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ABSTRACT: 
 
Surface mining for coal has disturbed large land areas in the Appalachian Mountains. Better information on mined lands’ ecosystem 
recovery status is necessary for effective environmental management in mining-impacted regions. Because record quality varies 
between state mining agencies and much mining occurred prior to widespread use of geospatial technologies, accurate maps of 
mining extents, durations, and land cover effects are often not available. Landsat data are well suited to mapping and characterizing 
land cover and forest recovery on former coal surface mines. Past mine reclamation techniques have often failed to restore pre-
mining forest vegetation but natural processes may enable native forests to re-establish on mined areas with time. However, the 
invasive species autumn olive (Elaeagnus umbellate) is proliferating widely on former coal surface mines, often inhibiting re-
establishment of native forests. Autumn olive outcompetes native vegetation because it fixes atmospheric nitrogen and benefits from 
a longer growing season than native deciduous trees. This longer growing season, along with Landsat 8's high signal to noise ratio, 
has enabled species-level classification of autumn olive using multitemporal Landsat 8 data at accuracy levels usually only 
obtainable using higher spatial or spectral resolution sensors. We have used classification and regression tree (CART®) and support 
vector machine (SVM) to classify five counties in the coal mining region of Virginia for presence and absence of autumn olive. The 
best model found was a CART® model with 36 nodes which had an overall accuracy of 84% and kappa of 0.68.  Autumn olive had 
conditional kappa of 0.65 and a producers and users accuracy of 86% and 83% respectively. The best SVM model used a second 
order polynomial kernel and had an overall accuracy of 77%, an overall kappa of 0.54 and a producers and users accuracy of 60% 
and 90% respectively.  
 

1. INTRODUCTION 

Former surface coalmines cover an estimated 1.5 million acres 
of land in Appalachia (Zipper et al., 2011). After the Surface 
Mining and Control Reclamation Act (SMCRA) was enacted in 
1978, coal companies are required to reclaim land that has been 
mined. Historically, surface coal mines were reclaimed by 
moving large amounts of overburden to approximate pre-mining 
topography and were heavily compacted to reduce erosion and 
give the land a smooth manicured look. A thin layer of topsoil 
and fertilizer was added to serve as a growing medium for quick 
growing grasses and shrubs. This reclamation method produced 
a poor growing medium for native hardwood trees that require 
much deeper soils over weathered parent materials. Over the 
past 10 years native hardwood forests have become the 
preferred land cover for reclamation. However, huge tracks of 
land which were reclaimed after passage of SMCRA using 
earlier reclamation practices are frozen in ecological succession 
and are called legacy mine sites (Burger et al., 2013). Research 
is being conducted on methods that can be used to convert 
legacy mines into native hardwood forest (Evans et al., 2013; 
Fields-Johnson et al., 2014) 
 

One factor that significantly influences the cost and success of 
reforestation on legacy mine sites is the invasive species 
Elaeagnus umbellata, commonly known as autumn olive, 
autumn berry, or Japanese silverberry.  It is a deciduous shrub 
native to Japan and Northeastern Asia which can grow up to 5 
m tall and 6 m wide but is often smaller (Black et al., 2005). 
Autumn olive was widely planted on mine sites from the 1980s 
and 1990s to provide food for wildlife (Zarger, 1980). In 
disturbed areas with full sun, it tends to outcompete native plant 
species. It fixes nitrogen from the atmosphere, enabling it to 
grow rapidly in nutrient-poor soils such as those that are 
common on former mine sites (Johnson et al., 1997). It 
propagates by root shoots and edible red berries that ripen from 
August to October (Black et al., 2005). Once the plant has 
established, pesticide application or repeated mechanical 
removal is required for eradication because it will resprout from 
cut stumps and root fragments. If left entirely unmanaged, 
autumn olive will overtake grasses, converting pastures to 
“shrub land” in about a decade (personal observation). This 
species’ vigour and tenacity make it a significant obstacle in 
establishing hardwood forest on legacy mine sites, and 
assessment of its growth and spatial distribution is warranted 
(Lemke et al., 2013). 
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Reforestation of a Wise County, Virginia, legacy mine was 
compromised by failure to control autumn olive effectively 
(Evans et al., 2013). Autumn olive was present on the parts of 
the mine site prior to reforestation. Autumn olive plants were 
cut prior to soil ripping, but the plant and its roots were not 
killed with herbicide as recommended by Burger et al. (2013) 
due to concern for expense. After soil ripping and tree planting, 
autumn olive grew rapidly from the living roots that remained in 
the soil. Four years later, some parts of the site were dominated 
by the autumn olive which had overtopped the planted tree 
seedlings. 
 
Prior research has shown that autumn olive should be either 
absent or controlled to maximize the likelihood that 
reforestation will be successful (Patrick Angel, US Office of 
Surface Mining; personal communication). The non-native 
autumn olive is considered as an undesirable plant species 
throughout the Appalachian coalfield; hence, its removal from  
a mine site can add to the “ecological lift” to be achieved 
through successful reforestation of the mine site. Thus, locating 
where autumn olive is and is not present is a prerequisite for 
evaluating the economic feasibility of reforestation. However, 
given that the majority of former mine land is privately owned, 
gaining permission to investigate areas on the ground can be 
difficult and expensive. Fortunately, remote sensing technology 
has the potential to identify areas of autumn olive dominance 
without requiring physical access to the legacy mines being 
investigated.   
 
Species-level classification of vegetation using multispectral 
imagery with accuracies higher than 80% is usually only 
achievable with high spatial resolution multispectral, 
hyperspectral, or LiDAR imagery, although exceptions do exist.  
Given that freely available LiDAR or hyperspectral imagery 
does not currently exist for the active coal mining region of 
Virginia, Landsat imagery has served as the primary spatial data 
source for this project. Individual invasive species have been 
mapped with greater than 81% accuracy using Landsat data in 
other instances where species occur in clumps greater than 0.5 
ha and the invasive species has a distinctive spectral signature 
(Bradley and Mustard, 2006; Peterson, 2005). For instance, the 
invasive species glossy privet, Ligustrum lucidum, was 
successfully identified using Landsat imagery in Argentina 
because glossy privet is an evergreen species while the native 
forests are deciduous, which results in glossy privet having a 
much higher NDVI in the winter months (Gavier-Pizarro et al. 
2012, Hoyos et al. 2010).   
 
Unfortunately, autumn olive and a majority of the native tree 
species in the coal mining region of Virginia are deciduous 
which makes distinguishing autumn olive more difficult. 
However, local forestry experts and our investigations indicate 
that autumn olive produces leaves about two weeks before 
native trees and other bushes. Our investigations also reveal that 
autumn olive’s spectral hue differs from that of most native 
deciduous species early in the leaf-on season. When 
proliferating on mine sites, it produces a distinctive visual 
pattern when viewed from the air due to its somewhat circular 
form which makes it identifiable on National Agriculture 
Imagery Program (NAIP) aerial photographs. Initial results 
indicate that a subtle phenology signal is sufficient to identify 
autumn olive using Landsat 8 imagery, provided that cloud-free 
imagery is available at key times. The objective of this study is 
to develop methods for interpreting Landsat imagery that can be 
applied to identify where autumn olive is a major vegetative 
component on former surface coal mine areas (legacy mine 
sites). 

2. RESEARCH METHODS 

2.1 Study Area 

The area of interest is the major coal mining counties in 
Virginia, namely Buchannan, Dickenson, Russell, Tazewell, 
and Wise, see figure 1. Extensive surface mining history has 
been traced back to 1960s (Sen et al., 2012).  The National Land 
Cover Database (NLCD) 2011, indicates that grassland land, 
cultivated land, developed, and water are major land cover 
classes for the area. Forest is still the dominant land cover type, 
which accounts for about 75% of the total area.  
 

 
 

Figure 1. Map of study area. 
 
2.2 Available Imagery 

The majority of coal mining in Virginia is within Landsat scene 
path 18 row 34 which also covers major coal producing counties 
in West Virginia and Kentucky, see figure 1.  Five nearly cloud-
free Landsat 8 scenes acquired on 4/26/2013, 9/17/2013, 
11/20/2013, 2/24/2014, and 9/20/2014 were downloaded from 
USGS Earth Explorer, see table 1. For ease of reference, the 
Landsat scenes will be referred to by their date of acquisition in 
Julian Day, see table 1.  The 2011 National Land Cover 
Database (NLCD) National Land Cover Layer was downloaded 
from USDA Data Gateway along with NAIP aerial photographs 
(NRCS 2013, Jin et al., 2013). 
 

Table 1. Landsat 8 imagery used in study 
 

Scene Identifier Date Acquired Julian Day 
LC80180342013116LGN01 26 April 2013 116 
LC80180342013260LGN00 17 September 2013 260 
LC80180342013324LGN00 20 November 2013 324 
LC80180342014055LGN00 24 February 2014 055 
LC80180342014263LGN00 20 September 2014 263 
 
2.3 Reference data  

Training and validation data were obtained to aid model 
development. Due to the difficulty in accessing legacy sites on 
the ground, gathering required training data from ground 
surveys was not feasible. Training data were acquired by 
manually classifying high resolution imagery from NAIP for the 
years 2003 through 2014.  Primary classifications were based on 
the 2012 images, while historic images were used as 
supplementary information when needed for accurate 
classification of the 2012 image. The 2014 NAIP imagery was 
released after collection of reference data was completed. 
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Fortunately, random comparisons indicated that land cover was 
very similar between the two dates.   
Visual interpretation of NAIP aerial imagery was used to 
classify Landsat pixels as containing or not containing autumn 
olive. No mis-coregistration between the NAIP and Landsat 8 
scenes were observed. Pixels were classified as containing 
autumn olive if the species could be identified in the NAIP 
imagery as the dominant plant species, or as a co-dominant 
plant species when growing with herbaceous vegetation. During 
classification of training data, it was observed that many of the 
Landsat 8 pixels contained both autumn olive and forest or other 
land class types. Since it is problematic to use non-homogenous 
pixels for model training, such pixels were omitted from model 
development. To generate an adequate number of random 
homogenous pixels, a maplet based heads up classification was 
performed (Scrivani et al., 2001).  
 
Maplets are small subsections of a larger map used to collect 
training data. 400 maplets were randomly generated within 
shapefile designating current and past coal mining permits 
provided by the Virginia Department of Mines, Minerals, and 
Energy. These clusters of pixels allowed the analyst to 
efficiently classify homogenous pixels. Figure 2 shows one 
maplet containing Landsat 8 pixel points overlaid autumn olive 
shown on the 2014 NAIP of Wise County. Each homogenous 
pixel within the 400 maplets were classified. 
 

 
 

Figure 2. An example of a maplet which shows relative size of 
training points to autumn olive 

 
Six land cover types were used: autumn olive (dominant or co-
dominant); agriculture or grass; forest; developed; surface 
mines; and water. Other than autumn olive, these classes were 
easily identified visually using aerial imagery. By observing 
NAIP images where autumn olive was known to be present it 
was found that autumn olive have the following characteristics 
(1) light green/gray/blue vegetation growing in or near a 
clearing/field, (2) apparent growth over 5 to 10 years, and (3) 
exhibits circular popcorn texture. Often sparse autumn olive 
bushes surround dense mature bushes. It was found that bands 
3, 4, 5, and 6 from the April 2013 Landsat 8 scenes were 
effective in identifying autumn olive. With practice the analysis 
could consistently identify autumn olive with confidence. Table 
2 shows the relative abundance of the 6 land cover types used 
for this classification. 
 
 
 
 
 
 
 
 

 Table 2. Numbers of training data points by classified category 
 

Class Count % of Total 
Agriculture or Grass 366 9.59 

Autumn Olive 553 14.49 
Forest 2052 53.76 

Developed 266 6.97 
Mine 480 12.57 
Water 100 2.62 
Total 3817 100.00 

 
 
2.3 Data Pre-processing 
 
The Semi-Automatic Classification Plugin inside QGSIS 2.4.0 
was used to convert Landsat 8 images from digital numbers to 
top of atmosphere reflectance (TOA) (Congedo, 2014) using 
equations 1 and 2. To further enhance images, a dark object 
subtraction was also performed following the procedure 
outlined in Congedo and Macchi (2013).   
 
Images were converted from digital numbers to top-of-

atmosphere (TOA) reflectance: 

ρλ' = MρQcal + Aρ      (1) 
 where 

ρλ'  = TOA planetary reflectance, without correction 
for sun angle.  

Mρ = band-specific multiplicative rescaling factor 
from the MTL metadata file. 

Aρ = band-specific additive rescaling factor from the 
MTL metadata file. 

Qcal = quantized and calibrated standard product pixel 
values (DN) 

 

TOA reflectance was calculated as follows:  

  ρλ =
���

���(���)	
	                          (2) 

where 
 ρλ  = TOA planetary reflectance 
θSE  = local sun elevation angle in degrees,  provided 

in the metadata.  
 
After TOA reflectance and dark object subtraction were 
performed, tasselled cap bands brightness, greenness, wetness, 
4, 5, and 6 were calculated using coefficients from Baig et. al. 
(2014). Tasselled cap was introduced as a model input because 
it has been successfully used in many land classification 
products including the 2011 NLCD (Crist and Cicone 1984, Jin 
et. al. 2013). 
 
2.4 Modelling Process 

The autumn olive classification models were developed using 
classification and regression tree (CART®) and support vector 
machine (SVM).  Figure 3 shows the process behind data pre-
processing, reference data collection, model development, and 
accuracy assessment. Implementation of CART® requires a 
significant amount of training data randomly distributed across 
the study area (Lawrence, Wright, 2001). By choosing to collect 
training data using randomly distributed maplets rather than 
simple randomly distributed samples increased the sample 
number and decreased analyst time. 
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Figure 3. Flow diagram outlining the input data and processing 

steps used to generate models for presence or absence 
of autumn olive for the study area. 

 
2.4.1  CART® 
 
Salford Predictive Modeler® Builder v6.6 was used to create a 
series of CART® classification trees from the training data. The 
raster values from Landsat 8 bands 1-7 and tasselled cap bands 
1-6 from the 5 scenes listed previously for the training points 
were used as model predictors. In addition, the 2011 NLCD 
National Land Cover Layer was reclassified as ‘forest’ and ‘not 
forest’ and was included as a model predictor. The optimum 
tree selected by Salford was evaluated by the analyst. If the tree 
had an excessive amount of nodes, an indicator of model over-
fit; or a smaller tree had a similar estimated accuracy, the 
smaller tree was used for classification. Otherwise the larger 
tree was used and classified maps were computed. 
 
2.4.2   Support Vector Machine 
 
Support Vector Machines separate classes with a decision 
surface that maximizes the boundary between classes (Huang et. 
al. 2002). The surface between the classes is referred to as the 
optimum hyperplane and the training points, called training  
vectors in this context, that are nearest the hyperplane are 
support vectors. The optimum hyperplane can follow the curved 
surface between classes; it is not bound to the Cartesian 
coorante system imposed by the bands like many other 
classification techniques, such as CART®. This allows SVM to 
classify some datasets which are not well modeled by other 
classification techniques.  
 
Analysis of feature spaces such as the one on figure 4 showed 
that the boundary between autumn olive and the other classes is 
not orthogonal to any 2 band combination which supports the 
use of SVM.  

 
Figure 4. An example of separation between autumn olive 

(black) and other land classes (yellow) in a 3 
dimensional space, composed of the near-IR band over 
different dates. 

 
2.3 Accuracy Assessment 
 
Before executing each model, an equal number of reference 
points per class were removed from the training data set to serve 
as validation points so an independent validation could be 
performed, see figure 3. Congalton and Green (2009) 
recommend using no fewer than 50 validation points. Only 50 
validation points were used because only 100 water reference 
pixels were classified since surface water is uncommon on 
legacy mines.  
 
 Accuracy of the resulting maps was assessed from the 
confusion matrixes that are shown below. The kappa score (κ) is 
a measure of accuracy that accounts for the likelihood of pixels 
being classified correctly based on random chance and is given 
in the equation (3), (4) and (5). (Chrisman 1980).  
 

  �̂ =
��	–	��

����
       (3) 

where 

  �� = ∑ ���
��

�
���    (4) 

 

                          �� = ∑
��������	

����
���                    (5) 

where 
 i = class of interest 
 n = number of classes 
 N = total number of observations 
 xii = number correctly classified for i 
 xTii = row total for i  
 xTij = column total for i 
 
The conditional kappa (��) is a measure of kappa for a particular 
class (Stehman 1997, Janssen and van der Wel 1994), see 
equation (6). 

                   �� =
�������������

��������������
               (6) 

where 
 i = class of interest 
 N = number of samples for i 
 xii = number correctly classified for i 
 xTii = row total for i  
 xTij = column total for i 
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3. RESULTS AND DISCUSSION 

3.1 Overall CART® Model Assessment 
 
A CART® model was chosen as an introductory classification 
method because CART® can exploit the physical significance of 
each Landsat band along with additional data sources. 
Originally it was believed that incorporating slope, aspect, and 
elevation would help distinguish land classes. However, when 
topography was incorporated into the CART® model, accuracy 
significantly decreased. This is most likely due to poor co-
registration between Landsat 8 and the DEM used or that the 
available DEM did not account for post mining topographic 
changes which can be extreme on surface coal mines.   
 
3.2 Overall SVM Model Assessment 
 
In classification scenarios when one class highly outnumbers a 
smaller class a SVM technique may have trouble  separating the 
classes because the variability between instances of the larger 
class my be greater than the variability between the large class 
and small class (Huang et.al. 2002). One strategy to separate 
such classes would be to reduce the number of training vectors 
from the larger class to equal the training vector from the 
smaller class which removes much of the bias in separating the 
classes (Huang et. al.). Following this strategy for the SVM 
classifications, the not autumn olive training points were 
randomly reduced to equal the number of autumn olive training 
points. The results from these assessments were in progress at 
time of writing. Also, classified maps created by SVM kernels 
seemed to agree closely with aerial imagery by visual 
comparisons. A hybrid approach of SVM and object oriented 
analysis similar to the one suggested by Salah could possibly 
improve classification accuracy (2014). 
 
3.3 Binary Autumn Olive Presence Models 
 
To ensure maximum classification accuracy of autumn olive, a 
binary autumn olive presence-absence model was implemented. 
A series of CART® and models were created and their resulting 
accuracies determined by validation points and statistics created 
by Salford Predictive Modeler® were compared. Binary autumn 
olive models were also implemented within the SVM package 
within ENVI 4.4®. The resulting accuracies determined by 
validation points for the linear, radial, polynomial, and sigmoid 
kernels were compared. A CART® model had the highest 
overall classification accuracy for autumn olive, see table 4. 
 

Table 4. Overall accuracy and kappa statistics for the binary 
            autumn olive classification from CART and SVM. 

 
 Linear Radial Polynomial Sigmoid CART 

Overall % 
correct 

75.0 76.0 77.0 76.0 84.0 

�	 0.50 0.52 0.54 0.52 0.68 

AO �� 0.93 0.81 0.82 0.87 0.64 

Producers 
accy. for AO 

52.0 58.0 60.0 56.0 86.0 

User accy. 
for AO 

96.3 90.6 90.1 93.3 82.7 

 
The variable of importance table for the binary autumn olive 
presence absence model is shown on table 5. Listed on the left is 
the Julian Date of the scene followed by the band number. On 
the right is the number of nodes the variable occurred in the 
resulting decision tree. 

 
Table 5. Variable importance for the binary autumn olive 

classification using CART 
 

Variable Importance # of times in  
CART model 

116_B5 100.00 2 
116_Tc6 36.38  
116_Greenness 34.31  
055_Greenness 32.32  
155_B5 28.06  
324_Greenness 24.63  
263_Tc6 24.47 1 
263_B2 23.74 1 
263_B3 22.38  
116_Brightness 22.33 2 
263_B4 22.32 1 
263_B1 19.56  
116_B6 19.08  
116_B7 15.67  
116_B4 15.15 1 
116_Wettness 15.02  
263_B7 13.28  
116_B3 11.61  
324_Tc5 10.14 1 
263_Greenness 9.19  
324_B4 7.78  
324_Brightness 7.50  
324_B1 7.47  
260_B1 7.37 1 
324_B2 7.29 1 
324_B3 6.90 1 
260_B2 6.66  
260_B4 5.09  
324_Tc4 3.42 1 

a Image and band naming codes are as follows: 
116, 260, 324, 055, 263: Image by Julian day (Table 1) 
B1 through B7: Landsat spectral bands 
TC: Tasselled Cap  

 
Several combinations of Landsat 8 bands were chosen from 
different scenes as input data for the SVM binary classification. 
The bands were chosen from the leading variable of importance 
tables generated by CART®. For all 4 kernel types the best 
accuracies were achieved utilizing all bands discussed 
previously: Landsat 8 bands 1-7 for the 5 scenes and tasselled 
cap bands 1-6 for the 5 scenes.  
 
The autumn olive ��  was higher for the liner kernel than the 
polynomial kernel, see table 4. That was an artefact of a 
particularly accurate classification of the non-autumn olive 
pixels (49 right 1 wrong) rather than an assessment of the 
accuracy of autumn olive classification. Table 6 and 7 show the 
confusion matrices for the most accurate SVM and CART® 
classified maps respectively.  
 

Table 6. Confusion matrix for the best binary SVM autumn 
olive classified map which had a polynomial kernel. 

 

 AO Not AO Total 

AO 30 3 33 

Not AO 20 47 67 

Total 50 50 100 
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Table 7. Confusion matrix of the best binary CART® autumn 
olive classified map.  

 

 AO Not AO Total 

AO 43 9 52 

Not AO 7 41 48 

Total 50 50 100 

 
Although not perfect, the binary autumn olive classified image 
aligns well with existing autumn olive as shown in figure 5. As 
the maps support, the CART® model largely because it 
classifies more of the image as autumn olive. The linear SVM 
model appears to be more conservative; as a result it misses 
much of the autumn olive found in the landscape as shown in 
figure 6.  

 

 
Figure 5. Classified areas of autumn olive in red are in good 

agreement with autumn olive on the landscape in the 
binary CART model. 

 

 
 
Figure 6. Classified areas of autumn olive in red are in fair 

agreement with autumn olive on the landscape in the 
linear SVM model. 

 
 

4. CONCLUSIONS 

This is an exploratory study to map the coverage of autumn 
olive over legacy mine sites in Virginia. To the author’s best 
knowledge, no study has mapped autumn olive in Appalachia 
over a several county area primarily using Landsat imagery.  
Models were created from training data acquired by a heads-up 
classification of NAIP imagery. 50 pixels per class were 
retained so independent accuracy assessments could be 
performed. To increase accuracy, classes were merged to 
became autumn olive and not autumn olive. A CART®  model 
was created which had higher classification accuracies for 
autumn olive than did any of the SVM models with different 
kernel types. The accuracies and resulting classified map 
obtained with the CART® were lower than were desired. We 
believed that additional training and validation points will 
increase these to some extent. 
 
A key assumption to this work is that autumn olive was 
correctly classified for the training data set.  In areas known to 
contain autumn olive spectral and textural characteristics were 
found which distinguished autumn olive from other types of 
vegetation. In the coal mining area of Virginia, autumn olive is 
the major bush cover. In areas where this is not the case it may 
not be appropriate to assess autumn olive coverage with Landsat 
imagery. Future field validation will test this assumption. 
 
Autumn olive is not only a problem on legacy mines in 
Virginia, it is widespread across the United States and Canada. 
Unlike hyperspectral and high spatial resolution data, Landsat 
imagery is regularly acquired over the entire U.S. and, at time of 
writing is provided free of charge. With these two factors it is 
reasonable that autumn olive could be mapped in other areas in 
the United States following similar techniques an employed 
here. 
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