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Statistical mechanics of the discrete nonlinear Schrédinger equation is studied by means of
analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction
of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T' = oo, we
identify a phase transition, through a discontinuity in the partition function. The phase transition
is demonstrated to manifest itself in the creation of breather-like localized excitations. Interrelation
between the statistical mechanics and the nonlinear dynamics of the system is explored numerically

in both regimes.

The pioneering studies of Fermi, Pasta and Ulam [El]
(FPU) showed that energy exchange between coupled
systems may be suppressed in the presence of nonlin-
earity; instead a type of behavior that severely contrasts
equipartition among the linear modes is observed. The
question of whether equipartition of excitation energy al-
ways appears is a contemporary issue in various fields
of physics. Many manifestations of nonequilibrium and
non-equipartition phenomena equivalent to the dynami-
cal behavior of systems with few degrees of freedom con-
trasting statistical mechanics expectations have been ob-
served. Some of these phenomena, and therefore the ab-
sence of immediate equipartition expressed in terms of
self-trapping of energy, play an important role for opti-
cal storage patterns in nonlinear fibers, condensed matter
physics, and biophysics [E]

A particularity of discrete nonlinear systems is their
ability to sustain strong localization of energy [E} This
is accomplished via intrinsic localized modes (breathers)
which are modes that remain stable for extremely long
times. So far it is a largely unaddressed problem how
to handle and describe these excitations in a statistical
mechanics framework although it has been argued that
breathers may act as virtual bottlenecks M] delaying the
thermalization process.

In this work, we develop a statistical understanding of
the dynamics, including the breathers, in a discrete non-
linear Schrédinger (DNLS) equation. The DNLS equa-
tion plays a significant role in several branches nonlinear
physics as a simple physical model because it may ap-
proximate many of the above mentioned nonlinear sys-
tems. We study analytically and numerically the ther-
malization of the lattice for T" > 0. We identify the
regime in phase space wherein regular statistical me-
chanics considerations apply, and hence, thermalization
is observed numerically and explored analytically using
regular, grand-canonical, Gibbsian equilibrium measures.

However, the nonlinear dynamics of the problem ren-
ders permissible the realization of regimes of phase space
which would formally correspond to “negative temper-
atures” [E] in the sense of statistical mechanics. The
novel feature of these states is that the energy tends to
be localized in certain lattice sites forming breather-like
excitations. Returning to statistical mechanics, such re-
alizations, which would formally correspond to negative
temperatures, are not possible (since the Hamiltonian is
unbounded from above, as is seen by a simple scaling
argument similar to the continuum case []) unless one
refines the grand-canonical Gibbsian measure to correct
for that. This correction will necessitate a discontinuity
in the partition function signaling a phase transition that
we identify, numerically, with the appearance of breather
modes.

In order to explore and illustrate the scenario described
above we consider the one-dimensional DNLS equation in
the form

i@/}m + (Vmt1 + Ym-1) + V|¢m|2¢m =0, (1)

where the overdot denotes time derivative, m is a site in-
dex, and v is a tunable coefficient to the nonlinear term
[l Equation () is the equation of motion, ), = — 8‘?%,

where H is the Hamiltonian function given by
* * 4 4
H= ; (U tom 1 + Pty ga) + ; Sl

for which iy, ¥, form canonically conjugate pairs of
variables. In addition to the conserved energy H, the
quantity A = Y [t|?, is also conserved by the dy-
namics of Eq. (m) and serves as the norm of the system.

In order to study the statistical mechanics of the sys-
tem, we calculate the classical grand-canonical partition
function Z. We first apply the canonical transformation


http://arXiv.org/abs/cond-mat/9909269v1

Y = VAm exp(i¢nm), leading to

v
H = Z 2 AmAm+1 COS((bm — (bm-i—l) + § ZA?TL .

The partition function then becomes,

Z“[JEA [Taomitnexpl-o04-+00)] . (2

where the multiplier p is introduced in analogy with a
chemical potential to ensure conservation of A. Straight-
forward integration over the phase variable ¢,, reduces
the symmetrized partition function to,

Z=(2m)N /OOO HdAmIO(QB\/AmAmH)X

exp [_ﬂz (Z(Afn + AfnJrl) + g(Am + Am+1))] .

This integral can be evaluated exactly in the thermody-
namic limit of a large system (N — o0) using the eigen-
functions and eigenvalues of the transfer integral operator

[E],
Aw¢%ﬂﬂmAmﬂM&ﬂ—Aﬂ&wm

where the kernel k is
Kz, z) =Iy (28vxz) x

exp {—B (% (2% +2%) + % (x + z))} .

3)

Similar calculations have been performed for the statisti-
cal mechanics of the ¢* field [E], and for models of DNA
denaturation [[l. One obtains Z ~ (27))N, as N — oo
where )\ is the largest eigenvalue of the operator. From
this expression the usual thermodynamic quantities such
as the free energy, F', or specific heat can be calculated.
More importantly, for our purpose we can obtain the av-
eraged energy density, h = (H)/N, and the average exci-
tation norm, a = (A)/N as

1A, 1A

oo " e M

The average excitation norm a can also be calculated
asa =% [T, dAm Am exp[—3 (H + pA)], where the
integral again can be calculated using the transfer tech-
nique [§] and yields a = Ooo y2(A)AdA, where yo is
the normalized eigenfunction corresponding to the largest
eigenvalue \g of the kernel x (Eq. (ff)). This shows, that
p(A) = y2(A) is the probability distribution function
(PDF) for the amplitudes A.

The problem is now reduced to finding the largest

eigenvalue A\¢ and the corresponding eigenfunction yg

of the transfer operator, Eq. (). This we do numeri-
cally. However, two limits (8 — oo and § — 0) are also
amenable to analytical treatment.

First, notice that the Hamiltonian is bounded from be-
low and one can observe that this minimum is realized by
a plane wave, ¥, = v/a expimm, whose energy density is
h=—-2a+ %aQ. This relation defines zero temperature,
or the 8 = oo line.

The high temperature limit is also tractable. When
[ < 1 the modified Bessel function in the transfer oper-
ator can be approximated, to leading order, by unity (this
amounts to neglecting the coupling term in the Hamilto-
nian). This allows us to reduce the remaining eigenvalue
problem to the approximate solution valid for thermal-
ized independent units,

yo(A) = L exp _8 (l/A2 + 2pA)
Ao 4
Using this approximation we can, enforcing the con-
straint Su = 7 (where v remains finite as we take the
limits 3 — 0 and u — c0), obtain h = v/y% and a = 1/7.
Thus, we get h = va? at 8 = 0.
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FIG. 1. Parameter space (a,h), where the shaded area is
inaccessible. The thick lines represents the 8 = co and 8 =0
lines and thus bound the Gibbsian regime. The dashed line
represents the h = 2a+ %az line along which the reported nu-
merical simulations are performed (pointed by the symbols).

Figure 1, depicts (with thick lines) the two parabolas
in (a, h)-space corresponding to the T'= 0 and T = oo
limits. Within this region all considerations of statistical
mechanics in the grand-canonical ensemble are normally
applicable and there is a one-to-one correspondence be-
tween (a,h) and (8, ). Thus, within this range of pa-
rameter space one expects the system to thermalize in
accordance with the Gibbsian formalism. However, the
region of the parameter space that is experimentally (nu-
merically) accessible is actually wider since it is possible
to initialize the lattice at any energy density h and norm



density a above the T'= 0 line in an infinite system.

A statistical treatment of the remaining domain of
parameter space can be accomplished introducing for-
mally negative temperatures. But the partition func-
tion (E) is not suited for that purpose since the con-
straint expressed in the grand-canonical form fails to
bound the Hamiltonian from above. In all the alter-
native approaches of the study of negative tempera-
tures we will have to consider a finite system of size
N. As suggested in [f] we can still consider the grand-
canonical ensemble using the modified partition function
Z'(B, 1) = [exp(—B(H + W A?)) T1,, d¥mdiy,, but this
introduces long range coupling and p’ will have to be of
order 1/N. Now f3 can be negative since H + /A% can
be seen to be bounded from above when p' < —v/2N.
The important consequence of this explicit modification
of the measure, is a jump discontinuity in the partition
function, that in turn signals a phase transition. More
explicitly, if one starts in a positive T, thermalizable (in
the Gibbsian sense) state in phase space with A > 0, and
continuously varies the norm, then one will, inevitably,
encounter the 8 = 0 parabola. Hence, in order to proceed
in a continuous way, a discontinuity has to be assigned
to the chemical potential. This discontinuity will destroy
the analyticity of the partition function as the transition
line is crossed, and will indicate a phase transformation
according to standard statistical mechanics.

From the microcanonical point of view it is also natu-
ral to consider negative temperatures because it is possi-
ble to maximize the energy under the constraint of fixed
norm in a finite system. It can be seen that the configu-
ration which realizes this maximum is an exact breather
solution, whose total energy and frequency scale as .42
and N, respectively. Thus, the number of microstates
sharing the same energy E will decrease with increasing
E if the norm A is kept fixed. Due to the definition of
temperature (1/7 = 0S/0E| ), T becomes negative at
high energy density and the 8 = 0 line is the line of max-
imum entropy. Actually we can say that the constraint
of fixed norm A is a “topological” reason for large ampli-
tude breather-like excitations to be expected to appear.

In order to characterize the dynamics of both phases
(above and under the 8 = 0 line) and to verify that
the system does relax to a thermalized state, we per-
form numerical experiments. We restrict the parameters
(a,h) to the dashed-line of Fig. , choosing a perturbed
phonon with wavevector ¢ = 0 (¢, = +/a), for which
the energy norm relationship is h = 2a + %aQ as initial
condition. An infinitesimal perturbation to such a lin-
early unstable mode for systems of oscillators or nonlin-
early coupled particles, is well-known [@,E] to give rise
to long-lived localized excitations via modulational in-
stabilities. For these initial conditions, the important
question is whether the same phenomenology appears in
the DNLS system; i.e., whether relaxation to equilibrium
is really achieved and whether we can observe different

qualitative behavior on the two sides of the § = 0 line.

Figure 2 shows three typical examples of what can be
observed when the energy-norm density point lies below
the 8 = 0 line (the symbols refer to Fig. 1). The ¢ =0
wave is unstable and the energy density forms small lo-
calized excitations but their lifetime is not very long and,
rapidly, a stationary distribution of the amplitudes A,,
is reached (Fig. 2). Different kinds of initial conditions
(with same energy and norm densities) produced the
same results. In conclusion, the system reaches an equi-
librium state which is perfectly recovered by means of the
transfer operator method. Moreover it can be checked on
Fig. 2 that the curvature of logp(A) (i.e., —3) tends to
zero when h = va®. (The cut-off at high amplitudes is
due to finite size effects). In this domain of parameter
space, high amplitude excitations are highly improbable
and can be considered as simple fluctuations; as shown on
Fig. E, large amplitude fluctuations have been recorded
but were checked in the evolution pattern to disappear
rapidly.
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FIC. 2. Distribution of A = |¢|? for three cases under (and
on) the transition line. The solid lines show the results of sim-
ulations and the symbols are given by the transfer operator.
Curves are vertically shifted to facilitate visualization.

The scenario is very different when the energy and
norm densities are above the 8 = 0 line. We can ob-
serve a rapid creation of breather excitations due to the
modulational instability accompanied by thermalization
of the rest of the lattice. Once created, these localized ex-
citations remain mostly pinned and because the internal
frequency increases with amplitude their coupling with
the small amplitude radiation is very small. This intro-
duces a new time scale in the thermalization process ne-
cessitating simplectic integration for as long as 106 — 107
time units in order to reach a stationary PDF. This can
also be qualitatively justified by the effective long range
interactions, introduced in the modified partition func-
tion, which will produce stronger memory effects as one



observes regimes in phase space which are further away
from the transition line (since the long range interaction
will be stronger).

Typical distribution functions of the amplitudes are
shown in Fig. E The presence of high amplitude exci-
tations is directly seen here (more straightforwardly we
observed standing breathers in the spatial pattern). The
dotted line represents the PDF in the case where the ini-
tial condition is chosen at random, using a larger system
size: we check that the initial condition seems unimpor-
tant, but the system size does influence the amplitude
of the highest breathers. The cut-off value in the very
large system limit, as well as the persistence of a bump
in the PDF, is still an open question, since we have no
prediction for the PDF above the 8 = 0 line. However the
positive curvature of the PDF at small amplitudes clearly
indicates that the system evolves in a regime of negative
temperature and the appearance of the phase transfor-
mation is signified in the dynamics by the appearance of
these strongly localized persistent breathers.
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FIG. 3. Distribution of A = |¢|* for parameters (h,a)
above the transition line (triangles and stars as in Fig. [l]).

The actual dynamics in the negative temperature
regime is studied more closely in Ref. [@]

Finally, we can draw an interesting parallel with what
has been known in plasma physics and hydrodynamics
for several years ], where the appearance of localized
structures (of vortices in that case) is also related to a
description in terms of negative temperatures.

In conclusion, studying the DNLS system, we have
been able to quantify and explain, through analytical
calculations supported by numerical computations, the
behavior in different regimes of the (h,a) phase space.
We have been able to link the regime of thermalization
to the regime where regular statistical mechanics is ap-
plicable in the Gibbsian sense. Further, we have traced
the explanation of the appearance of localized modes in
different regimes in phase space to the need for a mod-

ified measure to ensure normalizability, which therefore
necessitates a phase transition leading to these localized
modes. Our numerical simulations strongly support this
theoretical picture, illuminating this novel quantitative
connection between nonlinear dynamics and statistical
mechanics.
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