doi: 10. 3969/j. issn. 2095 - 0780. 2014. 05. 013

・研究简报・

草鱼 α-淀粉酶基因 5′侧翼序列克隆与分析

朱书礼^{1,2},李新辉¹,杨计平¹,李跃飞¹,李 捷¹,帅方敏¹,李 琳¹ (1. 中国水产科学研究院珠江水产研究所,广东广州 510380; 2. 大连海洋大学,辽宁大连 116023)

摘要:应用 PCR 和 Genome Walking 技术克隆获得长度为 168 bp 的草鱼(*Ctenopharyngodon idellus*)α-淀粉酶基因外 显子 I 序列和 2 063 bp 的 5'侧翼序列。将草鱼α-淀粉酶基因外显子 I 序列与已知几种鱼类α-淀粉酶基因外显子 I 序列比对,相似度为 68% ~ 86%。将草鱼α-淀粉酶基因 5'侧翼序列进行生物信息学分析,确定了其转录起始 区域及转录起始位点(TSS);在 TSS 上游 30 bp 处有 1 个 TATA-box,-58 bp 处有 CCAAT-box;在 5'侧翼序列中还 发现有 GATA-1、OCT-1、GR、HNF-3、AP1 和 SP1 等转录因子结合位点。草鱼α-淀粉酶基因 5'侧翼序列的克隆, 为进一步研究不同食性鱼类α-淀粉酶基因侧翼序列的差异、鱼类α-淀粉酶基因的表达、功能及调控机理奠定基 础。

关键词:草鱼;α-淀粉酶基因;Genome Walking;5'侧翼序
 中图分类号:Q953
 文献标志码:A
 文章编号:2095-0780-(2014)05-0087-07

Cloning and analysis of 5' flanking sequence of α -amylase gene from *Ctenopharyngodon idellus*

ZHU Shuli^{1,2}, LI Xinhui¹, YANG Jiping¹, LI Yuefei¹, LI Jie¹, SHUAI Fangmin¹, LI Lin¹
(1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
2. Dalian Ocean University, Dalian 116023, China)

Abstract: PCR and Genome Walking methods were applied to obtain a 168 bp α -amylase gene exon I sequence and a 2 063 bp α amylase gene 5' flanking sequence from grass carp (*Ctenopharyngodon idellus*). The sequence alignment of α -amylase gene exon I between grass carp and other fishes showed that the similarity was 68% ~ 86%. The sequence analysis of α -amylase gene 5' flanking sequence of grass carp confirmed a transcription initiation region and a transcriptional start site (TSS). There were a TATA-box at 30 bp and a CAAT-box at -58 bp. There were some transcriptional factor binding sites in the α -amylase gene 5' flanking sequence, such as GATA-1, OCT-1, GR, HNF-3, AP1 and SP1. The α -amylase gene 5' flanking sequence of grass carp was cloned successfully, which provides references for studies on differences of α -amylase gene 5' flanking sequence between different feeding fishes, as well as on the expression, function and regulation mechanism of α -amylase gene in fishes.

Key words: Ctenopharyngodon idellus; a-amylase gene; Genome Walking; 5' flanking sequence

江河鱼类按食性可以分为肉食性、植食性、滤食性、 杂食性^[1],是构成江河水体生态系统中的重要成员。鱼类 食性因种类不同而异,食性与鱼类本身的消化酶组成状况 密切相关。关于鱼类消化酶的研究已有不少报道^[2-4]。淀

作者简介:朱书礼(1987-),男,硕士研究生,从事渔业资源研究。E-mail: zshuli2009@126.com

收稿日期: 2013-11-22; 修回日期: 2014-03-11

资助项目:公益性行业(农业)科研专项经费项目(200903048-05);广西区自然科学基金重大项目(2013GXNSFEA053003);科技部社会公益项目(2005DIB3J023)

通信作者: 李新辉(1961-), 男, 研究员, 从事分子生物学、渔业资源与生态研究。E-mail: lxhui01@ tom. com

粉酶作为重要的消化酶,对鱼类食物的消化能力有重要的 影响。所有鱼类体内都有淀粉酶存在,不同鱼类淀粉酶的 分泌器官存在差异,有的鱼类主要由肝胰脏分泌,有的鱼 类肠道是分泌的重要器官^[5]。草鱼(*Ctenopharyngodon idellus*),隶属鲤形目,雅罗鱼亚科,属于草食性鱼类,主要 分布于长江、珠江、黑龙江等江河及附属水体,是淡水捕 捞的主要对象^[6-7]。关于草鱼淀粉酶的研究,倪寿文等^[8] 研究了草鱼肝胰脏淀粉酶的活性,并和其他几种鱼类做了 比较。李广丽和王义强^[9]研究了不同水温、年龄及饵料组 成情况下草鱼淀粉酶活性的变化。

α-淀粉酶水解葡萄糖高分子聚合物中的 α-1,4-糖苷键, 作用于淀粉时生成糊精和还原糖,对动植物及微生物体内 的淀粉降解起重要作用。α-淀粉酶基因广泛存在于真核生 物和原核生物基因组中^[10-13]。哺乳动物有2类α-淀粉酶 基因, 唾液淀粉酶 AMY1 基因^[14] 和胰淀粉酶 AMY2 基 因^[15]; 鱼类只有胰淀粉酶基因, 与人类的 AMY2 基因相 似^[16]。动物中多个物种的 α-淀粉酶基因 cDNA 序列已确 定^[17-19]。已知的鱼类 α-淀粉酶基因 cDNA 序列有鳜(Siniperca chuatsi)^[20]、尖吻鲈(Lates calcarifer)^[21]、斑马鱼 (Brachydanio rerio)^[22]、大西洋鲑(Salmo salar)^[23]、青斑河 豚(Tetraodon nigroviridis)^[24]、日本鳗鲡(Anguilla japonica)^[25]、胭脂鱼(Myxocyprinus asiaticus)^[26]、美洲鲽(Pleuronectes americanus)^[27] 和斜带石斑鱼(Epinephelus coioides)^[28]等。不同鱼类 α -淀粉酶基因 cDNA 序列具有高度 的相似性。基因可分为结构基因和非结构基因。结构基因 是基因中编码 RNA 或蛋白质的碱基序列;非结构基因是结 构基因两侧的一段不编码的 DNA 片段,即侧翼序列。在基 因的表达中, 侧翼序列虽然不编码氨基酸, 却在调节基因 表达的过程中起着重要的作用。由于基因转录与否直接决 定一个基因能否表达,所以基因转录的调控是基因表达调 控的中心。转录起始水平的调控是最主要的环节,侧翼序 列在这个过程中发挥这重要的作用。转录调控主要受基因 启动子以及起作用的顺式作用元件控制,它们在转录水平 精确地调控基因的表达。鱼类 α-淀粉酶基因 5'侧翼序列的 研究仅见鳜和尖吻鲈有报道。该研究克隆获得草鱼 α-淀粉 酶基因 5′侧翼序列,为进一步研究不同食性鱼类 α-淀粉酶 基因侧翼序列的差异、鱼类 α-淀粉酶基因的表达、功能及 调控机理奠定基础。

1 材料与方法

1.1 试验材料

试验用的草鱼为珠江流域鱼类资源调查的样本。 AxyPrep 基因组 DNA 小量试剂盒。Genome Walking Kit, PMD19-T 载体,大肠杆菌(*E. coli*) JM109 感受态细胞购于 TAKARA 公司。普通琼脂糖凝胶 DNA 回收试剂盒购于 TIANGEN 公司。

1.2 基因组 DNA 提取

从新鲜草鱼剪取鳍条组织,基因组 DNA 的提取采用 "AxyPrep 基因组 DNA 小量试剂盒",按照试剂盒说明书推 荐方法操作。

1.3 草鱼 α-淀粉酶基因外显子 I 部分序列的克隆

根据 NCBI 数据库里已知脊椎动物 α-淀粉酶基因 cDNA 序列,利用 Primer Premier 5.0 在外显子 I 保守区域设计 1 对引物 F 和 R(表 1)。以上述提取的基因组 DNA 为模板进 行 PCR 扩增。反应体系为 10 × buffer(含 Mg²⁺)2 μL, 10 mmol·L⁻¹ dNTP 0.5 μL, 10 mmol·L⁻¹ F 0.5 μL, 10 mmol· L⁻¹ R 0.5 μL, *Taq* 聚合酶 0.2 μL,模板 1 μL, 加水至 20 μL。条件为 94 ℃预变性 3 min, 94 ℃ 30 s、55 ℃ 30 s、72 ℃ 1 min, 共 30 个循环,最后 72 ℃延伸 7 min。将 PCR 产 物经 1% 琼脂糖凝胶电泳纯化,克隆到 pMD19-T 载体上, 转化至感受态 *E. coli* JM109,进行 PCR 反应检测获得阳性 克隆,测序由中美泰和公司完成。

Genome Walking 法克隆草鱼 α-淀粉酶基因 5'侧翼序列

Genome Walking 法采用 TaKaRa 公司的 Genome Walking Kit,试验操作按照试剂盒说明书推荐方法进行。应用 Primer Premier 5.0, 根据已克隆的外显子 I 部分序列设计 3 条特异性上游步移引物 sp1、sp2 和 sp3(表 1)。以基因组 DNA 为模板进行平 PCR 反应。反应体系为: dNTP Mixture $(2.5 \text{ mmol} \cdot \text{L}^{-1} \text{ each}) 8 \mu \text{L}, 10 \times \text{LA PCR Buffer II} (\text{Mg}^{2+})$ plus) 5 μL, TaKaRa LA Taq(5 U·μL⁻¹) 0.5 μL, AP Primer 1 μL, SP Primer 1 μL, 模板 1 μL, 加水至 50 μL。反应条 件为 1st PCR: 94 °C 1 min; 98 °C 1 min; 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 5 个循环; 94 °C 30 s, 25 °C 3 min, 72 °C 2 min; 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 44 °C 1 min, 72 °C 2 min, 15 个循环; 72 °C 10 min。 2 nd 和 3 rd: 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 58 °C 1 min, 72 °C 2 min, 94 °C 30 s, 44 °C 1 min, 72 °C 2 min, 15 个 循环; 72 ℃ 10 min。3 次步移 PCR 产物经 1% 琼脂糖凝胶 电泳检测,分析目的片段。然后将第3步步移 PCR 产物电 泳,目的片段胶回收纯化。目的片段纯化回收后克隆到 pMD19-T载体上,转化感受态 E. coli JM109,再进过 PCR 反应检测得到阳性克隆,测序由中美泰和公司完成。

表1 引物序列

Tab. 1 Primer sequences

引物 primer	序列 sequence
F	5'-GCCATCGTCCACCTGTT-3'
R	5'-CTGAACTCCACCAAAGCC-3'
sp1	5'-CTGAACTCCACCAAAGCCATTTGGTC-3'
sp2	5'-TAGCGCTCGCACTCCGCTGCAATAT-3'
sp3	5'-CGCCACTCAAACAGGTGGACGATGG-3'

图 1 外显子 I 部分序列 PCR 产物电泳图 M. DL2000 DNA 分子量标记; 1. 目的产物条带; 2. 100 bp 标记条带 Fig. 1 Electrophoresis of partial sequence of exonI PCR product

M. DL2000 DNA Marker; 1. PCR product band; 2. 100 bp Marker band

1.5 序列分析

α-淀粉酶基因外显子 I 序列分析使用 vector NTI suite 8.0软件。α-淀粉酶基因 5'侧翼序列元件分析应用在线分 析软件。利用在线分析工具 NNPP(Neural Networ Promoter Prediction)(http://www.fruitfly.org/cgi-bin/seq_tools/promoter.pl)和 Promoter Scan(http://www-bimas.cit.nih.gov/ molbio/proscan/)预测潜在转录起始位点(transcription start site, TSS); 5'侧翼序列潜在转录因子结合位点预测采用 Alibaba 2.1(http: // www.generegulation.com/pub/programs/ alibaba2/index.html及TFSEARCH(http:// www.cbrc.jp/research/)db/TFSEARCH.html), CpG 岛预测采用 CpG Island Prediction (http:// www.urogene.org/cgi-bin/methprimer/ methprimer.cgi)预测分析。

2 结果与分析

2.1 草鱼 α-淀粉酶基因外显子I序列克隆结果与分析

由于草鱼α-淀粉酶基因编码区序列未知,通过比较斑 马鱼、胭脂鱼、鳜、尖吻鲈和大西洋鲑α-淀粉酶基因外显 子I序列,长度为168 bp,找到2段高度保守序列区域。在 这2段区域中设计1对上下游引物(F和R),PCR得到1段 90 bp 的草鱼α-淀粉酶基因部分外显子I序列,电泳检测结果 见图1。另外,通过3次巢式PCR,克隆获得了草鱼α-淀粉 酶基因外显子I另外一部分序列,长度为78 bp。

将试验 1.3 和 1.4 获得的两部分外显子 I 序列进行拼 接,获得草鱼 α-淀粉酶基因外显子 I 序列,长度为 168 bp (图 2)。应用 Vector 软件,对草鱼和斑马鱼、胭脂鱼、日 本鳗鲡、大西洋鲑、鳜、尖吻鲈、斜带石斑鱼、美洲鲽、 重牙鲷(*Diplodus annularis*)的 α-淀粉酶基因外显子 I 核酸 序列进行比对分析。相似度分别为 86%、83%、72%、 68%、76%、77%、76%、74% 和 75% (表 2)。

表 2 草鱼 α-淀粉酶基因外显子 Ι 序列相同度比对表

	日本鳗鲡 A. japonica	斑马鱼 B. rerio	草鱼 C. idellus	胭脂鱼 M. asiaticus	大西洋鲑 S. salar	美洲鲽 P. americanus	重牙鲷 D. annularis	斜带石斑鱼 E. coioides	尖吻鲈 L. calcarifer	鱖 S. chuatsi
日本鳗鲡	100	73	72	77	66	68	70	69	73	71
斑马鱼		100	86	89	65	75	77	76	78	78
草鱼			100	83	68	74	75	76	77	76
胭脂鱼				100	72	80	81	81	83	83
大西洋鲑					100	73	75	74	74	74
美洲鲽						100	88	87	86	88
重牙鲷							100	92	91	93
斜带石斑鱼								100	93	93
尖吻鲈									100	94
鳜										100

Tab. 2	Comparison	of similarity of	f α-amylase	gene exon	Ι	sequence from C.	idellus
--------	------------	------------------	-------------	-----------	---	------------------	---------

+1	Met	Lys	Leu	Leu	llė	Leu	Ala	Int	Leu	Leu	Gilg	Leu	Ser	Leu	Ala	Gin	Phē	Asp	Pro	Asn
1	ATG	AAG	CTT	CTA	ATC	TTG	GCA	ACA	TTG	CTT	GGA	CTG	AGC	CIC	GCT	CAG	TTC	GAC	CCA	AAC
-1	Thr	Lys	Asp	Gly	Arg	Thr	Ala	lle	Val	His	Leu	Phe	Ģlu	Trp	Arg	Trp	Thr	Asp	lle	Ala
61	ACC	AAA	GAT	GGA	AGA	ACT	GCC	ATC	GTC	CAC	CTG	TTT	GAG	TGG	CGC	TGG	ACT	GAT	ATT	GCA
st	Ala	Glu	Cys	Glu	Arg	Tyr	Leu	Gily	Pro	Asn	Gig	Phe	Gig	Gly	Val	Gin				
121	GCG	GAG	TGC	GAG	CGC	TAC	CIC	GGA	CCA	AAT	GGC	TTT	GGT	GGA	GTT	CAG				

图 2 草鱼 α-淀粉酶基因外显子 I 序列

方框为起始密码子 Fig. 2 α-amylase gene exon I sequence from *C. idellus* Box indicates start codon

2.2 草鱼 α-淀粉酶基因 5'侧翼染色体步移结果

应用 Genome Walking 方法, 经过 3 轮步移 PCR 扩增, 从草鱼基因组中克隆得到约 2 000 bp 的 PCR 条带(图 3)。 将该条带回收、克隆、测序后得到 2 167 bp 的 DNA 片段。 经过分析,与草鱼 α-淀粉酶基因外显子 I 序列重叠部分为 104 bp,其余 2 063 bp 为 5′侧翼序列。分析获得的序列发 现,序列两端有 1 段是反向互补的,这段序列包括 104 bp 的外显子 I 序列和 266 bp 的侧翼区域序列。

图 3 轮步移 PCR 产物电泳图 M. DL2000 DNA 分子量标记; spl. 第1轮步移 PCR 产物; sp2. 第2轮步移 PCR 产物; sp3. 第3轮步移 PCR 产物条带; 1、2. 目的条带; 3.2000 bp Marker band

Fig. 3 Electrophoresis of Genome walking-PCR product
M. DL2000 DNA Marker; sp1. 1st PCR product;
sp2. 2nd PCR product; sp3. 3rd PCR product;
1, 2. target band; 3. 2 000 bp Maker band

将草鱼 α-淀粉酶基因 5'侧翼序列应用网络启动子分析 软件进行分析,找出 1 个潜在的启动子区域,位于-252 bp 至-2 bp 处。TSS 位于起始密码子上游 30 bp 处,图 4 中已 标出。在 TSS 上游 30 bp 处有 1 个 TATA-box,在-58 bp 和-1 853 bp 处 有 CCAAT-box,在-162 bp、-285 bp、427 bp、-501 bp、-625 bp、-832 bp、-1 375 bp、-1 680 bp、1 747 bp 处有 GATA 元件,43 bp 处有 OCT-1 元件,在-97 bp、-1 039 bp、-1 152 bp、-1 466 bp、-1 667 bp、-1 655 bp 处有 GR 元件,在-470 bp 处有 FOXJ2 元件,在-580 bp 和-667 bp 处有 HNF-3 元件,在-862 bp 处有 AP-1 元件,在-975 bp、-1 209 bp 和-1 941 bp 处有 SP-1 元件,在-2 001 bp 处有 YY-1 元件。各元件位点已在图 4 中标出。在线分析 侧翼序列中没有发现有 CpG 岛。

2.3 鱼类 α-淀粉酶基因 5'侧翼序列比较

从 NCBI 数据库中查找到了斑马鱼(BX510342)、尖吻 鲈(AY442519)、鳜(EU908272)、河豚(AJ308233)α-淀粉 酶基因 5′侧翼,其中河豚有 3 个α-淀粉酶基因重复,使用 MEGA 5.2 软件进行比较分析。采用 Neighbor-Joining 算 法,以 p-distance 算法作为构建进化树的模型,构建距离 进化树(图5)。进化树结果显示,河豚的3个α-淀粉酶基 因5′侧翼聚为一类,鳜和尖吻鲈聚为一类,草鱼和斑马鱼 聚为一类。结果说明草鱼和斑马鱼α-淀粉酶基因的表达可 能受到相似调控机制的调节,鳜和尖吻鲈聚为一类,而且 均为肉食性鱼类,其α-淀粉酶基因的表达调控机制可能相 似。

2.4 草鱼 α-淀粉酶基因 5′侧翼序列酶切位点分析

应用 DNAman 软件对草鱼 α-淀粉酶基因 5'侧翼序列进 行酶切位点分析。筛选出了 21 种限制性内切酶,共找到 37 个内切酶位点(图 6)。Avr II 和 Msc I / Bal I 酶切可获得 TA-TA-box 和 OCT-1 元件; AlwN I 和 Avr II 酶切可分离 CAAT 元 件; Sph I 和 Msc I / Bal I 酶 切可得到 GATA-1、HNF-3、 FOXJ2 元件; Sph I 和 BstE II 酶切可得到 Sp-1、AP-1 和 GR 元件。草鱼 α-淀粉酶基因 5'侧翼的酶切位点信息为研究 5' 侧翼不同区域的活性提供依据,找出对 α-淀粉酶基因表达 起调控作用的调控元件,进一步研究草鱼 α-淀粉酶基因表 达调控的机制。

3 讨论

基因侧翼序列的克降技术有 Inverse PCR^[29]、Panhandle PCR^[30]、Versatile PCR^[31]和 Restriction-site PCR^[32]等,但这 些方法受到的限制因素较多,如步移范围有限、酶切及连 接反应操作繁琐等。该研究采用基于热不对称 PCR^[33]的基 因组步移技术,通过3次巢式 PCR 反应获得侧翼序列。该 方法有高效、简便、特异性高等优点;可以有效获取与已 知序列相邻的未知序列。由于草鱼 α-淀粉酶基因编码区序 列未知,该研究的一个难点在于引物的设计。比对已知几 种鱼类 α-淀粉酶基因外显子 I 序列, 找到 2 段高度保守的 序列作为模板设计引物, 克隆获得草鱼 α-淀粉酶基因外显 子 I 序列。在此基础上, 在外显子 I 上设计3 条特异性引 物,通过基因组步移技术扩增得到草鱼 α-淀粉酶基因 5'侧 翼序列。该研究中获得的草鱼 α-淀粉酶基因外显子 Ι 序列 与已知鱼类 α-淀粉酶基因外显子 I 序列比对相似度为 68% $\sim 86\%$,这与陈亮等^[20]研究鳜 α -淀粉酶基因的结果相一致, 可以确定得到序列属于草鱼α-淀粉酶基因。

启动子是位于结构基因 5′端上游的 1 段 DNA 序列,是 RNA 聚合酶识别并与模板 DNA 特异性结合的部位,保证转 录起始的精确性^[34]。真核生物的启动子常含有 TATA-box、 GC-box 和 CAAT-box 等作用元件,对转录调控有着重要作 用。TATA 盒和 CCAAT 盒保证了转录起始的精确性和频 率^[35]。该研究所得草鱼α-淀粉酶基因 5′侧翼序列分析发现 1 个潜在的启动子区域,位于-252~-2 bp处,TSS 位于起始 密码子上游 30 bp 处。该启动子区域包含有典型的 TATAbox 和 CAAT-box,其 TATA-box(5′-TATATAAA-3′)位于-22 ~-29 bp,符合真核生物启动子 TATA-box 序列模式以及与 TSS 的一般距离。CAAT-box 位于-58 bp,距离转录起点较 近,能够增强淀粉酶基因转录效率。侧翼序列中未发现有

-2033	C C	C	C /	A C	Т	C	A A	Α	C.	A C	G	T (G G	A	C	э́А	ТС	G G	С	A G	Т	ТС	СТ	Т	СС	C A	ΤC	СТ	ТТ	G	ЗT	GΊ	Т	ΤG	d G	GΤ	C G	Α	A C	ТG	A
-1973	G C	G	A (3 G	С	ТС	C A	G	Т	сс	A	A	G C	A	4 T	G	ТΊ	G	С	C A	Α	G A	ŧТ	Т	A (ЭA	YY- A (-1 3 C 1	ТТ	C	A T	сс	СТ	тс	C C	СТ	A G	Т	тс	A G	A
-1913	G A	A	A /	۹ A	С	СТ	ΓA	C	Α.	A C	C A	A	A A	. C (ст	Α	G C	ЭC	Т	C A	Т	G 1	ΓG	i C	A (ĴΤ	л- Т 7	ΓА	ΤA	Т.	A C	A A	A A	ΑT	G	A C	ΑT	Т	ТТ	т с	С
-1853	тc	Т	G	G C	С	A A	Υ	С	A	G C	G	A	A C	Т	C A	۹ G	A C	G G	Т	ТG	A	A (G A	A	A C	3 C	C /	A C	ТТ	Т	G A	A C	C A	G C	Τ	GΑ	AA	А	A C	A C	Т
-1793	GΊ	С	Τź	CC. A T	AA' T	Г Т (сс	С	A	тс	ЪС	Т	A C	A	4 A	A C	ΤA	A	Α	A A	Т	A (C A	T	A C	сс	т	СТ	СТ	G	A A	T /	A	сс	СТ	ТА	. т с	А	G C	ΑT	А
-1733	A A	C	AI	ГA	Т	ТΊ	ΓA	G	Т	ΤA	Υ	A	A A	. A (C A	A C	тс	Τ	Т	A T	G	ΤA	۹ A	G	G A	A A	т	БA	A A	. A (ЭT	A A	A C	тт	G T	IATA G G	А-1 : С А	A	ΤG	AA	. A
-1673	A A	A	A /	4 A	А	A /	۸A	. A	G	ΤТ	с	T	ΤG	T	ΓС	Τ	тс	ЪТ	Т	СТ	Т	G 1	ΓТ	G	ΤТ	G	т	C A	G C	A	ΑT	СТ	Т	СТ	G	СТ	G A	. A	ЗАТ/ СА	А-1 . С А	A
-1613	A A	G	А А	4 G	Α	ΤÆ	Υ	G T	R T	ТС	ЗA	A	A A	. A '	ΓТ	Т	GR G I	G	Т	A A	Т.	C A	۹ A	A	ΤA	A G	ΤC	ΓG	ΑT	G	ЗA	сс	сс	C A	١T	ΤG	r A C	Т	тс	СА	Т
-1553	AC	т	AI	ΓА	G	A A	A A	A	Α.	A A	A	A	A A	. т.	4 (ст	ст	G	G	A A	G	тс	C A	A	тс	ЭA	G	ЗA	СТ	A	гс	A A	A C	тс	ЪТ	ΤТ	G G	Т	ТА	сс	G
-1493	A C	A	т	C A	А	A (сс	А	Т	тс	C A	A	A A	. Т.	4 T	A	ΤТ	С	Т	ΤТ	Т	G 1	ΓG	Т	тс	C A	G	ЗA	G A	A	A A	A A	ΥT	тс	C A	ТА	СА	G	GТ	ТТ	G
-1433	G A	A	C /	4 A	С	тэ	G	A	G	GG	ЪС	A	A G	T	гс	C A	ТΊ	Т	Т	T G	G	G 1) [A	GR A	A C	ст	A	ΓС	сс	Т	ΓТ	A A	۹ G	АC	СТ	тс	ΤG	A	G A	ст	Т
-1373	ст	Т	A A	4 C	А	G A	A G	A	Т	GG	G G	A	АT	Т	ГС	C A	GТ	A	Т	GΤ	G	GC	G C	с	тт	A	т	G G	A A	. G (ЭT	C A	чс	сс	C A	GΑ	AC	А	сс	СТ	A
-1313	G C	G	ATA	А-1 Г. С.	А	C A	λТ	А	G	C A	A	С	C A	С	с т	A	G (: A	А	C A	С	тт	Г G	iΑ	GТ	- A	A (C A	A C	C (C A	G A	AA	C A	A C	тс	AA	С	ТА	ТА	Т
1252	тт	T	A 1	ГС	C	а 1		C	т	G A		c	с л 4 4	т		л л	ст	G	A	АТ	С	т	7 A		T A		т	гт	тт	C T	гт	A	G	0.0	G		C C	A	АТ	СА	
1102		G	G	• т	т	т		C	C	۵. د	· ^	c .	а т	т. Т	г с	· .	•	т	c.	та	т	. ` 	с т.		тс	• C		· ·	•••		 ~т	<u>т</u> т	- ^	<u>е</u> е 5 т т	SP-1	<u>т</u> т	тс	-`` T	G C	бт	G
-1195	а с	0	01		1			0	с . с :	n c				T					c		. I		ст				0				2 0	1 1	GR			<u> </u>		1			
-1133	ы т.с	. С. . т.		- 0	A	AC	. А . т	. С	G		, T	A .	A C		4 F		AC		6			AI	і і • т	G T	ы т т	. G		ч А г С	TA		. С г т	AC	. T	ы т т	. A .	A 1	AA	с ,	АА	. C A	A
-1073	т с 	. 1			A	C /	<u> </u>	c	с.	AC	11	A .	A A	A	-		C F	а А 	A		A	C #	4 I	1	· -	. A	A .	6	iR	<u> </u>		G #	• •	1 1		A A	AU	A	тс 	AI	
-1013	AA	. 1	G /	4 C	С	1 1	I	С	A	ГC	i G	A	CC	1	I A	ΛA	AC	: А	С	A C	С	1 1	1 1	1	11	A	G	r G	A A	. A 2	A A SP-1	T	jС	<u>C</u> 1	1	ΤC	ТС	1	A A	. 6 6	A
-953	G A	G	С 1	ΓG	G	СС	СТ	G	C.	A A	A	С	СС	C	ΓΑ	Υ	ΤC	СТ	С	C G	A	ΤC	ЭA	A	G C	СС	Т (СТ	G C	A	GΑ	ТС	ÌΤ	GΤ	T	ΤG	ΑΑ	Α	ΑΤ	GΤ	Т
-893	ТТ	Т	ТС	C A	А	A (C A	. С	A '	ТС	СТ	G	СA	. G '	ГТ	Т	G A	A C	А	A A	T	ТС	G C	A	ТС	2 A _/	G 7 AP-1	ΓС	A C	Т	ΓG	ТС	C A	СА	. С .	A G	СА	Т	G C	ТС	А
-833	ТТ	Т	C /	A A GA	T TA-	A 1 1	Г С	Т	Т	СТ	G	G.	A C	A	3 A	A G	G C	C A	Т	сс	А	A (ЭT	G	ТΊ	A	С	G G	GΤ	G(CA	G 1	Т	A G	Τ	G C	ΑΤ	Т	ТА	. G G	C
-773	C A	G	ΤΊ	ΓТ	А	ТЛ	ГТ	С	Α.	ΑT	T	T .	A C	A	4 (Τ	A (ЪС	А	A A	T	ΤΊ	ſG	Τ	C A	A A	G 🤇	ΓА	C A	. A (ЗT	ΤA	A G	C A	ιT	ΤA	G A	Α	GΤ	ΑT	Т
-713	ТС	Т	ΤŢ	ГС	Т	A A	A A	T	Τ	ТС	Т	A	ΑT	Т	ΓA	AA	GΤ	A	Α	ΑT	Т	A (3 G	i G	ΤA	Υ	Τź	4 T	ТТ	A	4 A	ТС	Τ	GΤ	T	T G HNF	- T T	Т	ΤG	СТ	Т
-653	GG	Τ	ΤΊ	ГА	А	ΤΊ	ГТ	Т	Т	ΤТ	A	G	ΤА	. A (ЗI	Т	A C	A	С	ΤG	Α	A A	A G	Γ ΓΑΤ	A A `A-1	Υ	A /	A G	ТА	T	ΓТ	A A	A A	C A	A	GΤ	ΑT	Т	GΤ	ΑG	τ
-593	A C	τ	G /	A A	Т	ΤÆ	ΑT	А	T.	A A	Υ	Т	A A HN	A O	3 A	A	СТ	Т	А	A G	Α	G A	A A	G	ΤA	Υ	A	4 G	ΑT	A	A A	A (Τí	ТТ	T	C A	GC	А	СТ	ТТ	Т
-533	C A	G	C	A A	А	ТС	G C	Т	A	G A	A	Τ.	A C	Т	ГТ	A	ΤТ	Т	С	ΤТ	Т	Т 1	ГТ	А	ΤТ	T	T T	ГА	ТС	Т	A G	ΤΊ	A	ТТ	T	A A	A C	Т	G A	G A	. A
-473	ΑΊ	Т	A 1	ΓT	A	ТТ	ΓA	A	Т	GΤ	C	A	G G	T	4 (Т	G A	Υ	С	ΑT	Т	ΤÆ	۹ A	G	ТC	C A	Τı	A A	ΤG	A	ΓТ	ΑΊ	A	G A	ι T	A A	AC	Т	ΤA	ТТ	Т
-413	ΑT	Т	ΤÆ	4 T	A	ТI	ГТ	Т	G	ΤТ	Т	Τ	СA	T	ΓТ	Т	ТΊ	Т	Т	GΤ	Т	Т 1	ΓA	A	ТΊ	Т	A 7	ΓТ	ТТ	C	ΓС	A C	C A	ΤA	ι Τ΄	ТТ	G T	А	ΑT	ΤG	T
-353	тс	i C	сс	C A	А	A (ст	А	C	ст	С	A ′	ΤТ	A	C A	Υ	A A	Υ	G	ТG	Α	Т 1	ГС	Α	АΊ	Т	A (GΤ	ΑT	Т	ΓТ	СТ	Т	СТ	Т	C A	GT	С	A G	C A	. G
-293	G A	C	СI	ГG	Т	ТŢ	ГТ	G	Т	тс	с	Τ	ΓА	С	4 (Τ	C A	C C	А	A C	С	ΤΊ	ΓG	Τ	GC	ΞT	G T	ΓС	A A	G	ΓТ	тс	θT	A C	ġ G	GΑ	AA	Α	C A	ТТ	Т
-233	ΤТ	Т	ΤΊ	ΓТ	Т	ТЭ	ГТ	С	G/	АТА Т Т	A-1 `G	С	C A	A	4 0	θT	ΤA	C C	Т	ТТ	Т	C A	۹T	Т	сс	ст	Τź	A C	ΑT	A	A C	A (Τũ	GΤ	Т	ТТ	ΑT	А	A C	ТА	. А
-173	ΑT	Α	т	ЭT	Т	ΤA	ΑT	G	C	те	ЗA	T.	A A	G	зı	Т	АТ	Т	С	A G	Α	G A	A A	G	ΤA	Υ	G	ΓА	ΤТ	Т	ΓТ	A (ЭT	ΤТ	G	ΤA	GC	А	ΤG	G G	A
-113	A A	Т	A (ЭA	С	A (ЪТ	G	Τ	ΤТ	C T	iAT. T	A-l C A	. C (2 1	G	ТΊ	C	А	A A	G	ТС	3 G	i C	ТΊ	Т	C T	ΓТ	C A	. A (сс	ТС	СТ	G A	۲ G	ΤТ	сс	С	ΤG	ΑT	Т
-53	G G	i C	C #	4 G	Α	G	ΞA	A	Α.	A A	Υ	G	τс	A	GR Г Т	Т	тС	Τf	А	ΤA	Т	A A	A A	C	ТС	ЭС	A (ΞA	ΤG	i A (ЗC	СТ	A	G C	ĴΤ	ТТ	ТG	Т	ΤG	ТА	G
8	GТ	CC T	CAA T 1	Т ГТ	C	тс	чТ	G	Δ	A (' Т	C A (OCT-	-1 G	A /	G	G	T	G	Δ Δ	G	TAT	ГА- г т	box	т			_									+	Ī			

图 4 草鱼 α-淀粉酶基因 5′侧翼序列

Fig. 4 α -Amylase gene 5'flanking sequences from C. idellus

CpG 岛。在草鱼 α-淀粉酶基因 5'侧翼序列预测的转录因子 结合位点中 GATA-1 出现的频率最高,推测其在草鱼 α-淀 粉酶基因的表达调控上具有重要作用。此外,草鱼 α-淀粉 酶基因 5'侧翼序列中存在多个糖皮质激素受体(GR)位点。 糖皮质激素调节胰腺外分泌消化酶基因的表达。在鼠胰腺 中糖皮质激素增加淀粉酶、胰蛋白酶和胰凝乳蛋白酶基因

图 5 鱼类 α-淀粉酶基因 5′侧翼序列进化树分析

Fig. 5 Phylogenetic analysis of 5' flanking sequences of α-amylase gene from different fishes

图 6 限制性内切酶位点模式图

Fig. 6 Restriction endonuclease sites

的表达,并减少激肽释放酶基因的表达^[36]。在尖吻鲈α-淀 粉酶基因5′侧翼序列中已鉴别出1个GRE元件,与人和鼠 淀粉酶基因GRE元件在侧翼序列上的位置不同。5种不同 鱼类的α-淀粉酶基因5′侧翼序列的进化树分析表明,草鱼 和斑马鱼的进化距离最近,可能具有相似的调控表达机制。 但由于数据库中关于鱼类α-淀粉酶基因5′侧翼序列的数据 太少,该研究中构建的进化树并不能完整地展示鱼类α-淀 粉酶基因5′侧翼序列的进化全貌。

鱼类 α-淀粉酶基因的研究尚处于起步阶段,关于鱼类 α-淀粉酶基因侧翼序列的报道则更少。该研究可以初步判 定,已获得完整的草鱼 α-淀粉酶基因 5'侧翼序列,预测分 析其中包含有完整的启动子结构。食性不同的鱼类淀粉酶 活性存在差异,草食性和杂食性鱼类的淀粉酶活性要高于 肉食性鱼类^[37-38]。侧翼序列在基因表达调控中发挥着重要 的作用,该研究为不同食性鱼类 α-淀粉酶基因侧翼序列的 差异、鱼类 α-淀粉酶基因的表达、功能及调控机理的进一 步研究奠定基础。

[1] 李捷,李新辉,谭细畅,等.广东肇庆西江珍稀鱼类省级自然

保护区鱼类多样性[J]. 湖泊科学, 2009, 21(4): 556-562.

- [2] 王宏田,张培军.牙鲆体内消化酶活性的研究[J].海洋与湖 沼,2002,33(5):472-475.
- [3] 李希国, 李加儿, 区又君. pH 值对黄鳍鲷主要消化酶活性的 影响[J]. 南方水产, 2005, 1(6): 18-22.
- [4] 李希国,李加儿,区又君.温度对黄鳍鲷主要消化酶活性的影响[J].南方水产,2006,2(1):43-48.
- [5] 吴勇,区又君,李希国.消化酶活力在千年笛鲷幼鱼不同消化 器官中的比较研究[J].南方水产,2006,2(2):61-63.
- [6] 潘炯华. 广东淡水鱼类志[M]. 广州: 广东科技出版社, 1991: 83.
- [7]李思发,王强,陈永乐.长江、珠江、黑龙江三水系的鲢、 鳙、草鱼原种种群的生化遗传结构与变异[J].水产学报, 1986,10(4):351-372.
- [8] 倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗非鲫淀粉 酶的比较研究[J].大连水产学院学报,1992,7(1):24-31.
- [9] 李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步 研究[J]. 湛江水产学院学报,1994,14(1):34-40.
- [10] HJORTH J P, LUSIS A J, NIELSEN J T. Multiple structural genes for mouse amylase [J]. Biochem Genet, 1980, 18(3/4): 281-302.
- [11] TRICOLI J V, SHOWS T B. Regional assignment of human amylase (AMY) to p22-p21 of chromosome 1 [J]. Somat Cell Mol Genet, 1984, 10(2): 205-210.
- [12] HUANG N, SUTLIFF T D, LITTS J C, et al. Classification and characterization of the rice alpha-amylase multigene family [J].
 Plant Mol Biol, 1990, 14(5): 655 - 723.
- [13] LECOMPTE O, RIPP R, PUZOS-BARBE V, et al. Genome evolution at the genus level: comparison of three complete genomes of Hyperthermophilic archaea[J]. Genome Res, 2001, 11(6): 981 - 993.
- [14] NAKAMURAA Y, OGAWA M, NISHIDEA T, et al. Sequences of cDNAs for human salivary and pancreatic α -amylases [J]. Gene, 1984, 28(2): 263 270.
- [15] YOKOUCHIA H, HORIIA A, EMIA M, et al. Cloning and characterization of a third type of human α -amylase gene[J]. Gene, 1990, 90(2): 281-286.
- [16] DOUGLAS S E, MANDLA S, GALLANT J W. Molecular analysis

参考文献:

of the amylase gene and its expression during development in the winter flounder, *Pleuronectes americanus* [J]. Aquaculture, 2000, 190(3/4): 247 - 260.

- [17] MacDONALD R J, CRERAR M M, SWAIN W F, et al. Structure of a family of rat amylase genes [J]. Nature, 1980, 287 (5778): 117-122.
- [18] QIAN M, HASER R, PAYAN F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2. 1 A resolution [J].
 J Mol Biol, 1993, 231(3): 785 - 799.
- [19] HAGENBUCHLE O, BOVEY R, YOUNG R A. Tissue-specific expression of mouse alpha-amylas genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland [J]. Cell, 1980, 21(1): 179-187.
- [20] 陈亮,梁旭方,王琳,等. 鳜鱼胰蛋白酶和淀粉酶与胃蛋白 酶原基因的克隆与序列分析[J]. 中国生物化学与分子生物学 报,2009,25(12):1115-1123.
- [21] MA P, LIU Y, REDDY K P, et al. Characterization of the seabass pancreatic alpha-amylase gene and promoter [J]. Gen Comp Endocrinol, 2004, 137(1): 78-88.
- [22] ROBERT L, STRAUSBER G. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences
 [J]. Genetics, 2002, 99(26): 16899 - 16903.
- [23] FRØYSTAD M K, LILLEENG E, SUNDBY A, et al. Cloning and characterization of alpha-amylase from Atlantic salmon (*Salmo* salar L.)[J]. Comp Biochem Physiol A, 2006, 145(4): 479 -492.
- [24] BOUNEAU L, LARDIER G, FISCHER C, et al. Analysis of 148
 kb of genomic DNA of *Tetraodon nigroviridis* covering an amylase
 gene family[J]. DNA Sequence, 2003, 14(1): 1-13.
- [25] KUROKAWA T, SUZUKI T. Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica
 [J]. Fish Sci, 2002, 68(4): 736-744.
- [26] 陈春娜. 胭脂鱼 α-淀粉酶的 cDNA 克隆与组织表达研究[D].
 重庆:西南大学,2007.
- [27] DOUGLAS S E, MANDLA S, GALLANT J W. Molecular analysis of the amylase gene and its expression during development in the winter flounder, *Pleuronectes americanus* [J]. Aquaculture, 2000, 190(3/4): 247-260.

- [28] 胡永乐,梁旭方,王琳,等. 斜带石斑鱼胰蛋白酶原和淀粉 酶全长 cDNA 的克隆与序列分析[J]. 热带海洋学报,2010, 29(5): 125-131.
- [29] OCHMAN H, GERBER A S, HARTL D L. Genetic application of an inverse polymerase chain reaction [J]. Genetics, 1988, 120
 (3): 621-623.
- [30] JONES D H, WINISTORFER S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA[J]. Nucl Acid Res, 1992, 20(3): 595-600.
- [31] NTHANGENI M B, RAMAGOMA F, TLOU M G, et al. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from *Bacillus* species[J]. J Micro Meth, 2005, 61(2): 225-234.
- [32] SARKAR G, TURNER R T, BOLANDER M E. Restriction-site PCR: a direct method unknown sequence retrieval adjacent to a known locus by using universal primers[J]. Genome Res, 1993, 2(4): 318-322.
- [33] LIU Y G, ROBERT F W. Thermal asymmetric interlaced PCR: automatable a amplification and sequencing of insert end fragment from Pl and YAC clones for chromosome walking[J]. Genomics, 1995, 25(3): 674-681.
- [34] LEMON B, TJIAN R. Orchestrated response: a symphony of transcription factors for gene control [J]. Genes Dev, 2000, 14 (20): 2551-2569.
- [35] 凯里 M, 斯梅尔 S T. 真核生物转录调控——概念、策略与方法[M]. 陈晓红,等译.北京:科学出版社, 2002: 10.
- [36] KAISER A, STIER U, RIECKEN E O, et al. Glucocorticoid receptor concentration modulates glucocorticoid-regulated gene expression in rat pancreatic AR42J cells [J]. Digestion, 1996, 57 (3): 149-160.
- [37] AGRAWAL V P, SASTRY K V, KAUSHAB S K. Digestive enzymes of three teleost fishes [J]. Acta Physiol Acad Sci Hung, 1975, 46(2): 93-101.
- [38] HIDALGO M C, UREA E, SANZ A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities [J]. Aquaculture, 1999, 170(3): 267 -283.