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Abstract. A semi-parametric PAR diffuse radiation model
was developed using commonly measured climatic variables
from 108 site-years of data from 17 AmeriFlux sites. The
model has a logistic form and improves upon previous ef-
forts using a larger data set and physically viable climate
variables as predictors, including relative humidity, clearness
index, surface albedo and solar elevation angle. Model per-
formance was evaluated by comparison with a simple cu-
bic polynomial model developed for the PAR spectral range.
The logistic model outperformed the polynomial model with
an improved coefficient of determination and slope relative
to measured data (logistic:R2

= 0.76; slope= 0.76; cubic:
R2

= 0.73; slope= 0.72), making this the most robust PAR-
partitioning model for the United States currently available.

1 Introduction

Photosynthetically active radiation (PAR) is the 0.4–0.7 µm
spectral range that is absorbed by plants and drives the pro-
cess of photosynthesis (McCree, 1972). Photosynthetically
active radiation at the ground surface has two primary in-
coming streams, diffuse and direct, which are significantly
affected by the amount of clouds and aerosols in the at-
mosphere. These two radiant components differ in the way
they transfer energy through plant canopies, thus affecting
canopy photosynthesis processes differently than what would
occur at the leaf scale (Misson et al., 2005). Increased dif-
fuse PAR fraction (the ratio of diffuse or isotropic PAR to to-
tal PAR (diffuse+ direct beam)) in the atmosphere has been

correlated with higher light-use efficiency and increased CO2
assimilation (e.g., Weiss and Norman, 1985; Gu et al., 1999,
2002, 2003; Knohl and Baldocchi, 2008; Mercardo et al.,
2009; Still et al., 2009). Many of these studies utilize models
of diffuse radiation (usually in the 0.15 to 4.0 µm shortwave
range) to estimate the diffuse fraction rather than direct mea-
surements.

Diffuse PAR can be estimated from models that range
in complexity from spectral parameterization schemes like
SPCTRAL2 (Bird and Riodan, 1986) and SMARTS2
(Gueymard, 1995) to simple linear regression models relat-
ing diffuse radiation fraction to extra terrestrial PAR (Hassika
and Berbigier, 1998; Tsubo and Walker, 2005). Jacovides et
al. (2009) developed a third-order polynomial model after ap-
plying a 25-point moving average on clearness index (ktp)

(the ratio of global irradiance to extraterrestrial irradiance)
data collected over a three-year period over Athens, Greece.
Butt et al. (2010) used a proxy cloud fraction (ratio of cal-
culated total solar irradiance at a surface to the measured) to
estimate diffuse PAR fraction.

Most diffuse fraction models are developed for global so-
lar irradiation and very few models are developed from PAR
data sets. The models developed for global solar radiation
have been used in studies to convert the diffuse global solar
irradiance into diffuse PAR fractions (e.g., Gu et al., 2002).
Regression-type models of diffuse shortwave radiation usu-
ally employ linear (e.g., Orgil and Hollands, 1977; Reindl et
al., 1990), logistic (Boland et al., 2001; Ridley et al., 2010) or
higher-order polynomial type (e.g., Erbs et al., 1982; Spitters
et al., 1986; Chandrasekaran and Kumar, 1994; De Miguel
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et al., 2001; Oliveria et al., 2002; Jacovides et al., 2006)
equations relating clearness index (ktp) to estimate the dif-
fuse fraction (kdp). Reindl et al. (1990) used multiple regres-
sion analysis and identified air temperature, dew point and
sine of the solar elevation angle as important parameters de-
termining the partitioning of total irradiance into diffuse and
direct components. Solar elevation angle and clearness index
were used as inputs in models developed by Maxwell (1987)
and Skartveit and Olseth (1987). Other parameters used in
modeling the diffuse fraction include dew point temperature,
albedo and hourly variability index (root mean square differ-
ence between the clearness index of an hour in question with
respect to its preceding and succeeding hour; e.g., Perez et
al. (1992) and Skartveit et al. (1998)). The Boland–Ridley–
Lauret (BRL) model (Ridley et al., 2010) uses hourly clear-
ness index, apparent solar time, solar elevation angle, daily
clearness index and a persistence index similar to the vari-
ability index to calculate the diffuse fraction. Muneer and
Munawwar (2006) used sunshine fraction, cloud fraction and
air mass along with clearness index in predicting the diffuse
fraction of global irradiance.

The objective of our study is to develop a simple semi-
parametric diffuse PAR model applicable for the US, em-
ploying the AmeriFlux (Hargrove et al., 2003) data set of
above-canopy observations that have high spatiotemporal
resolution. Development of such a model will aid future in-
vestigations of the effect of diffuse radiation on photosynthe-
sis and light-use efficiency in response to climate. Although
diffuse radiation is not regularly measured at all AmeriFlux
sites, multiple-year records from 17 sites are available for
model development. The model presented here is developed
with a data set that is larger and more temporally and spa-
tially diverse than any previous efforts, making it the most
robust and broadly applicable diffuse PAR model developed
to date. The model development is based on the BRL model
as the logistic relationship used in this shortwave diffuse ra-
diation model can be adopted for the PAR diffuse fraction but
with more pertinent drivers. The model is primarily intended
for aiding researchers in understanding ecosystem response
in terms of carbon and energy exchange in relation to the dif-
fuse PAR fraction with data recorded at the site.

2 Methodology and data analysis

The data set used for model development and testing con-
sists of multiple-year records of the PAR and diffuse frac-
tion obtained from the AmeriFlux network. A detailed de-
scription of the sites utilized in this study is presented in
Table 1. The sites selected consist of forested ecosystems,
grasslands, shrublands and croplands, covering a wide lati-
tude range (35–70◦ N). The geographical location of the sites
is presented in Fig. 1 in the form of a map. Sites which are
close to one another may appear as single points on the map
due to the resolution of the map. The diffuse fraction data

Figure 1. Location of sites presented on the USA map. Many sites
which are closer together may appear as a single point on the map.

are mostly obtained using the BF3 sensor (Delta-T devices,
Cambridge, UK) or a version of it. The BF3 sensor uses an ar-
ray of photodiodes with a shading pattern that provides shade
to some of the photodiodes while others remain exposed.
This instrument has a resolution of 1 µmol m−2 s−1 and an
accuracy of 15 %. The data from BF3 sunshine recorders
have been used in other studies relating cloud fraction to dif-
fuse fraction (Butt et al., 2001).

For our study, data collected when solar elevation an-
gles were<10◦ were removed to avoid cosine response
issues. Although the data set contained records in hourly
and half-hourly formats, we averaged data to obtain hourly
values for consistency. The hourly radiation values were
checked against the quality controls proposed by the Eu-
ropean Commission’s Daylight project. This quality con-
trol eliminates data points based on the following criteria:
Rd > 1.1;RS,RS> 1.2RE; Rd > 0.8RE; RS< 5 W m−2 and
Rb >RE, whereRd is the total diffuse radiation,RS is the
total incoming solar irradiance,RE is the extra terrestrial ir-
radiance andRb is the direct normal irradiance.

Data points were eliminated when hourly rainfall values
were greater than 5 mm, relative humidity values were 100 %
or when dew point exceeded air temperature as under these
conditions, the measurement accuracy might be affected by
water droplets formed on the sensor. Outliers were removed
visually after the initial quality check so as to remove bad
data which could occur due to electronic noise or instrument
malfunction that could produce physically impossible values.
After implementing the quality control check, the data set
consisted of 293 725 hourly records from 108 site-years.

Extraterrestrial PAR (REP) was calculated with solar ele-
vation angle at a location according to

REP = RC
[
1+ 0.033cos(360td/365) sinβ

]
, (1)

whereRC is the solar constant (2776.4 µmol m−2 s−1, Spit-
ters et al., 1986); sinβ is the sine of the solar elevation angle;
andtd is the day number since 1 January.
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Table 1.Site location and ecosystem-type information.

Sl. No Site Code Site Name Vegetation Latitude Longitude % Data

1 USFuf Flagstaff Unmanaged Forest Evergreen needle forest 35.09−111.76 5.36
2 USFmf Flagstaff Managed Forest Evergreen needle forest 35.14−111.73 5.61
3 USFwf Flagstaff Wildfire Grasslands 35.45 −111.77 5.92
4 USVar Vaira Ranch Grasslands 38.41 −120.95 10.62
5 USMMS Morgan Monroe State Forest Deciduous broadleaf forest 39.32−86.41 7.24
6 USNe1 Mead Irrigated Croplands 41.17 −96.48 13.52
7 USNe2 Mead Irrigation Rotation Croplands 41.17 −96.47 13.04
8 USNe3 Mead Rainfed Croplands 41.18 −96.44 13.51
9 USBar Bartlett Experimental Forest Deciduous broadleaf forest 44.07−71.29 7.75

10 USMe2 Metolius Intermediate Pine Evergreen needle forest 44.45−121.56 6.55
11 USKut KUOM Turf Grass Field Grasslands 45.00 −93.19 1.54
12 USHo1 Howland Forest Main Evergreen needle forest 45.20−68.74 2.38
13 USHo3 Howland Forest East Evergreen needle forest 45.21−68.73 2.38
14 USHo2 Howland Forest West Evergreen needle forest 45.21−68.75 2.38
15 USUmd UMBS Disturbance Deciduous broadleaf forest 45.56 −84.70 0.48
16 USWCr Willow Creek Deciduous broadleaf forest 45.81 −90.08 0.36
17 USAn1 Anaktuvuk River Severe Burn Open shrublands 68.99−150.28 1.36

3 Model development

The model developed here is similar in structure to the
multi-predictor logistic model (BRL) developed by Ridley
et al. (2010) for global solar irradiance, except we use addi-
tional predictors that directly affect the diffuse fraction, and
we also use a considerably larger data set. The predictors in
the BRL model include daily clearness index (Kt ), sine of
the solar elevation angle (sinβ), persistence index (ψ) and
apparent solar time (AST).

kd = (2)
1

1+ exp(−5.38+ 6.63kt + 0.006 AST− 0.007sinβ + 1.75Kt + 1.31ψ

The logistical form of the model has been identified as
more robust than previously published piecewise-linear or
other nonlinear forms (Boland et al., 2001, 2008). The goal
of our work is to develop a model that is constrained by more
commonly measured micrometeorological variables rather
than estimated variables like persistence index. The impor-
tant factors considered in this study are PAR clearness in-
dex (ktp), relative humidity (RH), albedo (α) and sine of so-
lar elevation angle (sinβ). Clearness index is widely used
in one-predictor models for PAR partitioning (Jacovides et
al., 2009) as it is directly related to cloud fraction. Rela-
tive humidity is positively related with cloud cover (Walcek,
1994) and a greater diffuse fraction is often associated with
higher humidity values. The effect of relative humidity on
the relationship betweenktp and kdp observed in our data
set is presented in Fig. 1a. The data are binned into lin-
early spaced bins of relative humidity classes and they indi-
cate increased diffuse PAR fractions associated with higher
relative humidity classes. Increased surface albedo resulting
from changes in canopy reflectance or presence of snow can

alter the diffuse fraction estimates. Skartveit et al. (1998)
proposed a correction for clearness index estimation to ac-
count for the multiple reflections occurring between the sur-
face and instrument dome when albedo is over 0.15. How-
ever, in this study we consider albedo as a contributing fac-
tor to the diffuse fraction as multiple reflections between the
surface and clouds can enhance the diffuse fraction available
for photosynthesis (Campbell and Norman, 2008; Knohl and
Baldocchi, 2008; Winton, 2005). Albedo of most vegetated
surfaces can reach up to 0.25 and can vary widely as a func-
tion of leaf area index, disturbance history and snow cover.
The effect of surface albedo on the relationship betweenktp
andkdp is presented in Fig. 2b. The diffuse PAR fraction in
general shows an increasing trend with increased albedo, but
the trend shows some variations, probably due to the con-
founding effects of other factors. Increased albedo can result
in the increased diffuse fraction for the same clearness index
compared to lower albedo values. The PAR diffuse fraction
model developed in this study takes the logistic form

kdp =
1

1+ e−z
, (3)

wherez is given as

z= a+ bktp + cRH+ dα+ esinβ, (4)

anda, b, c, d and e are fitted empirical coefficients deter-
mined in our analysis. The empirical coefficients were ob-
tained by fitting the model to the data set. The relationship
presented in Eq. (3) tends to underestimate diffuse fraction
under clear-sky conditions (Fig. 3a). As a correction, a sec-
ond logistic fit is applied to the data forktp > 0.78. The
values of the coefficients for the logistic model along with
their 95 % confidence intervals are presented in Table 2. The
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Figure 2. Relative humidity and albedo effects on thektp−kdp re-
lationship.

Table 2.Logistic model coefficients for clearness index classes. The
values given in brackets are the 95 % confidence interval.

Coefficients ktp(≤ 0.78) ktp(> 0.78)

a 2.0196 (2.001, 2.038) 1.2438 (1.161, 1.327)
b −5.6485 (−5.671,−5.626) −2.3335 (−2.400,−2.247)
c 1.3469 (1.331, 1.363) 0.7046 (0.600, 0.729)
d 0.7309 (0.704, 0.758) 0.4107 (0.383, 0.439)
e 0.3045 (0.288, 0.321) −1.9484 (−1.975,−1.923)

model performance is compared with a one-predictor model
developed by Jacovides et al. (2009). This model was se-
lected for comparison as it was developed using data in the
PAR spectral range and used a simple predictor (ktp) that
could be estimated for a large data set from multiple lo-
cations. This cubic polynomial model which relates diffuse
PAR fraction as a function of smoothed PAR clearness in-
dex (moving average window size of 25) takes the following
form after fitting to this data set:

kdp = 0.8637+ 1.2699ktp − 5.6676k2
tp + 3.8088k3

tp. (5)

The original cubic polynomial model had prescribed lim-
its within which the model operated and constant values were
assigned tokdp values forktp values above and below a par-
ticular range. The modified cubic polynomial model pre-
sented in Eq. (5) is valid for 0.13< ktp < 0.865, whereas for
ktp ≤ 0.125, kdp = 0.9399 andktp ≥ 0.862, kdp = 0.18675.
These set points were chosen to provide a smooth transition
from the inflection points in the model output. The model co-
efficients were estimated using a robust nonlinear regression
method in MATLAB (Mathworks, Inc). The fit of data to the
adjusted logistic model and the cubic model for the data set
is presented in Fig. 3b and c. The percentage differences be-
tween the measured diffuse fractionkdp and modeled diffuse
fractionkdpm is plotted in Fig. 4 as a function of each of the
predictor variables in unequally spaced bins with an equal
number of data points.

The model fits were assessed by randomly selecting one-
third of the data as an evaluation data set for statistical analy-
sis. The comparison between measured and modeled diffuse
PAR for the logistic and cubical model for the evaluation data

Figure 3.Model fit for the proposed multi-parameter logistic model
(a and b) and cubic model(c). Panel(a) represents the initial fit
to the logistic form and panel(b) indicates the modification to the
initial logistic fit with a second logistic fit.

Geosci. Model Dev., 7, 2477–2484, 2014 www.geosci-model-dev.net/7/2477/2014/
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Figure 4. Percentage differences between measured and modeled
diffuse radiation as a function of predictor variables.

set is provided in Fig. 5. The performance of both models
was further compared by using a bootstrap regression be-
tween the measured and modeled diffuse fractions with a
data re-sampling of 10 000 times to account for the errors in
measuring the independent variable (measured diffuse frac-
tion) from the evaluation data set. The results of the bootstrap
regression comparison for the two models are presented in
Table 3. The root mean square error percentage (RMSE %)
(Jacovides et al., 2006) of the model fits to the evaluation data
set is also presented in Table 3. The influence of seasonality
on the logistic model accuracy was examined by plotting the
RMSE (%) andR2 of the regression between measured and
modeled values as a function of the particular months (Fig. 6)
for the entire data set. Since seasonality can influence the
model fit, the logistic model was fit to the entire data set by
classifying the data into the four different seasons. The sea-
sons were classified as summer (20 June to 21 September),
fall (22 September to 20 December), winter (21 December
to 19 March) and spring (20 March to 19 June). This en-
abled the development of seasonal model empirical coeffi-
cients, which are presented in Table 4. The model fit for the
different sites is also presented by plotting the RMSE (%)
andR2 of the regression between the measured and modeled
values for the various sites (Fig. 7). The sites are arranged on
thex axis on an increasing latitudinal gradient and the figure
illustrates the model fit across the sites.

4 Discussion

The multi-parameter logistic model predicts different diffuse
fractions for the same clearness index for different combina-
tions of albedo, solar elevation angle and relative humidity.
The percentage difference between the measured and mod-
eled diffuse fraction generally indicate an underestimation by

Table 3.Model performance comparison using regression analysis.
The values given in the brackets are the standard error of the es-
timates obtained by resampling evaluation data 10 000 times. The
root mean square error estimate from the measured and modeled
values is also presented.

Model statistics Logistic model Cubic model

Slope 0.76 (±6.0× 10−6) 0.73 (±7.0× 10−6)
Intercept 0.12 (±4.0× 10−6) 0.13 (±4.0× 10−6)
R2 0.76 (±8.0× 10−6) 0.72 (±9.0× 10−6)
RMSE (%) 30.59 32.68

the model. The largest differences are associated with clear-
ness index values around 0.67, albedo values of 0.24, mod-
erate relative humidity (between 50–60 %) and solar eleva-
tion angles of 46◦ (Fig. 3). The logistic model thus produces
the largest errors under moderately clear-sky conditions, dur-
ing the late morning and afternoon periods and when the at-
mosphere has moderate humidity. The PAR clearness index
values close to 0.67 represents a clear-sky condition above
which the diffuse PAR fraction stays constant with increas-
ing total PAR. The inability of the model to accurately cap-
ture this behavior results in large errors around this clearness
index threshold. Further higher PAR clearness index values
indicate low diffuse PAR fraction levels, which along with
the above-mentioned PAR clearness index threshold can lead
to uncertainties in the measurement of the diffuse PAR frac-
tion by the sensor. The albedo value of 0.24 produced the
largest errors as this is in the range of most vegetated surfaces
and hence other confounding factors contribute to model er-
rors around this albedo range. The cubic polynomial model
evaluated in this study produces the largest errors during pe-
riods of high solar elevation angle, in contrast to the origi-
nal model, which exhibited maximum error during the early
morning/late evening hours (Jacovides et al., 2010). The cu-
bic polynomial model percentage errors showed a similar be-
havior in relation to the clearness index and albedo as the lo-
gistic model, but produced the largest errors under low hu-
midity in contrast with the logistic model. The regression
analysis indicates better performance of the logistic model
over the cubic model, with a higher slope, lower intercept
and a larger coefficient of determination (R2) (Table 3 and
Fig. 5). The RMSE (%) values also indicate a comparatively
lower error for the logistic model (30.59 %) compared to the
cubic polynomial model (32.68 %). The errors in the devel-
oped model could be attributed to other confounding factors
such as seasonal effects, changes in atmospheric turbidity
caused by air pollution or aerosol loading and location dif-
ferences. The fact that a combined data set from different
locations was used in this study can lead to minimization
of the dependence of thekdp–ktp correlation to local con-
ditions (Jacovides et al., 2006). The model coefficients de-
veloped over the seasons are similar in nature, and the fit

www.geosci-model-dev.net/7/2477/2014/ Geosci. Model Dev., 7, 2477–2484, 2014



2482 J. C. Kathilankal et al.: Development of a PAR partitioning model

Figure 5. Comparison between measured and modeled diffuse PAR(a) logistic model(b) cubic polynomial model. The regression statistics
presented are for the bootstrap regression between the measure and modeled variables. All units are in µmol m−2 s−1.

Figure 6. Logistic model performance in terms of RMSE (%) and
R2 over every month of the year.

Figure 7. Logistic model performance in terms of RMSE (%) and
R2 over the various sites. The sites are arranged on thex axis fol-
lowing an increasing latitudinal gradient from left to right.

of the seasonal models to the data indicate similarR2 and
RMSE (%) values. This indicates the robustness of the lo-
gistic model developed in this study as only a marginal im-
provement was obtained for certain seasons by determining
seasonal coefficients. The largest RMSE (%) values and the
lowestR2 values were observed for the summer months. The
model performance stays constant throughout the year except
for the period from September to December when the RMSE
(%) values decrease and theR2 value increases. The largest
RMSE (%) values were observed during the summer months,
as in Jacovides et al. (2006) (Fig. 6). The model fit done over
the individual sites indicate larger error (higher RMSE (%))
values as latitude increases. The upper latitude experiences
lower solar elevation angles which does impact the model
accuracy. The lowestR2 for the model fit was observed for
sites in the middle of the country.

5 Concluding remarks

A logistic diffuse radiation model was developed using a
large hourly radiation data set obtained from the AmeriFlux
network. The model performance was evaluated against a cu-
bic polynomial model and its strengths and weaknesses were
assessed. The goal was to develop a diffuse PAR model that
employs commonly measured climatic/weather variables as
predictors and is applicable for sites in the contiguous United
States. The logistic model improves upon other PAR diffuse
fraction models as it was developed using a large data set
comprised of multi-year records from multiple sites. Future
work includes application of this model to estimate diffuse
radiation effects and contributions to annual net ecosystem
exchange over various biomes represented by the AmeriFlux
data.
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Code availability

The model is a very simple logistic model, and it can be
implemented very easily in any programming software or
spreadsheet-based software like MS Excel. A MATLAB-
based function is provided. This function requires inputs of
incoming PAR, relative humidity, albedo and sine of the solar
elevation angle.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-2477-2014-supplement.
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