
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst
Mathematics and Statistics Department Faculty
Publication Series Mathematics and Statistics

2010

Coupled coarse graining and Markov Chain Monte
Carlo for lattice systems
E Kalligiannaki

MA Katsoulakis
University of Massachusetts - Amherst, markos@math.umass.edu

P Plechac

Follow this and additional works at: http://scholarworks.umass.edu/math_faculty_pubs

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For
more information, please contact scholarworks@library.umass.edu.

Kalligiannaki, E; Katsoulakis, MA; and Plechac, P, "Coupled coarse graining and Markov Chain Monte Carlo for lattice systems"
(2010). Mathematics and Statistics Department Faculty Publication Series. Paper 1182.
http://scholarworks.umass.edu/math_faculty_pubs/1182

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/math_faculty_pubs/1182?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Coupled coarse graining and Markov Chain
Monte Carlo for lattice systems

Evangelia Kalligiannaki∗ and Markos A. Katsoulakis† and Petr Plecháč‡

Abstract We propose an efficient Markov Chain Monte Carlo method for sampling
equilibrium distributions for stochastic lattice models, capable of handling correctly
long and short-range particle interactions. The proposed method is a Metropolis-
type algorithm with the proposal probability transition matrix based on the coarse-
grained approximating measures introduced in [17,21]. We prove that the proposed
algorithm reduces the computational cost due to energy differences and has compa-
rable mixing properties with the classical microscopic Metropolis algorithm, con-
trolled by the level of coarsening and reconstruction procedure. The properties and
effectiveness of the algorithm are demonstrated with an exactly solvable example
of a one dimensional Ising-type model, comparing efficiency of the single spin-flip
Metropolis dynamics and the proposed coupled Metropolis algorithm.
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1 Introduction

Microscopic, extended (many-particle) systems with complex interactions are ubiq-
uitous in science and engineering applications in a variety of physical and chemi-
cal systems, exhibiting rich mesoscopic morphologies. For example, nano-pattern
formation via self-assembly, arises in surface processes e.g., in heteroepitaxy, in-
duced by competing short and long-range interactions [6]. Other examples include
macromolecular systems such as polymers, proteins and other soft matter systems,
quantum dots and micromagnetic materials. Scientific computing for this class of
systems can rely on molecular simulation methods such as Kinetic Monte Carlo
(KMC) or Molecular Dynamics (MD), however their extensivity, their inherently
complex interactions and stochastic nature, severely limit the spatio-temporal scales
that can be addressed by these direct numerical simulation methods.

One of our primary goals is to develop systematic mathematical and computa-
tional strategies for the speed-up of microscopic simulation methods by developing
coarse-grained (CG) approximations, thus reducing the extended system’s degrees
of freedom. To date coarse-graining methods have been a subject of intense focus,
mainly outside mathematics and primarily in the physics, applied sciences and en-
gineering literatures [10, 17, 25, 28, 30]. The existing approaches can give unprece-
dented speed-up to molecular simulations and can work well in certain parameter
regimes, for instance, at high temperatures or low density. On the other hand, in
many parameter regimes, important macroscopic properties may not be captured
properly, e.g. [1, 30, 31]. Here we propose to, develop reliable CG algorithms for
stochastic lattice systems with complex, and often competing particle interactions
in equilibrium. Our proposed methodologies stem from the synergy of stochastic
processes, statistical mechanics and statistics sampling methods.

Monte Carlo algorithms provide a computational tool capable of estimating ob-
servables defined on high-dimensional configuration spaces that are typical for mod-
eling of complex interacting particle systems at or out of equilibrium. Markov Chain
Monte Carlo (MCMC) simulation methods such as the Metropolis algorithm, were
first proposed in 1953 by Metropolis and his coauthors [29] for the numerical cal-
culation of the equation of state for a system of rigid spheres. It was generalized in
1970 by Hastings [14] and it is commonly referred to as the Metropolis-Hastings
(MH) Monte Carlo method. This method belongs to the family of MCMC methods
which generate ergodic Markovian chains with the stationary distribution being the
desired sampled probability measure. Metropolis algorithm consists of two main in-
gredients: (a) the probability transition kernel q; the proposal, that generates trial
states and (b) the acceptance probability α according to which the proposed trial
is accepted or rejected. There are though some drawbacks of this method when ap-
plied to large systems, such as a small acceptance probability α , that leads to costly
calculations of a large number of samples that are discarded. A way to reduce these
costs is to predict efficient proposal measures such that the computational cost of
calculating a sample is lower and, if possible, increase the acceptance probability.
Convergence and ergodicity properties of Metropolis type algorithms are studied
extensively in a series of works [7, 8, 32]. The rate of convergence to stationarity
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is strongly dependent on the proposal distribution and its relation to the stationary
measure ( [32] ch. 7). A quantity that measures the speed of convergence in distri-
bution to stationarity is the spectral gap. In order to improve an MCMC method one
has to increase its spectral gap by smartly constructing a good proposal.

In this work we propose the Coupled Coarse Graining Monte Carlo (Coupled
CGMC) method, a new method of constructing efficient proposal measures based
on coarse-graining properties of the sampling models. We prove that such approach
is suitable for models that include both short and long-range interactions between
particles. Long-range interactions are well-approximated by coarse graining tech-
niques [17, 18, 20], and Coarse Graining Monte Carlo (CGMC) are adequate sim-
ulation methods with an order of acceleration up to O(q2) with q a parameter con-
trolling the level of coarse graining [19,21]. Furthermore, models where only short-
range interactions appear are inexpensive to simulate, for example with a single
spin-flip Metropolis method. However, when both short and long-range interactions
are present the classical MH algorithm becomes prohibitively expensive due to the
high cost of calculating energy differences arising from the long-range interaction
potential. In [15] we extend our framework for coupled CGMC to the dynamics
case, developing Kinetic Monte Carlo algorithms based on coarse-level rates.

Section 2 describes the classical Metropolis-Hastings algorithm and some known
mathematical theory for convergence and the rate of convergence for MCMC meth-
ods. In Section 3 we present the proposed Coupled CGMC method in a general
framework describing its mathematical properties. We state the main theorem that
compares the rate of convergence to equilibrium with the rate of the classical MH
method. In Section 4 we describe stochastic lattice systems and the coarse-graining
procedure in order to prepare for the application of the proposed method in Section 5
to a generic model of lattice systems in which both short and long-range interactions
are present.

2 MCMC methods

Before describing the Metropolis-Hastings method we need to introduce some nec-
essary definitions and theoretical facts.

Let Xn be a Markov chain on space Σ with transition kernel K .

Definition 1 A transition kernel K has the stationary measure µ if

K µ = µ .

Definition 2 K is called reversible with respect to µ if

(g,K h)µ = (K g,h)µ , for all g,h ∈ L2(µ) .

where (g,h)µ =
∫

Σ
g(σ)h(σ)µ(dσ) and K g(σ) =

∫
Σ

K (σ ,dσ ′)g(σ ′),∀σ ∈ Σ .
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A sufficient condition for µ being a stationary measure of K is the, often easy
to check, detailed balance(DB) condition.

Definition 3 A Markov chain with transition kernel K satisfies the detailed bal-
ance condition if there exists a function f satisfying

K (σ ,σ ′) f (σ) = K (σ ′,σ) f (σ ′) . (1)

Here we focus on the Metropolis-Hastings algorithm [32]. The algorithm gen-
erates an ergodic Markov chain Xn in the state space Σ , with stationary measure
µ(dσ). Let f (σ) be the probability density corresponding to the measure µ and
X0 = σ0 be arbitrary. The n-th iteration of the algorithm consists of the following
steps

Algorithm 1 (Metropolis-Hastings Algorithm)

Given Xn = σ

Step 1 Generate Yn = σ ′ ∼ q(σ ′|σ)
Step 2 Accept-Reject

Xn+1 =

{
Yn = σ ′ with probability α(σ ,σ ′)
Xn = σn with probability 1−α(σ ,σ ′)

where

α(σ ,σ ′) = min
{

1,
f (σ ′)q(σ ′,σ)

f (σ)q(σ ,σ ′)

}
We denote q(σ ′|σ) the proposal probability transition kernel, and α(σ ,σ ′) the

probability of accepting the proposed state σ ′. The transition kernel associated to
MH algorithm is

Kc(σ ,σ ′) = α(σ ,σ ′)q(σ ,σ ′)+

[
1−

∫
α(σ ,σ ′)q(σ ,σ ′)dσ

′
]

δ (σ ′−σ) . (2)

Convergence and ergodicity properties of the chain {Xn} depend on the proposal
kernel q, and they are studied extensively in [32]. Kc satisfies the DB condition with
f ensuring that it has stationary measure µ . Kc is irreducible and aperiodic [32],
nonnegative definite, and reversible, thus the Markov chain with transition kernel
Kc converges in distribution to µ .

2.1 Mixing times and speed of convergence

It is known [7] that for a discrete-time Markov chain Xn with the transition kernel
K and the stationary distribution f , the rate of convergence to its stationarity can
be measured in terms of kernel’s second largest eigenvalue, according to
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2||K n(σ , ·)− f ||TV ≤
1

f (σ)1/2 β
n

where β =max{|βmin|,β1} and−1≤ βmin ≤ ·· · ≤ β1 ≤ β0 = 1 are the real eigenval-
ues of K . The spectral gap of kernel K is defined by λ (K )=min

{
E (h,h)
Var(h) ;Var(h) 6= 0

}
which for the self-adjoint kernel K , because of reversibility, is λ (K ) = 1− β1.
With the Dirichlet form E and the variance defined by

E (h,h) =
1
2 ∑

σ ,σ ′
|h(σ)−h(σ ′)|2K (σ ,σ ′) f (σ) ,

Var(h) =
1
2 ∑

σ ,σ ′
|h(σ)−h(σ ′)|2 f (σ ′) f (σ) .

Between two algorithms producing Markov chains with identical equilibrium dis-
tributions better in terms of the speed of convergence is the one with the smaller
second eigenvalue in absolute value or equivalently with the larger spectral gap.

3 The Coupled CGMC method

The proposed algorithm is designed to generate samples from the microscopic prob-
ability measure µ with density f on a space Σ , coupling properly states of the mi-
croscopic space Σ with states on a coarse space Σ̄ having less degrees of freedom. A
properly constructed coarse measure on Σ̄ will be the basis for constructing efficient
proposal kernels for MH algorithms sampling large systems.

The coarsening procedure is based on the expansion of the target measure µ to a
coarse and a finer part. Abstractly we write f (σ) = f (η ,ξ ) and Σ = Σ̄ × Σ̄ ′, where
η ∈ Σ̄ represents the coarse variables.

We denote the projection operator on the coarse variables

T : Σ → Σ̄ , T σ = η .

The exact coarse marginal is

f̄ (η) =
∫

Σ̄ ′
f (η ,ξ )dξ .

To obtain an explicit formula of the coarse marginal is as difficult as sampling the
original target distribution since space Σ̄ ′ remains high dimensional. Therefore use
of approximating distributions of f̄ becomes necessary. Such approximations have
been proposed in [17, 21] for stochastic lattice systems and are abstractly described
in Section (4) and for complex macromolecular systems see [4, 11, 13, 35].

Denote f̄0 an approximation of f̄ on Σ̄ . This distribution, combined with a re-
construction distribution fr(ξ |η) corresponding to the finer variables ξ , will con-
struct a candidate for proposal distribution in MH algorithms performed in order
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to sample from f at the original space Σ . An example of a ’good’ proposal dis-
tribution is f0(σ) := f̄0(η) fr(ξ |η). For notational simplicity we write fr(σ |η) in-
stead of fr(ξ |η). In terms of the Metropolis-Hastings algorithm this means that
q(σ ,σ ′) = f0(σ

′), or that f0(σ
′) is the stationary measure of the proposal kernel

q(σ ,σ ′).
The coupled CGMC algorithm is composed of two coupled Metropolis iterations,

the first generating samples from the proposal distribution and the second samples
from the target measure. The first Metropolis step samples the coarse approximating
marginal f̄0(η), using an arbitrary proposal transition kernel q̄0(η ,η ′) to produce
trial samples η ′. The second step is performed if the coarse trial sample is accepted,
and consists of the reconstruction from the coarse trial state and a Metropolis crite-
rion designed to ensure sampling from the correct microscopic density f . If a trial
coarse sample is rejected, then we go back to the first step to rebuild a new coarse
trial, so that the fine Metropolis step is not performed and no computational time is
wasted on checking fine trial samples that are most likely to be rejected.

In [9] Efendiev et.al., propose the Preconditioning MCMC, a two stage ( coarse
and fine ) Metropolis MCMC method, applied to inverse problems of subsurface
characterization. The coarse and fine models are finite volume schemes of different
resolutions for a PDE two-phase flow model. Our algorithm shares the same idea
and structure with the Preconditioning MCMC of constructing a proposal density
based on meso/macro-scopic properties of the model studied and taking advantage
of the first stage rejections. In terms of the MC method ’coarsening’ corresponds to
enriching the range of the sampling measure based on coarse-scale models proposed
by multiscale finite volume methods. The major difference of the Preconditioning
MCMC and the proposed algorithm is that the latter alternates between different
state spaces during each MC iteration, the coarse and the finer, whether in the for-
mer the state space remains the same since coarse and fine problems are solved
independently. Thus, at the end of a simulation we will have both fine-scale and
”compressed”, coarse-grained data. The performance of the coarse proposals in our
case can be further estimated based on a systematic error analysis such as (14).

The proposed procedure has also some common features with the modified Con-
figurational bias Monte Carlo (CBMS) where the trial density is built up sequentialy
with stage-wise rejection decision described in [27], applied effectively in quan-
tum mechanical systems [5]. There are also some similarities with simulated sin-
tering and transdimensional MCMC, see [27] and references therein. However, in
our method, the construction of the variable dimensionality (and level of coarse-
graining) state spaces and the corresponding Gibbs measures relies on statistical
mechanics tools that allow a systematic control of the error from one level of coarse-
graining to the next, e.g. (14).

3.1 The algorithm
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We describe in detail the coupled CGMC Metropolis algorithm outlined in the
previews section.

Algorithm 2 ( Coupled CGMC Algorithm)

Let X0 = σ0 arbitrary, for n = 0,1,2, . . .
Given Xn = σ

Step 1 Compute the coarse variable η = T σ

Step 2 Generate a coarse sample η ′ ∼ q̄0(η ,η ′)
Step 3 Coarse Level Accept-Reject

Accept η ′ with probability:

αCG(η ,η ′) = min
{

1,
f̄0(η

′)q̄0(η
′,η)

f̄0(η)q̄0(η ,η ′)

}
.

If η ′ is accepted then proceed to Step 4
else generate a new coarse sample Step 2

Step 4 Reconstruct σ ′ given the coarse trial η ′,

σ
′ ∼ fr(·|η ′)

Step 5 Fine Level Accept-Reject
Accept σ ′ with probability

α f (σ ,σ ′) = min
{

1,
f (σ ′) f̄0(η) fr(σ |η)

f (σ) f̄0(η ′) fr(σ ′|η ′)

}
.

Steps 2 and 3 generate a Markov chain {Zn} in the coarse space Σ̄ with the
transition kernel

Q(η ,η ′) = αCG(η ,η ′)q̄0(η ,η ′)+

[
1−

∫
αCG(η ,z)q̄0(η ,z)

]
δ (η ′−η) .

The stationary measure of kernel Q is f̄0(η). Combination of this kernel and Steps
1 and 4 constructs the desired proposal transition kernel q0(σ ,σ ′) on the fine level
space Σ ,

q0(σ ,σ ′) = Q(η ,η ′) fr(σ
′|η ′) .

According to the MH algorithm in order to sample from f , the fine level acceptance
probability should be α f (σ ,σ ′) = min

{
1, f (σ ′)q0(σ

′,σ)
f (σ)q0(σ ,σ ′)

}
, but since Q satisfies the

Detailed Balance condition Q(η ,η ′) f̄0(η) = Q(η ′,η) f̄0(η
′), α f is equal to

α f (σ ,σ ′) = min
{

1,
f (σ ′)Q(η ′,η) fr(σ |η)

f (σ)Q(η ,η ′) fr(σ ′|η ′)

}
= min

{
1,

f (σ ′) f̄0(η) fr(σ |η)

f (σ) f̄0(η ′) fr(σ ′|η ′)

}
.
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The chain Xn produced by Coupled CGMC algorithm is a Markov chain on the
fine space Σ , with the transition kernel

KCG(σ ,σ ′) = α f (σ ,σ ′)q0(σ ,σ ′)+

[
1−

∫
α f (σ ,σ ′)q0(σ ,σ ′)dσ

′
]

δ (σ ′−σ) .

(3)
The Markov chain Xn generated by the Coupled CGMC algorithm converges to

the correct stationary distribution f and is ergodic, which ensures that 1
n ∑

n
j=1 h(X j)

is a convergent approximation of the averages
∫

h(σ) f (σ)dσ for any h ∈ L1( f ).
Ergodicity and reversibility properties are satisfied ensuring that the algorithm gen-
erates samples from the correct measure.We state this fact as a separate theorem
proof of which is given in detail in [15].

We denote E = {σ ∈ Σ ; f (σ)> 0}, Ē = {η ∈ Σ̄ ; f̄0(η)> 0}.

Theorem 1 For every conditional distribution q̄0, and fr such that the support of
q0 fr includes E,

i) The transition kernel satisfies the detailed balance (DB) condition with f

KCG(σ ,σ ′) f (σ) = KCG(σ
′,σ) f (σ ′)

ii) f is a stationary distribution of the chain.
iii) if q0(σ ,σ ′)> 0, ∀σ ,σ ′ ∈ E and E ⊆ supp( f0) then Xn is f -irreducible
iv) is aperiodic

3.2 The rate of convergence

The calculation of the rate of convergence to stationarity is a hard problem since it
is model dependent as argued earlier. What we can prove though for the proposed
method is that it is comparable to the classical Metropolis-Hastings algorithm de-
scribed in Algorithm 1. This fact is stated rigorously in the following theorem which
we prove in [15].

Let λ (KCG),λ (Kc) be the spectral gap corresponding to the coupled CGMC
KCG, (3), and the classical MH Kc, (2), transition kernels respectively.

Theorem 2 Let q(σ ,σ ′) be a symmetric proposal transition probability for the
classical MH algorithm and q̄0(η ,η ′) a symmetric proposal transition probability
on the coarse space Σ̄ for the coupled CGMC algorithm, then for any reconstruction
conditional probability fr(σ |η)

i)
KCG(σ ,σ ′) = A (σ ,σ ′)B(σ ,σ ′)Kc(σ ,σ ′) (4)
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B(σ ,σ ′) =

{ q̄0(η ,η ′) fr(σ ′|η ′)
q(σ ,σ ′)

q̄0(η
′,η) fr(σ |η)
q(σ ′,σ)

Furthermore we define the subsets

C1 =
{
(σ ,σ ′) ∈ Σ ×Σ :

{
α < 1,αCG < 1,α f < 1

}
or
{

α = 1,αCG = 1,α f = 1
}}

C2 =
{
(σ ,σ ′) ∈ Σ ×Σ :

{
α = 1,αCG < 1,α f = 1

}
or
{

α < 1,αCG = 1,α f < 1
}}

C3 =
{
(σ ,σ ′) ∈ Σ ×Σ :

{
α = 1,αCG = 1,α f < 1

}
or
{

α < 1,αCG < 1,α f = 1
}}

C4 =
{
(σ ,σ ′) ∈ Σ ×Σ :

{
α < 1,αCG = 1,α f = 1

}
or
{

α = 1,αCG < 1,α f < 1
}}

A (σ ,σ ′) =


1, if (σ ,σ ′) ∈C1

min{ f̄0(η ′)
f̄0(η)

, f̄0(η)
f̄0(η ′)
}, if (σ ,σ ′) ∈C2

min{ f (σ ′) f̄0(η)
f (σ) f̄0(η ′)

, f (σ) f̄0(η ′)
f (σ ′) f̄0(η)

}, if (σ ,σ ′) ∈C3

min{ f (σ ′)
f (σ) ,

f (σ)
f (σ ′)}, if (σ ,σ ′) ∈C4

ii)
A γλ (Kc)≤ λ (KCG)≤ γ̄λ (Kc) (5)

where A = infσ ,σ ′A (σ ,σ ′) and γ > 0, γ̄ > 0 such that γ ≤B(σ ,σ ′)≤ γ̄ .

4 Extended Lattice Systems

This class of stochastic processes is employed in the modeling of adsorption, des-
orption, reaction and diffusion of chemical species in numerous applied science
areas such as catalysis, microporous materials, biological systems, etc. [3, 26]. To
demonstrate the basic ideas, we consider an Ising-type system on a periodic d-
dimensional lattice ΛN with N = nd lattice points. At each x ∈ ΛN we can de-
fine an order parameter σ(x); for instance, when taking values 0 and 1, it can de-
scribe vacant and occupied sites. The energy HN of the system, at the configuration
σ = {σ(x) : x ∈ΛN} is given by the Hamiltonian,

HN(σ) =−1
2 ∑

x∈ΛN

∑
y 6=x

[K(x− y)+ J(x− y)]σ(x)σ(y)+∑hσ(x) , (6)

where h, is the external field and J is the inter-particle potential. Equilibrium states at
the temperature ∼ β−1 are described by the (canonical) Gibbs probability measure,
and ZΛN is the normalizing constant (partition function)

µΛN ,β (dσ) = Z−1
ΛN

exp
(
−βHN(σ)

)
PN(dσ) . (7)
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Furthermore, the product Bernoulli distribution PN(σ) is the prior distribution on
ΛN .

The inter-particle potentials K, J account for interactions between occupied sites.
We consider K corresponding to the short and J to the long-range interactions dis-
cussed in detail in Section (4.2). General potentials with combined short and long-
range interactions are discussed here, while we can also address potentials with
suitable decay/growth conditions [2].

The prior PN(dσ) is typically a product measure, describing the system at
β = 0, when interactions in HN are unimportant and thermal fluctuations-disorder-
associated with the product structure of PN(dσ) dominates. By contrast at zero
temperature, β = ∞ interactions, and hence order, prevail. Finite temperatures,
0 < β < ∞, describe intermediate states, including possible phase transitions be-
tween ordered and disordered states. For both on-lattice or off-lattice particle sys-
tems, the finite-volume equilibrium states of the system have the structure (7).

4.1 Coarse-graining of microscopic systems

Coarse-graining of microscopic systems is essentially an approximation theory and
a numerical analysis question. However, the presence of stochastic fluctuations on
one hand, and the extensivity of the models (the system size scales with the number
of particles) on the other, create a new set of challenges. We discuss all these issues
next, in a general setting that applies to both on-lattice and off-lattice systems.

First, we write the microscopic configuration σ in terms of coarse variables η and
corresponding fine ones ξ so that σ = (η ,ξ ). We denote by T the coarse-graining
map T σ = η .

The CG system size is denoted by M, while the microscopic system size is
N = Mq, where we refer to q as the level of coarse graining, and q = 1 corresponds
to no coarse graining. The exact CG Gibbs measure is given (with a slight abuse of
notation) by µ̄M,β = µN,β ◦T−1 . In order to write µ̄M,β in a more convenient form
we first define the CG prior P̄M(dη) = PN ◦T−1. The conditional prior PN(dσ |η) is
the probability of having a microscopic configuration σ , given a coarse configura-
tion η . We now rewrite µ̄M,β using the exact coarse-grained Hamiltonian:

e−β H̄M(η) = E[e−βHN |η ] =
∫

e−βHN(σ)PN(dσ |η) , (8)

a procedure known as the renormalization group map, [12]; µ̄M,β (dη) is now re-
written using (8) as

µ̄M,β (dη) =
1

Z̄M
e−β H̄M(η)P̄M(dη) . (9)
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Although typically P̄M(dη) is easy to calculate, even for moderately small values
of N the exact computation of the coarse-grained Hamiltonian H̄M(η) given by (8)
is, in general, impossible.

We have shown in [21] that there is an expansion of H̄M(η) into a convergent
series

H̄M(η) = H̄(0)
M (η)+ H̄(1)

M (η)+ H̄(2)
M (η)+ · · ·+ H̄(p)

M (η)+N×O(ε p) , (10)

by constructing a suitable first approximation H̄(0)
M (η) and identifying a suitable

small parameter ε to control the higher order terms in the expansions. Truncations
including the first terms in (10) correspond to coarse-graining schemes of increasing
accuracy. In order to obtain this expansion we rewrite (8) as

H̄M(η) = H̄(0)
M (η)− 1

β
logE[e−β (HN−H̄(0)

M (η))|η ] . (11)

We need to show that the logarithm can be expanded into a convergent series, yield-
ing eventually (10), however, two interrelated difficulties emerge immediately: first,
the stochasticity of the system in the finite temperature case, yields the nonlin-
ear log expression which in turn will need to be expanded into a series. Second,
the extensivity of the microscopic system, i.e., typically the Hamiltonian scales as
HN = O(N), does not allow the expansion of the logarithm and exponential func-
tions into a Taylor series. For these two reasons, one of the mathematical tools
we employed is the cluster expansion method, see [33] for an overview. Clus-
ter expansions allow us to identify uncorrelated components in the expected value

E[e−β (HN−H̄(0)
M (η))|η ] , which in turn will permit us to factorize it, and subsequently

expand the logarithm.

The coarse-graining of systems with purely long- or intermediate-range interac-
tions of the form

J(x− y) = L−1V
(
(x− y)/L

)
, x ,y ∈ΛN , (12)

where V (r) = V (−r), V (r) = 0 , |r| > 1, was studied using cluster expansions in
[2, 20, 21]. The corresponding CG Hamiltonian is

H̄0(η) =−1
2 ∑

l∈Λ̄M

∑
k∈Λ̄M

k 6=l

J̄(k, l)η(k)η(l)− J̄(0,0)
2 ∑

l∈Λ̄M

η(l)
(
η(l)−1

)
+ ∑

k∈Λ̄M

h̄η(k) .

(13)

J̄(k, l) =
1
q2 ∑

x∈Ck

∑
y∈Cl

J(x− y), J̄(k,k) =
1

q(q−1) ∑
x∈Ck

∑
y∈Ck,y6=x

J(x− y)
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One of the results therein is on deriving error estimates in terms of the specific
relative entropy R(µ|ν) := N−1

∑σ log
{

µ(σ)/ν(σ)
}

µ(σ) between the corre-
sponding equilibrium Gibbs measures. Note that the scaling factor N−1 is related to
the extensivity of the system, hence the proper error quantity that needs to be tracked
is the loss of information per particle. Using this idea we can assess the information
compression for the same level of coarse graining in schemes differentiated by the
truncation level p in (10)

R(µ̄
(p)
M,β |µN,β ◦T−1) = O(ε p+1) , ε ≡ β‖∇V‖1

(q
L

)
, (14)

where H̄(0)
M (η) in (10) is given by (13). The role of such higher order schemes was

demonstrated in nucleation, metastability and the resulting switching times between
phases, [2].

Although CGMC and other CG methods can provide a powerful computational
tool in molecular simulations, it has been observed that in some regimes, important
macroscopic properties may not be captured properly. For instance, (over-)coarse
graining in polymer systems may yield wrong predictions in the melt structure [1];
similarly wrong predictions on crystallization were also observed in the CG of com-
plex fluids, [31]. In CGMC for lattice systems, hysteresis and critical behavior may
also not be captured properly for short and intermediate range potentials, [19, 21].
Motivated by such observations, in our recent work we studied when CG methods
perform satisfactorily, and how to quantify the CG approximations from a numerical
analysis perspective, where error is assessed in view of a specified tolerance. Next,
we discuss systems with long range interactions, i.e., L >> 1 in (12). These systems
can exhibit complex behavior such as phase transitions, nucleation, etc., however,
they are more tractable analytically. At the same time they pose a serious challenge
to conventional MC methods due to the large number of neighbors involved in each
MC step.

Here we adopt this general approach, however, the challenges when both short
and long-range interactions are present, require a new methodology. Short-range
interactions induce strong ”sub-coarse grid” fine-scale correlations between coarse
cells, and need to be explicitly included in the initial approximation H̄(0)

M (η). For
this reason we introduced in [24] a multi-scale decomposition of the Gibbs state
(7), into fine and coarse variables, which in turn allows us to describe in an explicit
manner the communication across scales, for both short and long-range interactions.

4.2 Multiscale Decomposition and Splitting Methods for MCMC

We first focus on general lattice systems, and subsequently discuss related applica-
tions in later sections. We consider (6) where in addition to the long-range potential
(12), we add the short-range K(x− y) = S−1U (N|x− y|/S), where S << L and U
has similar properties as V in (12); for S = 1 we have the usual nearest neighbor
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interaction. The new Hamiltonian includes both long and short-range interactions:
HN = H l

N +Hs
N .

The common theme is the observation that long-range interactions L >> 1 can
be handled very efficiently by CGMC, (14). On the other hand short-range interac-
tions are relatively inexpensive and one could simulate them with Direct Numerical
Simulation (DNS) provided there is a suitable splitting of the algorithm in short
and long-range parts, that can reproduce within a given tolerance equilibrium Gibbs
states and dynamics. We return to the general discussion in (10) and outline the
steps we need in order to construct the CG Hamiltonian for the combined short and
long-range interactions.

Step 1: Semi-analytical splitting schemes. Here we take advantage of CG approxi-
mations developed in (14) in order to decompose our calculation into analytical and
numerical components, the latter involving only short-range interactions:

µN,β (dσ) ∼ e−βHN(σ)PN(dσ) =

= e−
(

βH l
N(σ)−H̄ l,0

M (η)
)[

e−βHs
N(σ)PN(dσ |η)

]
e−H̄ l,0

M (η)P̄M(η) ,

where H̄ l,0
M is the analytical CG formula (13) constructed for the computationally

expensive, for conventional MC, long-range part; due to the estimates (14), the
first term has controlled error. Furthermore, the dependence of ε on ∇V in these
estimates suggests a rearrangement of the overall combined short- and long-range
potential, into a new short-range interaction that includes possible singularities orig-
inally in the long-range component (12), e.g., the singular part in a Lennard-Jones
potential, and a locally integrable (or smooth) long-range decaying component that
can be analytically coarse-grained using (13), with a small error due to (14). This
breakdown allows us to isolate the short-range interactions (after a possible re-
arrangement!), and suggests the two alternative computational approaches: either
seek an approximation e−β H̄s

M(η) =
∫

e−βHs
N PN(dσ |η), or use sampling methods to

account for the short-range ”unresolved” terms.

4.3 Microscopic Reconstruction

The reverse procedure of coarse-graining, i.e., reproducing ”atomistic” properties,
directly from CG simulations is an issue that arises extensively in the polymer sci-
ence literature, [30, 36]. The principal idea is that computationally inexpensive CG
simulations will reproduce the large scale structure and subsequently microscopic
information will be added through microscopic reconstruction, e.g., the calculation
of diffusion of penetrants through polymer melts, reconstructed from CG simula-
tion, [30]. In this direction, CGMC provides a simpler lattice framework to math-
ematically formulate microscopic reconstruction and study related numerical and
computational issues. Interestingly this issue arised also in the mathematical error
analysis in [18, 22].
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The mathematical formulation for the reconstruction of the microscopic equilib-
rium follows trivially when we rewrite the Gibbs measure (7) in terms of the exact
CG measure corresponding to (8), defined in (9), [20]:

µN(dσ)∼ e−β (H(σ)−H̄(η))PN(dσ |η)µ̄M(dη)≡ µN(dσ |η)µ̄M(dη) .

We can define the conditional probability µN(dσ |η) as the exact reconstruction
of µN(dσ) from the exactly CG measure µ̄M(dη). Although many fine-scale con-
figurations σ correspond to a single CG configuration η , the “reconstructed” con-
ditional probability µN(dσ |η) is uniquely defined, given the microscopic and the
coarse-grained measures µN(dσ) and µ̄M(dη) respectively.

A coarse-graining scheme provides an approximation µ̄
app
M (dη) for µ̄M(dη), at

the coarse level. The approximation µ̄
app
M (dη) could be, for instance, any of the

schemes discussed in Section 4.2. To provide a reconstruction we need to lift the
measure µ̄

app
M (dη) to a measure µ

app
N (dσ) on the microscopic configurations. That

is, we need to specify a conditional probability νN(dσ |η) and set µ
app
N (dσ) :=

νN(dσ |η)µ̄
app
M (dη) . In the spirit of our earlier discussion, it is natural to measure

the efficiency of the reconstruction by the relative entropy,

R
(
µ

app
N |µN

)
= R

(
µ̄

app
M | µ̄M

)
+
∫

R (νN(·|η) |µN(· |η)) µ̄
app
M (dη) , (15)

i.e., relative entropy splits the total error at the microscopic level into the sum of the
error at the coarse level and the error made during reconstruction, [20, 34].

The first term in (15) can be controlled via CG estimates, e.g., (14). However,
(15) suggests that in order to obtain a successful reconstruction we then need to
construct νN(dσ |η) such that (a) R (νN(dσ |η) |µN(dσ |η)) should be of the same
order as the first term in (15), and (b) it is easily computable and implementable.

The simplest example of reconstruction is obtained by considering a microscopic
system with intermediate/long-range interactions (12)

µ̄
app
M (dη) = µ̄

(0)
M (dη) , νN(dσ |η) = PN(dσ |η) . (16)

Thus we first sample the CG variables η involved in µ̄
(0)
M , using a CGMC algorithm;

then we reconstruct the microscopic configuration σ by distributing the particles
uniformly on the coarse cell, conditioned on the value of η . Since PN(dσ |η) is a
product measure this can be done numerically in a very easy way, without com-
munication between coarse cells and only at the coarse cells where an update has
occurred in the CGMC algorithm. In this case the analysis in [23] yields the esti-
mates

R
(

µ̄
(0)
M | µ̄M

)
=O(ε2) , R (µN(· |η) |PN(· |η)) =

β

N

(
H̄(0)(η)− H̄(η)

)
= O(ε2) .

Hence the reconstruction is second order accurate and of the same order as the
coarse-graining given by (13).
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5 Example: Short and long-range interactions

Short and long-range interactions pose a formidable computational challenge. We
consider an example that has been explicitly solved by Kardar in [16]. The model
considered has state space ΣN = {0,1}ΛN , where ΛN is a 1-dimensional lattice with
N sites. The energy of the system at configuration σ = {σ(x),x ∈ΛN} is

βHN(σ) = −K
2 ∑

x
∑

|x−y|=1
σ(x)σ(y)− J

2N ∑
x

∑
y6=x

σ(x)σ(y)−h∑σ(x)

≡ Hs
N(σ)+H l

N(σ)+E(σ) .

Hamiltonian HN(σ) consists of the short-range term Hs
N , the long-range term H l

N
and an external field E. The interactions involved in Hs

N are of the nearest-neighbor
type with strength K, while H l

N represents a mean-field approximation or the Curie-
Weiss model defined by the potential J averaged over all lattice sites. For this generic
model Kardar gave in [16] a closed form solution for magnetization Mβ (K,J,h),for
the state space {−1,1}

Mβ (K,J,h)= argmin
m

(
J
2

m2− log
[

eK cosh(h+ Jm)+

√
e2K sin2(h+ Jm)+ e−2K

])
a simple rescaling of which gives the exact average coverage mβ (K,J,h) for the
lattice-gas model considered here.

mβ (K,J,h) =
1
2

(
Mβ

(
1
4

K,
1
4

J,
1
2

h− 1
4

J− 1
4

K
)
+1
)

(17)

We have constructed the classical single spin-flip M-H algorithm and the coupled
Metropolis CGMC for the single spin-flip algorithm, both generating samples from
the Gibbs measure

µN,β =
1

ZN
e−βHN(σ)PN(dσ) .

We denote σ x the state that differs from σ only at the site x, σ x(y) = σ(y),y 6=
x, σ x(x) = 1−σ(x), the proposal transition kernel is q(σ ′|σ) = 1

N ∑x δ (σ ′−σ x),
proposing a spin-flip at the site x with the probability 1

N .
We apply the coupled CGMC method with coarse updating variable

η := T σ = {η(k),k = 1, . . . ,M}

η(k) := ∑x∈Ck
σ(x), qM = N with a coarsening level q < M, and for the maximum

coarsening q = N where the coarse variable is total magnetization η = ∑x∈Λn σ(x).
This can be thought as a coarsening procedure constructing a system consisting of
one big coarse cell M = 1 with q = N sites. Since we want to consider only single
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spin-flip updates, for the sake of comparison to the classical Metropolis method, the
cell updating can take only the values ±1 and the reconstruction is chosen uniform
in each cell, in the sence described in example at Section 4.3.

Table 1 gives a comparison of the classical single-site updating Metropolis Hast-
ings algorithm with the proposed coupled Metropolis CGMC algorithm, in terms
of computational complexity per iteration. By computational complexity here we
mean the cost of calculating energy differences involved at the acceptance proba-
bilities. Consider the case that both the microscopic single-site updating Metropo-
lis and the two-step CGMC are run n times. This is reasonable to consider since
as stated at Theorem 2 the two methods have comparable mixing times, therefore
the number of iterations needed to achieve stationarity are comparable. We denote
E(αCG) :=

∫ ∫
αCG(η ,η ′)q̄0(η ,η ′) f̄0(η)dηdη ′ the average acceptance rate of the

coarse proposal. The average number of accepted coarse samples is n1 := [E(αCG)n]
for which n1 < n since E(αCG)< 1 . This means that the reconstruction and fine step
acceptance criterion are performed in average only for n1 iterations.

Table 1 Operations count for evaluating energy differences for n iterations

Cost Metropolis Hastings Coupled CGMC q < N Coupled CGMC q = N

coarse A-R – n×O(M) n×O(1)
fine A-R n×O(N) n1×O(1) n1×O(1)

Fig. 1 Phase Diagram [16]

Results of computational implementation are shown in Figure 2 and Table 2 and
3. Figure 2a represents the average coverage versus the external field h for the exact
solution mex, the classical MH result < mcl > and the coupled CGMC < m >, for
a choice of interaction parameters K = 1, J = 5 in the ferromagnetic region as
is stated at the phase diagram depicted in Figure 1. The exact solution mex as is
ploted in Figure 2a corresponds to the part the full solution (17) up to the point it
jumps. Figure 2b is a graph of the average acceptance rates for the classical MH
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Fig. 2 N= 1028, q=8, K= 1, J= 5: (a) Coverage ; (b) Average acceptance.

Fig. 3 N= 1028, q=8, K= 1, J= 5: Local error log(|< m >−< mex|)

algorithm and the coupled CGMC algorithm, that verifies the theoretical proof of
the fact that the two algorithms have comparable mixing times since the acceptance
rate is strongly related to mixing times. In the same figure we also give the average
acceptance rates of the coarse and fine step of the coupled method, noting that the
fine acceptance rate is high which means that most of the trial samples entering the
fine step are accepted.

Table 2 reports the error between the exact solution and the average cover-
age obtained from the coupled CGMC algorithm. Error is measured in terms of
the pointwise solutions as Errorc =

(
∑i(mex(hi)−< m > (hi))

2
)1/2 and Errorcl =(

∑i(mex(hi)−< mcl > (hi))
2
)1/2 for the coupled and the classical method respec-

tively, where hi are the different external field parameters for which the average
coverages are computed. CPU times are compared for the coarse-graining levels
q = 4 and q = 8. To demonstrate the robustness of the algorithm we present simu-
lations at three different points of the phase diagram plane K− J: in the disordered
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Table 2 N= 4096

CG level q Errorc CPU(min)

4 0.089 93.52K= -2.0, J=2
8 0.302 45.8

4 0.003 93.6K= 1.0, J=5
8 0.003 45.9

4 0.027 91.6K= 1, J=1
8 0.100 45.5

((K =−2.0,J = 2) and (K = 1,J = 1)) and ferromagnetic (K = 1.0,J = 5) regions.
In table 3 we compare the error between the coupled CGMC average coverage with
the exact solution and the corresponding CPU time for q = 4 and q = 8, in the
ferromagnetic region (K = 1.0,J = 5) for which the classical Metropolis results.

These results demonstrate the efficiency of the coupled CGMC methods in terms
of computational time since the run time gain scales almost linearly with the coars-
ening level. We expect that according to Theorem 2ii, the error should be indepen-
dent of the coarse graining parameter due to the microscopic nature of the algo-
rithm though this is not evident in the tables since we are using a simplification of
the reconstruction procedure for computational ease. We should also mention that a
large number of samples (105) were considered ensuring the statistical error is small
enough.

Table 3 N= 1028, K= 1, J= 5, Errorcl = 0.003, Classical CPU = 94.5min

CG level Errorc Coupled CPU(min)

q=4 0.01 23.1
q=8 0.04 12.1

6 Conclusions

An advantage of the Coupled CGMC approach over the asymptotics methodology
discussed in Section 4.2 is that the trial distribution may even be order one away
from the target distribution, however, the method can still perform well. On the other
hand, the methods can complement each other; for example, for equilibrium sam-
pling considered in this work we use as a trial reconstructed distribution, the con-
ditional measure ν(dσ |η) in the multiscale decomposition in [24], see also Section
4.3. Such proposals based on careful statistical mechanics-based approximations
provide better trial choices for the MH methods and more efficient sampling, as is
proved theroretically and numerically. The example illustrated makes clear that the



Coupled coarse graining and Markov Chain Monte Carlo for lattice systems 19

coupled CGMC method implements a splitting of the short and long-range interac-
tion terms, into the two Metropolis acceptance criteria involved. The long-range part
which is responsible for the expensive calculations at a fully microscopic method,
now enters only in the coarse approximation measure where its computational cost
is much lower.

Coupling of a coarse and fine step is also effective in the study of dynamic pro-
cesses of stochastic lattice systems with kinetic Monte Carlo methods, a topic stud-
ied in detail in [15].
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