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Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons

D.J. Frantzeskakis1, N.P. Proukakis2 and P.G. Kevrekidis3
1 Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84, Greece
2 Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom

3 Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA

The dynamics of linear and nonlinear excitations in a Bose gas in the Tonks-Girardeau (TG)
regime with longitudinal confinement are studied within a mean field theory of quintic nonlinearity.
A reductive perturbation method is used to demonstrate that the dynamics of shallow dark soli-
tons, in the presence of an external potential, can effectively be described by a variable-coefficient
Korteweg-de Vries equation. The soliton oscillation frequency is analytically obtained to be equal
to the axial trap frequency, in agreement with numerical predictions obtained by Busch et al. [J.
Phys. B 36, 2553 (2003)] via the Bose-Fermi mapping. We obtain analytical expressions for the
evolution of both soliton and emitted radiation (sound) profiles.

Dark solitons are fundamental nonlinear excitations of
the nonlinear Schrödinger (NLS) equation with repul-
sive interactions, which have attracted much attention
in the field of atomic Bose-Einstein condensates (BECs),
where they have been studied experimentally [1] and the-
oretically in the framework of the Gross-Pitaevskii (GP)
equation [2–9]. In particular, under conditions of tight
transverse confinement, for which the gas becomes quasi-
one-dimensional, dark solitons in longitudinal harmonic
traps have been shown to oscillate with frequency Ω/

√
2,

where Ω is the axial trap frequency [2–4]. Thermal [5]
and dynamical [6] instabilities, including sound emission
phenomena [7,8], have also been investigated. Further-
more, apart from the traditional rectilinear solitons, ring-
shaped dark solitons, have also been proposed [9].

For very tight transverse confinement and sufficiently
low densities (n ≪ 1/ξ, where ξ the healing length of
the system) [10], an atomic gas with repulsive interac-
tions enters the Tonks-Girardeau (TG) regime [11], where
it behaves like a one-dimensional gas of impenetrable
bosons. This regime, which is currently under intense
experimental investigation [12], has attracted consider-
able theoretical attention both in the absence [13–15],
as well as in the presence of axial confinement [16–18].
Dark solitons have also been predicted to occur in the TG
regime, either upon employing the Bose-Fermi mapping
theorem [14,19], or via a mean-field approach of quintic
nonlinearity arising in this limit [20,21] (see also relevant
work for fermionic systems [22]). However, some impor-
tant issues of soliton dynamics, such as its instability to
sound emission due to the longitudinal confinement, and
the profiles of the emitted sound waves have not been
discussed in detail. It is the aim of this paper to address
these points analytically in the case of shallow solitons.

Our analysis is based on the modified NLS equation
with a quintic nonlinearity (as opposed to the cubic non-
linear GP equation valid in 3D systems [23]) given by

ih̄
∂ψ

∂t
=

[

− h̄2

2m

∂2

∂x2
+
π2h̄2

2m
|ψ|4 +

1

2
mω2

xx
2

]

ψ. (1)

Here ψ is the order parameter of the system (normalized

to the number of particles N), m the atomic mass and ωx

the axial confining frequency. The above long wavelength
equation [20], originally derived in [24] from a renormal-
ization group approach, has also been obtained by other
techniques, such as (i) the Kohn-Sham density functional
theory for bosons [21,25,26], (ii) an in-depth study of
the energy dependence of the many-body effective inter-
action [27], (iii) a rigorous analysis of the many-body
Schrödinger equation [28]. This equation is expected to
be valid for weak density modulations, as long as the
number of atoms exceeds a certain minimum value (typ-
ically much larger than 10), for which oscillations in the
density profiles become essentially suppressed [20,27,29].
Note that an alternative density-functional approach to
deal with the excitations and dynamics in the TG limit
has been recently proposed [30].

The validity of Eq. (1) has been criticized in certain
regimes where the outcome is sensitive to the exact phase
of the order parameter, e.g., interference experiments on
a torus, where effects beyond the realm of mean field
theory arise, and for which Eq. (1) overestimates the co-
herence properties [31]. The latter treatment, however,
ignores longitudinal confinement which is the key source
of the dynamics studied in this paper. An alternative
exact treatment [19] including the harmonic confinement
has predicted soliton oscillations at the trap frequency
(this result was explicitly demonstrated numerically for
deep dark solitons). This paper complements the result
of [19], in that the same oscillation frequency is obtained
analytically for shallow dark solitons, for which the em-
ployed hydrodynamic approximation is expected to be
valid.

Solitons moving on a background density gradient are
prone to sound emission [2–4,8], but are stabilized against
decay in a single harmonic trap by the continuous sound
emission–reabsorption cycles [7]. We derive analytical re-
sults for both the soliton amplitude and speed as well
as associated sound profiles. Starting from Eq. (1),
our analytical predictions are obtained by means of a
reductive multi-scale perturbative method, which yields
a variable coefficient Korteweg-de Vries (KdV) equation
for the dynamics of shallow dark solitons. Note that the
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above quintic NLS equation is a model of mathemati-
cal interest in its own right, as “traditional” analytical
techniques, such as the adiabatic perturbation theory for
dark solitons in BECs [4,9], cannot be applied for such
nonlinearities. However, a similar technique as the one
presented here has been succesfully applied to quasi-one-
dimensional condensates in the GP limit [3]. To start our
analysis, we express Eq. (1) in dimensionless form,

iut = −1

2
uxx + |u|4u+ V (x)u, (2)

where the subscripts denote partial differentiation, while
the variables t, x and the function u are measured, re-
spectively, in units of m/(h̄π2n2

o
), 1/(πno) and 21/4

√
no

(where no ≡ |ψo|2 the peak density of the gas). The ex-
ternal potential in Eq. (2) is V (x) = (1/2)(πnoax)−4x2,

where ax ≡
√

h̄/(mωx) is the harmonic oscillator length
in the axial direction. Taking into regard that the pa-
rameter (πnoax)−4 is apparently small, it is convenient
to define the small parameter ǫ ≡ Ω−2/3(πnoax)−4/3 [Ω is
a parameter of order O(1)], which will be used in the per-
turbation analysis to be presented below. This way, the
external potential takes the form V (X) = (1/2)Ω2X2,
i.e., it is a function of the slow variable X = ǫ3/2x, while
Ω expresses the strength of the magnetic trap, or the
normalized axial trap frequency. By analogy to [29], we
introduce the Madelung transformation u =

√
n exp(iφ)

(n and φ denote the density and phase respectively) to
reduce Eq. (2) to the following hydrodynamic equations,

nt + (nφx)x = 0, (3)

φt +
1

2
φ2

x + n2 − 1

2
n−1/2(n1/2)xx + V (X) = 0, (4)

which are similar to the ones that have been employed to
discuss the crossover from TG to BEC regime [17,18,32].
The ground state of the system may be obtained upon
assuming that the atomic velocity v ≡ φx = 0 (i.e., no
flow in the system) and φt = −µ0 (dimensionless chem-
ical potential). Then, as Eq. (3) implies that n = n0

is time-independent in the ground state, we assume that
n0 = n0(X). As the quantum pressure term in Eq. (4) is
of order O(ǫ3), to leading order in ǫ [to O(1)], we obtain

n0(X) =
√

µ0 − V (X), (5)

in the region where µ0 > V (X), and n0 = 0 outside.
Equation (5) gives the density profile in the so-called
Thomas-Fermi (TF) approximation [23]. It follows from
Eq. (5) that in the case of the harmonic trap the ax-
ial size of the gas is 2L, where L =

√
2µ0/Ω. We now

consider the propagation of small-amplitude linear exci-
tations (e.g., sound waves) of the ground state, by seeking
solutions of Eqs. (3)-(4) of the form,

n = n0(X) + ǫñ(x, t), φ = −µ0t+ ǫφ̃(x, t), (6)

where the functions ñ and φ̃ describe the linear excita-
tions. Substituting Eqs. (6) in Eqs. (3)-(4), to order

O(1) we recover the TF approximation, while to order
O(ǫ) we obtain the following system of linear equations,

ñt + n0φ̃xx = 0, φ̃t + 2n0ñ− 1

4n0

ñxx = 0. (7)

The dispersion relation of the excitations can easily be
obtained, upon considering plane-wave solutions of Eqs.
(7) of the form (ñ, φ̃) = (ñ0, φ̃0) exp[i(kx − ωt)], where

ñ0 and φ̃0 are independent of x and t (but may depend
on X). This way, we readily obtain the equation,

ω = ±
√

2n2

0
(X)k2 +

1

4
k4 (8)

which is a Bogoliubov-type excitation spectrum, but with
the excitation frequency ω being a function of the slow
variable X . The speed of sound is local and is given by

cS = s
√

2n0(X), (9)

where s = sign(cS) = ±1, i.e., the sound may propagate
in two opposite directions. Note that the local character
of the speed of sound is due to the presence of the ex-
ternal potential, which bears resemblance to the sound
propagation in slowly-varying nonuniform media [33].

We now employ the reductive perturbation method
[34,35] (see also [3] for a relevant study in BECs) to ex-
amine the evolution of the nonlinear excitations (e.g.,
solitons), of the ground state. As Eqs. (3)-(4) are in-
homogeneous, we introduce a new slow time-variable,
T = ǫ1/2

(

t−
∫ x

C−1(x′)dx′
)

, where C is the (local) ve-
locity of the nonlinear excitations, to be determined in a
self-consistent manner. Also, we introduce the following
asymptotic expansions for the functions n and φ,

n = n0(X) + ǫn1(X,T ) + ǫ2n2(X,T ) + · · · ,
φ = −µ0t+ ǫ1/2φ1(X,T ) + ǫ3/2φ2(X,T ) + · · · . (10)

Substituting the expansions (10) into Eqs. (3)-(4), we
obtain the following results: First, to order O(1), Eq.
(4) leads to the TF approximation [see Eq. (5)]. Then,
to orders O(ǫ) and O(ǫ3/2), Eqs. (4) and (3) respectively
lead to the following system of linear equations:

φ1T + 2n0n1 = 0, n1T + C−2n0φ1TT = 0. (11)

The compatibility condition of Eqs. (11) is the equation
1− 2n2

0
C−2 = 0, which determines the unknown velocity

C, which, actually, is the same as the speed of sound,
i.e., C ≡ cS [c.f. Eq. (9)]. On the other hand, Eqs. (11)
lead to the following equation,

φ1(X,T ) = −2n0(X)

∫ T

n1(X,T
′)dT ′, (12)

connecting the amplitude n1 and the phase φ1.
Proceeding to the next order, namely to order O(ǫ2)

and to order O(ǫ5/2), Eqs. (4) and (3) respectively read:
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φ2T + 2n0n2 = −n2

1 −
1

2
C−2φ2

1T +
1

4
C−2n−1

0
n1TT , (13)

n2T + C−2n0φ2TT = −C−2(n1φ1T )T

+C−1(n0Xφ1T + 2n0φ1XT ) +
dC−1

dX
n0φ1T . (14)

The compatibility condition of Eqs. (13) and (14) yields
the equation 1 − 2n2

0
C−2 = 0 for the velocity C, along

with the following nonlinear evolution equation for n1,

n1X − C

n3

0

n1n1T +
1

32n4

0
C
n1TTT = − d

dX
(lnn0)n1, (15)

which is obtained upon also using Eq. (12). Equation
(15) has the form of a KdV equation with variable coef-
ficients, which has been used to describe shallow water-
waves over variable depth, or ion-acoustic solitons in in-
homogeneous plasmas [35]. The inhomogeneity-induced
dynamics and dissipation of the KdV solitons has been
studied analytically [36,37]. Below, we will employ these
results to analyze the coherent evolution and dissipation
of dark solitons in an atomic gas in the TG limit.

Introducing the transformations χ =
∫

(32n4

0C)−1dX ,
τ = T and n1 = (3/32n3

0
)υ(χ, τ), we put Eq. (15) into

the form,

υχ − 6υυτ + υτττ = λ(χ)υ, (16)

where λ(χ) ≡ 2(lnn0)χ. In the case λ = 0, i.e., for a
homogeneous gas with n0(X) = no = const., Eq. (16) is
the completely integrable KdV equation, which possesses
a single-soliton solution of the following form [38],

υ = −2κ2sech2Z, Z = κ [τ − ζ(χ)] , (17)

where ζ(χ) = 4κ2χ + ζ0 is the soliton center (with
dζ/dχ = 4κ2 being the soliton velocity in the τ -χ refer-
ence frame), while κ and ζ0 are arbitrary constants pre-
senting the soliton’s amplitude (as well as inverse tempo-
ral width) and initial position respectively. Apparently,
Eq. (17) describes a density notch on the backround
density no, with a phase jump across it [see Eq. (12),
which implies that φ1 ∼ tanhZ] and, thus, it represents
an approximate dark soliton solution of Eq. (2).

In the general case of the inhomogeneous gas (i.e., in
the presence of the trapping potential), soliton dynam-
ics can still be studied analytically, provided that the
right-hand side of Eq. (16) can be treated as a small
perturbation. As λ(χ) is directly proportional to the
density gradient, such a perturbative study is relevant
in regions of small density gradients, which is consistent
with the use of the local density approximation. In this
case, employing the perturbation theory for solitons [39],
we express the solution of Eq. (16) as,

υ = υS + υR, (18)

where υS is the soliton part, which has the same func-
tional form as in the unperturbed homogeneous case (c.f.

Eq. (17)), but with the soliton parameters κ and ζ being
now unknown functions of χ. The contribution υR, being
of the same order of smallness as λ, denotes the radia-
tion part of the solution (i.e., the sound profile) due to
the effect of axial inhomogeneity. Following [37], we first
derive the following evolution equations for the soliton’s
amplitude κ(χ) and center ζ(χ),

dκ

dχ
=

2

3
κλ,

dζ

dχ
= 4κ2 +

λ

3κ
. (19)

These equations can be solved analytically and the re-
sults, expressed in terms of the slow variable X , read:

κ(X) = κ(0)

(

n0(X)

n0(0)

)4/3

, (20)

ζ(X) =
κ2(0)

8
√

2sn
8/3

0
(0)

∫ X

0

n
−7/3

0
(X ′)dX ′

+
1

3κ(0)

[

1 − 3

(

n0(X)

n0(0)

)

−1/3
]

, (21)

where κ(0) and n0(0) are respectively the soliton ampli-
tude and density at X = 0, while s = ±1 represents the
two possible directions of the soliton propagation. Addi-
tionally, we find the following approximate (for |Z| ≫ 1)
expression for the radiation part of the solution (i.e.,
sound wave emitted by the soliton),

υR ≈ −32
√

2sn
4/3

0
(0)

3κ(0)
n

8/3

0
(X)

dn0(X)

dX
(1 − tanhZ), (22)

where Z = κ(X) [τ − ζ(X)] is the soliton phase, with
κ(X) and ζ(X) given by Eqs. (20)-(21).

Based on the above results for the evolution of the soli-
ton parameters, we will now show that the dark soliton
will display an oscillatory motion in the harmonic trap
V (X) = (1/2)Ω2X2. This can be done upon deriving the
phase of the soliton, which, to order O(ǫ3/2), reads

Z = ǫ1/2µ
2/3

0
κ(0)

[

1 − 4

3

(

X

L

)2
]

×
[

t−
∫

dX

C
− ǫ

κ2(0)µ
−2/3

0

8sΩ

(

X

L

)

]

(23)

(recall that L =
√

2µ0/Ω defines the axial size of the
gas). Then, looking along the characteristic lines of soli-
ton motion, it is easy to show that the position of the
soliton satisfies the following equation of motion,

dX

dt
=

8
√

2sΩLn0(X)

8ΩL+ ǫ
√

2κ2(0)µ
−2/3

0
n0(X)

. (24)

For sufficiently small ǫ the second term in the denomina-
tor can be neglected and the separable resulting equation
can readily be integrated. In particular, taking into re-
gard Eq. (5) for a parabolic trap, we find that
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X = L sin(Ωt), (25)

which demonstrates that a shallow dark soliton in the
TG limit oscillates at the trap frequency.

In conclusion, we have developed a systematic analyti-
cal approach, based on a reductive perturbation method,
to study the linear and nonlinear excitations of a Bose
gas of impenetrable bosons (i.e., in the Tonks-Girardeau
limit). We have recovered the Bogoliubov spectrum of
linear excitations, with excitation frequencies (and speed
of sound) varying slowly along the axial direction. Ad-
ditionally, we have shown that shallow dark solitons can
be described by an effective Korteweg-de Vries equation
with variable coefficients. We have found analytical ex-
pressions for the inhomogeneity-induced evolution of the
soliton parameters (amplitude, width, position, velocity)
and the profile of the sound emitted by the soliton.

Our results are based on the quintic nonlinear
Schrödinger equation [20,21,24–29], which is expected to
be valid for weak density modulations. This approach
enables analytical results to be obtained, and the oscil-
lation frequency of shallow solitons is thus found to be
identical to the one obtained via numerical simulations
based on the Bose-Fermi mapping [19]. This result seems
to additionally justify a posteriori the use of Eq. (1) for
shallow solitons. In particular, our work demonstrates
the validity of the reductive perturbation method for dy-
namics of shallow solitons in the Tonks-Girardeau (TG)
regime, while an earlier study [3] confirmed its useful-
ness in the opposite regime of Bose-Einstein condensation
(BEC). The crossover between these two regimes [17] is
important, and diagnostics (e.g. [32]) for the degree of
“impenetrability” of a trapped one-dimensional Bose gas
are required for interpreting current and future experi-
ments [12]. The presented technique paves the way for
investigating the crossover in the oscillation frequency
of shallow dark solitons [ranging from Ω/

√
2 in the BEC

regime, to Ω in the TG regime (Ω is the trap frequency)],
upon suitably generalizing the nonlinearity to a smooth
function interpolating between these two regimes [17,30].

We acknowledge fruitful discussions with J. Brand and
L. Santos. This work was supported by the Eppley
Foundation for Research, NSF-DMS-0204585 and NSF-
CAREER (PGK).
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