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Abstract. EURO-CORDEX is an international climate  The analysis confirms the ability of RCMs to capture the
downscaling initiative that aims to provide high-resolution basic features of the European climate, including its vari-
climate scenarios for Europe. Here an evaluation of the ERA-ability in space and time. But it also identifies nonnegligible
Interim-driven EURO-CORDEX regional climate model deficiencies of the simulations for selected metrics, regions
(RCM) ensemble is presented. The study documents the peand seasons. Seasonally and regionally averaged tempera-
formance of the individual models in representing the basicture biases are mostly smaller than 45 while precipita-
spatiotemporal patterns of the European climate for the petion biases are typically located in thed0 % range. Some
riod 1989-2008. Model evaluation focuses on near-surfacdvias characteristics, such as a predominant cold and wet bias
air temperature and precipitation, and uses the E-OBS datm most seasons and over most parts of Europe and a warm
set as observational reference. The ensemble consists of Jahd dry summer bias over southern and southeastern Europe
simulations carried out by seven different models at gridreflect common model biases. For seasonal mean quantities
resolutions of 12km (nine experiments) and 50 km (eightaveraged over large European subdomains, no clear bene-
experiments). Several performance metrics computed frondit of an increased spatial resolution (12 vs. 50 km) can be
monthly and seasonal mean values are used to assess mod#tntified. The bias ranges of the EURO-CORDEX ensem-
performance over eight subdomains of the European contible mostly correspond to those of the ENSEMBLES simula-
nent. Results are compared to those for the ERA40-drivertions, but some improvements in model performance can be
ENSEMBLES simulations. identified (e.g., a less pronounced southern European warm
summer bias). The temperature bias spread across different
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configurations of one individual model can be of a simi- today be considered as a well-established standard technique
lar magnitude as the spread across different models, demorier the generation of regional climate change scenarios. Re-
strating a strong influence of the specific choices in physicakent climate scenario products tailored for use in climate
parameterizations and experimental setup on model perforimpact assessment, such as (1) the CH2011 Swiss climate
mance. Based on a number of simply reproducible metricschange scenarios (CH2011, 2011), (2) the German climate
the present study quantifies the currently achievable accuracynpacts and adaptation initiative (Jacob et al., 2008), (3) the
of RCMs used for regional climate simulations over Europe German “consortium runs” (Hollweg et al., 2008), (4) the
and provides a quality standard for future model develop-Styrian STMK12 (Klimaszenarien fiir die Steiermark) sce-
ments. narios in the eastern Alps (Gobiet et al., 2012), (5) the French
high-resolution climate scenarios (Lemond et al., 2011; Vau-
tard et al., 2013a), or (6) the climate change scenarios for
1 Introduction the Netherlands (van den Hurk, 2007) are in large part based
on the analysis of RCM ensembles. Concerning the inter-
Assessing the impacts of expected 21st century climatglay between dynamical and statistical downscaling, recent
change and developing response strategies requires local- tdimate impact applications suggest that a combination of
regional-scale information on the nature of these changegshe two approaches is optimal (e.g., Bosshard et al., 2013;
including a sound assessment of inherent projection uncerPaeth, 2011). Apart from their role in climate scenario devel-
tainties. Driven by a suite of IPCC (Intergovernmental Panelopment, RCMs also became important tools to advance the
on Climate Change) assessment reports and accompanied bmderstanding of regional-scale climate processes and asso-
increasing public awareness of ongoing climate change, theiated feedbacks (e.qg., Fischer and Schér, 2009; Hohenegger
past decades have seen a rapid development in the corret al., 2009; Langhans et al., 2013; Seneviratne et al., 2006).
sponding methods for climate scenario generation. Part of An integral part of regional model development is the eval-
this evolution has been the development and the refinemeniation and quantification of model performance by compar-
of climate-downscaling techniques, which aim at translatingison against observation-based reference data. For this pur-
coarse-resolution information as obtained from global cli- pose, the standard procedure is to carry out evaluation exper-
mate models (GCMs) into regional- and local-scale condi-iments for the recent decades in a perfect boundary setting,
tions (e.g., Hewitson and Crane, 1996; Wilby and Fowler,i.e., applying reanalysis products as lateral boundary forc-
2011). While statistical downscaling methods attempt toing for the regional model. Although atmospheric reanalyses,
bridge the scale gap by applying empirically derived trans-themselves, are based on imperfect models and considerable
fer functions between the coarse resolution climate modeHifferences can exist between different reanalysis products
output and local weather conditions (e.g., Benestad et al.with corresponding impacts on downscaling results (Brands
2008; Fowler et al., 2007; Maraun et al., 2010; Themel3| etet al., 2012) this technique allows isolating model biases in-
al., 2012; Widmann et al., 2003), dynamical downscalingtroduced by the nesting procedure and/or the RCM formula-
employs high-resolution regional climate models (RCMs) tion from biases introduced by a potentially erroneous large-
nested into global model output (e.g., Giorgi, 2006; Laprise,scale forcing. Model evaluation in a perfect boundary context
2008; McGregor, 1997; Wang et al., 2004). This techniqueis an important component of RCM development. It high-
allows for a considerably higher spatial resolution over thelights areas of model deficiencies, though without necessar-
domain of interest and, hence, for a more realistic repre-ly uncovering the physical reasons for the found biases. It
sentation of important surface heterogeneities (such as tois furthermore the basis for model calibration efforts (e.qg.,
pography, coast lines, and land surface characteristics) anBellprat et al., 2012b) and can be used for weighting indi-
of mesoscale atmospheric processes. Dynamical downscalidual RCMs in multimodel ensembles (Christensen et al.,
ing has originally been developed for the purpose of nu-2010, and further studies in th@imate Researclspecial
merical weather prediction and was first applied in a cli- issue) or for excluding models with identifiable severe short-
mate context in the late 1980s and early 1990s (Dickinsorcomings. A proper and physically consistent representation
et al., 1989; Giorgi, 1990). Since then, considerable effortsof the present-day climate by RCMs is generally considered
were put into further methodological and technical develop-as a prerequisite for their ability to capture the response of
ments, and ever increasing computational resources faciliregional climates to enhanced greenhouse gas conditions. As
tated simulations of multidecadal length. Large collaborativesuch, model evaluation results are an important piece of in-
research projects such as MERCURE (e.g., Hagemann et afprmation provided to end users of regional climate projec-
2004), PRUDENCE (Christensen et al., 2007), NARCCAP tions.
(Mearns et al., 2009), and ENSEMBLES (van der Linden A large number of previous studies have been concerned
and Mitchell, 2009) constituted major milestones in both re-with RCM evaluation. Both perfect-boundary settings and
gional model development and the usage of regional climatésCM-driven setups, in which RCMs potentially inherit bi-
scenarios by the climate impact, adaptation and vulnerabilases from the large-scale boundary forcing, were considered.
ity community. Dynamical downscaling of GCM output can Over Europe, comprehensive evaluations were carried out
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in the frame of large research projects such as PRUDENCEffected by internal variability (de Elia et al., 2008; Roesch
and ENSEMBLES. Similar but typically less comprehensive et al., 2008) as well as by uncertainties of the observational
evaluation efforts have been conducted outside of Europeeference data themselves (Bellprat et al., 2012a; Kotlarski et
(e.g., Evans and McCabe, 2010; Kim et al., 2013; Lucas-al., 2005; Kysely and Plavcova, 2010). For certain quantities
Picher et al., 2013; Nikulin et al., 2012; Paeth et al., 2005).and seasons a higher grid resolution seems to be associated
Various aspects of model performance were covered, includwith reduced biases (Déqué and Somot, 2008; Herrmann et
ing long-term mean climatological distributions of tempera- al., 2011; Rauscher et al., 2010; Warrach-Sagi et al., 2013).
ture and precipitation (the two main parameters required byConcerning the use of RCM projections for climate impact
climate impact modelers; e.g., Bergant et al., 2007; Béhm eissessment, recent studies suggest a nonstationarity of model
al., 2008; Holtanova et al., 2012; Jacob et al., 2007, 2012piases (Bellprat et al., 2013; Boberg and Christensen, 2012;
Jaeger et al., 2008; Kotlarski et al., 2005), but also explic-Buser et al., 2009; Christensen et al., 2008; Ehret et al., 2012;
itly addressing mesoscale structures (Coppola et al., 2010Maraun, 2012), questioning the widely used constant-bias as-
and frequency distributions of these two parameters (Déquéumption when interpreting simulated climate change signals
and Somot, 2010; Kjellstrom et al., 2010; Warrach-Sagi etand challenging bias correction techniques.
al., 2013) as well as temperature trends (Lorenz and Jacob, While RCM projections from projects such as PRU-
2010) and temperature variability (Fischer et al., 2012; Vi- DENCE and ENSEMBLES are widely used by the climate
dale et al., 2007). Elevation dependencies of near-surface aimpact community and are considered as state-of-the-art, the
temperature and precipitation were evaluated by Kotlarski enext generation of regional climate projections is already un-
al. (2012). Given the high impact potential, further studiesder way in the frame of the CORDEX (Coordinated Regional
were concerned with the evaluation of extreme precipitationClimate Downscaling Experiment) initiative (Giorgi et al.,
(Frei et al., 2006; Hanel and Buishand, 2012; Herrera et al.2009). CORDEX aims to provide an internationally coordi-
2010; Lenderink, 2010; Maraun et al., 2012; Rajczak et al.,nated framework to compare, improve and standardize re-
2013; Wehner, 2013) and temperature (Fischer et al., 2007gional climate downscaling methods, covering both dynami-
Vautard et al., 2013b) as well as extreme wind speeds andal and empirical-statistical approaches. As part of this effort,
related loss potentials (Donat et al., 2010; Kunz et al., 2010)model evaluation activities in the individual modeling cen-
Menut et al. (2013) proposed an evaluation of the key climateters are harmonized and a new generation of regional climate
parameters driving the onset of air pollution episodes. In or-projections for land regions worldwide based on new CMIP5
der to enhance process understanding and to reveal potenti@Coupled Model Intercomparison Project) GCM projections
reasons for biases in atmospheric quantities, also surface emvill be produced. First joint evaluations of CORDEX RCM
ergy fluxes (Hagemann et al., 2004; Lenderink et al., 2007;experiments have recently been published by Nikulin et
Markovic et al., 2008) and nonatmospheric state parameteral. (2012) and Vautard et al. (2013b). EURO-CORDEX, the
such as terrestrial water storage (Greve et al., 2013; Hirschi eEuropean branch of CORDEX (Jacob et al., 2014), provides
al., 2007) and snow cover (Raisanen and Eklund, 2012; Salzregional climate projections for Europe at grid resolutions
mann and Mearns, 2012; Steger et al., 2013) have been evabf about 12 and 50 km, applying an ensemble of RCMs in
uated. In Europe, several studies explicitly focused on RCMtheir most recent versions, driven by the latest GCM pro-
evaluation over the Alps, a region subject to a complex to-jections, thereby complementing the already available PRU-
pography and a strong spatial variability of near-surface cli-DENCE and ENSEMBLES data with unprecedented high
mates (Frei et al., 2003; Haslinger et al., 2013; Kotlarski etresolution experiments. In its initial phase EURO-CORDEX
al., 2010; Prommel et al., 2010; Smiatek et al., 2009; Sukl-focuses on model evaluation for present-day climate in a per-
itsch et al., 2008, 2011). fect boundary setting. Several aspects of model performance
In summary, the mentioned studies show that currentare analyzed by project partners in a series of ongoing stud-
RCMs are able to reproduce the most important climaticies. The present work is primarily concerned with evaluating
features at regional scales, particularly if driven by perfect-the “standard” variables near-surface air temperature (sim-
boundary conditions, but that important biases remain. Somely referred to as temperature hereafter) and precipitation on
of these deficiencies are specific to individual models. Otherd€European scales and based on monthly and seasonal mean
seem to be a common and more systematic feature across divalues. These two quantities are typically evaluated by the
ferent RCMs, such as a dry and warm summer bias in southindividual modeling centers in the course of model devel-
eastern Europe (Hagemann et al., 2004) and an overestimapment and tuning, and European-scale observational ref-
tion of interannual summer temperature variability in central erence data exist. Furthermore, temperature and precipita-
Europe (Fischer et al., 2012; Jacob et al., 2007; Lenderink etion change signals are used by many climate impact assess-
al., 2007). Model biases typically depend on the region an-ments, and the ability of RCMs to reproduce these quanti-
alyzed (Jacob et al., 2007, 2012; Rockel and Geyer, 2008)iies is a useful information for a wide range of end users.
are partly related to parametric uncertainty and choices inin order to include dynamical aspects, we additionally evalu-
model configuration (e.g., Awan et al., 2011; Bellprat et al., ate the representation of the large-scale mean sea-level pres-
2012a; de Elia et al., 2008; Evans et al., 2012) and can bsure. Although simulations carried out at grid resolutions of
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both 12 and 50 km are analyzed, we do not specifically aimg=
to investigate the added value of a higher resolution. This
would require reliable observation-based data sets at the Et
ropean scale with equivalent resolution, which are not avail-
able. Added value assessments are therefore allocated to
suite of accompanying studies evaluating aspects such as e
treme precipitation characteristics over subdomains of the
European continent where corresponding reference data e
ist (see Sect. 5.1 for further details). The primary aims of
the present study are (1) to document the skill of the EURO-
CORDEX RCM ensemble in reproducing the present-day
European temperature and precipitation climate when driver
by realistic boundary conditions, (2) to quantify modeling
uncertainties originating from model formulation, (3) to as-
sess a possible progress with respect to the precursor proje
ENSEMBLES, and (4) to highlight areas of necessary mode!
improvements. For this purpose, we will apply several eval-
uation metrics covering a range of aspects of model perfor-
mance. Our study provides a general overview on model per-
formance and is of rather descriptive nature; it does not ainFigure 1. The common EURO-CORDEX analysis domain and lo-
to ultimately explain biases of individual models. We leave cation of the eight subdomains used for model evaluation. The color
these more-detailed investigations to a range of follow-uprepresents the orography of the CLMCOM-11 setup (m).

studies that will address specific aspects of model perfor-

mance.
The study is Organized in the following way: after in- S€a surface temperatures and sea ice cover over ocean sur-

troducing the RCM ensembles and the observational referfaces. The ERA-Interim boundary conditions can be consid-
ence data in Sect. 2, Sect. 3 outlines the evaluation method@®d to be of very high quality (Dee et al., 2011), particu-
applied and introduces the individual performance metrics!arly in the Northern Hemisphere extratropics where reanal-
Section 4 then presents the evaluation results for the EURQYSIS uncertainty is negligible (Brands et al., 2013). The pre-
CORDEX ensemble and relates them to the previous ENSCribed surface forcing over land (e.g., topography, vegeta-
SEMBLES experiments. The results are further discussed ifion characteristics, soil texture) is model-specific and can
Sect. 5, highlighting the basic model capabilities identified asdiffer between the experiments. For instance, three out of the
well as remaining deficiencies in the simulation of the Euro-Niné RCM setups analyzed (CLMCOM, KNMI, SMHI) ap-
pean climate. Section 6 finally concludes the study and proP!y & considerable smoothing to surface orography in order

vides an outlook on future evaluation activities in the EURO- t0 avoid steep orographic grid-cell-to-grid-cell gradients. The
CORDEX framework. ensemble includes three different configurations of the WRF

model that differ mainly in the choice of physical parame-
terization schemes for radiation transport, microphysics and
convection (see Table 1). The individual regional model do-
mains can slightly differ from each other, but all models fully
21 RCM data cover the focus domain required for EURO-CORDEX exper-
iments (Fig. 1) and apply an additional lateral sponge zone of
We evaluate a set of 17 RCM simulations carried out inindividual width for boundary relaxation. A special case is
the frame of EURO-CORDEX. In total, six different RCMs CNRM's ARPEGE model which is a global spectral model
plus the global ARPEGE model were applied by nine dif- yvith a strgtchet_j horizontal_grid._ARPEGE was applied here
ferent institutions at grid resolutions of about 12 km (0.11 in @ special regional setup in which the model is strongly re-
on a rotated grid) and 50 km (0.44n a rotated grid). Eight 'axed towards ERA-Interim outside of the common EURO-
out of the nine 0.11 experiments have a corresponding CORDEX domain (Fig. 1). In the interior domain, the model
partner at 0.4% grid spacing, carried out with the identi- uns at resolutions of about 12 and 50 km, respectively, and is

cal model version and the identical choice of parameteri-Slightly nudged towards the driving reanalysis. To some ex-
zations (with the exception of REMO, where rain advec- {€nt, the EURO-CORDEX ARPEGE experiments can there-

tion is used for the 0.Flexperiments but not for 0.4 fore be considered as RCM simulations with a global sponge

All simulations cover the period 1989-2008 and are drivenZ0n€:
by the ERA-Interim reanalysis (Dee et al., 2011), provid-
ing the required atmospheric lateral boundary conditions and

2 Data
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An overview on all models and all experiments is pro- 0.448 EURO-CORDEX cell. Several previous studies have
vided by Table 1. The set of analyzed experiments cor-questioned the quality of E-OBS in regions of sparse station
responds to the currently available ERA-Interim-driven density and particularly regarding daily extremes (Bellprat et
EURO-CORDEX ensemble, which might be subject to fu- al., 2012a; Herrera et al., 2012; Hofstra et al., 2009, 2010;
ture extensions. Throughout this paper, the individual sim-Kysely and Plavcova, 2010; Maraun et al., 2012; Rajczak
ulations will be identified by the acronym of the institu- et al., 2013) and its effective spatial resolution (e.g., Hanel
tion plus the horizontal grid resolutiorl] for 0.11° and  and Buishand, 2011; Kysely and Plavcova, 2010). Since the
44 for 0.4#4). For instance, the CCLM experiment carried density of the station network is rather low over a consider-
out at 0.12 by the CLM Community will be referred to as able part of Europe, the gridding procedure tends to smooth
CLMCOM-11 Experiments that were not carried out on the the spatial variability of both temperature and precipitation,
standard 0.1°land 0.44 rotated grids but with comparable and over many regions the effective resolution of E-OBS is
grid spacings (e.g., CNRM-11 and CNRM-44) were mappedpresumably lower than the nominal 0°2@rid spacing. For
onto the standard grids applying the nearest-neighbor interindividual subregions of the European continent more accu-
polation method. rate data sets that are based on a larger number of observation

For comparing the performance of the EURO-CORDEX stations might exist. The clear advantage of E-OBS is its spa-
ensembles to that of the precursor project ENSEMBLEStial (entire European land surface) and temporal (1950-2012)
we additionally consider 16 RCM experiments carried outcoverage, which makes it ideal for an approximate evalua-
within the frame of ENSEMBLES with a horizontal grid tion of RCM-simulated temperature and precipitation char-
resolution of about 25km (0.220n a rotated grid). These acteristics over Europe. As observational uncertainties are
experiments cover a similar domain and were driven bynot explicitly considered here, potential inaccuracies of E-
the ERA40 reanalysis (Uppala et al., 2005) for the pe-OBS should however be kept in mind when interpreting the
riod 1961-2000. In the present study only the 20-year pe-evaluation results. In addition to the issues mentioned above,
riod 1981-2000 is considered, including the 12 years 1989-this applies also to E-OBS precipitation sums, which do not
2000 that overlap with the EURO-CORDEX ensembles. Thereflect the systematic undercatch of rain gauge measurements
application of different large-scale driving fields in EN- (which on average can be of the order of 4-50 % depending
SEMBLES (ERA40) and EURO-CORDEX (ERA-Interim) on the season and region; e.g., Frei et al., 2003; Rubel and
can be expected to introduce slight inconsistencies in théHantel, 2001; Sevruk 1986) and very likely underestimate
intercomparison. The overall effect, however, is presum-true precipitation. To account for this inaccuracy of the ob-
ably small (see Lucas-Picher et al., 2013 for an exam-servational reference, we deliberately highlight precipitation
ple over North America). Following the naming convention biases between 0 ang25 % in some of the analyses. Wet
institution—model according tdttp://ensemblesrt3.dmi.dk/ biases in this range could be explained by a mean system-
extended_table.htmithe 16 ENSEMBLES experiments con- atic rain gauge undercatch of up to 20 % of true precipitation
sidered are C41-RCA3, CHMI-Aladin, CNRM-Aladin, DMI-  (i.e., neglecting any seasonal and site-specific variation of the
HIRHAM, EC-GEMLAM, ETHZ-CLM, HC-HadRM3QO0, measurement error). Furthermore, note that E-OBS is only
HC-HadRM3Q3, HC-HadRM3Q16, ICTP-RegCM, KNMI- available at a maximum spatial resolution of .2Phe 0.12
RACMO, METNO-HIRHAM, MPI-REMO, OURANOS- EURO-CORDEX experiments can therefore only be evalu-
CRCM, SMHI-RCA and UCLM-PROMES. This ensemble ated on the coarser E-OBS grid and an in-depth added-value

will be referred to a&ENS-22n the following. analysis of the 0.1°lexperiments compared to the 0°44m-
ulations is not possible within this framework. For the eval-
2.2 Observations uation of the spatial pattern of the simulated mean sea-level

pressure, the driving reanalysis ERA-Interim itself is used
As observational reference for evaluating simulated temperas reference, i.e., the analysis reveals to what extent the in-
ature and precipitation we use version 7 of the daily griddeddividual RCMs distort the large-scale flow imposed by the
E-OBS data set (Haylock et al., 2008). E-OBS covers theboundary conditions.
entire European land surface and is based on the ECA&D
(European Climate Assessment and Dataset) station data set
plus more than 2000 further stations from different archives.3 Methods and metrics
It is available at four different resolutions; we here use the
rotated 0.22 version, which applies the same grid rotation 3.1 Regional analysis
as most of the EURO-CORDEX and ENSEMBLES exper-
iments. The E-OBS 0.22grid corresponds to a horizontal In order to capture the spatial variability of model perfor-
resolution of about 25km and exactly matches the grid ofmance over Europe, the individual evaluation metrics (see
the 0.22 ENSEMBLES simulations. Each E-OBS 0°2gid below) were applied to eight different subdomains of the
cell contains four cells of the rotated 0°IRURO-CORDEX  European continent (Fig. 1): the Alps (AL), the British
grid, and four E-OBS 0.22cells exactly match one rotated Isles (Bl), Eastern Europe (EA), France (FR), the lberian
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Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME),
and Scandinavia (SC). These domains have been specified
in the frame of the PRUDENCE project (Christensen et al.,
2007) and have since then been widely used for RCM eval-
uation and analysis of climate change signals (e.g., Bellprat
et al., 2012b; Christensen et al., 2008; Kotlarski et al., 2012;
Lenderink, 2010; Lorenz and Jacob, 2010). They represent
comparatively homogeneous climatic conditions, although
pronounced climatic gradients can exist within individual
subdomains. The Alpine domain AL, for instance, covers
both high-elevation regions along the Alpine ridge and the
low-lying Po Valley in northern ltaly. Still, the decomposi-
tion of the EURO-CORDEX domain into these eight subdo-
mains allows representing important large-scale climatic gra-
dients (e.g., the transition from maritime climates in the west
to continental climates in the east). In the main part of this
study the results for only four subdomains are shown, sam-
pling a wide range of climatic settings (EA, IP, ME, SC). For
completeness, figures for the remaining subdomains (AL, B,
FR, MD) are presented in Appendix B.

3.2 Evaluation metrics

Besides the analysis of seasonal mean biases at grid-point
scale for the EUR-11 ensemble and the entire EURO-
CORDEX domain, we apply several evaluation metrics to
monthly, seasonal (winter: DJF, spring: MAM, summer: JJA,
autumn: SON) and annual mean values of temperature and
precipitation for all experiments of the EUR-11, EUR-44 and
ENS-22 ensembles. These metrics are well-established dis-
tance measures that assess the quality of (regional) climate
simulations by comparison against a gridded observational
reference. They represent spatial and temporal bias chara
teristics and demonstrate the unavoidable spread of mode

1303

95 %-P. the 95th percentile of all absolute grid cell dif-
ferences (model reference) across a selected subre-
gion based on climatological annual or seasonal mean
values (relative difference for precipitation).

PACQ the spatial pattern correlation between climato-
logical annual or seasonal mean values of model and
reference data across all grid points of a selected subre-
gion.

RSV ratio (model over reference) of spatial standard de-
viations across all grid points of a selected subregion of
climatological annual or seasonal mean values.

TCOIAV: temporal correlation of interannual variabil-

ity between model and reference time series of spatially
averaged annual or seasonal mean values of a selected
subregion.

RIAV: ratio (model over reference) of temporal standard
deviations of interannual time series of spatially aver-
aged annual or seasonal mean values of a selected sub-
region.

CRCQ Spearman rank correlation between spatially av-
eraged monthly values of model and reference data of
the climatological mean annual cycle of a selected sub-
region.

ROYA ratio (model over reference) of yearly amplitudes
(differences between maximum and minimum) of spa-
tially averaged monthly values of the climatological

mean annual cycle of a selected subregion.

.3 Regridding

performances in the reproduction of present-day regional cli-geyeral evaluation metrics require a grid-cell-by-grid-cell

mate. As our aim is not to produce an overall skill score thatcomparison between models and observations. Conse-

could be used for model weighting but to dgcument differ- quently, a remapping of either the EURO-CORDEX RCM
ent aspects of model performance, the metrics are presentegd it or of E-OBS to a common reference grid was neces-
individually and are not combined into some final perfor- g5y prior to the analysis. In order to ensure a fair evaluation,
mance score. The short evaluation period, leading 0 & samsr sirategy was to always use the coarser grid as reference,
ple size of only 20 seasonal/annual means, also hampers & cent for mean sea-level pressure (see below). This means

sound analysis of statistical robustness. We therefore explicg, 5 (1) the evaluation of the EUR-11 ensemble was carried
itly refrain from assessing the statistical significance of they .+ o 'the coarser 0.9E-OBS grid, and that (2) the EUR-

detected model biases and also do not address any trends g experiments were evaluated on their native 0 aédel
climate parameters. The following metrics are used (exachig |n the first case, the model data were conservatively pro-
mathematical formulations are provided in Appendix A; the jected onto the 0.22E-OBS grid. In the second case, E-OBS
term “climatological” refers to mean values over the 20-year( 5» \yas conservatively projected onto the G. Mode:l grid
period 1989-2008): (rather than directly applying the rotated G24rsion of E-
BIAS the difference (model- reference) of spatially OBS). Conservative projection in this context means that the

averaged climatological annual or seasonal mean valug¥@/ue of a target grid cell is calculated by an area-weighted

for a selected subregion (relative difference for precipi- 2verage of all overlapping grid cells of the original grid, con-
tation). serving area mean values. In the special case where four

EUR-11 grid cells exactly fit into one E-OBS 022ell,
and four E-OBS cells fill one EUR-44 grid cell the projec-
tion results in a simple arithmetic four-point average of the
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finer grid. Additionally, an elevation correction was carried warm summer biases, which are largest in CLMCOM, CSC
out for temperature assuming a uniform temperature laps@and DMI. A further conspicuous feature of Fig. 2 is the pro-
rate of 0.0064 K m?, using the E-OBS topography as ref- nounced small-scale spatial variability of temperature biases
erence in the first case and the rotated D#pography of in CNRM, which is apparently related to orographic patterns.
the COSMO-CLM RCM as reference in the second case. For Concerning mean seasonal precipitation, the evaluation
most experiments of the ENS-22 ensemble no regridding wasdicates a wet wintertime bias of most models over most
necessary since both the RCM output and E-OBS are definedarts of Europe (Fig. 3). Biases of more than 50% are
on the same rotated 0.28rid. The few ENSEMBLES ex- obtained over the central and eastern regions. In contrast,
periments that have not been carried out on the rotated 0.22winter precipitation amounts over parts of southern Europe
standard grid were conservatively remapped onto that grid(Portugal, northern Italy) are underestimated in most cases.
An elevation correction for temperature was applied in all CNRM shows a dry wintertime bias over large parts of the
cases. study area. In summer, most experiments overestimate pre-
Because mean sea-level pressure has a large-scale strugpitation sums in northern and northeastern Europe, while
ture and no quantitative grid cell metrics were calculated forthree models show a pronounced dry bias in the Mediter-
this variable, the comparison between the EUR-11 simula+anean region (CNRM, CLMCOM, DMI). Again, CNRM
tions and the ERA-Interim reference data has also been caconsiderably underestimates precipitation over most of Eu-
ried out on the 0.22E-OBS grid. For visualizing the spatial rope and, as for temperature, the precipitation bias shows a
pattern of temporal mean biases, the coarser ERA-Interinpronounced variability in space. In contrast to temperature,
geographic grid was therefore projected onto the finer (ro-the three WRF experiments mostly agree in their precipi-
tated) E-OBS grid. tation bias pattern in winter with a widespread overestima-
tion. In summer, UHOH underestimates precipitation over
parts of northern Europe and, hence, shows a slightly differ-

4 Results ent behavior than CRP-GL and IPSL-INERIS, which over-
estimate summer precipitation over the whole analysis do-
4.1 Spatial bias pattern main. Southern European summer precipitation is consider-

ably overestimated by all WRF experiments. A possible rea-
Figures 2—4 provide an overview on the spatial distributionson for the different behavior of UHOH compared to CRP-
of the 20-year mean winter and summer model biases of th&L and IPSL-INERIS with respect to summer precipitation
EUR-11 ensemble for temperature, precipitation and mearover parts of northern Europe is the choice of different mi-
sea-level pressure. For temperature, and in agreement wittrophysics schemes (two-moment scheme in UHOH, one-
previous studies (see Sect. 1), this evaluation indicates a googioment scheme in IPSL-INERIS and CRP-GL). All mod-
reproduction of the spatial temperature variability by the els, except CNRM, show a pronounced wet bias along the
RCMs, including the north—south temperature gradient andeastern boundary, which may indicate problems with the lat-
elevation effects (Fig. 2). Still, important biases can occureral boundary conditions of the limited area models (e.g.,
in individual experiments. In wintertime, temperatures areinconsistent velocity and humidity gradients between the
typically underestimated over large parts of the domain. TheRCMs'’ regional solutions and the ERA-Interim boundary
largest negative biases exceeding°C are found in north-  forcing in the lateral sponge zone). In contrast, CNRM uses
eastern Europe (IPSL-INERIS, CRP-GL, CSC), in Norway a global grid and — per definition — a very large sponge
(CNRM, KNMI) and along the Alpine ridge (IPSL-INERIS, zone with a comparatively weak relaxation, which likely pro-
CRP-GL, CNRM, CSC, SMHI, KNMI). Only two models vides a smoother transition of the prescribed outer boundary
show a strong warm bias of more thafrB°C over parts conditions into the inner model domain and avoids spuri-
of Scandinavia (UHOH) and northeastern Europe (CNRM).ous boundary effects. No difference in the spatial variabil-
CSC and IPSL-INERIS overestimate winter temperatures inity of precipitation biases between RCMs that apply a strong
the southeast. For a number of RCMs the cold temperaturemoothing of surface orography (CLMCOM, KNMI, SMHI)
bias, which is widespread in winter, is also found in summerand those applying a nonfiltered orography (all others) can
(SMHI, KNMI, DMI). These cold biases, however, are gen- be identified. This might partly be related to the averaging
erally less pronounced than in winter and most models havef simulated precipitation at 0.21o the 0.22 E-OBS grid
atendency to overestimate summer temperature in the soutlprior to the analysis.
east. CLMCOM and CSC show a pronounced warm sum- To complete the overview on the spatial pattern of model
mer bias over most parts of southern Europe. A notable feabiases and to provide a better handle on dynamical aspects
ture of the temperature evaluation is the fact that the biaf bias characteristics, Fig. 4 presents an evaluation of mean
range spanned by the three WRF experiments alone (IPSLwinter and summer mean sea-level pressure. In both seasons
INERIS, UHOH, CRP-GL) nearly corresponds to the bias the RCMs reproduce the large-scale pattern of mean sea-level
range of the entire EUR-11 ensemble. This is especially trugressure fairly well and biases typically do not exceed 3 hPa.
in wintertime, but does not apply to the southern EuropearnThe bias pattern is generally smooth and has a large-scale
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Figure 2. Mean seasonal temperature bias (K) for all experiments of the EUR-11 ensemble and the period 1989—2008. Upper rows: winter
(DJF), lower rows: summer (JJA). The upper-left panel of each section shows the horizontal pattern of mean seasonal temperature as provide
by the E-OBS reference (K).

structure in most cases. Exceptions are (a) the SMHI modelexperiments and is also described by Mooney et al. (2013) in
which shows a small-scale but strong overestimation in thea sensitivity study of WRF in Europe.
northwestern corner of the analysis domain and an underes-
timation over continental Europe in winter, leading to a re-4.2 Temporal and spatial means
duced meridional pressure gradient, and (b) the WRF exper-
iments (IPSL-INERIS, UHOH and CRP-GL), which under- The regionally averaged biases in mean seasonal and annual
estimate mean sea-level pressure over continental Europe te@mperature and precipitation of both the EUR-11 and the
both seasons and, in the case of UHOH, also in the northEUR-44 ensemble are summarized in Figs. 5 and 6 (and
western corner in summer. A particular feature of the WRFFigs. B1, B2). For temperature the analysis reveals a cold
experiments is their agreement on a pronounced negative bidsias of up to—2°C for most models, most seasons and most
over mountainous terrain in winter (Scandinavian Alps, Eu-subdomains. Exceptions are the CSC simulations that mostly
ropean Alps, Carpathians, Balkan Mountains) and the smallshow a slight warm bias as well as the tendency of both en-
scale structure of the bias pattern, which is not found in thesembles to overestimate summer temperatures over south-
other models (except for positive summer biases over mounern and southeastern Europe (subdomains EA, IP and MD).
tainous regions in CNRM and KNMI). This indicates a con- While CNRM, KNMI and SMHI are mostly located at the
tribution of the model-specific method to reduce simulatedcold end of the model range, temperatures in CLMCOM and
surface pressure to mean sea level, and the pronounced KESC are in many cases higher than in the rest of the ensem-
ases in the mentioned regions should not be overinterpretedile. No obvious benefit of the higher resolution (EUR-11 vs.
Still, the underestimation of mean sea-level pressure by sevEUR-44) is apparent. The 0.1&xperiment of a given model
eral hectopascal over large parts of continental Europe particperforms worse or better than the corresponding Oe
ularly in wintertime seems to be a robust feature of the WRFperiment depending on season and subdomain. A systematic
difference between both resolutions can be detected only for
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Figure 3. As Fig. 2 but for the mean relative seasonal precipitation bias (%). The upper-left panel of each section shows the horizontal pattern
of mean seasonal precipitation as provided by the E-OBS reference (mmmpnth

SMHI and KNMI where the higher resolution tends to pro- For individual seasons and subdomains, wet model biases
duce lower temperatures in all seasons and regions comparede mostly smaller than 25 % and could, in principle, be ex-
to the coarse-resolution setup. plained by an observational undercatch of up to 20 % of true
A slightly different result is obtained for regionally aver- precipitation.

aged precipitation biases, which are positive in most cases As the BIAS metric represents model biases averaged over
and, for many models, tend to be larger in the 0.&%- a given subregion, compensating effects might arise; i.e., a
periments due to higher precipitation sums compared to thesmall BIAS value might be the result of large negative and
0.4# versions. This is especially true for the SMHI model, large positive biases over different parts of a given subdo-
which shows a much stronger overestimation of precipita-main compensating each other. To identify such effects, the
tion at 0.12 grid resolution compared to 0.44cross all 95 %-P metric explores the 95th percentile of absolute bi-
seasons and subdomains. Special cases are the British Islases at grid-point scale within each subdomain. For tempera-
(BI) with a dry bias in many experiments in winter, sum- ture (Figs. 7, B3) this metric mostly lies within the 123

mer and autumn (especially of the 024dersions) as well range. Larger values are obtained for the topographically
as subdomains AL, EA, FR and IP with a dry summer biasmore structured subdomains SC and AL, which might partly
in many experiments. The precipitation biases of the threebe a result of the simplifying assumption of a temporally and
WRF experiments (CRP-GL, IPSL-INERIS, UHOH) are in spatially constant lapse rate used for elevation correction (see
many cases close to each other and do not sample the fufect. 3.3). The 95 %-P metric does not strongly modify the
range of model uncertainty. In general, the precipitation biasranking of the models/experiments; i.e., models/experiments
reaches from-40 to+80 %. Only the UHOH model shows that show a small (large) BIAS typically also show a small
exceptionally high deviations larger thar140 % in summer  (large) 95 %-P. Hence, the spatially averaged BIAS metric
for regions IP and MD. Again, CNRM shows a special be- already provides a fairly good impression of model perfor-
havior and is often found at the dry end of the model range. mance and is not too much affected by compensating effects.
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Figure 4. As Fig. 2 but for the mean seasonal mean sea-level pressure bias (hPa). The upper-left panel of each section shows the horizonta

pattern of mean seasonal precipitation as provided by the ERA-Interim reference (hPa).

Again, an exception to this is CNRM-11, which typically DMI these compensating effects of diverging precipitation
shows a noticeable behavior with large 95 %-P values, whilebiases within subdomain AL are not apparent from the BIAS
the BIAS metric for this experiment is not as special (thoughmetric (Fig. B2) but only from 95 %-P (Fig. B4). For all sub-

it typically also shows the largest biases). No systematic im-domains, 95 %-P values are typically larger than 25 % and,
provement of the 0.Flexperiments with respect to their in case these values correspond to wet model biases, cannot
0.44 counterparts can be identified for 95 %-P. In case ofbe explained by an observational undercatch of up to 20 % of
SMHI and CNRM the higher resolution models — represent-true precipitation.

ing stronger variations of topography — produce even larger

peak deviations in subdomains SC and AL than their coarsed.3 Spatial variability

resolved counterparts. For precipitation (Figs. 8, B4), 95 %-

P mostly lies in the 50-100 % range but can be consider-The performance of the EUR-11 and EUR-44 ensembles
ably larger (up to 400 %) for the southern European subdowith respect to the spatial variability of mean winter and
mains IP and MD. The latter can be explained by the rel-mean summer temperature and precipitation within individ-
ative definition of 95 %-P and the small precipitation sumsual subdomains (i.e., at grid-box scale) is explored by the
in these regions especially during summer (cf. Fig. 3). ThisTaylor diagrams of Figs. 9 and 10 (and Figs. B5 and B6
can lead to a large relative overestimation of precipitation byfor the remaining subdomains). The analysis for tempera-
a particular model, although the absolute biases are smalture (Figs. 9, B5) indicates a high pattern correlation (PACO)
Large 95 %-P values are also obtained for the European Alp$or all experiments and most subdomains, with values typ-
(AL) especially for DMI and SMHI, which is the result of a ically larger than 0.9. Smaller correlations down to 0.8 are
pronounced overestimation of precipitation along the Alpineobtained for subdomain ME in summertime mainly by sim-
ridge in combination with a strong dry bias over the low- ulations of the EUR-44 ensemble. Concerning the spatial
lying Po Valley south of the Alps (cf. Fig. 3). Especially for standard deviation both ensembles have a clear tendency to
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Figure 5. Mean seasonal and annual temperature bias (BIAS; K) for the EUR-11 (filled circles) and the EUR-44 ensemble (open circles) and
for subdomains EA, IP, ME and SC (see Fig. B1 for subdomains AL, Bl, FR and MD). The gray bars denote the BIAS range of the ENS-22

ensemble: entire range in light gray, interquartile range (corresponding to eight models) in dark gray and median as solid line.
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Figure 6. As Fig. 5 but for the mean seasonal and annual relative precipitation bias (BIAS; %). The numbers aloraxigéndicate

mean seasonal (mm seaséyiand mean annual (mm yeak) precipitation sums for the period 1989-2008 in the E-OBS reference. The blue
shading indicates a bias range between 0-a28 %, corresponding to acceptable model biases in case of a systematic rain gauge undercatch
of up to 20 % of true precipitation. See Fig. B2 for subdomains AL, Bl, FR and MD.
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Figure 7. 95th percentile of mean seasonal and annual absolute temperature biases (95 %-P; K) for the EUR-11 (filled circles) and the EUR-
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denote the 95 %-P range of the ENS-22 ensemble: entire range in light gray, interquartile range (corresponding to eight models) in dark gray
and median as solid line.
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Figure 8. As Fig. 7 but for the 95th percentile of mean seasonal and annual relative precipitation biases (absolute values; 95 %-P; %). The
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an overestimation, particularly in summertime and by up toglobal model. The large relaxation zone and the continuous
50%. RSVs larger than 1.5 are obtained for CNRM andnudging of the model’s solution towards ERA-Interim could
SMHI in a few cases. Wintertime RSVs are typically smaller help to maintain a correct chronology of synoptic events (i.e.,
and the spatial variability is often underestimated (RSY). of events that might partly be lost by limited area models due
The systematic difference between summer and winter RSV#$o their confined relaxation zone and an update of the bound-
over many subdomains leads to a clustering of the respectivary forcing at typically 6-hourly intervals only). Regarding
markers for summer (triangles) and winter (circles) in thesethe RIAV metric, both ensembles tend to overestimate the
regions (EA, IP, SC, FR). The pronounced overestimationmagnitude of interannual temperature variability, in particu-
of spatial temperature variability by CNRM-11 over most lar during summertime. Except for Scandinavia (SC), where
parts of Europe is very likely related to the large spatial vari- summer RIAVs are mostly smaller than 1, all subdomains
ability of the mean seasonal model bias (cf. Sect. 4.1). Foare affected and summer temperature variability is in some
most experiments and most subdomains the centered rootases overestimated by more than 50% (RIAV larger than
mean-square (rms) difference between simulation and obset.5). For most cases, the centered root-mean-square differ-
vational reference amounts to less than 50 % of the observednce between simulated and observed mean seasonal temper-
spatial standard deviation. Overall, systematic differences iratures is smaller than the observed temporal standard devia-
model skill between the 0.2land the 0.49 versions (filled  tion (normalized rms distance smaller than 1). No system-
markers compared to nonfilled markers) are not found. atic improvement of an increased resolution (EUR-11 ver-
Similarly to temperature, the spatial variability of mean sus EUR-44 ensemble) is apparent; in some cases the switch
winter and mean summer precipitation is typically overesti-from 0.44 to 0.1 can even deteriorate the model perfor-
mated by the experiments (Figs. 10, B6), RSVs are mostlymance (compare nonfilled and filled symbols of the same
located between 1 and 2. A stronger overestimation is founctolor and the same marker type).
for the Mediterranean (MD) subdomain and in particular for ~ Similar to mean seasonal temperature, temporal correla-
the DMI model with RSVs of up to 4. Compared to temper- tions for precipitation are large in wintertime (mostly above
ature, the spatial pattern correlation of mean seasonal pred.8) but systematically smaller in summer (Figs. 12, B8).
cipitation is much lower and PACO typically amounts to be- Again, a number of 0.1WRF experiments show very low
tween 0.4 and 0.9 only. Whether a better performance is obeorrelations in summertime. TCOIAVs are partly smaller
tained for winter or summer (circles compared to triangles)than 0.3, suggesting inaccuracies in the representation of
considerably depends on the subdomain. There is no appaconvective processes and their triggering mechanisms in this
ent systematic difference in model skill between the high-model. Concerning the interannual variability of precipita-
and the low-resolution versions (filled compared to nonfilled tion, model performance shows a large spread. RIAV values
markers). The centered root-mean-square difference betweeare centered around 1 for subdomains IP, SC and FR, but
models and observations, expressed in units of the observeobth ensembles typically overestimate the interannual pre-
standard deviation, is typically found in the range betweencipitation variability in both seasons (AL, EA, MD, SC) or

50 and 200 % (RSVs between 0.5 and 2). in summer only (ME). Only subdomain Bl shows a gen-
eral underestimation of interannual precipitation variability
4.4 Interannual variability (by up to 50 %). As for temperature, the centered root-mean-

square difference for mean seasonal precipitation does typ-
The Taylor diagrams of Figs. 11 and 12 (and Figs. B7 and B8ically not exceed the standard deviation of the observations
for further subdomains) combine the parameters TCOIAV (except AL) and, again, no obvious benefit of an increased
and RIAV, which assess the model performance with respecgrid resolution can be identified.
to the temporal (interannual) variability of mean winter and
mean summer temperature and precipitation, based on ret.5 Mean annual cycle
gional averages over each subdomain. For winter tempera-
ture, temporal correlations are mostly larger than 0.9 whileThe parameters CRCO and ROYA assess the model perfor-
the results are worse for the summer season (Figs. 11, B7)nance with respect to the mean annual cycle at monthly res-
Summer TCOIAVs are typically larger than 0.6, but values olution, averaged over each subdomain. Not astonishingly,
down to 0.3 are obtained for the 021WRF experiments the rank correlation for temperature (Fig. 13, left panel) is
(CRP-GL-11, IPSL-INERIS-11, UHOH-11) in several sub- high in all experiments (CRCOs larger than 0.95) reflecting
domains. Although we do not have a definite explanation,a proper representation of the temperature variation through-
this could be linked to the high sensitivity of simulated sum- out the year by the RCMs, mainly driven by the annual cy-
mer temperatures to the selection of the convection schemele of air temperature and SST in the imposed large-scale
(Vautard et al., 2013b). CLMCOM and CNRM, however, forcing and of top-of-the-atmosphere incoming solar radia-
show a very good performance in all seasons and all subtion. Concerning the ratio of amplitudes (Fig. 13, right panel)
domains (TCOIAVs mostly larger than 0.9). For CNRM, this most experiments systematically overestimate the intensity
particularity could again be related to the special setup of thisof the mean annual cycle of temperature (ROYAs larger
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Figure 9. Spatial Taylor diagrams exploring the model performance with respect to the spatial variability of mean winter (circles) and mean
summer (triangles) temperature within subdomains EA, 1P, ME and SC (see Fig. B5 for subdomains AL, Bl, FR and MD). Filled markers:
EUR-11 ensemble, nonfilled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The diagrams combine the spatial pattern corre
lation (PACO, cos(azimuth angle)) and the ratio of spatial variability (RSV, radius). The distance from the 1-1 location corresponds to the
normalized and centered root-mean-square difference (which does not take into account the mean model bias), expressed as multiples of th
observed standard deviation. Note the different number of underlying grid cells per subdomain in the individual ensembles.

than 1). Exceptions are the British Isles where a majority For subdomain BI, in contrast, many simulations tend to un-
of experiments underestimates the mean annual amplitudderestimate summer temperatures more than winter tempera-
as well as the WRF experiments (CRP-GL, IPSL-INERIS, tures, resulting in a flattening of the annual cycle. This is also
UHOH), which systematically underestimate the annual am-the case for most regions in the WRF simulations, especially
plitude over most parts of Europe. These results are closelyor IPSL-INERIS and UHOH. For ROYA, most outliers are
related to the seasonal variability of the temperature bias irmembers of the EUR-44 ensembile, i.e., an increased model
Figs. 5 and B1. In most cases temperature biases are positivesolution seems to be associated with a slightly better per-
in summer and negative in winter (or less negative in summeformance. For individual models and subdomains this might,
than in winter), leading to an overpronounced annual cycle however, not be true.

For SC, cold winter and cold summer biases are typically Regarding the mean annual cycle of precipitation, the
close to each other. This causes a negative shift of the annuahodel performance is generally worse than for temperature
cycle with only a minor influence on the annual variation. (Fig. 14). While most experiments show a rank correlation
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Figure 10. As Fig. 9 but for mean winter (circles) and mean summer (triangles) precipitation. See Fig. B6 for subdomains AL, Bl, FR and
MD.

CRCO larger than 0.7 in subdomains BI, IP, SC and MD, The high-resolution experiments of KNMI and DMI show
correlations are typically much lower in FR, ME, AL and better ROYA values than their low-resolution counterparts in
EA. In ME and EA rank correlations close to zero or even seven regions whereas the CSC and CNRM simulations per-
negative are obtained, indicating a deficient representation oform better in six regions at 0.44yrid spacing. With respect
the mean annual cycle of precipitation. In these regions, théao CRCO, six models perform better with the higher resolu-
spread of the individual experiments is, however, very largetion in at least six regions. Again, CSC and CNRM produce
and most simulations actually have correlations larger thara better skill in six regions with the coarser resolution.

0.5. Whether the annual amplitude of area-averaged precipi-

tation is over- or underestimated (ROYA metric) strongly de- 4.6 EURO-CORDEX versus ENSEMBLES

pends on the region and the experiment. While the annual

amplitude is generally too small over the Bl region, the ma-1p,¢ gray bars and markers in Figs. 5-14 (and Figs. B1—
jority of models overestimates the annual amplitude over FRgg) represent the ENS-22 ensemble and allow relating the
AL and MD. No systematic difference in model skill be- performance of EUR-11 and EUR-44 to the performance of
tween the EUR-11 and the EUR-44 ensemble can be idenge previous ENSEMBLES experiments. Note that the lat-
tified. For SMHI, IPSL-INERIS and CRP-GL the ROYAval- o ensemble was driven by a different reanalysis (ERA40
ues of the 0.11simulations are generally larger than in the jnstead of ERA-Interim), has been evaluated over a differ-
0.4# case, but only better in three out of eight subdomains.gp¢ period of time (1981-2000 instead of 1989-2008), has a
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Figure 11. Temporal Taylor diagrams exploring the model performance with respect to the interannual temporal variability of mean winter
(circles) and mean summer (triangles) temperature as averages over subdomains EA, IP, ME and SC (see Fig. B7 for subdomains AL, BI, FR
and MD). Filled markers: EUR-11 ensemble, nonfilled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The diagrams combine
the temporal correlation of interannual variability (TCOIAV, cos(azimuth angle)) and ratio of interannual variability (RIAV, radius). The
distance from the 1-1 location corresponds to the normalized and centered root-mean-square difference (which does not take into accoun
the mean model bias), expressed as multiples of the observed standard deviation.

larger ensemble size (16 instead of 9 and 8 experiments fodegree (AL, Bl, MD). Considering the larger ensemble size
EUR-11 and EUR-44, respectively) and includes models thabf ENS-22, the overall bias range seems to be comparable.
are not part of EUR-11 and EUR-44. As for the temperature 95 %-P (Figs. 7, B3), both EUR-11
For temperature, a comparison of the BIAS rangesand EUR-44 mostly improve on ENS-22 except for CNRM
(Figs. 5, B1) indicates an improvement in EUR-11 and EUR-and partly SMHI, KNMI and CRP-GL, which can be subject
44 concerning the strong overestimation of summer temperato strong biases on the grid-cell scale in subdomains EA, IP,
tures over the southern and southeastern parts of Europe (EAC, Bl, MD and especially in AL.
IP, FR, MD), but also over central Europe (ME, AL). Re- Due to some wet and dry outliers of the EUR-11 and
gionally averaged summer temperature biases in EUR-11 anBEUR-44 ensembles in individual subdomains and seasons,
EUR-44 are typically smaller than 1°6 compared to strong the range and the magnitude of the precipitation BIAS of the
warm biases of some ENSEMBLES experiments. HoweverEURO-CORDEX simulations are partly larger than in ENS-
the cold biases of SMHI, KNMI and CNRM do partly ex- 22. This particularly concerns subdomains EA, ME, Bl and
ceed those of the ENSEMBLES models by some tenths of &R. The same is true for the precipitation 95 %-P (Figs. 8,
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Figure 12. As Fig. 11 but for mean winter (circles) and mean summer (triangles) precipitation. See Fig. B8 for subdomains AL, BI, FR and
MD.
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Figure 13. Model performance with respect to the mean annual cycle of temperature over each subdomain as expressed by the climatological
rank correlation (CRCO, left panel) and the ratio of yearly amplitudes (ROYA, right panel). The gray bars denote the CRCO and ROYA ranges
of the ENS-22 ensemble: entire range in light gray, interquartile range (corresponding to eight models) in dark gray and median as solid line.
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Figure 14. As Fig. 13 but for the mean annual cycle of precipitation. The numbers alongdlies indicate the standard deviation of the
mean annual cycle (left panel) and the maximum difference between the climatological monthly means (right panel), both normalized by the
annual mean monthly precipitation and based on average precipitation sums over the respective subdomain in the E-OBS reference.

B4). On the one hand some improvements with predomi-amplitudes of the mean annual cycle (Figs. 13, 14, right pan-
nantly smaller values are apparent for subdomain IP whilegls), EUR-11 and EUR-44 show a similar skill as ENS-22,
on the other hand, several EUR-11 and EUR-44 simulationut with a tendency towards an underestimation of the ampli-
show larger biases in subdomains ME, Bl and FR comparedude of the annual cycle by some experiments in selected sub-
to ENSEMBLES. domains (IPSL-INERIS and UHOH for temperature; UHOH,
Regarding the reproduction of the spatial variability of CLMCOM, CSC, and SMHI for precipitation).
temperature (Figs. 9, B5) and precipitation (Figs. 10, B8),
EUR-11 and EUR-44 often slightly improve on ENS-22
(markers closer to the 1-1 location). Again, exceptions are; piscussion
CNRM and to some extent also SMHI, which partly show
a pronounced overestimation of the spatial standard devias 1 The overall picture
tion of temperature beyond the ENS-22 range. Some fea-
tures like the hlghel’ Spatial correlation of winter precipita- The evaluation of the EURO-CORDEX ensembles |arge|y
tion (Fig. 10) and the smaller spatial temperature variability confirms RCM bias characteristics identified by previous
(Fig. 9) in SC are concordantly reproduced by all three en-stydies based on the ENSEMBLES data. This concerns both
sembles. The temporal variability of temperature (FIgS 11the genera| magnitude as well as the Sign of model bi-
B7) is slightly improved with respect to ENSEMBLES in ases. Improvements with respect to ENSEMBLES are a re-
summertime, mainly due to a less pronounced overestimatioguced overestimation of southern and southeastern Euro-
of interannual variability (RlAVS closer to one in many sub- pean summer temperatures' a less pronounced overestima-
domains). No clear difference between EUR-11 and EUR-44on of interannual summer temperature variability as well as
on one hand and ENS-22 on the other hand is obvious fog sjightly better representation of the spatial climatic variabil-
metrics describing the interannual variability of precipitation jty within the subdomains. In some cases, however, individ-
(Figs. 12, B8). Again, the seasonal separation/clustering yal EURO-CORDEX experiments are subject to bias mag-
like for temperature in EA and FR and for precipitation in njtudes beyond the range found for ENSEMBLES. This es-
EA, IP, ME, SC and FR —is similar in all ensembles. pecially concerns the CNRM model, which shows a strong
The rank correlations of the mean annual cycle of tem-spatial variability of model biases on the grid cell level and
perature averaged over the individual subdomains are Iargg pronounced cold and dry bias over many parts of Europe.
in all three ensembles (Fig. 13, left panel). For precipita- CNRM’s summer dry bias, however, is not due to shortcom-
tion (Fig. 14, left panel), the performance of the EUR-11 ings in the physical parameterizations, but is a consequence
and EUR-44 ensembles is comparable to ENS-22 except fopf the specific design of the CNRM experiments. Further
some poor-performing outliers in subdomains Bl (CNRM), simulations in which the relaxation outside Europe is weaker
FR (IPSL-INERIS) and ME (CNRM). It is worth mention- (6 h instead of 10 mire folding time) do not show it. The
ing that the regions with the largest range of CRCO in ENS-reason might be an overdrying of the atmosphere in the re-
22 (ME and EA) present also the largest ranges in EUR-axation area (the rest of the globe) where a permanent spin-
11 and EUR-44. The ranges in subdomains IP, SC and MQ,p of temperature and moisture relating to the mismatch be-
are, however, Considerably reduced in the EUR-11 and EURtween ERA-Interim and ARPEGE physics is imposed on the
44 ensembles. Regarding the ROYA metric, i.e., the ratio Ofmode]_ CNRM'’s cold bias over h|gh mountains is to some
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extent related to the model’s snow scheme and a too persisstructured terrain, we expect an added value of an increased
tent snow cover (Vautard et al., 2013b). spatial resolution for parameters such as mesoscale circula-
The availability of different configurations of WRF allows tions, the precipitation intensity distribution at daily resolu-
comparing the bias spread obtained for this particular modetion or snow cover dynamics. These aspects have not been
to the spread across different models. The fact that the temaddressed in the current work, partly since this would require
perature bias range of the three WRF-11 experiments ofteimbservational reference data with a better reliability than E-
corresponds to the bias range of the entire ensemble illusOBS at high temporal and spatial scales. Such data are cur-
trates the uncertainty introduced by the choice of parameterrently not available at a European level but only for smaller
izations and parameter settings (e.g., Bellprat et al., 2012asubregions (mostly individual countries), such as the REG-
Mooney et al., 2013). This, however, is not apparent for pre-NIE (Regionalization of Precipitation Totals) or HYRAS
cipitation biases where the different WRF setups approxi-precipitation data for Germany (Rauthe et al., 2013) or the
mately agree on sign and magnitude of their bias. In win-SAFRAN (Systéme d’Analyse Fournissant des Renseigne-
tertime, the wet bias of WRF seems to be closely related tanents Atmosphériques a la Neige) reanalysis over France
the distinct negative bias of mean sea-level pressure (comfQuintana-Segui et al., 2008). A detailed investigation of the
pare Figs. 3 and 4), indicating a too-high intensity of low- added value of high-resolution experiments based on such
pressure systems passing the continent. Circulation types arghta will be the subject of upcoming studies, possibly apply-
storm tracks, however, have not been analyzed in detail iring dedicated added value metrics (e.g., Kanamitsu and De-
the present study and possible relations between precipitaHaan, 2011). Indeed, recent studies by Bauer et al. (2011),
tion and mean sea-level pressure biases remain speculativePrein et al. (2013a, b) and Warrach-Sagi et al. (2013) in-
Mostly independent of the season and the subdomain undicate that an increase of RCM resolution (in their case
der consideration, the relative ranking of models with respecto convection-permitting scales) bears added value, but this
to seasonal mean temperature is stable, with CNRM, KNMladded value can cancel out by spatial and temporal averag-
and SMHI showing the coldest temperatures as opposed ting.
warmer conditions in CLMCOM and CSC. For seasonally Further cautionary notes concern the influence of (1) inter-
and regionally averaged precipitation sums the relative ranknal model variability, (2) uncertainties in the observational
ing is less fixed, although the high-resolution versions ofreference data, and (3) deficiencies of the driving reanaly-
SMHI, CRP-GL and IPSL-INERIS are often found at the wet sis on the computed skill metrics. Internal model variabil-
end while CNRM typically belongs to the driest models. ity (1) can influence the simulated mean climatology even in
For subdomain mean values at seasonal resolution, no amlecadal and multidecadal RCM experiments that are subject
parent benefit of a finer grid resolution is identified. For to an identical boundary forcing (e.g., Bellprat et al., 2012a;
temperature and depending on subdomain and season, theicas-Picher et al., 2008; Roesch et al., 2008) in particu-
0.1 experiments can be warmer or colder than their ©.44 lar over large model domains as in our simulations. As the
counterparts and no systematic bias reduction in the highEUR-11 and EUR-44 ensembles consist of only one experi-
resolution experiments is found. This also holds for the 95thment for each setup, a quantification of the effect of internal
percentile of absolute temperature biases (95 %-P). In case ofariability on the model evaluation is not possible. Instead,
precipitation, seasonal mean biases are typically larger in thelight nuances of bias characteristics should not be overinter-
EUR-11 ensemble as precipitation sums are generally overpreted as they could, to some degree, result from internal ran-
estimated by both ensembles and the increase of resolutiodom variability. A similar reasoning is true for uncertainties
is mostly associated with a further increase of precipitation.in the E-OBS observational reference. Finally, model evalu-
The latter might be related to stronger orographic gradientstion has been carried out in a perfect boundary context and
in the high-resolution experiments due to a better resolved tobasically assumes a bias-free representation of the lateral at-
pography. Our analysis also highlights the potential of errormospheric boundary forcing and of sea surface temperatures
compensation when restricting the analysis to mean valueby the driving ERA-Interim reanalysis. Although the recent
for relatively large subdomains. Especially for precipitation a studies by Brands et al. (2012, 2013) suggest a negligible re-
metric such as 95 %-P can provide further insight into modelanalysis uncertainty for the Northern Hemisphere extratrop-
biases on grid-cell level in addition to the metrics PACO andics, a certain influence of a biased boundary forcing on the
RSV, which measure the accuracy of horizontal distributionevaluation results cannot be ruled out.
and spatial variation over a selected subdomain.
The absence of obvious benefits of a finer grid resolu-5.2 RCM deficiencies and capabilities
tion in our analysis does not rule out such an added value
in general. The 0.22resolution of the gridded observations, One of the most prominent deficiencies across members of
coarser than that of the 0.2RCM simulations, allows us both the EUR-11 and EUR-44 ensembles is the predominant
to make conclusions concerning a lack of large-scale biazold bias in most seasons and for most subdomains. The spa-
improvements by the 0.1lexperiments, but hinders iden- tially averaged bias often ranges freri to—2°C but can be
tification of benefits at a smaller scale. In orographically larger in individual cases. For some regions such as Norway
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and the Alpine ridge, this cold bias might partly be related FR, ME, AL and EA. Here, CRCOs are typically lower than
to the pronounced topography of the respective region, ass®.7 and partly close to zero or even negative, indicating a re-
ciated with large elevation differences between the individ-versal of the observed annual cycle by the RCMs. When ana-
ual RCMs and the E-OBS reference at grid point level. This,lyzing CRCO it has to be noted, though, that low or negative
in turn, potentially amplifies inaccuracies of the assumptioncorrelations are more likely in regions with a weak annual
of a spatially and temporally uniform lapse rate for eleva- cycle of precipitation. A similar reasoning is true for model
tion correction (see Sect. 3.3). Exceptions to the general picbhiases of the mean annual amplitude of precipitation (ROYA
ture of a predominant cold model bias are the CSC modekmetric). As the numbers in the left panel of Fig. 14 (CRCO)
that mostly shows too high temperatures as well as the sumindicate, the standard deviation of the mean annual cycle is
mer season in southern and southeastern Europe where mashallest — only 13-18 % of the annual mean monthly pre-
models have a tendency to overestimate temperatures. Thi@pitation — in subdomains FR, ME and AL. The difference
result is consistent with previous findings (e.g., Hagemann ebetween maximal and minimal mean monthly precipitation
al., 2004, for PRUDENCE, and Christensen et al., 2008, foris also smallest for these three subdomains (right panel of
ENSEMBLES) and is probably related to an underestimationFig. 14, ROYA). It amounts to only 42-53 % of the annual
of summertime precipitation (compare Figs. 3 and 4) and soilmean monthly precipitation. For subdomains IP and MD this
moisture—temperature coupling: in soil moisture-controllednormalized difference is more than twice as large (131 and
evaporative regimes, low soil moisture contents (e.g., result113 %, respectively), indicating a pronounced annual varia-
ing from preceding precipitation deficits) limit the amount of tion of precipitation in these regions. This is confirmed by
energy used for the latent heat flux and increase the sensibllie high values of the normalized standard deviation (44 and
heat flux, ultimately leading to an increase of air tempera-31 %; Fig. 14, left panel) in these subdomains. Hence, the bad
ture (e.g., Seneviratne et al., 2010). This feedback is sensimodel performance with respectto CRCO in FR, ME and AL
tive to all processes that interfere with the regional balancesnd the considerable overestimation of ROYA in FR does not
of water and energy, and this includes land-surface, boundnecessarily indicate a severe model bias but rather shows that
ary layer, convective and radiative processes. Related to thighe respective model cannot reproduce small monthly devia-
is the overestimation of interannual temperature variability intions from a rather uniform annual distribution of precipita-
the summer season by both ensembles (RIAVs larger than 1}ion. This is, however, not the case for the partly weak mean
This widespread and systematic model bias has previouslhannual correlation in EA. In particular, CCLM and CNRM
also been reported for the PRUDENCE and ENSEMBLESseem to have serious problems to correctly reproduce the an-
experiments (e.g., Fischer et al., 2012; Lenderink et al., 2007nual cycle of precipitation in this eastern part of the model
Vidale et al., 2007). The warm summer biases do not coin-domain.
cide with pronounced positive mean sea-level pressure biases Concerning the general overestimation of spatial temper-
(compare Figs. 2 and 4), which indicates the dominant role ofature and precipitation variability within subdomains (RSV
regional-scale land surface—atmosphere interactions and oniyetric), this deficiency does very likely not only reveal true
a minor contribution of large-scale circulation biases (e.g.,model biases but also deficiencies of the E-OBS reference
too persistent blocking regimes). The former were also iden+elating to the spatial smoothing and an effective resolution
tified as driving factors for the correct representation of sum-lower than 0.22 and 0.44, respectively, in regions of a low
mer heat waves in the EURO-CORDEX ensemble (Vautardnetwork density (see Sect. 2.2). This effect would lead to an
etal., 2013b). apparent overestimation of RSV by the model experiments,
Regarding regionally averaged precipitation biases, thealthough the true spatial variability might actually be well
most striking feature is a pronounced wet bias of both en+epresented. Subdomains like ME with little orographic vari-
sembles over most subdomains and for most seasons (exbility and, furthermore, a rather dense station network (cf.
cept CNRM and except the dry biases in southern and southHaylock et al., 2009) would be less affected by this artifact
eastern Europe). As a consequence of a general tendency émd, indeed, show a better model performance with respect
higher precipitation sums with increased model resolution,to RSV (Fig. 9). Unfortunately, not a single data set currently
this wet bias is typically more pronounced in the G.&k- exists that provides homogenized climate data for the entire
periments. Based on the restricted detail of our analysis, &uropean continent with an effective spatial resolution equal
full explanation of this bias is not possible at this point. Note or higher than the actual resolution of modern RCMs used
that the E-OBS reference has not been corrected for the syder long-term climate simulations. Hence, more detailed in-
tematic undercatch of rain gauges (cf. Sect. 2.2). If one asvestigations of small-scale climatological features can be car-
sumes a mean systematic undercatch of 20 % of true precipded out only for specific subregions where appropriate high-
itation, wet model biases can in some cases be explained byesolution reference data exist.
this shortcoming of the observational reference. When analyzing the temporal correlation between the sim-
Another important deficiency of simulated precipitation ulated and observed seasonal mean values over the 20-year
are the low rank correlations (CRCO metric) of simulated long evaluation period (metric TCOIAV), an obvious feature
and observed climatological monthly means in subdomainss the much better correlation for winter (mostly larger than
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0.9 for both temperature and precipitation) compared to sumé Conclusions and outlook
mer (often smaller than 0.6). The better performance for win-
ter reflects the fact that European summer climate is muchrhe present work evaluates the ERA-Interim-driven RCM
more controlled by local- to regional-scale processes, givingensembles of the EURO-CORDEX initiative on a European
the RCMs a higher degree of freedom to alter the conditionsscale. Our analysis mainly considers the standard parameters
imposed by the boundary forcing (e.g., Déqué et al., 2005)of 2 m temperature and precipitation and is based on monthly
In contrast, winter climate in midlatitudes is more affected by and seasonal mean values. Several simple and reproducible
the synoptic-scale transport of warm or cold and moist or drymetrics covering a range of aspects of model performance
air masses, which couples the internal solution of the RCMsare used to compare simulation results to the E-OBS obser-
closer to the temporal evolution of the lateral boundary val-vational reference. This enables a quantitative assessment of
ues. Comparing TCOIAV for temperature and precipitation, the newest generation of RCMs to simulate European cli-
smaller correlations are typically obtained for precipitation, mate conditions and a direct comparison with results of the
reflecting a weaker control of the large-scale boundary conprevious ENSEMBLES simulations. The validation exercise
ditions on subdomain mean precipitation compared to subserves as a quality standard for further simulations and future
domain mean temperature. model developments. The added value of the high-resolution
Despite the mentioned shortcomings in the representatioexperiments (EUR-11) compared to their coarser resolution
of specific climatic features over the European continent, thecounterparts (EUR-44) is not specifically addressed in this
evaluation indicates a considerable skill of the EUR-11 andstudy.
EUR-44 ensembles to reproduce larger-scale horizontal vari- The model evaluation highlights the general ability of to-
ability of climatological seasonal mean values (expressedday’s regional climate models to represent the basic spa-
for instance, as differences of mean values between the intiotemporal patterns of the European climate, but also indi-
dividual subdomains). In most subdomains, especially forcates considerable deficiencies for selected metrics, regions
temperature, also the shape and the amplitude of regionallgand seasons. Some of these deficiencies, such as a predom-
averaged mean annual cycles are reproduced to a large eizant cold and wet bias in most seasons and over most of
tent (ROYA and CRCO metrics). The climatological fields of Europe, are found in the majority of experiments and reflect
mean sea-level pressure as represented by the driving ERAcommon model biases. Furthermore, many experiments are
Interim reanalysis are mostly captured well and are onlysubject to a warm and dry summer bias over southern and
slightly distorted in some cases. southeastern Europe. The latter had previously been identi-
For temperature the spatial variability within the individ- fied for the ENSEMBLES experiments, but for this specific
ual subdomains is fairly well captured (PACO mostl{.9). case the bias appears to be reduced in the EURO-CORDEX
This good performance is, however, to some extent a simplensembles. However, neglecting the influence of slightly in-
result of the systematic elevation dependency of air temperacompatible setups (different driving reanalysis, different sim-
ture. As continental-scale gradients and biases thereof are notation and, hence, evaluation period), no general improve-
sampled by the subdomains, high-elevation regions will typi-ments of the EURO-CORDEX simulations with respect to
cally have lower temperatures than their low-elevation coun-ENSEMBLES could be identified for the temporal and spa-
terparts in a given subdomain, both in the observations andial scales considered in the present work. In addition to com-
in the models. As grid-scale topography can be assumed tsmon model deficiencies found across the range of different
be realistically represented by the models and as, additionRCMs, a number of model-dependent biases could be iden-
ally, an elevation correction is carried out for temperaturetified. Except for a few consistent outliers, these biases typi-
this will lead to high values of PACO. This effect will gen- cally depend on the region and season under consideration.
erally be less pronounced in subdomains without strong oro- Identifying possible reasons for both common and model-
graphic gradients (such as ME). In the case of precipitationspecific bias characteristics and formulating specific recom-
the spatial variability within subdomains is simulated less ac-mendations for model development will require a deeper and
curately (PACO typically between 0.4 and 0.9). This partly dedicated analysis, including additional metrics and vari-
reflects the fact that seasonal precipitation sums are also agbles and explicitly taking into account uncertainties in the
fected by topography, but on regional scales far less systemsbservational reference and the effect of RCM-internal cli-
atic than temperature. Instead, RCMs can suffer from conmate variability. These aspects will be the subject of up-
siderable systematic biases of the spatial precipitation fiel&coming studies within the EURO-CORDEX community. The
in orographic terrain such as the windward/lee effect (over-same is true for studies explicitly addressing the added value
estimation of precipitation on the windward side, underesti-of an increased grid resolution. In terms of regionally and
mation on the lee side; e.g., Warrach-Sagi et al., 2013). seasonally averaged quantities the present work could not
identify such an added value. This does, however, not rule out
benefits of an increased resolution, and we would expect such
benefits for quantities such as daily precipitation intensi-
ties, small-scale spatial climate variability in topographically
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structured terrain or snow cover dynamics. These aspects
still need to be investigated in more detail. Further analy-
ses will consider (1) the relation between present-day model
biases and simulated climate change signals, (2) the ques-
tion of whether model biases are temporally stable and bias
correction methods are feasible and can be reliably applied,
(3) intercomparisons of the performance of different types of
downscaling methodologies, as well as (4) the assessment of
trends of simulated climatic parameters within the observed
period. For the latter aspect the current 20-year long EURO-
CORDEX evaluation experiments are not well suited, but
extended simulations covering the full ERA-Interim period
(1979—present) are already under way and will be available
for such analyses. Furthermore, applying the same quantita-
tive metrics used in the present study to the EURO-CORDEX
GCM-driven experiments would allow separating the contri-
bution of the driving global climate model from the intrinsic
RCM contribution to the overall bias structure.
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Appendix A: Definition of evaluation metrics A3 Pattern correlation (PACO)
Let M,x; and R,;; be the annual, seasonal or monthly R R
mean value of any variable of the model simulatiai)( 1 (M — My) - (Rux — Ri)
and the reference data&R) of year: at grid pointn with PACQ, = N—1 Z OSM, - OSR, ’ (A6)
n=1,...,N; N is the number of grid points of subregion nesR
SR.k=1,...,K; K is the number of analyzed periods per with the spatial variances
year:K = 12 for monthly,K =4 for seasonal, ang = 1 for
yearly valuesj =1, ...,I; I isthe number of years (20in 2 _ 1 Mo — M2 and
this case). ISMcT N 1 neXS:R( k= Mi)
The simulated spatial mean of perib@nd year across a 1 _ R
subregion SR is defined as o8r, = ~ 1 XS:R(Rnk — Rp. (A7)
. 1 ne
My = — M. Al . . I
M=N nGXS:R nki (A1) A4 Ratio of spatial variability (RSV)
The climatological mean of periddat grid pointrn is de-
fined as RSV, = M (A8)
1d 7SR
Mk = Y;M"ki : A2) a5 Temporal correlation of interannual variability
- . , (TCOIAV)
The climatological mean of periokl averaged across a
subregion SR is then computed as _ ~
I = . =
My; — My) - (R — R
-1 1 I - s TCOIAV, — Z( ki k) - (Rii k), (9)
Mk—ﬁZMnk—YZMki—Mk- (A3) I-14 OTM, * OTR;
neSR i=1
The corresponding means for the reference datae de-  With the temporal variances
fined accordingly. Annual means are calculated by an un- ,
weighted average over 12 monthly means beginning with 2 ~ _ 1 Z(Mki —1\51/()2 and
January. Seasonal means of yeare calculated by an un- For-1 =
weighted average over three consecutive monthly means be- / B
ginning with Dgcemper of year— 1 for the winter season UTZRk = 1 Z(ﬁki — Ro)>. (A10)
(DJF) and ending with November of yeafor the fall sea- I-14
son (SON). ) . o
Using these definitions, the applied evaluation metrics areé?® Ratio of interannual variability (RIAV)
calculated as follows.
. OTM;
Al Mean bias (BIAS) RIAV) = (A11)
OTR;
For climatological annualk(= 1), seasonalk(=1,...,4) A7 Climatological rank correlation (CRCO)
and monthly § =1, ...,12) mean values averaged across a
subregion:
S - CRCO= (A12)
BIAS; = My — Ry. (A4)

12 ) .
For precipitation, the relative difference with respect to the 1 — 0 Z (RankM; — RankRy)?.
=1

. 2 _
reference data is used. 12-(2

A2 95% percentile of the absolute value of grid point A8 Ratio of yearly amplitudes (ROYA)

differences (95 %-P)

; B} max(My) — min(My)
95 %— P, =maX Myx — Rk | (A5)  ROYA= - ——— fork=1,....12 (A13)
neXx max(Ry;) — min(Ry)

X = {n € SRIRank| M,z — R,x| < 0.95N}

For precipitation, relative differences with respect to the ref-
erence data are used.
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Appendix B: Evaluation for subdomains AL, BI, FR and
MD
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Figure B1. Mean seasonal and annual temperature bias (BIAS; K) for the EUR-11 (filled circles) and the EUR-44 ensemble (open circles)
and for subdomains AL, BI, FR and MD (see Fig. 5 for subdomains EA, IP, ME and SC). The gray bars denote the BIAS range of the ENS-22
ensemble: entire range in light gray, interquartile range (corresponding to eight models) in dark gray and median as solid line.
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Figure B2. As Fig. B1 but for the mean seasonal and annual relative precipitation bias (BIAS; %). The numbers aloagithmdicate

mean seasonal (mm seasdyand mean annual (mm yeak) precipitation sums for the period 1989-2008 in the E-OBS reference. The blue
shading indicates a bias range between 0-p28 %, corresponding to acceptable model biases in case of a systematic rain gauge undercatch
of up to 20 % of true precipitation. See Fig. 6 for subdomains EA, IP, ME and SC.
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Figure B3. 95th percentile of mean seasonal and annual absolute temperature biases (95 %-P; K) for the EUR-11 (filled circles) and the
EUR-44 ensemble (open circles) and for subdomains AL, BI, FR and MD (see Fig. 7 for subdomains EA, IP, ME and SC). The gray bars
denote the 95 %-P range of the ENS-22 ensemble: entire range in light gray, interquartile range (corresponding to eight models) in dark gray
and median as solid line.
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Figure B4. As Fig. B3 but for the 95th percentile of mean seasonal and annual relative precipitation biases (absolute values; 95 %-P; %). The
blue shading indicates a bias range between 04e2f1%, corresponding to acceptable wet model biases in case of a systematic rain gauge
undercatch of up to 20 % of true precipitation. See Fig. 8 for subdomains EA, IP, ME and SC.
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Figure B5. Spatial Taylor diagrams exploring the model performance with respect to the spatial variability of mean winter (circles) and mean
summer (triangles) temperature within subdomains AL, Bl, FR and MD (see Fig. 9 for subdomains EA, IP, ME and SC). Filled markers:
EUR-11 ensemble, nonfilled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The diagrams combine the spatial pattern corre
lation (PACO, cos(azimuth angle)) and the ratio of spatial variability (RSV, radius). The distance from the 1-1 location corresponds to the
normalized and centered root-mean-square difference (which does not take into account the mean model bias), expressed as multiples of th
observed standard deviation. Note the different number of underlying grid cells per subdomain in the individual ensembles.
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Figure B6. As Fig. B5 but for mean winter (circles) and mean summer (triangles) precipitation. See Fig. 10 for subdomains EA, IP, ME and
SC.
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Figure B7. Temporal Taylor diagrams exploring the model performance with respect to the interannual temporal variability of mean winter
(circles) and mean summer (triangles) temperature as averages over subdomains AL, Bl, FR and MD (see Fig. 11 for subdomains EA, IP, ME
and SC). Filled markers: EUR-11 ensemble, nonfilled markers: EUR-44 ensemble, gray markers: ENS-22 ensemble. The diagrams combine
the temporal correlation of interannual variability (TCOIAV, cos(azimuth angle)) and ratio of interannual variability (RIAV, radius). The
distance from the 1-1 location corresponds to the normalized and centered root-mean-square difference (which does not take into accoun
the mean model bias), expressed as multiples of the observed standard deviation.
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Figure B8. As Fig. B7 but for mean winter (circles) and mean summer (triangles) precipitation. See Fig. 12 for subdomains EA, IP, ME and
SC.
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