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ABSTRACT

We investigate the dynamical mechanisms responsible for producing tidal tails from
dwarf satellites using N-body simulations. We describe the essential dynamical mech-
anisms and morphological consequences of tail production in satellites with masses
greater than 0.0001 of the host halo virial mass. We identify two important dynamical
co-conspirators: 1) the points where the attractive force of the host halo and satel-
lite are balanced (X-points) do not occur at equal distances from the satellite centre
or at the same equipotential value for massive satellites, breaking the morphological
symmetry of the leading and trailing tails; and 2) the escaped ejecta in the leading
(trailing) tail continues to be decelerated (accelerated) by the satellite’s gravity leading
to large offsets of the ejecta orbits from the satellite orbit. The effect of the satellite’s
self gravity decreases only weakly with a decreasing ratio of satellite mass to host halo
mass, proportional to (Ms/Mh)1/3, demonstrating the importance of these effects over
a wide range of subhalo masses. Not only will the morphology of the leading and trail-
ing tails for massive satellites be different, but the observed radial velocities of the
tails will be displaced from that of the satellite orbit; both the displacement and the
maximum radial velocity is proportional to satellite mass. If the tails are assumed to
follow the progenitor satellite orbits, the tails from satellites with masses greater than
0.0001 of the host halo virial mass in a spherical halo will appear to indicate a flat-
tened halo. Therefore, a constraint on the Milky Way halo shape using tidal streams
requires mass-dependent modelling. Similarly, we compute the the distribution of tail
orbits both in Er − r−2 space (Lynden-Bell & Lynden-Bell 1995) and in E −Lz space
(Helmi & de Zeeuw 2000), advocated for identifying satellite stream relics. The accel-
eration of ejecta by a massive satellite during escape spreads the velocity distribution
and obscures the signature of a well-defined “moving group” in phase space. Although
these findings complicate the interpretation of stellar streams and moving groups, the
intrinsic mass dependence provides additional leverage on both halo and progenitor
satellite properties.

Key words: galaxies : evolution — galaxies : interaction —galaxies : haloes — galax-
ies: kinematics and dynamics — method : N-body simulation — method: numerical

1 INTRODUCTION

According to the currently favoured galaxy formation sce-
nario, the cold dark matter (CDM) cosmogony, galaxies
are built up from the assembly of small structures. In this
paradigm the assembly mechanism plays a key role in under-
standing the formation history of galaxies. Recent cold dark
matter cosmological numerical simulations predict the exis-
tence of a large population of subhalos. Comparisons with
the observed population of dwarf galaxies and detailed pre-
dictions of the present-day subhalo population, dark or lumi-
nous, have become important tests of the CDM galaxy for-
mation paradigm (Ghigna et al. 1998, 2000; De Lucia et al.
2004; Diemand et al. 2004; Gao et al. 2004; Oguri & Lee

2004). Most studies to date use large cosmological simula-
tions and classify their properties statistically. However, to
properly investigate these processes, one needs to perform
high resolution idealised simulations of subhalo evolution
within the CDM paradigm (Hayashi et al. 2003). Alterna-
tively, in this study, we investigate one important conse-
quence of subhalo disruption: the formation and evolution
of tidal tails. By adopting initial conditions motivated by the
CDM simulations, we can focus our computational resources
on understanding the dynamical mechanism.

Satellite galaxy tidal tails are an important observable
fossil signature to help understand the formation history
of the Milky Way and to test CDM theory as a conse-
quence. Tails and streams provide information about the

http://arXiv.org/abs/astro-ph/0702353v2
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Galactic halo mass model as well as the evolutionary history
of the observed satellite galaxy. In the CDM model, galax-
ies are embedded in massive dark matter halos. Estimating
dark matter halo structure is essential to understand galaxy
formation and tidal tail morphology probes halo structure
(Johnston et al. 1999; Helmi & de Zeeuw 2000; Ibata et al.
2001a,b). Several space missions, for example the ESA
astrometric satellite GAIA (Lindegren & Perryman 1996;
Perryman et al. 2001), are planned to measure the position
and motion of stars in the Milky Way with very high accu-
racy, in the near future. Together with ground-based radial
velocity experiments, e.g. RAVE 1(Steinmetz et al. 2006),
these surveys will provide full phase space information. Ac-
curate six dimensional phase space information of Milky
Way stars will provide observational information of the tidal
tail and hence the formation history of the Milky Way. The
time is ripe to carry out a detailed theoretical study of satel-
lite galaxy disruption and the induced tidal tail morphology.

In this study we perform numerical simulations of satel-
lite galaxy disruption and its induced tidal tail morphology
within the CDM cosmogony. The objective of this study is
to understand the physical processes responsible for satel-
lite galaxy disruption rather than reproducing the evolution-
ary history of any individual Milky Way satellite galaxy. In
particular, satellite disruption in N-body simulations is pro-
duced by escaping satellite particles. In addition, the grav-
itational shock, which is caused by the slowly varying host
halo potential as the satellite goes through its orbit, changes
the satellite’s internal structure. An initially stable satellite
galaxy and accurate numerical integration of a satellite par-
ticle’s orbit are necessary to represent these physical pro-
cesses correctly. We investigate satellite galaxy evolution by
performing high resolution and low noise N-body simula-
tions with such stable initial conditions.

In addition, we can estimate any trends of satellite tidal
tail morphology with satellite properties from our simula-
tions, even though we do not reproduce the evolutionary
history of any specific Milky Way satellite. Our simulation
results show that the gravity of the satellite alters the lo-
cation of the tidal tails relative to the satellite orbit. The
satellite decelerates (accelerates) the leading (trailing) tail
beyond the tidal radius, which is proportional to the satellite
mass. For more massive satellites, this results in the leading
tail being located well inside and the trailing tail being lo-
cated well outside of the satellites orbit, rather than track-
ing the original satellite orbit (Johnston et al. 1996, 2001;
Moore & Davis 1994). Since the satellite torques the tidal
tail, the distribution of the tidal tail in the observational
plane is rather different from predictions that exclude such
satellite torquing. In addition, the simulations provide six-
dimensional phase-space information of the tidal tail to com-
pare with upcoming astrometric measurements.

In Section, 2 we describe how we make stable satellite
initial conditions and provide a brief overview of the simula-
tion algorithm. In Section, 3 we investigate satellite disrup-
tion and the formation of the tidal tail, including the effects
of the satellite potential on the tidal tail, and in Section 4,
we investigate the observational consequences. In Section 5,
we summarise our results and discuss their importance.

1 See http://www.rave-survey.org

Table 1. Initial properties of the three satellite models

Satellite M/Mvir,host R/Rvir,host Vmax/Vmax,host

Massive 1.9 × 10−2 9.02 × 10−2 0.45
Low-Mass 9.0 × 10−4 3.38 × 10−2 0.16
Tiny-Mass 9.9 × 10−5 1.66 × 10−2 0.08

Figure 1. The effect of our truncation procedure (see text) on
a satellite’s initial NFW profile. (a) The enclosed mass profile.
(b) The effective potential profile. (c) The Distribution function
versus energy. (d) The circular velocity profile. We use system

units unless otherwise specified: G = 1, Mvir,host = 1, and
Rvir,host = 1.

2 INITIAL CONDITIONS AND N-BODY

METHODOLOGY

The initial conditions of our simulations are motivated by
the CDM cosmology. CDM cosmological simulations sug-
gest that dark matter halos have a universal density profile
(Navarro et al. 1997, hereafter NFW), ρ(r) ∝ r−1(r+rs)

−2,
where rs is a scale length characterised by the concentration
parameter c = Rvir/rs and Rvir is the virial radius of the
halo. Although there are some disagreements regarding the
accuracy of this simple formula in describing halos in numer-
ical simulations and in comparisons with observed galaxies,
it remains the accepted CDM halo density profile and we
adopt it for our study.

We represent the host halo by a static NFW halo poten-
tial. Hence our simulations ignore the effects of dynamical
friction and the subsequent reaction of the host halo. Ob-
viously this is not realistic but since the satellite masses of
interest are often much smaller than the host halo mass, the
consequences are minor. Moreover, the prime motivation of
this study is to understand the physical processes responsi-
ble for satellite disruption and tidal tail formation and not
the evolutionary history of the satellite. Dynamical friction
is not vital to understand these processes.

http://www.rave-survey.org
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Before tidal truncation, the satellites have an NFW den-
sity profile. However, the NFW profile extends to infinity
and real astronomical systems have a finite size. The conven-
tional solution limits the size of an isolated dark matter halo
to its virial radius (Gunn & Gott 1972; Bryan & Norman
1998). The host halo’s tidal field then determines the size
of satellite halo. The host halo’s tidal field affects a satel-
lite halo even before the satellite halo passes within the host
halo’s virial radius. As a result, it is computationally ex-
pensive to simulate the entire evolution of a satellite. Re-
member, the objective of our study is to understand the
physical processes responsible for tidal tail formation not
the reproduction of a particular tail feature. Therefore, we
place the satellite in the host halo on the desired orbit to
start and include the host halo’s tidal field when we gener-
ate a satellite’s initial phase-space distribution. It is natural
to characterise the tidal length scale in the satellite by the
radius of the X-point that this satellite would have at some
fiducial galactocentric radius in its orbit. We call this fidu-
cial radius the tidal distance. In other words, the satellite on
a circular orbit at the tidal distance would have the X-point
r×. At this point, the gravitational force from the satellite
exactly balances the gravitational force from the host halo
and non-inertial centrifugal force.

The details of the iterative procedure that we use
to generate the satellite’s initial condition is as follows.
First, we truncate the virial radius limited NFW satellite
halo at the X-point radius, r×, using the error function,
{1−erf[(r−r×)/s]}. We then compute the distribution func-
tion using Eddington inversion and calculate a new satel-
lite density profile by integrating the distribution function
over velocity. The parameter s in the error function trun-
cation formula is increased from zero until a smooth phase-
distribution function results. We iterate these steps until
the density–distribution-function pair is converged. Figure
1 shows an example of how this procedure modifies an ini-
tial satellite halo. At the conclusion of the procedure, the
effective tidal radius is approximately 75% of the initial X-
point radius radius. We characterise a satellite halo by its
initial maximum circular velocity; Figure 1 demonstrates
that this velocity is only weakly affected by the truncation
procedure. We denote the outer radius of the satellite after
the truncation procedure as the effective tidal radius. It is
smaller than r× owing to the truncation with the error func-
tion and the Eddington inversion process. Finally, we use
an acceptance-rejection algorithm to generate each particle
halo realization. The satellite is made up 106 particles. Since
the initial satellites are already truncated, satellite particles
are ejected only through interactions with the host halo dur-
ing the simulation.

We simulate a set of satellite realizations with the same
tidal distance but different initial maximum rotation veloc-
ities. We investigate the effects of a satellite’s size and orbit
on its tidal tail morphology by varying them separately but
keeping the other parameters fixed. In detail, we choose a
c = 15 NFW model for both the host halo potential and
for the satellites. We generate three different size satellites,
which we refer to as the massive satellite, the low-mass satel-
lite, and the tiny-mass satellite. We use the maximum rota-
tion velocity, Vmax,sat, as a measure of satellite size since the
continuous mass loss makes mass an inexact measure. We
use a Vmax,sat of 0.45, 0.16, and 0.08 times Vmax,host for the
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Figure 2. Comparison of the evolved density profiles of two iden-
tical, low mass satellite halos evolved with different starting radii.
The inner orbit begins with r = 0.67Rvir and a tidal distance cor-
responding to 0.4Rvir with an eccentricity e = 0.73. The virial
radius orbit begins with r = 1.0Rvir and a tidal distance corre-
sponding to 1.0Rvir with e = 0.5. Owing to gravitational heating,

the evolution of the two satellites is different but the profiles ap-
proximately agree when the total mass lose is the same.

massive, low-mass, and tiny satellite, respectively. The tidal
distance for all three satellites is 0.4Rvir . We also set the
galactocentric orbital radius to 0.4Rvir for our circular orbit
simulations. After our truncation procedure is complete, the
initial mass of the massive satellite is 0.018 Mhost, the low-
mass satellite 0.001 Mhost, and the tiny-mass satellite 0.0001
Mhost. Converting our simulation units to a Milky Way size
galaxy system and evolving for a few satellite orbits, the
low-mass satellite roughly corresponds in mass to the Sagit-
tarius dwarf galaxy halo (Majewski et al. 2004; Law et al.
2005). The massive and tiny-mass satellites are an order of
magnitude more and less massive, respectively. The proper-
ties of these satellite halos is summarised in Table 1 in units
of the virial quantities of the host halo. All satellite initial
conditions in this study have 106 particles.

We evolve each of the three satellites on three differ-
ent orbits with the same energy but with different eccen-
tricities. We define the eccentricity of the orbits as e ≡
(ra−rp)/(ra+rp) where ra and rp are the apocentre and the
pericentre of a satellite. The first orbit is circular (e = 0) at
0.4Rvir . The second orbit has an e = 0.5 with a pericentre of
0.2Rvir and an apocentre of 0.6Rvir , and the third orbit has
e = 0.74 with a pericentre of 0.1Rvir and an apocentre of
0.67Rvir . The third orbit is particularly relevant cosmologi-
cally since its circularity (κ) 2 is 0.5, which is the median κ of
subhalos in a sample taken from recent cosmological simula-
tions (Ghigna et al. 1998; Zentner et al. 2005). We quote re-
sults using the following system units unless otherwise spec-
ified: G = 1, Mvir,host = 1, and Rvir,host = 1. The timestep
for our N-body simulations is 2.5× 10−4 system time units.
Therefore, one circular orbit is made of about 8000 timesteps
because one circular orbit period is Tperiod ∼ 2.0

Our satellite subhalo is initially truncated without con-

2 κ ≡ J/Jc,where J is the angular momentum and Jc is the
angular momentum of a circular orbit with the same energy.
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sidering its evolutionary history and without including any
gravitational heating. This is crudely consistent with our
initial condition generation procedure that assumes an equi-
librium configuration at some radius inside the host halo to
start. Fortunately, this idealised setup does not produce an
unrealistic satellite mass loss history. Stoehr et al. (2002)
and Hayashi et al. (2003) performed a quantitative study of
NFW subhalo evolution in a host halo using idealised N-
body simulations and claim that satellites on two different
orbits have similar mass and velocity profiles after losing
the same amount of mass. To check this, we compared the
evolved density profiles of two low-mass satellites on orbits
with e = 0.74 but at two different tidal distances: 1) the ra-
dius of a circular orbit with the same energy; and 2) the host
halo virial radius, Rvir. The first test describes the satellite
evolution scenario adopted for this study. The second test
describes the cosmologically-motivated scenario of a satellite
entering the host halo for the first time. Certainly, these two
satellites have quite different evolutionary histories. How-
ever, when the bound mass of the two satellites is scaled to
the same value, their evolved density profiles are similar, as
shown in Figure 2. This test, together with the results of
Stoehr et al. (2002) and Hayashi et al. (2003), suggests that
our tidally truncated satellite models are a fair representa-
tion of CDM subhalos (see Figure 10 in Hayashi et al. 2003).
In addition, although tidal heating, which is sensitive to a
satellite’s structure, plays an important role in the satellite
disruption process, we will show that the tidal tail morphol-
ogy does not depend on a satellite’s inner structure but only
on a satellite’s mass and orbit.

For the gravitational potential solver, we use a three-
dimensional self-consistent field algorithm (SCF, also known
as an expansion algorithm, e.g., Clutton-Brock 1972, 1973;
Hernquist & Ostriker 1992; Weinberg 1999). This algorithm
produces a bi-orthogonal basis set of density-potential pairs
from which it computes the gravitational potential of a N-
body system, given the mass and positions of the particles.
For an arbitrary basis, e.g. spherical Bessel functions, the
expansion generally requires a large number of terms to
achieve convergence, which introduces small-scale noise as
well as requiring greater computational expense. The situa-
tion was dramatically improved by Weinberg (1999) using a
numerical solution of the Sturm-Liouville equation to match
the lowest-order pair to the equilibrium profile, and there-
fore, the expansion series converges rapidly. Here, we use the
current density profile as the zero-order basis function.

For our purposes, this expansion algorithm is attrac-
tive for two reasons. First, the expansions can be chosen to
follow structure over an interesting range of scales and si-
multaneously suppresses small-scale noise. In contrast, noise
from two-body scattering can arise at all scales in direct-
summation, tree algorithm, and mesh based codes. Small-
scale scattering can give rise to a diffusion in conserved quan-
tities, which can lead to unphysical outcomes particularly for
studies of long-term galaxy evolution (see Weinberg & Katz
2007a,b). Second, the expansion algorithm is computation-
ally efficient; the computational time only increases linearly
with particle number. Hence, the expansion algorithm per-
mits the use of a much larger number of particles than most
other algorithms for the same computational cost.

An accurate potential solver for a cuspy halo demands
a precise determination of the expansion centre, C. This is

the major disadvantage of the expansion algorithm relative
to a Lagrangian potential solver such as a tree code. We
developed and tested the following algorithm for evolving
cuspy dark matter halos with an expansion code:

(i) At time step n, we compute Cn from the centre of
mass of the Nmin most bound particles;

(ii) To evaluate the expansion centre at time step n + 1,
a predicted centre Cpred,n+1 is estimated from a linear least
squares solution using the previous Nkeep centres: {Cj |n −
Nkeep < j ≤ n};

(iii) For n < 2, we set Cpred,n+1 = Cn.
(iv) To reduce truncation error, we separately track the

motion relative to the satellite’s centre and the motion of
the centre itself.

The linear least squares estimator for the expansion cen-
tre Cpred reduces the Poisson noise from the Nmin particles
used to determine each of the Cn. For our simulations we
have adopted Nmin = 512 and Nkeep = 10 and have veri-
fied that this centring scheme maintains the cusp while the
satellite orbits in a host halo for situations where the tidal
field is insignificant.

3 THE MORPHOLOGY OF SATELLITE TIDAL

TAILS

Time-dependent forcing by the host halo’s tidal field adds
energy to the satellite, driving mass loss and, ultimately, dis-
ruption. These forces are a combination of the differential
force from the host halo and the non-inertial forces from the
satellite orbit. The work done against the satellite’s grav-
itational potential results in mass loss. In addition, these
forces deform the outer density contours of the satellite.
To understand the evolution of the ejecta, one must also
consider the gravitational field of the satellite. The gravi-
tational force from the satellite decelerates (accelerates) the
leading (trailing) tail, modifying the energy and angular mo-
mentum of the ejecta well past the point of escape. The
conserved quantities of the ejecta, then, may be dramati-
cally different than that of the satellite centre of mass. The
strength of the satellite gravity increases with satellite mass,
of course. These effects combine to make the morphology
of tidal tails more complicated than previously suggested
(Moore & Davis 1994; Ibata & Lewis 1998; Johnston et al.
2001; Helmi & White 1999; Mayer et al. 2002), especially for
a massive satellite. We investigate the causes of these effects
and their consequences in detail below.

3.1 Satellite disruption

We begin by describing the dynamics and morphology of
the tidal tails in a simulation that ignores the gravitational
field of the satellite past the tidal radius. Figure 3 shows a
sequence of snapshots of the low-mass satellite (0.001Mhost)
on a circular orbit at 0.4Rvir . We use units where Mvir = 1,
Rvir = 1, and Newton’s gravitational constant G = 1, to-
gether which defines a natural time unit. Scaled to the Milky
Way, 0.5 natural time units is approximately 1 Gyr. Ap-
pealing to the standard zero-velocity Roche potential, which
balances the effective gravitational potential in the rotating
frame with the halo potential, we expect the mass to become
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Figure 3. The mass density of the low-mass satellite on a circular
orbit with r = 0.4Rvir at T = 0.0 (top-left), 1.5 (top-right),
3.0 (bottom-left), and 4.5 (bottom-right). Recall that the orbital
period for the circular orbit in this simulation is Tperiod ≈ 2.0.
The colour scale is logarithmic in the dark matter mass density,
increasing from blue to red, and is fixed for all times T . Each panel
has a linear size of 2 host-halo virial radii. For this simulation, the
tail particles do not feel the gravitational force of the satellite after
escape. The circles show the satellite orbit. The multiple streams
in the tail owe to phase crowding near apocentre for initially
prograde and retrograde orbits.

unbound in the vicinity of the Lagrange or X-points. Indeed,
we observe the double cometary appearance of tails leading
and trailing the satellite, enforced by the conservation of
angular momentum. For this halo model, the leading ejecta
orbits faster than the satellite and has a position angle of
300◦ measured from the positive vertical axis, the direction
of satellite’s instantaneous motion. The trailing tail moves
slower than the satellite and has a position angle of 120◦.
Since the simulation in Figure 3 ignores the satellite’s grav-
ity beyond the tidal radius, the orbit of the tidal tail merely
represents the kinematic condition of the tail material just
when it escapes from the satellite.

An example of a randomly chosen orbit in the leading
tail is shown in Figure 4. As expected, the orbit describes a
rosette with its apocentre at the radius of the satellite orbit.
The energy and angular momentum lost during the escape
changes the conserved quantities of the ejecta orbits from
that of the satellite orbit; the leading (trailing) ejecta lose
(gain) energy during deformation. Moreover, the distribu-
tion of the tails fills a wide region about the satellite orbit.
This reflects the broad distribution of phases for orbits at
escape. Hence, the width of the tail is nearly the same as
the distance between the apocentre and the pericentre of a
typical rosette orbit. Each tail has several distinct stream-

ers filling a common envelope. The two primary streams in
each tail demarcate the escape of the most extreme pro-
grade and retrograde orbits. The originally prograde or-
bits have lower specific angular momentum and, therefore,
smaller pericentres and larger epicyclic amplitudes. In con-

Figure 4. The orbit of a random particle in the leading tail
for the simulation presented in Figure 3. The top panel plots
galactocentric radius versus time and the bottom panel shows
the trajectory in the orbital plane. In both panels, the trajectory
is plotted as a dashed line when it is still bound to the satellite
and as a solid line after escape. The particle describes a rosette
with its apocentre near the satellite orbital radius after escape.

trast, originally retrograde orbits have larger pericentres and
smaller epicyclic amplitudes. Distinct streamers result from
the phase caustics near apocentre, similar to shells in ellipti-
cal galaxies caused by merger ejecta with a velocity disper-
sion much smaller than its new orbital velocity. This mech-
anism, illustrated in Figure 3, is the massless description of
tail formation. This massless description assumes that the
orbital energy and angular momentum of a tail is the same
as those of a satellite; this yields a simple easy-to-compute
prescription for the tails’ location.

In contrast, Figure 5 repeats the simulation including
the gravity of both the halo and the satellite at all times.
At early times (upper-right panel), the evolution is similar.
However, at later times (lower panels), the effects of the
satellite gravity are marked. The continued acceleration of
the tail by the satellite after escape decreases the internal
velocity dispersion and narrows or focuses the tail as a con-
sequence. The streamers in Figure 3 become less distinct
when accelerated by the gravity of the satellite and the host
halo together for the same reason (see Figure 6). Similarly,
the acceleration of the ejecta by the satellite also decreases
the angular separation between the streamers. Although the
multi-streamer feature is diminished as the satellite gravi-
tational field accelerates the ejecta, the feature can still be
seen very close to the tidal radius.

3.2 Tail evolution

3.2.1 Circular orbits

The importance of a satellite’s gravity increases with mass
and, therefore, we begin with a study of the tail produced
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Figure 7. The mass density in the orbital plane for a massive satellite halo on a circular orbit with r = 0.4Rvir at T = 0.0, 1.0, 2.0,
3.0, and 4.0 in the top-left, top-right, middle-left, middle-right, and bottom-left panels, respectively. Recall that the orbital period of the
circular orbit is Tperiod ∼ 2.0. The bottom-right panel shows the edge on view at T = 4.0. The colour scale is logarithmic in the dark
matter mass density from blue to red. The colour scale is fixed for all snapshots (as described in Figure 3). The circles show the satellite
orbit. The tail remains confined to the orbital plane as expected (lower-right panel).
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Figure 5. As in Figure 3 but including the gravitational attrac-
tion of the satellite on the ejecta at all times.

Figure 6. A high-resolution view of the tail streamers in the
low-mass satellite simulation without (left) and with (right) the
gravitational acceleration by the satellite at T = 4.5 (compare
with Figure 3 left panel, and Figure 5 middle panel, respectively).
The two steamers are clear in left panel but very weak in the right
panel. Although very weak, the second streamers can be identified
near the tidal radius.

by a massive satellite. Figure 7 shows snapshots of a mas-
sive satellite (0.018Mhost) on an circular orbit at 0.4Rvir ,
where once again the tail particles always feel the gravita-
tional force from the satellite. The overall evolution of the
satellite and its disruption time is similar to the less mas-
sive satellite shown in Figure 5. However, the long-term ac-
celeration of the ejected material by the remaining satellite
significantly alters these orbits. As the tail continues to lose
mass, the leading and trailing tails evolve to positions that
are well inside and well outside the satellite’s orbit and hence
does not trace the satellite orbit at all (Johnston et al. 2001;
Moore & Davis 1994). The leading tail significantly tilts to-
ward the centre of the halo and almost points directly there
at late times. The trailing tail is distributed throughout a
wide annulus in the outer halo. This difference results from
the torque applied by the satellite well after escape. Orbits
in the leading tail that lose energy and angular momentum
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Figure 9. The evolution of the mean radius (top panel) and satel-
lite potential (lower panel) for an ensemble of particles randomly
selected from the leading tails in Figure 8 for the massive (solid),
low-mass (dotted), and tiny-mass (dash-dot) satellites.

fall toward the centre of halo, while orbits in the trailing tail
gain energy and angular momentum and spread over a wide
range of radii in the outer halo.

We show the tail morphology for our satellites with
three different masses (see Table 1) on circular orbits at
T = 4 in Figure 8. The tidal tails in the low-mass and
tiny-mass satellites (0.001 and 0.0001Mhost , respectively)
very roughly follow the satellite orbit, with the leading and
trailing tail located inside and outside of the satellite or-
bit. Compared to Figure 3, it is clear that the differences
decrease with the satellite mass. As we described in Sec-
tion 2, the low-mass satellite corresponds to the Sagittarius
dwarf spheroidal galaxy halo and the tiny-mass satellite cor-
responds to the Draco dwarf spheroidal galaxy halo.

Figure 9 shows the evolution of the distance from the
host halo centre and the satellite’s gravitational potential
for an ensemble average of 10 randomly sampled particles
near the tip of the leading tail in the three satellites. The
tail from a massive satellite receives a larger torque and
a larger shift to smaller energies and angular momentum
than the tail from a lower-mass satellite. The bottom panel
in Figure 9 shows that the decay results from interactions
with the satellite potential. Figure 9 also shows that the
satellite potential remains important in the low-mass and
tiny-mass satellites when the tail is close to the satellite but
it is unimportant when the tail is far from satellite. The
satellite potential always remains significant for the massive
satellite tail. The long-term influence of the satellite on the
tail morphology makes any inference of the satellite orbit
from the tidal tail impractical, especially for satellites on
non-circular orbits (see Section 3.2.2).

The leading tail from the low-mass and the tiny-mass
satellites in Figure 8 exhibits kinks. The kinks are a con-
sequence of the epicyclic motion of the tail orbits and of
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Figure 8. As in Figure 7 but comparing the ejecta at T = 4.0 for the massive, low-mass, and tiny-mass satellites from left to right,
respectively.

Figure 10. As in Figure 4 but now including the gravitational
force of the satellite at all times. This force significantly lowers the
energy and angular momentum of the leading orbit, decreasing its
mean and apocentric radius. This initial period of deceleration
(T < 1) is responsible for the observed ‘kink’ in the tail (see
Figure 8).

acceleration by the satellite at subsequent apocentres. Fig-
ure 10 shows the ensemble averaged distance and positions
for a sample of leading tail particles orbits taken from the
low-mass satellite simulation shown in Figure 5. The kink
occurs at the first apocentre of the ejecta, after it is decel-
erated by the satellite during and subsequent to its escape.
The deceleration during escape tends to correlate the phases
of the ejected orbits and results in a narrowing of the tidal
tail’s width. In contrast, the satellite potential accelerates
the trailing tail particles, which increases the peri- and apoc-
entres of the trailing tail. The analogous kink in the trailing
tail is not so obvious because of its lower orbital frequencies.
However, a plot analogous to Figure 10 does show a similar
oscillation with lower angular frequency.

(a) 5 × 10−4

(b) 5 × 10−2

Figure 11. Contours of the Jacobi constant for two satellites with
different masses as labelled. They follow a circular orbit with a
radius of qs = 0.4 in a c = 15 NFW halo of Mh = 1 and a virial
radius Rh = 1. The x-axis describes the distance between the
host halo centre and the satellite centre and the y-axis describes
the location in the direction of orbital motion. Note the strong
asymmetry in x about the centre for the higher mass satellite in
Panel (b).

The large changes in the orbits of escaping particles or-
bits are easily understood using a restricted three-body ap-
proach. Consider a satellite of mass Ms in circular orbit at
galactocentric radius rs in a halo of mass Mh. In the frame of
reference moving with a satellite of vanishingly small mass,
the effective potential is symmetric about the satellite cen-
tre. Although orbital energy and angular momentum are not
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conserved, this system admits a conserved quantity, the Ja-
cobi constant:

EJ = E − ~Ωs · ~L (1)

where E and ~L are the orbital energy and angular momen-
tum and ~Ωs is the satellite’s angular frequency about the
host halo. This expression is easily derived by identifying
a perfect time derivative in the inner product of the veloc-
ity vector and Newton’s equations of motion in the rotat-
ing frame of reference (Binney & Tremaine 1987, Section
3.3.2). An isocontour of the Jacobi constant passes through
the X-points, r×, and demarcates the bound and unbound
trajectories as shown in Figure 11a. As the satellite mass
increases, the inversion symmetry about the satellite centre
is broken and the unstable points separate as shown in Fig-
ure 11b. For small-mass satellites, therefore, the tidal force
is symmetric about the satellite centre leading to symmetric
tidal tails as seen in globular clusters. However, for large-
mass satellites, the asymmetry in the tidal force leads to
asymmetric mass loss.

Now consider the mass lost through the inner (outer)
critical point, r×. Such orbits will have an inward (outward)
velocity and unbound values of the Jacobi constant. The
force from the satellite continues to affect the orbit beyond
the tidal radius in this restricted problem as in the N-body
simulations. Moreover, the smaller the mass of the satel-
lite, the closer the radius is to that of the satellite, and the
ejected orbit lingers near the original satellite orbit, partly
offsetting the smaller gravitational force. For this reason,
the orbit does not take on the orbital actions of the satel-
lite but continues to be torqued by the satellite. One may
estimate the scaling of this energy change by computing the
work done in the satellite frame on the escaping tail par-
ticle; this naturally takes into account the lingering. Begin
with the standard restricted three-body problem with gen-
eralised forces. Assuming that the satellite orbits in the x-y
plane and using Hamilton’s Equations, one may compute the
z-component torque on an escaping particle and the change
in angular momentum of the escaping particle after an in-
terval T becomes

∆Lz =

∫ T

0

dt

(

−
∂H

∂φ

)

=

∫ T

0

dt

(

−
∂Vs

∂φ

)

(2)

where H is the Hamiltonian, φ is the azimuthal coordinate
conjugate to Lz and

Vs = −
GMs

|r − rs(t)|

is the gravitational potential of the satellite. The second
equality in Equation (2) owes to the φ independence of all
the other terms in H . We may consider an escaping orbit in
the limit that the mass of the satellite Ms is much smaller
than the mass of halo Mh and use perturbation theory to
evaluate Equation (2). To do this, let the unperturbed orbit
be the circular orbit that passes through the X-point, r× at
t = 0. Expanding to lowest contributing order in Ms/Mh,
after some straightforward algebra and taking the limit T →
∞, one may show that

∆Lz =
GMs

r2
×

(

∂Ωφ

∂r

∣

∣

∣

rs

)−1

where Ωφ is the azimuthal orbital frequency. Finally, it fol-
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Figure 12. The evolution of two orbits escaping from the in-
ner (upper panels) and the outer (lower panels) tidal radii for
Ms/Mh = 10−4 where Ms is the satellite mass and Mh is the
host halo mass. The left panels show the orbital plane and the
right panels show the evolution of energy, angular momentum,
and the Jacobi constant. The value of the Jacobi constant is con-
served as expected.

lows that ∆E = Ωs∆Lz from the conservation of the Jacobi
constant (Equation 1) which yields:

∆E = −2Ω2
sr

2
s

(

−
∂ ln Ω2

φ

∂ ln r

∣

∣

∣

∣

rs

)−1/3
(

Ms

Mh

)1/3

. (3)

Since G, rs, and Ωs are constant, Equation (3) implies
that the work done is proportional to (Ms/Mh)1/3. In other
words, the change in the orbital energy of the escaping parti-
cle decreases as the satellite mass decreases but only weakly!

Although the derivation of the scaling assumes
Ms/Mh → 0, we demonstrate numerically that it applies
over all values of interest by integrating the equations of
motion in the rotating potential. We adopt rs = 0.4 and
choose values of the Jacobi constant that are 1% larger than
the critical value passing through r× with zero velocity. The
initial motion, in the rotating frame, is along (or against) the
direction of rotation for inner (outer) escapees. Figures 12–
14 show the resulting trajectories and conserved quantities
for Ms/Mh = 10−4, 10−3, 10−2. For inner (outer) escapees,
the energy and angular momentum decrease (increase) af-
ter the initial transient for t < 0.5. Figure 15 shows that
the energy change for ensembles of orbits in the leading tail
chosen as follows. The initial position is chosen to be 2% of
r× outside of the X-point and the velocities are chosen to
have a normal distribution in the satellite frame with a dis-
persion that is 2% of the satellite’s circular velocity at r×.
The orbits in Figures 12–14 are representative members of
these ensembles. The magnitude of the energy change ∆E
is defined as the ensemble average of |Emin − Einit| where
Einit is the initial energy and Emin is the minimum energy
along the orbit. These numerical values are consistent with
the predicted scaling (Ms/Mh)1/3. Circumstance may even-
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Figure 13. As in Figure 12 but for Ms/Mh = 10−3.
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Figure 14. As in Figure 12 but for Ms/Mh = 10−2.

tually bring the ejected particle close to the satellite once
again, as seen in Figure 14. The radial extent of the annulus
covered by the orbit increases only gradually with increas-
ing satellite mass, reflecting the same weak dependence on
Ms/Mh. In the simulations, the mass loss and subsequent
reequilibration of the satellite potential causes small devia-
tions in the Jacobi constant even though the satellite orbit
remains circular as shown in Figure 16. Nonetheless, the re-
stricted three-body dynamics explains most of the features
seen in the orbit evolution.
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Ms/Mh

direct solution
(Ms/Mh)1/3

Figure 15. A numerical test of the predicted scaling of the energy
change of escaping particles (Equation 3) with satellite mass. The
x-axis is the ratio of satellite mass Ms to total halo mass Mh

and the y-axis is the magnitude of the energy change, ∆E. The
straight line is the relation (Ms/Mh)1/3.
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Figure 16. The time evolution of the energy, E, and the Ja-
cobi constant, EJ , for two ensembles of particles ejected from
the low-mass satellite selected from the leading and trailing tail,
respectively. The value EJ is nearly conserved while the energy
changes owing to work done during escape. Changes in EJ are
caused by mass loss and the resulting evolution of the satellite’s
gravitational potential.

3.2.2 Non-circular orbits

Although we still expect some of the insight gained from the
restricted three-body problem to carry over to the evolution
of a satellite on an eccentric orbit, this more complex situ-
ation requires direct simulation. Figure 17 shows the tidal
tails of a massive and low-mass satellite on an eccentric,
e = 0.5, orbit. The tidal tail morphology for eccentric satel-
lite orbits is significantly more complex than for circular
satellite orbits and varies more strongly with satellite mass.
In the left panel of Figure 17, the massive satellite has dra-
matically decelerated the leading tail, which now reaches the
host halo centre and forms an inner “reservoir” of ejecta. The
deceleration by the satellite causes the leading tail to appear
close to radial. In the right panel of Figure 17, the multiply
segmented tail from the low-mass satellite is caused by two
mechanisms. First, during each satellite orbit, the leading
tail forms during the approach to pericentre. After pericen-
tre, the tidal strain and the mass-loss rate diminishes result-
ing in a gap in the tail. Second, deceleration by the satellite
changes the orbits of the newly disconnected leading tail,
producing a distinct segment.

Figure 18 shows the evolution of a massive satellite on
an e=0.74 orbit. Initially, the leading tail points directly
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Figure 17. Tails at time T = 5.0 for the massive (left) and the low-mass (right) satellite on an eccentric, e = 0.5, orbit.

Figure 18. As in Figure 7 but for the massive satellite on an
e = 0.74 orbit at T = 0.0, 1.5, 3.0, and 4.5 in the top-left, top-
right, bottom-left panels, and bottom-right panels, respectively.

Figure 19. The same as Figure 18 but for times T = 2.5, 2.75,
and T=3.0 from left to right, respectively, as the the satellite
moves from pericentre to apocentre. Owing to the deceleration
by the satellite potential, the leading tail falls toward the centre
of the host halo.

toward the halo centre but the strong deceleration by the
satellite eventually fills the inner halo with ejecta. Figure
19 provides a finer time sampling of the evolution between
pericentre and apocentre for the same simulation. Instanta-
neously, the morphology can be very complex and the posi-
tion angle of the leading tail can vary significantly from its
nearly radial average. There is little correlation between the
tail location and the satellite orbit. The location of the in-
ner ejecta, e.g. its outer turning points, is determined by the
host halo potential, the time-varying satellite potential, and
the satellite orbit in combination. Therefore, unlike streams
from very low-mass satellites, the tail orientation is not di-
rectly informative. However, through dynamical modelling,
the location of the inner ejecta may provide constraints on
combinations of satellite properties and its history, and the
galaxy potential.

4 OBSERVATIONAL APPLICATIONS

We have demonstrated that tail morphology depends sensi-
tively on the satellite mass and orbit. For modest to high-
mass satellites, the ejected tails have orbits that differ signif-
icantly from that of the progenitor satellite. In this section,
we illustrate the observational implications of these results.

4.1 Projected satellite tail morphology

The observational implications for Milky Way streams can
be summarised by projecting the tail star counts and ra-
dial velocity signatures against the sky with the observer at
the centre3 of host halo. Figure 20 shows Aitoff projections

3 A specific Milky Way model would take into account the so-
lar position and an orbital estimate for a particular progenitor
satellite. However, in this study, the satellites are chosen to be
only representative of CDM predictions and, in the same vein,
the galaxy centre is an intuitively simple inner-galaxy view point.
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Figure 20. Aitoff projections of the massive satellite (top panels) and the low mass satellite (bottom panels) on an e = 0.5 orbit. The
snapshots for these projections are shown in Figure 17. The observer is located at the centre of the host halo. The left panels show the
number density of particles and the right panels show the mean radial velocity. The black isocontours in all four panels represent the
particle number density. Colour bars show the number density (left) and radial velocity (right) scales.

of number density and mean radial velocity for the mas-
sive satellite (top panels) and the low-mass satellite (bot-
tom panels) with an e = 0.5 orbit (the same simulations
described in Figure 17 at the same time, T = 5.0). The
Aitoff projection covers the entire sky, 0◦ ≤ l ≤ 360◦ and
−90◦ ≤ b ≤ 90◦, and the pixel size is 4o × 4o. The number
density of the particles (left panels) and the mean radial ve-
locity (right panels) are coded by colour. The contours in
all the panels represent the particle number density. Veloc-
ity outliers at low number density are trimmed by setting
to v̄r = 0 all the pixels with fewer than 10 particles. The
satellites are located at l ≈ 270o and b ≈ 0o and move in
the positive b direction.

The radial velocity signatures of the massive and low-
mass satellites are distinctly different. These qualitative dif-
ferences are a direct consequence of the large energy and an-
gular momentum changes of the ejecta orbits leading to the
phase wrapping of the leading tail and the dramatic broad-
ening of the trailing tail (see Section 3.2.2). This causes the

lower overall mean velocity values with a more rapid angular
variation around the sky. In contrast, the mean velocity of
the leading and trailing tails for the low-mass satellite are
smooth and slowly vary around the sky. Quite clearly, the
debris from the massive satellite will not show the distinct
kinematic and spatial signatures that have been exploited
in recent observational campaigns.

Near b = 0◦ and l = 90◦, one observes a region of reced-
ing orbits surrounded in longitude by regions of approaching
orbits. Figure 17 (right snapshot) shows that line-of-sight
projections will encounter strong leading and trailing tails
from same satellite at different radii. The closer the tail to
the observer, the larger the angular extent perpendicular
to the motion of the stream. Their velocity signature in the
Aitoff projection occurs as a single line of sight cuts through
these tails at different radii.

The Aitoff projections contain most of the informa-
tion that one might obtain from combined kinematic–
photometric surveys such as RAVE (Steinmetz et al. 2006).
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Figure 21. The radial velocity of tail particles as a function of
orbital longitude for the massive satellite, low-mass satellite, and
tiny mass satellite, from top to bottom, shown in Milky Way
units. All three satellites have orbits with e = 0.5 and are cen-
tred at a longitude of 0o. The width of the distribution in |vr |
increases with satellite mass. For comparison, the satellite tra-
jectories for halos with flattenings of q = 0.9, 1.0, 1.25 are also
shown. Although all three simulations are performed in a spher-
ical host halo potential, the tail locus is better matched for a
satellite trajectory with q = 0.9.

In particular, these results show that tail morphology de-
pends on satellite mass. Therefore, a wide range of kine-
matic “template” models may be required to best exploit
the information implicit in observed halo stars.

4.2 The effects on tidal tail radial velocity

Radial velocity–orbital longitude diagrams are frequently
used to characterise large-scale kinetic features in the Milky
Way. Figure 21 shows radial velocity–orbital longitude dia-
grams for the ejecta of satellites with orbits having e = 0.5
for each of our three masses. We convert simulation units to
Milky Way units by assuming a virial radius of 250 kpc and
a total mass of 1.0×1012M⊙ (Klypin et al. 2002). In Figure
21, the Sun has R = (−8.0, 0.0, 0.0) kpc and the Galactic
plane and the satellite’s orbital plane are coincident. Here
we adopt the Sagittarius longitudinal coordinate system de-
scribed in Majewski et al. (2003) for the orbital longitude.
All satellites have R = (50.0,−7.5, 0.0) kpc and move in the
y direction. Therefore, the satellite has l ≈ 0◦ and longitude
increases along the trailing tail (in the −y direction). The
radial velocity is measured from the halo centre. The spread
in |vr| is proportional to the satellite mass, as expected from
the previous discussion and hence the mean velocity will be
an unbiased diagnostic of the satellite orbit only for very
low mass satellites. Although we have only modelled the
dark matter, it is likely that the vr − l space distribution for
stellar and dark matter ejecta will be similar in most cases
since the internal satellite velocity dispersion plays only a
minor role in shaping the ejecta distribution.

Law et al. (2005) use M giants from the Two Micron
All-Sky Survey (2MASS, Skrutskie et al. 2006) to map the
position and velocity distributions of tidal debris from the
Sagittarius dwarf spheroidal galaxy. Assuming that tidal
tails approximately align with the satellite trajectory, the

authors note that the radial velocity distribution of tidal de-
bris suggests an prolate Milky Way halo with an axis ratio of
q = c/a = 1.25. However, our results demonstrate that the
tails do not follow the satellite orbit. In Figure 21, we also
plot satellite trajectories for three different halo flattenings
to compare with the particle distributions of our simulations
evolved in a spherical host halo. Following Law et al. (2005),
we flatten our host halo parallel to the satellite’s motion and
compute point-mass satellite trajectories to compare with
our simulated vr−l diagrams. Surprisingly, the distributions
of the low-mass satellite and the tiny-mass satellite tidal tails
most closely matches a q = 0.9 halo. The gravitational ac-
celeration by the satellite shifts the tail location in the radial
velocity distribution and this trend is degenerate with the ef-
fects of halo flattening. For instance, the location of the lead-
ing tails decelerated by a massive satellite is degenerate with
the trajectories of tails in an oblate halo with no satellite de-
celeration. We have not attempted to model the Milky Way
in sufficient detail to estimate the halo flattening including
satellite deceleration. However, the degeneracy between halo
flattening and the shift caused by the satellite gravitational
acceleration suggests that the Law et al. (2005) conclusions
may be biased and a more careful analysis including the full
dynamics of the halo-satellite interaction is necessary.

4.3 The effects on the tidal tail phase space

distribution

Several groups have proposed phase-space-based de-
tection diagnostics for moving groups associated with
disrupted dwarf galaxy and star cluster streams.
Lynden-Bell & Lynden-Bell (1995) proposed using the
intrinsic correlation of moving groups’ radial energy and
galactocentric radius to identify disrupted systems. The
procedure is as follows. Assuming a spherical gravitational
potential for the outer galaxy, one estimates the radial
energy Er = v2

r/2 + Φ(r) and the galactocentric radius
r of the putative ejecta stars from observations. Then,
assuming that all of the debris from a single satellite has
the same orbital energy, E, and angular momentum, L,
conservation of energy implies a simple linear relationship
in r−2: E = Er − L2/2r2. Hence, linear features in the
observed Er–r−2 diagram indicate the detection of a tidal
stream. Recently Belokurov et al. (2007) used this method
to support the detection of stellar streams in the Sloan
Digital Sky Survey.

However, as we have now seen, a massive satellite will
modify the conserved quantities of the ejecta orbits and
change their location in Er − r−2 space. Figures 22 and
23 show the Er − r−2 diagrams for the low-mass and tiny-
mass satellite simulations on an e = 0.5 orbit. For clarity,
we have reduced the point density by randomly sampling
the simulation phase space and plot the bound particles at
five different times in the upper-left panels. We calculate the
expected linear relation from the satellite’s initial position
and velocity. The bound material in low-mass and tiny-mass
satellites lies along the predicted linear relation at all times.
We plot the tail particles at three different times in the other
three panels. As one can see in Figure 22, the deviation of
the tail particles from the predicted locus and the scatter
in E at fixed r−2 for the low-mass satellite is large. Espe-
cially at late times, e.g. the bottom right panel in Figure
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Figure 22. Radial energy, Er = v2
r/2 + Φ(r), plotted against

inverse galactocentric radius, r−2, for the low-mass satellite with
an e = 0.5 orbit. Particles with the same energy and angular
momentum as the satellite will lie on a particular straight line.
The zero velocity curve describes the lowest possible energy at a
given radius for this host halo. The material bound to the satel-
lite follows the straight locus at all times (top left). The escaped
particles are shown at T = 2.0 (top right), T = 3.0 (bottom
left) and T = 4.0 (bottom right), respectively. Only one particle
out of 250 are plotted for visibility. Because the leading (trailing)
tail loses (gains) energy, the ejecta deviates from the predicted
straight line with significant scatter. Times in Gyrs are scaled to
the Milky Way.

Figure 23. The same as Figure 22 but for the tiny-mass satellite.

22, the tail nearly fills the region between the zero velocity
curve and the predicted locus. However, one can see from
Figure 23 that tail particles from the tiny-mass satellite do
follow the predicted linear relation. Therefore, we conclude
that the Lynden-Bell & Lynden-Bell (1995) diagnostic can
only detect streams from very low-mass satellites such as
globular clusters.

Motivated by the prospect of six-dimensional
phase-space data from future astrometric missions,
Helmi & de Zeeuw (2000) proposed to identify phase-mixed
satellite debris by a cluster analysis in (E, L, Lz) space.
We explore the consequences of tail evolution on this
approach using the same two simulations in Figure 24 for
the low-mass satellite and in Figure 25 for the tiny-mass

Figure 24. The distribution of particles bound to the low-mass
satellite on an e = 0.5 orbit and its ejected tail particles plotted
in E–Lz space. Top left: The phase-space distribution at T = 0.0
and T = 4.0 for the bound satellite and its tail (subsampled as
in Figure 22). Density plots of the phase-space distribution are
shown at T = 0.0 (top right), at T = 4.0 (bottom left) and at
T = 4.0 for the ejected tail particles alone (bottom right).

Figure 25. The same as Figure 24 but for the tiny-mass satellite

satellite. For simplicity, we assume that we know the orbital
orientation and consider only the E–Lz projection. The
top-left panels show the distribution at 0 Gyr (T = 0) and
at 8 Gyr (T = 4) when scaled to the Milky Way halo in
E–Lz space. Once again, we randomly sampled the material
to improve clarity. The top-right and bottom-left panels
show density estimates in E–Lz space for the satellite
at 0 Gyr and at 8 Gyr, respectively. In the bottom-right
panels we show the density of only the tail particles at
8 Gyr. The overall position of the satellite and its tail
changes little from 0 Gyr to 8 Gyr, although the shape of
the distribution shifts. In both figures, there are two or
more peaks at high and low energy with respect to the
satellite owing to decelerations and accelerations of tail
particles by the satellite potential. Moreover, the tidal field
is nonaxisymmetric and this leads to spatial correlations
in the energy and angular momentum of the least bound
satellite particles, which in turn leads to the production of
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several apparently disassociated phase-space clumps before
disruption.

5 DISCUSSION AND SUMMARY

The observational detection of “S”- or “Z”-shaped tidal tails
in globular clusters (e.g. Leon et al. 2000; Odenkirchen et al.
2003; Grillmair & Dionatos 2006) promises sensitive statis-
tical tests of the Galaxy’s gravitational potential and has
renewed the quest for streams from larger satellites. For
globular clusters, i.e. very low mass satellites, the tidal tail
morphology is easily interpreted. (Capuzzo Dolcetta et al.
2005; Montuori et al. 2007) However, for massive satellites,
the bisymmetry that leads to this simple morphology is bro-
ken by the interaction of the host halo’s gravitational field
and the self-gravity of the satellite itself. We present new
dynamical aspects and morphologies of tidal tails produced
in satellites of significant mass, Ms/Mh ≥ 0.0001. There are
two dynamical principles that affect the tail production for
massive satellites. First, the leading and trailing X-points,
points where the attractive force of the host halo and satel-
lite are balanced at zero velocity, do not occur at equal dis-
tances from the centre nor do they have the same equipoten-
tial value for large-mass satellites (see Figure 11). Second,
the escaped ejecta in the leading (trailing) tail continues to
be decelerated (accelerated) by the satellite’s gravity leading
to large offsets of the ejecta orbits from the satellite’s orig-
inal orbit (see Figure 17). We show that this is consistent
with Hill-Jacobi theory (generalised to dark-matter halos)
for satellites on circular orbits. In particular, the effect of
the satellite’s self gravity on the tail decreases only weakly
with decreasing satellite mass, proportional to (Ms/Mh)1/3

(see Section 3.2.1) and, therefore, the acceleration by the
satellite after escape is important for dwarfs and dark halos
of modest mass.

These findings have several important and useful the-
oretical and observational consequences. First, for a finite
mass satellite, the morphology of the leading and trailing
tails will be different owing to the gradient in the underlying
halo potential across the satellite. In addition, the tail ejec-
tion occurs over a range of azimuth relative to the X-point
owing to the dynamical response of the originally prograde
and retrograde orbits to the tidal and non-inertial acceler-
ation. These effects should be observable in high resolution
imaging for both dwarf spheroidal and globular clusters (see
Figs. 17–19).

Second, the radial velocity of tail particles will be dis-
placed from that of the satellite orbit. The magnitude of
the displacement is proportional to the satellite mass. These
trends distort the ejecta from the gravitationally bound
satellite trajectory in the vr − l plane in much the same
sense as a satellite trajectory in a flattened halo (see Fig-
ure 21). In other words, in fitting the vr − l diagram for
tidal tails to satellite orbits of different flattenings, the satel-
lite mass is covariant with halo flattening, i.e. the shape

parameter q = c/a. Therefore, a constraint on the Milky
Way halo shape using tidal streams requires mass-dependent
modelling. Finally, the acceleration of ejecta by a massive
satellite during escape spreads the velocity distribution and
obscures the signature of a well-defined “moving group” in
phase space (see Figs. 22–25).

Although we believe that the physical effects described
in this study are robust, our intentionally idealised simu-
lations ignore several possibly relevant processes. First, the
dynamical friction and the self-gravitation of the tail are
ignored, although in all but the most extreme mass satel-
lites their effects on the tail morphology will be negligible,
since the mass in the tail is very small. Second, we assume
a smooth and static spherical host halo potential. In real-
ity, over time, as the host halo mass grows its shape may
change, and the ejecta will be perturbed by substructure.
These time dependent effects will not affect the applicabil-
ity of the dynamics described here but will complicate the
prediction of observational signatures. Finally, we have not
included the physics of a dissipational baryonic component
that may have slightly different kinematics than that of a
dark collisionless component. In spite of these shortcomings,
our study elaborates the details of satellite tidal tail pro-
duction and the dynamics that bear on the interpretation of
observed streams.

As an example, Moore & Davis (1994) and
Johnston et al. (1996) find that satellite tails follow
the satellite orbit for dwarf galaxies whose mass is neg-
ligible compared to the galaxy mass. The mass of these
satellites is usually similar to or less than our tiny-mass
satellite. Using these simulation results, Johnston et al.
(2001) developed an efficient numerical method to inves-
tigate the detectability and interpretation of tidal debris
tails. However, we have demonstrated here that the gravity
of the satellite for Ms/Mh ≥ 0.0001 will change the actions
of the tidal ejecta to mimic halo flattening (see Section
4.2, Figure 21). In addition to the spatial distribution, the
velocity distribution of the tail is affected by the satellite
potential (see Section 4.3). We would like to note that
(Fujii et al. 2006) have also noticed a systematic distance
offset for leading (trailing) tails inside (outside) the orbit
of a satellite owing to the satellite potential. However, they
did not focus on the tail morphology.

In summary, we have shown that the interplay between
the satellite and the host halo results in a complex tail
morphology whose amplitude scales weakly with mass. Al-
though these findings complicate the interpretation of stellar
streams and moving groups, the intrinsic mass dependence
provides additional leverage on both the halo and on the
progenitor satellite properties. A statistical study of these
trends will further constrain the dark halo potential and the
mass accretion history of the Milky Way.
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