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Abstract. Meteorological numerical weather prediction
(NWP) models solve a system of partial differential equa-
tions in time and space. Semi-lagrangian advection schemes
allow for long time steps. These longer time steps can re-
sult in instabilities occurring in the model physics. A sys-
tem of differential equations in which some solution com-
ponents decay more rapidly than others is stiff. In this
case it is stability rather than accuracy that restricts the
time step. The vertical diffusion parametrization can cause
fast non-meteorological oscillations around the slowly evolv-
ing true solution (fibrillations). These are treated with an
anti-fibrillation scheme, but small oscillations remain in op-
erational weather forecasts using ARPÉGE and ALADIN
models. In this paper, a simple test is designed to reveal if
the formulation of particular a physical parametrization is a
stiff problem or potentially numerically unstable in combi-
nation with any other part of the model. When the test is
applied to a stable scheme, the solution remains stable. How-
ever, applying the test to a potentially unstable scheme yields
a solution with fibrillations of substantial amplitude. The
parametrizations of the NWP model ARPÉGE were tested
one by one to see which one may be the source of unsta-
ble model behaviour. The test identified the set of equations
in the stratiform precipitation scheme (a diagnostic Kessler-
type scheme) as a stiff problem, particularly the combination
of terms arising due to the evaporation of snow.

1 Introduction

Meteorological numerical weather prediction (NWP) mod-
els solve a system of partial differential equations in time
and space. Part of the atmospheric processes is resolved

by the model dynamics, while the sub-grid, precipitation
and radiation processes are said to be parametrized in the
model physics. A number of years ago, eulerian advec-
tion schemes were replaced by the semi-lagrangian advec-
tion scheme in the model dynamics of the ARPÉGE (Ac-
tion de Recherche Petite Echelle Grande Echelle, which
means research project on small- and large-scales) global
model and ALADIN (Aire Limit́ee Adaptation Dynamique
Développement International) limited area model. This has
allowed the use of longer time steps and shortened the com-
puter time needed to complete the operational weather fore-
cast. Consequently these long time steps have been applied
to the physics parametrizations, resulting in occasional insta-
bilities in operational model forecasts using ARPEGE and
ALADIN models. The physics tendencies are often larger
than the dynamical ones, leading to strong transport in the
vertical.

Previous studies (Kalnay and Kanamitsu, 1988; Girard
and Delage, 1990; Bénard et al., 2000) have shown that
the vertical diffusion parametrization can cause fast non-
meteorological oscillations, usually of 21t period (where1t
is the model time step) around the slowly evolving true so-
lution. These oscillations are referred to as fibrillations. The
fibrillations are unwanted phenomena in the model since they
might cause other model parts to produce false weather phe-
nomena (clouds, rain, etc.) and lead to the wrong forecast or
model blow-up in the operational suite.

The physical parametrization scheme in an operational
NWP model often gradually evolves from one model ver-
sion to the next one. Additional forcing terms are included
in the particular parametrization, or the existing ones are
made more complex to ensure better and more detailed rep-
resentation of the real physical processes in the atmosphere.
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The numerical schemes used for parametrizations of phys-
ical processes did not achieve similar progress simultane-
ously (Beljaars, 1991). Numerically stable parametrization
can destabilize when an additional forcing term is intro-
duced (Beljaars, 2004). Consequently, more sophisticated
parametrization can give worse results.

Instability can be the property of the equation system be-
ing solved, not the numerical scheme (Epperson, 2001). Such
a system can be difficult to solve numerically even if it
has bounded a continuous analytic solution for given initial
and boundary conditions. Two strongly coupled processes
of comparable timescales can result in solutions of different
timescales and a stiff problem (Ropp et al., 2004). Atmo-
spheric processes are strongly coupled so it is of little sur-
prise that NWP models exhibit stiffness.

Stiff differential equations include several terms which
vary at very different rates and can generate rapidly vary-
ing solutions. When explicit numerical methods for solv-
ing differential equations are applied to a stiff problem, an
extremely small time step is required to maintain stability.
Mathematica (Wolfram, 1996) uses an adaptive procedure to
solve stiff differential equations, reducing the integration in-
crement (time step) until a stable solution can be tracked. On
the other hand, meteorological models sometime use a num-
ber of sub-steps in time to compute contributions of particu-
lar parametrization schemes (e.g. ECMWF,Beljaars, 2004).
Stiffness is a transient phenomenon, creating difficulties for
a mathematical criterion (e.g.Higham and Trefthen, 1993).

Stiffness is a property of the continuous system of equa-
tions, not of the numerical procedure used to solve it, but the
instability that appears in its solution is referred to as numer-
ical instability. These instabilities sometimes become evident
as model “blow-up”. Otherwise, the instability acts in a way
that the model fields are noisy and oscillate in space and time.
Although such oscillations are bounded and do not diverge
too far from the true solution, they can be responsible for the
false cloud or precipitation in the forecast (Teixeira, 2000).

One known stiff operator in meteorology is vertical dif-
fusion. The non-linear diffusion equation can induce non-
linear instability through interaction of components of dif-
ferent wavelengths. The error is difficult to detect since the
unstable solution only oscillates around the true one (Brown
and Pandolfo, 1982). These oscillations are often called fib-
rillations and have a period of 21t where1t is the model
time step.

The coupled system for vertical diffusion of momentum
and heat was found unconditionally stable to perturbations
for uniformly stratified and uniformly sheared flow (Davies,
1983). The source of instability in the heat diffusion equation
is related to the formulation of the diffusion coefficient as a
function of stability.

Linear stability analysis of the implicit scheme for ver-
tical diffusion equation is unconditionally stable (Stull,
1988). However, the turbulent diffusion equations are non-
linear when the diffusion coefficient depends on the model

variables. The practice of computing the exchange coef-
ficient explicitly – from the current values of the model
variables, and using this value for implicit computation
of the future values of the model variables – leads to
solutions that rapidly oscillate around a slow solution
(Kalnay and Kanamitsu, 1988). The stability of the scheme
decreases with increasing non-linearity of the diffusion co-
efficient. The solution can be stabilized using a filter that is
applied only when the scheme is unstable. This filter is an
over-implicit scheme that stabilizes the solution but reduces
the accuracy.

The vertical diffusion schemes with non-linear diffusion
coefficients are only conditionally stable. A solution has been
proposed (Girard and Delage, 1990) to vary the implicit-
ness of the scheme locally (in space and time). The scheme
is over-implicit only where, when and as much as needed.
Since the method used to stabilize the solution reduces the
accuracy, it is applied only when the instability is detected
through some criteria. The expressions for diffusion coef-
ficients of heat and momentum can be different, yielding a
more complex stabilization scheme.Bénard et al.(2000) im-
plemented a stabilization scheme in the parametrization of
turbulent diffusion in the ARṔEGE and ALADIN models.
Their stabilization scheme will be referred to as the anti-
fibrillation scheme. The shallow convection scheme was also
identified as a source of fibrillations. This was expected since
it is based on the same principle as the turbulence scheme
(Geleyn, 1987) and an associated stabilization scheme has
been developed (Telišman et al., 1998).

An alternative solution to the problem of fibrillations is
a construction of a numerical scheme designed for a partic-
ular problem. The 21t oscillations were removed from the
Met (Royal Meteorological Society) Office’s UM (Unified
Model) when a newly developed monotonically-damping
second-order-accurate unconditionally-stable scheme was
applied to the parametrization of vertical diffusion (Wood et
al., 2007). The scheme also requires an estimate of the non-
linearity of the diffusion coefficient.Schlegel et al.(2012)
implement a multi-rate time integration method to treat the
stiff processes in the air pollution model.

Teixeira(2000) studied the fibrillations and proposed an-
other method for solving the diffusion equation. His method
achieves stability by interpolating the data in the vertical and
solving the equations on a new vertical grid that is deter-
mined by a prescribed stability criterion. There are other ex-
amples for numerical treatment of stiff equations from atmo-
spheric chemistry (e.g.Jacobson, 2000).

Peer-reviewed literature seldom covers subjects such as
failures of an operational forecast run or fibrillations. As will
be shown here, there are 21t oscillations of model fields that
remain in the ARṔEGE forecast although the anti-fibrillation
schemes are activated in turbulence and shallow convection.
Because these problems exist, they have motivated a search
for a simple method that would detect a potentially unstable
parametrization. The method is intended to test the model
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robustness and show if there is any parametrized process or
a combination of processes that can produce numerically un-
stable results in any weather situation. The test should reveal
a possibility of model failure or more moderate signs of nu-
merical instability that could happen during the operational
forecast.

In the absence of straightforward mathematical criteria for
stiffness, the idea is to find a mechanism that would acti-
vate or amplify the numerically unstable behaviour if the
parametrization being tested is prone to stiffness. The stiff-
ness test of a potentially unstable scheme would result in
model blow-up or significant amplification of fibrillations.
Test of a stable scheme should yield a stable, non-fibrillating
result.

The tests presented here were performed on the Mét́eo-
France ARṔEGE model version that was operational un-
til 2006. It is a global model that covers a wide variety of
weather phenomena, and can use longer time steps. Both
ARPÉGE and ALADIN can use the same parametrization
schemes.

The second section demonstrates how the idea of the stiff-
ness test works on a simple reaction–diffusion equation. The
third section describes its application in the ARPÉGE model.
The fourth section reveals which parametrized processes in-
teract to produce amplified fibrillations. The last section
presents a summary and conclusions.

2 Testing a simple non-linear diffusion equation

2.1 A simple non-linear diffusion equation

The stiffness test will first be applied to a simple non-linear
damping equation as used byKalnay and Kanamitsu(1988):

∂ϕ

∂t
= −Kϕp+1(t)+D(t), (1)

whereKϕp represents the non-linear diffusion coefficient
with constantK = 10. The forcing term isD(t)= 1−

sin(2πt/24 h). The exponentp can be used to increase or
decrease the non-linearity of the problem.

Equation (1) is solved numerically using the method (g)
from Kalnay and Kanamitsu(1988):

ϕt+1t −ϕt

1t
= −K(ϕt )p

(
βϕt+1t + (1−β)ϕt

)
+Dt . (2)

Methodg from Kalnay and Kanamitsu(1988) is chosen
for its similarity for the scheme used in ARPÉGE and AL-
ADIN. The diffusion coefficientKϕp is always computed
explicitly. Parameterβ is used to control the level of implicit-
ness: forβ = 0 the scheme is explicit,β = 0.5 yields a semi-
implicit scheme, and forβ = 1 the scheme is implicit. The
IFS (Integrated Forecast System) model run operationally
by ECMWF (European Centre for Medium-Range Weather
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Fig. 1. Numerical solutions of Equation 1 with implicit (dotted), trapezoid (short dash) and explicit (long dash)

schemes for exponent p = 2 and time-step ∆t = 0.5 hours. Function D(t) is also shown (full line) for reference.
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17

Fig. 1. Numerical solutions of Eq. (1 with implicit (dotted), trape-
zoid (short dash line) and explicit (long dash line) schemes for ex-
ponentp = 2 and time step1t = 0.5 h. FunctionD(t) is also shown
(solid line) for reference.

Forecasts) uses the over implicit scheme withβ = 1.5. In
ARPÉGE, the anti-fibrillation scheme computesβ for each
grid point (Bénard et al., 2000).

Figure1 shows solutions to Eq. (1) for p = 2 and1t = 0.5
obtained with different levels of implicitness. The 21t fibril-
lations are clearly visible in the solutions usingβ = 1 and
β = 0.5, while the solution usingβ = 0 is unstable for this
value of the time step. The amplitude of the fibrillations is
an order of magnitude larger than the slowly varying referent
solution. The fibrillations reduce in amplitude when the forc-
ing term is small. Figure2 shows solutions to the linear form
of Eq. (1) (p = 0) and the non-linear problem (p = 2) with a
shorter time step. For a linear problem (p = 0), implicit and
semi-implicit schemes are stable and produce the correct so-
lution (Fig.2, left). When the time step used to solve the non-
linear form of Eq. (1) for p = 2 is reduced to1t = 0.25, the
implicit solution becomes free of fibrillations (Fig.2 right).
The explicit solution is always unstable, and the line escapes
the area of the graph after a number of time steps.

2.2 The test results for the simple problem

In the stiffness test, the parametrization scheme that is sub-
jected to the test is run with a different (1t/2) time step in the
diffusion term (the first term on the right side of Eq.1) than
the one used in the “rest of the model” (other terms of Eq.1).
This way, the scheme produces a tendency of the model vari-
able that will lead to inaccurate value ofϕt+1t . That value
will be used in the subsequent time step as input and produce
a new tendency of the model variable, again using a modified
time step in the diffusion term. The final solution is different
from the reference one, and we are interested in its nature.

Figure2 shows solutions to a linear form of Eq. (1), with
p = 0 and time step1t = 1/4 h on the left, and for the

www.geosci-model-dev.net/6/901/2013/ Geosci. Model Dev., 6, 901–913, 2013
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Fig. 2. The left figure shows the referent numerical solution of Eq. (1) (using scheme described by Eq.2) for the linear problem withp = 0.
The right figure shows the solution to the non-linear problem withp = 2 and time step1t = 1/4 h. The results are shown for implicit (dotted
line), trapezoid (short dash line) and explicit (long dash line) schemes. FunctionD(t) is also shown (solid line) for reference.

non-linear form withp = 2 on the right side. The results of
the proposed test applied to these two problems are shown
in Fig. 3. When the test is applied to a linear problem,
the result remains non-oscillatory with a shift in amplitude
of the slowly varying solution for the implicit and semi-
implicit schemes, while the explicit scheme is always un-
stable (Fig.3, left). Applying the test to a non-linear prob-
lem yields a solution where fibrillations dominate over the
slowly evolving component (Fig.3, right). The solution that
behaved properly in the reference run (the implicit one) ex-
hibits strong fibrillations with amplitude an order of magni-
tude larger than the true solution (Fig.3).

It is shown here that when the test is applied to a stable
scheme, the solution remains stable (although offset from the
true solution), but applying the test to a potentially unstable
scheme yields a solution with fibrillations of substantial am-
plitude.

3 Tests in the ARṔEGE model

3.1 Model description

ARPÉGE is a global spectral model (Courtier and Ge-
leyn, 1988) used for operational forecast by Mét́eo-France
(Courtier et al., 1991). Its limited area version, called AL-
ADIN, is run operationally by many national weather ser-
vices, including the Croatian one (Ivatek-̌Sahdan and Tu-
dor, 2004). The model version used here is a semi-implicit
semi-lagrangian two-time-level scheme (Robert, 1982) for
the hydrostatic shallow atmosphere. The non-linear resid-
ual is computed using the stable extrapolation for the semi-
lagrangian scheme (Hortal, 2002). The tendencies of the
model variables due to parametrized processes are computed
before the dynamical ones and interpolated to the origin
point of the semi-lagrangian trajectory. Both models use hy-
brid η coordinate (Simmons and Burridge, 1981) and finite

differences in the vertical. ALADIN uses double Fourier rep-
resentation of the fields (Machenhauer and Haugen, 1987).

The physical parametrizations of the ARPÉGE model ver-
sion used in this study include a vertical diffusion scheme
(Louis et al., 1982; Bénard et al., 2000), shallow convec-
tion (Geleyn, 1987; Telišman et al., 1998), deep convec-
tion (Geleyn et al., 1982), resolved (large-scale) precipita-
tion (Kessler, 1969) and a radiation scheme (Geleyn and
Hollingsworth, 1979; Ritter and Geleyn, 1992). Soil pro-
cesses related to temperature and moisture are parametrized
according toGiard and Bazile(2000).

The computations of the parametrized processes are done
for a single vertical column and compute the vertical fluxes
of model variables. The vertical flux of variableψ due to the
parametrized process isF proc

ψ . It is computed as a function
of model variables, their vertical gradients, other parameters
and the model time step:

F
proc
ψ = F(u,v,T ,qv, . . . ,1t). (3)

The fluxes and the model forecast variables are computed
on a grid that is staggered in the vertical. The model variables
are computed on model levels, while the fluxes are computed
on intermediate levels between the model levels. The model
grid is not staggered in the horizontal. All the parametrization
schemes use the same input values of the model variables, the
computations are done in parallel and the physics tendency
is obtained from the fluxes due to different processes at the
end of the physics computations. The local physical tenden-
cies are computed as vertical divergence of the fluxes. The
partial tendency of variableψ due to effects of parametrized
physical processes is(
∂ψ

∂t

)
phy

= −g
∂

∂p

[
F turb
ψ +F

prec
ψ +F conv

ψ + . . .
]
, (4)

where the square brackets contain all parametrized processes
relevant for the evolution of the model variableψ (e.g. turb

Geosci. Model Dev., 6, 901–913, 2013 www.geosci-model-dev.net/6/901/2013/
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Fig. 3. The left figure shows the result of solving Eq. (1) (using scheme described by Eq.2) with the fibrillation amplification test for the
linear problem withp = 0, and the right figure shows the solution to the non-linear problem withp = 2 and time step1t = 1/4 h. The results
are shown for implicit (dotted line), trapezoid (short dash line) and explicit (long dash line) schemes. FunctionD(t) is also shown (solid line)
for reference.

for vertical turbulent diffusion, prec for resolved precipita-
tion, conv for deep convection, etc.). The horizontal effects
are considered only through moisture convergence used in
the deep convection scheme. Other horizontal effects – the
exchange between columns – is treated by the dynamical part
of the model through advection and horizontal diffusion.

The model version used in this study is based on the fol-
lowing hypotheses of atmospheric energy and conservation
aspects: the atmosphere is composed of a mixture of two per-
fect gasses (dry air and water vapour), and the system is in
thermodynamic equilibrium (Courtier and Geleyn, 1988). In
the tested version of the model, the condensed phases that ap-
pear in the atmosphere have zero volume, fall and exchange
temperature and momentum with the layers they cross, and
leave the system in one time step, removing mass, momen-
tum and energy.

Temperature and specific moisture are prognostic vari-
ables in the model, but parametrizations compute fluxes of
heat. The temperature tendency is computed from heat fluxes
using specific heat at constant pressure, gas constant and la-
tent heats of evaporation and sublimation. Specific heat at
constant pressurecp varies with specific moistureqv, but re-
mains independent of temperature:

cp = cpa+ (cpv − cpa)qv, (5)

wherecpa is the specific heat for dry air andcpv is the specific
heat for water vapour. The gas constantR varies with specific
moistureqv as

R = Rd + (Rv −Rd)qv, (6)

whereRd is the gas constant for the dry air andRv is the
gas constant for water vapour. Evaporation and sublimation
latent heats vary with temperature:

L(T )= L0 + (cpv − cl/i)(T − Tt), (7)

whereL0 is the latent heat at the triple point temperatureTt,
cl is the specific heat of liquid water andci is the specific heat
of ice.

3.2 Stiffness tests of the parametrization schemes

The model parametrizations are designed to restore the ther-
modynamic equilibrium during one time step using the
parametrized processes. In the test, the flux is computed us-
ing the modified time step, e.g.

F
proc
ψ = F(u,v,T ,qv, . . . ,0.51t). (8)

The original model time step is used in subsequent compu-
tation of the model tendency due to parametrized processes.
The computed flux is modified and the model does not reach
the desired balanced state exactly.

As a consequence, the model might drift from the true so-
lution, and the forecast will be incorrect, producing stronger
or weaker temperature diurnal cycle, more or less cloudiness
and rain and more or less momentum transport in the verti-
cal. Any of these effects are an expected consequence of the
imbalance imposed by the modified time step used in the par-
ticular flux computation. We are interested to see if the model
variables exhibit unstable behaviour during the forecast run,
such as fibrillations.

The appearance of fibrillations in the model fields is diag-
nosed using the amplitude of the 21t oscillations that is com-
puted on the model levels using values of the model variables
from three subsequent time steps. The magnitude of fibrilla-
tions in the temperature field is computed using the formula

A=
1

2
[T (t +1t)+ T (t −1t)− 2T (t)] . (9)

For simplicity, only the results for temperature are pre-
sented here.

www.geosci-model-dev.net/6/901/2013/ Geosci. Model Dev., 6, 901–913, 2013
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Fig. 4. The amplitude of 2∆t temperature oscillations on the lowest model level (in Kelvin) after 96 hour

forecast for the referent model run computed according to Equation 9.
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Fig. 4.The amplitude of 21t temperature oscillations on the lowest
model level (in Kelvin) after 96 h forecast for the referent model run
computed according to Eq. (9).

The ARṔEGE model is run with a time step of 830.77 s,
equivalent to 13 time steps per 3 h. The model used a
stretched grid of variable horizontal resolution. The resolu-
tion is highest above France and lowest on the opposite side
of the globe. In the vertical the model employs 41 terrains
following η levels; the lowest level lies approximately 17 m
above the surface. The lowest level is numbered 41 and the
level numbers decrease with height.

The model is run for a 96 h period, with the magnitude
of fibrillations computed according to Eq. (9). A map of the
amplitude of fibrillations of temperature from the reference
model run (without the test) after 96 h forecast on the low-
est model level is shown in Fig.4. The areas with ampli-
tude larger than 0.5 Kelvin are shaded. Fibrillations exceed
the 0.5 K threshold in a number of areas. Figure5 shows
the evolution of temperature on the 12 lowest model levels
for each time step in one model grid point (lon= 7.22◦ E,
lat= 60.02◦ N) during the 96 h forecast of the reference
model run. The fibrillations are transient in nature and active
only in certain weather conditions. In this model grid point,
the fibrillations occur in stable conditions with a temperature
inversion.

The test was performed for each parametrization scheme,
one by one. In each test, the model was run with the op-
erational time step, and the time step used in the tested
parametrization was modified. This way, the parametriza-
tion computed the vertical flux of the model variable that is
needed to “balance” the model state in half the time step.
This flux is combined with fluxes from other parametriza-
tions (computed with the operational time step) and the re-
sulting tendency of the model variable and the future state of
the model att +1t are all computed using the operational
time step. As noticed by one of the reviewers, any pertur-
bation is quickly damped for an unconditionally stable nu-
merical scheme, with strong damping implying that if a good
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Fig. 5. Temperature (in Kelvin) in one model point on the 12 low-
est model levels for each time step during the 96 h forecast for the
referent model run. Level 41 is the lowest model level (solid line).

stable scheme is used, stiff symptoms may not be exposed by
the proposed test.

The amplitude of the oscillations of the model variable
from the reference model run (Figs.4 and 5) is compared
to the amplitudes from the run with the test (for example
Figs.6 and7) to compare the noise when the error is intro-
duced into the parametrization being tested. Figure6 shows
the amplitude of 21t oscillations of temperature computed
according to Eq. (9) on the lowest model level after 96 h pe-
riod for the model run, where the test with the amplification
of fibrillations was activated in the large-scale precipitation
scheme. The amplitude exceeds 16 K in several areas. One
should keep in mind that ARṔEGE uses stretched grid with
highest resolution above France and an order of magnitude
lower resolution on the farther side of the globe. Figure 4
shows the amplitude plotted as a shaded point for each model
grid point. Consequently, the area of considerable amplifica-
tion in the amplitude close to North Pole, north of the Bering
Sea, appears as stripes of grid points, although this is a con-
tinuous area in the model. Figure7 shows the evolution of
temperature on the lowest model level for the same test in
the large-scale precipitation scheme. The amplitude of fib-
rillations varies in time for several orders of magnitude in a
particular model grid point. The fibrillations appear, amplify
and diminish during the model forecast, and the model con-
tinues to run even though the variations in the temperature
field are far from possible to be achieved in nature.

The test results for each parametrization scheme can be
summarized as follows:

– Vertical turbulent diffusion and shallow convection are
already known to be stiff. These parametrizations al-
ready have the anti-fibrillation scheme implemented.

Geosci. Model Dev., 6, 901–913, 2013 www.geosci-model-dev.net/6/901/2013/
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scale precipitation scheme.
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Fig. 6.The amplitude of 21t temperature oscillations on the lowest
model level (in Kelvin) after 96 h forecast, computed according to
Eq. (9) for the model run with the fibrillation amplification test of
the large-scale precipitation scheme.

– Tests of the deep convection and gravity wave drag
schemes did not produce significant changes in the mag-
nitude of fibrillations.

– The test of the large-scale precipitation scheme pro-
duced high amplitude fibrillations in some parts of the
model domain (Fig.6). The amplitude of fibrillations
(Fig. 7) increased several orders of magnitude.

The test results revealed another stiff process in the model
– the large-scale precipitation scheme. The scheme describes
processes of condensation, evaporation, freezing and melt-
ing of precipitation. It also interacts with other processes
described in the model. It was important to find which
parametrized process, or a combination of processes, was re-
sponsible for the amplification of fibrillations.

4 The source of instability in the stratiform
precipitation scheme

4.1 The stratiform precipitation scheme

The stratiform precipitation scheme computes the precipi-
tation fluxes due to resolved condensation. The simplified
Kessler-type scheme (Kessler, 1969) scheme, as applied in
ARPÉGE and ALADIN models, is based on the hypothesis
that all condensed water is precipitated within one time step.
The whole amount of water vapour responsible for supersatu-
ration is condensed. The condensate falls down from the sat-
urated layer to the ground during one time step. Evaporation
of precipitation takes place in the unsaturated layers below.
Only the amount needed to reach saturation of the underly-
ing layer is evaporated. The water vapour-specific moisture
is the only prognostic variable describing the water content
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Fig. 7. Temperature (in Kelvin) in one model point on the 12 lowest model levels for each time-step during the

96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme.
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Fig. 7. Temperature (in Kelvin) in one model point on the 12 low-
est model levels for each time step during the 96 h forecast for the
model run with the fibrillation amplification test of the large-scale
precipitation scheme.

of a grid cell. The specific water vapour of the saturated air at
the wet bulb temperatureqw has a symmetric role, being the
lower limit for the specific humidityqv in the case of con-
densation and the upper limit in the case of evaporation. Sat-
uration is treated using the difference between the wet bulb
and local grid-average moisture (qw − qv):

– if qw−qv < 0 there is condensation in the layer and only
the amount1q = qv −qw is condensed, the condensate
leaves the layer as precipitation flux and the layer be-
comes saturated,

– if qw − qv > 0 and the precipitation flux on the top of
the layer isPt > 0, the precipitation evaporates, but not
more than is needed to saturate the layer.

The precipitation fluxP changes in the vertical are com-
puted using the pressure coordinatep:

∂
√
P

∂p
=
Ep

p2
(qv − qw); (10)

where the evaporation of precipitation is computed as

Ep = Cevap(1− rm)+CevapRevgslrm, (11)

Cevap= 4.8×106 is the value of the tunable parameter,rm is
the snow to water ratio, andRevgsl= 80 is the ratio of evap-
oration speeds for snow and rain.

The assumptions used in the large-scale precipitation
scheme are the following:

– the precipitation is at the same temperature as the sur-
rounding air,

– it is all liquid if the air temperature is above the triple
point temperatureTt and all frozen if it is belowTt.

www.geosci-model-dev.net/6/901/2013/ Geosci. Model Dev., 6, 901–913, 2013
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Fig. 7. Temperature (in Kelvin) in one model point on the 12 lowest model levels for each time-step during the

96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme.
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Fig. 8.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with the evaporation
of precipitation switched off. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels for
each time step during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but
with the evaporation of precipitation switched off.

In the case of condensation, we must consider if the temper-
ature is warmer or colder than the triple point:

– if T > Tt, the excess water vapour condenses as liquid
and the snow to water ratio of the precipitation flux de-
creases byrm = rm

Pt
Pb

wherePt andPb are the precipi-
tation fluxes at the top and at the bottom of the layer.

– if T < Tt, the excess water vapour condenses as solid
and the snow to water ratio of the precipitation flux in-
creasesrm = 1− (1− rm)

Pt
Pb

.

Melting (T > Tt) and freezing(T < Tt) of the precipitations
are computed as the change of the snow to water ratio in the
vertical:

∂rm

∂p
=Me

T − Tt

p2
√
Fp
, (12)

where the melting and freezing of precipitations is computed
as

Me = Cmelt(1− rm)+CmeltRevgslrm, (13)

andCmelt = 2.4× 104 is the value of the tunable parameter.
The final precipitation fluxes of liquid and solid conden-

sates are computed according to

PL = (1− rm)P and PS = rmP, (14)

wherePL is the precipitation flux for the liquid andPS for
the solid condensates.

4.2 The search for the source of the instability

The next issue is to find which process in the model, or a
combination of processes, is responsible for amplification of

fibrillations in the stiffness test of the large-scale precipita-
tion scheme. Here it is assumed that fibrillations can be re-
moved or reduced in intensity if one of the processes respon-
sible for amplification is switched off or modified in inten-
sity. For this purpose, a number of experiments are executed
in which the model is run with the stiffness test in the large-
scale precipitation scheme, and one of the parametrization
schemes is switched off (or reduced in intensity). The re-
sults of the experiments that test the interactions with other
parametrization schemes can be summarized as follows:

– the shallow convection scheme is switched off, but fib-
rillations remain,

– the deep convection is switched off, and the fibrillations
amplify, especially above sea surface on winter hemi-
sphere,

– switching off the vertical diffusion scheme leads to
model blow-up,

– the gravity wave drag is switched off, but the fibrilla-
tions remain,

– the radiation scheme is switched off, but the fibrillations
remain.

These tests show that the fibrillations are not the re-
sult of coupling a stratiform precipitation scheme to other
parametrization schemes (even those that are known to be
stiff).

The large-scale precipitation scheme includes several pro-
cesses. These processes were modified by means of tun-
ing parameters in separate experiments. In each experiment,
one process was modified, and the other processes remained
unchanged. Figures8 to 13 show maps of amplitude of

Geosci. Model Dev., 6, 901–913, 2013 www.geosci-model-dev.net/6/901/2013/
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Fig. 9. The left figure shows the amplitude of 2∆t temperature oscillations on the lowest model level (in Kelvin)

after 96 hour forecast computed according to Equation 9 for the model run with the fibrillation amplification

test of the large scale precipitation scheme but with reduced freezing of precipitation. The figure on the right

shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time-step during the

96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme

but with reduced freezing of precipitation.
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Kelvin) after 96 hour forecast computed according to Equation 9 for the model run with the fibrillation ampli-

fication test of the large scale precipitation scheme but with condensation switched off. The figure on the right
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96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme

but with condensation switched off.
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Fig. 9.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with reduced freezing
of precipitation. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time step
during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with reduced
freezing of precipitation.
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Fig. 9. The left figure shows the amplitude of 2∆t temperature oscillations on the lowest model level (in Kelvin)

after 96 hour forecast computed according to Equation 9 for the model run with the fibrillation amplification

test of the large scale precipitation scheme but with reduced freezing of precipitation. The figure on the right

shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time-step during the

96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme

but with reduced freezing of precipitation.
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Fig. 10.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with condensation
switched off. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time step
during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with condensation
switched off.

fibrillations of temperature on the lowest model level af-
ter 96 h integration, and the evolution of temperature on the
12 lowest model levels in one grid point for the experiments
that examine the processes in the large-scale precipitation
scheme. The results of these experiments are the following
(related figures are listed in the brackets):

– the coefficient for evaporation of precipitations (Cevap)
is set to 0, and the fibrillations disappear (Fig.8),

– the coefficient for melting of precipitations (Cmelt)
is significantly reduced, and the fibrillations remain
(Fig. 9),

– the condensation is turned off through logical switch,
and the fibrillations disappear (Fig.10),

– the cryoscopic cycle is turned off through logical
switch, and the fibrillations disappear (Fig.11),

– the cryoscopic cycle is activated, but the coefficients for
evaporation (Cevap) and melting (Cmelt) of precipitations
are set to 0, and the fibrillations disappear completely.

Fibrillations are linked to evaporation and the cryoscopic
cycle. One parameter that affects both processes is the ratio
of the speed of evaporation of precipitation between ice and
water (Revgsl) that is operationally set to 80.

Large values of the ratio of the speed of evaporation of
ice and water are the primary cause of the fibrillation ampli-
fication acting only when the cryoscopic cycle is activated
together with the evaporation of precipitation.

www.geosci-model-dev.net/6/901/2013/ Geosci. Model Dev., 6, 901–913, 2013
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Fig. 11. The left figure shows the amplitude of 2∆t temperature oscillations on the lowest model level (in

Kelvin) after 96 hour forecast computed according to Equation 9 for the model run with the fibrillation amplifi-

cation test of the large scale precipitation scheme but with cryoscopic cycle switched off. The figure on the right

shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time-step during the

96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme

but with cryoscopic cycle switched off.
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Fig. 11.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with cryoscopic cycle
switched off. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels for each time step
during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with cryoscopic
cycle switched off.
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96 hour forecast for the model run with the fibrillation amplification test of the large scale precipitation scheme

but with cryoscopic cycle switched off.
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Fig. 12.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with evaporation
ratio of ice and water reduced to 8. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels
for each time step during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but
with evaporation ratio of ice and water reduced to 8.

The large value of the coefficient describing the ratio of
the speed of evaporation of ice and water is a consequence of
several assumptions:

– The first assumption states that all the condensed water
and ice falls to the ground during one model time step.

– The second assumption is that the condensates are of the
same temperature as the surrounding air, and it is liquid
if the temperature is above the triple point, and solid if
it is below.

– Water drops fall about 4 times faster than ice crystals of
the same weight (Pielke, 2002). Both fall through all the
layers below the cloud during one time step. It is there-
fore assumed that the ice crystals spend 4 times more

time in a certain layer. Slower fall speed is accounted
for by adapting the parametrization so that the ice crys-
tals evaporate 4 times faster than the water drops.

– Additionally, one should take into account that ice crys-
tals have much larger surface than water droplets of
the same mass, so they can evaporate much faster. This
is accounted for by increasing the ratio of evaporation
rates for ice and water even further.

When all factors are considered, the ratio of the speed of
evaporation of ice crystals and water droplets is set to 80.
In the last set of experiments, the original value ofRevgsl is
changed from 80 to other values and the results are as fol-
lows:

Geosci. Model Dev., 6, 901–913, 2013 www.geosci-model-dev.net/6/901/2013/
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Fig. 13. The left figure shows the amplitude of 2∆t temperature oscillations on the lowest model level (in

Kelvin) after 96 hour forecast computed according to Equation 9 for the model run with the fibrillation amplifi-
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time-step during the 96 hour forecast for the model run with the fibrillation amplification test of the large scale

precipitation scheme but with evaporation ratio of ice and water reduced to 4.
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Fig. 13.The left figure shows the amplitude of 21t temperature oscillations on the lowest model level (in Kelvin) after 96 h forecast computed
according to Eq. (9) for the model run with the fibrillation amplification test of the large-scale precipitation scheme but with evaporation
ratio of ice and water reduced to 4. The figure on the right shows temperature (in Kelvin) in one model point on the 12 lowest model levels
for each time step during the 96 h forecast for the model run with the fibrillation amplification test of the large-scale precipitation scheme but
with evaporation ratio of ice and water reduced to 4.

– settingRevgsl= 1 means that snow evaporates as rapidly
as rain – there are no fibrillations,

– settingRevgsl= 20 leads to small reduction of fibrilla-
tion magnitude,

– settingRevgsl= 8 removes fibrillations from certain ar-
eas (Fig.12),

– settingRevgsl= 4 removes fibrillations from most areas
(Fig. 13).

When the ice crystal falls through the unsaturated warm
layer, it evaporates and melts rather quickly by using the heat
from the layer and reducing the temperature of the layer. In
the next time step, the layer becomes colder and saturated
so the ice crystals that fall through the layer grow, remov-
ing water vapour from the layer. Resulting condensation pro-
duces latent heating and increases its temperature. In the next
time step, the layer is unsaturated and warm again.

The radiation scheme computes new fluxes every time step
so it could interact with the instabilities caused by the large-
scale precipitation scheme if there are alternating time steps
with and without a cloud. However, the radiation contribution
to the evolution of temperature during one time step is small
when compared to contributions of other parametrizations,
such as large-scale precipitation or vertical diffusion. This is
why it does not have a significant affect on the instability
produced by the large-scale precipitation scheme.

5 Conclusions

Noisy solutions are a common feature of atmospheric mod-
els.Girard and Delage(1990) apply the stabilization scheme
for vertical diffusion in the Canadian spectral weather fore-
cast model,Bénard et al.(2000) in ARPÉGE and ALADIN

models, andWood et al.(2007) develop a stable scheme for
the Unified Model.Teixeira(2000) describes noisy solutions
in the IFS model that are a consequence of the interaction
between the radiation, vertical diffusion and cloud schemes.

In a meteorological model, the equations that parametrize
physical processes are highly non-linear and depend on
model prognostic variables and their derivatives. Several
parametrizations describe processes that have timescales
comparable or even less than the model time step. The prob-
lem of non-linearity is made worse in parametrizations that
use different formulations or coefficients depending on the
weather conditions, such as the static stability of the bound-
ary layer or the condition if the air temperature is above or
below the triple point.

Here it is shown how to test the parametrizations for stiff-
ness as they are implemented in the model. The parametriza-
tions are “pushed” to become unstable by the modified
time step used only in the particular computations. The test
activates and amplifies the fibrillations. When the test was
applied to a non-stiff problem, no fibrillations appeared. But
when the test was applied to a stiff system, the fibrillations
were initiated and amplified by several orders of magnitude.
In meteorological model, the fibrillations amplified only in
certain areas of the globe. The fibrillations were also tran-
sient in time, confirming that the fibrillations are activated
only when particular conditions are met.

The method presented here provides a technical test of
the model robustness that checks for instability resulting
from stiffness. Using the presented test revealed another stiff
equation set in the model, the one describing resolved pre-
cipitation processes. The findings of this paper support the
previous results ofBrown andÁrnason(1973) and Brown
(1977) who showed the equations of droplet growth to be
stiff. Similarly, Sednev and Menon(2012) analysed source
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codes of bulk cloud microphysics parametrizations for warm
rain processes in various community models and found defi-
ciencies in numerics that restrict the length of the time step.
These equation sets describe growth of droplets of different
sizes, and are more complex than the simple parametrization
scheme used here.

Explicit numerical methods are not useful when solving
stiff sets of equations. The equations for droplet growth can
be solved using an iterative (Brown andÁrnason, 1973) or a
non-iterative partially implicit solution (Brown, 1977). Other
examples of the numerical methods for treatment of stiff
equations are those used for the turbulent diffusion and to
describe chemical properties (Jacobson, 2000).
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