
Geosci. Model Dev., 7, 621–629, 2014
www.geosci-model-dev.net/7/621/2014/
doi:10.5194/gmd-7-621-2014
© Author(s) 2014. CC Attribution 3.0 License.

Geoscientific
Model Development

O
pen A

ccess

Design of a regional climate modelling projection ensemble
experiment – NARCliM

J. P. Evans1, F. Ji2, C. Lee2, P. Smith3, D. Argüeso1, and L. Fita1

1ARC Centre of Excellence for Climate System Science and the Climate Change Research Centre,
University of New South Wales, Sydney, Australia
2Office of Environment and Heritage, New South Wales Government, Sydney, Australia
3Macquarie University, Sydney, Australia

Correspondence to:J. P. Evans (jason.evans@unsw.edu.au)

Received: 15 August 2013 – Published in Geosci. Model Dev. Discuss.: 25 September 2013
Revised: 23 February 2014 – Accepted: 11 March 2014 – Published: 16 April 2014

Abstract. Including the impacts of climate change in deci-
sion making and planning processes is a challenge facing
many regional governments including the New South Wales
(NSW) and Australian Capital Territory (ACT) governments
in Australia. NARCliM (NSW/ACT Regional Climate Mod-
elling project) is a regional climate modelling project that
aims to provide a comprehensive and consistent set of cli-
mate projections that can be used by all relevant government
departments when considering climate change. To maximise
end user engagement and ensure outputs are relevant to the
planning process, a series of stakeholder workshops were
run to define key aspects of the model experiment includ-
ing spatial resolution, time slices, and output variables. As
with all such experiments, practical considerations limit the
number of ensemble members that can be simulated such that
choices must be made concerning which global climate mod-
els (GCMs) to downscale from, and which regional climate
models (RCMs) to downscale with. Here a methodology for
making these choices is proposed that aims to sample the
uncertainty in both GCM and RCM ensembles, as well as
spanning the range of future climate projections present in
the GCM ensemble. The RCM selection process uses perfor-
mance evaluation metrics to eliminate poor performing mod-
els from consideration, followed by explicit consideration of
model independence in order to retain as much information
as possible in a small model subset. In addition to these two
steps the GCM selection process also considers the future
change in temperature and precipitation projected by each
GCM. The final GCM selection is based on a subjective con-
sideration of the GCM independence and future change. The

created ensemble provides a more robust view of future re-
gional climate changes. Future research is required to deter-
mine objective criteria that could replace the subjective as-
pects of the selection process.

1 Introduction

Global warming is a major international concern and re-
quires a global effort to reduce anthropogenic greenhouse
gas concentrations. Nevertheless, as global warming contin-
ues adaptation to the inevitable changes in climate will have
to be done at regional and local scales. This requires cli-
mate projection information at a spatial scale relevant to the
system of interest, which is frequently significantly smaller
than the resolution of global climate models (GCMs). Dy-
namic downscaling with regional climate models (RCMs) is
one method to address this scale gap. A number of previous
projects have produced regional climate projections using
RCM ensembles including PRUDENCE (Christensen et al.,
2007), ENSEMBLES (van der Linden and Mitchell, 2009),
RMIP (Fu et al., 2005), NARCCAP (Mearns et al., 2012),
CLARIS-LPB (Solman et al., 2013), and now a globally co-
ordinated project in CORDEX (Giorgi et al., 2009). In each
case various strategies were used to design the experimental
procedure in order to sample the model uncertainties given
the practical limitations of computation time and data stor-
age.

While some aspects of the experimental design have de-
veloped through successive projects, such as the adoption of
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a sparse matrix pairing of GCM and RCM in ENSEMBLES
and NARCCAP, other aspects remain to be addressed. The
original choice of GCMs and RCMs to include in a project
is a primary example, as projects to date have made this
choice largely due to convenience. That is, GCMs have gen-
erally been chosen based on the ease of access to the data re-
quired to create RCM boundary conditions, or due to mem-
bers of a particular GCM’s organisation being involved in
the project, and RCMs have been chosen if project mem-
bers have past experience using them. While such choices
were quite pragmatic, advances in computing infrastructure,
data sharing and international cooperation through projects
such as the 5th Coupled Model Intercomparison Project
(CMIP5) and CORDEX, allow more objective choices to
be made (McSweeney et al., 2012; Overland et al., 2011).
Here we propose a methodology for making these choices,
and provide an example of using this methodology within
the NSW/ACT Regional Climate Modelling (NARCliM)
project. This methodology aims to sample the uncertainty in
both GCMs and RCMs, as well as spanning the range of fu-
ture climate projections present in the full GCM ensemble.

2 The NARCliM project design

The express purpose of NARCliM is to deliver robust cli-
mate change projections for New South Wales (NSW) and
the Australian Capital Territory (ACT) at a scale relevant
for use in local-scale decision-making. State governments
in Australia have the primary responsibility for natural re-
source management and the delivery of most community ser-
vices. This covers many sectors including water resources,
biodiversity, infrastructure, health and emergency services.
Through a process involving multiple stakeholder work-
shops, which involved compromise amongst stakeholders
from the various sectors, a project design that was achievable
within the available computation and data storage resources,
was determined. The NARCliM modelling project is unique
within Australia as its project design has been a bottom-
up approach, heavily involving end users in the conception
and design phases, rather than a top-down approach driven
mostly by the climate change science community. In the
top-down approaches, much of the key questions relating to
model epochs and climate variable outputs are decided by the
climate modellers and then these are presented to the end user
community, including other scientists and modellers working
on impact science programs as afait accompli. This leads to
a disconnect between the end user or adaptation community
and the climate modelling community as the outputs are of-
ten not relevant to the needs of the adaptation practitioners
or if they are it is by chance rather than design. Involving the
adaptation community in the project design maximises the
chances of developing model outputs that are readily used by
this group. Other benefits of early end user involvement are
an improved understanding of the climate modelling process

Fig. 1.Topographic map showing the outer and inner (in red) NAR-
CliM model domain and state borders. New South Wales is just to
the left of centre of the inner domain.

and its limitations and greater sense of ownership and user
uptake of the outputs by the end users. The overall project
design includes mechanisms for project governance and data
distribution. Information about various aspects of the project
can be found athttp://www.ccrc.unsw.edu.au/NARCliM/.

Largely due to the available computing and data storage
facilities, the project is limited to a 12-member GCM/RCM
ensemble. This will be created by choosing four GCMs and
downscaling each of these with three different RCMs. All
RCM simulations will be performed at 10 km resolution over
NSW/ACT. This high-resolution domain will be embedded
within a 50 km resolution domain that covers the CORDEX-
AustralAsia region (Fig. 1). Choosing this larger domain en-
sures that a future stage of the project focused on CMIP5
results can take advantage of simulations performed for the
CORDEX initiative. The inner domain and resolution is cho-
sen with a particular focus on simulations of the east-coast
climate as this relatively narrow coastal strip, east of the
mountains: contains almost half the population of Australia;
displays a unique climate response to oceanic modes com-
pared to further inland (Murphy and Timbal, 2008); is gen-
erally poorly modelled by GCMs (Suppiah et al., 2007) but
is well modelled at 10 km resolution (Evans and McCabe,
2010, 2013); and is strongly influenced by east-coast lows
which are often small, rapidly developing storm systems
(Speer et al., 2009).

Like previous regional climate projection projects, NAR-
CliM has two main phases.

In phase one, three RCMs are used to downscale the
NCEP/NCAR reanalysis (Kalnay et al., 1996) from 1950 to
2010. This reanalysis was chosen to allow a 60-year long
historical simulation. Southeast Australia has experienced
strong decadal variability in precipitation over the second
half of the 20th century with particularly wet decades in the
1950s and 1970s. These reanalysis-driven simulations pro-
vide a strong test of the RCMs ability to simulate both these
very wet periods and the recent dry period known as the Mil-
lennium Drought (Van Dijk et al., 2013). This phase provides
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an estimate of the RCM quality including any systematic
RCM biases.

In phase two, three RCMs will downscale four GCMs
in three 20-year time slices (1990–2010, 2020–2040, 2060–
2080). For future projections the SRES A2 emission scenario
(IPCC, 2000) will be used. Careful choice of both RCMs and
GCMs is required for this small ensemble to adequately sam-
ple the model uncertainty – the methodology used to make
these decisions is outlined below.

2.1 Choosing RCMs

In this experiment we want the small number of RCMs cho-
sen for downscaling to span the range of uncertainty present
in the full collection of RCMs that are able to simulate the
climate in the area of interest well. Thus a two-step RCM
selection process is proposed.

1. The full set of RCMs are evaluated over the domain
of interest in order to remove from the set any models
that are not able to adequately simulate the climate.

2. From the set of RCMs that perform well a subset is
chosen such that each chosen RCM is as independent
as possible from the other RCMs.

When evaluating RCMs many subjective choices concern-
ing the variables to be evaluated, the temporal and spatial
averaging used, and the statistical measures calculated must
be made. Many past studies have evaluated RCM ensembles
using many different combinations of the above (e.g. Kjell-
strom and Giorgi, 2010; Mearns et al., 2012), generally find-
ing that no model performs best across all variables and met-
rics (Kjellstrom et al., 2010). Thus, comprehensive evalua-
tion studies are used here to exclude models that perform
consistently poorly across a wide range of variables and met-
rics, rather than trying to identify a set of best models. This
approach is consistent with that adopted in McSweeney et
al. (2012) and Overland et al. (2011). The large range in pos-
sible evaluations that can be performed, along with the many
methods to combine evaluation metrics into a final score,
makes it difficult to define a priori an acceptable performance
level. Here a relative performance level is assessed such that
any group of models that are significantly worse than the rest
of the models will be excluded.

Now that we have a set of RCMs that perform well over
our area of interest, we wish to choose a small subset that
spans the uncertainty of this larger set. Given that climate
models often share code, there is broad recognition that they
do not provide independent samples from the model space
(Knutti et al., 2010; Pennell and Reichler, 2011). Hence this
choice can be rephrased as one in which the most indepen-
dent models should be chosen from the larger set. Here,
we present a first attempt to consider model independence
during the model selection process. Recently Bishop and
Abramowitz (2013) proposed a measure that uses the covari-
ance in model errors as the basis for a definition of model

dependence. Here we rank the models based on the magni-
tude of these independence coefficients and choose the top
models from this ranking. It is important to note that these
independence coefficients were not designed for this pur-
pose, but rather to provide an optimal linear combination of
models from a multi-model ensemble (Potempski and Gal-
marini, 2009). It is possible to imagine an idealised experi-
ment where they would not lead to selection of the most in-
dependent models (see Supplement). One possible situation
where the use of the independence weights to select mod-
els will be sub-optimal can be identified using the ensemble
correlation matrix. If the models separate into groups such
that within each group they are extremely highly correlated,
while models in different groups have almost no correlation,
then this selection method will be sub-optimal. The levels of
correlation required within a group are however extremely
high (above 0.96), while those between groups are extremely
low (below 0.03). However, when tested against actual cli-
mate model ensembles the condition described above has not
been found and these independence coefficients do perform
as desired. They have been shown to select small ensembles
with the desired statistical properties (Evans et al., 2013).

2.2 Choosing GCMs

Similar to choosing RCMs, the choice of GCMs in this ex-
periment is made in order to sample the range of uncertainty
in the ensemble of GCMs that simulate the climate of the
target region well. Since a GCM’s ability to simulate the
current climate has little relationship with the future climate
it projects, an additional criterion is introduced. The GCMs
chosen should span the range of projected future change, in
order to sample this additional source of uncertainty. That is,
a three-step GCM selection process is proposed.

1. The full set of GCMs are evaluated over the domain
of interest in order to remove from the set any models
that are not able to adequately simulate the climate.

2. The set of GCMs that perform well is then ranked
based on a measure of independence.

3. The GCMs are then placed within the future change
space and the most independent models that span that
space are chosen.

While it is possible to perform evaluation of the GCMs in a
similar way to that performed for the RCMs, it is also pos-
sible to take advantage of the extensive literature in this re-
gard. Given the plethora of evaluation publications based on
CMIP3 (and soon CMIP5) data, a metadata analysis of the
literature can provide evidence with which to evaluate the
models. When this has been done (e.g. Overland et al., 2011;
Smith and Chandler, 2010) it is generally found that it is diffi-
cult to identify “best” models. Hence, this evaluation is used
to identify those models that are consistently poor performers
and remove them from consideration.
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Several issues must be overcome in order to combine liter-
ature studies into one overall score for a GCM: some studies
provide a binary pass/fail outcome based on their internal cri-
teria, while others provide continuous measures, and many
published studies use only a subset of the full GCM ensem-
ble. Here we address these issues through the introduction
of a fractional demerit score, such that the lower the score,
the better the performance of the GCM. Demerit points are
added to a GCM in two ways. For evaluations which pro-
vided a binary pass/fail outcome, any fail equals one demerit
point. For evaluations that provide a continuous measure, any
GCM that falls in the 25 % worst performing GCMs receives
one demerit point. All demerit points across the published
studies are totalled for each GCM. Since not every GCM was
present in every study this demerit total is then divided by the
total number of studies the GCM appeared in to calculate the
fractional demerit score. In this way fractional demerit scores
of 0.5 or above indicate that the GCM was amongst the 25 %
worst GCMs (or failed the test) at least half of the time. These
consistently worst performers were then removed from fur-
ther analysis.

The GCMs that remain are then ranked based on the in-
dependence coefficients of Bishop and Abramowitz (2013).
Here we rank the models based on the magnitude of these
independence coefficients. These rankings are then placed
within the GCM’s future climate change space, and the high-
est rankings that span the space are chosen in a subjective
manner. The future climate change space can be defined in
terms of any climate variables that are deemed appropriate,
here temperature and precipitation are used to define this
space as they were the variables of most interest to the project
stakeholders. It is worth noting that the relatively small sam-
ple size of potential GCMs (< 20) does not support consid-
eration of more variables and hence a higher-dimensional
analysis, though it is possible to do so (e.g. McSweeney et
al., 2012). As such, the independence rankings are plotted on
anx–y plot that shows the GCM’s projected climate change
as given by the change in temperature and precipitation in
the area of interest. The most independent models that sub-
jectively best sample the range of future changes are then
chosen.

3 NARCliM model selection

The model selection criteria above have been applied within
the NARCliM project. Given the resources available to the
project some further pragmatic choices were made, but
within the ongoing international project CORDEX more
comprehensive application of the proposed selection criteria
could be applied.

3.1 RCM selection

Within a project such as CORDEX, the RCM evaluation
could be performed directly on the reanalysis-driven simu-
lations to choose a subset with which to perform the tran-
sient GCM-driven simulations. Within NARCliM the avail-
able computation resources required the evaluation to be per-
formed using much shorter simulations, and the time con-
straints limited the number of separate modelling systems
that could be implemented. Previous work has shown that the
range in the multi-model ensemble can be reproduced within
perturbed physics ensembles (Collins et al., 2006). Here the
RCM choice is based on a multi-physics ensemble built us-
ing the Weather Research and Forecasting modelling system
(Skamarock et al., 2008). This system facilitates the use of
many RCMs by allowing all model physical parametrisations
to be changed and hence many structurally different RCMs
can be built. Due to computational limitations, the RCM per-
formance and independence was evaluated based on a series
of representative event simulations rather than using multi-
year simulations.

By limiting the evaluation period to a series of represen-
tative events for the region, a much larger set of RCMs can
be tested. In this case an ensemble of 36 RCMs was created
by using various parametrisations for the Cumulus convec-
tion scheme, the cloud microphysics scheme, the radiation
schemes and the Planetary Boundary Layer scheme. Each of
these RCMs was used to simulate a set of eight representa-
tive storms (Evans et al., 2012; Ji et al., 2014) that cover the
various relevant storm types for this region discussed in the
literature (Shand et al., 2010; Speer et al., 2009). In each case
a 2-week period is simulated centred around the peak of the
event. Subsequent analysis then includes pre- and post-event
climate as well as the event itself. It should be noted that such
an event based evaluation has a number of limitations. Dur-
ing long climate simulations weather periods will arise that
were not present in any of the sample events and hence the
model performance is untested during these periods, reduc-
ing the credibility of the models. Also, by testing a number
of relatively short simulations no long-term memory of the
system is considered. This may be important if, for exam-
ple, a model has a strong soil moisture feedback that tends to
produce persistent dry states. Ideally, this evaluation would
be performed over multiple annual cycles to alleviate these
issues, however practical considerations meant that this was
not possible.

Evaluation was performed against daily precipitation, min-
imum and maximum temperature from the Bureau of Me-
teorology’s (BoM) Australian Water Availability Project
(BAWAP, Jones et al., 2009). Evaluation was also performed
against the mean sea level pressure and the 10 m winds ob-
tained from BoM’s MesoLAPS analysis (Puri et al., 1998).
The metrics used for the ranking are the bias, root mean
square error (RMSE), mean absolute error (MAE) and spa-
tial correlation (R) for all variables. The fractional skill score
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Table 1.The model configuration for the three most independent RCMs.

NARCliM Planetary boundary Short-wave/
ensemble layer physics/ cumulus Micro- long-wave
member surface layer physics physics physics radiation physics

R1 MYJ/Eta similarity KF WDM 5 class Dudhia/RRTM
R2 MYJ/Eta similarity BMJ WDM 5 class Dudhia/RRTM
R3 YSU/MM5 similarity KF WDM 5 class CAM/CAM

Fig. 2. Change in the overall RCM evaluation metrics between
neighbouring models ordered from the best model (left) to the worst
model (right).

(FSS) was also used for the rainfall totals. These metrics are
calculated for all eight events and combined as described in
(Evans et al., 2012). Two overall metrics are calculated such
that lower scores indicate better performance (see Tables 1
and 2 of Evans et al., 2012). One metric characterises the
climatology (clim) and the other is dominated by the most
extreme events (impact). The models are then ordered from
the best to the worst model based on the clim metric (the
impact metric provides a near-identical ordering), and the
differences in the metrics between neighbouring models is
shown in Fig. 2. It shows that the overall RCM performance
metrics increase gradually from the best to the worst model,
with differences between the models of generally less than
0.01. This gradual increase rises sharply at the sixth worst
performing model, with differences greater than 0.015 in the
clim metric. A similar decrease in performance is seen in the
impact metric. Since these six worst performing models show
a rapid decrease in performance they are excluded from fur-
ther analysis.

In the method of Bishop and Abramowitz (2013) the
model independence is defined based on the covariance
of model errors. For precipitation, minimum and maxi-
mum temperature, the daily time series for each event is
bias-corrected using the BAWAP observations, to produce
an anomaly time series. This anomaly time series for all
events is joined together to produce a single long time
series for each variable. These time series are then used
to create the model error covariance matrix. Bishop and

Fig. 3. Daily precipitation time series for each of the eight test pe-
riods. Observations are show in black. All ensemble members re-
tained after the performance evaluation are shown with blue dotted
lines. The three members chosen using the independence measure
are shown in red.

Abramowitz (2013) are able to show that the coefficients
of a linear combination of the models that optimally min-
imises the mean square error depends on both model perfor-
mance and model dependence. The solution of this minimi-
sation problem can be written in terms of the covariance ma-
trix already constructed. The size of the coefficients assigned
to each model reflects a combination of model performance
and independence. That is, the models with the largest coef-
ficients are the best performing/most independent models in
the ensemble.

These coefficients are calculated for each variable and then
averaged to give the overall performance/independence of
each model. The physics parametrisations used in the three
most independent/best performing RCMs of the 30-model
ensemble are given in Table 1. Figure 3 shows the daily
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Table 2.Summary of CMIP GCM assessments.

Assessment region Australia MDB SE Australia

Fractional
Model demerit A B C D E F G H I J K

UKMO-HadCM3 0 0 Yes 6 608 179
CSIRO-Mk3.5 0 5 1 207
GFDL-CM2.1 0.111 0 Yes 2 672 Yes No Yes 0.72 184
GFDL-CM2.0 0.125 0 Yes 2 671 Yes No Yes 252
MIROC3.2 (hires) 0.125 0 Yes 7 608 12 9 Yes 201
CSIRO-Mk3.0 0.182 1 No 7 601 Yes 1 2 Yes No 0.73 214
UKMO-HadGEM1 0.2 0 No 2 674 163
ECHAM5/MPI 0.222 0 Yes 1 700 Yes No No 0.79 173
MIUB-ECHO-G 0.222 0 No 4 632 Yes Yes No 0.78 174
INM-CM3.0 0.222 1 No 7 627 9 11 Yes 0.75 192
NCAR CCSM3 0.273 0 No 2 677 No 4 6 No 0.68 245
CNRM-CM3 0.286 0 No 4 542 No 0.73 196
FGOALS-G1.0 0.3 2 No 2 639 No 8 4 Yes 0.66 251
MIROC3.2 (medres) 0.364 2 Yes 7 608 Yes 11 3 Yes No 0.6 255
CCCM3.1 (T63) 0.375 1 10 478 2 7 No 0.72 241
MRI-CGCM2.3.3 0.455 1 No 3 601 No 10 12 Yes Yes 0.41 437
CCCM3.1 (T47) 0.455 1 No 8 518 No 3 10 Yes No 0.77 186
GISS-ER 0.5 0 No 8 515 Yes 6 5 No No 238
BCCR-BCM2.0 0.5 5 5 590 Yes No 485
GISS-AOM 0.667 1 No 8 564 No 7 13 Yes 0.6 326
IPSL-CM4 0.8 2 No 14 505 No 13 8 Yes 0.48 394
NCAR PCM 0.833 3 No 11 506 0.64 309
GISS-EH 1 5 No 14 304 14 14 487

A – number of rainfall criteria failed (Smith and Chandler, 2010), B – satisfied ENSO criteria (Min et al., 2005; van Oldenborgh et al., 2005), C – demerit
points based on criteria for rainfall, temperature and MSLP (Suppiah et al., 2007), D – M-statistic representing goodness of fit at simulating rainfall,
temperature and MSLP over Australia (Watterson, 2008), E – satisfied criteria for daily rainfall over Australia (Perkins et al., 2007), F – order of model
based on the total skill scores for each rainfall metric (Kirono et al., 2010), G – order of model based on the total skill scores for each of rainfall and PET
metric (Kirono et al., 2010), H – satisfied criteria for daily rainfall over MDB region (Maxino et al., 2008), I – satisfied criteria for MSLP over MDB region
(Charles et al., 2013), J – combination of RMSE of mean annual rainfall across south-east Australia and mean NSE (rainfall > 1 mm) comparing
GCM-simulated and observed daily rainfall distribution with equal weights (Vaze et al., 2011), K – RMSE of mean annual rainfall over Southeast Australia
(Chiew et al., 2009).

precipitation time series for all tested events. The three cho-
sen ensemble members are highlighted in red. Generally the
three chosen RCMs display varied simulations of the differ-
ent events, demonstrating some level of independence be-
tween them. The role of performance in the measure can also
be seen in the SURFERS case, where none of the models
that produced large overestimates of precipitation after the
observed peak were chosen. While the models chosen are a
compromise across all events, they are still able to sample
much of the range of behaviour in the full ensemble for each
event.

3.2 GCM selection

In CORDEX the ensemble from which GCMs are selected
is the CMIP5 ensemble. For NARCliM the CMIP3 ensem-
ble is used. Many studies have evaluated the performance
of CMIP3 GCMs over south-east Australia using different
variables and metrics. Here we build on the meta-analysis of
Smith and Chandler (2010). First, more recent evaluations

over Australia, not covered in Smith and Chandler (2010),
are added to the analysis for a total of 11 studies (see Ta-
ble 2). Of these studies four provided a pass/fail assessment
of the GCMs, while the rest provided continuous measures.
Then a fractional demerit score was calculated to indicate
the models overall performance. The lower the fractional de-
merit the better the performance. Here, six GCMs score 0.5
or higher and are removed from further analysis.

As for the RCMs, the remaining GCMs are then ranked
based on their level of model independence using the mea-
sure of Bishop and Abramowitz (2013). In this case the inde-
pendence coefficient is calculated separately for mean tem-
perature and precipitation and then averaged.

The final step requires placing the GCMs within a future
climate change space. Such a space could be defined using
any combination of climate variables. Here we define the fu-
ture climate space using the change in mean temperature in
Kelvin, and the percent change in mean precipitation. Fig-
ure 4 shows the location of the GCMs within this future
climate space, numbered by their independence rank order.
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Fig. 4. Future change space for the CMIP3 GCMs that performed
adequately and had the necessary data available, numbered by their
independence rank. The change is between the mean of 1990–2009
and the mean of 2060–2079.

Four groupings of GCMs can be seen within this space: top
left; top right; centre left; and bottom right. It is desirable
then to choose one GCM from each of these groupings that
has the highest independence ranking. In this case the mod-
els to choose would be the models ranked 3, 9, 2 and 1 re-
spectively. Unfortunately, for various reasons several GCM
groups could not supply the required data so alternate GCMs
were used. The GCM choice used in practice (and their inde-
pendence ranking) is MIROC3.2-medres (1), ECHAM5 (5),
CCCM3.1 (9), and CSIRO-Mk3.0 (12). Most CMIP5 GCM
groups are making available the data required to run RCMs,
so within CORDEX the first-choice GCMs should be avail-
able.

4 Summary and future work

All regional climate modelling projects require choices to
be made concerning the GCMs to downscale from and the
RCMs to downscale with. In the past these choices have
been largely made based on the convenience of GCM data
access and the past modelling experience of project mem-
bers. Through the greater international cooperation and data
access provided by the CMIP5 and CORDEX projects, it is
now possible to employ more objective and robust methods
for choosing the models to include in regional climate mod-
elling projects.

Here a methodology is proposed to choose models that
perform well over the region of interest and that provide
as much independent information as possible. This criterion

ensures that the subset of models chosen contains as much of
the information available in the full model ensemble as pos-
sible. Further, when choosing GCMs, one must also consider
their projected future climate change in order to adequately
sample all plausible future climates projected by the GCMs
that perform adequately over the region.

An application of this methodology within the NARCliM
project is presented here. While the method provides a means
to objectively select models to use within the project, a num-
ber of subjective choices are still required. When evaluating
the models a wide range of variables and metrics can be used.
How best to combine such measures remains unclear, how-
ever the objective here is not to identify the “best” models
to use in the ensemble but rather to identify any consistently
poor performing models over the area of interest to remove
from being considered as possible ensemble members. This
identification should be relatively robust to the individual
measures used in a comprehensive evaluation as any model
whose estimates are far from the observations are likely to
perform poorly across a wide range of metrics.

The field of model independence is a relatively new and
growing area of research. While the coefficient of Bishop and
Abramowitz (2013) is used here as a metric to determine the
relative independence of models within an ensemble, it is not
an ideal measure and other methods are likely to be devel-
oped in the coming years that may also be used within this
context.

The future climate change projected by the GCMs is given
here by the projected change in temperature and precipita-
tion. This choice was made as these two climate variables
were the most sought after by project stakeholders. In prac-
tice any climate variables could be used, including the pos-
sibility of using a higher-dimensional space (more than two
climate variables). Probably the most subjective aspect of the
methodology presented here is the choice of models from
this future climate change space. Future development of this
methodology will include objective methods for making this
choice. This may include the application of 2-D clustering
techniques to identify clusters from which to choose models,
or applying kernel smoothing techniques where the future
climate change uncertainty is derived from the inter-annual
variability.

Combining the model choice methodology described here
with the “sparse matrix” of GCM and RCM combinations
used in previous regional climate modelling projects, will re-
sult in a climate projection ensemble that more robustly sam-
ples the uncertainty space associated with regional climate
projections, given limited computational and data storage re-
sources.

Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
621/2014/gmd-7-621-2014-supplement.pdf.
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