see this, note first that π∗TP1(−a) '

OF2
(D). Let U ⊂ F2 be an open neighborhood of the point 0 ∈ D ∩∆0 with coordinates

(x, y) so that D has local equation x and ∆0 has local equation y. Then the map

TF2
(− log(D +∆0)) → OF2

(D)

is locally given by

x
∂

∂x
7→ x y

∂

∂y
7→ 0.

Thus the map is surjective. Since TF2
(− log(D + ∆0)) is a torsion-free vector bundle of

rank two andOF2
(D) is a line bundle, the kernel of the map TF2

(− log(D+∆0)) → OF2
(D)

is a torsion-free vector bundle of rank one. All such vector bundles are given by OF2
(G)
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for some divisor G on F2. We find G by calculating the Chern class of TF2
(− log(D+∆0)).

The determinant line bundle
∧2 TF2

(− log(D+∆0)) is given by −O(−KF2
−D−∆0) =

O(∆0 + 3Γ), so c1(TF2
(− log(D +∆0))) = ∆0 + 3Γ. Thus, G = ∆0 + 2Γ.

Dualizing the above exact sequence and tensoring with O(∆) ⊗ Mp,q results in the

exact sequence

0 → O(∆0 + Γ)⊗Mp,q → Ω1
F2
(logD +∆0)⊗O(∆)⊗Mp,q → OF2

⊗Mp,q → 0.

The sheaf on the right has no global sections, since the only section of OF2
vanishing at

p and q is zero. Moreover, since ∆0 · (∆0 + Γ) = −1 every divisor in the linear system

|∆0+Γ| is a union of two divisors ∆0 and Γ. Since there is only one such divisor passing

through p and q, namely the divisor ∆0 +D, we have

H0(F2,Ω
1
F2
(logD +∆0)⊗O(∆)⊗Mp,q) ' H0(F2,O(∆0 +D)⊗Mp,q) = C,

as we wished to show.

A key ingredient of Horikawa’s description in [Hor76a] is a map

γ : H1(S, TS) → H0(G,O(KS |G)),

where KS = 2G+ F and G is a generic fiber of the map g : S → P1.

Lemma 5.8. Let S be a smooth surface with a surjective map g : S → P1 such that

g∗OS = OP1 and let G denote a generic fiber of g. Suppose that KS = 2G+ F for some

smooth divisor F on S such that G 6⊂ F and let

ζ∗ : H
1(S, TS) → H1(F,NF )

be the map induced by the surjection TS |F → NF . If the irregularity q(S) = 0,

h1(S,O(G)) = 0, and h0(F,O(K − G)|F ) = 0, then there is a map γ : H1(S, TS) →

H0(F,O(KS |F )), defined below, with the property that Ker γ = Ker ζ∗.
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Proof. Cover S by open neighborhoods Ui and let κij , dij , and ζij denote transition

functions for the line bundles [K], [G] and [F ], respectively. We can assume that κij =

d2ijζij . Since g∗OS = OP1 , we have h0(S,O(G)) = 2. Let {g, h} be a basis of H0(S,O(G)),

represented by holomorphic functions gi and hi on Ui such that gi = dijgj and hi = dijhj ,

and let ζi be local equations of F on Ui such that ζi = ζijζj .

Let ρ be an element of H1(S, TS) represented by a Čech 1-cocycle {ρij}. Given a

function f ∈ O(Ui ∩ Uj), let ρij · f denote the action of ρ on f .

There is a map H1(S, TS) × H1(S,Ω1
S) → H2(S,OS) defined as follows: given an

element ρ ∈ H1(S, TS) corresponding to the first order infinitesimal deformation Sρ and

a line bundle E , the cohomology class of the cup product [ρ ∪ c1(E)] ∈ H2(S, TS ⊗ Ω1
S)

corresponds, via the duality pairing TS ⊗ Ω1
S → OS , to an element of H2(S,OS). We

write this element as [ρ · E ]. If ξij are transition functions for E , then the first Chern

class c1(E) is represented by the one-cocycle { 1
2πid(log ξij)}. Thus, up to a multiplicative

constant, the element [ρ · c1(E)] is represented by the Čech 1-cocycle

{

ρjk · ξij
ξij

}

. (5.2)

The line bundle E extends over the deformation Sρ if and only if [ρ·E ] = 0 ∈ H2(S,OS) [Ser06,

Theorem 3.3.11].

Since the line bundle K extends over the first order infinitesimal deformation Sρ, we

have [ρ ·K] = 0 ∈ H2(S,OS). Hence, there is a 1-cochain {νij} with coefficients in OS

such that

νij − νik + νjk =
ρjk · κij
κij

. (5.3)

Let f be an element of H0(S,O(K)), represented by holomorphic functions {fi} on Ui

such that fi = κijfj on Uij . Using Equation (5.3) together with the fact that {ρij} is a

1-cocycle, we see that {ρij · fi − fiνij} represents a 1-cocycle with coefficients in O(K).

Take fi = g2i ζi. Then

{ρij · g
2
i ζi − g2i ζiνij} = {2giζiρij · gi + g2i ρij · ζi − g2i ζiνij}
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represents a 1-cocycle with coefficients in O(K). Dividing through by gi, we see that

{2ζiρij · gi + giρij · ζi − giζiνij}

represents a 1-cocycle with coefficients in O(K −G). Since

h1(S,O(K −G)) = h1(S,O(G)) = 0,

there exist holomorphic functions αi on Ui such that

dijζijαj − αi = 2ζiρij · gi + giρij · ζi − giζiνij . (5.4)

Similarly, there exist holomorphic functions βi on Ui such that

dijζijβj − βi = 2ζiρij · hi + hiρij · ζi − hiζiνij . (5.5)

Multiplying Equation (5.4) by dijhj and Equation (5.5) by dijgj and subtracting, we have

κij(hjαj − gjβj)− (hiαi − giβi) = 2ζi(hiρij · gi − giρij · hi) (5.6)

and we see that {(hiαi − giβi)|F } represents a holomorphic section of O(K|F ). This is

the definition of γ(ρ). We note that this definition is independent of the choice of νij ,

since those terms cancel when we subtract multiples of Equations 5.4 and 5.5 to define

γ.

We claim that the definition of γ(ρ) is also independent of choice of ρij , αi and βi.

Since γ is linear, it suffices to show that γ(ρ) = 0 if [{ρij}] = 0 as an element of H1(S, TS).

Suppose that there exist holomorphic vector fields ηi on Ui such that ρij = ηj − ηi on

Uij . Then since {κij} is a multiplicative 1-cocycle, we have

ρjk · κij
κij

= −
ηj · κij
κij

+
ηk · κik
κik

−
ηk · κjk
κjk

(5.7)

on Uijk. Recalling the definition of νij in Equation (5.3), we have that {νij +
ηj ·κij
κij

} is a

1-cocycle with coefficients in OS . The cohomology group H1(S,OS) is 0, so there exist

holomorphic functions ui on Ui such that

νij +
ηj · κij
κij

= uj − ui
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on Uij . Then by definition of ηi, ui and Equation (5.7), together with the fact that

κij = d2ijζij , we have

giρij · ζi + 2ζiρij · gi − giζiνij

= dijζij(gjηj · ζj + 2ζjηj · gj − gjζjuj)− (giηi · ζi + 2ζiηi · gi − giζiui)

on Uij . Together with Equation (5.4), we see that {αi − giηi · ζi − 2ζiηi · gi + giζiui}

represents an element of H0(S,O(G + F )). Thus, {αi − giηi · ζi} represents an element

of H0(F,O((G + F )|F )) = H0(F,O(K − G)|F ). This last cohomology group is zero by

assumption. Thus, αi = giηi · ζi on F ∩ Ui. Similarly βi = hiηi · ζi on F ∩ Ui and so

hiαi − giβi = 0, as we wished to show.

We now show that Kerγ = Kerζ∗. On F ∩Ui, we have ζ∗ρ = (ρij · ζi)|F . Suppose that

ζ∗ρ = 0. Then there exist holomorphic functions vi on Ui such that on F ∩ Ui we have

ζijvj − vi = (ρij · ζi)|F .

By definition of α (see Equation 5.4)

dijζijαj |F − αi|F = (giρij · ζi)|F .

Therefore the collection {αi|F − givi} represents a holomorphic section of OF (G+ F )|F .

Since H0(F,OF (G+F )|F ) = 0, we see that αi|F = givi on F ∩Ui. Similarly, βi|F = hivi

on F ∩ Ui. Thus, γ(ρ) = 0.

Conversely, if γ(ρ) = 0, then hiαi = giβi on F ∩ Ui. Since g and h have no common

zeros, we can define holomorphic functions vi on F ∩ Ui by

vi =
αi
gi
|F =

βi
hi
|F .

Then by Equation (5.4), we have

ζijvj − vi = (ρij · ζi)|F .

Thus, ζ∗(ρ) = 0.
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Lemma 5.9. With the same hypotheses as Lemma 5.8, if [ρ, ρ] = 0 then (γ(ρ))2 is in

the image of the restriction map H0(S,O(2K)) → H0(F,O(2K|F )).

Proof. We follow closely the proof of Lemma 31 in [Hor75].

Let Ui be a sufficiently fine open cover of S and let zi = (z1i , z
2
i ) be holomorphic

coordinates on Ui such that zi = bij(zj) on Uij , where bij are holomorphic functions of

zi. Let ρ be an element of H1(S, TS) such that [ρ, ρ] = 0, and represented by a 1-cocycle

{ρij}. Define

φ̃ij = bij(zj) + ρijt.

Because ρ is a one-cocycle, the φ̃ij are local first order deformations of S which glue to

give a global first order deformation Sρ of S. That is,

φ̃ik − φ̃ij(φ̃jk, t) ≡ 0 mod (t2). (5.8)

The local deformations φ̃ij can be extended to the second order as

φij = bij(zj) + ρijt+ ρ̃ijt
2.

where {ρ̃ij} is a one-cochain with coefficients in TS whose Čech differential gives the

two-cocycle {[ρij , ρjk]}.

Since [ρ, ρ] = 0, the φij glue to give a global second order deformation of S. That is

φik − φij(φjk, t) ≡ 0 mod (t3). (5.9)

Since K extends over the second-order deformation given by φij , we have [ρ · K] =

0 ∈ H2(S,OS) (see Equation (5.2)). Hence, there is a 1-cochain {νij} with coefficients in

OS such that

νij − νik + νjk =
ρjk · κij
κij

. (5.10)

Gluing function of the second order deformation satisty

Ψij = κij + κijνijt( modt2), (5.11)
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see [Hor75, Lemma 31].

Now let f be a holomorphic section of O(K) over S, represented by a collection {fi}

of holomorphic functions on Ui such that fi = κijfj on Uij . Then, the collection

{ρij · fi − fiνij}

represents a 1-cocycle with coefficients in O(K). Thus we can find holomorphic functions

τi on Ui such that

κijτj − τi = ρij · fi − fiνij

on Uij . Moreover, the functions

Φi = fi(zi) + τit

give local first order deformations of the section fi along Sρ which glue to give a global

first order deformation of f . That is

Φi(φij , t)−ΨijΦj ≡ 0 mod (t2). (5.12)

If we define Γij to be the homogeneous part of degree two of Equation (5.12), then the

Γij/t
2 are obstructions to deforming f to the second order along Sρ. Thus, the collection

{Γij/t
2} forms a 1-cocycle with coefficients in O(K). Since H1(S,O(K)) = 0, this 1-

cocycle is cohomologous to 0.

Let {g, h} be a basis of H0(S,O(G)). We apply the above argument to f0 = g2ζ,

f1 = h2ζ, and f2 = ghζ, where ζ is the local equation of F . Let αi and βi be solutions

to Equation (5.4) and 5.5 in the proof of Lemma 5.8. Then we can choose

τ0i = giαi, τ1i = hiβi, τ2i = (hiαi + giβi)/2.

Define

Φki = fki + τki t

for i = 0, 1, 2. A straightforward computation shows that

(Φ2
i )

2 − Φ0
iΦ

1
i ≡ (hiαi − giβi)

2t2/4 mod (t3). (5.13)
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On the other hand, using Equations 5.11 and 5.12, we obtain

(Φ2
i )

2 − Φ0
iΦ

1
i ≡ κ2ij((Φ

2
j )

2 − Φ0
jΦ

1
j ) + 2f2i Γ

2
ij − f0i Γ

1
ij − f1i Γ

0
ij mod (t3). (5.14)

where Γkij denotes the homogeneous degree two part of the left hand side of Equa-

tion (5.12) with Φi replaced with Φki .

Combining Equations 5.14 and 5.13, we have

(hiαi − giβi)
2)t2/4 ≡ κ2ij((Φ

2
j )

2 − Φ0
jΦ

1
j ) + 2f2i Γ

2
ij − f0i Γ

1
ij − f1i Γ

0
ij mod (t3) (5.15)

on Uij .

Now, the exact sequence

0 → OS(2G+K) → OS(2K) → OF (2K|F ) → 0

gives rise to the exact sequence

H0(S,O(2K)) // H0(F,O(2K|F ))
δ // H1(S,O(2G+K)) .

By Equations (5.14) (5.15), and the definition of γ (see Equation (5.6)), the cohomology

class of δ((γ(ρ))2) is represented by the 1-cocycle

1

t2
(2f2i Γ

2
ij − f0i Γ

1
ij − f1i Γ

0
ij).

As we saw above, each 1-cocycle {Γkij/t
2} is cohomologous to 0, and so (γ(ρ))2 is a

restriction of some element of H0(S,O(2K)), as we wished to show.

5.4 Proof of the main theorem

We describe the space DefQG(W ) of Q-Gorenstein deformations of a general 2b surface

W .

Lemma 5.10. [Hor76a, Lemma 6.3] Let S be the minimal resolution of a surface of

type 2b. Then h1(S,O(G)) = 2 and h1(S,O(G+ F1 + F2)) = 0.
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Proof. Horikawa proves this in the case that S is a double cover of F2 with a smooth

branch divisor. The proof uses Riemann-Roch and Serre duality together with the fact

that the canonical divisor on S is given by KS = 2G + F1 + F2. Because it only relies

on numerical characteristics of S, G, F1 and F2, Horikawa’s proof works in our case as

well.

By Lemma 5.10, we can define the map γ as in Lemma 5.8, where F = F1 + F2. By

abuse of notation, we let

γ : H1(S, TS(− logC)) → H0(F1 q F2,OF1qF2
)

be the restriction of this map to H1(S, TS(− logC)). We note that this map is the re-

striction to H1(S, TS(− logC)) ⊂ H1(S, TS) of the corresponding map defined in [Hor76a]

under the assumption that the branch locus is smooth.

Proof of Theorem 5.1. The deformation space DefQG,e.s(W ) is locally analytically iso-

morphic to the zero-set of the Kuranishi map

k : H1(S, TS(− logC)) → H2(S, TS(− logC)) = C.

Choose a basis ρ1, ρ2, . . . , ρ40 of H1(S, TS(− logC)). Let t1, t2, . . . , t40 be the dual basis.

A priori, the Kuranishi map is some power series in t1, . . . , t40. However in our case, we

know that DefQG,e.s(W ) contains a smooth 39-dimensional subspace corresponding to

deformations of a 2b surface to a 2a surface (see Section 5.2). This implies that if we

choose a basis ρ1, ρ2, . . . , ρ40 ofH
1(S, TS(− logC)) such that ρ1 ∈ H1

−(S, TS(− logC)) and

ρi ∈ H1
+(S, TS(− logC)) for i > 2, then the corresponding dual basis has the property that

the Kuranishi function factors into at least two terms, one of which has linear term t1. To

show that DefQG,e.s(W ) is locally a product of two smooth 39-dimensional components

meeting transversally in a 38-dimensional component, it therefore suffices to show that

the degree two part of the Kuranishi map is nonzero and not a square. The degree two

part is given by the Schouten bracket, defined above.
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We restrict the Schouten bracket [, ] to H1(S, TS(− logC))⊗H1(S, TS(− logC)). We

claim that the Lie bracket H2(S, TS(− logC) ⊗ TS(− logC)) → H2(S, TS) has image in

H2(S, TS(− logC)). Let {Ui} be a sufficiently fine open covering of S and let Uijk =

Ui ∩ Uj ∩ Uk. Let ρ be an element of H2(S, TS(− logC) ⊗ TS(− logC)), represented by

a 2-cocycle {ρij ⊗ ρjk}, where {ρij} is a 1-cocycle with coefficients in TS(− logC). Then

ρij is a vector field that fixes the ideal sheaf of the C. Thus, ρij ⊗ ρjk also fixes the ideal

sheaf of C. Therefore the Lie bracket [ρij , ρjk] gives a vector field on Uijk which also fixes

the ideal sheaf of C. Thus, the form [, ] gives a 2-cocycle with coefficients in TS(− logC);

that is

[, ] : H1(S, TS(− logC))⊗H1(S, TS(− logC)) → H2(S, TS(− logC)) ' C.

Because ρ1, . . . , ρ40 and t1, . . . t40 are dual bases, the degree two part of the Kuranishi

map k is given by
∑

1≤i,j≤40

[ρi, ρj ]titj .

Moreover, because k factors into a product, one term of which has linear term t1, we

have that [ρi, ρj ] = 0 for 2 ≤ i, j ≤ 40. It therefore suffices to show that [ρ1, ρ1] = 0 and

[ρ1, ρi] is nonzero for some i > 1.

Recall that KS = 2G+ F1 + F2 and consider the exact sequence

0 → OS(2G) → OS(K) → OF1
⊕OF2

→ 0.

On S, we have pg = 4 and h0(2G) = 3, so the image of the map r : H0(S,OS(K)) →

H0(S,OF1
⊕ OF2

) is one-dimensional. Moreover, the image of r is contained in the

“diagonal” inH0(S,OF1
⊕OF2

) ' C2. That is, if s is a nonzero global section of OF1
⊕OF2

in the image of r, then s|F1
6= 0 and s|F2

6= 0. More precisely, we have the commutative

diagram below, where the arrow on the left is an isomorphism and the inclusion of

H0(F̃2,∆0) into H0(S,OF1
⊕ OF2

) sends a section to the section of OF1
⊕ OF2

whose
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restrictions to F1 and F2 are equal.

H0(S,OS(K))
r // H0(S,OF1

⊕OF2
)

H0(F̃2,∆0 + 2Γ)
?�

'

OO

// H0(F̃2,∆0)
?�

OO

By Lemmas 5.8, 5.10 and 5.7, the map γ : H1(S, TS(− logC)) → H0(S,OF1
⊕OF2

) is

surjective. Thus, we can choose ρ ∈ H1(S, TS(− logC)) such that γ(ρ) 6= 0, and γ(ρ)2 is

not in the image of r. But then γ(ρ)2 is not a restriction of an element of H0(S,O(2K)),

so by Lemma 5.9, we conclude that [ρ, ρ] 6= 0. Thus, the Schouten bracket

[, ] : H1(S, TS(− logC))×H1(S, TS(− logC)) → H2(S, TS(− logC)) ' C

is surjective.

Because it is locally given by the composition of the cup product followed by the Lie

bracket of vector fields, the Schouten bracket is Z/2Z-equivariant under the action of

Z/2Z by deck transformations. By Lemma 5.2, the invariant part of H2(S, TS(− logC))

is zero, and so [ρi, ρj ] is nonzero if and only if [ρi, ρj ] is anti-invariant under the action

of Z/2Z. Suppose that ρ ⊗ η is an element of H1(S, TS(− logC)) ⊗H1(S, TS(− logC)),

where ρ and η are either both invariant or both anti-invariant. Then [ρ, η] is invariant,

that is [ρ, η] ∈ H2
+(S, TS(− logC)). By Lemma 5.2, this space is zero, so [ρ, η] = 0. Thus,

by choice of basis, [ρi, ρi] = 0 for all i; in particular, [ρ1, ρ1] = 0.

Now suppose that ρ ∈ H1
+(S, TS(− logC)) is invariant and η ∈ H1

−(S, TS(− logC))

is anti-invariant. Then [ρ, η] ∈ H2
−(S, TS(logC)) is anti-invariant. Since [, ] is surjective,

there exists, by choice of basis, i > 1 such that [ρ1, ρi] 6= 0, completing the proof.
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C H A P T E R 6

FUCHSIAN AND ORBIFOLD DOUBLE NORMAL CROSSING

SINGULARITIES

The moduli space Mg of stable curves of genus g ≥ 2 contains boundary divisors δi

corresponding to irreducible curves of genera g− i and i intersecting transversally in one

point. In the absence of obstructions – and a condition on the orbifold double normal

crossing which we describe below – analogous divisors in MK2,χ correspond to surfaces

with two or more components with orbifold double normal crossing singularities. An

orbifold double normal crossing singularity is locally analytically of the form

(xy = 0) ⊂
1

n
(1,−1, a).

See Figure 15 for a visualization of an orbifold double normal crossing singularity.

Figure 15. A surface with three orbifold double normal crossing singular-
ities. We see Du Val singularities 1

n(1,−1) on X1, and cyclic
quotient singularities 1

n(1, 1) on X2.

Let X be a surface with an orbifold double normal crossing singularity such that X

consists of two components X1 and X2 meeting along a curve R ⊂ X. The divisors

R1 = R|X1
and R|X2

are Q-divisors on X1 and X2.

An orbifold double normal crossing singularity has a one-parameter Q-Gorenstein

smoothing given by (xy = tf(zn)) ⊂ 1
n(1,−1, a, 0), where f(zn) ∈ H0(R,OR(R1|R +
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R2|R)). Thus, the equisingular locus will be a divisor inMK2,χ as long asH
0(R,OR(R1|R+

R2|R)) is one-dimensional and there are no obstructions to Q-Gorenstein smoothings. By

Riemann-Roch, H0(R,OR(R1|R + R2|R)) = C and H1(R,OR(R1|R + R2|R)) = 0 if and

only if OR(R1|R +R2|R) is a sufficiently general line bundle on R of degree equal to the

genus of R. In the cases we consider, the curve R is rational, so we require the line bundle

R1 +R2 to be of degree 0.

6.1 Weighted homogeneous singularities

The divisor δ1 in Mg corresponds to curves of genus g − 1 with an elliptic tail. We

expect comparable divisors in MK2,χ corresponding to orbifold double normal crossing

surfaces, where one of the components is a K3 surface, which are weighted blowups of

smoothings of surfaces containing a unique Fuchsian singularity. Fuchsian singularities

are a subset of weighted homogeneous singularities, also known as singularities “with

a good C∗-action.” In this section, we follow primarily Dolgachev [Dol83,Dol96], Looi-

jenga [Loo84], and Pinkham [Pin77b,Pin78] to describe weighted homogeneous singular-

ities and their smoothings.

A weighted homogeneous singularity is locally analytically isomorphic to an affine

variety of the form X = Spec R where R = ⊕i∈ZRi is a graded ring. If R0 = C and

Ri = 0 for i < 0, the variety X is said to have a good C∗-action. Such a variety has a

unique fixed point x0 of the action, corresponding to the maximal ideal ⊕i>0Ri.

The simplest example of a variety with a good C∗-action is the cusp X = (y2 =

x3) ⊂ A2. The C∗-action is simply the action λ · (x, y) = (λ2x, λ3y) for λ ∈ C∗, and

since the origin is the unique fixed point, the action is good. To see what is happening

algebraically, we note that X = Spec R where R = C[x,y]
(y2−x3)

is a graded ring where x and

y are given weights 2 and 3, respectively.

Given a variety X = Spec R with a good C∗-action, a smoothing Xw = Spec R → ∆w
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ofXis called a smoothing of negative weight if Xw has a compatible good C∗-action. Given

such a smoothing, we can projectivize by taking X̄w = Proj R̄ where R̄i = ⊕l≥0Rl.

Equivalently, X̄w = ProjR[s] where s is given weight 1. Let us return to the example of

the cusp to see what this means geometrically.

A versal deformation of the cusp of negative weight is the curve Y = (y2 = x3 + ax+

b) ⊂ A2. Projectivizing, we obtain the family X̄t = (y2 = x3+at4x+bt6) ⊂ P(2, 3, 1). The

general fiber is a smooth elliptic curve, while the special fiber X̄0 is the projectivization

X̄ ⊂ P(2, 3, 1) of our original singularity X.

Let us extend this concept to surfaces. A normal affine surface X = Spec R has good

C∗-action if R = ⊕l≥0Rl is a graded algebra and R0 = C. The unique singularity x ∈ X

corresponds to the maximal ideal m = ⊕l>0Rl. The following characterization of such

surfaces is due to Dolgachev and Pinkham.

Theorem 6.1. [Dol75,Pin77b] A normal affine surfaceX = Spec R has a good C∗-action

if and only if there exists a simply connected Riemann surface C, a discrete cocompact

subgroup Γ ⊂ Aut(C), and a line bundle L on C to which the action of Γ lifts such that

R ' ⊕i≥0H
0(C,Li)Γ.

Geometrically, X is obtained from the total space of the line bundle L∨ on C by

taking the quotient by Γ and then contracting the zero-section. For instance, if C = C

and Γ is the cyclic group µn, then X is a cyclic quotient singularity.

Let X = Spec R be an affine surface with a good C∗-action, and let X̄ = Proj R[t],

where t has weight 1.

Proposition 6.2. [Loo84] The dualizing sheaf ωX̄ is trivial if and only if C is the upper

half plane H and L is the canonical bundle.

A singularity as in Proposition 6.2 is called a Fuchsian singularity. Geometrically a

Fuchsian singularity is obtained by taking Γ to be the group of orientation-preserving

isometries of a tiling of the upper half-plane H by congruent polygons. See Figure 16 for

a visualization.
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Figure 16. The Fuchsian singularity D2,3,7. The triangular tiling has angles
π
2 ,

π
3 ,

π
7 .

6.2 Fuchsian singularities

Let X = Spec R be a normal affine surface with a unique Fuchsian singularity at

x0 and let X̄ = ProjR[s] be its standard projectivization. Note that all singularities

of X̄ other than x0 occur on X̄∞ = X̄ − X. If Γ corresponds to an m-gon with angles

π/p1, π/p2, · · · , π/pm, then there arem cyclic quotient singularities 1
p1
(1,−1), 1

p2
(1,−1), · · · , 1

pm
(1,−1))

lying on X̄∞. Note that these singularities are simply Du Val singularitiesAp1−1, Ap2 , · · · , Apm .

Let X ′ → X be the minimal resolution of the singularities along X̄∞. Because these

are Du Val singularities, the exceptional curve on X ′ contains the central component and

chains of (−2)-curves of lengths p1 − 1, . . . , pm − 1.

We denote a Fuchsian singularity with the given minimal resolution by Dp1,··· ,pm(g),

where g is the genus of the proper transform E of X̄∞. If g = 0 we write simply Dp1,··· ,pm .

When E2 = −2, we represent the exceptional divisor by a graph Tp1,··· ,pm , where vertices

correspond to irreducible curves with self-intersection −2, and edges between vertices

exist if the corresponding curves intersect.

Example 6.3. For us, the important examples of Dp1,··· ,pm(g) singularities are when

m = 3. We will see below that in this case g = 0. These singularities, denoted by Dp,q,r,

are called triangle singularities.

Next, we resolve the Fuchsian singularity of X ′ to obtain the minimal good resolution
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X̃ of X, in which the exceptional curves intersect transversally. Figure 16 includes a

diagram of the minimal good resolution of a D2,3,7 singularity.

Proposition 6.4. [Loo84,OW77] A Dp1,··· ,pm(g) singularity exists if and only if pi ≥ 2

and
∑ 1

pi
< m+ 2g − 2.

Note in particular that g = 0 when m = 3 and that the triangle singularity Dp,q,r

exists if and only if 1/p + 1/q + 1/r < 1. This is obvious geometrically, since triangles

with angles π/p, π/q, π/r exist in H if and only if 1/p+ 1/q + 1/r < 1.

Which Fuchsian singularities are smoothable?

Theorem 6.5. [Pin74] If X = Spec R has a good C∗-action, then there exists a versal

deformation space X = Spec R → S = Spec A with a good C∗-action extending that of

X.

The following example gives the general idea of the construction of X .

Example 6.6. The triangle singularityD2,3,9 is the surface singularity locally analytically

isomorphic to

X = C[x, y, z]/(f = x2z + y3 + z4).

The equation f is homogeneous of degree 24 with respect to the C∗-action λ · x = λ9x,

λ · y = λ8y, λ · z = λ6z. To construct deformations of D2,3,9, we find generators of the

Jacobian algebra C[x, y, z]/(∂f/∂x, ∂f/∂y, ∂f/∂z). Explicitly,

C[x, y, z]/(2xz, 3y2, x2 + 4z3) =< 1, x, y, z, xy, yz, z2, yz2, z3, xyz2 >C

Each of these generators, other than xyz2, has weight less than 24. Then

X = (x2z + y3 + z4 + a1 + a2x+ a3y + a4z + a5xy + a6yz + a7z
2 + a8yz

2 + a9z
3 + a10xyz

2 = 0)

⊂ A3 × Spec A

where A = C[a1, a2, . . . , a10].

Let X̄ = ProjR[t]. Note that R[t]/(t) ' A⊗C R, so that X̄∞ = S × X̄∞. That is, for

s ∈ S, the surface X̄s contains a curve isomorphic to the original curve X̄∞.
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6.2.1 Deformations of triangle singularities

Let π : X̄ → S be a negative weight deformation of a projectivized surface X̄ with

a good C∗-action and a unique Dp,q,r singularity, as above. As discussed above, every

fiber of π contains a divisor isomorphic to X̄∞ consisting of a configuration of curves

corresponding to a Tp,q,r graph.

Observe that H1(X̄0,OX̄0
) = 0, so by upper semi-continuity, we have H1(X̄s,OX̄s

) =

0 for all s ∈ S. Moreover, for s 6= 0, there exists a unique nowhere-zero holomorphic

two-form ωs with a C∗-action given by λ · ωs = λ−1ωs. Therefore, the nonsingular fibers

of π are K3 surfaces containing a divisor Ds consisting of (−2) curves whose intersection

graph is a Tp,q,r graph. Additionally, the family {ωs}s∈S is a holomorphic family. (Recall

that a K3 surface X is a smooth projective surface such that the canonical class ωX is

trivial and π1(X) = 0, or equivalently, H1(X,OX) = 0.)

The following remarkable theorem of Pinkham tells us that every K3 surface X with

a Tp,q,r curve D such that X −D is affine corresponds to a fiber of π.

Theorem 6.7. [Pin77b,Pin77a], [Loo83, Proposition 2] LetX be a K3 surface containing

a Tp,q,r curve D such that X −D is affine and let ω be a holomorphic nonzero two-form

on X. Then there exists a unique s ∈ S for which there is a unique isomorphism X → Xs

which maps any irreducible component of D to an irreducible component of Ds. Under

this isomorphism, the two-form ωs pulls back to ω.

The beauty of Theorem 6.7 is that the question of which surfaces are degenerations

of Dp,q,r singularities is now reduced to finding K3 surfaces endowed with a Tp,q,r con-

figuration of curves, which is a purely lattice-theoretic question. Dolgachev and Nikulin

give us the answer. Before we state it, let us review some facts about K3 surfaces and

lattices.
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6.2.2 Some lattice theory for K3 surfaces

Given a lattice S and its dual S∗, there is an injective homomorphism iS : S ↪→ S∗

given by sending x to the function fx(y) = x · y. The discriminant group DS is defined

to be S∗/iS(S). Note that DS is a finite group if and only if the intersection pairing is

nondegenerate. We say that S is unimodular if DS = 0 and denote by l(s) the minimal

number of generators of DS . If L is another lattice, an embedding i : S ↪→ L is called

primitive if L/i(S) is a free group.

Now let X be a K3 surface. Then together with the intersection pairing, the second

homology group H2(X,Z) is isomorphic to the lattice L = Z22. Moreoever, this lattice is

even (that is x ·x is even for all x ∈ Z22), unimodular, and of signature (3, 19). Let Qp,q,r

denote the lattice Zp+q+r−2 of signature (1, p+q+r−3) with intersection pairing given by

the intersection matrix of the Tp,q,r diagram. Note that Qp,q,r is even and nondegenerate.

Theorem 6.8. [Loo84] If there exists a primitive embedding Qp,q,r ↪→ L, then there is

a good smoothing of the Dp,q,r singularity.

We note, however, that a good smoothing may exist even if the embedding is not

primitive.

Theorem 6.9. [Dol83,Nik79] A primitive embedding of an even nondegenerate lattice

S of signature (t+, t−) into an even unimodular lattice L of signature (l+, l−) exists if

1. l+ ≥ t+,

2. l− ≥ t−, and

3. rk(L)− rk(S) > l(S).

In our case,

rk(L) = 22,

rk(S) = 1 + p+ q + r − 3 = p+ q + r − 2.

Moreoever, 1
p +

1
q +

1
r < 1 and so p, q, r ≥ 2. Thus, to get a primitive embedding, we need
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1. p+ q + r − 3 ≤ 19 and so p+ q + r ≤ 22

2. 22− (p+ q + r − 3) > l(S), so p+ q + r < 24− l(S)

A priori, we know only that l(S) ≤ rk(S), so

22 > l(S) + rk(S) ≥ 2l(S) ⇒ l(S) ≤ 10.

To get a better bound on l(S), we need to calculate the discriminant group DS .

Let M denote the Gram matrix of S, that is the intersection matrix of Tp,q,r. Then

the size of DS is given by

det M = pqr(1−
1

p
−

1

q
−

1

r
).

The column span of M corresponds to the image of S under the homomorphism i : S ↪→

S∗. Using matrix reduction, one can show that l(S) ≤ 3. In fact

Lemma 6.10. The discriminant groupDS is generated by 3 elements a, b, c with relations

a+ b+ c = pa = qb = rc.

In particular, l(S) ≤ 2. Moreover, DS ≡ Z/θ ⊕ Z/φ, where θ is the greatest common

divisor of p, q, and r, and θ divides φ.

Thus, for p + q + r ≤ 21 (as 21 is strictly less than 24 − l(S)), we have a primitive

embedding of Qp,q,r into the lattice L, and hence there exists a smoothing of the Dp,q,r

singularity. Wahl [Wah81] showed that if p + q + r > 22, then no smoothing exists.

The remaining case to consider is thus p + q + r = 22. This case was completed by

Pinkham [Pin]. To begin with, Pinkham shows that if p + q + r = 22, then a primitive

embedding exists if the greatest common divisor of p, q and r is 1. The remaining cases

to consider are where (p, q, r) is one of (2, 6, 14), (6, 6, 10), or (2, 10, 10). For the first two

of these cases, Pinkham constructs an overlattice S in which Qp,q,r has index two, and

shows that S has a primitive embedding into the lattice L. He then proves that a D2,10,10

singularity cannot be smoothed. To summarize:
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Theorem 6.11. [Dol83, Nik79, Loo83, Pin, Wah81] The Fuchsian singularities Dp,q,r

which admit a smoothing are those with p+ q + r ≤ 22 and (p, q, r) 6= (2, 10, 10).

There are 22 smoothable Fuchsian singularities Dp,q,r that are hypersurface singular-

ities, that is they are locally cut out by a single equation in A3.

6.3 Hypersurface Fuchsian singularities

Example 6.12. The polynomial f = x2z + y3 + z4 ∈ C[x, y, z] is the local equation for

the exceptional Fuchsian singularity of type D2,39. As described above, this singularity

is quasihomogeneous of weight 24 with weights (9, 8, 6). Let f1, . . . , f10 be a basis of

C[x, y, z]

(f, ∂xf, ∂yf, ∂zf)
.

There is one basis element, say f10, which has “negative weight,” i.e. weight greater than

24. Let Xt be the family of quintic surfaces locally analytically given by

{F = f +
9
∑

i=1

ait
ikfi = 0} ⊂ P3 × Ct

where ik is chosen so that F is quasihomogenous of weight 24 with weights (9, 8, 6, 1) as

an element of C[x, y, z, t]. By Dolgachev [Dol96], the blowup of Xt with weights (9, 8, 6, 1)

has as special fiber a surface with two components S1 and S2 meeting along a double

curve R of genus 0. The surface S1 is a K3 surface with three singularities A1, A2 and

A8 along R|S1
. The surface S2 has singularities 1

2(1, 1),
1
3(1, 1),

1
9(1, 1) along R|S2

. One

can check that R|2S1
+R|2S2

= 0.

We calculate the dimension of the moduli space of these surfaces. On the K3 compo-

nent, resolving the singularities gives an M -polarized K3 surface where M is a lattice of

signature (1, 11). The moduli space KM of these M -polarized K3 surfaces has dimension

8 [Dol96].

The minimal resolution S̃2 of S2 is the minimal good resolution ofX0. By Yang [Yan84],

the minimal model Y of S̃2 is a minimal surface with invariants K2 = 2, pg = 3, q = 0.
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By Horikawa [Hor76a] Y is the double covers of P2 branched over a curve of degree 8.

Moreover, Y contains a cusp with self-intersection −3. The moduli of such surfaces can

be identified with the moduli of octic curves in P2 which are tangent to a cuspidal curve

at 12 points. This has dimension 31 and so the locus of stable quintic surfaces arising in

this way is 39 dimensional.

Conjecture 6.13. Each of the 22 exceptional Fuchsian singularities corresponds to a

(generically) Cartier divisor in M5,5.

In his thesis, P. Gallardo [Gal] gives a proof of this conjecture in a number of cases,

using a different method. To show smoothness, he uses a theorem of Shustin and Ty-

omkin [ES99]. In the coming months, I hope to prove Conjecture 6.13 more explicitly by

showing that surfaces obtained from smoothings of Fuchsian singularities and containing

a K3 component as above have unobstructed Q-Gorenstein deformations.
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