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We calculate the semileptonic baryon octet—octet transition form factors using a manifestly
Lorentz covariant quark model approach based on the factorization of the contribution of valence
quarks and chiral effects. We perform a detailed analysis of SU(3) breaking corrections to the hy-
peron semileptonic decay form factors. We present complete results on decay rates and asymmetry
parameters including lepton mass effects for the rates.
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I. INTRODUCTION

The analysis of the semileptonic decays of the baryon octet B; — Bjer, presents an opportunity to shed light on
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V5. At zero momentum transfer, the weak baryon matrix
elements for the B; — Bjel, transitions are determined by just two constants — the vector coupling FlB iP5 and its
axial counterpart GfiBj . In the limit of exact SU(3) symmetry FlB B and GfiBj are expressed in terms of basic
parameters — the vector couplings are given in terms of well-known Clebsch—Gordan coefficients which are fixed due
to the conservation of the vector current (CVC), while the axial couplings are given in terms of the familiar SU(3)
octet axial-vector couplings F' and D. The Ademollo-Gatto theorem (AGT) [1] protects the vector form factors
from leading SU(3)-breaking corrections generated by the mass difference of strange and nonstrange quarks—the first
nonvanishing breaking effects begin at second order in symmetry—breaking. As emphasized in Ref. [2], the vanishing of
the first—order correction to the vector hyperon form factors FlB iB presents an opportunity to determine V,,5 from the
direct measurement of VusFlB Bi The axial form factor, on the other hand, contains symmetry—breaking corrections
already at first order. We note that the experimental data on baryon semileptonic decays [3] are well described by the
Cabibbo theory [4], which assumes SU(3) invariance of the strong interactions. However, for a precise determination
of V,,s one needs to include the leading and very likely also the subleading SU(3) breaking corrections.

The theoretical analysis of SU(3) breaking corrections to hyperon semileptonic decay form factors has been per-
formed in various approaches, including quark and soliton models, the 1/N, expansion of QCD, chiral perturbation
theory (ChPT), lattice QCD, ete. (for an overview and references see [3]). In Ref. [5] we have suggested the use of a
quark-based approach, which offers the possibility to consistently include chiral corrections (both SU(3)-symmetric
and SU(3)-breaking) to the baryon semileptonic form factors. By matching the baryon matrix elements to the cor-
responding quantities derived in baryon ChPT we reproduced the chiral expansion of physical quantities (e.g. mass,
magnetic moments, slopes and the axial charge of the nucleon) at the order of accuracy at which we worked. In the
valence quark calculation of the baryon matrix elements we employed a simple generic ansatz for the spatial form of
the quark wave function [6, [7].

In the present paper we evaluate the baryon matrix elements within a Lorentz and gauge invariant constituent
quark model [§, 19]. Note that in Refs. [10, [11] we have studied the electromagnetic properties of the baryon octet
and the A(1230)-resonance in an analogous approach. In particular, we developed an approach based on a nonlinear
chirally symmetric Lagrangian which involves constituent quarks and chiral fields. In a first step, this Lagrangian was
used to dress the constituent quarks with a cloud of light pseudoscalar mesons and other (virtual) heavy states using
the calculational technique of infrared dimensional regularization (IDR) [12]. Then, within a formal chiral expansion,
we evaluated the dressed transition operators relevant for the interaction of quarks with external fields in the presence
of a virtual meson cloud. In a next step, these dressed operators were used to calculate baryon matrix elements. (A
simpler and more phenomenological quark model based on similar ideas regarding the dressing of constituent quarks
by the meson cloud has been developed in Refs. [7].) In the present paper we improve the quantitative determination of
valence quark effects by resorting to a specific relativistic quark model [, [11] describing the internal quark dynamics.
This procedure will allow us to generate predictions for all six form factors showing up in the matrix elements of the
semileptonic decays of the baryon octet. With the explicit form factors together with radiative corrections, we present
predictions for the corresponding decay widths and asymmetries.

The paper is structured as follows. First, in Section II, we discuss the basic notions of our approach which is
directly connected to our previous work in Refs. |5, [10, [L1]. That is, we derive a chiral Lagrangian motivated by
baryon ChPT [12, [13], and write it in terms of quark and mesonic degrees of freedom. Using constituent quarks
dressed with a cloud of light pseudoscalar mesons and other mesons heavier than the pseudoscalar mesons, we derive
dressed transition operators within the chiral expansion, which are in turn used in a Lorentz and gauge invariant
quark model [8] explicitly including internal quark dynamics to calculate baryon matrix elements. In Section IIT we
derive specific expressions for the vector and axial baryon semileptonic decay constants, while in Section IV we present
the numerical analysis of the axial nucleon charge and the vector and axial vector hyperon semileptonic form factors.
Finally, in Section V we summarize our results.

II. APPROACH
A. Matrix elements of semileptonic decays of the baryon octet

In Refs. |4, [10, [11] we have developed a Lorentz covariant quark approach which allowed us to study light baryon
properties based on the inclusion of chiral effects in a consistent fashion by matching the quark model approach to
the predictions of ChPT. In particular, our results for various baryon properties (static properties and form factors



in the Euclidean region) derived in |5, [10, [11] using this approach satisfy the low—energy theorems and identities
dictated by the infrared singularities of QCD (see, e.g., the detailed discussion in Refs. |5, [L0] and a brief overview in
Section [TC).

The main idea is to include chiral effects in the transition quark operators, which are then sandwiched between
the respective baryon states. We have developed a technique which allows us to explicitly generate chiral corrections
associated with the small scale A ~ m,, where m, is the constituent quark mass, together with effects of the internal
dynamics of the valence quarks. In particular, as a first step, we dress the bare valence quark operators by a cloud
of pseudoscalar mesons and states heavier than the pseudoscalar mesons in a straightforward manner by the use of
an effective chirally—invariant Lagrangian (see the explicit forms in Refs. [5, [10, [11] and the relevant expressions for
the calculation of semileptonic form factors below). In particular, the Lagrangian which dynamically generates the
dressing of the constituent quarks by the mesonic degrees of freedom, consists of two basic pieces £, and Ly:

Lo =Lo+Ly, Lo=LY+LP 44 £y =2+ (1)

The superscript (¢) attached to E;}) and cfj’ denotes the low energy dimension of the Lagrangian:

F? . 1
£y = Tl +xi), LY = q|iP—mt 59k, (22)
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where the symbols (), and occurring in Eq. denote the trace over flavor matrices, commutator, and
Y g q

anticommutator, respectively. In Eq. ([2)) we display only the terms involved in the calculation of semileptonic vector
and axial vector quark coupling constants.

We use the following notation. ¢, U = u? = exp(i¢/F) are the quark and chiral fields, respectively, where ¢ is the
octet of pseudoscalar fields and F is the octet decay constant, o, = i/2[v,, Vo), u, = i{uf, V,u}. D, and V,, are the
covariant derivatives acting on the quark and chiral fields, respectively, including external vector (v,) and axial (a,)
fields, Flj'fj =u'FRu+ uFL ut is the stress tensor involving v, and a,, x+ = u'xu' £ uxTu and X1 = x4+ — (x4+)/3
with x = 2BM + ..., where B is the quark vacuum condensate parameter and M = diag{rh, i, 7} is the mass
matrix of current quarks (We work in the isospin symmetry limit with 7, = mg = i = 7 MeV. The mass of the
strange quark i is related to the nonstrange one via 7hg ~ 25 17).

The parameters m = 420 MeV and g = 0.9 denote the constituent quark mass and axial charge in the chiral limit
(i.e., they are counted as quantities of order O(1) in the chiral expansion). C{, D} and E! are the SU(3) quark
second—, third— and fourth—order low—energy constants (LEC’s). We denote the SU(3) quark LEC’s by capital letters
in order to distinguish them from the SU(2) LEC’s ¢, d! and e!. Also, for the quark LEC’s we use the additional
superscript “q” to differentiate them from the analogous ChPT LEC’s Cy, D;, E; in SU(3) and ¢;, d;, e; in SU(2).
For the numerlcal analysis we will use: M, = 139.57 MeV, My = 493.677 MeV (the charged pion and kaon masses),
M, = 547.51 MeV and F' = (F + Fg)/2 in SU(3) with F; = 92.4 MeV and Fg /F; = 1.22. Using the Lagrangian (2])
we can calculate the semileptonic vector and axial vector quark couplings including chiral corrections following the
procedure discussed in detail in Refs. |4, 10, 11] In Appendix [Alwe list the results for the semileptonic quark couplings
fi o, [ 5, g% 4 and g5 5 up to order (9( %) in the three-flavor picture.

In Refs. [10, 11] we illustrated the dressing technique in the case of the electromagnetic quark operator. We
performed a detailed analysis of the electromagnetic properties of the baryon octet and of the A — N+~ transition. In
Ref. |5] we extended this technique to the case of vector and axial vector quark operators, deriving master formulae
for the calculation of the semileptonic form factors of baryons including the effects of valence quarks together with
chiral corrections. Below we briefly review the derivation of these master formulae, which will be the starting point
for the present paper.

First, we define the bare vector and axial vector quark transition operators constructed from quark fields of flavor
i and j as:

Juvi(g) = /d4w e v@),  uv(@) =) v (), (3a)
T alq) = / Fre j, a(@),  dual®) = @) s 6(a). (3b)



Next, using the chiral Lagrangian derived in Ref. [5], we construct the vector/axial vector currents with quantum
numbers of the bare quark currents which include mesonic degrees of freedom. These currents are then projected on
the corresponding (initial and final) quark states in order to evaluate dressed vector f;”(¢*) and axial vector g, (¢?)
(k =1,2,3) quark form factors which encode the chiral corrections. Finally, using the dressed quark form factors in
momentum space we can determine their Fourier—transform in coordinate space.

In the one-body approximation the dressed quark operators jdr({;? A)(x) and their Fourier transforms Jﬁrf/sﬁ A)(q)

have the forms (for an extension which also includes the two-body quark—quark interactions see Ref. [5])

e = P mema) + EE o g moae) - EC 0, g@am), ow
R = [aee g [ 0@ + T @)+ 8 e a). (4v)

and
) = o7 (-0 @@ nsa ()] + %a @] - L8 i, g wat), 6w
g = [doe g [l @) + P @) + gl o), (5b)

where m;(;) denotes the dressed constituent quark mass of the i(j)-th flavor generated by the corresponding chiral

Lagrangian (for details see Ref. [10]); 172)3((1 ) and 91)273( 2) denote the quark-level vector and axial vector i — j
flavor changing form factors. Up to and including the third order in the chiral expansion, the tree and loop diagrams
which contribute to the dressed vector Jﬁf?,ss(q) and axial vector Jgfffs(q) operators, respectively, are displayed in
Figs.1 and 2 of Ref. [5]. In Appendix [Al we present our results for the semileptonic vector f;” = f;7(0) and axial
g,? = gk 7(0) couplings at the order of accuracy at which we work — up to order O(p*) in the three—flavor picture
including chiral corrections (both SU(3)-symmetric and SU(3)-breaking). For simplicity we restrict our approach to
the isospin symmetry limit in our consideration.

In order to calculate the vector and axial vector current transitions between baryons we sandwich the dressed quark
operators between the relevant baryon states. The master formulae are:

(Bj () Ty (0) [Bi(p)) = (2m)* 64 (0 — p— @) M,V (0,7), (6)
M2 () = Zf ()| V., (0) | Bi(p))
_ s, (p’){w FEO () 4 10m” pbiss g2y | n phis) <q2>}uBi ) . (7a)
mBp; mp;
B;Bj A ij
M, (pp') = Zg (P A, (0)|Bi(p))

= j 10 q” B 4q B
— (o ){m5GBB @) + 2L PP + B PP fun ), ()

k3 k3

where B;(p) denotes the baryon state and up,(p) is the baryon spinor normalized according to
(Bi(p)|Bi(p)) = 2Bp, (21)° 8*(F—F"),  up,(p)us,(p) = 2msp, . (8)

The baryon energy and its mass are denoted by Ep, = 4 /m2B, + p? and mp,. The index i(j) attached to the baryon

state indicates the flavor of the quark involved in the semileptonic transition, and F; BZB]( 2) and GfiBj (¢?) with
k =1,2,3 are the vector and axial vector semileptonic form factors of the baryons

The main idea of the above relations is to express the matrix elements of the dressed quark operators in terms of
the matrix elements of the bare vector and axial vector quark operators V;fk (0) and ALJ_’ «(0), respectively, where

V2 (0) = g (0)T}, 1ai(0), A L(0) = ¢;(0)T 1.4:(0) (9)



with
109" q
I\V _ , I\V _ [id , I‘V — _“7
M1 T H,2 m; ©3 m;
A _ A _ lowq” A _
Flv=%, Iia= R s = gty (10)

Next we specify the expansion of the bare matrix elements (B;(p’)] V:’jk (0)|Bi(p)) and (B;(p')| Aiik (0) | B;(p)) in terms

of the form factors VfiBj (¢?) and Aﬁ; B3 (¢?) with (1 = 1,2,3) encoding the effects of the internal dynamics of valence
quarks:

17 — BiB]‘ ZO— Uqu BiB]‘ q BiB]‘
(B;j(®)|V,2.(0)[Bi(p)) = s, (p) (w Vie ) + m“—B_VQk (¢*) + %V% (q2)) up,(p), (11a)

i i

> v
104

i

(B0 AL B0 = 1,0) (3 AR () + ZELg AP () + S AT ) ) um, ). (110)

Combining chiral effects (encoded in the chiral form factors f,ij (¢?) and g,ij (¢?)) and valence quarks effects (encoded

in the form factors Vlfl Pi(q?) and Aﬁ; Pi(4%)) the expressions for the vector and axial vector form factors F, ,fg Pi and
Gf)i B; , which govern the semileptonic transitions between octet baryons, are defined as:
2 2
B2 =D FA @ Vi (@), G () =D gl () AT (@), (12a)
k=1 k=1
2 2
Fy e?) = ) f@) Vo (@) Gy (@) =)0 (@) Ay (67) (12b)
k=1 k=1
3 3
FS?) =) @) Ve 7 (), G = )00 (67) Ay (67 (12c)
k=1 k=1

Note that the operators V(A)Ljy?)(O) are proportional to g,,, and therefore do not generate contributions to the baryon
form factors Ff QiBj (¢%) and Gngj (¢?). Further simplifications occur when we consider the semileptonic coupling

constants of baryons at maximal recoil ¢> = 0. For the couplings encoding valence quark effects we get the following
constraints due to Lorentz covariance and gauge invariance:

Via'P1(0) = AP 0) =0, vy (0) = O(m, ), Vi P(0) = O(mp, —mp,). (13)

_mBj

It is seen that the “‘/3%'3”' (0) and Vf;?j (0) couplings start at the first order in SU(3) breaking. In the case of the

couplings f;7 = f,7(0) and g = ¢;/(0) encoding the chiral effects we have the following results (see details in
Appendix [A)):
1) The vector coupling f3* governing the d — u transition is trivial and equal to unity — f{* = 1, because we work

in the isospin symmetry limit. In the case of the s — u transition, the corresponding vector coupling f{* contains

symmetry breaking corrections of second order in SU(3) — O((Mj — M2)?) and O((Mj — M?2)?). Note that this is

nothing but the statement of the Ademollo-Gatto theorem (AGT) which asserts that the coupling f7* is protected
from first-order symmetry breaking corrections.

2) The coupling f§* vanishes due to isospin invariance, while the coupling f§* starts at first order in SU(3)
breaking — f5* = O(M3z — M32).

3) The axial vector couplings g are either equal to zero (e.g. the coupling g§* governing the d — u transition) or
vanish at the order of accuracy that we are working at (e.g. the coupling g5* governing the s — u transition).

The set of Eqs. ([@)—([I2) contains our main result: we separate the effects of the internal dynamics of the valence

quarks contained in the matrix elements of the bare quark operators V(A)LJ +(0) and the effects dictated by chiral
dynamics which are encoded in the relativistic form factors f,ij (¢?) and g,ij (¢?). Due to the factorization of chiral
effects and the effects of the internal dynamics of the valence quarks the calculation of the form factors f (g)zj (¢?)
which encode the chiral dynamics, on one side, and the matrix elements of V(A);f (0) which encodes the effects of the
valence quarks, on the other side, can be done independently. The evaluation of the matrix elements V(A)jf (0) is
not restricted to small momenta squared and, therefore, can shed light on baryon form factors at higher (Euclidean)



momentum squared in comparison with ChPT. In particular, as a first step, we employ a formalism motivated by
the ChPT Lagrangian for the calculation of f(g);’(¢®) which is formulated in terms of constituent quark degrees of
freedom. The evaluation of the matrix elements of the bare quark operators can then be relegated to quark models
based on specific assumptions on the internal quark dynamics, hadronization, and confinement. Note that Egs. (@l)—
([I2) are valid for the calculations of dressed vector and axial vector quark operators of any flavor content. In Ref. [5]

we calculated the vector and axial vector coupling constants FlB B3 (0) and GfiBj (0). Here we extend our analysis to
all six coupling constants FiBiBj (0) and Gf}iBj (0) 1 =1,2,3).

B. Evaluation of the matrix elements of the valence quark operators

In this section we discuss the calculation of the baryonic matrix elements
(B V3 (0)[B(p))  and (B A),(0)|B(p)) (14)

induced by the bare quark operators ([@). We will consistently employ the relativistic three-quark model (RQM) [8, 9]
to compute the matrix elements (I4]). The RQM was previously successfully applied to the study of the properties
of baryons containing light and heavy quarks |8, |9]. The main advantages of this approach are: Lorentz and gauge
invariance, a small number of parameters, and the modelling of effects of strong interactions at large (~ 1 fm)
distances. Various properties of light and heavy baryons in electromagnetic, strong and weak decays have been
successfully analyzed within this RQM [, [9] where the effects of valence quarks have been consistently taken into
account. Here we extend this approach to evaluate the effects of valence quarks in the semileptonic decays of the
baryon octet.

Let us begin by briefly reviewing the basic notions of the RQM approach [8,19]. The RQM is based on an interaction
Lagrangian describing the coupling between baryons and their constituent quarks. The coupling of a baryon B(q1¢2qs3)
to its constituent quarks g1, g2 and g3 is described by the Lagrangian

L5 (z) = gpB(x) /d:clfd:rg/d:cg F(x,x1,29,23) Jg(x1, T2, 23) + h.c. (15)
where Jp(x1,x2,x3) is a three-quark current with the quantum numbers of the relevant baryon B [14, [15]. One has

Jp(x1,22,23) = €1 T " (21) ¢3* (22)C T2 g3° (x3), (16)

where I'; o are Dirac structures, C = 7%4? is the charge conjugation matrix and a;(i = 1,2,3) are color indices. In
Appendix [B] we list the relevant three-quark currents for the baryon octet. The choice of light baryon three-quark
currents has been discussed in detail in Refs. [14, [15].

The function F' is related to the scalar part of the Bethe-Salpeter amplitude and characterizes the finite size of the
baryon. In the following we use a specific form for the vertex function |8, 9]

3
F(z,x1,29,23) = N 54(33—211%%) @(Z(zl —xj)2> (17)
i=1 i<j

where @ is the correlation function of the three constituent quarks with masses my, mo, ms and N =9 is a normal-

ization factor. With the variable w; defined by w; = m;/(m1 + ma + mg) the function ® depends only on the relative
Jacobi coordinates (£1,&;) via ®(£7 + £2), where

T = T — %(w2+w3)+%(w2—w3),
xTo = :C—i—%wl—%(wl—i—%@), (18)
&1 &

x3 = ¢+ —=w; + == (w1 + 2ws),

V2 V6

3
and x = > wjx; is the center of mass (CM) coordinate. Expressed in terms of the relative Jacobi coordinates and
i=1
the center of mass coordinate, the Fourier transform of the vertex function reads |8, 9]:

d d . L
B+ ) = [ Gk e e Bt 1)), (19)



The baryon-quark coupling constants gp are determined by the compositeness condition [, |9] (see also |16, [17]),
which implies that the renormalization constant of the hadron wave function is set equal to zero:

ZB=1—E§3(mB):O (20)

where X5 (mp) = g3ll’z(mp) is the first derivative of the baryon mass operator described by the diagram in Fig.1,
and mp is the baryon mass. To clarify the physical meaning of Eq.(20) we first want to remind the reader that

the renormalization constant Z;/ % can also be interpreted as the matrix element between the physical and the cor-
responding bare state. For Zp = 0 it then follows that the physical state does not contain the bare one and is
described as a bound state. The interaction Lagrangian Eq. (I3 and the corresponding free components describe
both the constituents (quarks) and the physical particles (hadrons), which are taken to be the bound states of the
constituents. As a result of the interaction, the physical particle is dressed, i.e. its mass and its wave function have to
be renormalized. The condition Zp = 0 also effectively excludes the constituent degrees of freedom from the physical
space and thereby guarantees that there is no double counting for the physical observable under consideration. In
this picture the constituent quarks exist in virtual states only. One of the corollaries of the compositeness condition
is the absence of a direct interaction of the dressed charged particle with the electromagnetic and the weak gauge
boson field. Taking into account both the tree-level diagram and the diagrams with the self-energy and counter-term
insertions into the external legs (that is the tree-level diagram times (Zp — 1)) one obtains a common factor Zp which
is equal to zero [17].

The quantities of interest—the matrix elements (I4])—are described by the triangle diagram in Fig.2(a). In case
of the matrix elements (B(p')|V,”,(0)|B(p)) and (B(p)| A;/,(0) |B(p)) we need to include two additional so-called
“bubble” diagrams in Figs.2(b) and 2(c) which guarantee gauge invariance of the matrix elements (see details in
Refs. |8,19] and [18&,[19]). In particular, the “bubble” diagrams are generated by the non-local coupling of the baryon
to the constituent quarks and the external gauge field which arises after gauging of the non-local strong interaction
Lagrangian (I5]) containing the vertex function (I7). In Appendix [Cl we present more details of how to restore gauge
invariance in the non-local strong interaction Lagrangian (I3 through the “bubble” diagrams in Figs.2(b) and 2(c).

Note that the contributions of the bubble diagrams Figs.2(b) and 2(c) to the matrix elements (B(p’)] Vfl (0) | B(p))
and (B(p)] Azj)l (0) |B(p)) are suppressed. In the present application the bubble diagrams contribute less than 5 % in

magnitude compared to the contribution of the triangle diagram in Fig.2(a).
In the evaluation of the quark-loop diagrams we use the free fermion propagator for the constituent quark |8, [9]:

iSyla =) = O at@)alo) = [ G e ™ 5,00 1)

where S’q(k:) = (mq— K—ie)~! is the usual free fermion propagator in momentum space. The appearance of unphysical
imaginary parts in Feynman diagrams can be avoided by postulating the condition that the baryon mass must be less
than the sum of the constituent quark masses Mp < >, my,.

In the next step we have to specify the vertex function ®, which characterizes the finite size of the baryons and the
internal quark dynamics. In principle, its functional form can be calculated from the solutions of the Bethe-Salpeter
equation for baryon bound states [20]. In Refs. [21] it was found that, using various forms for the vertex function, the
basic hadron observables are relatively insensitive to the specific details of the functional form of the hadron-quark
vertex form factor. Using this observation as a guiding principle, we select a simple Gaussian form for the vertex
function ® (any choice for ® is appropriate as long as it falls off sufficiently fast in the ultraviolet region of Euclidean
space to render the Feynman diagrams ultraviolet finite). We shall employ the Gaussian form

(kip, k3p) = exp(—18 [k + k3] /A%) (22)

where kg and kop are Euclidean momenta and Ag is a size parameter which parametrizes the distribution of quarks
inside a given baryon. In previous papers |8, 9] we have determined a set of parameters for the light baryons

My =mq =420 MeV, m, =570 MeV, Ap=0.75—1.25 GeV (23)

which gives very satisfactory agreement with a wide class of experimental data. Note that most of the results are
not sensitive to the actual values of Ap in the above range. We present some sample results of this approach in
Table 1. These are the magnetic moments of the baryon octet and the nucleon electromagnetic radii generated
with m, = mg = 420 MeV, ms = 570 MeV and Ag = 1.25 GeV. We show the contributions both of the valence
quarks (3q) and of the meson cloud. In the present paper we present a corresponding analysis for the semileptonic
coupling constants of the baryon octet using this same set of model parameters.



C. Connection with chiral perturbation theory

As stressed earlier, results for the baryon properties obtained using this approach [3, [10] satisfy the low-energy
theorems and identities dictated by the infrared singularities of QCD [12],[13],]22]-|25]. As a result we can relate the
parameters of our approach to those of ChPT. In particular, we have analyzed the chiral expansion of the following
properties of the nucleon: mass, magnetic moments, charge radii, the 7N o—term, axial charge and 1NN coupling
constant in SU(2). We have also extended our results to SU(3) including kaon and n-meson degrees of freedom.

The results are:

1. Nucleon mass and 7N o-term.

o M3 M
my = my —deM? — ZIAZ Lk MAn—— + ko M* + O(M?), (24a)
327 F? my
o2
M3 M
oo = —der®— 29AME i ML o o, (24b)
647 F? my
where
1 3 [e] 2 o [e] [e]
ki = zo1 = —————5— |94 —8c1t mn +ca my +4cz3 my |,
2 32m2F2 my
_ 3 02 0
ke = &1 ——————5— 1294 —comn |,
12872F2 my
3 [e] 2 o (o)
oy = 2e1 — —_— (QA —8c1 my +4cs mN) , (25)
6472 F2 my
_ 3V (o2 o o o
er = e — ————|ga —8ci my +ca my +4dcz3 my |,
2F2 my
and
M= 2 e s ) £ 1)), A= A (26)
W= amz\a—a ~ 27 AT AN
2. Magnetic moments and charge radii.
02 M
ga °
/Lp = _8_7Tﬁ my +,
o2
14+5ga4a, M
)y = — Ino— + ..., (27)
P 1672 F2 5
[e] 2 [e]
(Pt = T T

3. Axial charge ga = G77(0), TN N coupling constant and induced pseudoscalar form factor gp(q®) = 2G5" (¢?).

_ 2
0 AdygM? g4 M2 M3 02 0 0
g4 = 9a <1 R A (3+ 394 —des my +8¢y mN> + O(M4)> (28a)
ga 1672 F 24 myF?
o o = ] 2
gAmN<1 1, M? 401M2_|_(4J 94 )MQ ga M?
grN = — - — 16 — 2018) 35— — T 515
F F? ma ga 1672 F2
]\43 02 o o 4 gamnyn
+ m(12+3g,4 —1603 my +3204 mN)+O(M ) = —(1+AGT), (28b)
T™IMmyN ™
gdrN 2
gr(¢?) = 4mNme - gm?ng<T,24> +0(p?) (28¢)

where (r%) is the axial mean-square radius, Agr = —2d1sM?2/ g4 +O(M*) is the correction [23] to the Goldberger-
Treiman (GT) relation [26] which vanishes in the chiral limit (in full equivalence with the prediction of ChPT). Note



that the correction Agr is related to the so-called Goldberger-Treiman discrepancy [27] Ap = 1 — (myga/Frgrn)
via [25]: Agr = Ap/(1 — Ap). In Eqgs. (24)-(28) we use the standard notation for the parameters of the ChPT
Lagrangian: M represents the pion mass to leading—order in the chiral expansion, F is the leptonic decay constant

(F is its value in the chiral limit), E 4 and my are the axial charge and mass of the nucleon in the chiral limit;
li, ¢i, d; and e; are the low-energy constants (LEC’s) with an overline indicating that the corresponding LEC’s are
renormalized.

In order to reproduce the above model-independent results we need to fulfill the following matching conditions
between the parameters and LECs of the ChPT Lagrangian and our chiral quark-level Lagrangian (for the quark
level LEC’s we use the additional superscript “q” to differentiate them from the analogous ChPT LEC’s) :

o o 2
myN _ (9_A> = R?, (29a)
m g
—4e; M? = (i — 4ciM?)R? (29b)
02 o 2
801—02—403—5—‘4: (80'{—03—403— gA ) R?, (29¢)
mn mn
3 29 3 29
_— ga R ga ¢ R2? 204
o gy o) - (e G ) (90
c3 —2c4 = ¢4 —2¢ + ——(1 - R?), (29¢)
myn
o3 3
- ga 7 g
dig— ——— = (d%— —=— | R 20f
107 64n2F? ( 16 64772F2> ’ (206)
dig = dig R, (29g)
dyy = d% R+ ga @ (29h)

E )
where R = A7 (0) and Q = (A77(0)) = dATT(¢?)/dg?|2=0. In addition we deduce the following constraints on the
form factors encoding valence quark effects: 435 (0) = R and A% (0) = —2m3,Q.

III. RATES AND ASYMMETRY PARAMETERS IN SEMILEPTONIC DECAYS OF BARYONS

In this section we present detailed theoretical expressions [28]-[30] for the decay rates and asymmetry parameters
in semileptonic baryon decays.
The decay width is given by the expression |2§]

A2
G2
(B — Byn) = g B Vol (14 Guaa) [ ds (1= /s E7 = 5)(B7 5] N(s) (30)
Bi 2

where
N(s) = F{(s)(A%(4s —m}) + 252 A% (1 + 2mj /s) — (2 + 25)(25 + m]))
+ FF(s)(A% = 5)(25% + 5)(2s + mf) /mB, + 3F5 (s)m (% — s)s/mp,
+ 6F1(s)Fa(s)(A — 5)(2s + m?)Z/mp, — 6F1(s)Fs(s)m3 (5 — 5)A/mp,
+ GI(s)(Z%(4s —mi) + 222 A% (1 + 2mi [s) — (A% + 25)(25 + m]))
+ G3(s)(3? = 5)(2A% + 5)(2s + mP) /mY, + 3G3(s)mP (A2 — 5)s/m3,

— 6G1(5)G2(s)(X% — 5)(25 + m?)A/mp, + 6G1(5)G3(s)m?(A? — 5)X/mp, . (31)
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We have introduced the notation: s = ¢?, ¥ = mp, + mp;, A =mp, —mp,, = (mp, — mBj)/mBi. The factor ;aq
represents the effect of radiative corrections [29] (see Table 2), Gr = 1.16637 x 107° GeV~2 is the Fermi coupling
constant, and m; is the leptonic (electron or muon) mass. For the corresponding CKM matrix elements Voxm = Vad
or V,s we use the central values from |3]: V,q = 0.97377 and V,,; = 0.225. Also we assume that the form factors are
real.

Next we simplify the master formula (B0), integrating over s and including terms up to O(37) where 3 = A/mp, is
the SU(3) breaking parameter. (In this case the term proportional to G3 can be omitted because it already starts at
order O(3%).) Also, we include the momentum dependence of the leading form factors Fy(s) and G1(s) and neglect
the momentum dependence of the others. We expand the form factors Fi(s), G1(s) to first order in s:

20%,) +0(sY), (32)

202 +0(s7), Gi(s) = G (O0)(1 +

Fi(s) = F(0)(1+ ¢

where (r%,) and (rg ) are the ”charge” radii of the F1 and G form factors calculated within our approach (cf. the
numerical results in Sec. [[V]). In addition we retain finite lepton masses. These approximations are sufficient for both
the n — pe~ U, decay and for the muonic decay modes of hyperons. We also retain terms containing the form factors
F3 and G5. Although their effects are proportional to m? they may give a measurable contribution for muonic modes
(see also the discussion in Ref. |30, [31]).

At the order of accuracy to which we work the result for the decay width reads (exact formulas can be found in
129, 130]):

G2 3 6 12
[(B; — Bjlv) = —LZ |Vogm|? A% (1 + 6raa) {(Ff +3GH(1 - 55) Ro(z) + 5° (?Ff Rp, (x) + 7G§ Rg, ()

6073
4 4 12 5 9 6
+ ?F2 RF2 (‘T) + 7G2 RG2 (‘T) + F3 RFS (JJ) + ?FlFQ RF12 (JJ) +G1Gs RGlS (JJ)
3
= 40(1 = 5B)(F1EFs Rpyy (2) + G1G2 Rong (CC))} +0(5%), (33)

where F; = F;(0), G; = G;(0) and z = m;/A. Here the functions R;(z) take into account the charged lepton mass
my (see their expressions in Appendix [D]). In the calculation of the asymmetry parameters we restrict ourselves to
the electron modes. The expressions for the electron-neutrino ae,,, electron a., neutrino «,, and emitted baryon ap
asymmetries to the order of accuracy at which we are working are given in [29].

IV. NUMERICAL RESULTS

In this section we present our numerical results for the semileptonic decays of the baryon octet—coupling constants,
decay widths and asymmetry parameters. First, we calculate the vector VifgiBj and axial vector AﬁiBj couplings
representing the contribution of the pure valence quarks to the semileptonic form factors of the baryons EBiBj and

GfiBj, i.e., when flij =1, gij = 1 and f§J3 = 93{3 = 0. This limiting case corresponds to the projection of the
nonrenormalized weak quark current j, v_a = §;v.(1 — 75)¢; between the respective baryon states. Our results for
V;]fiBj and AﬁiBj are displayed in Tables 3 and 4. In Table 3, for comparison, we also present the predictions of the

naive SU(6) model for the couplings V,;' "7 and AL,

Combining the contributions of the valence quarks and chiral effects we then derive the full expressions for the
semileptonic couplings constants F;BiBj and GfiBj . The resulting forms are listed in Tables 5, 6 and 7. For con-
venience, we present the results for the leading (Fermi) FlB B 1 Vf.'fiBj and (Gamow-Teller) Gf)iBj = g7 Aﬁi B
couplings in the form of a product of their SU(3) symmetric value together with a multiplicative factor 1 + 557151'
which includes the SU(3) breaking correction 5€_fj . (We remind the reader that the quark couplings fgjg and g%ﬂ 5 do
not contribute to the leading baryon couplings FlB B and GfiBj .) Note that the axial vector couplings g{* and g;*
defining the d — u and s — u flavor transitions, respectively, are expressed in terms of the unknown LEC’s C and
D?. We fix the value of these couplings to be g* = 0.874 and ¢{* = 0.855 in order to reproduce the experimental
data on the semileptonic decay widths as well as the ratio G1/F; = 1.2695 in n — p + e~ + 7, decay.

The nucleon axial charge in the SU(3) limit (¢f. Appendix @)—giUS—is given by

g57% =1.258 (34)
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while the SU(3) breaking parameters, 55iBj and (5f;iBj are found to have the form:

5P = —0.069 (val) + 0.070 (ch) = 0.001,
6P = —0.061 (val) + 0.070 (ch) =0.009, (35)
0Zh = —0.048 (val) + 0.070 (ch) = 0.022,
65% = —0.028 (val) + 0.070 (ch) =0.042,

and

8% =0 (val) + 0.009 (ch) = 0.009,

65" =0.024 (val) + 0.009 (ch) =0.033,

547 = —0.030 (val) — 0.013 (ch) = —0.043,

%™ =0.091 (val) — 0.013 (ch) = 0.078, (36)
652 = 0.066 (val) — 0.013 (ch) = 0.053,

65> = 0.0085 (val) — 0.013 (ch) = —0.0045

where have denoted the contributions of valence quarks and chiral effects by the round brackets (val) and (ch),
respectively.

Note that the SU(3) breaking corrections to the vector couplings ggiBj begin at second order, in accord with the

Ademollo-Gatto theorem (AGT) [1] (see discussion in Appendix [El), while corrections to the axial couplings gfiBj
begin at first order. In this regard, if one works to first order in symmetry breaking, our results must be expressible in
terms of a model-independent representation for the axial couplings derived in terms of the SU(3) symmetric couplings
D and F plus four SU(3)-breaking parameters H; [1,132] (¢f. the discussion in Ref. [5])—

N 2
gAp:D-FF—Fg(HQ—Hg),

3 D 1

- 1
05 =D~ F - L(Hy+ Hy).
s A 2 1
gi = 3 D+ g(Hl + Hy;+3H,) ), (37)

= 3 D

1
9
= 1 1
9a EO—\ﬁ D+F — Z(Hy — Hs) |,
2 3
= 1
g;°2*:D+F_§(H2—H3).

Such a representation is indeed found to hold in our model with the values

D =0.7505, F =0.5075 (38)

for the SU(3) symmetric couplings, and
Hy = —0.050, Hy=0.011, Hs=—0.006, H,=0.037 (39)

for the SU(3) breaking terms. The components of 5?&' which are first order in symmetry breaking—dfiBj M_are
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proportional to the couplings H; via:

np(1 =x(1 2(Hy — Hj
) _ 5= ;(D+F)) 7
521)(1) _ H{—2Hy —3H3 —6H, ,
3(D+3F)
s _ H, + H3
A 3(D—-F)’
5iA(1) _ Hi+H,+3H, ’
3D
= 2H, — Hy —3H3 + 6Hy
o = 3(3F — 1)3) ' (40)
From Eq. Q) one obtains a sum rule which relates the corrections §',\" m = —255‘2(1) to a linear combination of the

four remaining SU(3) breaking (51(41)7parameters together with the SU(3)-symmetric couplings F' and D:

. = 2/D-3F = D +3F 3(D - F) sn 4D
) = g5 = 2 sEA@  DA3E capry | 3( ) 5=n(1) §30)

sl Z s —
s\DrF4 T DrFA D+F A TDiF
The SU(3) LEC’s from the chiral Lagrangian (2) can now be determined. Three of the four couplings Cf, C{,

Dis and Diy can be fixed by use of three constraints: the value of the nucleon axial charge in the SU(3) limit

giUS = D + F' = 1.258 together with the values of the axial quark couplings g" = 0.874 and g5 = 0.855. Keeping,

e.g., D}, undetermined we can relate the remaining three LEC’s via:

(41)

Cf =—-0.319 GeV™' D{,, Cf=-0.451GeV~' D}, Di;=0.397 Df,. (42)

In turn, the couplings C¢ = —1.476, E4 = 0.086 GeV~3, E{ = 0.532 GeV 2 are fixed from the description of magnetic
moments of the baryon octet, while Eg = 1.868 GeV~3 is found from the induced pseudoscalar form factor of the
nucleon. The coupling D3, = 0.006 GeV~? is determined by fitting the slope of the form factor G77: (rg ) = 0.45 fm?.
Finally, the coupling D¥; = —0.548 GeV 2 is fixed by the fitting the central value of the induced pseudoscalar coupling
of the nucleon g, = (M, /mn)G7"(¢> = —0.88M) ~ 8.25 predicted by ChPT [24, [25] together with the value of
the pion—nucleon coupling constant g,n = 13.10. It should be noted that the LEC’s C¢, E¥, E¢, Dig and D, are
unimportant for reproducing the semileptonic decay widths because they make no contribution to the leading baryon
coupling constants F,>'77 and G777

Of particular interest is the decay ¥~ — ne~ 7, for which we predict G1/F; = —0.260 and (G — 0.237G2)/Fy =
—0.278 (see Table 6). The latter result underestimates the experimental value —0.327 £ 0.007 & 0.019. However, this
ratio was extracted by neglecting the ¢? dependence of the form factors F; and G; in the decay ¥~ — ne~#, decay.
We find (see the discussion below) that inclusion of the ¢? dependence brings about agreement with the data for both
electron and muon decay widths of the decay ¥~ — nl~ 1.

In Table 7 we present our results for the nonleading baryon semileptonic couplings F5 3 and G2 3. One can see
that the pseudoscalar couplings G3BiBj are dominated by the corresponding pion or kaon pole contribution. (Here the
leading contribution of the pole term is shown in brackets.) We also display the induced pseudoscalar coupling constant

of the nucleon g,, which is fixed by the LEC Dfs. In Table 8 we compare our results for the ratios EPP PP
i) with the predictions of the simple Cabibbo model in terms of the nucleon magnetic moments and baryon octet
masses, ii) with the calculations performed in the 1/N. expansion of QCD [33], and iii) with the results found in
the SU(3) chiral quark-soliton model (xQSM) [34]. Because of SU(2) invariance, we exactly reproduce the result of
the Cabibbo model for the ratio Fy” /F|"" in neutron -decay, while for the other modes we find SU(3) breaking
deviations. Our result for the ratio F;""/F"" = —0.962 compares well: i) with the experimental data (0.97 £ 0.14),
ii) with the results of the 1/N. expansion of QCD [33] (—1.02), iii) with the results found in the yQSM model [34]
(—0.96), and iv) with calculations done in quenched lattice QCD [35] (—0.85 + 0.45). Also, we have quite reasonable

agreement for FQB iBiy FlB 53 Wwith the results of the 1/N, expansion [33] and with those of the YQSM approach for
the remaining semileptonic modes.

Finally, we would like to stress that our results for the various semileptonic couplings of the decay mode ¥~ — ne~ v,
are in good agreement with the predictions of the lattice approach [35]. In Table 9 we give a detailed comparison
with the results of Ref. [35] using our conventions for the semileptonic matrix elements.

It is useful to parametrize our predictions for the weak magnetic couplings F» in terms of SU(3) symmetric couplings
together with first order SU(3) symmetry-breaking parameters. As stressed in Ref. [2] there is an ambiguity in
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expressing the SU(3) limit that clearly indicates the relevance of the first-order correction. It means that if in
analogy to Eq. 1) we introduce a set of parameters {F>, D2, H*} [1] then we should apply it to F2BiBj (0) or
0 MF 253 (0). The second choice, :n”—;VFf Pi(0), is traditionally preferred (See discussion in [2]. The difference is

that we in addition multiply F, BiB; (0) by the nucleon mass my to deal with dimensionless coupling). Otherwise the
SU(3) breaking corrections w111 be overestimated. Within our model, we determine values for these parameters:

Dfe =1.237, FF =0563, H*=-0246, HI>=0.096, Hi*>=0.021, H* =0.030. (43)
Also, we can check the consistency of our results with the model-independent predictions for the second-class
coupling constants FPiBi = n“;g FBZBJ, n“;” GBZBJ to first order in SU(3) breaking, which can be parametrized in

terms of three SU(3) symmetry-breaking parameters HY (see details in [1]):

Fr =0,
pr:%(_Hlf+2H27+2H{)v
fx’":—Hf,
\/’H3 | (44)
FEA (2H1f H — 2H3f),
FE \/7H2 )
FE = ]

Using Eq. ([#4)) one can derive the following sum rules for the amplitudes F5:5i:

1

FAr 750?2’" 9F='THy _ FETA (45a)
—_ 1 - =05+ -
FEA = (@FY o FEE A (45b)
\/6 )
DE+

VB(FM L FEA) — FEIET R (45¢)
(Note that the sum rule (45d) was originally derived in [1].) When we restrict our calculation to first-order SU(3)
breaking terms, we indeed fulfill the sum rules (@H) and for the SU(3)-breaking parameters we obtain H; :

H{®* =0.032, Hi*=-0.028, Hi*=-0.011, H =0.047, HS* = -0.035, HS? = —-0.009. (46)

Next we turn to the discussion of the semileptonic decay widths. We present our results in Table 10: i) total
width I' including all six couplings F} 2 3 and G123, leading ¢* dependence of Fy and G4 form factors and radiative
corrections; ii) predictions I'(Fy, G1) are the results without inclusion of the subleading semileptonic form factors F 3
and Go 3; iii) predictions I'(F;(0), G1(0)) are the total widths without inclusion of the subleading semileptonic form
factors Fy 3 and Ga 3 and of the ¢> dependence in the form factors Fy and Gp; iv) predictions I'? are total results
without radiative corrections. For comparison we present the results of a pure SU(3) fit where we include only the
Fy and G, coupling constants omitting the ¢® dependence of F} an G; form factors and subleading form factors Fj 3
and Ga,3. The values of F} and G; are given by the Cabibbo model [2] where Gy is expressed in terms of the SU(3)
couplings F' and D. We fix F' and D via F = 0.470 and D = 0.800. One can observe that the contribution of the
subleading coupling constants F5 3 and G 3 to the semileptonic decay width of the baryon octet is negligible. On
the other hand, inclusion of ¢? dependence of the leading form factors F; and G; makes a significant difference for
the A — p, ¥ — n and Z — A decay modes. As stressed above, this ¢ dependence inclusion substantially improves
agreement with the data for both decays ¥~ — ni~#; (I = e, ). Specifically, the ¢? dependence yields a contribution
of 0.78 x 10% s~ (12%) to the decay width of ¥~ — ne~ 7, transition and 0.61 x 10% s~ (19%) to the decay width
of ¥~ — nu~ v, transition.

Another interesting point of discussion — the rate ratio R), = T'(E® — Yte 7,)/T(E° — Xt p~1,) which has
recently been measured by the KTeV Collaboration (Rgﬂ = 55.67322 [36]). Using a much larger data sample the NA48
Collaboration has published a preliminary value of (Rgﬂ = 114.14+19.4 [37]). Our result RS# = 114.81 nearly coincides
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with the central value of the NA48 Collaboration and is close to the theoretical prediction of Ref. [30]—R2# = 118.71.
Note, that for the corresponding ratio of the 2~ hyperon we find R;, = '(E~ — X% 7,)/T(E~ — Xu~1,) = 77.61.
For comparison, we present the y?/dof for our total results (the first column of Table 10) and the SU(3) fit:
x%/8 dof = 1.4 [this paper| and x?/8 dof = 2.4 [SU(3) fit]. (We exclude from the x? analysis the results for the
neutron @ decay and the poorly known data for the muonic modes of the cascade hyperons =.)
As mentioned earlier, we include the momentum dependence of the Fy(¢?) and G1(q?) form factors up to first order
in ¢2. The slopes for F; and G; form factors calculated in our approach are found to be:

0.45fm?, n—p
0.32 fm?, A —p
0.40 fm?, ¥ —n
0.41 fm?, ¥ — A
0.30 fm?, = — A
0.28 fm?, =2 - %

0.66 fm2, n —p
0.51 fm?, A = p
(r3,) =14 059 fm*, ¥ —n and (r&,) =
0.50 fm?, = — A
0.43 fm?, = - X

These predictions for the radii of the F; and (G form factors are consistent both with data and with the results of
alternative theoretical approaches. In particular, the electroproduction and the neutrino experiments which involve
d — wu transitions are well fitted using dipole formulas which give (r%,) = 0.66 fm? and (r§ ) = 0.40 fm? for
the slopes of the F1 and G form factors [38]. For the s — u modes one expects smaller radii (%, ) = 0.50 fm?
and (rg ) = 0.30 fm?, respectively (see discussion in [29, 13§]). For example, the authors of [30] find slopes of
(r%,) = 0.42 fm® and (rg ) = 0.23 fm? for the Z — ¥ transition using a generalized vector dominance ansatz for the
form factors. In Refs. |34, 139] the F; form factor radii have been calculated in the framework of ChPT and of the
XQSM model. Our results are in qualitative agreement with the full covariant result of ChPT [39], while the yQSM
approach [|34] gives somewhat higher values for the corresponding slopes:

0.44 + 0.06 fm? (ChPT); 0.72 fm? (yQSM), A — p
5« ) 0.51+0.05fm? (ChPT); 0.60 fm? (yQSM), ¥ — n I8
("7 =\ 0.45 +0.03 fim? (ChPT); 0.66 fm? (YQSM). = — A (48)
0.46 + 0.07 fm? (ChPT); 0.80 fm? (yQSM), = — %

We do not include the ¢? dependence of the F} form factor in the ¥ — A transition, since it vanishes on account of
the assumed degeneracy of the v and d quark masses.

Our approach generates a very reasonable description of the baryon semileptonic data with only two parameters—
the axial couplings g{* and g§“ responsible for the d — u and s — wu transitions, which are in turn expressed in
terms of the parameters of the chiral Lagrangian (see Appendix [Al. We remind the reader that the parameters
controlling the valence quark contributions to the semileptonic properties of baryons—the constituent quark masses
my = mg = 420 MeV, my = 570 MeV and the size parameter A = 1.25 GeV—have been previously fixed via the
analysis of electromagnetic properties of the baryon octet |8, [11]. Also, the same set of parameters (m,, = mg, ms, Ap)
has been successfully used in the analysis of strong, electromagnetic and weak decays of charm and bottom baryons
with light baryons in the final state [8]. In Table 11 we present the decay rates of hyperons divided by the squared
CKM matrix elements in order to remove the uncertainty related to the values of V4 and V,. Finally, in Table 12
we display the predictions for the asymmetry parameters in the electron modes.

V. SUMMARY

In this paper we have analyzed the semileptonic decay properties (coupling constants, decay widths and asymmetry
parameters) of the baryon octet using a manifestly Lorentz covariant quark approach including chiral and SU(3)
symmetry breaking effects.

Our main results are summarized as follows:

— We have derived results for the six couplings governing the semileptonic decays of the baryon octet, revealing
both chiral and SU(3) symmetry—breaking corrections;

— We presented a numerical analysis of the decay rates and asymmetry parameters in the semileptonic decays of
the baryon octet.

Our results provide a generally improved representation of hyperon semileptonic decay over the conventional SU(3)-
symmetric (Cabibbo) analysis. We hope that the results of this paper can be used to reliably extract a value of the
CKM matrix element V,,s from semileptonic hyperon decay data along the lines of [2].
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APPENDIX A: CHIRAL EXPANSION OF THE VECTOR AND AXIAL VECTOR QUARK COUPLINGS

In this Appendix we list the results for the semileptonic vector and axial quark couplings including chiral corrections
(both SU(3)-symmetric and SU(3)-breaking). The corresponding SU(3) chiral quark Lagrangian L4y is specified in
Sec.Il. Below we list the results for the semileptonic quark couplings f{ifé_g, Ji% 35 gf_%B and g5 5 up to order O(p*)
in the three—flavor picture. ' ' ' '

1. Vector quark couplings.

a) Couplings f{ and f;*:

The vector coupling governing the d — u transition is trivial and equal to unity — f{* = 1, because we work in the
isospin limit. In the case of the s — w transition, the corresponding vector coupling fi* contains symmetry breaking
corrections of second order in SU(3) — O((Mg — M;)?) and O((M g —M,)?). Note, that the Ademollo-Gatto theorem
(AGT) protects the coupling f{* from first-order symmetry breaking corrections. The result for the f5* is

3
£ = 1 (U436 e+ Hy) 439G+ Gor) ) = 14 317" (A1)

Here 0 f;* = 0.07 is the SU(3) breaking correction. The O(p?) functions Hyp and Gp, which show up in the context
of ChPT [see, e.g., Refs. |39, 40]], are defined as

= L 2 o 2MEMG | MG 2 212
Hyp = (47 F)? (Ma + My M2 — Mb2 lanz =O0((M; — My)7), (A2a)
1 21 (M, — My)?
Gab = s O (M2 M M, + ME) = O((M2 — M) (A2b)

" (4rF)?3m M, + M,

b) Couplings f§* and f5*:
The coupling f§* is expressed through the linear combination of diagonal couplings f3* and f¢ relevant for v — u
and d — d transitions:

1
= U ) = B s, (a3
4
fi = SR+, (A3D)
2
f= <2 ard, (a30)
where
1 3g°M? S 39°Mm M —
SUs _ —~q = anr2 _ _ 3
5 =Cyq (2 32772F2)+12mE6M o2z \™ + — + O(M?) (A4)

is the SU(3) symmetric term, and 6 f§*, §f3 and 6 f5 are the SU(3) breaking terms. The first-order terms read:

5fs = hy(Mj — M2) + O((M§ — M2)?), (Aba)
6 ., -
5 = 278 — (B — EHOME - M2), (A5D)
1
ofs" = 5(fy = f5), (A5c)
2 16 - - g*m 2M —
he =09 Rl 3E) + L (p4 22 A). A5d
: = Coqgrapz ~ g mEr+3 8)+487T2F2M<7T+ m)+o( ) (45d)
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The coupling f5* is given by

su = 3V 4 o f5 (A6)
where
Sf5 = (ME — M2)hs" + O((M — M2)?), (ATa)
2 8 _ 92m QM _
hit = _— q 9 —_ Eq_i_ E— M). ATb
s ce =y + 3m 7~ SITFII <7T—|— - ) + O(M) (A7b)

Here, for convenience, we define the so—called SU(3) symmetric octet mass M of pseudoscalar mesons as M? = 2mB
with m = (my, + maq + ms)/3 = (2 + ms)/3. Also ¢!, d! and C{, D are the SU(2) and SU(3) quark low-energy
constants (LEC’s). The overline on top of the LEC’s denotes renormalized quantities (see definitions in Ref. |5]).

¢) Couplings f4* and f5*:

The coupling f¢* vanishes due to isospin invariance, while the coupling f5* starts at the first order in SU(3)
breaking:

su

37 96m2F2 M2

2,2 M2 _M2 M M2 _
v K m (1 - 37”% —As O(M2)> +O((ME — M2)?). (A8)

2. Axial vector quark couplings.

a) Couplings g{* and g;%:

The expressions for the axial vector couplings g{* and g5* responsible for the d — u and s — u transitions are as
follows:

g = git + g, (A9a)
g = git + g, (A9b)
where
SUs Tg*M? M? 23 o q a vel T4
g5l = (1 it T (9 + 9>~ 8CIm + 24C4m)> + 6M2DY + O(M?) (A10)

is the SU(3) symmetric term, §g{* and dg;* are the SU(3) breaking terms. Let us display the first-order terms:

gt = hI(MZ — M2)+ O((M% — M2)?), (Alla)
0gi = h{“(ME — M2)+ O((ME — M2)?), (AL1b)
du __ su g 2
hl = —2h1 + W(g'i‘ 23g )
g 59 gM 11, q q 2 g 72
= ———— 9+ — ——— 9+ —g° — 16C. 24C' — =D O(M*=). All
96722 ( + 3 9 > 96 m 2 + 2 9 3m+ 4m 3717 +O(M7) ( c)

b) Couplings g¢* and g5":

The coupling g¢* vanishes in the isospin limit, while the coupling g5 is zero at order of accuracy we are working at.
¢) Couplings gd* and g§*:

The couplings gg“ and g3* are related to the couplings g and g5* via:

du
it = 2 (4h - v, - 204, ). (A122)
g = 2m? (}%2 — D%, - 2D‘fg> . (A12b)
K

The SU(3) LEC’s are fixed by: Cf = —1.476, EZ = 0.086 GeV~3, E{ = 0.532 GeV~? from the description of the
baryon octet magnetic moments, Eg = 1.868 from the description of the induced pseudoscalar form factor of the
nucleon. The coupling DJ, = 0.006 GeV~2 is fixed by fitting the slope of the form factor Gi*: (rg ) = 0.45 fm?.
The coupling Dig = —0.548 GeV~2 is fixed by fitting the central value of the induced pseudoscalar coupling of the
nucleon g, = (M,/mn)Gi*(¢* = —0.88M7) ~ 8.25 predicted by ChPT [24, 25] and the value of the pion-nucleon
coupling constant g,y = 13.10.
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APPENDIX B: THREE-QUARK BARYON CURRENTS AND FIERZ IDENTITIES

In this Appendix we specify the baryonic currents used in the main text following the approach of [14, [15]. The
three-quark currents of the baryon octet are (we restrict ourselves to the so-called vector currents obtained in the

SU(3) limit and without inclusion of terms with derivatives):

Jp = 6“1“2“37“75d“1u“207uu“3,

J, = —5a1a2a37“75ua1da2Cwuda3,
Je+ = 5“1‘12“37“753"111“207”11“3,

Jso = /2 1020415501020y 93
Jso = eM0203,0in5 501 dar Oy s
J=- = —aa1a2a37“75d“15“20~y#5“3,

Jzo = —gM1®203kaySy 01502 Oy 93

Jro = \/g6“1“2“37”75(11“16[“20%5“3 —

where C' = 7¢7y2 is the charge conjugation matrix.

(B1)

du*Cry,s%).

When generating matrix elements it is convenient to use Fierz transformations and corresponding identities in order
to interchange the quark fields. First we specify five possible spin structures J*%r7 = 1"‘116 ® (CT3)P? defining the

Fierz transformation of the baryon currents:

P =1®Cys,

S =m0,
A=Y Cyus,
V = 4y ®@Cy,,
T = a‘“’”y5®Cch.

The Fierz transformation of the structures J = {P, S, A, V, T} read

1/~ ~ - -~ 1
P = —-(P — A —
4( +S - AtV
s—Y(prgra-v4l
4 2
N A
A= -Pt+5—3 A+V>,
- - 1/~ -
V—P—S—g(A—l—V),
- . 1.

(B2)

(B3)

Viewing the Fierz transformation in terms of a Fierz matrix F one can check that 72 = 1. Using Eqgs. (B3) one can

derive useful identities

20P-8)—A+V = 2(P-5) -
6(P+S8)+T = 6(P+S)+

V = 2(P-5)—

T = 6(P+S)—

The symbol ~ is used to denote Fierz-transformed matrices according
o are Dirac indices.

(B4)

to JOPP = T¢7 @ (CT3)P? where a, 3, p and
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APPENDIX C: GAUGING AND MATRIX ELEMENTS OF THE n — pW,;;_,,., TRANSITION

In this section we discuss the issue of gauge invariance in the context of the calculation of the baryonic matrix
elements (B(p")| V7, (0) | B(p)) and (B(p")| A} 1(0) |B(p)). The nonlocal structure of the strong interaction Lagrangian
leads to the breaking of local symmetries, which can be restored using minimal substitution. In our approach we
use an equivalent method suggested by Mandelstam [18] based on multiplying the quark fields with path-ordered
exponentials—gauge exponentials. As a result of gauging the strong interaction Lagrangian (I5]) the conventional
triangle diagram in Fig.2a has to be supplemented by the two additional diagrams in Figs.2b and 2c. In our previous
papers we have concentrated on electromagnetic processes. For the present application we extend this procedure
to the electroweak interactions. Following Terning |19] we can show that the Mandelstam method is equivalent to
minimal substitution. Introducing the doublet of left fermions, L, (without specifying the number of generations),
the free Lagrangian (kinetic term) for L is:

£a) = Lie(o) — [anL(@a'e - y)in, [Pexo( [ aie) ) o)
— [t ppess / GITHE) )iDEL) = LWL (1)
where DE =9, +TE, TL= w7 “wy, g,

By analogy, the Mandelstam method works for the right singlet fields R

£E@) = Rw)ipar(a) — [y (o - id, | Pess( / tTh) ) RO

— [t - ypexs( [ @) )ipkre) = Re)ipERE ()
where Dﬁ =0, + I‘ﬁ, I‘ﬁ = —ngW YrB,. We employ the standard notation: Wﬁ (i=1,2,3) and B,, are the gauge

bosons, g, and g;, are the corresponding coupling constants (to distinguish them from the axial charge of the quark
we attach the subscript W), Y7, and Yg are the hypercharges of the left and right quarks, respectively. The set of the
physical states of the gauge bosons (W*, Z° A) is connected to the set (W?, B) via

1
WE=—
V2

where 6, is the Weinberg angle which relates the electromagnetic coupling constant e and the couplings g, and g/,
via e = g, sinf,, = g/ sinf, . The quantities I‘ﬁ and I‘fj‘ in terms of (W*, Z0, A) fields are given by

(Wj F ’LWE) , Zg = cosf,, WB —sin6,B,, A, =sin6, WB +cosb,, B, (C3)

I g - . 73 ;
FH — _T‘;/(WJT+ + WM T ) — e tan 9W 22 <m — Q) — ZeQA,U. B (043)
rE = %tan 0,, 70 — ieQA, . (CAb)

In the case of the strong baryon—three—quark interaction Lagrangian it is not necessary to rewrite the Lagrangian in
terms of left quark doublets and right singlets. Instead we merely substitute each quark field g by its left-handed
qr. = (1 — v5)q/2 and right-handed qr = (1 4 75)q/2 components. Then we proceed with the gauging of the theory.
We only need to know the gauging for the quarks of specific flavor and handedness—e.g., for the left—-handed uy,, dy,
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and sy, and the right-handed qr = ur, dgr and sy quarks the gauging is

dz(y), (C5a)
12

\m

o) — Pess( ]dzurg(z>>nw>+pexp( o)

) + Pexp ( /y dz"T7 (2 > dy (y), (C5b)

21

dr(y) — Pexp< /y dzﬂrﬁ(z)>

x

sp(y) — Pexp( /y dz“l"ﬁ(z))ﬂc’L(y)-i-Pexp( /y dz“l"ﬁ(z))ms’,:(y), (C5c)

qr(y) — Pexp(/y dZ“FZ"‘(Z)) qr(y) (C5d)

x

where (i7) are pairs of flavor indices. The mixed left-handed quark fields are defined as:

uy = Viur +Vier +Vite,
dlL == VuddL + VuSSL + VubbL ’
¢, = Viur +Vier +Vits, (C6)
st = Veadr, + Vessr + Vapby, .

In the derivation of Egs. (C5h) and (C5d) we have used the unitarity condition E VitV k = ¢;; for the CKM matrix

elements, which leads to the useful identities:

d, = dyVI,+ s V4o, vl
sp = dp Vi +s,vEi+o vl (C7)
b = ALVl +spVE + 0V

In the present manuscript we restrict our considerations to semileptonic processes (i.e., processes with a single in-
termediate off shell charged weak gauge boson W*). Therefore, we expand the gauge exponentials and keep only
the term linear in W* which gives a correction to the weak current (in addition to the standard term which comes
from the gauging of the free quark Lagrangian). This is a rather important point. The use of nonlocal Lagrangians
automatically requires an extension of the conventional currents dictated by the local symmetries. In addition we
have an extra piece from “gauging” the strong Lagrangian which contains derivatives acting on quark fields.

For illustration we derive the weak current which governs the n — pW ™~ transition. The first contribution comes
from “gauging” the free Lagrangian:

Jiz) = %vud ar(z) v dp(z) = 29\vaud a(z) O d(x) (C8)

where O# = y#(1 — ~°).
To derive the contribution due to “gauging” the strong interaction Lagrangian we take the three—quark currents of
the proton and neutron and proceed as follows:

e We express the quark fields in terms of left— and right—handed fields. One obtains:

Ty = P 0 ) O ),
J, = —g12as yHa5 (u' +uy) (dPCvyudyp + dpCyudi?).

e We perform the gauging using the master formulas (Ch)) and after some simple algebra we derive the “nonlocal”
contributions to the weak current associated with the d — u flavor exchange:

weak
Jy(x) = / dy%;(g) (C9)
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where

Eﬁ;“k(gc) = gv\"/gﬁN Via () /d:vlgg F(z, 21,29, 73) €192 4195 9 (21)d"* (22) Oy, (1 + 5 )u® (w3) I (29, 2, W)

— %Vidﬁ(x) /dIngF(I,Il,IQ,Ig) £110205 i 01 (1 V22 () Cryy, (1 + 75 )d* (w3) I (w2, 2, W)
+ He. (C10)

Using the Fierz transformation (see Appendix [B]) the Lagrangian can be written in a more convenient

form

weak
Ly

E;f;ak(:v) g2w\/giv Via p() /d(Elgg F(z, 21,9, 73) €192 A (1 4+ 4°) u™ (21)d™ (22)Cy,d™ (x3) I (x2, 2, W)

+ gzwfv V() / d1og F(, 21, 09, 05) €192 AP (1 +47) d* (1 )u (w2) Cypui® () (w2, 2, W)

+ Hec. (C11)

where deC123 = fd:cl fdll?QdeCg and I(xq,z, WF) = fzdz”Wlf(z).

e We remind the reader that the function F'(x,x1,22,23) is related to the scalar part of the Bethe-Salpeter
amplitude and characterizes the finite size of the baryon. We use a particular form for the vertex function
defined in Eq. ().

e The current J!'(z) generates the triangle diagram (the left diagram in Fig.1) contributing to the n — pW~
transition, while the current J5'(x) generates the bubble diagrams (the central and right diagram in Fig.1). By
analogy one can derive the currents which govern the other six modes.

e A crucial check of our gauging procedure is to check the vector and axial-vector Ward-Takahashi identities
(WTI) involving matrix elements of the n — pW ™~ transition. In general, for an off-shell neutron and proton
with momentum p and p’, respectively, and the momentum transfer ¢ = p’ — p, it is convenient to write down
the corresponding weak matrix elements associated with the vector and axial vector current in the form (here
and in the following we omit the weak coupling g and the CKM matrices in the matrix elements):

AL ) = AL ) + 2 [2N<p’> - zmp)} (C12)
and
M) = N ) - % [7 Sxn(p) + En () ﬂ + 2 [2mq Ap<p,p'>] . (C13)

Here, AL/; +(p,p') and Af? L(p,p’) are the contributions to the vector and axial vector matrix elements orthogonal
to the W-boson (or leptonic pair) momenta; 3 (p) is the nucleon mass operator and A p(p, p’) is the pseudoscalar
nucleon vertex function.

Then, the vector and axial vector WTT are satisfied according to
¢ A (p.p)) = En() —Sn(p) (Cl4a)
¢ Al(p.p') = =" En(p) = ENP)AY +2mgAp(p, D). (C14b)

In our derivation we have made use of the quark-level identities

Sga (b + D)7 Sqn (k + D) = Sgu(k + p)v-S, (k +p) + Z [Sas (k + D) = S, (k + p)]

+ q_Q(qu _mth)sqz (k+p/)SQ1 (k—l—p) ) (0158‘)
Sga(k + 077550, (k + 1) = Sgu(k+ ) (vuy5)"Sq, (k +p) — Z—Z [v5Sq, (k +p) + Sg, (k4 p') 5]
+ qg (Mg, + myg,) Sy, (k + p/)755q1 (k+p) (C15b)



which lead to the vector and axial vector WTI on the quark level:

qﬂ SQQ (k +pl)/7MSQ1 (k +p) = qu (k +p,) - Sth (k +p) + (qu - mth)sqz (k +p/)SQ1 (k +p) )

21

(C16a)

q" S, (k + 0 )7.7550 (k+p) = —=Sg(k+ )75 — 5S4, (k+p) + (Mg, +mg,)Sq, (k +p')7554, (k + p) .(C16b)

We have introduced the notation Fﬁ = T"(9uv — 9uqv/¢*) for the so-called Dirac matrices orthogonal to the

transverse momentum q. All three diagrams contribute to AZ? L(p,p') and AZ‘?J-(p, ')

oL H, OR

_A VoA L _A _A
AT ) = A A0 0) + AL ) + AT (0,1)

where

AV ) = —an / dhr25® (20) B[20 + 2(g)]

X Flfsq(ki‘_)'Vﬁ'V5 tr[PZqu(k;_ + Q)Oﬁsq(k;—)'wsq(_k;)]
1
AL/,_of;L(pJDI) = an /dk123 LgLu‘i’(Zo)/dt‘i’/[zo—i-tzz(_@]
0

X ¥ S (k)Y (14 2°) tr[yaSq (k5 )vaSe(— k5],
1

AV L (p,p) = an / dkiss L, ®(z0) / dt & [z0 + t20(q)]
0
X 7a(1 + VS)Sq(k;r)VBVS trhaSq(k;r)VﬁSq(_k?jr)] .

Here T'1f ® T2 = Y5 @90 — 7" @ Ya¥s + 2l @ 75 — 275 @ 1.
The expressions for X n(p) and Ap(p,p’) are given by

Yn(p) = —OéN/dk123‘i’2(20)7a755q(k1+)7575 tr[vaSq (k3 )v8Sq(—k3 )]

and

(C17)

(C18a)

(C18b)

(C18c)

(C19)

Ap(p,p') = —azv/dkusfi)(Zo)ff)[ZO + 22(a) 017 Sq(k§)77y° tr[Lap Sq(ky + a)v5Sg(k3)y5Se(—k3)] . (C20)

We have used the notations from our paper on magnetic moments of heavy baryons [9]:

ap = 695, ki =ki+pwi, k't =k+pw, 2= —6(ki+k;+Fk3)

3 3

Ay d*kod ks >
dhizs = — o s 'k + ket ka), Lo = 12(ki - ;kjwj),
z1(q) = —12¢°*(w3 + waws + w3) — L1q,
22(q) = —12¢°(f +wiws +w3) — Lag,
23(q) = —12¢*(w? 4+ wiwy +w3) — Laq.

(C21)

By analogy one can derive the matrix elements (B(p')] V;j,jl (0)|B(p)) and (B(p')| Afil(O) |B(p)) for the other six

modes.
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APPENDIX D: FUNCTIONS R;(x)

In this Appendix we write down the functions R;(x = m;/A):

9 15 1—1—\/1—332
_ — 2 Y2 4.4 24
Ro(r) = V1-2 (1 57 4:1:) < ' A

m2 ) 2
Rr(x) = Ry, (0) + =k ) R, (),

45 37 3 105 1—1—\/1—3:2
R = V1-22(1- =2 - =2+ 2% ) + —2'ln
7 () x( g 78 T8 Vi
2

2 271 105 T 1+\/1—x2
R = V1—a2(1+42® + =2 +62°) - —“2*(1+ = )In

5m2 ) 2
R, (x) = R, (2)+ 202, ) RE, ().

83 173 11 175 14++v1—a?
RY (z) = V1—a? (1 — gt - ot — 6) o < (D1)

16 24 24 32 1-Vi-a2’
2 2
P ITTE(1 Sy B 26) 2 2 1 VIa
RE (z) = V1 :v(l 5:6—1—2090 +5:v 4x(1+2)1n1_m,
19 87 105 1—1—\/1—x2
Rp,(z) = Rplz(:er)_\/1—x2<1—zx2+§x4+6x6> 2%1n Vi
RF%(I) = I2R0(x), RGz(x) = (1_172)7/27

5, 5 13 o) 15 4 22 14+ V1— a2
Rp, (x) = 12 Vi—z (1—|— 2:6) ) (1+4)1 i

1 1 1 1— 22
Ray,(z) = m<1__31172+§x4> 5 251n +V1—2a2

4 8 16 1-vV1i_z2’
3, (08, 8\ 15, 3, 1+/I—a?
RGlg(a:)—Ex\/l—:zr (1—}—?:17 +§x —?x(1+1x)l i

APPENDIX E: CHECK OF THE ADEMOLLO-GATTO THEOREM (AGT)

As stressed above, the Ademollo-Gatto theorem (AGT) [1] protects the vector form factors from leading SU(3)—
breaking corrections generated by the mass difference of strange and nonstrange quarks. The first nonvanishing
breaking effects start at second order in symmetry-breaking. To demonstrate that this theorem is fulfilled in our
approach we consider a strangeness-changing flavor transition B; — Bjet.. The corresponding matrix element at
qg=7p —p=0is written as

BB, B:B;
M, (p,p) = ap; (P)vu By (0)up, () (E1)
where the vector coupling constant FlBiBj (0) is defined as
FPP0) = v (E2)

Note that we have already proved (see |3]) that the vector form factor fi* obeys the AGT. Therefore, we merely need

to demonstrate that the same is true for the form factor VlBiBj encoding valence quark effects—the valence quark
vector form factor. In other words, due to the factorization of chiral effects and the effects of valence quarks, both form

factors — f£* and VlBiBj should obey the AGT. The quantity VlBiBj is expressed in terms of the baryon-three-quark
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coupling constants gg, = gg(mp,,m1;) and gp, = gB(mBj,mlj), the Clebsch—Gordan coefficients CgiBj and the
structure integral Ip, g, = I(mp,, mp,, m1;, m1;), according to the contributions from the diagrams in Fig.2:

BiBj BiBj
Vl = gBigBjCV IB'LBj (E?))

where m; = m, and m; = m are the masses of strange and nonstrange quarks. In the above formulae we do not
display the dependence on the spectator quark masses mo and mg. Note that the coupling constant gp, is related to
the structure integral Ip, g, as g%i =1/1Ip,B,.

Next, using the transformation of the matrix element M 5 7_.‘]/3 9(p,p) under hermitian conjugation

T
(Mf?fﬂ' <p,p>) = g, (D) FL P (0)us, () = M2 (9,0) = s, (0)7, F 7 (0)us, (0) | (E4)

we deduce the condition Ip,p; = Ip;p, which means that the structure integral I(mp,, mp,, m1;, my;) is symmetric
under the transformations mp, < mp;, M1 < My

I(mBiamijmlivmlj) = I(mBJ‘amBiamljamli) . (E5)

Using the latter constraint, we express the structure integral Ip, g, through the coupling constants gp, and gg;, i.e.
one has

1 1
Ig,p, = 3 (IBiBj + IBjBi> =3 (IBiBi +Ip;B; + 0(52BiBj757;2j7(SBiBj6ij)>

1/ 1 1
= = —+—+052> E6
2(9231. 9%, ) (56)

where the parameters dp, g, = mp, —mp;, = O(d) and §;; = my; —my; = O(0) are of first order in SU(3) breaking.
Using the expansion (E6) we then obtain

B CUPigp :
v = v (98 95, o2y). (E7)
2 9B; 9B,

Finally, expanding g, /9B, + gB,/9B, in terms of the difference gp, — g, ~ O(9)

(gBi — 9B; )2

I B g BB I 4 O((gs, - 98,)%) = 2+ O(8?) (E8)
9B; 9B, 9B,
we prove the Ademollo-Gatto theorem
VPP = oBPi1 4+ 0(6%)). (E9)
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B
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Fig. 1. Baryon mass operator. Bold and thin lines refer to the baryons and quarks, respectively. Quarks are labeled
by the indices k = 1,2, 3.

(a) (b) (c)

Fig. 2. Diagrams contributing to the matriz elements of the bare quark operators V;fk(O) and Aif’k(O), k=1,2,3:
triangle (a), bubble (b) and (c). Bold, thin and wiggly lines refer to the baryons, quarks and external weak field,
respectively. Quarks participating in the quark flavor transition q; — q; are labeled by the indices 1i and 17, while the
spectator quarks — by the indices 2 and 3. Initial and final baryons are labeled by the indices i and j.



Table 1. Magnetic moments of the baryon octet (in units of the nuclear magneton py)

and nucleon electromagnetic radii (in units of fm?).

Our results [11]
Quantity| Valence Meson Total Experiment [3]
quarks cloud

Hp 2.530 0.263 2.793 2.793

Ln —1.530 —0.383 —1.913 —1.913

LA —0.575 —0.038 | —0.613 | —0.613 +£0.004
s+ 2.336 0.196 2.532 2.458 + 0.010
s — —0.942 —-0.327 | —1.269 —1.160 £+ 0.025
=0 —1.240 —0.096 —1.336 —1.250+0.014
H=— —0.599 0.033 —0.566 | —0.6507 + 0.0025
[0l 1.273 0.293 1.566 1.61 £ 0.08
<7‘2>% 0.700 0.078 0.778 0.767 £+ 0.012
<7’2>% —0.0628 | —0.0542 | —0.117 | —0.1161 £ 0.0022
<T2>ﬁ4 0.637 0.118 0.755 0.731 £ 0.060
<T2>X{ 0.618 0.099 0.717 0.762 £+ 0.019
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Table 2. Numerical values for the radiative corrections in % (taken from Ref. [29)]).

ev e Ve B
Decay mode 5rad 5ra§ 5rad 5r§d 5rad

n — pe v, |6.96/1.98/1.98/2.10(2.10

A — pe v, |4.17(1.99/1.99|2.10{2.10

X7~ — ne v, |1.85/1.98]1.98/2.10|2.10

YT — AeTr, [2.25[1.99(1.99|2.10(2.10

37 — Ae 7. (2.22{1.99]1.99|2.10{2.10

— Ae™ 7, |1.95/1.98(1.98|2.10{2.10

=7 — X% 7, (2.101.99/1.99(2.10(2.10

20 — Yte 1, [4.361.99/1.99(2.10(2.10

A —pu~p, |6.78

YT —nu i, |1.88

2 — X0 p,[2.12

2 > ¥t um1,6.78




Table 3. Couplings V;3'" and A7;"7.

Mode Our results SU(6) quark model
e [am | e [ e
n—p 1.452 1 g
A—p —1.146 —1.039 —\/gz —1.225|— g = —1.225
X~ —n| —0.943 0.307 -1 % =0.333
¥~ —A| —0.002 0.724 0 g = 0.816
ET—A 1.170 0.388 § =1.225 L = 0.408
2 V6
E- - X% 0.689 1.035 % = 0.707 3—\5/5 =1.179
=0 -3t 0975 1.464 1 g = 1.667
Table 4. Couplings foﬁj and Affg{ .
Mode | V5P | viiBi | kP | aBb
n—p 1.530 0 0 2.850
A—p —0.840 —0.093 —0.042 —1.431
X7 —n 0.802 —0.288 —0.047 1.467
X7 —A 1.180 —0.034 0.034 2.517
=T —A 0.009 0.231 0.061 —0.048
== — %% 1.235 0.014 0.006 2.374
20—~ »t| 1747 0.019 0.009 3.357
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Table 5. Semileptonic decay constants of baryons FIB B and GfiBj.

Decay mode o Gy

n—p 1 ga = 1.258 (1 +6"F) = 1.2695

A—p —\/2(1 +08P) = —1.226] —0.928 (1 + 657) = —0.888

YT -0 —(1+462") = —1.009 0.243 (1 + 65™) = 0.262
YT — A —0.002 0.613 (1 +6%%) = 0.633
—- § ZAY _ =AY
2T — A 5(1+06v") = 1.252 0.315 (1 + 65") = 0.332
1 = _
E- =20 | —(1+65%)=0.737 0.890 (1 4 65%) = 0.885
V2
20— xt 1+ 657 =1.042 1.258 (14 65%) = 1.252

Table 6. Ratios Gf'iBf/FlBiBj.

Decay mode Our results Data [3]
n—p 1.2695 1.2695 + 0.0029
A—p 0.724 0.718 + 0.015
YT —n, Gi/Fy —0.260 —0.34 £0.017

Y7 —mn, (G —0.237Gy)/F1| —0.278 |—0.327 £0.007 £ 0.019

= —A 0.265 0.25 £ 0.05

- - X0 1.20

=0 - »t 1.20 1.20 £ 0.04 + 0.03




Table 7. Semileptonic decay constants of baryons F2 M Bi and G2 3 .
Here p, = 0.13957 and pux = 0.493677 are the dimensionless masses of 7 and K mesons.

Decay mode FQBT‘B]' GQBT‘Bj FfiB" GfiBj
2.187 (2.271
n—p |183] 0 | 0 — ()
p2o\ o2
gp =825
1.647 / 2.035
A—p  |-1226/-0.072(-0.067) - —— (-=2)
Hi Hi
0.536 /0.663
ST —n | 007100780055 == (=37)
K Mk
1.645 (1.
5= A | 1206 | 0013 | 0.016 | 15 ( 7235)
2\
1.002 /1.403
=- A [ 0162|0076 | 0.052 | == (=57)
Hi Hi
2.783 13.631
=030 | 1770 | 0.037 | 0085 | == (S22
K Mk
3.936 (5.137
=0 wt [ 2503 | 0.052 0050 | 22 (1)
Hi Hi
Table 8. Ratios )77 ) F P
Decay mode Cabibbo model [2] 1/N. expansion [33]|xQSM [34]|Our results
1
n—p 5ty = i — 1) = 1.853 1.85 1.57 1.853
ma
A — 1) = 1.066 0.90 0.71 1
=P 2y M~ 1)
_ my-
S —n (ttp + 2pm — 1) = —1.297 ~1.02 ~0.96 | —0.962
my
N
ST oA (B)| - \ﬁ“n — 1.490 1.17 1.24 1.206
2mN 2
= A G ity g — 1) = 0.085 0.06 0.02 0.129
m=-
i 5 = (1p — pin — 1) = 2.609 1.85 2.02 2.402
2mpy
=0 ot 2y — i — 1) = 2.597 1.85 2.402
2mN
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Table 9. Results for the ¥~ — ne~ v, decay.

Quantity Lattice approach [35] Our results
B —0.988 £ 0.029,¢tice = 0.040gBcnpT| —1.009
G1/Fy —0.287 £ 0.052 —0.260
(G1 — 0.237G) / Fy ~0.37£0.08 ~0.278
Fy/Fy ~0.85+ 0.45 ~0.962
F5/Fy 0.24 +0.12 0.055
G2/ Fy 0.35+0.15 0.077
Gs/Fy —3.42+£1.85 —2.180
Table 10. Decay widths ' (in units of 10® s71,
for neutron decay in units of 1073 s71).
Our results
Decay mode | TI' |T'(Fy,Gp)|T(F1(0),G1(0))| TO |SU(3) fit| Data [3]
n — pe U, 1.12 1.12 1.12 1.05 1.12 |1.129 + 0.001
A — pe D, 3.28 3.26 3.10 3.15 3.16 3.16£0.06
A —pu~v, | 0.57 0.56 0.51 0.53 0.52 0.60+0.13
X7 —ne v, | 6.50 6.50 5.72 6.39 6.19 6.88+0.24
YT —nu v, | 3.15 3.15 2.54 3.09 2.74 3.0+0.2
¥t — AeTr, | 0.26 0.26 0.26 0.25 0.27 0.25+0.06
X7 —Ae . | 043 0.43 0.43 0.42 0.45 0.39+0.02
ET —Ae . | 3.35 3.35 3.15 3.28 2.80 3.35+0.37
= — Ap, | 0.96 | 0.96 0.85 0.94 | 0.76 21111
== — X% .| 0.52 0.51 0.50 0.51 0.51 0.53£0.10
= — EOM_I/H 0.0067| 0.0067 0.0064 0.0065| 0.0064 < 0.05
=0 - Ste .| 0.93 0.93 0.91 0.89 0.91 0.93+0.14
20— »tpy 7,(0.0081| 0.0081 0.0078 0.0076| 0.0078 0.02+0.01
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Table 11. Predictions for I'/|Vokum|? (in units of 107 s71).

Decay mode [I'/|Vekm|?| Decay mode |T'/|Vexwm|?

A — pe D, 6.48 ET — Ae 7, 6.62

A —pu~o, 1.13 ET—AuTy, 1.90

YT - ne v, 12.84 = > Y% i, 1.03

T = nuT b, 6.22 = — EO/[DN 0.013

St = Aetr.| 0.027 |20 - Tte 1.84

YT = Ae | 0045 |20 —XTuTp,| 0.016

Table 12. Asymmetry parameters.

Decay mode | ey, | Qe ay, | ap

n — pe v, |—0.08{—0.10| 0.99 |—-0.48

A — pe~ . |—0.01| 0.02 | 0.92 |—0.60

¥~ —ne v, | 042 |-0.50{-0.32| 0.65

Yt — AeTwv, [—0.39|—0.68] 0.63 | 0.06

¥~ — Ae7 7, |—0.40|—-0.69| 0.63 | 0.07

~— Ae v, | 054 | 0.23 | 0.57 |-0.54

(1]

- — %% 7,[—0.19]-0.18]| 0.96 [—0.46

(1]

20 — Yte 7, |—0.18/—0.17| 0.92 |—0.45
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