
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst
Mathematics and Statistics Department Faculty
Publication Series Mathematics and Statistics

2003

Discrete gap solitons in a diffraction-managed
waveguide array
PG Kevrekidis
University of Massachusetts - Amherst, kevrekid@math.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/math_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For
more information, please contact scholarworks@library.umass.edu.

Kevrekidis, PG, "Discrete gap solitons in a diffraction-managed waveguide array" (2003). Mathematics and Statistics Department
Faculty Publication Series. Paper 1130.
http://scholarworks.umass.edu/math_faculty_pubs/1130

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs/1130?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


ar
X

iv
:n

lin
/0

30
20

25
v1

  [
nl

in
.P

S]
  1

2 
Fe

b 
20

03
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A model including two nonlinear chains with linear and nonlinear couplings between them, and
opposite signs of the discrete diffraction inside the chains, is introduced. In the case of the cubic
[χ(3)] nonlinearity, the model finds two different interpretations in terms of optical waveguide arrays,
based on the diffraction-management concept. A continuum limit of the model is tantamount to a
dual-core nonlinear optical fiber with opposite signs of dispersions in the two cores. Simultaneously,
the system is equivalent to a formal discretization of the standard model of nonlinear optical fibers
equipped with the Bragg grating. A straightforward discrete second-harmonic-generation [χ(2)]
model, with opposite signs of the diffraction at the fundamental and second harmonics, is introduced
too. Starting from the anti-continuum (AC) limit, soliton solutions in the χ(3) model are found,
both above the phonon band and inside the gap. Solitons above the gap may be stable as long as
they exist, but in the transition to the continuum limit they inevitably disappear. On the contrary,
solitons inside the gap persist all the way up to the continuum limit. In the zero-mismatch case,
they lose their stability long before reaching the continuum limit, but finite mismatch can have a
stabilizing effect on them. A special procedure is developed to find discrete counterparts of the
Bragg-grating gap solitons. It is concluded that they exist all the values of the coupling constant,
but are stable only in the AC and continuum limits. Solitons are also found in the χ(2) model. They
start as stable solutions, but then lose their stability. Direct numerical simulations in the cases of
instability reveal a variety of scenarios, including spontaneous transformation of the solitons into
breather-like states, destruction of one of the components (in favor of the other), and symmetry-
breaking effects. Quasi-periodic, as well as more complex, time dependences of the soliton amplitudes
are also observed as a result of the instability development.

I. INTRODUCTION

A. Objectives of the work

Solitary-wave excitations in discrete nonlinear dynam-
ical models (lattices) is a subject of great current inter-
est, which was strongly bolstered by experimental ob-
servation of solitons in arrays of linearly coupled opti-
cal waveguides [1] and development of the diffraction
management (DM) technique, which makes it possible
to effectively control the discrete diffraction in the ar-
ray, including a possibility to reverse its sign (make the
diffraction anomalous) [2,3]. It has recently been shown
that a lattice subject to periodically modulated DM can
also support stable solitons, both single-component ones
[4,5] and two-component solitons with nonlinear coupling
between the components via the cross-phase-modulation
(XPM) [6].

Two-component nonlinear-wave systems, both contin-
uum and discrete, which feature a linear coupling be-
tween the components, constitute a class of media which
can support gap solitons (GSs). A commonly known ex-
ample of a continuum medium that gives rise to GSs is
a nonlinear optical fiber carrying a Bragg grating [7,8],
whose standard model is based on the equations

iΨt + iΨx +
(

|Ψ|2 + 2|Φ|2
)

Ψ + Φ = 0,
iΦt − iΦx +

(

|Φ|2 + 2|Ψ|2
)

Φ + Ψ = 0,
(1)

where Ψ(x, t) and Φ(x, t) are amplitudes of the right-
and left-propagating waves, and the Bragg-reflection co-
efficient is normalized to be 1. Another optical system
that may give rise to GSs is a dual-core optical fiber
with asymmetric cores, in which the dispersion coeffi-
cients have opposite signs [9].

In this work, we demonstrate that the use of the DM
technique provides for an opportunity to build a dou-
ble lattice in which two discrete subsystems with oppo-

site signs of the effective diffraction are linearly coupled,
thus opening a way to theoretical and experimental study
of discrete GSs, as well as of solitons of different types
(solitons in linearly coupled lattices with identical dis-
crete diffraction in the two subsystems have recently been
considered in Ref. [10]; a possibility of the existence of
discrete GSs in a model of a nonlinear-waveguide array
consisting of alternating cores with two different values
of the propagation constant was also considered recently
[11]). The objective of the work is to introduce this class
of systems and find fundamental solitons in them, in-
cluding the investigation of their stability. We will also
consider, in a more concise form, another physically rele-
vant possibility, viz., a discrete system with a second-
harmonic-generating (SHG) nonlinearity, in which the
diffraction has opposite signs at the fundamental and sec-
ond harmonics. Solitons will be found and investigated
in the latter system too.
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It is relevant to start with equations on which our χ(3)

model (the one with the cubic nonlinearity) is based,

i
dψn

dt
= − (C∆2 + q)ψn −

(

|ψn|2 + β |φn|2
)

ψn − κφn = 0, (2)

i
dφn

dt
= δ · (C∆2 + q)φn −

(

|φn|2 + β |ψn|2
)

φn − κψn = 0, (3)

where ψn(t) and φn(t) are complex dynamical variables
in the two arrays (sublattices), κ and β being coeffi-
cients of the linear and XPM coupling between them,
and t is actually not time, but the propagation distance
along waveguides, in the case of the most physically rel-
evant optical interpretation of the model. The operators
C∆2ψn ≡ C (ψn+1 + ψn−1 − 2ψn) and (−δ)C∆2φn ≡
(−δ)C (φn+1 + φn−1 − 2φn) represent discrete diffrac-
tion induced by the linear coupling between waveguides
inside each array, the diffraction being normal in the first
sublattice and anomalous in the second, with a negative

relative diffraction coefficient −δ and intersite coupling
constant C (one may always set C > 0, which we as-
sume below). Physical reasons for having −δ < 0 are
explained below. Finally, the real coefficient q accounts
for a wavenumber mismatch between the sublattices.

We also choose a similar SHG model, following the
well-known pattern of discrete SHG systems with nor-
mal diffraction at both harmonics [12], [13]:

i
dψn

dt
= −C∆2ψn − ψ⋆

nφn, (4)

2i
dφn

dt
= δC∆2φn − ψ2

n − κφn, (5)

where the asterisk stands for the complex conjugation
and κ is a real mismatch parameter. In this case too, we
assume −δ < 0.

There are at least two different physical realizations of
the χ(3) model based on Eqs. (2) and (3). First, one may
consider two parallel arrays of nonlinear waveguides with
different effective values n(1) and n(2) of the refractive in-
dex in them corresponding to a given (oblique) direction
of the light propagation. To this end, the waveguides
belonging to the two arrays may be fabricated from dif-
ferent materials; alternatively, they may simply differ by
the transverse size of waveguiding cores, or by the refrac-
tive index of the filling between the cores, see e.g., Fig. 1.
The difference in the effective refractive index gives rise
to the mismatch parameter q in Eqs. (2) and (3). More
importantly, it may also give rise to different coefficients
of the discrete diffraction. Indeed, the DM technique
assumes launching light into the array obliquely, the ef-
fective diffraction coefficient in each array being [2]

D(1,2) = 2Cd2 cos
(

k
(1,2)
⊥

d
)

, (6)

where d is the spacing of both arrays, and k
(1,2)
⊥

are trans-
verse components of the two optical wave vectors. As it

follows from Eq. (6), the diffraction coefficients are dif-

ferent if k
(1)
⊥

6= k
(2)
⊥

.

Despite the fact that k
(1)
⊥

and k
(2)
⊥

are assumed dif-
ferent, we assume that the propagation directions of the
light beams are parallel in the two arrays, as a conspicu-
ous walkoff (misalignment) between them will easily de-
stroy any coherent pattern. On the other hand, the light
coupled into both arrays has the same frequency, hence
the absolute values of the two wave vectors are related
as follows: k(1)/k(2) = n(1)/n(2), where n(1,2) are the
above-mentioned effective refractive indices. Combining
the latter relation and the classical refraction law, and
taking into regard the condition that the propagation di-
rections are parallel inside the arrays, one readily arrives
at the conclusion that

k
(1)
⊥
/k

(2)
⊥

= n(1)/n(2). (7)

Note that the two incidence angles θ(1,2) (at the inter-
face between the arrays and air) are related in a similar
way,

(

sin θ(1)
)

/
(

sin θ(2)
)

= n(1)/n(2), hence the incident
beams (in air) must be misaligned, in order to be aligned
in the arrays.

FIG. 1. Two parallel asymmetric arrays of optical waveg-
uides that are described by Eqs. (2) and (3), provided that
parallel beams propagate obliquely across both arrays. Ar-
rows indicate misaligned directions at which light is coupled
into the arrays; inside them, both propagation directions are
identical.

Equation (6) shows that there is a critical direction of

the beam in each array, corresponding to k
(1,2)
⊥

d = π/2,
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at which the effective diffraction coefficient changes its

sign [2]. Due to the difference between k
(1)
⊥

and k
(2)
⊥

, the
critical directions are different in the two arrays. Then, if
the common propagation direction in the arrays is chosen
to be between the two critical directions, Eq. (6) gives
different signs of the two diffractive coefficients. Note
that this interpretation of the model implies no XPM
coupling between the arrays, i.e., β = 0 in Eqs. (2) and
(3).

An alternative realization is possible in a single array of
bimodal optical fibers, into which two parallel beams with
orthogonal polarizations, u and v, are launched obliquely.
If the two polarizations are circular ones, then β = 2 in
Eqs. (2) and (3), and the asymmetry between the beams,
which makes it possible to have different signs of the co-
efficient (6) for them, may be induced by birefringence,
which, in turn, can be easily generated by twist applied
to the fibers [14]. The birefringence also gives rise to the
mismatch q. As for the linear mixing between the two
polarizations, which is assumed in the model, it can be
easily induced if the fibers are, additionally, slightly de-
formed, having an elliptic cross section [14]. If the two
polarizations are linear, then the birefringence is induced
by the elliptic deformation, and the linear mixing is in-
duced by the twist, the XPM coefficient being 2/3 in this
case (assuming that, as usual, the birefringence makes
it possible to neglect four-wave mixing nonlinear terms
[14]).

It is interesting to note that the discrete model based
on Eqs. (2) and (3) with κ = 0 is exactly tantamount
to a formal discretization of the above-mentioned contin-
uum model which was introduced in Ref. [9] to describe
a dual-core optical fiber with opposite signs of disper-
sion in the cores. Another quite noteworthy feature of
the present model is that, if β = 2, it turns out to be
formally equivalent to a discretization of the standard
Bragg-grating model (1), which is produced by replacing
Ψx → (Ψn+1 − Ψn−1) /2 and Φx → (Φn+1 − Φn−1) /2.
Indeed, making the substitution (“staggering transfor-
mation”)

Ψn ≡ inφn,Φn ≡ inψn, (8)

one concludes that the discrete version of Eqs. (1) takes
precisely the form of Eqs. (2) and (3) with δ = 1, q =
2C, κ = 1, and β = 2.

B. The linear spectrum

Before proceeding to the presentation of numerical re-
sults for solitons found in the system of Eqs. (2) and (3),
it is relevant to understand at which values of the propa-
gation constant Λ (spatial frequency) solitons with expo-
nentially decaying tails may exist in this model. There
are two regions in which they may be found. Firstly,

inside the gap of the system’s linear spectrum one may
find discrete gap solitons, i.e., counterparts of the GSs
found in the continuum version of the model in Ref. [9].
Secondly, solitons specific to the discrete model may be
found above the phonon band. To analyze these possibil-
ities, an asymptotic expression for the tail,

ψn, φn ∼ exp (iΛt− λ |n|) (9)

is to be substituted into the linearized version of Eqs. (2)
and (3).

Investigating the possibility of the existence of solitons
above the phonon gap, it is sufficient to focus on the
particular case δ = 1 and q = 0, when the system’s spec-
trum takes a simple form (we have also considered more
general cases with positive δ different from 1 and q 6= 0,
concluding that they do not yield anything essentially
different from this case). The final result, produced by
a straightforward algebra, is that solitons are possible in
the region

Λ2 > Λ2
edge ≡ 16C2 + κ2, (10)

±Λedge being edges of the phonon band. In what follows
below, we will assume Λ > 0, as in this case positive and
negative values of Λ are equivalent.

To understand the possibility of the existence of the
discrete GSs, we, first, set δ = 1 as above, but keep the
mismatch q as an arbitrary parameter. Then, the gap is
easily found to be

Λ2 < Λ2
gap ≡







q2 + κ2 if q¡0,
κ2 if 0 ≤ q ≤ 4C,

(q − 4C)
2

+ κ2 if q¿4C

(11)

(recall that, by definition, C > 0). An essential role of
the mismatch parameter is that it makes the gap broader
if it is negative.

In the more general case, δ 6= 1, two different layers
can be identified in the gap, similar to what was found in
the continuum limit [9]. For instance, if q = 0, the inner

and outer layers are

0 < Λ2 <
4δ

(δ + 1)2
κ2, and

4δ

(δ + 1)2
κ2 < Λ2 < κ2 (12)

(in the case δ = 1, the outer layer disappears). The
difference between the layers is the same as in the con-
tinuum limit [9]: in the outer layer, solitons, if any, have
monotonically decaying tails, i.e., real λ in Eq. (9), while
in the inner layer λ is complex, and, accordingly, soliton
tails are expected to decay with oscillations.
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C. The structure of the work

The rest of the paper is organized as follows. In sec-
tion II, we display results for solitons found above the
phonon band, i.e., in the region (10). The evolution of the
solitons is monitored, starting from the anti-continuum
(AC) limit C = 0, and gradually increasing C. Any
branch of soliton solutions in this region must disappear,
approaching the continuum limit. Indeed, as the radia-
tion band (frequently called “phonon band”, referring to
linear phonon modes in the lattice dynamics) becomes
infinitely broad in this limit, see Eq. (10), the solution
branch with Λ = const will crash hitting the swelling
phonon band. However, in many cases the soliton of this
type is found to remain stable as long as it exists, so
it may be easily observed experimentally in the optical
array.

In section III we present results for solitons existing
inside the gap. In the outer layer [which is defined as per
Eq. (12), provided that δ 6= 1], we were able to find only
solitons of an “antidark” type, that sat on top of a non-
vanishing background. However, in the inner layer [recall
it occupies the entire gap in the case δ = 1, according to
Eq. (12)], true solitons are easily found (in accord with
the prediction, their tails decay with oscillations). In the
case q = 0, these solutions appear as stable ones in the
AC limit, get destabilized at some finite critical value of
C, and continue, as unstable solutions, all the way up to
the continuum limit, never disappearing. It is quite inter-
esting that sufficiently large negative mismatch strongly

extends the stability range for these solitons.

As was mentioned above, the χ(3) model based on Eqs.
(2) and (3) may be considered as a discretization of the
standard gap-soliton system (1). In this connection, it is
natural to search for discrete counterparts of the usual
GSs in the latter system. However, the discrete GSs
found in section III do not have any counterpart in the
continuum system (1), as the staggering transformation
(8) makes direct transition from the discrete equations
(2) and (3) to the continuum system (1) impossible. At
the end of section III, we specially consider discrete soli-
tons which are directly related to GSs in the system (1).
We find that such solitons exist indeed at all the values
of C, their drastic difference from those found in sections
II and III is that they are essentially complex solutions
to the stationary version of Eqs. (2) and (3). At all fi-
nite values of C, they are unstable, but the instability
asymptotically vanishes in the AC and continuum limits,
C → 0 and C → ∞.

In section IV, we briefly consider the SHG model (4),
(5). Solitons are found in this model too, and their sta-
bility is investigated. When the solitons are linearly un-
stable, the development of their instability is examined
(in all the sections II, III, and IV) by means of direct nu-
merical simulations, which show that the instability may

initiate a transition to a localized breather, or to lattice
turbulence, or, sometimes, complete decay of the soliton
into lattice phonon waves.

II. SOLITONS ABOVE THE PHONON BAND

A. General considerations

Stationary solutions to Eqs. (2)-(3) are sought for the
form

ψn = eiΛtun, φn = eiΛtvn , (13)

where Λ is the propagation constant defined above. In
figures displayed below, the stationary solutions will be
characterized by the norms of their two components,

P 2
u ≡

+∞
∑

n=−∞

u2
n, P

2
v ≡

+∞
∑

n=−∞

v2
n . (14)

Once such solutions are numerically identified by means
of a Newton-type numerical scheme, we then proceed to
investigate their stability, assuming that the solution is
perturbed as follows:

ψn = [un + ǫan exp(iωt) + ǫbn exp(−iω⋆t)] exp(iΛt), (15)

φn = [vn + ǫcn exp(iωt) + dn exp(−iω⋆t)] exp(iΛt), (16)

where ǫ is an infinitesimal amplitude of the perturba-
tion, and ω is the eigenvalue corresponding to the linear
(in)stability mode. The set of the resulting linearized
equations for the perturbations {a, b⋆, c, d⋆;ω} is subse-
quently solved as an eigenvalue problem. This is done by
using standard numerical linear algebra subroutines built
into mathematical software packages [15]. If all the eigen-
values ω are purely real, the solution is marginally stable;
on the contrary, the presence of a nonzero imaginary part
of ω indicates that the soliton is unstable. When the so-
lutions were unstable, their dynamical evolution was fol-
lowed by means of fourth-order Runge-Kutta numerical
integrators, to identify the development and outcome of
the corresponding instabilities.

In what follows below, we describe different classes of
soliton solutions, which are generated, in the AC limit,
by expressions with different symmetries. Still another
class of solitons, which carries over into the usual GSs in
the continuum system (1), will be considered in the next
section.

B. Solution families which are symmetric in the

anti-continuum limit

As it was said above, in this section we set δ = 1 and
q = 0, since comparison with more general numerically
found results has demonstrated that this case adequately
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represents the general situation, as concerns the existence
and stability of solitons. Figure 2 shows a family of soli-
ton solutions found for κ = 0.1, Λ = 2 and β = 0, as
a function of the coupling constant C. In this case, the
family starts, in the AC limit (C = 0), with a solution
that consists of a symmetric excitation localized at a sin-
gle lattice site n0, with

un0
= vn0

= ±
√

Λ − κ

1 + β
, (17)

and terminates at finite C. Figure 2 demonstrates that
this branch is always unstable. The termination of the
branch happens when it comes close to the phonon band,
that swells with the increase of C. The branch termi-
nates at C = 0.464, when the upper edge of the band is
at Λedge =

√
κ2 + 16C2 ≈ 1.859, according to Eq. (10).

This value is still smaller than the fixed value of the soli-
ton’s propagation constant, Λ = 2, for which the soliton
branch is displayed in Fig. 2. The branch, if it could be
continued, would crash into the upper edge of the phonon
band at C = 0.499. The slightly premature termination
of this soliton family is a consequence of the nonlinear
character of the solutions, as the above prediction for
the termination point was based on the linear approxi-
mation.
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FIG. 2. The top panel shows the norms Pu (lower curve)

and Pv (upper curve) of the two components of the soliton
solution vs. C, up to the point where the branch terminates.
The next set of panels shows two examples of the solution at
C = 0.1 (the upper row) and C = 0.464 (just near the ter-
mination point of the branch; the lower row), together with
the spectral planes of the corresponding linear stability eigen-
values (the vertical and horizontal coordinates in the plane
correspond to the imaginary and real parts of ω). The pro-
files of the un and vn components are shown, respectively, by
circles and stars. These solutions are always unstable. The
bottom panel shows the imaginary part of the single unstable
eigenfrequency vs. C.

An example of the development of the instability of
this solution, as found from direct simulations of the full
equations (2) and (3), is given in Fig. 3 for C = 0.1. It is
clearly seen that the unstable soliton turns into a stable
breather.
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FIG. 3. Evolution of the unstable soliton from Fig. 2) in
the case C = 0.1, β = 0, and κ = 0.1. The top panel shows the
fields’ spatial profiles (the circles correspond to |ψn|

2, and the
stars to |φn|

2) for t = 4 (left panel), t = 192 (middle panel)
and t = 196 (right panel). The first profile is nearly identi-
cal to the initial condition, while the other two were chosen
close to points where the oscillating amplitude of the resul-
tant breather attains its maximum and minimum. The bot-
tom panel shows the field evolution at the central lattice site
(n = 50), clearly demonstrating the breathing nature of the
established state. The solid and dashed lines are, respecively,
|ψ50|

2 and |φ50|
2. In this case, the instability growth rate of

the initial soliton is ≈ 0.8; in view of this large value, it was
not necessary to add any initial perturbation to trigger the
instability.

On the contrary, in the presence of XPM with the phys-
ically relevant value of β = 2, a similar solution branch,
found for the same values κ = 0.1 and Λ = 2, is stable

for all C, until it terminates at C = 0.499. Note that,
at this point, the upper edge (10) of the phonon band is
Λedge = 1.999, which is extremely close to Λ = 2, i.e., the
termination of the solution family is indeed accounted for
by its crash into the swelling phonon band. Details of this
stable branch are shown in Fig. 4.

Direct simulations of this solution have corroborated
its stability (details are not shown here). In fact, in all

the cases when solitons are found to be stable in terms
of the linearization eigenvalues (see other cases below),
direct simulations fully confirm their dynamical stability.
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FIG. 4. The same as in Fig. 2, but for the case β = 2.
The middle and lower panels display examples of the soliton
solutions at C = 0.1 and C = 0.499, respectively. In the top
panel, the upper and lower curves now correspond to the vn

and un components, i.e., opposite to the case shown in Fig.
1. Notice that this branch is always stable until it termi-
nates, therefore the figure does not contain a counterpart of
the dependence shown in the bottom panel of Fig. 2.

C. Solution families which are anti-symmetric in the

anti-continuum limit

Another branch of solutions is initiated, in the AC
limit, by an anti-symmetric excitation localized at a sin-
gle lattice site, cf. Eq. (18):

un0
= −vn0

= ±
√

Λ + κ

1 + β
. (18)

The solution belonging to this branch is shown in Fig.
5 for the same values of parameters as in Fig. 2, i.e.,
δ = 1, κ = 0.1, Λ = 2, and β = 0. With the increase
of C, this branch picks up an oscillatory instability at
C ≈ 0.257, and terminates at C ≈ 0.407. Unlike the
solutions displayed above, the termination of this branch
occurs not through its crash into the phonon band, but
via a saddle-node bifurcation. The latter bifurcation im-
plies a collision with another branch of solutions. That
additional branch (which is strongly unstable) was found
but is not shown here.

In fact, the numerical algorithm is able to capture
other solutions (unstable ones) past the point C ≈ 0.407
at which the present solution terminates. The newly
found solutions are shown in the bottom part of Fig.
5. However, the new family cannot be continued beyond
C = 0.467 [cf. the termination point C = 0.464 for the
solutions initiated in the AC limit by the expression (17)].
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FIG. 5. The top panel shows the branch of solutions start-
ing from the expression (18) in the AC limit. Two particular
examples are shown for C = 0.1 (a stable solution, the upper
row) and C = 0.257 (at the onset of the oscillatory instability,
the lower row). The circles and stars again denote the un and
vn components, respectively. The panel beneath this displays
the instability growth rate, Imω, vs. C. Finally, the bottom
panels show the profiles and linear stability eigenvalues for
another solution, found beyond the termination point of this
branch at C = 0.407. Two examples of the new solution are
given for C = 0.407 (the upper row) and C = 0.467 (the lower
row). These two points are very close to the beginning and
termination of the new branch).

The development of the oscillatory instability of the
solution shown in Fig. 5 was also studied in direct simu-
lations. It leads to onset of a state where one component
of the soliton is fully destroyed [it cannot completely dis-
appear, due to the presence of the linear couplings in
Eqs. (2) and (3), but it is reduced to a level of small
random noise]. An example of this is given in Fig. 6 for
C = 0.3, β = 0 and κ = 0.1. The instability (with the
initial growth rate 0.07 in this case) develops after t ≈ 60,
destroying one component of the soliton in favor of fur-
ther growth of the other one. In this case, a uniformly

distributed noise perturbation of an amplitude 10−4 was
added to accelerate the onset of the instability, as the
initial instability is very weak (which implies that the
unstable soliton may be observed in experiment).
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FIG. 6. Dynamical development of the oscillatory instabil-
ity of the anti-symmetric solution for C = 0.3, β = 0 and
κ = 0.1. The meaning of the symbols is as in Fig. 3. The top
left and right panels show the field configuration at t = 4 and
t = 196, respectively. The bottom panel once again shows the
field evolution at the central site.

A counterpart of the solution from Fig. 5, but with
β = 2, rather than β = 0, is shown in Fig. 7. This
branch is always unstable (i.e., in the case of the solu-
tions starting from the anti-symmetric expression in the
AC limit, the XPM nonlinearity destabilizes the solitons,
while in the case of the branch that was initiated by the
symmetric expression in the AC limit, the same XPM
nonlinearity was stabilizing). It terminates at C ≈ 0.219,
again through a saddle-node bifurcation. As in the pre-
vious case, a new family of solutions can be captured
by the numerical algorithm past the termination point.
The new family is found for 0.22 < C < 0.498, and it is
also shown in Fig. 7. Comparing the value Λedge = 1.995
given by Eq. (10) in this case with the actual value Λ = 2
of the soliton’s propagation constant, we conclude that
the termination of the latter branch is caused by its col-
lision with the phonon band. Notice also that the latter
branch becomes unstable only very close to its termina-
tion point, at C > 0.494.
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FIG. 7. The same as in Fig. 5, but for β = 2. This branch
is always unstable (as is shown by the middle plot demon-
strating the instability growth rate vs. C) in its range of
existence, 0 < C < 0.219. Examples of the solution displayed
in the upper part of the figure are given for C = 0.1 and
C = 0.219. The lower part shows the new solution family
found past the termination point of the unstable branch. Ex-
ample of the new solutions are given for C = 0.22 (stable, the
upper row) and C = 0.498 (just prior to the termination of
the new family, the lower row). The instability of this branch
sets in at C ≈ 0.494, i.e., very close to the termination point.

In the case of β = 2, direct simulations show that the
instability of the anti-symmetric branch gives rise to re-
arrangement of the solution into a very regular breather
shown in Fig. 8 for C = 0.1 and κ = 0.1.

FIG. 8. The development of the instability accounted
for by the imaginary eigenfrequency (with the growth rate
≈ 0.45) of the anti-symmetric branch, in the case of C = 0.1,
κ = 0.1. The top panels pertain to t = 4 (left), t = 100
(middle) and t = 120 (right). The latter two have again been
chosen close to the points where the oscillating amplitude of
the resultant breather attains its maximum and minimum, re-
spectively. The instability sets in around t ≈ 40; no external
perturbation was added to the initial condition in this case.
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D. Solution families which are asymmetric in the

anti-continuum limit

Additional branches of the solutions may start in the
AC limit from asymmetric configurations, provided that
Λ is still larger, namely for Λ > 2κ. In particular, such an
extra branch can be initiated by the following AC-limit
solution excited at a single site n = n0 (here, β = 0), cf.
Eqs. (17) and (18):

u2
n0

=
1

2

[

Λ ±
√

Λ2 − 4κ2
]

, (19)

vn0
= κ−1(Λun0

− u3
n0

) . (20)
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An example of this solution for the upper sign in Eq. (19)
is shown, for Λ = 2, κ = 0.5 and δ = 1, in Fig. 9. Such
asymmetric branches may be stable for sufficiently weak
coupling (in this case, for C < 0.204), but they eventu-
ally become unstable, and disappear soon thereafter (at
C ≈ 0.213, in this case).
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FIG. 9. The solution branch generated, in the AC limit,

by the asymmetric expression (19)-(20) with the upper sign.
The notation is the same as in Fig. 2. Two examples of the
solution are shown for C = 0.1 and C = 0.213. The most un-
stable eigenvalue is shown, vs. C, in the bottom panel. The
instability sets in at C ≈ 0.204, and the branch terminates at
C ≈ 0.213.

The evolution of the instability (for C > 0.204) for this
asymmetric branch is strongly reminiscent of that shown
in Fig. 3, resulting in a persistent breathing state.

The branch that commences from the AC expression
(19) with the lower sign is shown for Λ = 2, κ = 0.75 and
δ = 1 in Fig. 10. The branch remains stable as long as
it exists, i.e., for C < 0.46. At this point, it disappears
colliding with the phonon band, whose upper edge is lo-
cated, according to Eq. (10), at Λedge ≈ 1.987, which

is very close to the family’s fixed propagation constant,
Λ = 2.
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FIG. 10. The same as in Fig. 9, but generated by the
expression (19) with the lower sign. This solution is always
stable until it terminates at C ≈ 0.458. Examples of the solu-
tion for C = 0.2 and C = 0.458 (the latter case is chosen just
prior to the termination of the branch) are shown, as usual, by
means of their profiles and linear stability eigenfrequencies.

III. GAP SOLITONS

A. Solitons in the inner layer of the gap

All the solutions that were examined in the previous
section had their propagation constant above the upper
edge of the phonon spectrum. Another issue of obvious
interest is to study possible gap solitons (GSs), whose
propagation constant is located inside the gap (11), i.e.,
below the lower edge of the phonon band. Unlike the soli-
tons found above the band, GSs may persist up to the
continuum limit.

An example of such a solution for Λ = 0.75, κ = −1,
δ = 0.9, and β = 0 is shown in Fig. 11. In the AC limit,
this branch starts with the expression (17). The branch
is stable for small C, but then it becomes unstable due
to oscillatory instabilities. The first two instabilities oc-
cur at C = 0.242 and C = 0.349, as is shown in Fig.
11. Past the onset of the instabilities, this branch con-
tinues to exist (as an unstable one) indefinitely with the
increase of C, and carries over into an (unstable) GS in
the continuum limit. At large values of C, the distinct
phonon bands, which are clearly seen in the example of
the eigenvalue spectrum shown for C = 0.4 in Fig. 11,
eventually collide and, due to their opposite Krein signs

(see the definition and discussion of these in Ref. [16]),
which gives rise to a whole set of oscillatory instabilities.
The result is clearly seen in the example of the eigenvalue
spectrum shown in the bottom panel of Fig. 11 for a large
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value of the coupling constant, C = 4. The characteris-
tic size of the instability growth rate (largest imaginary
part of the eigenvalue) is nearly the same for C = 0.4
and C = 4, in the latter case it being ≈ 0.09. Notice,
however, that, as the continuum limit is approached, the
instabilities may be suppressed, in a part or completely,
by finite-size effects (for an example of such finite-size
restabilization, see Ref. [17]).
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FIG. 11. The branch of the gap-soliton solutions with
Λ = 0.75, κ = −1, δ = 0.9, and β = 0. The upper part
of the figure shows the norms of the two components of the
soliton, and examples of the solutions for C = 0.1 (stable)
and C = 0.4 (after the onset of the first oscillatory instabil-
ity). The middle panel shows the instability growth rates,
while the lower part of the figure gives an example of a solu-
tion belonging to this branch, found at a much larger value of
the coupling constant, C = 4. This solution family extends,
as an unstable one, up to the continuum limit.

The development of the oscillatory instability of GS
belonging to the inner layer is displayed, for C > 0.242,
in Fig. 12 for C = 0.4, δ = 0.9, κ = −1 and β = 0. In
this particular case, there are two oscillatory instabilities
whose growth rates are in the interval 0.1 < ωi < 0.2. As
a result, symmetry breaking occurs, resulting in a shift of
the central position of the soliton (from the site n = 50
to n = 49). Oscillatory features in the dynamics are also
observed in the latter case, and a small amount of energy
is emitted as radiation.
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FIG. 12. The evolution of the unstable gap soliton belong-
ing to the inner layer, for C = 0.4, δ = 0.9, κ = −1, and
β = 0. The top panels shows the wave field distribution at
t = 4 (left), t = 124 (middle) and t = 132 (right). Symme-
try-breaking effects are clearly visible. A random perturba-
tion of an amplitude 10−4 was added to the initial condition
in order to catalyze the onset of the instability, which occurs
at t > 40.

Similar results were obtained for smaller values of Λ,
for instance, Λ = 0.25. It was verified too that this sce-
nario persists in the presence of the XPM nonlinearity
(i.e., for β = 2), as it is shown in Fig. 13. In the latter
case, the evolution of the instability with the increase of
C is quite interesting, as it is nonmonotonic. The insta-
bility first arises at C ≈ 0.11 (due to a collision between
discrete eigenvalues with opposite Krein signs). Subse-
quent restabilization takes place at C ≈ 0.16, but the
solutions are unstable again for C > 0.36, and remain
unstable thereafter, up to the continuum limit.
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FIG. 13. The same as the previous figure, but for β = 2.

Examples of the solutions are shown for C = 0.2 (upper row,
stable) and C = 1.6 (lower row, unstable due to several of
oscillatory instabilities). The bottom panel demonstrates the
nonmonotonic evolution of the instability of this solution with
the increase of C.

In the case of β = 2, the dynamical development of the
oscillatory instabilities is similar to the β = 0 case, again
demonstrating symmetry-breaking effects.

B. Solutions in the outer layer of the gap

In all the cases considered in the previous subsections,
the soliton’s propagation constant Λ belonged to the in-
ner layer of the gap, see Eq. (12). We have also examined
the situation when Λ belongs to the outer layer defined
in Eq. (12) (the outer layer exists unless δ = 1). An
example is shown in Fig. 14, where β = 0, κ = −1,
δ = 0.1, and Λ ≈ 0.787 is chosen to be in the middle of
the outer layer. In this case, we typically obtained de-
localized solitons, sitting on top of a finite background
(they are sometimes called “antidark” solitons). As can
be observed from Fig. 14, such solutions may be sta-

ble for sufficiently weak coupling, but become unstable
as the continuum limit is approached, although they do
not disappear in this limit (in Ref. [9] such delocalized
solitons were found in the continuum counterpart of the
present model).
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FIG. 14. Solutions with non-decaying oscillatory back-
ground for propagation constants belonging to the outer layer
defined by Eq. (12). The top panel shows a stable solution
for C = 0.158, and the bottom panel shows an unstable one
of C = 0.576. These solutions are unstable for all C > 0.341.

The instability development in the case of the outer-
layer GSs is demonstrated, for C = 0.549, β = 0, κ = −1
and δ = 0.1, in Fig. 15. In this case, the non-vanishing
background is also perturbed by the instability, resulting
in, plausibly, chaotic oscillations throughout the lattice.
Symmetry-breaking effects, which shift the central peak
from its original position, are observed too in this case.
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FIG. 15. The time evolution of the outer-layer gap soli-
tons for C = 0.549, β = 0, κ = −1 and δ = 0.1. The initial
condition is perturbed by a random uniformly distributed per-
turbation of an amplitude 10−4. The result of the instability
is the excitation of background oscillations, as well as a shift
of the soliton’s peak from its original position. The top left
and right spatial profiles correspond to t = 4 and t = 200,
respectively.

C. Stabilization of the gap solitons by mismatch

The above considerations show that, inside the inner
layer of the gap, it is easy to identify families of soliton
solutions that persist in the continuum limit as C → ∞.
However, all the examples considered above showed that
the solutions get destabilized at finite C and remain un-
stable with the subsequent increase of C. Therefore,
a challenging problem is to find solution families that
would remain stable for large values of C.

In fact, the introduction of a finite mismatch q (re-
call it was set equal to zero in all the examples consid-
ered above) may easily stabilize the discrete GSs. To this
end, we pick up a typical example, with C = 0.5, κ = −1,
δ = 0.5, Λ = 0.75, and β = 0, when the GS exists but is
definitely unstable in the absence of the mismatch. Fig-
ures 16 and 18 show the effect of positive and negative
values of the mismatch on the solitons. As is seen, large
values of the positive mismatch can make the instability
very weak, but cannot completely eliminate it. How-
ever, sufficiently large negative mismatch readily makes
the solitons truly stable. Thus, adding the negative mis-
match is the simplest way to stabilize the solitons at large
C, which is not surprising, as Eq. (11) demonstrates that
the negative mismatch makes the gap broader.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

P

q

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

M
ax

i(ω
i)

q

40 45 50 55 60
−0.5

0

0.5

1

1.5

2

u n , 
v n

n
−4 −2 0 2 4

−0.5

0

0.5

ω
i

ω
r

40 45 50 55 60
−1

0

1

2

u n , 
v n

n −4 −2 0 2 4
−0.02

−0.01

0

0.01

0.02

ω
i

40 45 50 55 60
−0.5

0

0.5

1

1.5

2

u n , 
v n

n
−5 0 5

−4

−2

0

2

4
x 10

−3

ω
i

ω
r

ω
r

FIG. 16. A family of the gap-soliton solutions obtained for
fixed values C = 0.5, κ = −1, δ = 0.5, Λ = 0.75, and β = 0,
by continuation to positive values of the mismatch parameter
q. The top panel and the one beneath it show the evolution of
the norms of the two components of the solution, and of the
largest instability growth rate, with the increase of q. Other
panels show examples of the solution (as usual, in terms of
profiles of the two components and linear stability eigenval-
ues) for q = 0, q = 2, and q = 5, from top to bottom.

As an example of the dynamical evolution of unstable
solitons in the case of positive mismatch, in Fig. 17 we
display the case of C = 0.5, κ = −1, β = 0, δ = 0.5
and q = 1. In this case, the evolution leads to the estab-
lishment of a breather with a rather complex dynamical
behavior.
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FIG. 17. The dynamical evolution in the unstable case with
C = 0.5, κ = −1, β = 0, δ = 0.5 and q = 1 (positive mis-
match). The top left and right panels correspond to t = 4
and t = 396, respectively. A complex pattern of the ampli-
tude evolution is observed in this case. The initial condition
contains a random perturbation with an amplitude 5× 10−5.

12



−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0.5

1

1.5

2

2.5

3

P

q

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

M
ax

i(ω
i)

q

40 45 50 55 60
−0.5

0

0.5

1

1.5

2

u n , 
v n

n
−4 −2 0 2 4

−0.4

−0.2

0

0.2

0.4

ω
i

ω
r

40 45 50 55 60

0

0.5

1

1.5

2

2.5

u n , 
v n

n
−5 0 5

−0.1

−0.05

0

0.05

0.1

ω
i

ω
r

40 45 50 55 60

0

1

2

3

u n , 
v n

n
−10 −5 0 5 10

−1

−0.5

0

0.5

1

ω
i

ω
r

FIG. 18. The same as in Fig. 16, but for negative val-
ues of the mismatch. Examples of the solutions are given for
q = 0, q = −2, and q = −5, from top to bottom. A random
perturbation of an amplitude 10−4 was used in this case.

The instability development in the case of negative
mismatch, q = −2.5, is demonstrated in Fig. 19. A
localized breather with quasi-periodic intrinsic dynamics
is observed in this case as an eventual state.
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FIG. 19. The evolution of the unstable discrete gap soliton
in with C = 0.5, κ = −1, β = 0, δ = 0.5 and q = −2.5
(negative mismatch). The top left and right panels show the
field profiles for t = 4 and t = 196, respectively. The time
evolution of the amplitudes is shown in the bottom panel.

D. Discrete counterparts of gap solitons from the

Bragg-grating model

As was shown in the introduction, the particular case
of Eqs. (2) and (3) with κ = 1, δ = 1, and β = 2 may be
interpreted, with regard to the transformation (8), as a
discretization of the standard Bragg-grating system (1).
This continuum model gives rise to a family of exact GS
solutions [19],

Ψ = U(x) exp (−it cos θ) ,Φ = V (x) exp (−it cos θ) ,

(21)

U(x) =
sin θ√

3
sech

(

x sin θ − i

2
θ

)

, V = −U∗, (22)

where the real parameter θ takes values 0 < θ < π. A
part of this interval, 0 < θ < θcr ≈ 1.01 (π/2), is filled
with stable solitons [18], while the remaining part con-
tains unstable ones.

All the discrete GSs considered above are not coun-
terparts of the continuum solitons given by Eqs. (21)
and (22). Establishing a direct correspondence between
the latter ones and discrete solitons of Eqs. (2) and (3)
is complicated by two problems: the transformation (8)
does not have a continuum limit, and real symmetric or
anti-symmetric GSs with |Λ| < κ do not exist in the AC
limit, as is seen from Eqs. (17) and (18), i.e., the usual
starting point of the analysis is not available in this case.

We have considered the discrete analogs of the Bragg-
grating GSs in the following way. First, we took a formal
discrete counterpart of the waveforms (21) and (22), and
used them to obtain exact solutions of the (formal) dis-
cretization of the Bragg-grating model of Eq. (1). Then
the transformation (8) was applied to these solutions,
and the thus obtained expressions were used as an initial
guess for finding a numerically exact stationary solution
of Eqs. (2)-(3). This procedure naturally generates new
solitons, a crucial difference of which from all the types
considered above is that they are truly complex solutions,
see examples in Figs. 20 and 21. In this case, we have
used θ = π/4.
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FIG. 20. Absolute values of the fields in a new complex dis-
crete gap-soliton solution, which was obtained, at C = 1.24,
for the formal discretization of the Bragg-grating gap-soliton
model. Then, the transformation (8) was applied to this solu-
tion and it was used as an initial condition of the Newton for
finding a solution of Eqs. (2)-(3). The continuous and dashed
lines (which completely oevrlap) show the resulting profiles
generated by the above-mentioned procedure, one which is
an exact solution for the discretization of the Bragg-grating
model and one which is an exact solution (identical in norm
due to the nature of (8)) of Eqs. (2)-(3).

Then, the solution was numerically continued, decreas-
ing C, back to the AC limit, in order to identify its AC
“stem”. The result is shown in Fig. 21. Obviously, this
AC state is very different from all those considered above
(in particular, it is complex).
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FIG. 21. Left panels show profiles of real and imaginary
parts of the fields ψn and φn in the discrete counterpart of
the Bragg-grating gap soliton from Fig. 20. Right panels show
stability eigenfrequencies for the same soliton. The upper and
lower parts of the figure pertain to the soliton at C = 1.24
(the same value as in Fig. 20), and to its continuation to
the anti-continuum limit, C = 0. In the left panels, the cir-
cles (joined by solid lines) refer to the real parts, while the
stars (connected by dashed lines) correspond to the imaginary
parts of the corresponding shown fields.

Finally, linear stability eigenvalues were calculated for
this new branch of the discrete GSs. The result (see Fig.
22) is that this branch is unstable for all finite values of
C, getting asymptotically stable in both limits C → 0
and C → ∞ (large values of C are not shown in Fig. 22);
the stability regained in the latter limit complies with the
above-mentioned finding that a subfamily of the contin-
uum Bragg-grating gap solitons are dynamically stable.
Notice that the natural norm of the continuum soliton
differs from that of the discrete one, given by Eq. (14),
by an additional multiplier C−1/2 (which is proportional
to the effective lattice spacing). We have checked that
the thus renormalized norm of the soliton converges as
C → ∞, although data for large C is not displayed in
Fig. 22.
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FIG. 22. The norm of the discrete counterpart of the
Bragg-grating gap soliton of the model of Eqs. (2)-(3) (up-
per panel), and its two unstable (imaginary) eigenfrequencies
(lower panel shown by solid and dashed lines respectively),
vs. the coupling constant. The continuation of the figure to
larger values of C shows that the soliton becomes asymptoti-
cally stable as C → ∞.

IV. SOLITONS IN THE MODEL WITH THE

QUADRATIC NONLINEARITY

Stationary solutions of the SHG system (4) and (5) are
looked for in an obvious form, cf. Eqs. (13):

ψn = eiΛtun, φn = e2iΛtvn, (23)
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and in this case we only consider the (most character-
istic) case δ = 1. The linearization of Eqs. (4) and
(5) demonstrates that one may expect termination of
a soliton-solution branch, due to its collision with the
phonon band, at (or close to) the point

Λ = κ/4 + C, (24)

and the gap between two phonon bands is

0 < Λ < κ/4 (25)

(it exists only if κ > 0).

Stationary solutions were constructed, again, by means
of continuation starting from the AC limit, where the ex-
citation localized on a single site of the lattice assumes
the form

vn0
= Λ, (26)

un0
= ±

√

vn0
(4Λ − κ). (27)

Note that solutions with the propagation constant be-
longing to the gap (25) do not exist close to the AC limit.
Indeed, the AC expression (27) shows that a necessary
condition for its existence is 4Λ > κ. On the other hand,
Λ stays in the gap (25) if 4Λ < κ, so the two conditions
are incompatible.

A typical example of a numerically found soliton
branch is shown, for the value of the mismatch param-
eter κ = 0.9, in Fig. 23. This solution family is fixed
by choosing Λ = 0.25, and starting from the expressions
(26) and (27) with the upper sign. It is seen that the
branch is stable for C < 0.015, but then it becomes un-
stable, and eventually terminates at C ≈ 0.025, in very
good agreement with the prediction of Eq. (24).
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FIG. 23. The family of the discrete SHG solitons found for

κ = 0.9, δ = 1, and Λ = 0.25. The top panel shows the
evolution of the norms of the fundamental- (circles) and sec-
ond-frequency (stars) components of the soliton, which are
defined the same way as in Eq. (14), with the increase of C.
Examples of solutions are displayed for C = 0.01, below the
instability threshold, which is Ccr = 0.015 (the upper row),
and for C = 0.024, just prior to the termination of the branch
at C = 0.025 (the lower row). The bottom panel shows the
evolution of the instability growth rate (imaginary part of the
most unstable eigenvalue).

Development of the instability of this SHG soliton
branch for C > 0.015 was numerically examined through
direct simulations, results of which are presented in Fig.
24, for the case of C = 0.02, the corresponding instabil-
ity growth rate being ≈ 0.03. A random uniformly dis-
tributed perturbation of an amplitude 10−4 was added
to the initial condition to accelerate the onset of the in-
stability. The eventual result of the instability is the
appearance of a breather with very regular periodic in-
trinsic vibrations.
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FIG. 24. Simulations of the instability development for the
discrete SHG soliton in the case with C = 0.02, κ = 0.9 and
δ = 1. The circles in the spatial profiles of the top panels
denote the fundamental, and the stars denote the second har-
monic. The left panel corresponds to t = 4, the middle to
t = 660 (close to the point where the oscillating amplitude
attains its maximum), and the right to 760 (close to a min-
imum-amplitude point). The bottom panel shows the oscil-
latory behavior at the central site for the fundamental (solid
line) and second harmonics (dashed line).

A similar result for the case without a gap in the
phonon spectrum [see Eq. (25)] is shown in Fig. 25
for κ = −0.1, the other parameters being the same as in
the previous case. This time, the branch terminates at
C ≈ 0.275, once again in complete agreement with the
prediction of Eq. (24).
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FIG. 25. The same as in the upper part of Fig. 24, but for
κ = −0.1. The middle panel shows an example of the solu-
tion for C = 0.1, and the bottom panel shows an example for
C = 0.274, just prior to the termination of the branch (which
happens at C = 0.275).

Lastly, another characteristic branch of solutions can
be constructed starting from the pattern given by Eqs.
(27) with the lower sign. This solution family is dis-
played in Fig. 26, for κ = 0.75, δ = 1, and Λ = 0.25.
The branch is stable for sufficiently weak coupling, but
then it becomes unstable for C > 0.046. The branch dis-
appears colliding with the phonon band at C ≈ 0.062,
once again in full agreement with the prediction of Eq.
(24).
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FIG. 26. The same as in Fig. 23, but for the lower sign in

Eq. (27). The middle panel of the top subplot displays an
example of a stable solution for C = 0.01, while the bottom
panel shows a solution for C = 0.061, close to the termination
of the branch. In this case, κ = 0.75, δ = 1, and Λ = 0.25.

An example of the development of instability of the
present solution, that takes place at C > 0.046, is shown
in Fig. 27 for C = 0.055 (κ = 0.75; δ = 1). A random
initial perturbation with an amplitude 10−4 was added
to the initial condition in this case. As is seen, the evo-
lution results in complete destruction of the pulse into
small-amplitude radiation waves.
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FIG. 27. The evolution of the unstable SHG soliton in the
case of C = 0.055, κ = 0.75 and δ = 1. The top left, middle,
and right panels correspond to the profiles at t = 4, t = 160,
and t = 400. The bottom panel, as before, shows the time
evolution of amplitudes at the central site.

V. CONCLUSION

In this work, we have introduced a model which in-
cludes two nonlinear dynamical chains with linear and
nonlinear couplings between them, and opposite signs of
the discrete diffraction inside the chains. In the case of
the cubic nonlinearity, the model finds two distinct in-
terpretations in terms of nonlinear optical waveguide ar-
rays, based on the diffraction-management concept. A
continuum limit of the model is tantamount to a dual-
core nonlinear optical fiber with opposite signs of dis-
persion in the two cores. Simultaneously, the system
is equivalent to a formal discretization of the standard
model of Bragg-grating solitons. A straightforward dis-
crete second-harmonic-generation [χ(2)] model, with op-
posite signs of the diffractions at the fundamental and
second harmonics, was introduced too. Starting from
the anti-continuum (AC) limit and gradually increasing
the coupling constant, soliton solutions in the χ(3) model
were found, both above the phonon band and inside the
gap. Above the gap, the solitons may be stable as long
as they exist, but with transition to the continuum limit
they inevitably disappear. On the contrary, solitons in
the gap persist all the way up to the continuum limit.
In the zero-mismatch case, they always become unstable
before reaching the continuum limit, but finite mismatch
may strongly stabilize them. A separate procedure had
to be developed to search for discrete counterparts of the
well-known Bragg-grating gap solitons. As a result, it
was found that discrete solitons of this type exist at all
values of the coupling constant C, but they appear to be
stable solely in the limit cases C = 0 and C = ∞. Soli-
tons were also found in the χ(2) model. They too start
as stable solutions, but then lose their stability.

In the cases when the solitons were found to be unsta-
ble, simulations of their dynamical evolution reveal a va-
riety of different scenarios. These include establishment
of localized breathers featuring periodic, quasi-periodic,
or very complex intrinsic dynamics, or destruction of one
component of the soliton, as well as symmetry-breaking
effects, and even complete decay of both components into
small-amplitude radiation. The outcome depends on the
type of the nonlinearity (cubic or quadratic), and on the
nature of the unstable solution.
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