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Abstract

We use dispersive techniques to address the behavior of the pion
form factor as Q% — oo and @Q? — 0. We perform the matching with
the constraints of perturbative QCD and chiral perturbation theory
in the high energy and low energy limits, leading to four sum rules.
We present a version of the dispersive input which is consistent with
the data and with all theoretical constraints. The results indicate
that the asymptotic perturbative QCD limit is approached relatively
slowly, and give a model independent determination of low energy
chiral parameters.
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We are fortunate to have the rigorous techniques of perturbative QCD[1]
and chiral perturbation theory[2] describing the high and low energy domains
of the strong interactions respectively. The only comparatively rigorous tech-
niques that apply to the intermediate energy region are lattice simulations[3]
and dispersion relations[4]. Dispersive techniques are increasingly being com-
bined with the other theoretical methods in order to provide as much control
as possible throughout all energy regions. The simpliest cases are the two
point functions of vector and axial vector currents[5],which are associated
with the Weinberg sum rules[6] and other related sum rules. The next sim-
pliest example is the three point function of the pion electromagnetic form
factor. The purpose of this paper is to discuss the dispersive treatment of the
pion form factor. We apply chiral constraints at low energy and incorporate
the behavior of perturbative QCD at the highest energies. This leads to four
sum rules, two of which are reasonably obvious and two which are new. In
addition the dispersive treatment allows us to address the question of how
fast the form factor approaches the asymptotic QCD behavior[7].

The form factor is defined by

(mt [ T [ wt) = fald) (0 + 1) (1)

with ¢, = (p' — p), In its twice subtracted form, the dispersion relation for
the pion form factor reads
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Our results are independent of the number of subtractions, but this form is
most useful in presenting our techniques. We have imposed the normalization
constant f;(0) = 1, and the constant K is a subtraction constant to be
determined below.

At the high energy end, perturbative QCD tells us that the asymptotic
behavior of the pion formfactor[7], with Q% = —¢?, is

mz

0y 1on O QFE _ 6dn® F2
Q) = 16n = = S 3)

with F, = 93MeV.



The fact that this decreases faster than 1/Q? implies three sum rules when
combined with Eq 2. The fact that there is no term proportional to Q? as
Q? — oo implies a sum rule for the subtraction constant

K= 1[:: & o (s) ()

Corresponding, there is no constant term as Q? — oo, requires a sum rule
which can be found by Taylor expanding the denominator at large Q?, yield-
ing
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Finally, the lack of a 1/Q? term in the asymptotic region implies that
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These sum rules are contingent on the convergence of the integrals. This is
especially relevant for the last one, but we will see that the integral is just
barely convergent.

At the low energy end, the pion form factor has been calculated to two
loops in chiral perturbation theory. The result is
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In this expression, the parameters LE(;T) (1) and cy, fi, fo are renormalized pa-
rameters from the E* and E° chiral Lagrangians, respectively. Lg)(u) can in
principle be in other reactions, although it is most common to extract it from
this form factor. One give a dispersion sum rule for Lg“) (1) by expanding the

chiral result around ¢ = 0 to find that Lg“) (p) is related to the subtraction
constant K defined above. The precise relation is
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Here and in what follows we drop reference to the chiral constant f; since its
effect is so small due to the factor of m2 multiplying it in Eq. 8. Note that
relatlon for Lg is independent of the arbltrary scale i, as the dependence of
L( (1) on p is compensated by the explicit u behavior displayed above. This
exercise can be repeated to find the term at order Q*, both in the dispersion
relation and in the chiral expansion. The result is

™
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For completeness, let us briefly describe how these sum rules would be
derived using an unsubtracted dispersion relation,

Imf
/ ds s—q> —1ie (11)

In this case, the sum rules of Eq. 5, 9, 10 all follows from Taylor expanding
around ¢?> = 0, while Eq. 6 follows from the ¢> — oo limit. Dispersion
relations connect the high and low energy limits by providing constraints on
the whole analytic functions. It is interesting that a given sum rule may
follow from constraints on the high energy end in one derivation yet emerge
in the low limit in another approach.

We now turn to the construction of a representation of I'm f(s) which is
consistent with both the data and with theoretical constraints. The easiest
step is at low energy, where chiral symmetry requires the structure[8]

s(1 — dmz)3/2
Imfx(s) = =555

In the intermediate energy region, we have data on both the real and imag-
inary parts of fr(s). There is nothing surprising here, the physics is just
that of the rho resonance. We take I'mf(s) from a fit to the data in Ref[9].
Matching with the low energy limit is simple, as the resulting function is
easily adjusted to approach Eq. 12 as s — 0.

0(s — 4m?2) + O(s?) (12)
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For the high energy end, we need to choose an asymptotic form for
Imf:(s) which yields Eq. 3 when inserted in a dispersion relation. To see
that this is the appropriate procedure, we consider dividing the dispersive
integral into two pieces, with the transition part s being large enough that
above s = § we are in asymptotic high energy behavior for Imf,(s)

o L g5 Imf(s) 1 o Imf(s)
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In the first integral the integrand is finite and the range is finite so that the
result is analytic in 1/Q? around Q? — co. As a consequence, the logarithm
in the QCD form for the asymptotic limit cannot be reproduced from the
first integral, and must come from the s — oo behavior of Imf,(s) in the
second integral. The form of the imaginary part which guarantees the proper
asymptotic limit is

6473 1
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This form also allows the high energy sum rule Eq. 6 to converge. A final step
is the matching between the intermediate and high energy forms of Imf,(s).
In order to help with this we impose the high energy sum rule Eq. 6 and the
normalization integral Eq. 5. For these to be satisfied, the negative values of
Imf.(s) obtained from the asymptotic form at large s must extend to fairly
low energies in order to be able to cancel the known positive contribution
effects of the rho. This is a powerful constraint. There is certainly some
ambiguity in the precise form in the matching region, but we have found
a relatively simple solution. This is depicted in Fig. 1, showing a smooth
matching slightly above 1 GeV'.

If we use this form for Imf,(s) in a dispersion relation, we clearly have
no predictive power in the intermediate energy region where our method is
data-driven. The predictions come from the approaches to the asymptotic
regions. Within a dispersive framework the transitions to the low energy and
high energy limits are both determined largely by the numerically important
intermediate energy region. Our results are presented graphically in Fig. 2.
On the low energy side the structure of the real part of the form factor is
governed by the low energy constraints of Eq. 9,10. These are predicted by
the dispersion relations to have the form

Imf.(s) = — (14)
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using p = m,,. The result for Lg“) agrees with the standard result, derived
from the real part of the form factor. This is just a consistency condition for
the dispersion relation. Of greater conceptional interest is the way that the
dispersion method embodies the underlying physics of vector meson domi-
nance(VMD), and the way that it resolves the issue of the scale dependence
of the chiral coefficients in VMD[10]. Vector dominance is motivated by a
narrow width approximation to the dispersion integral

Imfr(s) = mm2d(s —m?) (16)
Ecker, Pich and de Rafael argued that VMD determines the chiral coefficients
at the scale p? = mf). The dispersive approach provides a different answer
— VMD determines not simply the chiral coefficient Lg“) () but rather the
scale independent combination of the coefficient plus a specific combination
of chiral logs, i.e. Lg in Eq. 9.

On the high energy side, we see from Fig. 2 that the asymptotic QCD
limit is approached rather slowly. In a dispersive framework this is due
to the large contributions of the soft physics region, most notably the rho
resonance, which continues to be more important in the dispersion integral
than the somewhat small perturbative contribution. This result is consistent
with quark model calculations[11], but is far less model dependent.

The techniques of dispersion relations provide a partial bridge between
the low energy techniques of chiral perturbation theory and the high energy
techniques of QCD. The simplest exploration of these methods involve two
point functions. The present work involves a three point function and hence
is a step towards the consideration of yet more difficult matrix elements such
as the nonleptonic amplitudes responsible for electromagnetic mass differ-
ence[12] or weak decays.
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Figure Captions

Fig. 1. Fit to the imaginary part of the pion form factor satisfying the con-
sistency constraints described in the text.

Fig. 2. The real part of the pion form factor at large Q. The dashed line
indicates the asymptotic prediction of perturbative QCD with A = 0.3GeV'.
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