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ABSTRACT 

 

EXPRESSION AND PURIFICATION OF HUMAN LYSOSOMAL  

β-GALACTOSIDASE FROM PICHIA PASTORIS 

 

SEPTEMBER 2014 

SARAH TARULLO, B.S UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S. UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Scott C. Garman 

 

 Lysosomal storage diseases are genetically inherited diseases caused by the dysfunction 

of lysosomal enzymes. In a normal cell, lysosomal enzymes cleave specific 

macromolecules as they are transported to the lysosome. However, in diseased cells, 

these lysosomal enzymes are either absent or malfunctioning, causing macromolecular 

substrates to accumulate, becoming toxic to the cell. Over fifty lysosomal storage 

diseases have been identified, collectively occurring in one out of 7,700 live births. We 

investigated the lysosomal enzyme β-galactosidase (β-gal). In order to study the 

biochemistry and enzymology of this protein a robust expression system was needed. The 

GLB1 gene has been inserted into Pichia pastoris creating high protein expressing cell 

lines. The result of this work will yield a high expression system for β-gal, which can 

then be subjected to structural and biochemical studies. 
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CHAPTER 1 

INTRODUCTION 

Lysosomal Storage Diseases 

Lysosomal storage diseases are human genetic disorders caused by the 

malfunction of lysosomal enzymes.  In a normal cell, these enzymes are translated off of 

the ribosomes and translocated into the endoplasmic reticulum (ER).  In the ER, these 

proteins are modified and interact with macromolecular chaperones that ultimately result 

in properly folded protein. From the ER, lysosomal proteins are then transported to the 

Golgi apparatus, where they are further post-translationally modified and transported to 

the lysosome. Once in the lysosome, lysosomal enzymes are then responsible for the 

metabolite processing and degradation of a wide variety of substrates.  In humans, a 

Figure 1.  Cartoon of lysosomal storage disease mechanism.  Top depicts the normal trafficking of lysosomal 

proteins to the lysosome.  Polypeptide is translocated into the ribosome where it is properly folded and assembled.  It 

is then trafficked to the Golgi Apparatus and finally to the lysosome where it can then degrade substrate.  The bottom 

depicts what occurs in lysosomal storage disease, where protein is either not made or misfolded, resulting in 

degradation via the proteasome.  Lysosomal proteins never reach the lysosome, causing a build-up of substrate, 

resulting in disease.   
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deficiency of a single lysosomal enzyme leads to substrate accumulation, which becomes 

toxic to the cell and causes lysosomes to swell.  A cartoon of this is shown in Figure 1.  

These metabolic defects are collectively known as lysosomal storage diseases.  Currently 

over 50 lysosomal storage diseases have been discovered, collectively affecting 1 in 

7,700 live births (Staretz-Chacham, et al. 2009).  Although there are some caused-based 

treatments for lysosomal storage diseases, many therapies are only focused on the 

alleviation of symptoms.   

Caused-based treatment options for lysosomal storage diseases include substrate 

reduction therapy, stem cell therapy, gene therapy, enzyme replacement therapy, and 

pharmacological chaperone therapy (Lim-Melia, et al. 2009).  Currently, enzyme 

replacement therapy is the most common Federal Drug Administration (FDA) approved 

treatment for lysosomal storage disease.  It is approved for seven lysosomal storage 

diseases:  Fabry disease, Gaucher disease, Pompe disease and Mucopolysaccharidosis 

Types I, II, IVA and VI (Lim-Melia, et al. 2009, BioMarin, 2014).  However, enzyme 

replacement therapy is very expensive, costing patients $200,000-$300,000 annually 

(Beutler, 2006).  These patients must receive intravenous infusions of recombinant 

enzymes on a weekly or bi-weekly basis (Lim-Melia, et al. 2009).   

An alternative, less invasive treatment is pharmacological chaperone therapy.  

This approach uses small molecules that are competitive inhibitors of specific lysosomal 

enzymes.  Traditional pharmacological chaperones bind to the active site of mutant 

lysosomal enzymes in the ER, causing a shift in equilibrium of the lysosomal enzyme 

toward the folded protein state (Fan, 2003).  The folded protein can then reach the 

lysosome and degrade substrate.  Although not an option for all genotypes, 
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pharmacological chaperones appear to be a promising treatment option for lysosomal 

storage diseases.  Currently deoxygalactonojirimycin (DGJ), a small molecule 

pharmacological chaperone, is in Phase III clinical trials to treat Fabry Disease, a 

metabolic disease caused by defects in lysosomal α-galactosidase (Benjamin, et al. 2009).  

Another small molecule tested in clinical trials is isofagomine or Plicera™.  Although 

found to have in vitro effects (Chang, et al. 2006), clinical trials proved less promising 

(Amicus, 2009). 
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Human Lysosomal β-galactosidase (GLB1) 

Human lysosomal β-galactosidase is an enzyme encoded on chromosome 3 by the 

GLB1 gene (Suzuki, et al. 1995).  This enzyme is responsible for the cleavage of terminal 

β-linked galactose residues from glycoproteins, sphingolipids, keratan sulfate, and other 

glycoconjugates (Suzuki, et al. 1995).  Previous studies have shown the reaction 

mechanism of GLB1 to be a double displacement reaction (McCarter, et al. 1997 Ohto, et 

al. 2012).  This reaction requires two carboxylic groups, one to act as a catalytic 

nucleophile, the other as an acid/base catalyst.  (Koshland and Stein, 1954).  It has been 

 Figure 2.  Processing of GLB1.  Monomeric GLB1 highlighting protein cleavage 

to the mature form with galactose soaked into the active site.  N-terminal region is 

shown in purple; the C-terminal region shown in pale yellow.  The precursor form 

of GLB1 is cleaved into this mature form, where the C-terminal fragment remains 

associated with the N-terminal region. Figure generated using PBID: 3THC. 
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determined that in GLB1 the catalytic nucleophile is E268 and the acid/base catalysis is 

E188 (McCarter, et al 1997).   GLB1 is synthesized as an 85 kDa protein, and when 

phosphorylated results in an 88 kDa precursor protein (Callahan, 1999).  This precursor is 

then processed into the mature 64 kDa protein via cleavage of the C-terminal end which 

remains associated with the mature protein as shown in Figure 2 (Callahan, 1999, van der 

Spoel, et al. 2000).   Previous studies have shown that the precursor enzyme has normal 

activity (Zhang, et al. 1994), but it is not known whether the precursor has activity 

against native substrate (Callahan, 1999).  GLB1 is trafficked to the lysosome in a multi-

enzyme complex consisting of two other lysosomal enzymes, protective 

protein/Cathepsin A (PPCA) and neuramidase I (NEU1) (van der Spoel, et al. 2000).  

However some patients with a PPCA deficiency retain some GLB1 activity, thus 

suggesting an alternative trafficking pathway for GLB1 outside this multi-enzyme 

complex (Hoogeveen, et al. 1983).   

The endogenous GLB1 enzyme has been purified from liver cells (Norden, et al. 

1974), human fibroblasts (Fuyura, et al. 2008), and human placenta (Lo, et al. 1979).  

Recombinant GLB1 enzyme has also been expressed and purified from eukaryotic cells 

such as Chinese Hamster Ovary (CHO), (Zhang, et al. 1994) and Pichia pastoris yeast 

cells (Ohto, et al. 2012).  Enzyme activity has been reported from both purified 

recombinant enzyme and from cells of GM1-gangliosidosis patients.  In order for stored 

substrate (GM1-ganglioside and/or keratan sulfate) to be cleared, an estimated 10% of 

normal GLB1 activity is needed (Suzuki, 2006).  Recombinant GLB1 purified from CHO 

cells showed optimal enzymatic activity at pH 4.3, with a reported KM and Vmax of 0.29 

mM and 989 mmol/h/mg respectively, using the fluorescent synthetic substrate 4-
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methylumbelliferyl-β-D-galactoside (4MU-β-gal) (Zhang, et al. 1994).  Using 2, 4-

dinitrophenyl- β-D-galactoside, a colorimetric synthetic substrate, a KM of 0.73 mM and 

Vmax of 888 mmol/hr/mg were reported (Zhang, et al. 1994). GLB1 activity from skin 

fibroblasts from patients with infantile GM1-gangliosidosis was less than 1% of control 

fibroblasts (Hoogeveen, et al. 1984).  In fibroblasts from patients with Morquio B 

Disease and adult GM1- gangliosidosis activity was measured to be 4-9% of normal 

fibroblasts.   

The crystal structure of the GLB1 dimer was published in 2012 by Ohto et al. 

(Figure 3).  They reported the protein crystal structure of recombinant GLB1 from yeast 

cells, Pichia pastoris. GLB1 had been purified, deglycosylated, and trypsinized to mature 

GLB1 with galactose (PBID: 3HTC) and DGJ (PBID: 3THD) soaked into the active site.  

It was reported that GLB1 is a dimer at pH 4.5 (Ohto, et al. 2012), although previous 

studies have reported that it is a monomer at neutral pH (Norden, et al. 1974).  The 

monomeric structure has seven glycosylation sites in addition to three distinct domains:  

Figure 3. Dimer crystal structure of GLB1.  The crystal structure of GLB1 

was solved to 1.8 angstrom resolution in the space group P21 shown here as a 

dimer and with galactose (red spheres) soaked into the active site.  Figure 

generated using PBID: 3THC. 
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the catalytic TIM barrel domain and two β-domains (Ohto, et al. 2012).  The GLB1 active 

site is formed at the C-terminal end of the β-strands in the eight-stranded α/β barrel.  The 

data obtained from this crystal structure and its analysis is crucial in attempts for future 

structure-based drug design of inhibitors and possible pharmacological chaperone 

candidates. 

GM1-gangliosidosis and Morquio B Disease 

   Over 100 mutations have been discovered in the human GLB1 gene, leading to 

two distinct lysosomal storage diseases:  GM1-gangliosidosis and Morquio B disease 

(Brunetti-Pierri, et al. 2008).  GM1-gangliosidosis is an autosomal recessive disease 

caused by the accumulation of the glycolipid GM1-ganglioside in the central nervous 

system (CNS) (Sinigerska, et al. 2006).  Patients with this disease display symptoms of 

intellectual disability, seizures, liver and spleen enlargement, and neurodegeneration 

(Brunetti-Pierri, et al. 2008).  GM1-gangliosidosis affects 1 in 100,000-200,000 newborns 

Figure 4. GLB1 with GM1-gangliosidosis and Morquio B Disease mutations.  Left: Monomer of GLB1 with 

location of GM1-gangliosidosis mutations.  Over 100 mutations have been discovered and GM1-gangliosidosis can 

result from any of these point mutations.  Disease is further categorized by severity and age of onset, Type I being 

the most severe form of the disease.  Type I is in red, Type II is in green, and Type III is in blue.  Center:  Monomer 

of GLB1 with Morquio B mutations in cyan.  Right: Monomer of GLB1 with both GM1-ganglioside (magenta) and 

Morquio B (cyan) mutations.  Figure generated using PBID: 3THC. 
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and is classified into three categories, Type I, Type II, and Type III.  Type I, or Infantile 

GM1 gangliosidosis, manifests within the first six months of life and is the most severe 

form of the disease.  It is characterized by massive nervous system involvement, coarse 

facial features, skeletal dysplasia, visceromegaly, and rapid progression to death, usually 

within the first two years of life.  Type II, or Juvenile GM1-gangliosidosis, has a later 

onset, usually manifesting by age three, and has a slower disease progression.  Type III, 

or Adult GM1-gangliosidosis, has the slowest disease progression and manifests between 

ages three to thirty.  Morquio B disease, or Mucopolysaccharidosis IVB, is characterized 

by massive skeletal changes, corneal clouding, and impaired cardiac function, and lacks 

any primary CNS involvement.  There are no world-wide incidence data for Morquio B 

disease.  Mutations for each disease are mapped onto monomer of GLB1 in Figure 4.  

Neither of these diseases currently have an effective treatment. 

It is not clear why GM1-gangliosidosis and Morquio B present such markedly 

different disease phenotypes but each result from mutations in the same enzyme. One 

cause for the difference may be in the delivery of substrates, GM1-gangliosidosis and 

keratan sulfate (Figure 5).  In order for cleavage of GM1-gangliosidosis to occur, an 

activator protein is required, Saposin B (sap B) (Zschoche, et al. 1994, Paschke, et al. 

Figure 5.  Substrates of GLB1.  Left: GM1-ganglioside, Right: keratan sulfate.  Arrows indicate cleavage site by 

GLB1.    
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1982).  Sap B is not required for the hydrolysis of keratan sulfate (Pshhezhetsky and 

Ashmarina, 2001).  One study has shown that the Morquio B mutation W273L changes 

the affinity of GLB1 for keratan sulfate only (Oshima, et al. 1991), and there is no 

hindrance to GM1-ganglioside metabolism.  Future studies involving binding of natural 

substrates and sap B are needed to answer these questions.   

Small Molecule Inhibitors of GLB1 

The identification of potential small molecule inhibitors to be used as 

pharmacological chaperones for GM1-gangliosidosis and Morquio B disease has been the 

topic of intensive research over the last decade, as no effective treatment is currently 

available for these diseases.  Since the structure of GLB1 was not published until 2012, 

previous research was based on galactose, the product of the reaction, which was already 

known to be a competitive active site inhibitor (Figure 6A).  Previous studies have shown 

that adding galactose to another glycosidase, α-galactosidase, can recover enough 

Figure 6. Structures of small molecule inhibitors of GLB1.  A. The catalytic product, galactose, 

with stars showing relevance in comparison with the other molecules.  B.  DGJ, an iminosugar with 

neither α nor β specificity, but has an amine substituted for the heterocyclic oxygen.  C. 4-epi-

isofagomine is another iminosugar, with the amine in position 1.  D.  NOEV is a DGJ analog with 

additional hydrophobic characteristics added at position 1. 
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enzyme activity to degrade substrate in Fabry disease fibroblasts cells (Okumiya, et al. 

1995).  As a result of the success of galactose in Fabry diseased cells, galactose was 

tested for chaperoning activity in GM1-gangliosidosis fibroblasts.  In fibroblasts from 

infantile and juvenile GM1-gangliosidosis patients, there was no inherent effect of the 

addition of galactose on the recovery of enzyme activity.  However, in the adult GM1-

gangliosidosis, fibroblasts enzyme activity increased two to five times basal values at a 

concentration of 200 mM galactose (Caciotti, et al. 2009).  In addition, COS-1 cells, 

(African green monkey kidney cells) that expressed the adult GM1-gangliosidosis 

mutation R442Q also showed improved enzymatic activity, increasing 6.9-12% from 

control values after treatment with 200 mM galactose (Caciotti, et al. 2009).    

In addition to galactose, another compound shown to be a tight binding inhibitor 

of α-galactosidase is 1-deoxygalactonojirimycin (DGJ) (Figure 6B).  Although DGJ has 

been tested as an inhibitor of GLB1, its affinity is reduced compared to its affinity for α-

galactosidase (Guce, et al. 2011, Clark, et al 2012).  Furthermore, other galactose 

derivatives have been created and tested as possible small molecule inhibitors.  Many of 

these compounds show micromolar IC50 values when tested with GLB1 (Fantur, et al. 

2010, Froehlich, et al. 2011).  The compound N-octyl-4-epi-β-valienamine (NOEV) 

(Figure 6D) has been the focus of several studies because this compound is a tight 

binding inhibitor of GLB1 and increases enzyme activity (Matsuda, et al. 2003).  Another 

study also demonstrated the effectiveness of NOEV, finding 22 of 94 missense mutations 

in GM1-gangliosidosis were responsive to NOEV chaperone treatment (Higaki, et al. 

2011).  A small library of isofagomine derivatives were tested as competitive inhibitors 

of various glycosidases (Kato, et al. 2011).  In this study, the small molecule 4-epi 
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isofagomine (Figure 6C) was a good inhibitor of β-galactosidase from bovine liver and 

rat intestines, with IC50 values of 21 μM and 0.51 μM respectively (Kato, et al. 2011).  

Another study performed inhibition assays and crystallography with galactose, DGJ, 

NOEV (PBID: 3WEZ), and three new compounds, 5N, 6S-(N’-butyliminomethylidene)-

6-thio-1-deoxygalactonojirimycin (6S-NBI-DGJ, PBID: 3WF0), 5N, 6S-(N’-

butyliminomethylidene)-6-thiogalactonojirimycin (6S-NBI-GJ, PBID: 3WF1), and N-

(N’-butylthiocarbamoyl)-1-deoxygalactonojirimycin (NBT-DGJ, PBID: 3WF2).  Of these 

compounds NOEV had the highest inhibition with a Ki of 1.1 μM (Suzuki, et al 2014). 

Pichia pastoris  

Pichia pastoris is a methylotropic yeast, capable of using methanol as its sole 

source of carbon through the induction of alcohol oxidase (AOX).  In the presence of 

other carbon sources, the AOX proteins are virtually absent, but under induction 

conditions accounts for greater than 30% of cellular protein.  Pichia contains two alcohol 

oxidase genes, AOX1 and AOX2.  Most of the alcohol oxidase activity results from 

expression from the AOX1 gene with the phenotype methanol utilization plus (Mut+), but 

if disrupted, Pichia are still capable of utilizing methanol as its sole carbon source via the 

AOX2 gene.  However, it is at a slower rate leading to the phenotype methanol utilization 

slow (MutS).   Pichia has also been largely sought after as a protein expression system 

due to its ability to generate ultra-high cell density during fermentation (>130 g dry cell 

weight/L) (Sreekrishna and Kropp 1996).  Two Pichia strains were used in these studies, 

X-33 and GS115.  X-33 is a wild-type Pichia strain with the ability to grow in complex 

and minimal media.  The GS115 strain contains a mutation in the histidinol 

dehydrogenase gene (his4) that prevents histidine synthesis.  This strain has the ability to 



12 

 

grow on both complex media and minimal media supplemented with histidine.  Both of 

these strains have an intact AOX1 gene, and thus should produce recombinant yeast with 

the phenotype Mut+.    

Research Aims  

 The aim of my research is to express, purify and evaluate the enzymatic 

parameters of human lysosomal β-galactosidase expressed from Pichia pastoris.  The 

rationale behind creating this system is to 1.) Improve upon the expression observed in 

insect cells and 2.) Create a protein sample that can be easily deglycosylated and 

processed to the mature form for crystallography experiments.  Crystallography of GLB1 

previously purified from insect cells was unsuccessful; with this construct we are much 

closer to obtaining crystals.   The published crystal structure was from recombinant 

protein expressed in Pichia, therefore this should be a valid expression system (Ohto, et 

al. 2012).  From this expression system recombinant GLB1 can then be used in not only 

crystallography experiments, but other biochemical and structural studies.   
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CHAPTER 2 

MATERIALS AND METHODS 

Molecular Biology 

The GLB1 gene with a C-terminal four glycine spacer and hexahistidine tag had 

previously been inserted into the pIB/V5 vector for insect cell expression (Rivera-Colon, 

2013). To insert into pPICZαA vector (Invitrogen) for Pichia expression, PCR was 

performed.  This PCR created a fragment containing the GLB1 gene (residues 24-677) 

and attached spacer and tag, inserted downstream of the Saccharomyces cerevisiae α-

mating factor signal sequence (Figure 7).  The construct also included XhoI and SacII 

restriction enzyme sites for cloning purposes.  PCR primers used were as follows:  

forward 5’ACTATCTCGAGAAAAGAGAGGCTTTGCGCAATGCCACCA 3’; reverse 

5’ ACGTTCCGCGGTTTAATGGTGATGGTGATGGTGACCTCCACCTCCTACA 3’.  

PCR was performed using Phusion polymerase (New England Biolabs) with final 

concentrations of 1X GC Buffer (NEB), 250 μM dNTPs (NEB),  625 μM forward and 

Figure 7. GLB1 construct inserted into the pPICZαA vector.  The GLB1 gene 

was inserted into the pPICZαA vector using restriction enzymes.  This construct 

contained a C-terminal four glycine spacer followed by a hexahistidine tag for 

affinity purification.  A Kex2 signal sequence was also included for protein 

secretion. 
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reverse primers, 0.5 ng template DNA with a 20 μL total reaction volume.  Successful 

PCR product was confirmed via agarose gel electrophoresis using 0.8% agarose.  

Following PCR, products were purified using a Wizard SV gel and PCR clean up kit 

(Promega).  PCR products and the pPICZαA vector (Invitrogen) were then digested with 

XhoI and SacII (NEB) overnight at 37ºC, and complete digestion confirmed via agarose 

gel electrophoresis.  After gel purification, the empty vector was dephosphorylated using 

Antarctic phosphatase (NEB) to minimize background transformants.  The reaction 

proceeded at 37ºC for one hour followed by heat inactivation at 65ºC for 20 minutes.  

Insert and vector were ligated at a 3:1 ratio using a total of 100 ng DNA.  Quick Ligase 

Kit (NEB) was used and the reaction incubated at room temperature for five minutes.  

Ligation products of insert and vector and dephosphorylated empty vector were 

transformed into TOP10 E. coli cells (Invitrogen) and plated on low-salt LB agar plates 

containing 25 μg/mL Zeocin.  These were incubated at 37ºC overnight, and then checked 

for bacterial growth.  Several colonies were selected and subjected to colony PCR where 

insertion of the GLB1 gene was confirmed.  Four colonies from this PCR were then 

selected and sent out for sequencing to confirm the correct insertion of GLB1 into the 

pPICZαA vector. 

Yeast Transformation 

Two host strains of Pichia pastoris, X-33 and GS115, were selected for 

transformation.  The X-33 genotype is wild type resulting in a Mut+ Pichia phenotype, 

whereas the GS115 genotype is his4 resulting in a His-, Mut+ Pichia phenotype.  The 

lithium chloride method for yeast transformation was used with 8 μg of plasmid per 
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transformation.  Cells were plated two and seven hours after transformation onto YPDS 

plates containing 100 μg/mL Zeocin.   

To confirm insertion of GLB1/pPICZαA vector, colony PCR of yeast 

transformants was performed.  PCR was performed on select colonies with the following 

conditions: 1X Taq Polymerase reaction buffer (NEB), 2.5 mM MgCl2, 2.5 mM dNTPs 

(NEB), 0.5 mM forward and reverse primers, and Taq polymerase (0.16 U/μL) with 

ddH2O added to a final reaction volume of 50 μL.  Select colonies were also screened for 

Mut phenotype, to see where the vector had inserted in the yeast genome, and how the 

transformants grew under induction conditions.  Colonies were typically Mut+, but others 

studies have shown a small number of colonies to be MutS (Sreekrishna and Kropp 

1996).  These colonies were first patched onto minimal media plates (with and without 

histidine) containing methanol, followed by patching on minimal media plates (with and 

without histidine) containing dextrose.   

Protein Expression 

To assess for GLB1 expression, four colonies were selected for small-scale 

expression at both pH, 4.5 and 6.0.  These pHs were selected, as the recommended pH 

6.0 (Invitrogen Easy Select manual) and pH 4.5, the pH of the lysosome, where the 

protein is expected to be most stable.  A single colony was used to inoculate 25 mL 

buffered complex media containing glycerol (BMGY) containing 1X penicillin and 

streptomycin antibiotics shaking at 250 rpm at 30ºC and grown to an OD600 of ~2-6 

(approximately 20 hours).  These cells were then harvested at 3000 x g for five minutes.  

Protein expression was induced by resuspending cells in buffered complex media 
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containing methanol (BMMY) to an OD600 of 1.0 (approximately 100-200 mL).  Cultures 

grew for 96 hours at 27ºC shaking at 250 rpm.  100% methanol was added every 24 hours 

to a final concentration of 0.5% for induction to be maintained.  1 mL time points were 

taken at 6, 12, 24, 48, 72, and 96 hours and assayed for GLB1 expression.  Larger scale 

culturing was performed as described in the Invitrogen Easy Select manual. 

X-gal Activity Assay 

GLB1 expression assays were performed using a dot-blot activity assay with 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) as the substrate.  X-gal is 

cleaved by GLB1 (Figure 8) yielding galactose and 5-bromo-4-chloro-3-hydroxyindole, 

which then dimerizes and oxidizes to 5, 5-dibromo-4, 4’-dichloro-indigo, displaying a 

bright blue color.   50 μL of supernatant was blotted onto nitrocellulose, gravity filtered 

through the membrane and then incubated in 10 mM acetate pH 4.5, 120 mM sodium 

chloride containing 50 μL of 100 mg/mL X-gal at 37ºC overnight.  The appearance of 

blue color indicated the presence of GLB1 in the sample.   

Protein Purification 

After 96 hours cells were pelleted via centrifugation at 4000 rcf for 5 minutes.  

The supernatant was then decanted and re-centrifuged twice at 5000 rcf for 15 and 45 

minutes to remove any remaining cell debris. The supernatant was concentrated and 

buffer exchanged via tangential flow through 10 kDa filter.  After concentrating ten-fold, 

the sample was buffer exchanged into wash buffer for nickel-affinity chromatography (50 

mM phosphate pH 7.0, 250 mM sodium chloride).  The sample was loaded onto a 5 mL 

nickel fast flowcolumn (GE), to which the hexahistidine tag on GLB1 binds.  GLB1 was 
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eluted with a gradient of up to 400 mM imidazole, which competes with the His-tagged 

GLB1 for binding on the nickel column. 1.25 mL fractions were collected and analyzed 

for GLB1 presence and activity.  The fractions containing GLB1 were pooled for assay or 

further purification.  Analyses of purifications were performed using 10% SDS-PAGE 

gels.   

Deglycosylation 

Deglycosylation was performed to remove the glycosylations from GLB1, as 

Pichia has a tendency to hyperglycosylate secreted proteins.  EndoH (NEB) was chosen 

as the endoglycosidase as results have shown it to completely deglycoslyate GLB1 (Usui, 

et al 2011).  Purified protein was buffer exchanged into 20 mM sodium acetate pH 5.1, 

100 mM sodium chloride before 500 U of EndoH was added.   This reaction was 

incubated at room temperature overnight.  After deglycosylation GLB1 was subjected to 

affinity purification using a p-aminophenyl β-D thiogalactopyranoside agarose column 

(Figure 9).  Sample was buffer exchanged into equilibration buffer (20 mM sodium 

acetate pH 5.1, 100 mM sodium chloride) and then incubated with 1 mL of packed matrix 

for ~30 minutes before washing with 50 column volumes of equilibration buffer.  GLB1 

was then eluted using 20 mM sodium acetate pH 5.1, 100 mM sodium chloride, 1 M 

Figure 8. X-gal reaction mechanism.  GLB1 hydrolyzes X-gal, producing galactose and 5-bromo-4-chloro-3-

hydroxyindole (1).  This then dimerizes and is oxidized to for an insoluble, blue precipitate (2).   
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galactose. Fractions containing GLB1 were pooled and concentrated for use in assays.  

Analysis of purification was performed using 10% SDS-PAGE. 

Trypsin Proteolytic Cleavage 

In order to achieve the mature form of GLB1, limited trypsin proteolysis was 

performed.  The published procedures in Usui et al. 2011 were followed, and GLB1 was 

buffer exchanged into 50 mM phosphate buffer pH 5.1, 120 mM sodium chloride.  

Limited proteolysis was initiated by the addition of 1:25 (w:w) trypsin.  The reaction 

proceeded at 37ºC for 30 minutes before benzamidine was added to a final concentration 

of 1 mM to stop the reaction.  Analysis of limited proteolysis was performed using 10% 

SDS-PAGE.   

 

 

 

 

 

Figure 9.  p-aminophenyl β-D thiogalactopyranoside agarose 

matrix.  Non-hydrolizable affinity matrix used for GLB1 

affinity purification. 
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Enzyme Kinetics 

Enzyme kinetics were performed using a synthetic substrate, para-nitrophenyl-β-

D-galactopyranoside (pNP-β-gal).  GLB1 cleaves this substrate into D-galactose and 

para-nitrophenol (pNP).  When placed under the basic conditions of the stop buffer, pNP 

deprotonates to the para-nitrophenylate ion.  This reaction shown in Figure 10 produces a 

yellow color which absorbs light at 400 nm.  Therefore, absorbance was read at 400 nm, 

then converted to pNP concentration to determine activity in all assays.  Twelve substrate 

concentrations were prepared by combining  pNP-β-gal from 0.1 mM - 6 mM, 0.2 M 

phosphate-citrate buffer pH 4.0, 0.1% bovine serum albumin (added as a crowding 

agent), and 0.133 µg/mL GLB1.  The reaction proceeded at 37°C for 25 minutes, with 

time points taken at 0, 5, 10, 15, 20, and 25 minutes.  They were then diluted 30 fold in 

200 mM borate buffer, pH 9.8.  Product concentrations were determined by converting 

the absorbance as described above.  From these concentrations kinetic parameters were 

Figure 10.  Reaction between the synthetic substrate para-nitrophenyl-β-D-galactopyranoside and GLB1.  

When GLB1 reacts with pNP-β-gal, it cleaves off the p-nitrophenol.  When placed in a basic environment this ion 

then produces a yellow color which absorbs light at 400 nm.  
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determined using Kaleidagraph graphing software.  KM and Vmax were calculated using 

the following Michaelis-Menten formula: 

𝑉0 =
𝑉𝑚𝑎𝑥 x [𝑆]

𝐾𝑀 + [𝑆]
 

For inhibition assays, eight inhibitor concentrations were prepared by combining 

the inhibitor (galactose, DGJ, or 4-epi isofagomine) at various concentrations, 0.2 M 

phosphate-citrate buffer pH 4.0, 0.2 mM pNP-β-gal substrate, 0.1% bovine serum 

albumin (added as a crowding agent), and 0.266 µg/mL GLB1.  The reaction proceeded 

at 37°C for 50 minutes, with time points taken at 0, 10, 20, 30, 40, and 50 minutes.  They 

were then diluted 30 fold, in 200 mM borate buffer, pH 9.8.  Product concentrations were 

determined by converting the absorbance as described above.  From these concentrations, 

IC50 values were determined using sigmoidal curve fit in Kaleidagraph graphing software, 

giving concentrations at which half of the enzyme is inhibited.  Inhibition constants (Ki) 

were then calculated using the following equation (Copeland, 2000). 

 𝐼𝐶50 = 𝐾𝑖 (1 +
[𝑆]

𝐾𝑀
) 

 

The inhibition constants measure potency and indicate if the tested small molecules reach 

the threshold to be considered for pharmacological chaperone therapy.     
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CHAPTER 3 

RESULTS 

Insect cell inhibition assays 

Previously in the lab insect cell purified GLB1 had been assayed against three 

small molecule inhibitors, galactose, DGJ, and 4-epi isofagomine to test the inhibitory 

effect of these small molecules (Rivera-Colón, 2013).  To confirm these data, the 

inhibition assays were repeated at pH 4.5 using insect cell purified GLB1. We see from 

Figure 11 that galactose is a weak binding inhibitor of GLB1 with a Ki of 1.8 mM, and 

DGJ and 4-epi isofagomine are strong inhibitors with Kis of 4.6 μM and 4.1 μM, 

respectively.  

From these data we see that while 4-epi isofagomine was previously determined 

to be a 5-fold tighter inhibitor than DGJ; their inhibitory effects are comparable in this 

study.  It may be that while they show similar inhibitory activity, 4-epi isofagomine will 

create a stronger interaction, as hypothesized through our structural modelling, and thus 

greater stability within the protein.  4-epi isofagomine also looks like it will create more 

favorable interactions in the active site, particularly with the catalytic nucleophile.  In α-

Figure 11.  Inhibition of GLB1 activity by pharmacological candidates.  Activity was normalized against enzyme 

activity in the same conditions without inhibitor.  From left to right inhibition curves are shown for galactose, DGJ, 

and 4-epi-isofagomine.  The IC50 values for these compounds are 7.8 mM, 20 μM, and 18 μM respectively.  The Ki 

values for the compounds are 1.8 mM, 4.6 μM, and 4.1 μM respectively.   
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galactosidase the tight binding seen is caused mainly via the interaction between D170 

and the nitrogen in the heterocyclic ring of DGJ.  However, in GLB1, the catalytic 

nucleophile E268 is predicted to create a tighter binding interaction when the heterocyclic 

nitrogen is moved to the one position, as seen in 4-epi-isofagomine.  Atomic resolution of 

this interaction will give us definitive answers as to the interactions occurring in the 

active site of GLB1 bound with 4-epi-isofagomine.  

Gene insertion and yeast transformation 

The GLB1 gene containing a four glycine spacer, hexahistadine tag, and Kex2 

signal sequence were successfully inserted into the pPICZαA vector.  Results were 

confirmed via colony PCR and sequenced (Figure 12).  Successful yeast transformation 

occurred into two Pichia strains, X-33 and GS115, confirmed again by colony PCR 

(Figure 12).  All tested transformants were also confirmed to express the Mut+ 

phenotype.   
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Figure 12. Molecular biology of GLB1 insertion into pPICZαA vector.  A. Colony PCR of Zeocin resistant E. 

coli transformants.  Colonies 8 and 10 were found to have the correct sequence.  B. Colony PCR of Zeocin resistant 

Pichia transformants.  Colonies X-33 2-1, 2-2 and GS115 7-3, 7-4 were then tested for GLB1 expression.   



24 

 

Protein expression and purification 

Following the 96 hour expression time course, 50 μL samples of supernatant were 

blotted onto nitrocellulose to be assessed for GLB1 expression via X-gal activity assay.  

Results are shown in Figure 13 . 

  As shown, all strains from the X-33 parent strain began expressing GLB1 at 

around the 12 hour mark, and continued until assay saturation around 48-72 hours.  

Strains from the GS115 parent strain had not expressed GLB1 until around the 48 hour 

time point, reaching assay saturation around 72-96 hours.   

After induction tests, the supernatant containing protein was harvested then buffer 

exchanged and concentrated via tangential flow.  The clarified supernatant was run on a 5 

mL nickel column, and the resulting chromatogram is shown in Figure 15.  Fractions 

Figure 13. Time course study of Pichia expressed recombinant GLB1. At the specified 

time points 1 mL of culture was spun down, and the supernatant analyzed for GLB1 

expression.  50μL of supernatant was blotted on nitrocellulose, then incubated with x-gal to 

determine GLB1 expression. Human serum albumin (HSA) was expressed as a control. 
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containing GLB1 were pooled and concentrated, the level of purity shown in Figure 15.  

These fractions were then deglycosylated using EndoH.  Results of deglycosylation are 

shown in Figure 14.  Following deglycosylation, GLB1 was further purified using a p-

aminophenyl β-D thiogalactopyranoside agarose column.  Each purification produced 

about 0.05 mg/mL of purified protein per 100-200 mL of supernatant, an improvement 

over insect cell expressed recombinant GLB1.       

 

  

Figure 14.  Deglycosylation of GLB1 using EndoH.  GLB1 was deglycosylated using EndoH.  The 

glycosidase activity was monitored with time points taken at one hour and then overnight.  Below is a 

cartoon depicting glycosylation sites on GLB1.   
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 Figure 15.  Purification of Pichia expressed recombinant GLB1.  Top: chromatogram of nickel affinity 

purification.  Peak corresponds to GLB1 expression as confirmed via X-gal assay.  Bottom left: Western blot of 

concentrated, purified GLB1 samples.  After purification, peaks containing GLB1 were pooled and concentrated.  

These concentrated samples were then separated by SDS-PAGE, transferred, and blotted with anti-GLB1 antibody.  

As shown, all samples contain GLB1.  Bottom right: concentrated, purified GLB1 samples.  Samples that were 

blotted were also subject to SDS-PAGE followed by GelCodeBlue staining to assess protein purity.  Samples from 

the X-33 parent strain are highly glycosylated, and relatively pure.  Samples from the GS115 strain are less 

hyperglycosylated, but still very impure.   
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Generation of Mature GLB1  

 The mature form of GLB1 was generated via limited proteolysis with trypsin.  

After 30 minutes the reaction was quenched using benzamidine.  When run on a reducing 

SDS-PAGE, mature GLB1 runs in two fragments at approximately 64 and 20 kDa as 

seen in Figure 16. 

 

 

 

 

 

 

 

Figure 16.  Limited proteolysis of GLB1.  After 30 minutes incubation with trypsin, we see the N-terminal domain 

mature form of GLB1 appearing at approximately 64 kDa, and the C-terminal domain appearing at approximately 

20 kDa.  Labels to the left are in kDa. 
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Enzymatic activity of Pichia produced GLB1 

 Results of the Michaelis-Menten kinetic assay performed with pNP-β-gal are 

shown in Figure 17.  I determined the KM to be 0.82 ± 0.2 mM, Vmax 0.002 ± 0.0002 

mM/min, and kcat 18.3 ± 1.83/sec.  This is comparable with other reported enzymatic 

parameters against synthetic substrate 4-methylumbelliferyl-β-D-galactoside (4MU-β-gal), 

and 2, 4-dinitrophenyl- β-D-galactoside as seen in Table 1 (Zhang, et al. 1994).    
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Table 1. Enzymatic characterization of recombinant GLB1 

Recombinant GLB1 Substrate KM Vmax kcat 

Chinese Hamster Ovary 4MU-β-gal 0.29m

M 

989 

mmol/h/mg 

- 

Chinese Hamster Ovary 2,4-

dinitrophenyl-β-

D-galactose 

0.73 

mM 

888 

mmol/hr/mg 

- 

Pichia pastoris pNP-β-gal 0.82 ± 

0.2 

mM 

0.002 ± 

0.0002 

mM/min 

18.3 ± 1.83 

/sec 

 

  

Figure 17.  Michaelis-Menten plot of GLB1 activity. The enzymatic parameters of GLB1 are as 

follows:  KM to be 0.82 ± 0.2 mM and Vmax 0.002 ± 0.0002 mM min-1. 
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CHAPTER 4 

CONCLUSIONS 

I report that galactose, DGJ, and 4-epi isofagomine are inhibitors of GLB1 with 

Ki values of 1.8 mM, 4.6 μM, and 4.1 μM respectively.  From these data, I conclude that 

DGJ and 4-epi isofagomine are micromolar inhibitors of GLB1, which might make them 

candidates for pharmacological chaperone therapy.  If we compare these results to those 

published in Suzuki et al 2014, the KI for the small molecule DGJ of 4.6 μM is lower than 

the 61.8 μM they report.  Our value meets the 10 μM threshold outline as required in 

order for potential pharmacological chaperones to proceed to cellular assays (Fan, 2008).  

The almost twelve-fold difference in inhibition may be due to the different forms of 

GLB1 used.  In our experiments, the precursor form of GLB1 was used, in comparison to 

the processed mature GLB1.  If this difference in inhibition constants between precursor 

and mature GLB1 holds true, it has positive implications for pharmacological chaperone 

therapy.  The optimum pharmacological chaperone has a high affinity for protein outside 

the lysosome, yet lower affinity for the protein once it reaches the lysosome.  This is 

usually achieved through the change in pH from the ER and trafficking compartments to 

the lysosome, but in the case of GLB1, the processing from precursor to mature form 

could also be utilized. 

We have also shown that GLB1 can be expressed, purified, and processed from 

Pichia pastoris.  Pichia expression has many advantages over insect cell expression.  

Previously in the lab, insect cells had produced 0.1 mg of purified protein per liter of 

culture.  While just meeting the threshold for expression, this small amount of protein per 

liter was difficult to replicate and would require a very large culture to produce enough 
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protein suitable for crystallography experiments.  In Pichia we have observed 

approximately 0.05 mg of purified protein per 100 milliliters of cell culture, a five-fold 

improvement over insect cell expressed GLB1.  This expression system needs further 

optimization, as the amount of expression does not scale linearly with the current 

protocol.  A logical next step would be to try fermentation, as there are many reports of 

high protein yield from fermented Pichia.  It may also be worthwhile to transform GLB1 

into the KM71H strain of Pichia, creating a MutS strain.  It may be that this phenotype 

will produce even higher levels of recombinant GLB1.  Pichia also allows for GLB1 to 

be easily deglycosylated by commercially available glycosidases.  Due to the nature of 

insect cell glycosylation machinery, the glycoproteins are fucosylated, and thus resistant 

to enzymatic removal (Dojima, et al. 2009, Gouveia, et al. 2009).  The removal of 

glycosylations is optimal, as one of the future directions for this project is crystallization 

of GLB1, which requires a highly purified uniform protein sample.  Furthermore, the 

recombinant Pichia GLB1 can also be easily processed from precursor to mature form.  

Previous attempts in the lab have only produced partial proteolysis of GLB1, whereas the 

use of trypsin in Pichia expressed-GLB1 yields a uniform fully mature form of the 

protein.  It is also the experience of the lab that the precursor form of GLB1 will not yield 

crystals, thus this construct, which is easily manipulated from precursor to mature form, 

is ideal for future crystallography experiments.  Overall, the expression of GLB1 from 

Pichia is successful and worth pursuing for future experiments.   

Future studies for this project include crystallization of mature GLB1 in complex 

with the small molecule 4-epi-isofagomine.  This structure will help provide insight into 

the molecular interactions occurring on the atomic level, allowing us to utilize rational 
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drug design to find a better candidate for pharmacological chaperone therapy in GM1-

gangliosidosis and Morquio B disease.  In addition to structural studies, cellular assays 

with both wild-type and mutant protein showing stabilization of GLB1 with small 

molecules are needed to confirm in vitro effects in vivo.  Other studies that may be 

carried out with the recombinant GLB1 involve probing questions surrounding the multi-

enzyme complex.  The literature is convoluted as to the actual size of this complex and 

whether it contains not only PPCA, NEU1, and GLB1, but possibly another lysosomal 

enzyme, N-acetylgalactosamine-6-sulfate sulfatase (GALNS) (Bonten, et al. 2014).  It 

may also be interesting to study the effects of GLB1 disease mutations on complex 

formation, whether or not this may attribute to the unique genotypes of GM1-

gangliosidosis and Morquio B disease.  Mechanistic studies in terms of how disease 

genotypes may be linked to substrate delivery may also be of interest.  GM1-ganglioside is 

delivered via saposin B, whereas keratan sulfate requires no chaperone for GLB1 

metabolism.  If these mechanisms can be uncovered, the molecular mechanism for 

mutations in one enzyme causing two diseases may be brought to light.   
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