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Abstract. Gridpoint Statistical Interpolation (GSI) is an as-
similation tool that is used at the National Centers for En-
vironmental Prediction (NCEP) in operational weather fore-
casting in the USA. In this article, we describe implemen-
tation of an extension to the GSI for assimilating surface
measurements of PM2.5, PM10, and MODIS aerosol opti-
cal depth at 550 nm with WRF-Chem (Weather Research and
Forecasting model coupled with Chemistry). We also present
illustrative results. In the past, the aerosol assimilation sys-
tem has been employed to issue daily PM2.5 forecasts at
NOAA/ESRL (Earth System Research Laboratory) and, we
believe, it is well tested and mature enough to be made avail-
able for wider use. We provide a package that, in addition
to augmented GSI, consists of software for calculating back-
ground error covariance statistics and for converting in situ
and satellite data to BUFR (Binary Universal Form for the
Representation of meteorological data) format, and sample
input files for an assimilation exercise. Thanks to flexibil-
ity in the GSI and coupled meteorology–chemistry of WRF-
Chem, assimilating aerosol observations can be carried out
simultaneously with meteorological data assimilation. Both
GSI and WRF-Chem are well documented with user guides
available online. This article is primarily intended to be a
technical note on the implementation of the aerosol assimila-
tion. Its purpose is also to provide guidance for prospective
users of the computer code. Scientific aspects of aerosol as-
similation are also briefly discussed.

1 Introduction

Data assimilation plays an increasingly important role in
forecasting concentrations of chemical species, replacing a
somewhat outdated procedure where assimilation was only
applied to meteorology, while chemical species were ob-
tained from the previous forecast without referring to ob-
servations. Interest in tropospheric chemical data assimi-
lation dates back to Elbern and collaborators (Elbern et
al., 1997, 2000, 2007; Elbern and Schmidt, 1999, 2001)
and Carmichael and collaborators (Daescu and Carmichael,
2003; Carmichael et al., 2003; Sandu et al., 2005; Chai et al.,
2007; and Constantinescu et al., 2007a–d). Stratospheric data
assimilation was documented by, e.g., Massart et al. (2005,
2014), Geer et al. (2006), and Barré et al. (2013). Assimi-
lation methods described in these publications include static
3D-Var and flow-dependent 4D-Var and ensemble Kalman
filters (e.g., Bouttier and Courtier, 1999; Talagrand, 2010;
Kalnay, 2010).

The realization that aerosols affect weather and climate
and are a pivotal contributor to air pollution has led to
recent developments in assimilating aerosols. Examples of
such developments include Benedetti and Fisher (2007),
Kahnert (2008), Morcrette et al. (2009), Benedetti et
al. (2009), Rouïl et al. (2009), Schutgens et al. (2010a, b),
Pagowski et al. (2010), Liu et al. (2011), Pagowski and
Grell (2012), Schwartz et al. (2012, 2014), and Saide et
al. (2013).

The above publications have shown that initial conditions
play an important but not dominant role in chemical forecast-
ing. Especially for predicting air quality, i.e., chemical com-
position in the boundary layer, inaccurate source emissions
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and deficient physical and chemical parameterizations result
in deteriorating forecasts soon after assimilation. In this con-
text, applying 3D-Var assimilation methods that aim to ex-
clusively ameliorate initial conditions constitutes only a first
step towards improving chemical forecasts.

Below, we describe aerosol observations that can be cur-
rently assimilated with our extension of the Gridpoint Sta-
tistical Interpolation (GSI, Wu et al., 2002; Purser et al.,
2003a, b). Next, we provide a brief introduction to the 3D-
Var formulation of the GSI and elaborate on forward op-
erators for aerosol observations and specification of model
(background) error. We conclude by presenting results of an
application of the assimilation system.

2 Observations and measurement errors

In our implementation, assimilated observations include sur-
face measurements of PM2.5 and PM10, and aerosol op-
tical depth (AOD, alternatively, aerosol optical thickness,
AOT) retrievals at 550 nm from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) satellites Aqua and Terra.

In North America, continuous measurements of surface
aerosol concentrations at hourly resolution are made avail-
able thanks to monitoring stations participating in the US
EPA AirNow program. The observations are processed with
minimal delay, making them suitable for real-time assimila-
tion. A free subscription to the real-time data feed is possible
through the AirNow gateway (http://airnowapi.org/). A com-
puter code is made available to convert text-formatted files
obtained form the gateway to BUFR (Binary Universal Form
for the Representation of meteorological data, Dragosavac,
2007) as required by the GSI.

AirNow PM2.5 and PM10 concentrations are mea-
sured using tapered element oscillating microbalance in-
struments (TEOM, Thermo Fisher, Continuous particu-
late TEOM monitor, Series 1400ab, product detail, 2007,
available athttp://www.thermo.com/com/cda/product/detail/
1,10122682,00.html). The error of both PM aerosol mea-
surementsεm is 1.5 µg m−3 and an inaccuracy of 0.75 %
times the species concentration.

Aerosol optical depth data come from MODIS sensors on
board the Terra and Aqua satellites. Retrievals over land and
sea are derived from the dark-target product (Remer et al.,
2005) and deep-blue product over bright land surface (Hsu
et al., 2004, 2006). Currently, the dark-target ocean and land
AOD products are available from both Terra and Aqua, but
deep blue retrievals are only available from Aqua. MODIS
retrieved AOD is provided at seven wavelengths: 470, 550,
660, 870, 1240, 1630, and 2130 nm. In our implementation,
only level 2 (L2) AOD retrievals at 550 nm are used. The
AOD observation error is specified after Remer et al. (2005)
asεAOD = 0.03+0.05τ over water andεAOD = 0.05+0.15τ
over land, whereτ is an AOD observation. Only AOD

retrievals marked with the highest quality flag are retained
for the assimilation.

L2 retrievals from Aqua are available atftp://ladsweb.
nascom.nasa.gov/allData/51/MYD04_L2and L2 retrievals
from Terra are available atftp://ladsweb.nascom.nasa.gov/
allData/51/MOD04_L2. These data come in HDF-EOS for-
mat at 5 min segments of the satellite’s orbit that correspond
to 10 km× 10 km resolution at the surface. Computer code
(W. Wolf, personal communication, 2013) is available in the
package to convert HDF to BUFR for the GSI.

3 Aerosol assimilation within the Gridpoint
Statistical Interpolation

GSI includes a 3D-VAR assimilation tool from which an
analysis is obtained by minimization of a cost function given
by

J (x) ≡ (x − xb)T B−1 (x − xb)

+ (y − H(x))T R−1 (y − H(x)) . (1)

In Eq. (1), x is a vector of analysis,xb is the forecast or
background vector,y is an observation vector,B is the back-
ground error covariance matrix,H is an observation operator,
andR is the observation error covariance matrix. The back-
ground error covariance matrixB is separated into vertical
and horizontal components, and is represented as a product
of error variances and spatial correlation matrices. The corre-
lation matrices simulate Gaussian shapes in space and in the
GSI are modeled with recursive filters (Purser et al., 2003a,
b). The application of the filters requires specification of the
background error correlation length scales. The observation
covariance matrixR combines measurement and representa-
tiveness errors, and is usually assumed to be diagonal. The
observation operatorH , which can be non-linear, converts
model variables to observation space. Solutions to the mini-
mization problem are sought using the incremental approach
(Courtier et al., 1994). With this approach, two minimization
loops are employed: an outer loop where fully non-linear ob-
servation operator is applied and an inner loop where the ob-
servation operator is linearized.

Our extension to the GSI includes separate options for
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART, Chin et al., 2000, 2002; Ginoux et al., 2001) and
all other aerosol modules in WRF-Chem (Weather Research
and Forecasting model coupled with Chemistry) (Grell et
al., 2005). Since the Community Radiative Transfer Model
(CRTM, Han et al., 2006; Liu and Weng, 2006), which is
coupled to the GSI, is currently only available for GOCART,
AOD can only be assimilated with the GOCART model
background.
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3.1 Forward models and observation processing in GSI

The forward models for GOCART differ from other aerosol
parameterizations and are described first.

PM2.5, PM10, and AOD are all integrated measurements
that require a summation of individual aerosol species.
In WRF-Chem implementation, GOCART aerosol species
include unspecified P25, sulfate S, hydrophobic and hy-
drophilic black carbon (BC1 and BC2, respectively), hy-
drophobic and hydrophilic organic carbon (OC1 and OC2,
respectively), five dust bins (D1: 0.2–2.0 µm; D2: 2.0–3.6 µm;
D3: 3.6–6.0 µm; D4: 6.0–12.0 µm; and D5: 12.0–20.0 µm),
and four sea salt bins (SS1: 0.2–1.0 µm; SS2: 1.0–3.0 µm;
SS3: 3.0–10.0 µm; and SS4: 10.0–20.0 µm).

PM2.5 concentration is calculated as

PM2.5 = ρd

[
P2.5 + 1.375S+ BC1 + BC2

+ 1.8(OC1 + OC2) + D1 + 0.286D2

+ SS1 + 0.942SS2

]
, (2)

whereρd, dry air density, is multiplied by mixing ratios of
aerosol species. Factors for sulfate and organic carbon ac-
count for increasing the mass of the compounds due to the
presence of ammonium ion and oxygen, respectively. Factors
for dust and sea salt account for a size cut-off at the 2.5 µm
diameter calculated assuming lognormal distribution of these
species. An expression for PM10 concentration is

PM10 = ρd

[
P2.5 + 1.375S+ BC1 + BC2

+ 1.8(OC1 + OC2) + D1 + D2 + D3 + 0.87D4

+ SS1 + SS2 + SS3

]
. (3)

Only a brief description of the observation operator for
AOD is given here and we refer the reader to Liu et al. (2011)
and Schwartz et al. (2012) for full details. We assume that
the size distribution of aerosol species within each size bin
is logarithmic and that the particles are spherical and exter-
nally mixed. Parameters of the distributions are give in Liu
et al. (2011). CRTM contains profiles of GOCART aerosol
species that include their effective radii, standard deviations,
and refractive indices. The extinction coefficient of each
aerosol species is computed for a given wavelength based on
Mie scattering theory and accounting for hygroscopic size
growth of hydrophilic species. Finally, AOD is calculated
from the equation

τ (λ) =

n∑
i=1

ktop∑
k=1

Eext
(
λ,nri , reffi

)
× cik × ρdk

× dk, (4)

whereEext is the extinction coefficient (a function of wave-
lengthλ, refractive indexnr , and effective radiusreff), c is

aerosol mixing ratio,ρd is dry air density, andd is layer
depth. Indicesi andk denote aerosol species and model lay-
ers respectively;n = 15 denotes the number of GOCART
aerosol species.

For each of the Eqs. (2), (3), and (4), mixing ratios of
aerosol species are horizontally linearly interpolated to the
observation location. No extrapolations are performed in the
vertical for surface observations, as their locations are as-
sumed to coincide with the first model level.

A representativeness error for a surface observation
is assigned based on the character of the site after
Elbern et al. (2007), using a formula given byεrepr =

αεm(1x/Lrepr)
1/2, whereεm is measurement error,α is a

tunable parameter,1x is model grid size, andLrepr repre-
sents the observation’s radius of influence. The parameterα

determines magnitude of the observation error and can be
specified in the “namelist”. Its default value, which was ob-
tained through experimentation, is set to 0.5. Radii of influ-
ence for observations are prescribed equal to 10, 4, and 2 km
for rural, suburban, and urban sites, respectively. The total
observation error is calculated asεobs= (ε2

m + ε2
repr)

1/2.
Only surface measurements that fall below specified

thresholds are accepted (default values are set to 100 µg m−3

for PM2.5 and to 150 µg m−3 for PM10). Also, an observation
is rejected if its deviation from the background is greater than
these maximum allowable values. Depending on the user’s
preference, an observation can also be rejected if a differ-
ence between its actual elevation and model terrain height
interpolated to its geographic location exceeds a threshold
specified in the namelist. Characteristics of the error for dif-
ferent instruments and the default values can be easily mod-
ified (in the GSI distribution files convinfo, chemmod.f90,
and read_anowbufr.f90).

To reduce the volume and diminish the correlation of satel-
lite observation errors, thinning (subsampling) of AOD ob-
servations is recommended to a resolution that is comparable
to the model grid size. Thinning options can be specified in
the namelist.

For aerosol options other than GOCART, PM2.5 or PM10
are read as PM2_5_DRY or PM10 from WRF-Chem output
so that Eqs. (2) and (3) are not required. The rationale for
such an approach is discussed in the next section. Calculation
of surface PM observation errors and data selection for the
assimilation follows the implementation for GOCART.

3.2 Specification of background error

In GSI, error correlation length scales and variances can vary
zonally and vertically. They can be calculated as forecast
statistics using the NMC (National Meteorological Center)
method (Parrish and Derber, 1992) or the ensemble method
(Fisher, 2003). Computer code for producing a file contain-
ing these statistics for meteorological state variables and de-
sired aerosols formatted for the GSI is available for download
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Figure 1. Vertical profiles of standard deviations (top) and horizon-
tal correlation length scales (bottom) for OC1, OC2, and sulphate
derived for a North American domain (see text for details). Tick
mark values of− log(p/ps) on the ordinate approximately corre-
spond to values of atmospheric pressure equal to 1000, 600, 370,
220, 135, and 80 hPa.

with the WRF data assimilation system athttp://www.mmm.
ucar.edu/wrf/users/wrfda/downloads.html.

For GOCART parameterization, state variables include 15
aerosol species. As an illustration, vertical profiles of stan-
dard deviations and horizontal correlation length scales for
OC1, OC2, and sulfate are shown in Fig. 1. These statis-
tics were derived for a month-long period in the 2012 sum-
mer, over a domain spanning eastern North America, with
24 km grid resolution, using the NMC method applied to
24 and 48 h forecasts. In the GOCART case, increments (or
additions to the background state) to each aerosol species
are obtained using background error statistics for individ-
ual aerosol species. We will not reflect on the realism of the
statistics derived using the NMC method in this manuscript,
but only point out that accounting for uncertainty in emission
sources and aerosol parameterization deficiencies should be
considered when estimating model errors. Pagowski and
Grell (2012) discuss this topic in detail.

An alternative approach is also available where increments
to individual species are calculated based on their a priori
contribution to the total aerosol mass. This is expressed as
the sum of 15 aerosols species accounting for multiplication
factors of sulfate and organic carbon (hereafter, “ratio ap-
proach”). With this approach, statistics for the total aerosol
are used to minimize the 3D-Var cost function and need to
be provided in the background error input file. The choice
of any of the two approaches is determined in the namelist.
Also, error correlation length scales and standard deviations

(a) (b)

(c)

Figure 2. Sample analysis increments of OC1, OC2, and sulfate
(from the top) on the first model level.

can be tuned for optimal performance and modified by fac-
tors specified in the namelist.

For parameterizations other than GOCART, specifying
background error statistics for a large number of aerosol
species is, in our opinion, overly burdensome, especially
because such statistics may not be reliable given the large
uncertainties in emissions and in the state of science in
aerosol modeling. Therefore, for these parameterizations,
we require that background error statistics are provided for
a WRF-Chem output variable PM2_5_DRY/PM10 when
PM2.5/PM10 observations are assimilated. This variable is
also a state variable for which an increment will be calcu-
lated.

3.3 Running GSI and aerosol assimilation cycle

A comprehensive user guide for GSI is available at
http://www.dtcenter.org/com-GSI/users/docs/users_guide/
GSIUserGuide_v3.2.pdf. Also, an online tutorial is avail-
able and group tutorials are given at least once a year
(http://www.dtcenter.org/com-GSI/users/tutorial/index.php).
Thus, only a cursory description of the assimilation is given
here. Our package provides a default configuration and shell
scripts for assimilating PM2.5, PM10, and MODIS AOD with
WRF-Chem GOCART parameterization.

Specifically, for aerosol assimilation, in addition to an in-
put file with aerosol background statistics, a user needs to
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Figure 3. Bias (left) and spatial correlation (right) calculated for forecasts issued over a month-long period in summer 2012 for the North
America domain with and without assimilation of surface observations of PM2.5.

provide WRF-Chem output in netcdf format, observations
files in BUFR format (normally a single file for PM2.5 and
PM10, and/or file with MODIS AOD), a namelist specifying
options for the assimilation, and a configuration file anavinfo.
The latter file contains the names of aerosol species as state
variables for which minimization of the 3D-Var cost function
is performed. Normally, entries in anavinfo would include
either GOCART species or PM25/PM10. We note that a si-
multaneous assimilation of meteorological variables is also
possible.

On the output, GSI overwrites the input WRF-Chem file.
For quality control and to visualize increments, we suggest
using ncdiff, a component of netcdf manipulation software
NCO available athttp://nco.sourceforge.net(alternatively
diffv operator from the CDO package,https://code.zmaw.de/
projects/cdo). For GOCART, the output WRF-Chem file con-
tains an analysis of aerosol species. No further processing is
required to issue the next forecast. For other aerosol options,
increments to individual aerosol species need to be calcu-
lated using the ratio approach and added to the background.
They will constitute initial conditions for the following fore-
cast. We again recommend using NCO software for this pro-
cedure. Sample increments to OC1, OC2, and sulfate on the
first model level (i.e., assumed to be at the surface) are shown
in Fig. 2. Their magnitudes and spatial patterns are related to
the specification of background error statistics for individ-
ual aerosol species. Surface and satellite observations were
assimilated to produce this figure.

We routinely employ a 6-hour assimilation cycle that in-
cludes both assimilation of standard meteorological observa-
tions and aerosol observations.

The impact of aerosol assimilation has been well docu-
mented in the publications cited in Sect. 1. For illustration,
Fig. 3 shows bias and spatial correlation with respect to
AirNow measurements calculated for forecasts issued over
a month-long period during summer 2012 with and without
assimilation of surface observations of PM2.5. The GOCART
parameterization was used with the ratio approach. The im-
provement in the early forecast hours is noteworthy. Reasons
for a relatively quick deterioration of the aerosol forecasts at
later hours were briefly noted in Sect. 1 and are elaborated in
detail in Pagowski and Grell (2012) and Jiang et al. (2013).

4 Conclusions

We described our implementation of the assimilation of
PM2.5 and PM10 surface observations and satellite MODIS
AOD level 2 retrieval using the GSI and WRF-Chem. Along
with aerosol assimilation, computer codes for formatting the
observations are included in the package. Also, an example
configuration and sample input files for an assimilation exer-
cise are supplied.

We recommend that prospective users become familiar
with a general application of the GSI as described in the user
guide and in the online tutorial.

We hope that the availability of this implementation will
lead to further development of the aerosol and chemical data
assimilation system that may include a wider range of obser-
vations. GSI is a community-based system and user contri-
butions are encouraged.
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