doi: 10. 3969/j. issn. 2095 - 0780. 2014. 05. 013

・研究简报・

草鱼 α-淀粉酶基因 5′侧翼序列克隆与分析

朱书礼^{1,2},李新辉¹,杨计平¹,李跃飞¹,李 捷¹,帅方敏¹,李 琳¹ (1. 中国水产科学研究院珠江水产研究所,广东广州 510380; 2. 大连海洋大学,辽宁 大连 116023)

摘要:应用 PCR 和 Genome Walking 技术克隆获得长度为 168 bp 的草鱼(Ctenopharyngodon idellus) α -淀粉酶基因外显子 I 序列和 2 063 bp 的 5'侧翼序列。将草鱼 α -淀粉酶基因外显子 I 序列与已知几种鱼类 α -淀粉酶基因外显子 I 序列比对,相似度为 68% \sim 86%。将草鱼 α -淀粉酶基因 5'侧翼序列进行生物信息学分析,确定了其转录起始区域及转录起始位点(TSS);在 TSS 上游 30 bp 处有 1 个 TATA-box,-58 bp 处有 CCAAT-box;在 5'侧翼序列中还发现有 GATA-1、OCT-1、GR、HNF-3、AP1 和 SP1 等转录因子结合位点。草鱼 α -淀粉酶基因 5'侧翼序列的克隆,为进一步研究不同食性鱼类 α -淀粉酶基因侧翼序列的差异、鱼类 α -淀粉酶基因的表达、功能及调控机理奠定基础。

关键词: 草鱼; α-淀粉酶基因; Genome Walking; 5'侧翼序

中图分类号: Q 953

文献标志码: A

文章编号: 2095-0780-(2014)05-0087-07

Cloning and analysis of 5' flanking sequence of α -amylase gene from Ctenopharyngodon idellus

ZHU Shuli^{1,2}, LI Xinhui¹, YANG Jiping¹, LI Yuefei¹, LI Jie¹, SHUAI Fangmin¹, LI Lin¹
(1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
2. Dalian Ocean University, Dalian 116023, China)

Abstract: PCR and Genome Walking methods were applied to obtain a 168 bp α -amylase gene exon I sequence and a 2 063 bp α -amylase gene 5' flanking sequence from grass carp (*Ctenopharyngodon idellus*). The sequence alignment of α -amylase gene exon I between grass carp and other fishes showed that the similarity was 68% ~86%. The sequence analysis of α -amylase gene 5' flanking sequence of grass carp confirmed a transcription initiation region and a transcriptional start site (TSS). There were a TATA-box at 30 bp and a CAAT-box at -58 bp. There were some transcriptional factor binding sites in the α -amylase gene 5' flanking sequence, such as GATA-1, OCT-1, GR, HNF-3, AP1 and SP1. The α -amylase gene 5' flanking sequence of grass carp was cloned successfully, which provides references for studies on differences of α -amylase gene 5' flanking sequence between different feeding fishes, as well as on the expression, function and regulation mechanism of α -amylase gene in fishes.

Key words: Ctenopharyngodon idellus; α-amylase gene; Genome Walking; 5' flanking sequence

江河鱼类按食性可以分为肉食性、植食性、滤食性、 杂食性^[1],是构成江河水体生态系统中的重要成员。鱼类 食性因种类不同而异,食性与鱼类本身的消化酶组成状况密切相关。关于鱼类消化酶的研究已有不少报道^[2-4]。淀

收稿日期: 2013-11-22; 修回日期: 2014-03-11

资助项目:公益性行业(农业)科研专项经费项目(200903048-05);广西区自然科学基金重大项目(2013GXNSFEA053003);科技部社会公益项目(2005DIB3J023)

作者简介: 朱书礼(1987 -), 男, 硕士研究生, 从事渔业资源研究。E-mail: zshuli2009@126.com

通信作者: 李新辉(1961 -), 男, 研究员, 从事分子生物学、渔业资源与生态研究。E-mail: lxhui01@ tom. com

粉酶作为重要的消化酶,对鱼类食物的消化能力有重要的影响。所有鱼类体内都有淀粉酶存在,不同鱼类淀粉酶的分泌器官存在差异,有的鱼类主要由肝胰脏分泌,有的鱼类肠道是分泌的重要器官^[5]。草鱼(Ctenopharyngodon idellus),隶属鲤形目,雅罗鱼亚科,属于草食性鱼类,主要分布于长江、珠江、黑龙江等江河及附属水体,是淡水捕捞的主要对象^[6-7]。关于草鱼淀粉酶的研究,倪寿文等^[8]研究了草鱼肝胰脏淀粉酶的活性,并和其他几种鱼类做了比较。李广丽和王义强^[9]研究了不同水温、年龄及饵料组成情况下草鱼淀粉酶活性的变化。

 α -淀粉酶水解葡萄糖高分子聚合物中的 α -1,4-糖苷键, 作用于淀粉时生成糊精和还原糖,对动植物及微生物体内 的淀粉降解起重要作用。α-淀粉酶基因广泛存在于真核生 物和原核生物基因组中[10-13]。哺乳动物有 2 类 α-淀粉酶 基因, 唾液淀粉酶 AMY1 基因[14] 和胰淀粉酶 AMY2 基 因[15]; 鱼类只有胰淀粉酶基因, 与人类的 AMY2 基因相 似^[16]。动物中多个物种的 α-淀粉酶基因 cDNA 序列已确 定^[17-19]。已知的鱼类 α-淀粉酶基因 cDNA 序列有鳜(Siniperca chuatsi)[20]、尖吻鲈(Lates calcarifer)[21]、斑马鱼 (Brachydanio rerio)^[22]、大西洋鲑(Salmo salar)^[23]、青斑河 豚(Tetraodon nigroviridis)^[24]、日本鳗鲡(Anguilla japonica) [25]、胭脂鱼(Myxocyprinus asiaticus) [26]、美洲鲽(Pleuronectes americanus)[27] 和斜带石斑鱼(Epinephelus coioides)^[28]等。不同鱼类 α-淀粉酶基因 cDNA 序列具有高度 的相似性。基因可分为结构基因和非结构基因。结构基因 是基因中编码 RNA 或蛋白质的碱基序列;非结构基因是结 构基因两侧的一段不编码的 DNA 片段,即侧翼序列。在基 因的表达中, 侧翼序列虽然不编码氨基酸, 却在调节基因 表达的过程中起着重要的作用。由于基因转录与否直接决 定一个基因能否表达, 所以基因转录的调控是基因表达调 控的中心。转录起始水平的调控是最主要的环节,侧翼序 列在这个过程中发挥这重要的作用。转录调控主要受基因 启动子以及起作用的顺式作用元件控制,它们在转录水平 精确地调控基因的表达。鱼类 α-淀粉酶基因 5′侧翼序列的 研究仅见鳜和尖吻鲈有报道。该研究克隆获得草鱼 α-淀粉 酶基因 5′侧翼序列,为进一步研究不同食性鱼类 α-淀粉酶 基因侧翼序列的差异、鱼类 α-淀粉酶基因的表达、功能及 调控机理奠定基础。

1 材料与方法

1.1 试验材料

试验用的草鱼为珠江流域鱼类资源调查的样本。 AxyPrep 基因组 DNA 小量试剂盒。Genome Walking Kit, PMD19-T 载体,大肠杆菌(*E. coli*) JM109 感受态细胞购于 TAKARA 公司。普通琼脂糖凝胶 DNA 回收试剂盒购于 TIANGEN 公司。

1.2 基因组 DNA 提取

从新鲜草鱼剪取鳍条组织,基因组 DNA 的提取采用 "AxyPrep 基因组 DNA 小量试剂盒",按照试剂盒说明书推 荐方法操作。

1.3 草鱼 α -淀粉酶基因外显子 I 部分序列的克隆

根据 NCBI 数据库里已知脊椎动物 α-淀粉酶基因 cDNA 序列,利用 Primer Premier 5.0 在外显子 I 保守区域设计 1 对引物 F 和 R(表 1)。以上述提取的基因组 DNA 为模板进行 PCR 扩增。反应体系为 $10 \times \text{buffer}$ (含 Mg^{2+})2 μL , 10 mmol·L^{-1} dNTP 0.5 μL , 10 mmol·L^{-1} F 0.5 μL , 10 mmol·L^{-1} R 0.5 μL , Taq 聚合酶 0.2 μL , 模板 1 μL , 10 mmol·L^{-1} R 0.5 μC 7 预变性 3 min, $94 \times 30 \text{ s}$ 、 $55 \times 30 \text{ s}$ 、 $72 \times 10 \text{ min}$, 10 min, $10 \text{ min$

Genome Walking 法克隆草鱼 α-淀粉酶基因 侧翼序列

Genome Walking 法采用 TaKaRa 公司的 Genome Walking Kit, 试验操作按照试剂盒说明书推荐方法进行。应用 Primer Premier 5.0,根据已克隆的外显子 I 部分序列设计 3 条特异性上游步移引物 sp1、sp2 和 sp3(表1)。以基因组 DNA 为模板进行平 PCR 反应。反应体系为: dNTP Mixture (2.5 mmol·L⁻¹ each) 8 μ L, 10 × LA PCR Buffer II (Mg²⁺ plus) 5 μL, TaKaRa LA Taq(5 U·μL⁻¹) 0.5 μL, AP Primer 1 μL, SP Primer 1 μL, 模板 1 μL, 加水至 50 μL。反应条 件为 1st PCR: 94 ℃ 1 min; 98 ℃ 1 min; 94 ℃ 30 s, 58 ℃ 1 min, 72 ℃ 2 min, 5 个循环; 94 ℃ 30 s, 25 ℃ 3 min, 72 °C 2 min; 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 44 °C 1 min, 72 ℃ 2 min, 15 个循环; 72 ℃ 10 min。 2 nd 和 3 rd: 94 ℃ 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 44 °C 1 min, 72 °C 2 min, 15 ↑ 循环; 72 ℃ 10 min。3 次步移 PCR 产物经 1% 琼脂糖凝胶 电泳检测,分析目的片段。然后将第3步步移 PCR 产物电 泳,目的片段胶回收纯化。目的片段纯化回收后克隆到 pMD19-T 载体上,转化感受态 E. coli JM109,再进过 PCR 反应检测得到阳性克隆, 测序由中美泰和公司完成。

表1 引物序列

Tab. 1 Primer sequences

引物 primer	序列 sequence
F	5'-GCCATCGTCCACCTGTT-3'
R	5'-CTGAACTCCACCAAAGCC-3'
sp1	5'-CTGAACTCCACCAAAGCCATTTGGTC-3'
sp2	5'-TAGCGCTCGCACTCCGCTGCAATAT-3'
sp3	5'-CGCCACTCAAACAGGTGGACGATGG-3'

图 1 外显子 I 部分序列 PCR 产物电泳图

M. DI.2000 DNA 分子量标记; 1. 目的产物条带; 2. 100 bp 标记条带

Fig. 1 Electrophoresis of partial sequence of

exonI PCR product

M. DL2000 DNA Marker; 1. PCR product band; 2. 100 bp Marker band

1.5 序列分析

α-淀粉酶基因外显子 I 序列分析使用 vector NTI suite 8.0 软件。α-淀粉酶基因 5'侧翼序列元件分析应用在线分析软件。利用在线分析工具 NNPP(Neural Networ Promoter Prediction)(http://www.fruitfly.org/cgi-bin/seq_tools/promoter.pl)和 Promoter Scan(http://www-bimas.cit.nih.gov/molbio/proscan/)预测潜在转录起始位点(transcription start site, TSS); 5'侧翼序列潜在转录因子结合位点预测采用

Alibaba 2. 1 (http: // www. generegulation. com/pub/programs/alibaba2/index. html 及 TFSEARCH (http:// www. cbrc. jp/research/)db/TFSEARCH. html), CpG 岛预测采用 CpG Island Prediction (http:// www. urogene. org/cgi-bin/methprimer/methprimer. cgi) 预测分析。

2 结果与分析

2.1 草鱼 α-淀粉酶基因外显子I序列克隆结果与分析

由于草鱼 α -淀粉酶基因编码区序列未知,通过比较斑马鱼、胭脂鱼、鳜、尖吻鲈和大西洋鲑 α -淀粉酶基因外显子I序列,长度为 168 bp,找到 2 段高度保守序列区域。在这 2 段区域中设计 1 对上下游引物 (F 和 R),PCR 得到 1 段 90 bp 的草鱼 α -淀粉酶基因部分外显子I序列,电泳检测结果见图 1。另外,通过 3 次巢式 PCR,克隆获得了草鱼 α -淀粉酶基因外显子I另外一部分序列,长度为 78 bp。

将试验 1.3 和 1.4 获得的两部分外显子 I 序列进行拼接,获得草鱼 α-淀粉酶基因外显子 I 序列,长度为 168 bp (图 2)。应用 Vector 软件,对草鱼和斑马鱼、胭脂鱼、日本鳗鲡、大西洋鲑、鳜、尖吻鲈、斜带石斑鱼、美洲鲽、重牙鲷(Diplodus annularis)的 α-淀粉酶基因外显子 I 核酸序列进行比对分析。相似度分别为 86%、83%、72%、68%、76%、77%、76%、74%和75%(表 2)。

表 2 草鱼 α-淀粉酶基因外显子 I 序列相同度比对表

Tab. 2 Comparison of similarity of α-amylase gene exon I sequence from C. idellus

	日本鳗鲡 A. japonica	斑马鱼 B. rerio	草鱼 C. idellus	胭脂鱼 M. asiaticus	大西洋鲑 S. salar	美洲鲽 P. americanus	重牙鲷 D. annularis	斜带石斑鱼 E. coioides	尖吻鲈 L. calcarifer	鳜 S. chuatsi
日本鳗鲡	100	73	72	77	66	68	70	69	73	71
斑马鱼		100	86	89	65	75	77	76	78	78
草鱼			100	83	68	74	75	76	77	76
胭脂鱼				100	72	80	81	81	83	83
大西洋鲑					100	73	75	74	74	74
美洲鲽						100	88	87	86	88
重牙鲷							100	92	91	93
斜带石斑鱼								100	93	93
尖吻鲈									100	94
鳜										100

图 2 草鱼 α-淀粉酶基因外显子 I 序列

方框为起始密码子

Fig. 2 α -amylase gene exon I sequence from C. idellus Box indicates start codon

2.2 草鱼 α-淀粉酶基因 5′侧翼染色体步移结果

应用 Genome Walking 方法, 经过 3 轮步移 PCR 扩增, 从草鱼基因组中克隆得到约 2 000 bp 的 PCR 条带(图 3)。将该条带回收、克隆、测序后得到 2 167 bp 的 DNA 片段。经过分析,与草鱼 α-淀粉酶基因外显子 I 序列重叠部分为104 bp, 其余 2 063 bp 为 5′侧翼序列。分析获得的序列发现,序列两端有 1 段是反向互补的,这段序列包括 104 bp 的外显子 I 序列和 266 bp 的侧翼区域序列。

图 3 轮步移 PCR 产物电泳图

M. DL2000 DNA 分子量标记; spl. 第 1 轮步移 PCR 产物; sp2. 第 2 轮步移 PCR 产物; sp3. 第 3 轮步移 PCR 产物条带; 1、2. 目的条带; 3. 2 000 bp Marker band

Fig. 3 Electrophoresis of Genome walking-PCR product
M. DL2000 DNA Marker; sp1. 1st PCR product;
sp2. 2nd PCR product; sp3. 3rd PCR product;
1, 2. target band; 3. 2 000 bp Maker band

将草鱼 α-淀粉酶基因 5'侧翼序列应用网络启动子分析 软件进行分析,找出 1 个潜在的启动子区域,位于-252 bp 至-2 bp 处。TSS 位于起始密码子上游 30 bp 处,图 4 中已 标出。在 TSS 上游 30 bp 处有 1 个 TATA-box,在-58 bp 和-1 853 bp 处有 CCAAT-box,在-162 bp、-285 bp、-427 bp、-501 bp、-625 bp、-832 bp、-1 375 bp、-1 680 bp、1 747 bp 处有 GATA 元件,43 bp 处有 OCT-1 元件,在-97 bp、-1 039 bp、-1 152 bp、-1 466 bp、-1 667 bp、-1 655 bp 处有 GR 元件,在-470 bp 处有 FOXJ2 元件,在-580 bp 和-667 bp 处有 HNF-3 元件,在-862 bp 处有 AP-1 元件,在-975 bp、-1 209 bp 和-1 941 bp 处有 SP-1 元件,在-2 001 bp 处有 YY-1 元件。各元件位点已在图 4 中标出。在线分析 侧翼序列中没有发现有 CpC 岛。

2.3 鱼类 α-淀粉酶基因 5′侧翼序列比较

从 NCBI 数据库中查找到了斑马鱼(BX510342)、尖吻 鲈(AY442519)、鳜(EU908272)、河豚(AJ308233) α -淀粉 酶基因 5'侧翼,其中河豚有 $3 \land \alpha$ -淀粉酶基因重复,使用 MEGA 5.2 软件进行比较分析。采用 Neighbor-Joining 算法,以 p-distance 算法作为构建进化树的模型,构建距离

进化树(图 5)。进化树结果显示,河豚的 3 个 α -淀粉酶基因 5'侧翼聚为一类,鳜和尖吻鲈聚为一类,草鱼和斑马鱼聚为一类。结果说明草鱼和斑马鱼 α -淀粉酶基因的表达可能受到相似调控机制的调节,鳜和尖吻鲈聚为一类,而且均为肉食性鱼类,其 α -淀粉酶基因的表达调控机制可能相似。

2.4 草鱼 α-淀粉酶基因 5′侧翼序列酶切位点分析

应用 DNAman 软件对草鱼 α -淀粉酶基因 5'侧翼序列进行酶切位点分析。筛选出了 21 种限制性内切酶,共找到 37 个内切酶位点(图 6)。Avr II 和 Msc I / Bal I 酶切可获得 TA-TA-box 和 OCT-1 元件;AlwN I 和 Avr II 酶切可分离 CAAT 元件;Sph I 和 Msc I / Bal I 酶切可得到 GATA-1、HNF-3、FOXJ2 元件;Sph I 和 BstE II 酶切可得到 Sp-1、AP-1 和 GR 元件。草鱼 α -淀粉酶基因 5' 侧翼的酶切位点信息为研究 5' 侧翼不同区域的活性提供依据,找出对 α -淀粉酶基因表达起调控作用的调控元件,进一步研究草鱼 α -淀粉酶基因表达调控的机制。

3 讨论

基因侧翼序列的克隆技术有 Inverse PCR^[29]、Panhandle PCR^[30]、Versatile PCR^[31]和 Restriction-site PCR^[32]等,但这 些方法受到的限制因素较多, 如步移范围有限、酶切及连 接反应操作繁琐等。该研究采用基于热不对称 PCR^[33]的基 因组步移技术,通过3次巢式 PCR 反应获得侧翼序列。该 方法有高效、简便、特异性高等优点; 可以有效获取与已 知序列相邻的未知序列。由于草鱼 α-淀粉酶基因编码区序 列未知,该研究的一个难点在于引物的设计。比对已知几 种鱼类 α-淀粉酶基因外显子 I 序列, 找到 2 段高度保守的 序列作为模板设计引物,克隆获得草鱼 α-淀粉酶基因外显 子 I 序列。在此基础上,在外显子 I 上设计 3 条特异性引 物,通过基因组步移技术扩增得到草鱼 α-淀粉酶基因 5′侧 翼序列。该研究中获得的草鱼 α-淀粉酶基因外显子 Ι 序列 与已知鱼类 α-淀粉酶基因外显子 Ι 序列比对相似度为 68% ~86%, 这与陈亮等^[20]研究鳜 α-淀粉酶基因的结果相一致, 可以确定得到序列属于草鱼 α-淀粉酶基因。

启动子是位于结构基因 5′端上游的 1 段 DNA 序列,是RNA 聚合酶识别并与模板 DNA 特异性结合的部位,保证转录起始的精确性^[34]。真核生物的启动子常含有 TATA-box、GC-box 和 CAAT-box 等作用元件,对转录调控有着重要作用。TATA 盒和 CCAAT 盒保证了转录起始的精确性和频率^[35]。该研究所得草鱼 α-淀粉酶基因 5′侧翼序列分析发现1个潜在的启动子区域,位于-252~-2 bp处,TSS 位于起始密码子上游 30 bp 处。该启动子区域包含有典型的 TATA-box 和 CAAT-box,其 TATA-box (5′-TATATAAA-3′)位于-22~-29 bp,符合真核生物启动子 TATA-box 序列模式以及与TSS 的一般距离。CAAT-box 位于-58 bp,距离转录起点较近,能够增强淀粉酶基因转录效率。侧翼序列中未发现有

```
\textbf{-2033} \texttt{ C} \texttt{ G} \texttt{ C} \texttt{ C} \texttt{ A} \texttt{ C} \texttt{ T} \texttt{ C} \texttt{ A} \texttt{ A} \texttt{ A} \texttt{ C} \texttt{ A} \texttt{ G} \texttt{ G} \texttt{ T} \texttt{ G} \texttt{ G} \texttt{ A} \texttt{ C} \texttt{ G} \texttt{ A} \texttt{ T} \texttt{ G} \texttt{ G} \texttt{ C} \texttt{ A} \texttt{ G} \texttt{ T} \texttt{ T} \texttt{ C} \texttt{ C} \texttt{ A} \texttt{ T} \texttt{ C} \texttt{ T} \texttt{ T} \texttt{ T} \texttt{ G} \texttt{ G} \texttt{ T} \texttt{ G} \texttt{ T} \texttt{ T} \texttt{ T} \texttt{ G} \texttt{ G} \texttt{ G} \texttt{ T} \texttt{ C} \texttt{ G} \texttt{ A} \texttt{ A} \texttt{ C} \texttt{ T} \texttt{ G} \texttt{ A} \texttt{ A} \texttt{ C} \texttt{ C} \texttt{ G} \texttt{ A} \texttt{ C} \texttt{ C} \texttt{ C} \texttt{ A} \texttt{ C} \texttt
                                                                                                                                                                                                                                                                                                                                                                                                                            T A G A A G C T T C A T C C T T C C C T A G T T C A G A
 -1913 G A A A A C C T A C A A C A A A A C C T A G G C T C A T G T G C A G T T T A T A T A C A A A A T G A C A T T T T T C C
CCAAT
GATA-1
\textbf{-1673} \texttt{ A} \texttt{ C} \texttt{ T} \texttt{ C} \texttt{ T} \texttt{ G} \texttt{ T} \texttt{ G} \texttt{ A} \texttt{ A} \texttt{ C} \texttt{ A} \texttt{ C} \texttt{ A} \texttt{ A} \texttt{ C} \texttt
\textbf{-1253} \texttt{ T T T A T C C A T C C T G A A C A A T A A T C T G A A T C T G A A T A A T T T T T T T T T T A G G C C G C C C C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C A A T C 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ACTTTATTCTTTC TGCGTG
-1133 G C C G C G A A C A C G T G C A A C T A A C A G G G A G C A T T G G T G C A A T A C C C A G T G C A A T A A C A A C A A
-1073 \text{ T C T C C C A C A T C C A G T A A A A A A G C A A A G C A C A T T T T A A T G T T C T T G A T T T T A A A C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A T C A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GR
SP-1
  \textbf{-953} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{T} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{C} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{T} \hspace{0.1cm} \texttt{T} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1cm} \texttt{G} \hspace{0.1cm} \texttt{A} \hspace{0.1c
  -893 T T T T C A A A C A C A T C T G C A G T T T G A C A A A T T G C A T C A G T C A C T T G T C A C A C A G C A T G C T C A
   .833 T T T C A A T A T C T T C T G G A C A G A G G C A T C C A A G T G T T A C G G G T G C A G T T A G T G C A T T T A G G C
                                                                               GATA-1
   -773 C A G T T T A T T T C A A T T T A C A A G T A G C A A A T T T G T C A A G T A C A A G T T A G C A T T A G A A G T A T T
   -653 G G T T T A A T T T T T T T A G T A A G T T A C A C T G A A A G T A A T A A G T A T T T A A A C A A G T A T T G T A G T
  \textbf{-593} \hspace{0.1cm} A \hspace{0.1cm} G \hspace{0.1cm} T \hspace{0.1cm} G \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} T \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} G \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} A \hspace{0.1cm} G \hspace{0.1cm} A \hspace
                                                                                                                                                                                                                                    HNF-3
  -473 A T T A T T A T T A A T G T C A G G T A C T G A T C A T T T A A G T C A T A A T G A T T A T A G A T A A A C T T A T T T
                                                                              FOXJ2
  -353 T G C C C A A A C T A C C T C A T T A C A T A A T G T G A T T C A A T T A G T A T T T T C T T C T T C A G T C A G C A G
  \textbf{-293} \hspace{0.1cm} \textbf{G} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{C} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{G} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{C} \hspace{0.1cm} \textbf{C} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{A} \hspace{0.1cm} \textbf{G} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{G} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \textbf{G} \hspace{0.1c
                                                                                                                                                                   GATA-1
  -113 A A T A G A C A G T G T T T T T C A C C T G T T C A A A G T G G C T T T C T T C A A C C T C T G A G T T C C C T G A T T
      -53 <u>G G C C A G A</u> G G A <u>A A A A T G T C A T T T T G T A T A T A A A C T G C A C</u> A T G A G C C T A G G T T T T <mark>G T</mark> T T G T A G
                        G T T T T T C T C T G A A C T A G G G A A G G A T G A A G C T T C T
```

图 4 草鱼 α-淀粉酶基因 5′侧翼序列

Fig. 4 α -Amylase gene 5'flanking sequences from C. idellus

CpG 岛。在草鱼 α-淀粉酶基因 5'侧翼序列预测的转录因子结合位点中 GATA-1 出现的频率最高,推测其在草鱼 α-淀粉酶基因的表达调控上具有重要作用。此外,草鱼 α-淀粉

酶基因 5'侧翼序列中存在多个糖皮质激素受体(GR)位点。 糖皮质激素调节胰腺外分泌消化酶基因的表达。在鼠胰腺 中糖皮质激素增加淀粉酶、胰蛋白酶和胰凝乳蛋白酶基因

图 5 鱼类 α-淀粉酶基因 5'侧翼序列进化树分析

Fig. 5 Phylogenetic analysis of 5' flanking sequences of α-amylase gene from different fishes

图 6 限制性内切酶位点模式图

Fig. 6 Restriction endonuclease sites

的表达,并减少激肽释放酶基因的表达^[36]。在尖吻鲈 α -淀粉酶基因 5'侧翼序列中已鉴别出 1 个 GRE 元件,与人和鼠淀粉酶基因 GRE 元件在侧翼序列上的位置不同。5 种不同鱼类的 α -淀粉酶基因 5'侧翼序列的进化树分析表明,草鱼和斑马鱼的进化距离最近,可能具有相似的调控表达机制。但由于数据库中关于鱼类 α -淀粉酶基因 5'侧翼序列的数据太少,该研究中构建的进化树并不能完整地展示鱼类 α -淀粉酶基因 5'侧翼序列的进化全貌。

鱼类 α-淀粉酶基因的研究尚处于起步阶段,关于鱼类 α-淀粉酶基因侧翼序列的报道则更少。该研究可以初步判定,已获得完整的草鱼 α-淀粉酶基因 5′侧翼序列,预测分析其中包含有完整的启动子结构。食性不同的鱼类淀粉酶活性存在差异,草食性和杂食性鱼类的淀粉酶活性要高于肉食性鱼类^[37-38]。侧翼序列在基因表达调控中发挥着重要的作用,该研究为不同食性鱼类 α-淀粉酶基因侧翼序列的差异、鱼类 α-淀粉酶基因的表达、功能及调控机理的进一步研究奠定基础。

参考文献:

[1] 李捷,李新辉,谭细畅,等.广东肇庆西江珍稀鱼类省级自然

保护区鱼类多样性[J]. 湖泊科学, 2009, 21(4): 556-562.

- [2] 王宏田, 张培军. 牙鲆体内消化酶活性的研究[J]. 海洋与湖沼, 2002, 33(5): 472-475.
- [3] 李希国, 李加儿, 区又君. pH 值对黄鳍鲷主要消化酶活性的 影响[J]. 南方水产, 2005, 1(6): 18-22.
- [4] 李希国, 李加儿, 区又君. 温度对黄鳍鲷主要消化酶活性的影响[J]. 南方水产, 2006, 2(1): 43-48.
- [5] 吴勇,区又君,李希国.消化酶活力在千年笛鲷幼鱼不同消化器官中的比较研究[J].南方水产,2006,2(2):61-63.
- [6] 潘炯华. 广东淡水鱼类志[M]. 广州: 广东科技出版社, 1991: 83.
- [7] 李思发,王强,陈永乐.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群的生化遗传结构与变异[J].水产学报,1986,10(4):351-372.
- [8] 倪寿文, 桂远明, 刘焕亮. 草鱼、鲤、鲢、鳙和尼罗非鲫淀粉 酶的比较研究[J]. 大连水产学院学报, 1992, 7(1): 24-31.
- [9] 李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步研究[J]. 湛江水产学院学报,1994,14(1):34-40.
- [10] HJORTH J P, LUSIS A J, NIELSEN J T. Multiple structural genes for mouse amylase[J]. Biochem Genet, 1980, 18(3/4): 281-302.
- [11] TRICOLI J V, SHOWS T B. Regional assignment of human amylase (AMY) to p22-p21 of chromosome 1 [J]. Somat Cell Mol Genet, 1984, 10(2): 205-210.
- [12] HUANG N, SUTLIFF T D, LITTS J C, et al. Classification and characterization of the rice alpha-amylase multigene family [J]. Plant Mol Biol, 1990, 14(5): 655-723.
- [13] LECOMPTE O, RIPP R, PUZOS-BARBE V, et al. Genome evolution at the genus level: comparison of three complete genomes of Hyperthermophilic archaea[J]. Genome Res, 2001, 11(6): 981 – 993.
- [14] NAKAMURAA Y, OGAWA M, NISHIDEA T, et al. Sequences of cDNAs for human salivary and pancreatic α -amylases [J]. Gene, 1984, 28(2): 263 270.
- [15] YOKOUCHIA H, HORIIA A, EMIA M, et al. Cloning and characterization of a third type of human α -amylase gene [J]. Gene, 1990, 90(2): 281 286.
- [16] DOUGLAS S E, MANDLA S, GALLANT J W. Molecular analysis

- of the amylase gene and its expression during development in the winter flounder, *Pleuronectes americanus* [J]. Aquaculture, 2000, 190(3/4): 247-260.
- [17] MacDONALD R J, CRERAR M M, SWAIN W F, et al. Structure of a family of rat amylase genes [J]. Nature, 1980, 287 (5778): 117-122.
- [18] QIAN M, HASER R, PAYAN F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2. 1 A resolution [J]. J Mol Biol, 1993, 231(3): 785-799.
- [19] HAGENBUCHLE O, BOVEY R, YOUNG R A. Tissue-specific expression of mouse alpha-amylas genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland [J]. Cell, 1980, 21(1): 179-187.
- [20] 陈亮,梁旭方,王琳,等.鳜鱼胰蛋白酶和淀粉酶与胃蛋白酶原基因的克隆与序列分析[J].中国生物化学与分子生物学报,2009,25(12):1115-1123.
- [21] MAP, LIUY, REDDYKP, et al. Characterization of the seabass pancreatic alpha-amylase gene and promoter[J]. Gen Comp Endocrinol, 2004, 137(1): 78-88.
- [22] ROBERT L, STRAUSBER G. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences [J]. Genetics, 2002, 99(26): 16899 - 16903.
- [23] FRØYSTAD M K, LILLEENG E, SUNDBY A, et al. Cloning and characterization of alpha-amylase from Atlantic salmon (Salmo salar L.)[J]. Comp Biochem Physiol A, 2006, 145(4): 479 492.
- [24] BOUNEAU L, LARDIER G, FISCHER C, et al. Analysis of 148 kb of genomic DNA of *Tetraodon nigroviridis* covering an amylase gene family [J]. DNA Sequence, 2003, 14(1): 1-13.
- [25] KUROKAWA T, SUZUKI T. Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica
 [J]. Fish Sci, 2002, 68(4): 736-744.
- [26] 陈春娜. 胭脂鱼 α-淀粉酶的 cDNA 克隆与组织表达研究[D]. 重庆: 西南大学, 2007.
- [27] DOUGLAS S E, MANDLA S, GALLANT J W. Molecular analysis of the amylase gene and its expression during development in the winter flounder, *Pleuronectes americanus* [J]. Aquaculture, 2000, 190(3/4): 247 - 260.

- [28] 胡永乐,梁旭方,王琳,等. 斜带石斑鱼胰蛋白酶原和淀粉酶全长 cDNA 的克隆与序列分析[J]. 热带海洋学报,2010,29(5):125-131.
- [29] OCHMAN H, GERBER AS, HARTL DL. Genetic application of an inverse polymerase chain reaction [J]. Genetics, 1988, 120 (3): 621-623.
- [30] JONES D H, WINISTORFER S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA[J]. Nucl Acid Res, 1992, 20(3): 595-600.
- [31] NTHANGENI M B, RAMAGOMA F, TLOU M G, et al. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from *Bacillus* species[J]. J Micro Meth, 2005, 61(2): 225-234.
- [32] SARKAR G, TURNER R T, BOLANDER M E. Restriction-site PCR: a direct method unknown sequence retrieval adjacent to a known locus by using universal primers[J]. Genome Res, 1993, 2(4): 318-322.
- [33] LIU Y G, ROBERT F W. Thermal asymmetric interlaced PCR: automatable a amplification and sequencing of insert end fragment from Pl and YAC clones for chromosome walking[J]. Genomics, 1995, 25(3): 674-681.
- [34] LEMON B, TJIAN R. Orchestrated response: a symphony of transcription factors for gene control [J]. Genes Dev, 2000, 14 (20): 2551-2569.
- [35] 凯里 M, 斯梅尔 S T. 真核生物转录调控——概念、策略与方法[M]. 陈晓红,等译. 北京: 科学出版社, 2002: 10.
- [36] KAISER A, STIER U, RIECKEN E O, et al. Glucocorticoid receptor concentration modulates glucocorticoid-regulated gene expression in rat pancreatic AR42J cells [J]. Digestion, 1996, 57 (3): 149-160.
- [37] AGRAWAL V P, SASTRY K V, KAUSHAB S K. Digestive enzymes of three teleost fishes [J]. Acta Physiol Acad Sci Hung, 1975, 46(2): 93-101.
- [38] HIDALGO M C, UREA E, SANZ A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities [J]. Aquaculture, 1999, 170(3): 267 -283.