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Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential

S. V. Dmitriev1, P. G. Kevrekidis2 and N. Yoshikawa1

1 Institute of Industrial Science, the University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA

(Dated: February 8, 2008)

For the nonlinear Klein-Gordon type models, we describe a general method of discretization in
which the static kink can be placed anywhere with respect to the lattice. These discrete models are
therefore free of the static Peierls-Nabarro potential. Previously reported models of this type are
shown to belong to a wider class of models derived by means of the proposed method. A relevant
physical consequence of our findings is the existence of a wide class of discrete Klein-Gordon models
where slow kinks practically do not experience the action of the Peierls-Nabarro potential. Such
kinks are not trapped by the lattice and they can be accelerated by even weak external fields.

PACS numbers: 05.45.-a, 05.45.Yv, 63.20.-e

I. INTRODUCTION

Discrete solitons and more specifically kink-like topo-
logical excitations are ubiquitous structures that arise in
numerous physical applications ranging from dislocations
or ferroelectric domain walls in solids, to bubbles in DNA,
or magnetic chains and Josephson junctions, among oth-
ers (see, e.g., [1] for a recent exposition of relevant appli-
cations). The mobility of such lattice kinks is one of the
key issues in many of these applications, especially since
the pioneering works of [2, 3] which illustrated that the
kinematics on the lattice is dramatically different from
the continuum analog of such equations where constant
speed propagation is typical. Instead, on the discrete
substrate, kinks need to overcome the, so-called, Peierls-
Nabarro potential (PNp), constantly radiating their en-
ergy and being eventually trapped by the lattice. The
static PNp refers to the energy difference between a sta-
ble inter-site centered discrete kink and an unstable, on-
site centered discrete kink. Clearly, as a kink is travelling
from one site to the next, it “wobbles” over this potential
energy landscape [4]. However, even though clearly trav-
elling is intimately connected with overcoming the static
PNp without “radiating” energy [5], this connection is
relatively subtle and the inter-dependence of these two
features (static PNp and travelling) still remains elusive
[6]. Typically, discrete kinks traveling with finite veloc-
ity have only been obtained for a discrete set of veloc-
ities [7] which makes the motion unstable with respect
to perturbations. There exists a class of more exotic ex-
act solutions (the so-called “nanoptera”) where the kink
propagates together with a plane wave having the same
velocity [7].

While the travelling problem is extremely interesting
in its own right, in the present work, we will start by
examining the construction of discrete models with PNp-
free kinks, using a simplified (quasi)static approach. Two
classes of discrete models where static kink can be placed
anywhere with respect to the lattice have been previously
derived: one conserving energy [8] and another one con-
serving momentum [9]. In both cases the static kink so-
lution can be obtained from a two-body nonlinear map.

In the present paper we demonstrate that, in general, a
discrete version of the first integral of the static contin-
uum Klein-Gordon field plays the role of this nonlinear
map. Thus we derive a wide class of such models in-
cluding the two above-mentioned classes as special cases.
The advantage of this approach is that the kinks are no
longer (typically) trapped by the lattice. Instead they
can be accelerated by even weak external fields. However,
a note of caution should be added here. While one might
naively expect that such solutions would be intimately
connected with slow travelling, it has been demonstrated
numerically that travelling solutions (when they can be
found as e.g. in [7, 10] for Klein-Gordon lattices, us-
ing the methods of [11]) have a sharp lower bound in
their wave speed [12]. The existence of such a threshold
illustrates the fact that one should be particularly care-
ful in trying to infer features of the travelling problem
from such “static” considerations. On the other hand, as
the recent work of Barashenkov, Oxtoby and Pelinovsky
demonstrates [13], discretizations without PNp are much
more natural candidates for possessing travelling solu-
tions for a isolated wave speeds (not close to zero).

The presentation of our results will be structured as fol-
lows. Section II will contain the setup and notations used
for the Klein-Gordon models. Section III will present
the general methodology for obtaining static PNp-free
discretizations. Section IV will illustrate the connection
to previously reported models. Section V will focus on
the special case example of the φ4 model, for which our
numerical observations will be presented in section VI.
Finally in section VII, we will summarize our findings
and present our conclusions.

II. SETUP

We consider the Lagrangian of the Klein-Gordon field,

L =

∫

∞

−∞

[

1

2
φ2

t −
1

2
φ2

x − V (φ)

]

dx , (1)
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and the corresponding equation of motion,

φtt = φxx − V ′(φ) ≡ D(x) . (2)

Topological solitons (kinks) are possible only if V (φ)
has at least two minima φ01 and φ02, where V ′(φ0i) = 0
and V ′′(φ0i) > 0. Obviously, φ = φ01 and φ = φ02

are the stationary solutions to Eq. (2). We will study
the properties of kinks that interpolate between these
two stationary solutions. Our considerations allow one
to treat the cases when other minima appear in between
the two minima, φ01 and φ02, connected by the kink.

Equation (2) will be discretized on the lattice x = nh,
where n = 0,±1,±2..., and h is the lattice spacing.

For brevity, when possible, we will use the notations

φn−1 ≡ l, φn ≡ m, φn+1 ≡ r . (3)

We would like to construct a nearest-neighbor discrete
analog to Eq. (2) of the form

m̈ = D(C, l, m, r), (4)

where C > 0 is a parameter related to the lattice spacing
h as C = 1/h2, such that in the continuum limit (C →
∞), D(C, l, m, r) → D(x) = φxx − V ′(φ).

Note that in this context, the “standard” discretization
emerges in the form: D(C, l, m, r) = C(l − 2m + r) −
V ′(m). Generalizations of this model will be discussed
in the form

m̈ = C(l − 2m + r) − B(l, m, r), (5)

where B(l, m, r) has V ′(φ) as the continuum limit.
We will characterize a model as PNp-free if a static

kink can be placed anywhere with respect to the lattice
(continuum, rather than discrete, set of equilibrium so-
lutions). This is equivalent to demanding that the kink
must have an neutral direction, or (from Noether’s the-
ory [14]) a Goldstone translational mode. It is natural to
categorize this definition of PNp-free model as “static”
or “quasi-static”, in the sense that it does not involve the
kinematic or dynamical properties of the model.

On the other hand, one can demand the absence of
PNp at finite kink velocities. This can be transformed to
the demand that the discrete model supports the exact
traveling wave solutions and this demand can be called
“dynamic” definition; see e.g. [6] for such travelling wave
examples, where the “static” definition of the PNp clearly
fails.

In this paper we aim to construct the models PNp-free
in the static sense as a first (yet nontrivial) step towards
understanding the nature of the discrete travelling prob-
lem (see also the comments above).

We will also focus on the existence of physically
motivated conserved quantities for the derived models.
Hamiltonian models are energy-conserving models and
the models with dM/dt = 0, where

M =

∞
∑

n=−∞

φ̇n (φn+1 − φn−1) , (6)

will be called momentum-conserving models. As was
shown in [9], the discrete model of Eq. (4) conserves
the momentum of Eq. (6), if it can be presented in the
form

m̈ =
H(m, r) −H(l, m)

r − l
. (7)

This can be verified by calculating

dM

dt
=
∑

n

φ̈n(φn+1 − φn−1)

=
∑

n

[H(φn, φn+1) −H(φn−1, φn)] = 0, (8)

where we have used the fact that the terms φ̇n(φ̇n+1 −
φ̇n−1) cancel out due to telescopic summation.

III. STATIC PNP-FREE DISCRETIZATION

Our aim here will be to discretize Eq. (2) in a sym-
metric way, so that the static kink solution can be found
from a reduced first-order difference equation. Accord-
ing to [8], if we achieve that, then we are going to have
a one-parameter family of solutions with the possibility
to place equilibrium kinks anywhere with respect to the
lattice (and hence, PNp-free in the static sense).

The first integral of the steady state problem in Eq.
(2), φx −

√

2V (φ) = 0 (with zero integration constant),
can be written in the form

w(x) ≡ g(φx) − g
(

√

2V (φ)
)

= 0 , (9)

where g is a continuous function.
Our plan will then be the following:

• discretize the first-order differential equation of Eq.
(9) using a first order difference scheme w(l, m) =
0.

• Then express the right-hand side of Eq. (2) as a
sum of terms containing derivatives, e.g., dw/dx,
dw/dφ, etc.

• As a result, discretizations of such terms, e.g.,
dw/dx ∼

√
C[w(m, r) − w(l, m)], vanish for

w(l, m) = 0 (or otherwise stated: the construction
of the equilibrium solution is converted to a first
order difference problem). Then, the static kink
(PNp-free, by construction) solutions for the ob-
tained discrete model can be found from this two-
site problem.

In the following, we will consider a particular case of
Eq. (9) with g(ξ) = ξ2, for which we introduce the nota-
tion

u(x) ≡ φ2
x − 2V (φ) = 0 , (10)
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and the following two-site discrete analog

u(l, m) ≡ C(m − l)2 − 2V (l, m) = 0 . (11)

We will also use the shorthand notations,

ul = u(l, m) , um = u(m, r). (12)

We have assumed that the Klein-Gordon field supports
kink solutions. Then, at least for the case of weak dis-
creteness, Eq. (11) also supports static kinks because
it is nothing but a discretization of the first integral of
static version of Eq. (2) (see also [8]).

The next step is then to find a discretization of the
right-hand side of Eq. (2), D(x), which vanishes when
Eq. (11) is fulfilled.

One simple possibility comes from the following finite
difference

D1(l, m, r) ≡ um − ul

r − l
→ 1

2

du

dφ
= D(x). (13)

One can also consider, more generally, continuous func-
tions q(ul, h) such that q(0, h) = 0 and, in the continuum

limit, q(u, 0) = u and dq

du
(u, 0) = 1. For example, one can

take q = (ehu − 1)/h or q = u +
∑

n>1
Anhn−1un with

constant An, etc. Then,

1

2

dq

dφ

(

dq

du

)

−1

= D(x). (14)

Discretizing the left-hand side of Eq. (14) we obtain

D2 =
1

2

q(um, h) − q(ul, h)

r − l

[

1

q′(ul)
+

1

q′(um)

]

. (15)

Inspired by [8], we note that, in the continuum limit,

v(m, r)

r − m
− v(l, m)

m − l
→ dv

dφ
− v

φxx

φ2
x

, (16)

and find

D3 ≡ um

r − m
− ul

m − l
+
√

2V (l, m, r) ×
(

√

C(r − m)2 − um

r − m
−
√

C(m − l)2 − ul

m − l

)

→ du

dφ
− u

φxx

φ2
x

+
√

2V

(

d
√

2V

dφ
−
√

2V
φxx

φ2
x

)

= D(x). (17)

Since the expressions for Di(l, m, r) given by Eqs.
(13),(15) and (17) tend to D(x) in the continuum limit,
one can write the following discrete analog to the Klein-
Gordon equation Eq. (2)

m̈ =
∑

i

biDi(l, m, r), where
∑

i

bi = 1. (18)

Then, by construction, any structure derived from the
two-site problem of Eq. (11) is a static solution of Eq.
(18) and hence, the latter is the static PNp-free discrete
model.

The model of Eq. (18) can be generalized in a num-
ber of ways. For example, function D3, Eq. (17), can
be modified choosing different functions V (l, m, r) to dis-

cretize V (φ). Then, the modified D̃3 can be added to the
linear combination in the right-hand side of Eq. (18).

The model of Eq. (18) can be also generalized by ap-
pending terms which disappear in the continuum limit
and ones that vanish upon substituting ul = 0 and
um = 0. For example, the derivative df(u)/dφ can be
discretized as 2[f(um) − f(ul)]/(r − l) or as 2f ′(ul/2 +
um/2)(um−ul)/(r− l). If then we have difference of such
terms in the equation of motion, then in the continuum
limit they will cancel out.

Any term in the right-hand side of Eq. (18) can be
further modified by multiplying by a continuous function
e(C, l, m, r), whose continuum limit is unity (see e.g. [15]
for such an example, also discussed in more detail below).

Generally speaking, the discrete PNp-free Klein-
Gordon models derived here do not conserve either an
energy, or a momentum-like quantity. However, as it will
be demonstrated below, they contain energy-conserving
and momentum-conserving subclasses.

IV. CONNECTION WITH PREVIOUSLY

REPORTED MODELS

One energy-conserving PNp-free Klein-Gordon model
has been derived by Speight with co-workers [8] with the
use of the Bogomol’nyi argument [16]. Their model, can
be written in the form of Eq. (5), with the Lagrangian

L =
1

2

∑

n

φ̇2
n − C

2

∑

n

(φn − φn−1)
2

−
∑

n

(

G(φn) − G(φn−1)

φn − φn−1

)2

,

where G′(φ) =
√

V (φ). (19)

The static kink solution can then be derived from the
lattice Bogomol’nyi equation [8], which can be taken in
the form

U(l, m) = C(m − l)2 − 2

(

G(m) − G(l)

m − l

)2

= 0, (20)

which is a particular case of Eq. (11). The equation of
motion derived from Eq. (19), written in terms of Eq.
(20), is

m̈ =
Um

r − m
− Ul

m − l
+
√

2V (m) ×
(

√

C(r − m)2 − Um

r − m
−
√

C(m − l)2 − Ul

m − l

)

. (21)
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The right-hand side of Eq. (21) is a particular case of
D3(l, m, r) given by Eq. (17) with V (l, m, r) = V (m).

Momentum-conserving PNp-free models were pro-
posed in [9] and further studied in [17]. They are the
non-Hamiltonian models of the form

m̈ = D1(l, m, r), (22)

where D1 is given by Eq. (13). Notice that Eq. (22) can
be mapped into the formulation of Eq. (7). Static kink
solutions in this model can be found from Eq. (11).

If Eq. (11) is taken in the particular form of Eq. (20),
then the momentum-conserving PNp-free model Eq. (22)
and the energy-conserving PNp-free model Eq. (21) have
exactly the same static kink solutions. It has been proved
that a standard nearest-neighbor discrete Klein-Gordon
model conserving both energy and momentum does not
exist [17].

V. APPLICATION TO THE φ4
MODEL

As an example, we will discretize the well-known φ4

field theory with the potential

V (φ) =
1

4

(

1 − φ2
)2

. (23)

By construction, the PNp-free models derived above
are written in singular form. In this form the equations
are inconvenient in practical simulations and one may
wish to find such particular cases when singularities dis-
appear.

For example, for the energy-conserving PNp-free model
expressed by Eqs. (19)-(21), singularity always disap-
pears when G(φ) is polynomial [8]. Particularly, for the
φ4 model with the potential Eq. (23), one obtains from
Eq. (21) the following energy-conserving PNp-free dis-
cretization derived in [8]

m̈ =

(

C +
1

6

)

(l + r − 2m) + m

− 1

18

[

2m3 + (m + l)3 + (m + r)3
]

, (24)

whose static kink solution can be found from Eq. (20),
which, for the φ4 potential, obtains the form

3
√

2C(m − l) + m2 + lm + l2 − 3 = 0. (25)

Now let us turn to the momentum-conserving model.
Substituting Eq. (11) into Eq. (22) we obtain

m̈ = C(r − 2m + l) − 2
V (m, r) − V (l, m)

r − l
. (26)

To remove the singularity, V (l, m) should be taken in the
symmetric form V (l, m) = V (m, l), e.g., as

V (l, m) = (1/4) − (α/2)(m2 + l2) + (α − 1/2)ml

+(β/2)
(

m3 + l3
)

− (β/2)ml (m + l)

+(γ/2)
(

m4 + l4
)

+ (δ/2)ml
(

m2 + l2
)

− (γ + δ − 1/4)m2l2, (27)

with free parameters α, β, γ, and δ. In the continuum
limit, when l → m and r → m, Eq. (27) reduces to
V (φ). Substituting Eq. (27) into Eq. (26) we obtain
the following momentum-conserving PNp-free φ4 model
derived in [17]

m̈ = (C + α) (l − 2m + r) + m

−β(l2 + lr + r2) + βm(l + r + m)

−γ(l3 + r3 + l2r + lr2) − δm(l2 + m2 + r2 + lr)

+(2γ + 2δ − 1/2)m2(l + r). (28)

The momentum-conserving model Eq. (28) with α =
β = γ = δ = 0 can be written in the form

m̈ =

(

1 − m2

2C

)

C(l − 2m + r) + m − m3. (29)

The following energy-conserving model, studied in [15],

m̈ = C(l − 2m + r) +
m − m3

1 − m2/(2C)
, (30)

has the same continuum limit as model Eq. (29). Fur-
thermore, it can be derived from Eq. (29) by multiplica-
tion with a factor e(C, l, m, r) = 1/(1−m2/(2C)), which
possesses a unit continuum limit. The model Eq. (29)
is PNp-free and thus, model Eq. (30) is also PNp-free
since they have the same static solutions derivable from
C(m−l)2−(1−ml)2/2 = 0. Thus, we have another exam-
ple when energy-conserving and momentum-conserving
PNp-free models have exactly the same static kink solu-
tions.

It is interesting to note that the energy-conserving
model of Eq. (30) cannot be constructed by the method
reported in [8] where discretization of the anharmonic
term always involves φn−1 and φn+1. More generally
than it is done in [8], the problem of finding the energy-
conserving PNp-free models can be formulated as follows.
We need to discretize the potential energy of the La-
grangian Eq. (1) in a way that the corresponding equa-
tion of static equilibrium is satisfied when Eq. (9) is sat-
isfied. Both energy-conserving models discussed above
are the solutions of this problem.

As an example of model conserving neither energy, nor
momentum we take Eq. (15) for the case of q(u, h) =
u + Ahu2 with constant A and obtain

m̈ =
um − ul

r − l

(1 + Ahul + Ahum)2

(1 + 2Ahul)(1 + 2Ahum)
. (31)

This model can be obtained from the momentum-
conserving model defined by Eq. (13) by multiplying
by another function that reduces to unity in the contin-
uum limit (h → 0). Obviously, the original momentum-
conserving model and model Eq. (31) have the same
static kink solutions. It can be demonstrated that these
two models also have the same spectra of small ampli-
tude vibrations and the same frequencies of kink internal
modes.
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VI. NUMERICS

In our recent work [17], some properties of kinks were
compared for the “standard” energy-conserving φ4 dis-
cretization having PNp,

m̈ = C(l + r − 2m) + m − m3, (32)

with the PNp-free models conserving energy Eq. (24)
and momentum Eq. (29).

It was found that the mobility of kinks in the PNp-
free models is higher and also that in the momentum-
conserving, PNp-free models a kink self-acceleration ef-
fect may be observed. The origin of the effect is the non-
conservative (non self-adjoint) nature of the model which,
however, can be noticed only for asymmetric trajectories
of particles when kink passes by [17]. If the trajecto-
ries are symmetric, there is no energy exchange with the
surroundings and kink dynamics is the same as in energy-
conserving models, e.g., the kink self-acceleration effect
disappears. Kinks in some of the momentum-conserving
models was found to have internal modes with frequencies
above the phonon spectrum. Such modes do not radiate
and they can have large amplitudes storing a considerable
amount of energy.

Here we present/compare results for the energy-
conserving PNp-free model Eq. (30) and the PNp-free
model of Eq. (31), generally speaking, conserving nei-
ther energy nor momentum. For the latter model we
take ul in the form of Eq. (11) where the φ4 potential
is discretized according to Eq. (27) and, for the sake of
simplicity, we set α = β = γ = δ = 0. We obtain

m̈ =

[(

1 −
m2

2C

)

C(l − 2m + r) + m − m3

]

×

(1 + Ahul + Ahum)2

(1 + 2Ahul)(1 + 2Ahum)
,

where ul = C(m − l)2 − (1 − ml)2/2 . (33)

For A = 0, Eq. (33) coincides with the momentum-
conserving model Eq. (29).

In the model Eq. (33), the static kink solutions,
phonon spectra, and frequencies of kink internal modes
are A-independent. The energy-conserving model Eq.
(30) has the same static kink solutions as model Eq.
(33) but their spectra are different. The linear vibra-
tion spectrum of the vacuum for Eq. (33) is ω2 =
2 + (4C − 2) sin2(κ/2) and that for Eq. (30) is ω2 =
4C/(2C − 1) + 4C sin2(κ/2), while the one for the classi-
cal model Eq. (32) is ω2 = 2 + 4C sin2(κ/2).

The top panels of Fig. 1 present the boundaries of the
linear vibration spectrum of the vacuum (solid lines) and
the kink internal modes (dots) as the functions of lattice
spacing h for (a) the classical φ4 model of Eq. (32), (b)
the PNp-free model of Eq. (30) conserving energy, and
(c) the PNp-free model of Eq. (33) at A = 0 conserving
momentum. In PNp-free models kinks possess a zero fre-
quency, Goldstone translational mode. Since all models
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FIG. 1: Upper panels: boundaries of the linear spectrum of
the vacuum (solid lines) and kink internal mode frequencies

(dots) as functions of the lattice spacing h = 1/
√

C. Lower
panels: time evolution of kink velocity for different initial
velocities and h = 0.7. The results are shown for (a) classical
φ4 model, Eq. (32), (b) PNp-free model conserving energy,
Eq. (30), and (c) PNp-free model conserving momentum, Eq.
(33) at A = 0.
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FIG. 2: The kink velocity in the regime of steady motion [see
bottom panel in Fig. 1 (c)] for the PNp-free φ4 model Eq.
(33) is shown as a function of parameter A. For |A| > 0.2,
the kink self-acceleration effect disappears.

presented in Fig. 1 share the same continuum φ4 limit,
their spectra are very close for small h(< 0.5).

The bottom panels of Fig. 1 show the time evolution
of kink velocity for the corresponding models at h = 0.7
for kinks launched with different initial velocities. To
boost the kink we used the semi-analytical solution for
the normalized Goldstone mode, whose amplitude serves
as a measure of the initial kink velocity. One can see
that the mobility of kinks in the PNp-free models shown
in (b) and (c) is higher than in the classical model having
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PNp and shown in (a). In the energy-conserving models
shown in (a) and (b), the kink velocity decreases mono-
tonically due to the energy radiation. Non-Hamiltonian
momentum-conserving model in (c) shows the effect of
kink self-acceleration discussed in [17].

It is interesting to study what happens when the pa-
rameter A in Eq. (33) deviates from zero and the
conservation law of the model (momentum conserva-
tion) disappears. We found that the effect of kink self-
acceleration, which can be seen in the bottom panel
of Fig. 1 (c) for A = 0, remains for |A| < 0.2 but
the value of the kink velocity in the steady motion
regime decreases with increase in |A| as it is presented
in Fig. 2. For |A| > 0.2 kink self-acceleration effect
disappears and kink velocity gradually decreases with
time. From the above, we infer that properties such as
the self-acceleration (for momentum-conserving models)
or the Bogomol’nyi bounds (for energy-conserving dis-
cretizations) render such models rather special within the
broader class of PNp free models. However, the critical
ingredient for the more general feature of (static) PN ab-
sence exists in the form of a reduction of the second order
problem into a first order.

VII. CONCLUSIONS

A general procedure for deriving discrete Klein-Gordon
models whose static kinks can be placed anywhere with
respect to the underlying lattice was described. Such
models are called static PNp-free models. It was demon-

strated that the models of this kind derived earlier
[8, 9, 15, 17] are special cases of the wider family of mod-
els derived here.

Static kink solutions for the PNp-free models can be
found from the nonlinear algebraic equation of the form
u(l, m) = 0, which is a discrete analog of the first integral
of the static continuum Klein-Gordon equation of mo-
tion. This ensures the existence of static kink solutions
at least for the regime of sufficiently weak discreteness
and smooth background potential. The range of the dis-
creteness parameter supporting stable static kinks varies
according to the specific properties of the model.

In this paper we have discussed only nearest-neighbor
discretizations. However, one can easily write down a
PNp-free model involving more distant neighbors by re-
placing Eq. (18) with higher-order finite difference oper-
ators approximating Eq. (2), keeping the two-point ap-
proximation, Eq. (11), for the first integral of Eq. (10).

Discrete kinks in the static PNp-free models possess
the zero-frequency translational Goldstone mode and
they can (almost) freely move with at least infinitesi-
mally small velocity. Such kinks are not trapped by the
lattice and they can be accelerated by even weak external
fields.

As a topic for future studies, it would be interesting
to find any possible relation between models constructed
here and models that support traveling kink solutions for
finite kink velocity. Such connections are apparently un-
der intense investigation [13] and should provide a frame-
work for understanding travelling in dispersive lattice
systems.
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