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On the Supersolid State of Matter

Nikolay Prokof’ev and Boris Svistunov
Department of Physics, University of Massachusetts, Amherst, MA 01003 and

Russian Research Center “Kurchatov Institute”, 123182 Moscow

We prove that the necessary condition for a solid to be also a superfluid is to have zero-point
vacancies, or interstitial atoms, or both, as an integral part of the ground state. As a consequence,
superfluidity is not possible in commensurate solids which break continuous translation symmetry.
We discuss recent experiment by Kim and Chan [Nature, 427, 225 (2004)] in the context of this
theorem, question its bulk supersolid interpretation, and offer an alternative explanation in terms
of superfluid helium interfaces.

PACS numbers: 67.40.-w, 67.80.-s, 05.30.-d

Recent discovery by Kim and Chan [1, 2] that solid 4He
samples have a non-classical moment of inertia (NCMI)
is a breakthrough result which has prompted renewed
interest in the supersolid (SFS) state of matter. Early
theoretical work by Andreev and Lifshitz [3] and Chester
[4] showed that solids may feature a Bose-Einstein con-
densate of vacancies (or interstitial atoms) and thus pos-
sess superfluid (SF) properties. One may consider their
work as establishing sufficient conditions for SFS. It was
natural then to interpret mass decoupling in the torsion
oscillator experiments as originating from small (about
∼ 1%) concentration of zero-point vacancies [1].

However, the overwhelming bulk of previous experi-
mental work (for review, see, e.g., [5]) indicates that va-
cancies and interstitials in 4He crystals are activated and
their concentration is negligible below 0.2 K. The most
recent study [6] looked at the density variations of solid
4He between two capacitor plates and did not reveal any
presence of vacancies. To deal with these facts an idea
was put forward that strong exchange processes in quan-
tum crystals may lead to superfluidity even in the ab-
sence of zero-point defects [7, 8]. Mistakenly, this idea is
attributed to Leggett’s paper [9]. Leggett established a
link between the SF response and the connectivity of the
groundstate wavefunction and derived a rigorous formula
for the upper bound on the superfluid density, ρs. Crys-
tal defects and their relation to the connectivity was not

discussed in Ref. [9]. A separate issue is the “extremely
tentative” order-of-magnitude estimate ρs ≤ 3 × 10−4

based on the exchange integral between 3He atoms [9],
which, apparently, caused the misleading interpretation
that interatomic exchange, on its own, may result in SF
in the absence of vacancies [10].

The central point of the discussion to follow is to an-
swer the question whether superfluidity is possible in
crystal structures with the number of atoms being com-
mensurate with the number of lattice points and what
are the necessary conditions for this to happen.

Below we re-examine Leggett’s work and show that
it implies vacancies and/or interstitial atoms as a nec-

essary condition for SFS in bosonic systems similar to
4He. Chester’s “final speculation” that without them
the solid state of matter is insulating [4] proves to be a

theorem. We present an alternative proof of the theorem
using path-integral language in which the presence of va-
cancies in the SF state is seen explicitly. It also provides
a simple picture showing why exchange processes on their
own do not lead to SF. Thirdly, we put forward an ar-
gument based on the phase–particle-number uncertainty
relation [11] which relates SF, compressibility of pinned
solids and vacancies (pinning is crucial to separate and
suppress the contribution to the compressibility coming
from the change of the lattice constant from that due to
adding/removing particles to/from the bulk [12]). The
answer to the central question is then that SFS ground-
states in commensurate solids have “zero measure” to be
found in Nature, because they require an exact symme-
try between zero-point vacancies and interstitials which
is immediately broken by changing system parameters,
e.g. pressure [13]. By excluding a bulk supersolid in-
terpretation of the Kim & Chan results we are forced to
look for an alternative explanation of their data based on
the physics of disordered and frustrated 4He interfaces.

As shown by Feynman [14], the groundstate of the
bosonic system has no zeros, ΨG(x1, x2, . . . , xN ) 6= 0.
Moreover, in superfluids ΨG does not become macro-
scopically small when one or several coordinates, say,
x1, x2, . . . xm, are taken around the system while other
coordinates are kept fixed. This property (called connec-
tivity by Leggett [9]) is key for superfluidity, and is just
another way of saying that topological off-diagonal long-
range order (TODLRO) is required for SF [15, 16, 17].
The requirement that connected ΨG be single-valued
leads to the quantization of circulation and thus stabil-
ity of persistent currents in samples with the cylindrical
annulus geometry [9].

To illustrate the point, consider a one-dimensional sys-
tem of two identical bosons forming a bound (molecu-
lar) groundstate, ϕ0(|r1 − r2|), with localization length
l. Naively, the first rotating state of the molecule on
a ring of large circumference, L ≫ l, is written as a
product of the the plane wave for the center of mass
coordinate, R = (r1 + r2)/2, times the bound state:
ϕ1 = ei2πR/L ϕ0(|r1 − r2|). This expression, however,
is not single-valued, because if r1 or r2 is taken around
the ring we get ϕ1 → −ϕ1. The correct solution is to
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replace ϕ0 with ϕ̃0, which has a zero at |r1 − r2| ≈ L/2,
i.e. in the region where ϕ0 is exponentially small; at dis-
tances |r1 − r2| ≪ L the two functions are almost identi-
cal, |ϕ̃0| ≈ ϕ0. Note, that the energetic cost of creating
a zero in this case is exponentially small and vanishes in
the limit of infinite system size.

The same considerations apply to the disconnected
crystal state consisting of N bosons when ΨG decays to
the macroscopically small value when any finite number
of coordinates are taken away from their typical posi-
tions in the crystal (other coordinates are kept fixed) and
moved around the system. The first rotating state in the
system with periodic boundary conditions can be written

as φ1 = ei2πR/L ϕ̃0 with R =
∑N

i=1 ri/N and ϕ̃0 having
zeros in regions where the modulus of ϕ0 is exponentially
suppressed and thus extra zeros do not cost finite (system
size independent) energy. Clearly, the phase gradient cir-
culation of φ1 is ∼ 1/N , and this system will not show
the NCMI which is based on the impossibility of setting
system in rotation with a macroscopically small veloc-
ity or circulation. This should be compared with the
first rotating state of the single-atom superfluid system,

φ
(SF )
1 = ei2π

∑
N

i=1
ri/L ϕ0 with ϕ0 > 0 and phase gradi-

ent circulation 2π. Now, making zeros in connected ϕ0 is
so costly energetically that the lowest energy state corre-
sponds to the relatively high kinetic energy of rotation.
For definiteness, we consider below only single-atomic su-
perfluids, but all considerations are readily generalized
to the m-atomic case. We have essentially reproduced
above the Leggett’s argument that SF wavefunctions are
necessarily connected.

By definition, |ΨG(x1, x2, . . . , xN )|2 is the probability
density to observe particles at the specified positions. We
fix all coordinates except one, x1, and observe that in
connected wavefunctions |ΨG(x1)|

2 remains finite when
x1 is taken arbitrary far from the initial position. For-
mally, this property is identical to statistical properties
of atomic configurations in classical crystals at finite tem-
perature and was used by Chester to introduce vacancies
in the ground state. This final correspondence was not
elaborated in Ref. [9].

How do we “visualize” vacancies/interstitials in the
state of identical particles with strong exchange, espe-

cially when the number of atoms coincides with the num-

ber of lattice points? It appears that the common per-
ception is that such solids do not have vacancies and
interstitials, by definition, or else they are indistinguish-
able from the standard zero-point fluctuations. Imagine
a solid sample pinned by an (arbitrarily weak) external
potential preventing it from moving as a whole. There
is no problem in identifying lattice points using the av-
erage particle density profile ρ(r) which is periodic in
space. Consider now some typical spatial configuration
of particle positions along with the lattice points and
start the coarse-graining procedure of “erasing” the clos-
est particle-lattice point pairs in the spirit of the spa-
tial renormalization group treatment. As we progress
towards mesoscopic length-scales all short-ranged zero-

point fluctuations of atoms away from lattice points will
be erased from the picture. The procedure continues un-
til we have erased all pairs with sizes much smaller than L
but much larger than all microscopic scales. We say that
the crystal state has no vacancies and interstitials if the
final coarse-grained configuration is empty. On the other
hand, if the coarse-grained configuration still contains
lattice points, or particles, or both, at arbitrary large
distances, we say that it has crystal defects in it. The
decimation procedure explains how vacancies are possi-
ble in commensurate solids, and perfectly agrees with the
conventional view of classical crystals at finite tempera-
ture. For the commensurate solid with connected ΨG we
may start with the perfect-lattice configuration of parti-
cle coordinates and its empty coarse-grained picture, and
then move x1 arbitrary distance away to produce an im-
age of the vacancy and interstitial. This will not result
in the exponential suppression of the configuration prob-
ability (in fact, such configurations will dominate in the
normalization integral).

In the absence of exact interstitial/vacancy symme-
try the concentration of vacancies, nv, and interstitials,
nint, in the supersolid will be different, e.g. nv > nint,
since broken continuous symmetry allows production of
excess vacancies by making small changes in the lattice
constant. [This mechanism is is not available in discrete
models, and then nv = nint is possible.] In the transla-
tion invariant system at T=0 one expects then ρs = Anv,
just like in any other interacting bosonic system.

Our second consideration is based on the path-integral
formulation of quantum statistics [14] in terms of many-
body trajectories, {xi(τ)}, in imaginary time τ ∈ [0, β]
with periodic boundary conditions {xi(β)} = {xi(0)}.
The most important superfluid characteristic of parti-
cle trajectories, or world lines, is their winding num-
bers, Mα, α = 1, 2, . . . , d. We assume periodic boundary
conditions in space in all d-dimensions with linear sizes
Lα = L. To determine Mα imagine a cross-section go-
ing through point R perpendicular to the direction α
and count how many times particles cross it from left to
right, kα

−

, and from right to left, kα
+. By definition, wind-

ing numbers are Mα = kα
+−kα

−

. They are independent of
the cross-section location R because trajectories are con-
tinuous and periodic in imaginary time. The superfluid
density is then given by [19]

ραγ
s = 2mTL2−d 〈 MαMγ〉 , (1)

where m is the particle mass. In d = 3, the superfluid
density is finite in the thermodynamic limit, L → ∞,
T → 0, and T/L → 0, if the probability of having world
lines with non-zero winding numbers in the ground state
is close to unity.

We now demonstrate that crystal states without zero-
point vacancies are described by world-line configurations
with M = 0, i.e. they are not superfluid. We start
with the picture of a perfect crystal with particles tightly
localized around equilibrium lattice points. In this state
the trajectories are nearly straight lines with M = 0 as
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(a) (b) (c)

FIG. 1: Particle worldlines in different crystals at low temperature. The time axis is vertical. Dashed lines show the equilibrium
lattice points. (a) Nearly classical crystal at low temperature; M = 0. (b) Insulating quantum crystal with large zero-point
fluctuations and frequent particle exchange processes; M = 0. (c) Particle worldlines with non-zero winding number.

shown in Fig. 1(a). When tunnelling exchange processes
are added into the picture the world lines are no longer in
one-to-one correspondence with the lattice points. The
nature of the exchange process, however, is such that
when one particle leaves its equilibrium crystal point R1

and goes to point R2, the other particle goes from R2

to R1 (for pairwise exchange). Thus, the net current
of world lines through any cross-section remains strictly
zero. The same conclusion follows from the consideration
of multiparticle exchange events [18], see Fig 1(b).

Consider now a world-line configuration with non-zero
winding number, Fig. 1(c). At any moment of imagi-
nary time we consider the spatial configuration of par-
ticle positions and lattice points and apply the coarse-
graining procedure discussed above. Again, all short-
lived and short-ranged exchange process and zero-point
fluctuations will be erased once we pass several atomic
distances, and in the insulating state the “movie” of the
coarse-grained configuration evolution in time will show
an empty “screen” for Figs. 1(a,b). If M 6= 0, as in
Fig. 1(c), there is no way for the renormalization proce-
dure to erase all particles at all moments in time since
topologically winding numbers correspond to particle tra-
jectories moving continuously in the same spatial direc-
tion and thus creating imbalance between particles and
lattice points at arbitrary large distances. After all other
particles are associated with lattice points and erased,
the winding trajectory describes an interstitial-vacancy
pair which separates over the distance of order L and
eventually makes a closed loop around the system, see
Fig. 2. For the statistics of such loops to give non-
vanishing 〈 MαMγ〉 in the thermodynamic limit, they
have to be typical in a given lattice structure. In other
words, zero-point vacancies and interstitials are an inte-
gral part of the groundstate.

Our last consideration is based on the relation between
the pinned compressibility, κ, and zero-point vacancies.
Compressibility can be calculated through the energies
of states with one extra particle, EN+1, and one extra
vacancy, EN−1, as κ = 1/V ∆E, where V is the system

coarse-graining scale

τ

r

FIG. 2: Evolution of the coarse-grained picture for the tra-
jectory with non-zero winding number similar to Fig. 1(c).
Filled and open circles show particle and lattice site positions
correspondingly. Arrows indicate the direction of the particle
number current.

volume, and ∆E = EN+1 −EN−1. Incompressible states
have finite ∆E. On another hand, in a macroscopic sys-
tem ∆E can be obtained by considering the energy in-
crease by creating an interstitial-vacancy pair with ar-
bitrary large separation between them (in pinned solids
the notion of vacancy or interstitial is rigorously defined
within the coarse-graining procedure as the presence or
absence of perfect registry between particles and unit
cells). Crystals without zero-point defects are gapped
with respect to the interstitial-vacancy production (oth-
erwise these defects would be an essential part of the
groundstate) and thus are incompressible (if pinned) and
vice versa. One step further, this implies that superfluid-
ity and pinned compressibility come together and either
one (including long-wave acoustic properties with addi-
tional sound mode) can be used for the detection of the
SFS state experimentally. This conclusion is in line with
the famous uncertainty relation [11] between the phase
of the superfluid order parameter, φ, and particle num-
ber, ∆φ∆N ≥ 1/2. Because of this relation, one may not
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introduce a well defined phase field for the incompress-
ible state of matter which tends to completely suppress
particle number fluctuations.

We have little doubt that large activation energies
for vacancies and interstitials in 4He measured down to
∼ 1 K temperatures [5] will not radically change to near
zero at lower temperatures, and that helium is a commen-
surate solid at T = 0. Since it has no symmetry between
the vacancies and interstitials, we conclude that there
are no zero-point vacancies in bulk solid 4He. By ex-
cluding superflow through the crystal bulk we are forced
to look more closely at the superfluid properties of dis-
ordered helium-substrate layers and frustrated interfaces
between helium micro-crystallites.

There are indications of strong disorder in experimen-
tal system of Ref. [1]. The dependence of the super-
fluid density on reduced temperature parameter t =
(Tc−T )/Tc has little to do with the expected bulk super-
fluidity t0.671 dependence. Instead, ρs appears to vanish
at Tc with zero derivative. Such a behavior can be mod-
elled by a broad distribution of transition temperatures
in the heterogeneous sample. This observation correlates
with the gradual decrease of the decoupled mass with
the increase of the torsion oscillator amplitude by orders
of magnitude. Let us assume that a sample consists of
micro-crystallites of linear size D with superfluid inter-
faces of typical thickness d between them. The superlfuid
fraction may be estimated then as ρs/ρ ∼ d/D. To have
∼ 1% of the superfluid mass coming from interfaces with
d ∼ 10 Å one will need crystallite sizes about a frac-
tion of a micron. The variety of interfaces with different

crystallographic indices provides a broad distribution of
transition temperatures.

One of the experimental mysteries is extreme sensi-
tivity to the addition of 3He impurities at the level of
nim ∼ 100ppm. To minimize kinetic energy, light 3He
atoms are likely to end up at frustrated interfaces, and
then at the edges where different interfaces meet. This
may increase 3He edge vs bulk concentration by a fac-

tor as large as (D/d)2 and produce n
(edge)
im ∼ 1. This

will have a profound effect on the edge-connected inter-
face superfluidity (edges then act as a disordered two-
dimensional network of Josephson junctions).

We are not aware of any systematic study what are the
properties of interfaces between the 4He micro-crystals
and helium 4He crystals on disordered substrates at el-
evated pressures. Model simulations of domain wall
boundaries in the checkerboard solid (obtained for in-
teracting lattice bosons at half-integer filling factor) show
that they remain superfluid deep into the bulk solid phase
[20]. In the outlined picture three predictions are certain:
(i) the superfluid fraction must strongly depend on the
crystal growth process, (ii) the amount of 3He sufficient
to suppress superfluidity scales as nim ∝ ρ2

s, and (iii)
transition temperatures on interfaces do not depend on
D and ρs(T = 0).

We are grateful to M. Chan, R. Guyer, R. Hallock,
Yu. Kagan, A. Leggett, J. Machta, and W. Mullin for
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grant NAG32870.
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