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I. INTRODUCTION

The analysis of the semileptonic decays of the baryon octet Bi → Bjeν̄e presents an opportunity to shed light on
the Cabibbo–Kobayashi–Maskawa (CKM) matrix element Vus. At zero momentum transfer, the weak baryon matrix

elements for the Bi → Bjeν̄e transitions are determined by just two constants — the vector coupling F
BiBj

1 and its

axial counterpart G
BiBj

1 . In the limit of exact SU(3) symmetry F
BiBj

1 and G
BiBj

1 are expressed in terms of basic
parameters — the vector couplings are given in terms of well–known Clebsch–Gordan coefficients which are fixed due
to the conservation of the vector current (CVC), while the axial couplings are given in terms of the familiar SU(3)
octet axial–vector couplings F and D. The Ademollo–Gatto theorem (AGT) [1] protects the vector form factors
from leading SU(3)–breaking corrections generated by the mass difference of strange and nonstrange quarks—the first
nonvanishing breaking effects begin at second order in symmetry–breaking. As emphasized in Ref. [2], the vanishing of

the first–order correction to the vector hyperon form factors F
BiBj

1 presents an opportunity to determine Vus from the

direct measurement of VusF
BiBj

1 . The axial form factor, on the other hand, contains symmetry–breaking corrections
already at first order. We note that the experimental data on baryon semileptonic decays [3] are well described by the
Cabibbo theory [4], which assumes SU(3) invariance of the strong interactions. However, for a precise determination
of Vus one needs to include the leading and very likely also the subleading SU(3) breaking corrections.

The theoretical analysis of SU(3) breaking corrections to hyperon semileptonic decay form factors has been per-
formed in various approaches, including quark and soliton models, the 1/Nc expansion of QCD, chiral perturbation
theory (ChPT), lattice QCD, etc. (for an overview and references see [5]). In Ref. [5] we have suggested the use of a
quark-based approach, which offers the possibility to consistently include chiral corrections (both SU(3)–symmetric
and SU(3)–breaking) to the baryon semileptonic form factors. By matching the baryon matrix elements to the cor-
responding quantities derived in baryon ChPT we reproduced the chiral expansion of physical quantities (e.g. mass,
magnetic moments, slopes and the axial charge of the nucleon) at the order of accuracy at which we worked. In the
valence quark calculation of the baryon matrix elements we employed a simple generic ansatz for the spatial form of
the quark wave function [6, 7].

In the present paper we evaluate the baryon matrix elements within a Lorentz and gauge invariant constituent
quark model [8, 9]. Note that in Refs. [10, 11] we have studied the electromagnetic properties of the baryon octet
and the ∆(1230)–resonance in an analogous approach. In particular, we developed an approach based on a nonlinear
chirally symmetric Lagrangian which involves constituent quarks and chiral fields. In a first step, this Lagrangian was
used to dress the constituent quarks with a cloud of light pseudoscalar mesons and other (virtual) heavy states using
the calculational technique of infrared dimensional regularization (IDR) [12]. Then, within a formal chiral expansion,
we evaluated the dressed transition operators relevant for the interaction of quarks with external fields in the presence
of a virtual meson cloud. In a next step, these dressed operators were used to calculate baryon matrix elements. (A
simpler and more phenomenological quark model based on similar ideas regarding the dressing of constituent quarks
by the meson cloud has been developed in Refs. [7].) In the present paper we improve the quantitative determination of
valence quark effects by resorting to a specific relativistic quark model [8, 11] describing the internal quark dynamics.
This procedure will allow us to generate predictions for all six form factors showing up in the matrix elements of the
semileptonic decays of the baryon octet. With the explicit form factors together with radiative corrections, we present
predictions for the corresponding decay widths and asymmetries.

The paper is structured as follows. First, in Section II, we discuss the basic notions of our approach which is
directly connected to our previous work in Refs. [5, 10, 11]. That is, we derive a chiral Lagrangian motivated by
baryon ChPT [12, 13], and write it in terms of quark and mesonic degrees of freedom. Using constituent quarks
dressed with a cloud of light pseudoscalar mesons and other mesons heavier than the pseudoscalar mesons, we derive
dressed transition operators within the chiral expansion, which are in turn used in a Lorentz and gauge invariant
quark model [8] explicitly including internal quark dynamics to calculate baryon matrix elements. In Section III we
derive specific expressions for the vector and axial baryon semileptonic decay constants, while in Section IV we present
the numerical analysis of the axial nucleon charge and the vector and axial vector hyperon semileptonic form factors.
Finally, in Section V we summarize our results.

II. APPROACH

A. Matrix elements of semileptonic decays of the baryon octet

In Refs. [5, 10, 11] we have developed a Lorentz covariant quark approach which allowed us to study light baryon
properties based on the inclusion of chiral effects in a consistent fashion by matching the quark model approach to
the predictions of ChPT. In particular, our results for various baryon properties (static properties and form factors
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in the Euclidean region) derived in [5, 10, 11] using this approach satisfy the low–energy theorems and identities
dictated by the infrared singularities of QCD (see, e.g., the detailed discussion in Refs. [5, 10] and a brief overview in
Section II C).

The main idea is to include chiral effects in the transition quark operators, which are then sandwiched between
the respective baryon states. We have developed a technique which allows us to explicitly generate chiral corrections
associated with the small scale λ ∼ mq, where mq is the constituent quark mass, together with effects of the internal
dynamics of the valence quarks. In particular, as a first step, we dress the bare valence quark operators by a cloud
of pseudoscalar mesons and states heavier than the pseudoscalar mesons in a straightforward manner by the use of
an effective chirally–invariant Lagrangian (see the explicit forms in Refs. [5, 10, 11] and the relevant expressions for
the calculation of semileptonic form factors below). In particular, the Lagrangian which dynamically generates the
dressing of the constituent quarks by the mesonic degrees of freedom, consists of two basic pieces Lq and LU :

LqU = Lq + LU , Lq = L(1)
q + L(2)

q + L(3)
q + L(4)

q + · · · , LU = L(2)
U + · · · . (1)

The superscript (i) attached to L(i)
U and L(i)

q denotes the low energy dimension of the Lagrangian:

L(2)
U =

F 2

4
〈uµuµ + χ+〉 , L(1)

q = q̄

[
i /D − m +

1

2
g /u γ5

]
q , (2a)

L(2)
q =

Cq
3

2
〈uµuµ〉 q̄ q +

Cq
4

4
q̄ i σµν [uµ, uν ] q +

Cq
6

8m
q̄ σµνF+

µν q + · · · , (2b)

L(3)
q =

Dq
16

2
q̄ /u γ5 q 〈χ+〉 +

Dq
17

8
q̄ {/u γ5 , χ̂+} q +

iDq
18

2
q̄γµγ5 [Dµ, χ−] q +

Dq
22

2
q̄γµγ5 [Dν , F−

µν ] q + · · · , (2c)

L(4)
q =

Eq
6

2
〈χ+〉 q̄ σµνF+

µν q +
Eq

7

4
q̄ σµν{F+

µν χ̂+} q +
Eq

8

2
q̄ σµν〈F+

µν χ̂+〉 q + · · · , (2d)

where the symbols 〈 〉, [ ] and { } occurring in Eq. (2) denote the trace over flavor matrices, commutator, and
anticommutator, respectively. In Eq. (2) we display only the terms involved in the calculation of semileptonic vector
and axial vector quark coupling constants.

We use the following notation. q, U = u2 = exp(iφ/F ) are the quark and chiral fields, respectively, where φ is the
octet of pseudoscalar fields and F is the octet decay constant, σµν = i/2[γµ, γν ], uµ = i{u†,∇µu}. Dµ and ∇µ are the
covariant derivatives acting on the quark and chiral fields, respectively, including external vector (vµ) and axial (aµ)
fields, F±

µν = u†FR
µνu ± uFL

µνu† is the stress tensor involving vµ and aµ, χ± = u†χu† ± uχ†u and χ̂+ = χ+ − 〈χ+〉/3
with χ = 2BM + . . ., where B is the quark vacuum condensate parameter and M = diag{m̂, m̂, m̂s} is the mass
matrix of current quarks (We work in the isospin symmetry limit with m̂u = m̂d = m̂ = 7 MeV. The mass of the
strange quark m̂s is related to the nonstrange one via m̂s ≃ 25 m̂).

The parameters m = 420 MeV and g = 0.9 denote the constituent quark mass and axial charge in the chiral limit
(i.e., they are counted as quantities of order O(1) in the chiral expansion). Cq

i , Dq
i and Eq

i are the SU(3) quark
second–, third– and fourth–order low–energy constants (LEC’s). We denote the SU(3) quark LEC’s by capital letters
in order to distinguish them from the SU(2) LEC’s cq

i , dq
i and eq

i . Also, for the quark LEC’s we use the additional
superscript “q” to differentiate them from the analogous ChPT LEC’s: Ci, Di, Ei in SU(3) and ci, di, ei in SU(2).
For the numerical analysis we will use: Mπ = 139.57 MeV, MK = 493.677 MeV (the charged pion and kaon masses),
Mη = 547.51 MeV and F = (Fπ +FK)/2 in SU(3) with Fπ = 92.4 MeV and FK/Fπ = 1.22. Using the Lagrangian (2)
we can calculate the semileptonic vector and axial vector quark couplings including chiral corrections following the
procedure discussed in detail in Refs. [5, 10, 11]. In Appendix A we list the results for the semileptonic quark couplings
fdu
1,2,3, fsu

1,2,3, gdu
1,2,3 and gsu

1,2,3 up to order O(p4) in the three–flavor picture.
In Refs. [10, 11] we illustrated the dressing technique in the case of the electromagnetic quark operator. We

performed a detailed analysis of the electromagnetic properties of the baryon octet and of the ∆ → Nγ transition. In
Ref. [5] we extended this technique to the case of vector and axial vector quark operators, deriving master formulae
for the calculation of the semileptonic form factors of baryons including the effects of valence quarks together with
chiral corrections. Below we briefly review the derivation of these master formulae, which will be the starting point
for the present paper.

First, we define the bare vector and axial vector quark transition operators constructed from quark fields of flavor
i and j as:

Jµ, V (q) =

∫
d4x e−iqx jµ, V (x) , jµ,V (x) = q̄j(x) γµ qi(x) , (3a)

Jµ, A(q) =

∫
d4x e−iqx jµ, A(x) , jµ,A(x) = q̄j(x) γµ γ5 qi(x) . (3b)
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Next, using the chiral Lagrangian derived in Ref. [5], we construct the vector/axial vector currents with quantum
numbers of the bare quark currents which include mesonic degrees of freedom. These currents are then projected on
the corresponding (initial and final) quark states in order to evaluate dressed vector f ij

k (q2) and axial vector gij
k (q2)

(k = 1, 2, 3) quark form factors which encode the chiral corrections. Finally, using the dressed quark form factors in
momentum space we can determine their Fourier–transform in coordinate space.

In the one-body approximation the dressed quark operators jdress
µ, V (A)(x) and their Fourier transforms Jdress

µ, V (A)(q)

have the forms (for an extension which also includes the two–body quark–quark interactions see Ref. [5])

jdress
µ, V (x) = f ij

1 (−∂2) [q̄j(x)γµqi(x)] +
f ij
2 (−∂2)

mi
∂ν [q̄j(x)σµνqi(x)] − f ij

3 (−∂2)

mi
i ∂µ [q̄j(x)qi(x)] , (4a)

Jdress
µ, V (q) =

∫
d4x e−iqx q̄j(x)

[
γµ f ij

1 (q2) +
iσµν qν

mi
f ij
2 (q2) +

qµ

mi
f ij
3 (q2)

]
qi(x) , (4b)

and

jdress
µ, A (x) = gij

1 (−∂2) [q̄i(x)γµγ5qj(x)] +
gij
2 (−∂2)

mi
∂ν [q̄j(x)σµνγ5qi(x)] − gij

3 (−∂2)

mi
i ∂µ [q̄j(x)γ5qi(x)] , (5a)

Jdress
µ, A (q) =

∫
d4x e−iqx q̄j(x)

[
γµ γ5 gij

1 (q2) +
iσµνqν

mi
γ5 gij

2 (q2) +
qµ

mi
γ5 gij

3 (q2)

]
qi(x) , (5b)

where mi(j) denotes the dressed constituent quark mass of the i(j)–th flavor generated by the corresponding chiral

Lagrangian (for details see Ref. [10]); f ij
1,2,3(q

2) and gij
1,2,3(q

2) denote the quark-level vector and axial vector i → j
flavor changing form factors. Up to and including the third order in the chiral expansion, the tree and loop diagrams
which contribute to the dressed vector Jdress

µ, V (q) and axial vector Jdress
µ, A (q) operators, respectively, are displayed in

Figs.1 and 2 of Ref. [5]. In Appendix A we present our results for the semileptonic vector f ij
k = f ij

k (0) and axial

gij
k = gij

k (0) couplings at the order of accuracy at which we work – up to order O(p4) in the three–flavor picture
including chiral corrections (both SU(3)–symmetric and SU(3)–breaking). For simplicity we restrict our approach to
the isospin symmetry limit in our consideration.

In order to calculate the vector and axial vector current transitions between baryons we sandwich the dressed quark
operators between the relevant baryon states. The master formulae are:

〈Bj(p
′)| Jdress

µ, V (A)(q) |Bi(p)〉 = (2π)4 δ4(p′ − p − q)M
BiBj

µ, V (A)(p, p′) , (6)

M
BiBj

µ, V (p, p′) =
3∑

k=1

f ij
k (q2) 〈Bj(p

′)|V ij
µ,k(0) |Bi(p)〉

= ūBj
(p′)

{
γµ F

BiBj

1 (q2) +
iσµνqν

mBi

F
BiBj

2 (q2) +
qµ

mBi

F
BiBj

3 (q2)

}
uBi

(p) , (7a)

M
BiBj

µ, A (p, p′) =

3∑

k=1

gij
k (q2) 〈Bj(p

′)|Aij
µ,k(0) |Bi(p)〉

= ūBj
(p′)

{
γµ γ5 G

BiBj

1 (q2) +
i σµνqν

mBi

γ5 G
BiBj

2 (q2) +
qµ

mBi

γ5 G
BiBj

3 (q2)

}
uBi

(p) , (7b)

where Bi(p) denotes the baryon state and uBi
(p) is the baryon spinor normalized according to

〈Bi(p
′)|Bi(p)〉 = 2EBi

(2π)3 δ3(~p − ~p ′) , ūBi
(p)uBi

(p) = 2mBi
. (8)

The baryon energy and its mass are denoted by EBi
=

√
m2

Bi
+ ~p 2 and mBi

. The index i(j) attached to the baryon

state indicates the flavor of the quark involved in the semileptonic transition, and F
BiBj

k (q2) and G
BiBj

k (q2) with
k = 1, 2, 3 are the vector and axial vector semileptonic form factors of the baryons.

The main idea of the above relations is to express the matrix elements of the dressed quark operators in terms of
the matrix elements of the bare vector and axial vector quark operators V ij

µ,k(0) and Aij
µ,k(0), respectively, where

V ij
µ,k(0) = q̄j(0)ΓV

µ,kqi(0) , Aij
µ,k(0) = q̄j(0)ΓA

µ,kqi(0) , (9)
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with

ΓV
µ,1 = γµ , ΓV

µ,2 =
iσµνqν

mi
, ΓV

µ,3 =
qµ

mi
,

ΓA
µ,1 = γµγ5 , ΓA

µ,2 =
iσµνqν

mi
γ5 , ΓA

µ,3 =
qµ

mi
γ5 . (10)

Next we specify the expansion of the bare matrix elements 〈Bj(p
′)|V ij

µ,k(0) |Bi(p)〉 and 〈Bj(p
′)|Aij

µ,k(0) |Bi(p)〉 in terms

of the form factors V
BiBj

lk (q2) and A
BiBj

lk (q2) with (l = 1, 2, 3) encoding the effects of the internal dynamics of valence
quarks:

〈Bj(p
′)|V ij

µ,k(0) |Bi(p)〉 = ūBj
(p′)

(
γµ V

BiBj

1k (q2) +
iσµνqν

mBi

V
BiBj

2k (q2) +
qµ

mBi

V
BiBj

3k (q2)

)
uBi

(p) , (11a)

〈Bj(p
′)|Aij

µ,k(0) |Bi(p)〉 = ūBj
(p)

(
γµγ5 A

BiBj

1k (q2) +
iσµνqν

mBi

γ5 A
BiBj

2k (q2) +
qµ

mBi

γ5 A
BiBj

3k (q2)

)
uBi

(p) . (11b)

Combining chiral effects (encoded in the chiral form factors f ij
k (q2) and gij

k (q2)) and valence quarks effects (encoded

in the form factors V
BiBj

lk (q2) and A
BiBj

lk (q2)) the expressions for the vector and axial vector form factors F
BiBj

k and

G
BiBj

1 , which govern the semileptonic transitions between octet baryons, are defined as:

F
BiBj

1 (q2) =

2∑

k=1

f ij
k (q2)V

BiBj

1k (q2) , G
BiBj

1 (q2) =

2∑

k=1

gij
k (q2)A

BiBj

1k (q2) , (12a)

F
BiBj

2 (q2) =

2∑

k=1

f ij
k (q2)V

BiBj

2k (q2) , G
BiBj

2 (q2) =

2∑

k=1

gij
k (q2)A

BiBj

2k (q2) , (12b)

F
BiBj

3 (q2) =

3∑

k=1

f ij
k (q2)V

BiBj

3k (q2) , G
BiBj

3 (q2) =

3∑

k=1

gij
k (q2)A

BiBj

3k (q2) , (12c)

Note that the operators V (A)ij
µ,3(0) are proportional to qµ, and therefore do not generate contributions to the baryon

form factors F
BiBj

1,2 (q2) and G
BiBj

1,2 (q2). Further simplifications occur when we consider the semileptonic coupling

constants of baryons at maximal recoil q2 = 0. For the couplings encoding valence quark effects we get the following
constraints due to Lorentz covariance and gauge invariance:

V
BiBj

12 (0) = A
BiBj

12 (0) = 0 , V
BiBj

31 (0) = O(mBi
− mBj

) , V
BiBj

32 (0) = O(mBi
− mBj

) . (13)

It is seen that the V
BiBj

31 (0) and V
BiBj

32 (0) couplings start at the first order in SU(3) breaking. In the case of the

couplings f ij
k = f ij

k (0) and gij
k = gij

k (0) encoding the chiral effects we have the following results (see details in
Appendix A):

1) The vector coupling fdu
1 governing the d → u transition is trivial and equal to unity — fdu

1 = 1, because we work
in the isospin symmetry limit. In the case of the s → u transition, the corresponding vector coupling fsu

1 contains
symmetry breaking corrections of second order in SU(3) — O((M2

K − M2
π)2) and O((M2

K − M2
η )2). Note that this is

nothing but the statement of the Ademollo–Gatto theorem (AGT) which asserts that the coupling fsu
1 is protected

from first–order symmetry breaking corrections.
2) The coupling fdu

3 vanishes due to isospin invariance, while the coupling fsu
3 starts at first order in SU(3)

breaking — fsu
3 = O(M2

K − M2
π).

3) The axial vector couplings gij
2 are either equal to zero (e.g. the coupling gdu

2 governing the d → u transition) or
vanish at the order of accuracy that we are working at (e.g. the coupling gsu

2 governing the s → u transition).
The set of Eqs. (6)–(12) contains our main result: we separate the effects of the internal dynamics of the valence

quarks contained in the matrix elements of the bare quark operators V (A)ij
µ,k(0) and the effects dictated by chiral

dynamics which are encoded in the relativistic form factors f ij
k (q2) and gij

k (q2). Due to the factorization of chiral

effects and the effects of the internal dynamics of the valence quarks the calculation of the form factors f(g)ij
k (q2)

which encode the chiral dynamics, on one side, and the matrix elements of V (A)ij
µ,k(0) which encodes the effects of the

valence quarks, on the other side, can be done independently. The evaluation of the matrix elements V (A)ij
µ,k(0) is

not restricted to small momenta squared and, therefore, can shed light on baryon form factors at higher (Euclidean)
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momentum squared in comparison with ChPT. In particular, as a first step, we employ a formalism motivated by
the ChPT Lagrangian for the calculation of f(g)ij

k (q2) which is formulated in terms of constituent quark degrees of
freedom. The evaluation of the matrix elements of the bare quark operators can then be relegated to quark models
based on specific assumptions on the internal quark dynamics, hadronization, and confinement. Note that Eqs. (6)–
(12) are valid for the calculations of dressed vector and axial vector quark operators of any flavor content. In Ref. [5]

we calculated the vector and axial vector coupling constants F
BiBj

1 (0) and G
BiBj

1 (0). Here we extend our analysis to

all six coupling constants F
BiBj

i (0) and G
BiBj

i (0) (i = 1, 2, 3).

B. Evaluation of the matrix elements of the valence quark operators

In this section we discuss the calculation of the baryonic matrix elements

〈B(p′)|V ij
µ,k(0) |B(p)〉 and 〈B(p′)|Aij

µ,k(0) |B(p)〉 (14)

induced by the bare quark operators (9). We will consistently employ the relativistic three-quark model (RQM) [8, 9]
to compute the matrix elements (14). The RQM was previously successfully applied to the study of the properties
of baryons containing light and heavy quarks [8, 9]. The main advantages of this approach are: Lorentz and gauge
invariance, a small number of parameters, and the modelling of effects of strong interactions at large (∼ 1 fm)
distances. Various properties of light and heavy baryons in electromagnetic, strong and weak decays have been
successfully analyzed within this RQM [8, 9] where the effects of valence quarks have been consistently taken into
account. Here we extend this approach to evaluate the effects of valence quarks in the semileptonic decays of the
baryon octet.

Let us begin by briefly reviewing the basic notions of the RQM approach [8, 9]. The RQM is based on an interaction
Lagrangian describing the coupling between baryons and their constituent quarks. The coupling of a baryon B(q1q2q3)
to its constituent quarks q1, q2 and q3 is described by the Lagrangian

Lstr
int(x) = gBB̄(x)

∫
dx1

∫
dx2

∫
dx3 F (x, x1, x2, x3)JB(x1, x2, x3) + h.c. (15)

where JB(x1, x2, x3) is a three-quark current with the quantum numbers of the relevant baryon B [14, 15]. One has

JB(x1, x2, x3) = ǫa1a2a3 Γ1 qa1

1 (x1) qa2

2 (x2)C Γ2 qa3

3 (x3) , (16)

where Γ1,2 are Dirac structures, C = γ0γ2 is the charge conjugation matrix and ai(i = 1, 2, 3) are color indices. In
Appendix B we list the relevant three-quark currents for the baryon octet. The choice of light baryon three-quark
currents has been discussed in detail in Refs. [14, 15].

The function F is related to the scalar part of the Bethe-Salpeter amplitude and characterizes the finite size of the
baryon. In the following we use a specific form for the vertex function [8, 9]

F (x, x1, x2, x3) = N δ4(x −
3∑

i=1

wixi) Φ

(∑

i<j

(xi − xj)
2

)
(17)

where Φ is the correlation function of the three constituent quarks with masses m1, m2, m3 and N = 9 is a normal-
ization factor. With the variable wi defined by wi = mi/(m1 + m2 + m3) the function Φ depends only on the relative
Jacobi coordinates (ξ1, ξ2) via Φ(ξ2

1 + ξ2
2), where

x1 = x − ξ1√
2

(w2 + w3) +
ξ2√
6

(w2 − w3) ,

x2 = x +
ξ1√
2

w1 − ξ2√
6

(w1 + 2w3) , (18)

x3 = x +
ξ1√
2

w1 +
ξ2√
6

(w1 + 2w2) ,

and x =
3∑

i=1

wixi is the center of mass (CM) coordinate. Expressed in terms of the relative Jacobi coordinates and

the center of mass coordinate, the Fourier transform of the vertex function reads [8, 9]:

Φ(ξ2
1 + ξ2

2) =

∫
d4p1

(2π)4

∫
d4p2

(2π)4
e−ip1ξ1−ip2ξ2Φ̃(−p2

1 − p2
2) . (19)
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The baryon-quark coupling constants gB are determined by the compositeness condition [8, 9] (see also [16, 17]),
which implies that the renormalization constant of the hadron wave function is set equal to zero:

ZB = 1 − Σ′
B(mB) = 0 (20)

where Σ′
B(mB) = g2

BΠ′
B(mB) is the first derivative of the baryon mass operator described by the diagram in Fig.1,

and mB is the baryon mass. To clarify the physical meaning of Eq.(20) we first want to remind the reader that

the renormalization constant Z
1/2
B can also be interpreted as the matrix element between the physical and the cor-

responding bare state. For ZB = 0 it then follows that the physical state does not contain the bare one and is
described as a bound state. The interaction Lagrangian Eq. (15) and the corresponding free components describe
both the constituents (quarks) and the physical particles (hadrons), which are taken to be the bound states of the
constituents. As a result of the interaction, the physical particle is dressed, i.e. its mass and its wave function have to
be renormalized. The condition ZB = 0 also effectively excludes the constituent degrees of freedom from the physical
space and thereby guarantees that there is no double counting for the physical observable under consideration. In
this picture the constituent quarks exist in virtual states only. One of the corollaries of the compositeness condition
is the absence of a direct interaction of the dressed charged particle with the electromagnetic and the weak gauge
boson field. Taking into account both the tree-level diagram and the diagrams with the self-energy and counter-term
insertions into the external legs (that is the tree-level diagram times (ZB −1)) one obtains a common factor ZB which
is equal to zero [17].

The quantities of interest—the matrix elements (14)—are described by the triangle diagram in Fig.2(a). In case

of the matrix elements 〈B(p′)|V ij
µ,1(0) |B(p)〉 and 〈B(p′)|Aij

µ,1(0) |B(p)〉 we need to include two additional so-called

“bubble” diagrams in Figs.2(b) and 2(c) which guarantee gauge invariance of the matrix elements (see details in
Refs. [8, 9] and [18, 19]). In particular, the “bubble” diagrams are generated by the non-local coupling of the baryon
to the constituent quarks and the external gauge field which arises after gauging of the non-local strong interaction
Lagrangian (15) containing the vertex function (17). In Appendix C we present more details of how to restore gauge
invariance in the non-local strong interaction Lagrangian (15) through the “bubble” diagrams in Figs.2(b) and 2(c).

Note that the contributions of the bubble diagrams Figs.2(b) and 2(c) to the matrix elements 〈B(p′)|V ij
µ,1(0) |B(p)〉

and 〈B(p′)|Aij
µ,1(0) |B(p)〉 are suppressed. In the present application the bubble diagrams contribute less than 5 % in

magnitude compared to the contribution of the triangle diagram in Fig.2(a).
In the evaluation of the quark-loop diagrams we use the free fermion propagator for the constituent quark [8, 9]:

i Sq(x − y) = 〈0|T q(x) q̄(y)|0〉 =

∫
d4k

(2π)4i
e−ik(x−y) S̃q(k) (21)

where S̃q(k) = (mq− 6k−iǫ)−1 is the usual free fermion propagator in momentum space. The appearance of unphysical
imaginary parts in Feynman diagrams can be avoided by postulating the condition that the baryon mass must be less
than the sum of the constituent quark masses MB <

∑
i mqi

.

In the next step we have to specify the vertex function Φ̃, which characterizes the finite size of the baryons and the
internal quark dynamics. In principle, its functional form can be calculated from the solutions of the Bethe-Salpeter
equation for baryon bound states [20]. In Refs. [21] it was found that, using various forms for the vertex function, the
basic hadron observables are relatively insensitive to the specific details of the functional form of the hadron-quark
vertex form factor. Using this observation as a guiding principle, we select a simple Gaussian form for the vertex
function Φ̃ (any choice for Φ̃ is appropriate as long as it falls off sufficiently fast in the ultraviolet region of Euclidean
space to render the Feynman diagrams ultraviolet finite). We shall employ the Gaussian form

Φ̃(k2
1E , k2

2E)
.
= exp(−18 [k2

1E + k2
2E ]/Λ2

B) , (22)

where k1E and k2E are Euclidean momenta and ΛB is a size parameter which parametrizes the distribution of quarks
inside a given baryon. In previous papers [8, 9] we have determined a set of parameters for the light baryons

mu = md = 420 MeV , ms = 570 MeV , ΛB = 0.75 − 1.25 GeV (23)

which gives very satisfactory agreement with a wide class of experimental data. Note that most of the results are
not sensitive to the actual values of ΛB in the above range. We present some sample results of this approach in
Table 1. These are the magnetic moments of the baryon octet and the nucleon electromagnetic radii generated
with mu = md = 420 MeV, ms = 570 MeV and ΛB = 1.25 GeV. We show the contributions both of the valence
quarks (3q) and of the meson cloud. In the present paper we present a corresponding analysis for the semileptonic
coupling constants of the baryon octet using this same set of model parameters.
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C. Connection with chiral perturbation theory

As stressed earlier, results for the baryon properties obtained using this approach [5, 10] satisfy the low-energy
theorems and identities dictated by the infrared singularities of QCD [12],[13],[22]-[25]. As a result we can relate the
parameters of our approach to those of ChPT. In particular, we have analyzed the chiral expansion of the following
properties of the nucleon: mass, magnetic moments, charge radii, the πN σ–term, axial charge and πNN coupling
constant in SU(2). We have also extended our results to SU(3) including kaon and η-meson degrees of freedom.

The results are:
1. Nucleon mass and πN σ–term.

mN =
◦
mN −4c1M

2 − 3
◦
gA

2
M3

32πF 2
+ k1M

4ln
M
◦
mN

+ k2M
4 + O(M5) , (24a)

σπN = −4c1M
2 − 9

◦
gA

2
M3

64πF 2
+ σ1M

4ln
M
◦
mN

+ σ2M
4 + O(M5) , (24b)

where

k1 =
1

2
σ1 = − 3

32π2F 2 ◦
mN

(
◦
gA

2
−8c1

◦
mN +c2

◦
mN +4c3

◦
mN

)
,

k2 = ē1 −
3

128π2F 2 ◦
mN

(
2

◦
gA

2
−c2

◦
mN

)
,

σ2 = 2ē1 −
3

64π2F 2 ◦
mN

(
◦
gA

2
−8c1

◦
mN +4c3

◦
mN

)
, (25)

ē1 = e1 −
3λ̄

2F 2 ◦
mN

(
◦
gA

2
−8c1

◦
mN +c2

◦
mN +4c3

◦
mN

)
,

and

λ(µ) =
µd−4

(4π)2

(
1

d − 4
− 1

2
(ln4π + Γ′(1) + 1)

)
, λ̄ = λ(

◦
mN ) . (26)

2. Magnetic moments and charge radii.

µp = −
◦
gA

2

8π

M

F 2

◦
mN + . . . ,

〈r2〉Ep = −1 + 5
◦
gA

2

16 π2 F 2
ln

M
◦
mN

+ . . . , (27)

〈r2〉Mp =

◦
gA

2

16 π F 2 µp

◦
mN

M
+ . . . ,

3. Axial charge gA = Gnp
1 (0), πNN coupling constant and induced pseudoscalar form factor gP (q2) = 2Gnp

3 (q2).

gA =
◦
gA

(
1 +

4d̄16M
2

◦
gA

−
◦
gA

2
M2

16π2F 2
+

M3

24π
◦
mNF 2

(
3 + 3

◦
gA

2
−4c3

◦
mN +8c4

◦
mN

)
+ O(M4)

)
(28a)

gπN =

◦
gA

◦
mN

F

(
1 − l̄4M

2

F 2
− 4c1M

2

◦
mN

+ (4d̄16 − 2d18)
M2

◦
gA

−
◦
gA

2
M2

16π2F 2

+
M3

96π
◦
mN F 2

(12 + 3
◦
gA

2
−16c3

◦
mN +32c4

◦
mN ) + O(M4)

)
=

gAmN

Fπ
(1 + ∆GT) , (28b)

gP (q2) = 4mNFπ
gπN

M2
π − q2

− 2

3
m2

NgA〈r2
A〉 + O(p2) (28c)

where 〈r2
A〉 is the axial mean–square radius, ∆GT = −2d18M

2/
◦
gA +O(M4) is the correction [23] to the Goldberger-

Treiman (GT) relation [26] which vanishes in the chiral limit (in full equivalence with the prediction of ChPT). Note
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that the correction ∆GT is related to the so-called Goldberger-Treiman discrepancy [27] ∆D = 1 − (mNgA/FπgπN )
via [25]: ∆GT = ∆D/(1 − ∆D). In Eqs. (24)-(28) we use the standard notation for the parameters of the ChPT
Lagrangian: M represents the pion mass to leading–order in the chiral expansion, Fπ is the leptonic decay constant

(F is its value in the chiral limit),
◦
gA and

◦
mN are the axial charge and mass of the nucleon in the chiral limit;

li, ci, di and ei are the low-energy constants (LEC’s) with an overline indicating that the corresponding LEC’s are
renormalized.

In order to reproduce the above model–independent results we need to fulfill the following matching conditions
between the parameters and LECs of the ChPT Lagrangian and our chiral quark–level Lagrangian (for the quark
level LEC’s we use the additional superscript “q” to differentiate them from the analogous ChPT LEC’s) :

◦
mN

m
=

( ◦
gA

g

)2

= R2 , (29a)

−4c1M
2 = (m̂ − 4cq

1M
2)R2 , (29b)

8c1 − c2 − 4c3 −
◦
gA

2

◦
mN

=

(
8cq

1 − cq
2 − 4cq

3 −
◦
gA

2

◦
mN

)
R2 , (29c)

ē1 −
3

64 π2 F 2

(
2

◦
gA

2

◦
mN

− c2

)
=

(
ēq
1 −

3

64 π2 F 2

(
2

◦
gA

2

◦
mN

− cq
2

) )
R2 , (29d)

c3 − 2c4 = cq
3 − 2cq

4 +
3

4
◦
mN

(1 − R2) , (29e)

d̄16 −
◦
gA

3

64π2F 2
=

(
d̄q
16 −

g3

64π2F 2

)
R , (29f)

d18 = dq
18 R , (29g)

d22 = dq
22 R +

◦
gA

Q

R
, (29h)

where R = Anp
11 (0) and Q = (Anp

11 (0))′ = dAnp
11 (q2)/dq2|q2=0. In addition we deduce the following constraints on the

form factors encoding valence quark effects: Anp
33 (0) = R3 and Anp

13 (0) = −2m2
NQ.

III. RATES AND ASYMMETRY PARAMETERS IN SEMILEPTONIC DECAYS OF BARYONS

In this section we present detailed theoretical expressions [28]-[30] for the decay rates and asymmetry parameters
in semileptonic baryon decays.

The decay width is given by the expression [28]

Γ(Bi → Bj lνl) =
G2

F

384π3m3
Bi

|VCKM|2 (1 + δrad)

∆2∫

m2
l

ds (1 − m2
l /s)2

√
(Σ2 − s)(∆2 − s) N(s) (30)

where

N(s) = F 2
1 (s)(∆2(4s − m2

l ) + 2Σ2∆2(1 + 2m2
l /s) − (Σ2 + 2s)(2s + m2

l ))

+ F 2
2 (s)(∆2 − s)(2Σ2 + s)(2s + m2

l )/m2
Bi

+ 3F 2
3 (s)m2

l (Σ
2 − s)s/m2

Bi

+ 6F1(s)F2(s)(∆
2 − s)(2s + m2

l )Σ/mBi
− 6F1(s)F3(s)m

2
l (Σ

2 − s)∆/mBi

+ G2
1(s)(Σ

2(4s − m2
l ) + 2Σ2∆2(1 + 2m2

l /s) − (∆2 + 2s)(2s + m2
l ))

+ G2
2(s)(Σ

2 − s)(2∆2 + s)(2s + m2
l )/m2

Bi
+ 3G2

3(s)m
2
l (∆

2 − s)s/m2
Bi

− 6G1(s)G2(s)(Σ
2 − s)(2s + m2

l )∆/mBi
+ 6G1(s)G3(s)m

2
l (∆

2 − s)Σ/mBi
. (31)
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We have introduced the notation: s = q2, Σ = mBi
+ mBj

, ∆ = mBi
− mBj

, β = (mBi
− mBj

)/mBi
. The factor δrad

represents the effect of radiative corrections [29] (see Table 2), GF = 1.16637 × 10−5 GeV−2 is the Fermi coupling
constant, and ml is the leptonic (electron or muon) mass. For the corresponding CKM matrix elements VCKM = Vud

or Vus we use the central values from [3]: Vud = 0.97377 and Vus = 0.225. Also we assume that the form factors are
real.

Next we simplify the master formula (30), integrating over s and including terms up to O(β7) where β = ∆/mBi
is

the SU(3) breaking parameter. (In this case the term proportional to G2
3 can be omitted because it already starts at

order O(β8).) Also, we include the momentum dependence of the leading form factors F1(s) and G1(s) and neglect
the momentum dependence of the others. We expand the form factors F1(s), G1(s) to first order in s:

F1(s) = F1(0)(1 +
s

6
〈r2

F1
〉 + O(s2)) , G1(s) = G1(0)(1 +

s

6
〈r2

G1
〉 + O(s2)) , (32)

where 〈r2
F1
〉 and 〈r2

G1
〉 are the ”charge” radii of the F1 and G1 form factors calculated within our approach (cf. the

numerical results in Sec. IV). In addition we retain finite lepton masses. These approximations are sufficient for both
the n → pe−ν̄e decay and for the muonic decay modes of hyperons. We also retain terms containing the form factors
F3 and G3. Although their effects are proportional to m2

l they may give a measurable contribution for muonic modes
(see also the discussion in Ref. [30, 31]).

At the order of accuracy to which we work the result for the decay width reads (exact formulas can be found in
[29, 30]):

Γ(Bi → Bj lνl) =
G2

F

60π3
|VCKM|2 ∆5 (1 + δrad)

{
(F 2

1 + 3G2
1)(1 − 3

2
β)R0(x) + β2

(
6

7
F 2

1 RF1
(x) +

12

7
G2

1 RG1
(x)

+
4

7
F 2

2 RF2
(x) +

12

7
G2

2 RG2
(x) + F 2

3 RF3
(x) +

6

7
F1F2 RF12

(x) + G1G3 RG13
(x)

)

− 4β(1 − 3

2
β)(F1F3 RF13

(x) + G1G2 RG12
(x))

}
+ O(β8) , (33)

where Fi = Fi(0), Gi = Gi(0) and x = ml/∆. Here the functions Ri(x) take into account the charged lepton mass
ml (see their expressions in Appendix D). In the calculation of the asymmetry parameters we restrict ourselves to
the electron modes. The expressions for the electron–neutrino αeνe

, electron αe, neutrino ανe
and emitted baryon αB

asymmetries to the order of accuracy at which we are working are given in [29].

IV. NUMERICAL RESULTS

In this section we present our numerical results for the semileptonic decays of the baryon octet—coupling constants,

decay widths and asymmetry parameters. First, we calculate the vector V
BiBj

i1 and axial vector A
BiBj

i1 couplings

representing the contribution of the pure valence quarks to the semileptonic form factors of the baryons F
BiBj

i and

G
BiBj

i , i.e., when f ij
1 ≡ 1, gij

1 ≡ 1 and f ij
2,3 = gij

2,3 = 0. This limiting case corresponds to the projection of the

nonrenormalized weak quark current jµ,V −A = q̄jγµ(1 − γ5)qi between the respective baryon states. Our results for

V
BiBj

i1 and A
BiBj

i1 are displayed in Tables 3 and 4. In Table 3, for comparison, we also present the predictions of the

naive SU(6) model for the couplings V
BiBj

11 and A
BiBj

11 .
Combining the contributions of the valence quarks and chiral effects we then derive the full expressions for the

semileptonic couplings constants F
BiBj

i and G
BiBj

i . The resulting forms are listed in Tables 5, 6 and 7. For con-

venience, we present the results for the leading (Fermi) F
BiBj

1 = f ij
1 V

BiBj

11 and (Gamow-Teller) G
BiBj

1 = gij
1 A

BiBj

11

couplings in the form of a product of their SU(3) symmetric value together with a multiplicative factor 1 + δ
BiBj

V,A

which includes the SU(3) breaking correction δ
BiBj

V,A . (We remind the reader that the quark couplings f ij
2,3 and gij

2,3 do

not contribute to the leading baryon couplings F
BiBj

1 and G
BiBj

1 .) Note that the axial vector couplings gdu
1 and gsu

1

defining the d → u and s → u flavor transitions, respectively, are expressed in terms of the unknown LEC’s Cq
i and

Dq
i . We fix the value of these couplings to be gdu

1 = 0.874 and gsu
1 = 0.855 in order to reproduce the experimental

data on the semileptonic decay widths as well as the ratio G1/F1 = 1.2695 in n → p + e− + ν̄e decay.

The nucleon axial charge in the SU(3) limit (cf. Appendix A)—gSU3

A —is given by

gSU3

A = 1.258 (34)
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while the SU(3) breaking parameters, δ
BiBj

V and δ
BiBj

A are found to have the form:

δΛp
V = −0.069 (val) + 0.070 (ch) = 0.001 ,

δΣn
V = −0.061 (val) + 0.070 (ch) = 0.009 , (35)

δΞΛ
V = −0.048 (val) + 0.070 (ch) = 0.022 ,

δΞΣ
V = −0.028 (val) + 0.070 (ch) = 0.042 ,

and

δnp
A = 0 (val) + 0.009 (ch) = 0.009 ,

δΣΛ
A = 0.024 (val) + 0.009 (ch) = 0.033 ,

δΛp
A = −0.030 (val) − 0.013 (ch) = −0.043 ,

δΣn
A = 0.091 (val) − 0.013 (ch) = 0.078 , (36)

δΞΛ
A = 0.066 (val) − 0.013 (ch) = 0.053 ,

δΞΣ
A = 0.0085 (val) − 0.013 (ch) = −0.0045

where have denoted the contributions of valence quarks and chiral effects by the round brackets (val) and (ch),
respectively.

Note that the SU(3) breaking corrections to the vector couplings g
BiBj

V begin at second order, in accord with the

Ademollo-Gatto theorem (AGT) [1] (see discussion in Appendix E), while corrections to the axial couplings g
BiBj

A
begin at first order. In this regard, if one works to first order in symmetry breaking, our results must be expressible in
terms of a model-independent representation for the axial couplings derived in terms of the SU(3) symmetric couplings
D and F plus four SU(3)-breaking parameters Hi [1, 32] (cf. the discussion in Ref. [5])—

gnp
A = D + F +

2

3
(H2 − H3) ,

gΛp
A = −

√
3

2

(
F +

D

3
+

1

9
(H1 − 2H2 − 3H3 − 6H4)

)
,

gΣ−n
A = D − F − 1

3
(H1 + H3) ,

gΣ−Λ
A =

√
2

3

(
D +

1

3
(H1 + H2 + 3H4)

)
, (37)

gΞ−Λ
A =

√
3

2

(
F − D

3
+

1

9
(2H1 − H2 − 3H3 + 6H4)

)
,

gΞ−Σ0

A =

√
1

2

(
D + F − 1

3
(H2 − H3)

)
,

gΞ0Σ+

A = D + F − 1

3
(H2 − H3) .

Such a representation is indeed found to hold in our model with the values

D = 0.7505 , F = 0.5075 (38)

for the SU(3) symmetric couplings, and

H1 = −0.050 , H2 = 0.011 , H3 = −0.006 , H4 = 0.037 (39)

for the SU(3) breaking terms. The components of δ
BiBj

A which are first order in symmetry breaking—δ
BiBj(1)
A —are
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proportional to the couplings Hi via:

δ
np(1)
A = −2δ

ΞΣ(1)
A =

2(H2 − H3)

3(D + F )
,

δ
Λp(1)
A =

H1 − 2H2 − 3H3 − 6H4

3(D + 3F )
,

δ
Σn(1)
A = − H1 + H3

3(D − F )
,

δ
ΣΛ(1)
A =

H1 + H2 + 3H4

3D
,

δ
ΞΛ(1)
A =

2H1 − H2 − 3H3 + 6H4

3(3F − D)
. (40)

From Eq. (40) one obtains a sum rule which relates the corrections δ
np(1)
A = −2δ

ΞΣ(1)
A to a linear combination of the

four remaining SU(3) breaking δ
(1)
A –parameters together with the SU(3)-symmetric couplings F and D:

δ
np(1)
A = −2δ

ΞΣ(1)
A =

2

3

(D − 3F

D + F
δ
ΞΛ(1)
A +

D + 3F

D + F
δ
Λp(1)
A +

3(D − F )

D + F
δ
Σn(1)
A +

4D

D + F
δ
ΣΛ(1)
A

)
. (41)

The SU(3) LEC’s from the chiral Lagrangian (2) can now be determined. Three of the four couplings Cq
3 , Cq

4 ,
D̄q

16 and D̄q
16 can be fixed by use of three constraints: the value of the nucleon axial charge in the SU(3) limit

gSU3

A = D + F = 1.258 together with the values of the axial quark couplings gdu
1 = 0.874 and gsu

1 = 0.855. Keeping,
e.g., D̄q

17 undetermined we can relate the remaining three LEC’s via:

Cq
3 = −0.319 GeV−1 D̄q

17 , Cq
4 = −0.451 GeV−1 D̄q

17 , D̄q
16 = 0.397 D̄q

17 . (42)

In turn, the couplings Cq
6 = −1.476, Ēq

7 = 0.086 GeV−3, Ēq
8 = 0.532 GeV−3 are fixed from the description of magnetic

moments of the baryon octet, while Ēq
6 = 1.868 GeV−3 is found from the induced pseudoscalar form factor of the

nucleon. The coupling Dq
22 = 0.006 GeV−2 is determined by fitting the slope of the form factor Gnp

1 : 〈r2
G1

〉 = 0.45 fm2.

Finally, the coupling Dq
18 = −0.548 GeV−2 is fixed by the fitting the central value of the induced pseudoscalar coupling

of the nucleon gp = (Mµ/mN)Gnp
1 (q2 = −0.88M2

µ) ≃ 8.25 predicted by ChPT [24, 25] together with the value of

the pion–nucleon coupling constant gπN = 13.10. It should be noted that the LEC’s Cq
6 , Ēq

7 , Ēq
8 , Dq

18 and Dq
22 are

unimportant for reproducing the semileptonic decay widths because they make no contribution to the leading baryon

coupling constants F
BiBj

1 and G
BiBj

1 .
Of particular interest is the decay Σ− → ne−ν̄e for which we predict G1/F1 = −0.260 and (G1 − 0.237G2)/F1 =

−0.278 (see Table 6). The latter result underestimates the experimental value −0.327± 0.007± 0.019. However, this
ratio was extracted by neglecting the q2 dependence of the form factors F1 and G1 in the decay Σ− → ne−ν̄e decay.
We find (see the discussion below) that inclusion of the q2 dependence brings about agreement with the data for both
electron and muon decay widths of the decay Σ− → n l−ν̄l.

In Table 7 we present our results for the nonleading baryon semileptonic couplings F2,3 and G2,3. One can see

that the pseudoscalar couplings G
BiBj

3 are dominated by the corresponding pion or kaon pole contribution. (Here the
leading contribution of the pole term is shown in brackets.) We also display the induced pseudoscalar coupling constant

of the nucleon gp, which is fixed by the LEC Dq
18. In Table 8 we compare our results for the ratios F

BiBj

2 /F
BiBj

1 :
i) with the predictions of the simple Cabibbo model in terms of the nucleon magnetic moments and baryon octet
masses, ii) with the calculations performed in the 1/Nc expansion of QCD [33], and iii) with the results found in
the SU(3) chiral quark-soliton model (χQSM) [34]. Because of SU(2) invariance, we exactly reproduce the result of
the Cabibbo model for the ratio Fnp

2 /Fnp
1 in neutron β–decay, while for the other modes we find SU(3) breaking

deviations. Our result for the ratio FΣn
2 /FΣn

1 = −0.962 compares well: i) with the experimental data (0.97 ± 0.14),
ii) with the results of the 1/Nc expansion of QCD [33] (−1.02), iii) with the results found in the χQSM model [34]
(−0.96), and iv) with calculations done in quenched lattice QCD [35] (−0.85± 0.45). Also, we have quite reasonable

agreement for F
BiBj

2 /F
BiBj

1 with the results of the 1/Nc expansion [33] and with those of the χQSM approach for
the remaining semileptonic modes.

Finally, we would like to stress that our results for the various semileptonic couplings of the decay mode Σ− → ne−ν̄e

are in good agreement with the predictions of the lattice approach [35]. In Table 9 we give a detailed comparison
with the results of Ref. [35] using our conventions for the semileptonic matrix elements.

It is useful to parametrize our predictions for the weak magnetic couplings F2 in terms of SU(3) symmetric couplings
together with first order SU(3) symmetry-breaking parameters. As stressed in Ref. [2] there is an ambiguity in
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expressing the SU(3) limit that clearly indicates the relevance of the first-order correction. It means that if in

analogy to Eq. (37) we introduce a set of parameters {FF2 , DF2 , HF2

i } [1] then we should apply it to F
BiBj

2 (0) or

to mN

mBi

F
BiBj

2 (0). The second choice, mN

mBi

F
BiBj

2 (0), is traditionally preferred (See discussion in [2]. The difference is

that we in addition multiply F
BiBj

2 (0) by the nucleon mass mN to deal with dimensionless coupling). Otherwise the
SU(3) breaking corrections will be overestimated. Within our model, we determine values for these parameters:

DF2 = 1.237 , FF2 = 0.563 , HF2

1 = −0.246 , HF2

2 = 0.096 , HF2

3 = 0.021 , HF2

4 = 0.030 . (43)

Also, we can check the consistency of our results with the model-independent predictions for the second-class

coupling constants FBiBj = mN

mBi

F
BiBj

3 , mN

mBi

G
BiBj

2 to first order in SU(3) breaking, which can be parametrized in

terms of three SU(3) symmetry–breaking parameters HF
i (see details in [1]):

Fnp = 0 ,

FΛp =
1√
6

(
− HF

1 + 2HF
2 + 2HF

3

)
,

FΣ−n = −HF
1 ,

FΣ−Λ = −
√

2

3
HF

3 , (44)

FΞ−Λ =
1√
6

(
2HF

1 − HF
2 − 2HF

3

)
,

FΞ−Σ0

= −
√

1

2
HF

2 ,

FΞ0Σ+

= −HF
2 ,

Using Eq. (44) one can derive the following sum rules for the amplitudes FBiBj :

FΛp =
1√
6
(FΣ−n − 2FΞ0Σ+

) −FΣ−Λ , (45a)

FΞ−Λ = − 1√
6
(2FΣ−n −FΞ0Σ+

) + FΣ−Λ , (45b)

−
√

6(FΛp + FΞ−Λ) = FΞ0Σ+

+ FΣ−n . (45c)

(Note that the sum rule (45c) was originally derived in [1].) When we restrict our calculation to first-order SU(3)
breaking terms, we indeed fulfill the sum rules (45) and for the SU(3)-breaking parameters we obtain HF

i :

HF3

1 = 0.032 , HF3

2 = −0.028 , HF3

3 = −0.011 , HG2

1 = 0.047 , HG2

2 = −0.035 , HG2

3 = −0.009 . (46)

Next we turn to the discussion of the semileptonic decay widths. We present our results in Table 10: i) total
width Γ including all six couplings F1,2,3 and G1,2,3, leading q2 dependence of F1 and G1 form factors and radiative
corrections; ii) predictions Γ(F1, G1) are the results without inclusion of the subleading semileptonic form factors F2,3

and G2,3; iii) predictions Γ(F1(0), G1(0)) are the total widths without inclusion of the subleading semileptonic form
factors F2,3 and G2,3 and of the q2 dependence in the form factors F1 and G1; iv) predictions Γ0 are total results
without radiative corrections. For comparison we present the results of a pure SU(3) fit where we include only the
F1 and G1 coupling constants omitting the q2 dependence of F1 an G1 form factors and subleading form factors F2,3

and G2,3. The values of F1 and G1 are given by the Cabibbo model [2] where G1 is expressed in terms of the SU(3)
couplings F and D. We fix F and D via F = 0.470 and D = 0.800. One can observe that the contribution of the
subleading coupling constants F2,3 and G2,3 to the semileptonic decay width of the baryon octet is negligible. On
the other hand, inclusion of q2 dependence of the leading form factors F1 and G1 makes a significant difference for
the Λ → p, Σ → n and Ξ → Λ decay modes. As stressed above, this q2 dependence inclusion substantially improves
agreement with the data for both decays Σ− → n l−ν̄l (l = e, µ). Specifically, the q2 dependence yields a contribution
of 0.78 × 106 s−1 (12%) to the decay width of Σ− → ne−ν̄e transition and 0.61 × 106 s−1 (19%) to the decay width
of Σ− → nµ−ν̄µ transition.

Another interesting point of discussion – the rate ratio R0
eµ = Γ(Ξ0 → Σ+e−ν̄e)/Γ(Ξ0 → Σ+µ−ν̄µ) which has

recently been measured by the KTeV Collaboration (R0
eµ = 55.6+22.2

−16.7 [36]). Using a much larger data sample the NA48

Collaboration has published a preliminary value of (R0
eµ = 114.1±19.4 [37]). Our result R0

eµ = 114.81 nearly coincides
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with the central value of the NA48 Collaboration and is close to the theoretical prediction of Ref. [30]—R0
eµ = 118.71.

Note, that for the corresponding ratio of the Ξ− hyperon we find R−
eµ = Γ(Ξ− → Σ0e−ν̄e)/Γ(Ξ− → Σ0µ−ν̄µ) = 77.61.

For comparison, we present the χ2/dof for our total results (the first column of Table 10) and the SU(3) fit:
χ2/8 dof = 1.4 [this paper] and χ2/8 dof = 2.4 [SU(3) fit]. (We exclude from the χ2 analysis the results for the
neutron β decay and the poorly known data for the muonic modes of the cascade hyperons Ξ.)

As mentioned earlier, we include the momentum dependence of the F1(q
2) and G1(q

2) form factors up to first order
in q2. The slopes for F1 and G1 form factors calculated in our approach are found to be:

〈r2
F1
〉 =





0.66 fm2 , n → p
0.51 fm2 , Λ → p
0.59 fm2 , Σ → n
0.50 fm2 , Ξ → Λ
0.43 fm2 , Ξ → Σ

and 〈r2
G1

〉 =





0.45 fm2 , n → p
0.32 fm2 , Λ → p
0.40 fm2 , Σ → n
0.41 fm2 , Σ → Λ
0.30 fm2 , Ξ → Λ
0.28 fm2 , Ξ → Σ

. (47)

These predictions for the radii of the F1 and G1 form factors are consistent both with data and with the results of
alternative theoretical approaches. In particular, the electroproduction and the neutrino experiments which involve
d → u transitions are well fitted using dipole formulas which give 〈r2

F1
〉 = 0.66 fm2 and 〈r2

G1
〉 = 0.40 fm2 for

the slopes of the F1 and G1 form factors [38]. For the s → u modes one expects smaller radii 〈r2
F1
〉 = 0.50 fm2

and 〈r2
G1

〉 = 0.30 fm2, respectively (see discussion in [29, 38]). For example, the authors of [30] find slopes of

〈r2
F1
〉 = 0.42 fm2 and 〈r2

G1
〉 = 0.23 fm2 for the Ξ → Σ transition using a generalized vector dominance ansatz for the

form factors. In Refs. [34, 39] the F1 form factor radii have been calculated in the framework of ChPT and of the
χQSM model. Our results are in qualitative agreement with the full covariant result of ChPT [39], while the χQSM
approach [34] gives somewhat higher values for the corresponding slopes:

〈r2
F1
〉 =






0.44 ± 0.06 fm2 (ChPT); 0.72 fm2 (χQSM) , Λ → p
0.51 ± 0.05 fm2 (ChPT); 0.60 fm2 (χQSM) , Σ → n
0.45 ± 0.03 fm2 (ChPT); 0.66 fm2 (χQSM) , Ξ → Λ
0.46 ± 0.07 fm2 (ChPT); 0.80 fm2 (χQSM) , Ξ → Σ

. (48)

We do not include the q2 dependence of the F1 form factor in the Σ → Λ transition, since it vanishes on account of
the assumed degeneracy of the u and d quark masses.

Our approach generates a very reasonable description of the baryon semileptonic data with only two parameters—
the axial couplings gdu

1 and gsu
1 responsible for the d → u and s → u transitions, which are in turn expressed in

terms of the parameters of the chiral Lagrangian (see Appendix A). We remind the reader that the parameters
controlling the valence quark contributions to the semileptonic properties of baryons—the constituent quark masses
mu = md = 420 MeV, ms = 570 MeV and the size parameter ΛB = 1.25 GeV—have been previously fixed via the
analysis of electromagnetic properties of the baryon octet [8, 11]. Also, the same set of parameters (mu = md, ms, ΛB)
has been successfully used in the analysis of strong, electromagnetic and weak decays of charm and bottom baryons
with light baryons in the final state [8]. In Table 11 we present the decay rates of hyperons divided by the squared
CKM matrix elements in order to remove the uncertainty related to the values of Vud and Vus. Finally, in Table 12
we display the predictions for the asymmetry parameters in the electron modes.

V. SUMMARY

In this paper we have analyzed the semileptonic decay properties (coupling constants, decay widths and asymmetry
parameters) of the baryon octet using a manifestly Lorentz covariant quark approach including chiral and SU(3)
symmetry breaking effects.

Our main results are summarized as follows:
– We have derived results for the six couplings governing the semileptonic decays of the baryon octet, revealing

both chiral and SU(3) symmetry–breaking corrections;
– We presented a numerical analysis of the decay rates and asymmetry parameters in the semileptonic decays of

the baryon octet.
Our results provide a generally improved representation of hyperon semileptonic decay over the conventional SU(3)-

symmetric (Cabibbo) analysis. We hope that the results of this paper can be used to reliably extract a value of the
CKM matrix element Vus from semileptonic hyperon decay data along the lines of [2].
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APPENDIX A: CHIRAL EXPANSION OF THE VECTOR AND AXIAL VECTOR QUARK COUPLINGS

In this Appendix we list the results for the semileptonic vector and axial quark couplings including chiral corrections
(both SU(3)–symmetric and SU(3)–breaking). The corresponding SU(3) chiral quark Lagrangian LqU is specified in
Sec.II. Below we list the results for the semileptonic quark couplings fdu

1,2,3, fsu
1,2,3, gdu

1,2,3 and gsu
1,2,3 up to order O(p4)

in the three–flavor picture.
1. Vector quark couplings.
a) Couplings fdu

1 and fsu
1 :

The vector coupling governing the d → u transition is trivial and equal to unity — fdu
1 = 1, because we work in the

isospin limit. In the case of the s → u transition, the corresponding vector coupling fsu
1 contains symmetry breaking

corrections of second order in SU(3) — O((MK−Mπ)2) and O((MK−Mη)
2). Note, that the Ademollo–Gatto theorem

(AGT) protects the coupling fsu
1 from first–order symmetry breaking corrections. The result for the fsu

1 is

fsu
1 = 1 − 3

16

(
(1 + 3g2)(HπK + HηK) + 3g2(GπK + GηK)

)
= 1 + δfsu

1 . (A1)

Here δfsu
1 = 0.07 is the SU(3) breaking correction. The O(p2) functions Hab and Gab, which show up in the context

of ChPT [see, e.g., Refs. [39, 40]], are defined as

Hab =
1

(4πF )2

(
M2

a + M2
b − 2M2

aM2
b

M2
a − M2

b

ln
M2

a

M2
b

)
= O((M2

a − M2
b )2) , (A2a)

Gab = − 1

(4πF )2
2π

3m

(Ma − Mb)
2

Ma + Mb
(M2

a + 3MaMb + M2
b ) = O((M2

a − M2
b )2) . (A2b)

b) Couplings fdu
2 and fsu

2 :
The coupling fdu

2 is expressed through the linear combination of diagonal couplings fu
2 and fd

2 relevant for u → u
and d → d transitions:

fdu
2 =

1

2
(fu

2 − fd
2 ) = fSU3

2 + δfdu
2 , (A3a)

fu
2 =

4

3
fSU3

2 + δfu
2 , (A3b)

fd
3 = −2

3
fSU3

2 + δfd
2 , (A3c)

where

fSU3

2 = Cq
6

(
1

2
− 3g2M̄2

32π2F 2

)
+12mĒq

6M̄2 − 3g2M̄m

16π2F 2

(
π +

M̄

m

)
+ O(M̄3) (A4)

is the SU(3) symmetric term, and δfdu
2 , δfu

2 and δfd
2 are the SU(3) breaking terms. The first–order terms read:

δfu
2 = hu

2 (M2
K − M2

π) + O((M2
K − M2

π)2) , (A5a)

δfd
2 = −2δfu

2 − 16

3
m(Ēq

7 − Ēq
8)(M2

K − M2
π) , (A5b)

δfdu
2 =

1

2
(δfu

2 − δfd
2 ) , (A5c)

hu
2 = Cq

6

g2

48π2F 2
− 16

9
m(2Ēq

7 + 3Ēq
8) +

g2m

48π2F 2M̄

(
π +

2M̄

m

)
+ O(M̄) . (A5d)
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The coupling fsu
2 is given by

fsu
2 = fSU3

2 + δfsu
2 (A6)

where

δfsu
2 = (M2

K − M2
π)hsu

2 + O((M2
K − M2

π)2) , (A7a)

hsu
2 = −Cq

6

g2

64π2F 2
+

8

3
mĒq

7 − g2m

64π2F 2M̄

(
π +

2M̄

m

)
+ O(M̄) . (A7b)

Here, for convenience, we define the so–called SU(3) symmetric octet mass M̄ of pseudoscalar mesons as M̄2 = 2m̄B
with m̄ = (mu + md + ms)/3 = (2m̂ + ms)/3. Also cq

i , d
q
i and Cq

i , D̄q
i are the SU(2) and SU(3) quark low-energy

constants (LEC’s). The overline on top of the LEC’s denotes renormalized quantities (see definitions in Ref. [5]).
c) Couplings fdu

3 and fsu
3 :

The coupling fdu
3 vanishes due to isospin invariance, while the coupling fsu

3 starts at the first order in SU(3)
breaking:

fsu
3 =

g2m2

96π2F 2

M2
K − M2

π

M̄2

(
1 − 3π

2

M̄

m
− 4

M̄2

m2
+ O(M̄2)

)
+ O((M2

K − M2
π)2) . (A8)

2. Axial vector quark couplings.
a) Couplings gdu

1 and gsu
1 :

The expressions for the axial vector couplings gdu
1 and gsu

1 responsible for the d → u and s → u transitions are as
follows:

gdu
1 = gSU3

1 + δgdu
1 , (A9a)

gsu
1 = gSU3

1 + δgsu
1 , (A9b)

where

gSU3

1 = g

(
1 − 7g2M̄2

48π2F 2
+

M̄3

48πmF 2

(
9 +

23

2
g2 − 8Cq

3m + 24Cq
4m

))
+ 6M̄2D̄q

16 + O(M̄4) (A10)

is the SU(3) symmetric term, δgdu
1 and δgsu

1 are the SU(3) breaking terms. Let us display the first–order terms:

δgdu
1 = hdu

1 (M2
K − M2

π) + O((M2
K − M2

π)2) , (A11a)

δgsu
1 = hsu

1 (M2
K − M2

π) + O((M2
K − M2

π)2) , (A11b)

hdu
1 = −2hsu

1 +
g

48π2F 2
(9 + 23g2)

=
g

96π2F 2

(
9 +

59

3
g2

)
− gM̄

96πmF 2

(
9 +

11

2
g2 − 16Cq

3m + 24Cq
4m

)
− 2

3
D̄q

17 + O(M̄2) . (A11c)

b) Couplings gdu
2 and gsu

2 :
The coupling gdu

2 vanishes in the isospin limit, while the coupling gsu
2 is zero at order of accuracy we are working at.

c) Couplings gdu
3 and gsu

3 :
The couplings gdu

3 and gsu
3 are related to the couplings gdu

1 and gsu
1 via:

gdu
3 = 2m2

(
gdu
1

M2
π

− Dq
22 − 2Dq

18

)
, (A12a)

gsu
3 = 2m2

(
gsu
1

M2
K

− Dq
22 − 2Dq

18

)
. (A12b)

The SU(3) LEC’s are fixed by: Cq
6 = −1.476, Ēq

7 = 0.086 GeV−3, Ēq
8 = 0.532 GeV−3 from the description of the

baryon octet magnetic moments, Ēq
6 = 1.868 from the description of the induced pseudoscalar form factor of the

nucleon. The coupling Dq
22 = 0.006 GeV−2 is fixed by fitting the slope of the form factor Gnp

1 : 〈r2
G1

〉 = 0.45 fm2.

The coupling Dq
18 = −0.548 GeV−2 is fixed by fitting the central value of the induced pseudoscalar coupling of the

nucleon gp = (Mµ/mN )Gnp
1 (q2 = −0.88M2

µ) ≃ 8.25 predicted by ChPT [24, 25] and the value of the pion–nucleon
coupling constant gπN = 13.10.
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APPENDIX B: THREE-QUARK BARYON CURRENTS AND FIERZ IDENTITIES

In this Appendix we specify the baryonic currents used in the main text following the approach of [14, 15]. The
three-quark currents of the baryon octet are (we restrict ourselves to the so-called vector currents obtained in the
SU(3) limit and without inclusion of terms with derivatives):

Jp = εa1a2a3γµγ5da1ua2Cγµua3 ,

Jn = −εa1a2a3γµγ5ua1da2Cγµda3 ,

JΣ+ = εa1a2a3γµγ5sa1ua2Cγµua3 ,

JΣ0 =
√

2 εa1a2a3γµγ5sa1ua2Cγµda3 , (B1)

JΣ− = εa1a2a3γµγ5sa1da2Cγµda3 ,

JΞ− = −εa1a2a3γµγ5da1sa2Cγµsa3 ,

JΞ0 = −εa1a2a3γµγ5ua1sa2Cγµsa3 ,

JΛ0 =

√
2

3
εa1a2a3γµγ5(ua1da2Cγµsa3 − da1ua2Cγµsa3) .

where C = γ0γ2 is the charge conjugation matrix.
When generating matrix elements it is convenient to use Fierz transformations and corresponding identities in order

to interchange the quark fields. First we specify five possible spin structures Jαβ,ρσ = Γαβ
1 ⊗ (CΓ2)

ρσ defining the
Fierz transformation of the baryon currents:

P = I ⊗ Cγ5 ,

S = γ5 ⊗ C ,

A = γµ ⊗ Cγµγ5 , (B2)

V = γµγ5 ⊗ Cγµ ,

T = σµνγ5 ⊗ Cσµν .

The Fierz transformation of the structures J = {P, S, A, V, T } read

P =
1

4

(
P̃ + S̃ − Ã + Ṽ +

1

2
T̃

)
,

S =
1

4

(
P̃ + S̃ + Ã − Ṽ +

1

2
T̃

)
,

A = −P̃ + S̃ − 1

2

(
Ã + Ṽ

)
, (B3)

V = P̃ − S̃ − 1

2

(
Ã + Ṽ

)
,

T = 3(P̃ + S̃) − 1

2
T̃ .

Viewing the Fierz transformation in terms of a Fierz matrix F one can check that F2 = 1. Using Eqs. (B3) one can
derive useful identities

2(P − S) − A + V = 2(P̃ − S̃) − Ã + Ṽ ,

6(P + S) + T = 6(P̃ + S̃) + T̃ ,

V = 2(P − S) − A − 2Ṽ , (B4)

T = 6(P + S) − 2T̃ .

The symbol ˜ is used to denote Fierz-transformed matrices according to J̃ασ,ρβ = Γασ
1 ⊗ (CΓ2)

ρβ where α, β, ρ and
σ are Dirac indices.
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APPENDIX C: GAUGING AND MATRIX ELEMENTS OF THE n→ pW
−

off−shell TRANSITION

In this section we discuss the issue of gauge invariance in the context of the calculation of the baryonic matrix
elements 〈B(p′)|V ij

µ,1(0) |B(p)〉 and 〈B(p′)|Aij
µ,1(0) |B(p)〉. The nonlocal structure of the strong interaction Lagrangian

leads to the breaking of local symmetries, which can be restored using minimal substitution. In our approach we
use an equivalent method suggested by Mandelstam [18] based on multiplying the quark fields with path-ordered
exponentials—gauge exponentials. As a result of gauging the strong interaction Lagrangian (15) the conventional
triangle diagram in Fig.2a has to be supplemented by the two additional diagrams in Figs.2b and 2c. In our previous
papers we have concentrated on electromagnetic processes. For the present application we extend this procedure
to the electroweak interactions. Following Terning [19] we can show that the Mandelstam method is equivalent to
minimal substitution. Introducing the doublet of left fermions, L, (without specifying the number of generations),
the free Lagrangian (kinetic term) for L is:

LL
0 (x) = L̄(x)i6∂xL(x) →

∫
dyL̄(x)δ4(x − y)i6∂y

[
P exp

( y∫

x

dzµΓL
µ(z)

)
L(y)

]

=

∫
dyL̄(x)δ4(x − y)P exp

( y∫

x

dzµΓL
µ(z)

)
i 6DL

y L(y) = L̄(x)i 6DL
x L(x) (C1)

where DL
µ = ∂µ + ΓL

µ , ΓL
µ = − ig

W

2
~Wµ ~τ − ig′

W

2 YLBµ.
By analogy, the Mandelstam method works for the right singlet fields R

LR
0 (x) = R̄(x)i6∂xR(x) →

∫
dyR̄(x)δ4(x − y)i6∂y

[
P exp

( y∫

x

dzµΓR
µ (z)

)
R(y)

]

=

∫
dyR̄(x)δ4(x − y)P exp

( y∫

x

dzµΓR
µ (z)

)
i 6DR

y R(y) = R̄(x)i 6DR
x R(x) (C2)

where DR
µ = ∂µ + ΓR

µ , ΓR
µ = − ig′

W

2 YRBµ. We employ the standard notation: W i
µ (i=1,2,3) and Bµ are the gauge

bosons, g
W

and g′
W

are the corresponding coupling constants (to distinguish them from the axial charge of the quark
we attach the subscript W ), YL and YR are the hypercharges of the left and right quarks, respectively. The set of the
physical states of the gauge bosons (W±, Z0, A) is connected to the set (W i, B) via

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) , Z0

µ = cos θ
W

W 3
µ − sin θ

W
Bµ , Aµ = sin θ

W
W 3

µ + cos θ
W

Bµ , (C3)

where θ
W

is the Weinberg angle which relates the electromagnetic coupling constant e and the couplings g
W

and g′
W

via e = g
W

sin θ
W

= g′
W

sin θ
W

. The quantities ΓL
µ and ΓR

µ in terms of (W±, Z0, A) fields are given by

ΓL
µ = − ig

W√
2

(W+
µ τ+ + W−

µ τ−) − ie tan θ
W

Z0
µ

(
τ3

2 sin2 θ
W

− Q

)
− ieQAµ , (C4a)

ΓR
µ =

ie

2
tan θ

W
Z0

µ − ieQAµ . (C4b)

In the case of the strong baryon–three–quark interaction Lagrangian it is not necessary to rewrite the Lagrangian in
terms of left quark doublets and right singlets. Instead we merely substitute each quark field q by its left-handed
qL = (1 − γ5)q/2 and right–handed qR = (1 + γ5)q/2 components. Then we proceed with the gauging of the theory.
We only need to know the gauging for the quarks of specific flavor and handedness—e.g., for the left–handed uL, dL
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and sL and the right-handed qR = uR, dR and sR quarks the gauging is

uL(y) → P exp

( y∫

x

dzµΓL
µ(z)

)

11

uL(y) + P exp

( y∫

x

dzµΓL
µ(z)

)

12

d′L(y) , (C5a)

dL(y) → P exp

( y∫

x

dzµΓL
µ(z)

)

21

u′
L(y) + P exp

( y∫

x

dzµΓL
µ(z)

)

22

d′L(y) , (C5b)

sL(y) → P exp

( y∫

x

dzµΓL
µ(z)

)

21

c′L(y) + P exp

( y∫

x

dzµΓL
µ(z)

)

22

s′L(y) , (C5c)

qR(y) → P exp

( y∫

x

dzµΓR
µ (z)

)
qR(y) (C5d)

where (ij) are pairs of flavor indices. The mixed left-handed quark fields are defined as:

u′
L = V †

uduL + V †
cdcL + V †

tdtL ,

d′L = VuddL + VussL + VubbL ,

c′L = V †
usuL + V †

cscL + V †
tstL , (C6)

s′L = VcddL + VcssL + VcbbL .

In the derivation of Eqs. (C5b) and (C5c) we have used the unitarity condition
∑
k

VikV †
jk = δij for the CKM matrix

elements, which leads to the useful identities:

dL = d′LV †
ud + s′LV †

cd + b′LV †
td ,

sL = d′LV †
us + s′LV †

cs + b′LV †
ts , (C7)

bL = d′LV †
ub + s′LV †

cb + b′LV †
tb .

In the present manuscript we restrict our considerations to semileptonic processes (i.e., processes with a single in-
termediate off–shell charged weak gauge boson W±). Therefore, we expand the gauge exponentials and keep only
the term linear in W± which gives a correction to the weak current (in addition to the standard term which comes
from the gauging of the free quark Lagrangian). This is a rather important point. The use of nonlocal Lagrangians
automatically requires an extension of the conventional currents dictated by the local symmetries. In addition we
have an extra piece from “gauging” the strong Lagrangian which contains derivatives acting on quark fields.

For illustration we derive the weak current which governs the n → pW− transition. The first contribution comes
from “gauging” the free Lagrangian:

Jµ
1 (x) =

g
W√
2
Vud ūL(x) γµ dL(x) =

g
W

2
√

2
Vud ū(x) Oµ d(x) (C8)

where Oµ = γµ(1 − γ5).
To derive the contribution due to “gauging” the strong interaction Lagrangian we take the three–quark currents of

the proton and neutron and proceed as follows:

• We express the quark fields in terms of left– and right–handed fields. One obtains:

Jp = εa1a2a3 γµγ5 (da1

L + da1

R ) (ua2

L Cγµua3

R + ua2

R Cγµua3

L ) ,

Jn = −εa1a2a3 γµγ5 (ua1

L + ua1

R ) (da2

L Cγµda3

R + da2

R Cγµda3

L ) .

• We perform the gauging using the master formulas (C5) and after some simple algebra we derive the “nonlocal”
contributions to the weak current associated with the d → u flavor exchange:

Jµ
2 (x) =

∫
dy

δLweak
BB′ (y)

δW+
µ (x)

(C9)
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where

Lweak
np (x) =

g
W

g
N√

2
Vud p̄(x)

∫
dx123 F (x, x1, x2, x3) εa1a2a3 γµγ5 da1(x1)d

a2(x2)Cγµ(1 + γ5)u
a3(x3) I(x2, x, W+)

− g
W

g
N√

2
V †

ud n̄(x)

∫
dx123 F (x, x1, x2, x3) εa1a2a3 γµγ5 ua1(x1)u

a2(x2)Cγµ(1 + γ5)d
a3(x3) I(x2, x, W−)

+ H.c. (C10)

Using the Fierz transformation (see Appendix B) the Lagrangian Lweak
np can be written in a more convenient

form

Lweak
np (x) = −g

W
g

N

2
√

2
Vud p̄(x)

∫
dx123 F (x, x1, x2, x3) εa1a2a3 γµ(1 + γ5)ua1(x1)d

a2(x2)Cγµda3(x3) I(x2, x, W+)

+
g

W
g

N

2
√

2
V †

ud n̄(x)

∫
dx123 F (x, x1, x2, x3) εa1a2a3 γµ(1 + γ5) da1(x1)u

a2(x2)Cγµua3(x3) I(x2, x, W−)

+ H.c. (C11)

where
∫

dx123 =
∫

dx1

∫
dx2

∫
dx3 and I(x2, x, W±) =

x2∫
x

dzµW±
µ (z).

• We remind the reader that the function F (x, x1, x2, x3) is related to the scalar part of the Bethe-Salpeter
amplitude and characterizes the finite size of the baryon. We use a particular form for the vertex function
defined in Eq. (17).

• The current Jµ
1 (x) generates the triangle diagram (the left diagram in Fig.1) contributing to the n → pW−

transition, while the current Jµ
2 (x) generates the bubble diagrams (the central and right diagram in Fig.1). By

analogy one can derive the currents which govern the other six modes.

• A crucial check of our gauging procedure is to check the vector and axial-vector Ward-Takahashi identities
(WTI) involving matrix elements of the n → pW− transition. In general, for an off-shell neutron and proton
with momentum p and p′, respectively, and the momentum transfer q = p′ − p, it is convenient to write down
the corresponding weak matrix elements associated with the vector and axial vector current in the form (here
and in the following we omit the weak coupling g and the CKM matrices in the matrix elements):

ΛV
µ (p, p′) = ΛV ;⊥

µ (p, p′) +
qµ

q2

[
ΣN (p′) − ΣN (p)

]
(C12)

and

ΛA
µ (p, p′) = ΛA;⊥

µ (p, p′) − qµ

q2

[
γ5 ΣN (p) + ΣN (p′) γ5

]
+

qµ

q2

[
2mq ΛP (p, p′)

]
. (C13)

Here, ΛV ;⊥
µ (p, p′) and ΛA;⊥

µ (p, p′) are the contributions to the vector and axial vector matrix elements orthogonal
to the W -boson (or leptonic pair) momenta; ΣN (p) is the nucleon mass operator and ΛP (p, p′) is the pseudoscalar
nucleon vertex function.

Then, the vector and axial vector WTI are satisfied according to

qµ ΛV
µ (p, p′) = ΣN (p′) − ΣN (p) (C14a)

qµ ΛA
µ (p, p′) = −γ5 ΣN (p) − ΣN (p′) γ5 + 2 mq ΛP (p, p′) . (C14b)

In our derivation we have made use of the quark-level identities

Sq2
(k + p′)γµSq1

(k + p) = Sq2
(k + p′)γ⊥

µ Sq1
(k + p) +

qµ

q2
[Sq2

(k + p′) − Sq1
(k + p)]

+
qµ

q2
(mq2

− mq1
)Sq2

(k + p′)Sq1
(k + p) , (C15a)

Sq2
(k + p′)γµγ5Sq1

(k + p) = Sq2
(k + p′)(γµγ5)

⊥Sq1
(k + p) − qµ

q2
[γ5Sq1

(k + p) + Sq2
(k + p′)γ5]

+
qµ

q2
(mq1

+ mq2
)Sq2

(k + p′)γ5Sq1
(k + p) (C15b)
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which lead to the vector and axial vector WTI on the quark level:

qµ Sq2
(k + p′)γµSq1

(k + p) = Sq2
(k + p′) − Sq1

(k + p) + (mq2
− mq1

)Sq2
(k + p′)Sq1

(k + p) , (C16a)

qµ Sq2
(k + p′)γµγ5Sq1

(k + p) = −Sq2
(k + p′)γ5 − γ5Sq1

(k + p) + (mq1
+ mq2

)Sq2
(k + p′)γ5Sq1

(k + p) .(C16b)

We have introduced the notation Γ⊥
µ = Γν(gµν − qµqν/q2) for the so-called Dirac matrices orthogonal to the

transverse momentum q. All three diagrams contribute to ΛV ;⊥
µ (p, p′) and ΛA;⊥

µ (p, p′)

ΛV −A;⊥
µ (p, p′) = ΛV −A;⊥

µ, ∆ (p, p′) + ΛV −A;⊥
µ, ◦L

(p, p′) + ΛV −A;⊥
µ, ◦R

(p, p′) (C17)

where

ΛV −A;⊥
µ, ∆ (p, p′) = −αN

∫
dk123Φ̃(z0) Φ̃[z0 + z2(q)]

× Γ1fSq(k
+
1 )γβγ5 tr[Γ2fSq(k

+
2 + q)O⊥

µ Sq(k
+
2 )γβSq(−k+

3 )] (C18a)

ΛV −A;⊥
µ, ◦L

(p, p′) = αN

∫
dk123 L⊥

2µ Φ̃(z0)

1∫

0

dt Φ̃′[z0 + tz2(−q)]

× γαγ5Sq(k
′+
1 )γβ(1 + γ5) tr[γαSq(k

′+
2 )γβSq(−k′+

3 )] , (C18b)

ΛV −A;⊥
µ, ◦R

(p, p′) = αN

∫
dk123 L⊥

2µ Φ̃(z0)

1∫

0

dt Φ̃′[z0 + tz2(q)]

× γα(1 + γ5)Sq(k
+
1 )γβγ5 tr[γαSq(k

+
2 )γβSq(−k+

3 )] . (C18c)

Here Γ1f ⊗ Γ2f = γαγ5 ⊗ γα − γα ⊗ γαγ5 + 2I ⊗ γ5 − 2γ5 ⊗ I.

The expressions for ΣN (p) and ΛP (p, p′) are given by

ΣN (p) = −αN

∫
dk123Φ̃

2(z0)γ
αγ5Sq(k

+
1 )γβγ5 tr[γαSq(k

+
2 )γβSq(−k+

3 )] (C19)

and

ΛP (p, p′) = −αN

∫
dk123Φ̃(z0) Φ̃[z0 + z2(q)]Γ1fSq(k

+
1 )γβγ5 tr[Γ2fSq(k

+
2 + q)γ5Sq(k

+
2 )γβSq(−k+

3 )] . (C20)

We have used the notations from our paper on magnetic moments of heavy baryons [9]:

αB = 6 g2
B , k+

i = ki + pωi , k′+
i = ki + p′ωi , z0 = −6(k2

1 + k2
2 + k2

3)

dk123 =
d4k1d

4k2d
4k3

(2π)8i2
δ4(k1 + k2 + k3) , Li = 12(ki −

3∑

j=1

kjωj) , (C21)

z1(q) = −12q2(ω2
2 + ω2ω3 + ω2

3) − L1q ,

z2(q) = −12q2(ω2
1 + ω1ω3 + ω2

3) − L2q ,

z3(q) = −12q2(ω2
1 + ω1ω2 + ω2

2) − L3q .

By analogy one can derive the matrix elements 〈B(p′)|V ij
µ,1(0) |B(p)〉 and 〈B(p′)|Aij

µ,1(0) |B(p)〉 for the other six
modes.
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APPENDIX D: FUNCTIONS Ri(x)

In this Appendix we write down the functions Ri(x = ml/∆):

R0(x) =
√

1 − x2

(
1 − 9

2
x2 − 4x4

)
+

15

4
x4 ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RF1
(x) = R0

F1
(x) +

m2
Bi

9
〈r2

F1
〉Rq2

F1
(x) ,

R0
F1

(x) =
√

1 − x2

(
1 − 45

8
x2 − 37

4
x4 +

3

4
x6

)
+

105

16
x4 ln

1 +
√

1 − x2

1 −
√

1 − x2
,

Rq2

F1
(x) =

√
1 − x2

(
1 + 4x2 +

271

4
x4 + 6x6

)
− 105

4
x4(1 +

x2

2
) ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RG1
(x) = R0

G1
(x) +

5m2
Bi

18
〈r2

G1
〉Rq2

G1
(x) ,

R0
G1

(x) =
√

1 − x2

(
1 − 83

16
x2 − 173

24
x4 +

11

24
x6

)
+

175

32
x4 ln

1 +
√

1 − x2

1 −
√

1 − x2
, (D1)

Rq2

G1
(x) =

√
1 − x2

(
1 − 8

5
x2 +

319

20
x4 +

2

5
x6

)
− 21

4
x4(1 +

x2

2
) ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RF2
(x) = RF12

(x2) =
√

1 − x2

(
1 − 19

4
x2 +

87

8
x4 + 6x6

)
− 105

16
x6 ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RF3
(x) = x2R0(x) , RG2

(x) = (1 − x2)7/2 ,

RF13
(x) =

5

4
x2

√
1 − x2

(
1 +

13

2
x2

)
− 15

4
x4(1 +

x2

4
) ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RG12
(x) =

√
1 − x2

(
1 − 13

4
x2 +

33

8
x4

)
− 15

16
x6 ln

1 +
√

1 − x2

1 −
√

1 − x2
,

RG13
(x) =

3

2
x2

√
1 − x2

(
1 +

83

6
x2 +

8

3
x4

)
− 15

2
x4(1 +

3

4
x2) ln

1 +
√

1 − x2

1 −
√

1 − x2
.

APPENDIX E: CHECK OF THE ADEMOLLO–GATTO THEOREM (AGT)

As stressed above, the Ademollo–Gatto theorem (AGT) [1] protects the vector form factors from leading SU(3)–
breaking corrections generated by the mass difference of strange and nonstrange quarks. The first nonvanishing
breaking effects start at second order in symmetry–breaking. To demonstrate that this theorem is fulfilled in our
approach we consider a strangeness-changing flavor transition Bi → Bjeν̄e. The corresponding matrix element at
q = p′ − p = 0 is written as

M
BiBj

µ, V (p, p) = ūBj
(p)γµ F

BiBj

1 (0)uBi
(p) , (E1)

where the vector coupling constant F
BiBj

1 (0) is defined as

F
BiBj

1 (0) = fsu
1 V

BiBj

1 . (E2)

Note that we have already proved (see [5]) that the vector form factor fsu
1 obeys the AGT. Therefore, we merely need

to demonstrate that the same is true for the form factor V
BiBj

1 encoding valence quark effects—the valence quark
vector form factor. In other words, due to the factorization of chiral effects and the effects of valence quarks, both form

factors – fsu
1 and V

BiBj

1 should obey the AGT. The quantity V
BiBj

1 is expressed in terms of the baryon-three-quark
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coupling constants gBi
= gB(mBi

, m1i) and gBj
= gB(mBj

, m1j), the Clebsch–Gordan coefficients C
BiBj

V and the
structure integral IBiBj

= I(mBi
, mBj

, m1i, m1j), according to the contributions from the diagrams in Fig.2:

V
BiBj

1 = gBi
gBj

C
BiBj

V IBiBj
(E3)

where mi = ms and mj = m are the masses of strange and nonstrange quarks. In the above formulae we do not
display the dependence on the spectator quark masses m2 and m3. Note that the coupling constant gBi

is related to
the structure integral IBiBj

as g2
Bi

= 1/IBiBi
.

Next, using the transformation of the matrix element M
BiBj

µ, V (p, p) under hermitian conjugation

(
M

BiBj

µ, V (p, p)

)†

= ūBi
(p)γµ F

BiBj

1 (0)uBj
(p) = M

BjBi

µ, V (p, p) = ūBj
(p)γµ F

BjBi

1 (0)uBi
(p) , (E4)

we deduce the condition IBiBj
= IBjBi

which means that the structure integral I(mBi
, mBj

, m1i, m1j) is symmetric
under the transformations mBi

↔ mBj
, m1i ↔ m1j:

I(mBi
, mBj

, m1i, m1j) = I(mBj
, mBi

, m1j , m1i) . (E5)

Using the latter constraint, we express the structure integral IBiBj
through the coupling constants gBi

and gBj
, i.e.

one has

IBiBj
=

1

2

(
IBiBj

+ IBjBi

)
=

1

2

(
IBiBi

+ IBjBj
+ O(δ2

BiBj
, δ2

ij , δBiBj
δij)

)

=
1

2

(
1

g2
Bi

+
1

g2
Bj

+ O(δ2)

)
(E6)

where the parameters δBiBj
= mBi

− mBj
= O(δ) and δij = m1i − m1j = O(δ) are of first order in SU(3) breaking.

Using the expansion (E6) we then obtain

V
BiBj

1 =
C

BiBj

V

2

(
gBi

gBj

+
gBj

gBi

+ O(δ2)

)
. (E7)

Finally, expanding gBi
/gBj

+ gBj
/gBi

in terms of the difference gBi
− gBj

∼ O(δ)

gBi

gBj

+
gBj

gBi

= 2 +
(gBi

− gBj
)2

g2
Bi

+ O((gBi
− gBj

)3) = 2 + O(δ2) (E8)

we prove the Ademollo-Gatto theorem

V
BiBj

1 = C
BiBj

V (1 + O(δ2)) . (E9)
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Fig. 1. Baryon mass operator. Bold and thin lines refer to the baryons and quarks, respectively. Quarks are labeled
by the indices k = 1, 2, 3.
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Fig. 2. Diagrams contributing to the matrix elements of the bare quark operators V ij
µ,k(0) and Aij

µ,k(0), k = 1, 2, 3 :

triangle (a), bubble (b) and (c). Bold, thin and wiggly lines refer to the baryons, quarks and external weak field,
respectively. Quarks participating in the quark flavor transition qi → qj are labeled by the indices 1i and 1j, while the
spectator quarks – by the indices 2 and 3. Initial and final baryons are labeled by the indices i and j.
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Table 1. Magnetic moments of the baryon octet (in units of the nuclear magneton µN )
and nucleon electromagnetic radii (in units of fm2).

Our results [11]

Quantity Valence Meson Total Experiment [3]

quarks cloud

µp 2.530 0.263 2.793 2.793

µn −1.530 −0.383 −1.913 −1.913

µΛ −0.575 −0.038 −0.613 −0.613± 0.004

µΣ+ 2.336 0.196 2.532 2.458 ± 0.010

µΣ− −0.942 −0.327 −1.269 −1.160± 0.025

µΞ0 −1.240 −0.096 −1.336 −1.250± 0.014

µΞ− −0.599 0.033 −0.566 −0.6507± 0.0025

|µΣ0Λ| 1.273 0.293 1.566 1.61 ± 0.08

〈r2〉pE 0.700 0.078 0.778 0.767 ± 0.012

〈r2〉nE −0.0628 −0.0542 −0.117 −0.1161± 0.0022

〈r2〉pM 0.637 0.118 0.755 0.731 ± 0.060

〈r2〉nM 0.618 0.099 0.717 0.762 ± 0.019

Table 2. Numerical values for the radiative corrections in % (taken from Ref. [29]).

Decay mode δrad δeνe

rad δe
rad δνe

rad δB
rad

n → pe−ν̄e 6.96 1.98 1.98 2.10 2.10

Λ → pe−ν̄e 4.17 1.99 1.99 2.10 2.10

Σ− → ne−ν̄e 1.85 1.98 1.98 2.10 2.10

Σ+ → Λe+νe 2.25 1.99 1.99 2.10 2.10

Σ− → Λe−ν̄e 2.22 1.99 1.99 2.10 2.10

Ξ− → Λe−ν̄e 1.95 1.98 1.98 2.10 2.10

Ξ− → Σ0e−ν̄e 2.10 1.99 1.99 2.10 2.10

Ξ0 → Σ+e−ν̄e 4.36 1.99 1.99 2.10 2.10

Λ → pµ−ν̄µ 6.78

Σ− → nµ−ν̄µ 1.88

Ξ− → Σ0µ−ν̄µ 2.12

Ξ0 → Σ+µ−ν̄µ 6.78
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Table 3. Couplings V
BiBj

11 and A
BiBj

11 .

Mode Our results SU(6) quark model

V
BiBj

11 A
BiBj

11 V
BiBj

11 A
BiBj

11

n → p 1 1.452 1
5

3

Λ → p −1.146 −1.039 −
√

3

2
= −1.225 −

√
3

2
= −1.225

Σ− → n −0.943 0.307 −1
1

3
= 0.333

Σ− → Λ −0.002 0.724 0

√
2

3
= 0.816

Ξ− → Λ 1.170 0.388

√
3

2
= 1.225

1√
6

= 0.408

Ξ− → Σ0 0.689 1.035
1√
2

= 0.707
5

3
√

2
= 1.179

Ξ0 → Σ+ 0.975 1.464 1
5

3
= 1.667

Table 4. Couplings V
BiBj

21,31 and A
BiBj

21,31 .

Mode V
BiBj

21 V
BiBj

31 A
BiBj

21 A
BiBj

31

n → p 1.530 0 0 2.850

Λ → p −0.840 −0.093 −0.042 −1.431

Σ− → n 0.802 −0.288 −0.047 1.467

Σ− → Λ 1.180 −0.034 0.034 2.517

Ξ− → Λ 0.009 0.231 0.061 −0.048

Ξ− → Σ0 1.235 0.014 0.006 2.374

Ξ0 → Σ+ 1.747 0.019 0.009 3.357
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Table 5. Semileptonic decay constants of baryons F
BiBj

1 and G
BiBj

1 .

Decay mode F
BiBj

1 G
BiBj

1

n → p 1 gA = 1.258 (1 + δnp
A ) = 1.2695

Λ → p −
√

3

2
(1 + δΛp

V ) = −1.226 −0.928 (1 + δΛp
A ) = −0.888

Σ− → n −(1 + δΣn
V ) = −1.009 0.243 (1 + δΣn

A ) = 0.262

Σ− → Λ −0.002 0.613 (1 + δΣΛ
A ) = 0.633

Ξ− → Λ

√
3

2
(1 + δΞΛ

V ) = 1.252 0.315 (1 + δΞΛ
A ) = 0.332

Ξ− → Σ0 1√
2
(1 + δΞΣ

V ) = 0.737 0.890 (1 + δΞΣ
A ) = 0.885

Ξ0 → Σ+ 1 + δΞΣ
V = 1.042 1.258 (1 + δΞΣ

A ) = 1.252

Table 6. Ratios G
BiBj

1 /F
BiBj

1 .

Decay mode Our results Data [3]

n → p 1.2695 1.2695 ± 0.0029

Λ → p 0.724 0.718 ± 0.015

Σ− → n, G1/F1 −0.260 −0.34 ± 0.017

Σ− → n, (G1 − 0.237G2)/F1 −0.278 −0.327± 0.007 ± 0.019

Ξ− → Λ 0.265 0.25 ± 0.05

Ξ− → Σ0 1.20

Ξ0 → Σ+ 1.20 1.20 ± 0.04 ± 0.03
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Table 7. Semileptonic decay constants of baryons F
BiBj

2,3 and G
BiBj

2,3 .
Here µπ = 0.13957 and µK = 0.493677 are the dimensionless masses of π and K mesons.

Decay mode F
BiBj

2 G
BiBj

2 F
BiBj

3 G
BiBj

3

n → p 1.853 0 0
2.187

µ2
π

(2.271

µ2
π

)

gp = 8.25

Λ → p −1.226 −0.072 −0.067 −1.647

µ2
K

(
−2.035

µ2
K

)

Σ− → n 0.971 −0.078 −0.055
0.536

µ2
K

(0.663

µ2
K

)

Σ− → Λ 1.206 0.013 0.016
1.645

µ2
π

(1.735

µ2
π

)

Ξ− → Λ 0.162 0.076 0.052
1.002

µ2
K

(1.403

µ2
K

)

Ξ− → Σ0 1.770 0.037 0.035
2.783

µ2
K

(3.631

µ2
K

)

Ξ0 → Σ+ 2.503 0.052 0.050
3.936

µ2
K

(5.137

µ2
K

)

Table 8. Ratios F
BiBj

2 /F
BiBj

1 .

Decay mode Cabibbo model [2] 1/Nc expansion [33] χQSM [34] Our results

n → p
1

2
(µp − µn − 1) = 1.853 1.85 1.57 1.853

Λ → p
mΛ

2mN
(µp − 1) = 1.066 0.90 0.71 1

Σ− → n
mΣ−

mN
(µp + 2µn − 1) = −1.297 −1.02 −0.96 −0.962

Σ− → Λ (F2) −mΣ−

2mN

√
3

2
µn = 1.490 1.17 1.24 1.206

Ξ− → Λ −mΞ−

2mN
(µp + µn − 1) = 0.085 0.06 0.02 0.129

Ξ− → Σ0 mΞ−

2mN
(µp − µn − 1) = 2.609 1.85 2.02 2.402

Ξ0 → Σ+ mΞ0

2mN
(µp − µn − 1) = 2.597 1.85 2.402
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Table 9. Results for the Σ− → ne−ν̄e decay.

Quantity Lattice approach [35] Our results

F1 −0.988 ± 0.029lattice ± 0.040HBChPT −1.009

G1/F1 −0.287 ± 0.052 −0.260

(G1 − 0.237G2)/F1 −0.37 ± 0.08 −0.278

F2/F1 −0.85 ± 0.45 −0.962

F3/F1 0.24 ± 0.12 0.055

G2/F1 0.35 ± 0.15 0.077

G3/F1 −3.42 ± 1.85 −2.180

Table 10. Decay widths Γ (in units of 106 s−1,
for neutron decay in units of 10−3 s−1).

Our results

Decay mode Γ Γ(F1, G1) Γ(F1(0), G1(0)) Γ0 SU(3) fit Data [3]

n → pe−ν̄e 1.12 1.12 1.12 1.05 1.12 1.129 ± 0.001

Λ → pe−ν̄e 3.28 3.26 3.10 3.15 3.16 3.16±0.06

Λ → pµ−ν̄µ 0.57 0.56 0.51 0.53 0.52 0.60±0.13

Σ− → ne−ν̄e 6.50 6.50 5.72 6.39 6.19 6.88±0.24

Σ− → nµ−ν̄µ 3.15 3.15 2.54 3.09 2.74 3.0±0.2

Σ+ → Λe+νe 0.26 0.26 0.26 0.25 0.27 0.25±0.06

Σ− → Λe−ν̄e 0.43 0.43 0.43 0.42 0.45 0.39±0.02

Ξ− → Λe−ν̄e 3.35 3.35 3.15 3.28 2.80 3.35±0.37

Ξ− → Λµ−ν̄µ 0.96 0.96 0.85 0.94 0.76 2.1+2.1
−1.3

Ξ− → Σ0e−ν̄e 0.52 0.51 0.50 0.51 0.51 0.53±0.10

Ξ− → Σ0µ−ν̄µ 0.0067 0.0067 0.0064 0.0065 0.0064 < 0.05

Ξ0 → Σ+e−ν̄e 0.93 0.93 0.91 0.89 0.91 0.93±0.14

Ξ0 → Σ+µ−ν̄µ 0.0081 0.0081 0.0078 0.0076 0.0078 0.02±0.01
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Table 11. Predictions for Γ/|VCKM|2 (in units of 107 s−1).

Decay mode Γ/|VCKM|2 Decay mode Γ/|VCKM|2

Λ → pe−ν̄e 6.48 Ξ− → Λe−ν̄e 6.62

Λ → pµ−ν̄µ 1.13 Ξ− → Λµ−ν̄µ 1.90

Σ− → ne−ν̄e 12.84 Ξ− → Σ0e−ν̄e 1.03

Σ− → nµ−ν̄µ 6.22 Ξ− → Σ0µ−ν̄µ 0.013

Σ+ → Λe+νe 0.027 Ξ0 → Σ+e−ν̄e 1.84

Σ− → Λe−ν̄e 0.045 Ξ0 → Σ+µ−ν̄µ 0.016

Table 12. Asymmetry parameters.

Decay mode αeνe
αe ανe

αB

n → pe−ν̄e −0.08 −0.10 0.99 −0.48

Λ → pe−ν̄e −0.01 0.02 0.92 −0.60

Σ− → ne−ν̄e 0.42 −0.50 −0.32 0.65

Σ+ → Λe+νe −0.39 −0.68 0.63 0.06

Σ− → Λe−ν̄e −0.40 −0.69 0.63 0.07

Ξ− → Λe−ν̄e 0.54 0.23 0.57 −0.54

Ξ− → Σ0e−ν̄e −0.19 −0.18 0.96 −0.46

Ξ0 → Σ+e−ν̄e −0.18 −0.17 0.92 −0.45
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