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Abstract. It is the purpose of this paper to propose a standardschemes intended for global modeling on the sphere, only
test case suite for two-dimensional transport schemes on theest 1 of the widely used test case suiteWijliamson et al.
sphere intended to be used for model development and facilif1992 seems to be the standard test, whereas other (newer)
tating scheme intercomparison. The test cases are designedtist cases are, in general, only optionally used. Test 1 in
assess important aspects of accuracy in geophysical fluid dyilliamson et al.(1992 is referred to ashe solid-body ad-
namics such as numerical order of convergence, “minimal”vection test caseand the exact solution is simply the trans-
resolution, the ability of the transport scheme to preserve fil-lation of the initial condition so that the center of the distri-
aments, transport “rough” distributions, and to preserve prebution follows a great circle. The flow field is non-divergent
existing functional relations between species/tracers undeand does not challenge the transport operator with respect
challenging flow conditions. to deformation or divergence. In the last decade other non-
The experiments are designed to be easy to set up. Theglivergent global test cases have been proposed such as static
are specified in terms of two analytical wind fields (one non-(Nair and Machenhaug2002 and moving vorticesNair
divergent and one divergent) and four analytical initial con- and Jablonowski2008 test cases that include deformation.
ditions (varying from smooth to discontinuous). Both con- Also for these tests the analytical solution is known at all
ventional error norms as well as novel mixing and filamenttimes. Scheme developers do, in general, not publish results
preservation diagnostics are used that are easy to implemerfor all test cases and, perhaps more importantly, they often
The experiments pose different challenges for the range o€hoose different parameter settings making it more difficult
transport approaches from Lagrangian to Eulerian. The mixto compare results for different schemes. A purpose of this
ing and filament preservation diagnostics do not require arpaper is to provide specific guidelines for test case setup in
analytical/reference solution, which is in contrast to standarderms of parameters, resolution, time step, and diagnostics.
error norms where a “true” solution is needed. Results using Perhaps more challenging, analytical wind fields were
the CSLAM (Conservative Semi-Lagrangian Multi-tracer) recently proposed byair and Lauritzen(2010. The La-
scheme on the cubed-sphere are presented for reference agrhngian fluid parcels follow complex trajectories (not great
illustrative purposes. circles or small circles) making it harder to compute the an-
alytical solution throughout the simulation. FollowihgV-
eque(1996 the flow has a “time-reversing” component so
that after one period the exact solution equals the initial con-
1 Introduction dition. Half way through the simulation, however, the initial
distributions are deformed into thin filaments and an “over-
A basic building block in any fluid dynamics solver is the |5ig” translational flow transports the filaments as they de-

transport operator that approximates the evolution of theform. This problem is very challenging. A divergent wind
bulk motion of a scalar. Despite intense research in transport
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field is proposed iNair and Lauritzer{2010 as well which  use the actual observed winds in test case Williamson
is in contrast to most idealized wind fields in the literature. et al.(1992 to generate more complex structures in the tracer
The combination of both divergent and deformational flow field. To produce filaments that eventually become sub-grid-
constitutes a more realistic atmospheric/ocean transport tharscale in a context where the analytical solution is known, one
for example, solid-body advection flow. may use the moving vortices test casiaif and Jablonowski

The idealized transport experiments listed above are alk008 and run it out further than the 12 days suggested in the
based on a single tracer, and accuracy is quantified irtest case description. The tests presented in this paper are not
terms of conventional errors norms, i.e., quantifications ofmeant to be exhaustive and developers usually have preferred
the differences between the analytical (exact) and numeridealized tests specific for their application. It is the intent of
ically computed solutions. In some geophysical fluid dy- this paper to present a minimal test bed based on just two
namics problems, such as the transport of long-lived specieanalytic wind fields and four initial conditions that address
in the stratosphere and aerosol-cloud interactiéhgghin- a wide range of accuracy aspects, challenge both Lagrangian
nikov and Easter2009, it is not only important that in- and Eulerian schemes with realistic conditions typical of 3-D
dividual species/tracers are transported accurately, but alsfbows, and make it straight forward to compare results from
the maintenance of pre-existing functional relations betweerdifferent schemes since we provide detailed instructions on
species/tracers is important. Such models also cannot adest case setup and diagnostics. In doing so, we believe this
cept non-physical transport or redistribution of tracer thattest case suite provides new insights into accuracy beyond
is not accompanied by resolved motion of air masses. Folthe much simpler and most widely used standard solid-body
lowing Lagrangian fluid parcels, interrelations between trac-advection test case and associated standard error norms.
ers are conserved; however, any non-Lagrangian scheme will The test case proposal is organized as follows. In Sect.
almost certainly perturb such relations. Nevertheless, Lathe transport equation(s) is introduced followed by formu-
grangian schemes in realistic divergent flows must eventuallyas for the analytical initial conditions and wind fields. The
combine parcels or create new ones, and that process willection is concluded with discretization details such as “def-
not likely preserve the relationships. Numerical errors thatinition” of resolution and maximum Courant numbers. The
perturb pre-existing functional relations can resemble “real”actual test case setup is given in S8and it is divided into
mixing similar to what is observed in nature when mixing six categories designed to do the following: assess numeri-
occurs (hereafter referred to as “real mixing”) or the trun- cal convergence rates, “minimal” resolution, filament preser-
cation errors can introduce unmixing (i.e., spurious mixing) vation, transport of discontinuous distributions, maintenance
(Thuburn and Mclntyre1997. A quantification and classi- of pre-existing non-linear functional relations, and transport
fication of mixing between interrelated tracers was recentlyunder divergent flow conditions. A list of algorithmic con-
proposed inauritzen and Thubur(®012. For a more exten-  siderations/properties such as size of computational stencil,
sive overview of test cases for global models and desirablestability criterion, and number of function evaluations is put
properties for transport schemes intended for atmospheriéorward in Sect4. The paper is concluded with a summary
modeling, see, for example, the recent book chapterey of the test cases.
ritzen et al.(2011).

The purpose of this paper is to propose a minimal and chal-
Ienging test case suite vyith specific guic_;l_elin_es on the imple-2 General problem formulation
mentation and diagnostics, thereby facilitating intercompar-
ison of schemes and establishing a benchmark data base f%r
future developers. In the derivation of the tests, we sought

to minimize the workload on transport scheme deveIOperS’Consider a transport scheme that approximates the solution

while evaluating their schemes in terms of a wide range Ofto the continuity equation for a passive (does not feed back

quantitative measures of accuracy considered important fan the flow) and inert (no sources or sinks) tracer:
geophysical fluid dynamics. Therefore, we assume that mod- '

elers have already tested their schemes in simpler setting (0d)
such as with solid-body and static/moving vortices test casesa— +V-(ppV)=0, (2)
and we do not repeat those tests here. f

Almost any test case suite could be extended to InCIudQNhere,o is the fluid densityV is the two-dimensional flow

more tests that could provide more insights into Speclflc\ﬁelocityvector, ana is the tracer mixing ratio per unit mass.

aspects of accuracy particularly useful for some classes o ote that the discretized scheme is not necessarily based on
schemes and applications. For exampliich et al. (2019 the continuity equation written in flux-form as in EQ.) ut

fpund it |nS|ghtfu! (for evalluatlng higher-order approxima- could also be based on the advective form
tions to Lagrangian cell sides) to transport a constant us-

ing the initial condition wind field for the shallow water pg
test case 3 oWilliamson et al.(1992. Similarly, one could Dr

1 Transport equation(s)

0, (2
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or cell-integrated Lagrangian form the centroid of the grid cell for finite-volume methods and
at quadrature/finite-difference points for basis-function/grid-
point methods.

All four initial conditions for¢ are based on two distribu-

tions centered about,;, 6;),i =1, 2:

D
= / pddA =0, 3)

A1)

where A(¢) is a Lagrangian area antl/ Dt is the total or .
material derivative. If tracer densify¢ (flux-form Eqg.1 or (1,61) = (57/6,0), ©)
cell-integrated Lagrangian E&) and not mixing ratiap (ad- (A2,602) = (77/6,0), (6)
vective form Eq.2) is the prognostic variable, one needs to wherex is longitude and is latitude in radians. The distri-
“extract” the mixing ratiop from p ¢, which obviously re-  butions are symmetrically placed in the flow field to assess
quires the solution to the continuity equation for fluid density the symmetry of the numerically computed solution.
p (see, e.g.Nair and Lauritzer2010for details). The mix-
ing ratio¢ is used for all diagnostics/analyses and not tracer2.2.1  Gaussian hills
densityp ¢.

Define the discrete transport operafothat advances the
numerical solution fop in time:

Smooth Gaussian surfaces/hills can be defined as follows:
hi (A, 0) = hmax€Xp(—b[(X — X2 + (Y = Y2+ (Z - 22}, (7)

¢t =T, jeH, 4)

wheren is the time-level indexk is the index for the grid
cell/point, andH is the set of indices defining the “halo” or
computational stencil required 9. To compute the numer-
ical solutiong ™, an initial condition, a prescribed velocity (X, Y, Z) = (Rcosd cosk, Rcosdsini, Rsing),
field, and (if applicable) the solution to the continuity equa-
tion for fluid densityp are required.

where the heightand width are determined biynax = 0.95
and b =5, respectively l(evy et al, 2007). The absolute
Cartesian coordinates (X, Y, Z) and spheri¢al6) coordi-
nates are related through

®)

where radiusk is the radius of the sphere. The coordinates
for the center of the Gaussian distribution; (X;, Z;) are
computed by inserting\;, 6;) into Eq. @) and evaluating the
right-hand side.

For fluid density (if needed) the initial condition js(z = The Gaussian hills distribution is defined as the sum of the

0) = 1 for all test cases. Four initial conditions for mixing ra- W0 Gaussian hill&; andhz (Eq.7):
.tio.qb. are used and defipgq in sub—'s.ections beIOW: We use ong — & ( 9) = hy(r,0) + ha(r, 0) 9)
infinitely smooth () initial condition, one quasi-smooth, ) . o ) i
one discontinuous, and one non-linearly correlated with the2nd is graphlcallg/o shown in Fidla. Note thai's® is in-
quasi-smooth initial condition. It may be argued that the dis-finitely smooth €*°).
crete initial conditions should be as consistent as possible2 .

) . . .2.2 Cosine bells
with the numerical method. For example, a finite-volume
method is usually based on cell-averaged prognostic varigimilarly, two symmetrically located cosine bells are defined
ables, and the initial condition in cell, ¢, should be ob- 45 follows:
tained by integrating the continuous initial conditigrover n
thek-th control volume. Similarly, methods that preserve andi; (i, 0) = —2=
transport internal moments of the tracer distribution (e.g., 2 _ _
Prather 1986 should initialize these moments by integrat- Where the amplitudéimax=1, base radius = R/2, and
ing over the continuous starting distribution. Standard prac-great circle distance between, 6) and the centetk;, 6;)
tice, however, is to use the value of the continuous initialiS i = ri (A, 6), with
condition e\_/aluated at the centroid of the control yolume aS,. (1,6) = R arcco$sing; sin -+ coss; Cosh cosi — A)].
representative for the cell-averaged value, and higher-order o - _
moments (if applicable) are zero. It has been shown for finite-  The initial condition¢ consists of a background valie
volume schemes that standard error norms may vary signifand two cosine bells defined above:

2.2 Initial conditions

if

[1+4 comri/r)] (10)

rp<r,

icantly when using point or cell-averaged values for initial
conditions and for computing error norms (e.gauritzen
et al, 201Q Zerroukat et al.2002. However, the conclu-

b+chi(A,0)ifri<r,
b+cha(A,0)ifrp<r,
b otherwise

=9 (1.0)= (11)

sions drawn from the results are independent of the choice of

exact solution (cell average versus grid-point value) as Iongﬁ/
as the schemes are compared with the same choice for exa
solution in a consistent manner. Therefore, the initial con-

here the background value #s= 0.1 and amplitude: =

2 such that € [0.1, 1.0] (see Fig1b).

Ihote thatNair and Lauritzen(2010 used ahmax value of one

dition and exact solution are based on grid-point values atvhich is different from the value used here
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Ea) ¢ (t=0), G'aussian hills' (b) ¢ (t=0), cosine bells
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Fig. 1. Contour plots for the four initial conditions for mixing ratig. (a) depicts the infinitely smoothC®) initial condition constructed
from Gaussian surfacefhy) the cosine bells initial condition which @&, (c) the non-smooth slotted cylinders initial condition, gl is
the initial condition, which is nonlinearly correlated with).

2.2.3 Slotted cylinders 2.3 Wind fields
For the discontinuous case, the double cosine-bells{Bqg. In this test case suite, we use two deformational wind fields:
are replaced bglotted-cylinder§Zalesak1979: one non-divergent and one divergent. The components of the
0) non-divergent velocity vectdv¥ (1, 6, ) and the stream func-
Pp=0¢""(1,0)= (12) tion
cifr <rand|rA—A;|>r/(6R)fori =12, 5
cif rp <rand|A —Ai1| <r/(6R) and9—91<—1%r/R, u = __I//’ (16)
cifro<rand|r —Az| <r/(6R) andd —6s > %r/R, a6
b otherwise, v = 1 % (17)
. . . cosd ar’
where, again, the background valuéis- 0.1 and amplitude _
¢ =1 (see Figlc). are given by
1 ” H 10R . . Tt
2.2.4 *“Correlated” cosine bells u(r,0,t) = Tsmz()J)sm(ZG) cos T
An initial distribution that is nonlinearly “correlated” with 27 R 0 18
the cosine bells initial condition is defined as + T cog0) (18)
10R . t
¢ =P =y (¢>(“”)) : (13)  v(r.0.1) = —=sin2))) cos6) COS<”7) , (19)
. . T 10R . et
The nonlinear functional relation is given by V(r,0,1) = T5"-.2@/) 0052(9)005(?>
2
= by, 14 2T R .
V() =ay x“+by (14) — = sin®), (20)

where _ _ _
respectively, wherex’ =X —2x¢/T. In non-dimensional

ay =—08 and by =009 (15) unitsT =5 andR = 1. An “Earth”-like dimensionalization
of the wind fields may be obtained by settifig= 12 days
For a contour plot of the correlated cosine bells see¥lg.  and R = 6.3712x 10° m. Schemes based on characteristics
(typically Lagrangian schemes) may use the algorithm given
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Fig. 2. Same as Figl but for the numerical solution at= 7' /2 using CSLAM with a time step\t = 7'/120 and resolution oAx = 1.5°.

in Nair and Lauritzen2010 for the computation of parcel Note that the first part of the simulation € [0, 7/2])
trajectories. is typical of atmospheric/oceanographic flows in that fea-
When either of the initial conditions given in Se&.2 tures collapse to smaller scales, whereas the second part
are transported by the non-divergent wind field, they are de{t € [T /2, T]), in which the reverse occurs, is atypical of
formed into thin filaments half way through the simulation atmospheric/oceanographic flows though convenient for ob-
and these are simultaneously being transported eastward bgining a problem with an exact solution. The background
the solid-body component of the flow (see Figand3). At mean flow ensures that errors, in general, do not cancel when
maximum deformation, the filaments are approximately 10 the deformational part of the flow reverses.
wide when using the cosine bells initial condition.
To challenge schemes under divergent flow conditions, we2-4 ~ Discretization details
use the following wind fieldNlair and Lauritzen201Q their

case-3 with a “constant background wind field"): We specify resolution in terms of average grid-spacing in de-

grees at the Equator of the sphet&. For methods based on

R ., (N\ . t u ion” .
u(n.0.1) = —5—sir? ( = ) sin(29) co2(6) cos it gyadrature methods, the_ average resolution” should be spec
T 2 ified in terms of mean distance between quadrature points.

27 R We define the (maximum) Courant number as
+=—— cog6), (21)
T At Umax
5R Tt CN= "7 (24)
V(h.0,1) = 2 = sin() oS (0) cos(?) , (22) AL (155)

] where At is the time step an@max is the maximum zonal
whereR andT have the same values as for the non-divergenty;ing speed. For the non-divergent flow, the non-dimensional
velocity field. The non-divergent flow field (Eqs8and19)  and dimensional (“Earth”Vmax are given by
is used for all tests except the test described in Se6tfor
which the divergent winds are used (Eg$.and22). Umax~ 3.26 andUmax ~ 10007ms *, (25)

The exact solution for all tests is knownrat T, and it is

identical to the initial diti respectively.
identical to the Initial condition This definition of Courant number obviously does not
Ot =T)=¢(r=0). (23) emphasize local Courant numbers (in particular for non-

isotropic grids); it is defined to facilitate comparison of max-
We do not have an exact solution throughout the simula-imum Courant numbers across discretization grids.
tion when using either the non-divergent or divergent flow The time stepAr should be a “typical/practical” time step
field. for performing tracer transport with the scheme in question.

www.geosci-model-dev.net/5/887/2012/ Geosci. Model Dev., 5, 88¥L-2012
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(a) ¢ (t=T/2), Gaussian hills (b) ¢ (t=T/2), cosine bells
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Fig. 3. Same as Fig2 but for CSLAM with a shape-preserving reconstruction function filter (smeritzen et al.2010for details on the
filter).

However, investigating accuracy as a function of time step isschemel(auritzen et al.2010 on the cubed-sphere grid. The
also of interest. For example, if the transport scheme permit€€SLAM configuration used here is described in detalair
long time steps (Courant numhberl), it is advised to run the  and Lauritzen(2010.

tests with an “Eulerian” time step (Courant numbet) as
well.

Often limiters/filters are applied to render the numeri-
cally computed solution physically realizable. These may b
shape-preserving, positive definite, monotone, and/or non
oscillatory limitersf/filters. If schemes have a limiter/filter op-
tion, the tests should be run both without and with lim- 1. numerical order of convergence,
itersffilters. If the limiters/filters are formulated in terms of
tunable parameters for minima and maxima, the test case 2. “minimal” resolution,
suite should be run with parameters used in “practical” ap-
plications of the scheme. For example, a tunable parameter
(if applicable) should be set for a minimum value of mixing 4. ability of the transport scheme to transport “rough” dis-
ratio that is zero, although in this test case suite the back-  tributions,
ground value is non-zero..

Accuracy is assessed in terms of several diagnostics. First 5. ability of the transport scheme to preserve pre-existing
of all, we use standard error norms that are defined in Ap-  functional relations between tracers,
pendix A. These require knowledge of the “true” (analytic)
solution and are therefore computed at time T when the
true solution is known. Secondly, we use recently proposed
mixing diagnostics (Sec8.5 Appendix B and C) aswellas  Each category is discussed in separate sections below.

a novel filament preservation diagnostic (S&c8). As these

diagnostics do not require an analytical solution, we compute3.1  Numerical order of convergence: Gaussian hills

them at the time of maximum deformation=¢ 7'/2) before

the flow “reversal”, which is less physical. This test is designed to assess the formal (or “optimal”) or-
For reference purposes, we provide results usingdel' of convergence of the scheme under quasi-realistic flow

the CSLAM (Conservative Semi-Lagrangian Multi-tracer) conditions on the sphere. This is done as follows. Standard
error norms using the Gaussian hills initial condition E4j. (

3 Test cases

eThe diagnostics/test cases are designed to assess the follow-

3. ability of the transport scheme to preserve filaments,

6. ability of transport scheme to deal with divergent flows
(Nair and Lauritzen2010.

Geosci. Model Dev., 5, 887801, 2012 www.geosci-model-dev.net/5/887/2012/
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l,, Gaussian hills l,, Gaussian hills
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Fig. 4. Convergence plots fof, (first column) andls, (second column), respectively, computed with CSLAM with Gaussian hills initial
conditions. The keys with “CN5.5” and “CN1.0” refer to simulations using a non-dimensional time stefi®0 and7' /600, respectively.

The keys with the wordilter in them refer to simulations using a shape-preserving filter. The upper and lower heavy lines on each plot
correspond to the slopes of second- and third-order convergence rates, respectively.

and non-divergent wind field (Eq$8 and19) at resolutions l,, Cosine hills

ranging from approximatel i = 3° to Ax = 0.3° for fixed 10 g , , , —
Courant number are computed. The choice of resolutions i NS e
should provide enough data points on a “convergence plot” ol 1 ; CN1.0 —%— 1

(e.g., lod¢y) as a function of logV)) in the resolution inter- e CNLO. fiter = 3

val of interest, to generate a “credible” estimate of numerical . ‘ ‘
rate of convergence. For example, the following resolutions O e e
could be usedai = 3°, 1.5°,0.75°, 0.375°. The runs should i
be performed without any limiting/filtering and (if applica-
ble) also with limiters/filters enforcing shape-preservation,
monotonicity and/or non-oscillatoriness in the numerically B i i ’
computed solution. 10 > Lo 0.75° 0.375°
These simulations with infinitely smooth (Gaussian hills)
initial conditions should provide a numerical estimate of the Fig. 5. Convergence plot fof; computed with CSLAM with cosine
“optimal” numerical convergence rate of the scheme. A Waybells initial conditions. The keys are as in Fig.The heavy line is
to estimate numerical (empirical) convergence rafesand ~ ¢2 =0.033 and is used to define “minimal” resolution.
Koo, for £2 and £, respectively (see Figl), is to perform
a least-squares linear regression of the foHarfis et al,
2010: between the horizontal liné = 0.033 and the convergence
curve for¢, (see Fig5). The quasi but not infinitely smooth
) initial conditions (Cosine bells instead of Gaussian hills) are
log(¢i) = Ai —Kj log(Ad), i =2,00. (26)  ysed in order to challenge the schemes with respect to weak
3.2 “Minimal” resolution Al cosine bells non-smoothness.
The “minimal” resolutionA X, will be used in the remain-
In many geophysical fluid dynamics applications using statedng test cases. The choice of threshold fox,, is based on
of-the-art physical parameterization packages, increases iresults for CSLAM (a resolution for which the thin filaments
horizontal resolution come at significant computational cost.are marginally resolved). The “minimal” resolution (as de-
It is therefore of interest to assess the absolute error in adfined here) for CSLAM isAA = 1.5° and A = 1° when us-
dition to convergence rates. To do that we repeat the experiing a time step of /120 (maximum Courant number is ap-
ment described in Sec®.1 but with cosine bells initial con-  proximately 5.2) and’ /600 (maximum Courant number is
dition (11) to find the “minimal” resolution. We define the approximately 1.0).
“minimal” resolution A2, as theAi-value for which¢s is
approximately 033, when using an unlimited scheme and 3.3 “Filament” preservation diagnostic £ ;: cosine bells
the cosine bells Eqa() initial condition (the Courant num-
ber used for defining\A,, should be one typically used by Realistic flows often deform distributions into thin filaments
the scheme). A convergence plot can conveniently be usethat, in general, are challenging to represent by Eulerian and
to find the “minimal” resolution by finding the intersection semi-Lagrangian transport schemes that use a fixed grid in

www.geosci-model-dev.net/5/887/2012/ Geosci. Model Dev., 5, 88¥L-2012
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(a) 1%%order CSLAM (b) 3"-order CSLAM
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Fig. 6. Filament diagnosticé (+ = T/2) as a function of threshold valuefor different configurations of the CSLAM scheme with Courant
number 5.5(a) first-order version of CSLAM an\x = 1.5° and Ax = 0.75°, and (b) third-order version of CSLAM with and without
shape-preserving filter at resolutiong = 1.5° andAx = 0.75°.

space (e.gBehrens et a).2000. A measure of how well a whereA A, is the spherical area for whiegby, is representa-

transport scheme preserves gradients (in particular thin filative andg is the set of indices

ments) is relevant for many tracer applications (e.g., transport

of long-lived tracers such as chemical species in the stratog = {k € (1,..., K) |¢x > 7}, (29)

spheric vortices). Filaments are created when material sur-

faces stretch and gradients increase. When the thickness #there K is the number of grid cells. For Eulerian finite-

the filaments reach the scale at which molecular diffusion (orvolume schemes) Ay is the area of théth control volume.

some other diffusive process) becomes important, the filaFor Eulerian grid-point schemes, a control volume for which

ments are no longer preserved but gradients are eroded. Fée grid-point value is representative must be defined. Sim-

the flow and initial conditions considered here, the filamentsilarly, for fully Lagrangian schemes based on point values

should, for all practical purposes, be preserved by the trans(Parcels), control volumes for which the point values are rep-

port scheme, as the physical scale of the filaments is approxesentative must be defined. Note that the “control volumes”

imately 10 at maximum deformation. We do therefore not should span the entire domain without overlaps or “cracks”

assess how transport schemes represent the filament erosiBgtween them.

process that appears in nature since those “diffusive” pro- Define the filament preservation diagnostic

cesses take place at scales several magnitudes befowf 10 A

such processes are of interest, we suggest to use the moving (t.1 1000 x z77=g;  If A(z,2=0) #0,

vortices test case dflair and Jablonowsk{2008 and ex- At 0.0, otherwise

tend the simulation time so that the filaments are stretched

to a level where such processes are important and/or change For infinite resolution (continuous case) and a non-

the parameters in thdair and Lauritzen2010 flow field divergent flow,¢ ¢ (7, ¢) is invariant in time:f(z,t =0) =

to increase the amount of deformation (see, &gnt et al, L¢(z,t) =100 for allz. At finite resolution, however, the fil-

2012. ament diagnostic even for an exact scheme should not nec-
The “filament” preservation diagnostic is formulated as essarily be preserved since the solution must be truncated to

follows. Define A(z,¢) as the spherical area for which the the discrete grid. That said, usually the numerical truncation

(30)

spatial distribution of the tracer (1, ) satisfies errors are much larger than the grid truncation error at least
at moderate resolutions.
oA, 0)>1, 27) The experimental setup is as in Se8t2 i.e., uses the

non-divergent wind field (Eqsl8 and19) and cosine bells

at timer, wherer is the threshold value. For a non-divergent initial condition Eq. (1). At half time, r =7/2; the fil-
flow field and a passive and inert tragerthe aread(z,7) is ~ ament preservation diagnostiG (z, = 7/2) is computed

invariant in time. at 19 equi-distant discrete intervals £0.10, 0.15, 0.20,
The discrete definition afi(z, t) is 0.25, ..., 0.95, 1.00) without and (if applicable) with lim-
itersffilters atAA = 1.5°, AL = 0.75° as well as at the “min-
Az, 1) = Z AAg, (28) imal” resolutionAx = AA,,. The filament diagnostic should
ks be computed as a function ofe [0.1, 1.0] (see Fig6). The
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(a) & (t=T/2), no filter/limiter (b) ¢ (t=T), no filter/limiter
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Fig. 7. Contour plot of the CSLAM numerical solutiap at resolutionAir = 1.5° and time stef@ /120 using the slotted-cylinders initial
condition at time = T/2 (aandc) ands = T (b andd) using no filter/limiter (a and b) and a shape-preserving fittemdd). The standard
error norms for the unfiltered/unlimited solution dpe= 0.24, £+, = 0.79, ¢pin = —0.19, andpmax = 0.15, and for the shape-preserving
solution they aréy = 0.26, £o0 = 0.80, ¢ = 0.0, andpmax = —4.34 x 1073,

threshold value for whicti ;(r = T/2) is less than, for ex- 3.5 Preservation of pre-existing functional relation:
ample, 80 is a measure for how well filaments are preserved. cosine bells and correlated cosine bells

Numerical diffusion will tend to decreads for large r
values (maxima decrease) and increégdor low t values  In the tests described in the previous sections, the accuracy
(gradients are “smeared”). An “extreme” situation is shownis assessed in a single-tracer setup. Now we consider two
in Fig. 6a wheref s is plotted as a function of for the highly ~ tracers that are both advected by the same non-divergent flow
diffusive first-order version of CSLAM. This much improves field (Egs.18and19). The initial conditions for the two trac-
when using the higher-order version of CSLAM (Fi&h). ers are the cosine bells initial condition (Etl) and cor-
Note that the non-shape-preserving versions of CSLAM pro-related cosine bells (E4.3), respectively (see Fidlb and
duce values of s less than 100.0 for low threshold values d). The mixing ratios of the two tracers are referred to as
(r < 0.1). This also indicates an error in tracer transport duex andé. Following Lagrangian parcels, any functional re-
to undershootsy < 0.1), which are not represented in the lation between tracers should mathematically be preserved

diagnostic. at all times, and hence any deviation from the pre-existing
functional relation between the tracers is essentially numer-
3.4 Transport of “rough” distribution: slotted-cylinders ical error introduced by the transport scheme. Note that the

o o ] ] “ideal” scheme could be a scheme that does not exactly pre-
To challenge shape-preserving filters/limiters (if applicable), serve pre-existing functional relations, but for which the nu-

norms for the simulated solution at= T using the slotted  nature.

cylinders initial conditior_1 and non-divergent winds _(Eqs. In any case transport schemes should not disrupt func-
and19) are computed using the transport scheme without andjong relations in unphysical ways. Numerical errors that
(if applicable) with limiters/filters at resolutionSA = 1.5°,  pertyrh such relations essentially introduce mixing or un-
Axr=0.73 as well as at the “minimal” resolutioli,.  mixing between the tracerkauritzen and Thuburi2012)

Contour plots of the solution at=T7/2 and: =7 (Fig.7)  provide a discussion of the physical importance of trans-

Uﬁi”g a contour interval of 0.05 in the rang20: 1.1] are  port schemes not disrupting tracer interrelationships in
shown.

2 a bug was identified in the code used for computing mixing
diagnostics in Lauritzen and Thuburn (2012).
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(a) CSLAM, 1%"order, 1.5°

(b) CSLAM, no filter, 1.5° (c) CSLAM, shape-preserving filter, 1.5°
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Fig. 8. Scatter plots at = T/2 for two non-linearly correlated species/tracers based on cosine bells initial conditions using first-order version
of CSLAM (a andd), standard CSLAM based on bi-parabolic reconstruction functibnan@ e) and standard CSLAM with a shape-
preserving filter ¢ andf). First and second row ugeir = 1.5° andAx = 0.75° resolutions, respectively. The solid lines mark the boundaries
between the areas used to classify the numerical mixing. On each plot the mixing diagf)ogticand¢,, are given2.

unphysical ways with special focus on non-linear chemistry.when the initial condition has deformed into thin filaments
The numerical errors that perturb pre-existing functional re-and collapsed to smaller scales compared to the initial condi-
lations between tracers will be referred torasnerical mix-  tion.

ing or simply mixing in this paper (one could equally well Following Lauritzen and Thuburif2012), the numerical
use terminology such as tracer variance dissipation instead ahixing (deviation of scatter pointg, &) from -curve) is
mixing). In nature such processes that change the correlationlassified into three categories:

between two tracers come about through diffusive processes,
and, for reactive tracers, through chemical reactions between ~
tracers. The purpose of this test is to quantify the amount
of mixing and the physical realizability of the mixing that a
scheme introduces through truncation errors. Note that pre-
serving correlations are, however, no guarantee for accuracy,
as one may design schemes that satisfy tracer interrelations
but are otherwise inaccurate; as formulatedrbyburn and

“Real” mixing: numerical mixing that resembles “real”
mixing (e.g.,Thuburn and Mclntyrgl 997 when scatter
points move to the concave side %f All other devia-
tions from the pre-existing functional curve follow spu-
rious unmixing, which is accounted for in two separate
categories.

— “Range-preserving” unmixing numerical unmixing

Mclntyre (1997, “shaping two tracer fields the same way — yithin the range of the initial data, i.e., scatter points
does not imply shaping them the right way”. L are shifted to the convex side of the pre-existing func-

Scatter plots, where tracer % (using cosine bells initial tional relation or below the convex hull but not outside
condition) and tracer Z(using correlated cosine bells initial the range of the initial data.

condition) are plotted against each other, are used to quantify

the numerical mixing or unmixing introduced by the scheme — Overshootingor equivalently expanding range unmix-

(see Fig.8). As discussed ifThuburn and Mclntyrg1997), ing): numerical unmixing that is not “range-preserving”
no Eulerian scheme can exactly preserve pre-existing non-  unmixing, which for this specific test case setup is
linear relations between two tracers, and hence scatter points  (x,&) ¢ [0.1, 1.0J2.

(xx, &) will, in general, deviate from the pre-existing func-

tional relation curve) as the simulation evolves. The way in P i -
which the scatter points deviate from the non-lingacurve quantified in terms of a normalized shortest distance between

has implications for the character of the numerical mixing (xk. &) and they-curve referred to as. For the specific

that the transport scheme introduces. For this test it is cruciaP@rapolic non-linear correlation function used here (&),
that features collapse in scale, and we therefore consider scaf?€ normalized distance functiah is given in Appendix B.

ter plots using prognosed mixing ratios at half time=(7/2) The three diagnostics that quantitatively —account
for numerical mixing that resembles “real” mixing,

The deviation of the scatter points from tlifecurve is
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(a) ¢ (t=T/2), no filter/limiter (b) ¢ (t=T), no filter/limiter
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Fig. 9. Plotted as in Fig7 but for the divergent flow field4+ = 7 /120, resolutiorAx = 1.5°, and maximum Courant number is approxi-
mately 3.2).

“range-preserving” unmixing and overshooting are referred3.6 Transport under divergent flow conditions:
to as¢,, ¢, and{,, respectively, and are formally defined in cosine bells
Appendix C. For more discussion on numerical mixing and
the physical reasoning behind the classification of the mix-Most idealized test cases are formulated in terms of non-
ing, sed_auritzen and Thubur(QOla Note that know|edge divergent wind fields. Since realistic flows are divergent it
of the exact solution is not needed for the computation of theshould be demonstrated that the transport operator can han-
mixing diagnostics. dle divergent winds. We repeat the experiment described in
Using the non-divergent flow field, we compute the mix- Sect.3.4using the divergent wind field (see E@4.and22),
ing diagnostics 4., £., £,) half way through the simulation ~cosine bells initial conditions Eq1(), and the same time
t =T/2 using two non-linearly correlated tracer distribu- Steps. Solutions using CSLAM are shown on Fig.
tions x = ¢“® and& = ¢(“?) as initial conditions (cosine Error norms for unlimited CSLAM an) = 1.5° resolu-
bells and correlated cosine bells) at resolutiards= 1.5°,  tion with Az =120/T are £, =1.90x 1072, £, =3.22x
A =0.75° and A, using the unlimited and (if applicable) 1072, ¢min = —2.33x 102, andmax = —1.45x 102, Sim-
shape-preserving scheme. The scatter plots, that is, the mitlar for shape-preserving CSLAM, we obtaify = 4.22 x
ing ratio of one tracer (with cosine bells initial conditions) 1072, £ = 0.11,@min = 0.0, $max= —0.13.
against the other (with non-linearly correlated cosine bells
initial condition) at these resolutions, are shown in Big. 4 Algorithmic considerations
It is noted that transport schemes can be designed to pre-

serve linear pre-existing functional relations, i.e., @ schemey erq|l; algorithmic considerations or properties are docu-
will preserve linear correlations between species/tracers it anied. By algorithmic considerations we refer to general
the transport operatdF satisfies properties/characteristics of the scheme that usually impact
scheme implementation, stability, and data-flow. Below is a

T(A¢+B) = AT(¢)+ BT() = AT($) + B, (31) non-exhaustive list of algorithmic considerations/properties:

whereA and B are constantd {n and Rood 1996 Thuburn

and Mclintyre 1997). It is assumed that schemes have already

been tested with respect to preservation of linear correlations

without and (if applicable) with limiters/filters. — for multi-step time-stepping algorithms, specify number
of stages (right-hand side evaluations);

— size of halo/stenciH used to update a cell/grid-point
value;
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— number of integral/functional evaluations (if applicable) at resolutionsAx = 1.5°, AL =0.75°, andAx = AL,
per time-stepping stage; (Sect.3.5).

— maximum Courant number for which the transport  Using the divergent flow field (Eq81 and22),
scheme is stable;

. o 6. Divergent flow conditionscomputing standard error
— amount of information (if any) that can be re-used to norms ¢;, i = 2,00, ¢min and ¢max at resolutions

transport additional tracers (multi-tracer efficiency). AL =15 Ax=0.75, and Ax = AL, USing cosine
bells initial conditions using the same time steps as used
for test4 above (Sect3.6) using the unlimited and (if

5 S
ummary applicable) shape-preserving scheme.

Below is a summary of the proposed test case suite. In term . . . .
y brop Fn addition to accuracy diagnostics under different flow con-

of Implementation work, only two flows fields and four - itions and using different initial conditions, we report on
tial conditions are needed. The accuracy is assessed using trgl 9 : p

ditional/conventional error norms as well as novel filament-
preservation and mixing diagnostics. For convenience the
standard error normg, i = 2, 00, ¢yin andgmax are com-
puted at the end of the simulatior= T when the exact so-
lution is known (i.e., it equals the initial condition). All mix-
ing diagnosticg;, i =r, u, o, and the filament diagnosticy
(they do not require knowledge of the analytical solution to
the transport equation) are computed half way through the
simulation att = 7/2 when the fields are most deformed.
For the non-divergent flow field (Eq&8 and19), the fol-
lowing experiments and associated diagnostics are propose

gorithm properties/characteristics by

7. Algorithmic considerationspecifying size of compu-
tational stencil, number of right-hand side evaluations
in multi-stage time-stepping schemes, stability criteria,
and amount of information that can be re-used for each
additional prognostic tracer.

Some results for the CSLAM scheme are given in this pa-
per. Full results for the benchmark tests using CSLAM and a
g_ozen of other state-of-the-art transport schemes are reported
onh in a separate publicatiobduritzen et al.2012. Fortran
1. numerical order of convergencghowing convergence code to compute mixing diagnostics (i =r, u,0) and the
plots and computing numerical convergence rafes filament diagnostid s is available in the Supplement. Also
for ¢;,i = 2, oo, for the resolution range approximately Gnuplot scripts to compute convergence rdfesi = 2, co,
AX = 3° to A = 0.3° using Gaussian initial conditions as well as NCL (NCAR Command Language) scripts for
for the unlimited and (if applicable) shape-preserving plotting are available in the supplemental material. Model-
scheme (Sec8.1), ers are especially encouraged to use the same color Table for
contour plotting as used in the NCL script provided in the

2. “minimal” resolution computing “minimal” resolution  gypplement to facilitate visual scheme intercomparison.
AA,, for which ¢, ~ 0.033 using cosine bells initial

condition for the unlimited and (if applicable) shape-
preserving scheme (Seét2), Appendix A

3. “filament” preservation plotting the filament preser-
vation diagnosticfy (at t =7/2) using the cosine

bells initial condition for the unlimited and (if appli- If ¢ =¢(1,0,1) is the transported mixing ratio field, then

cable) shape-preserving scheme at resolgtlnns: global normalized standard errors are definet\ljiamson
1.5°, AL =0.75", and AL = AX,, as a function ofr et al.(1992:

Standard error measures

(Sect.3.3),
o . : 2,742
4. “rough” distribution showing contour plots (using con- 1[(¢ — ¢7)°]
tour interval of 0.1 starting at 0.0) at times=7/2,T I(¢7)?] ’
and computingl;, i = 2,00, ¢min and gmax at res- maxv;. ¢ |6 — o7
olutions AA =1.5°, AA=0.75", and AL = A4, for oo = —————
maxv;. o |47 |

the slotted-cylinder initial conditiond ®) using the un-
limited and (if applicable) the shape-preserving schemeg, . — maxys, o (¢) — MaXys o (Pr)

(Sect.3.4), and Ago

L _ , - miny; g(¢) —miny;, ¢(¢7)
5. mixing diagnosticsshowing scatter plots and comput- ®min = Ao
ing mixing diagnostic¥;, i =r,u, o, for the two non-
linearly correlated tracers based on cosine bells for thewhere¢r and ¢g are, respectively, the exact/analytical so-
unlimited and (if applicable) shape-preserving schemelution, and its initial value A¢o, is the difference between

’

bl
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Fig. B1. A schematic of the “minimum” distance functiah (left- X(mm) X X(max)
right arrows) for different correlation pointgy, &) (filled circles).
(Xliw),w(xlg‘”)) (unfilled circle) is the point on the pre-existing Fig. C1. A schematic of the classification of numerical mixing. If
functional curve (thick line) that is nearest, in a normalized sensea scatter point is located in the area labeled wit{mathemati-
to (xk, &k)- cally defined in EqC2), it is categorized a%eal” mixing . Sim-
ilarly, for the area labeled witls (defined in Eq.C4), it is cate-
gorized asrange-preserving unmixingrhe remaining part of the
maximum and minimum value of the initial condition, and domain is referred to asvershooting The thick solid line is the
the global integral is defined as follows: pre-existing non-linear functional relation curve. See texLau-
ritzen and Thuburif2012) for details.

1 27 7w/2
I(¢p) = 4—/ / ¢(A,0,t) coHBdLdE.
& 0 —x/2 For this particular test case setlp = 0.9, R =0.792, and
the “root” X,Emoo is given by
Appendix B
PP oy 1 (13 5
X =t — | g5k ) (B6)
Definition of distance functiondy Ck
where

The “minimum” distance function is defined as the min-
imal normalized Euclidean distance between the scatter 13
point (xx, &) and the pre-existing functional relation curve ck = %[65340)&+12\/12(125§'k—52)3+29 648 02&3} . (B7)
(x, ¥ (x)) within the range of the initial condition

W)
dp = Lk(Xk )s (B1) Appendix C
where
. Numerical mixing diagnostics
X" =min [max(x““'”), x,ﬁmm)), X(maX)] (B2) 98

For the two-tracer test (Se@.5), three mixing diagnostics

Constrains the shortest distance to the initial condition in-are used and defined belotaQritzen and Thuburr2012)
terval [x ™", ™3] and the normalized distance function is ' '

given by C1 Mixing that resembles “real” mixing
2 2

LG = (Xk — X > 4 (Ek - 1ﬂ()()) @3) ‘Real’mixing is defined as numerical mixing that resembles

Ry R ' “real” mixing, in that values are shifted to the concave side of
where the pre-existing functional relation only (argeon Fig.C1):
Ry = x ™ — x ™", (B4) L ; p
Re = M0 _gmin) _ (g(max)) —y (é(min)) _ (B5) & = < Z {Ok AAg, ;I;zk, &) € A, (C1)

k=1 1>
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whereK is the total numbers of cells/points in the domain,
AAy is the spherical area of grid célland A is the total
area of the domaind = Z,le AAy. The distance function

dy is the shortest normalized distance between the numer, L, L —

ically computed scatter poirtyy, &x) and the pre-existing
functional curve within the range of the initial conditions.
For the quadratic functional relatiaf given in Eq. (4) with
coefficients 15), the explicit formula fordy is given in Ap-
pendix B. The domaitd (“convex hull”) is shown on FigC1
and is mathematically defined as

A= {(x@) xi € [x ™0, x ™™} and F () < & < v () | (C2)

whereF is the straight line that conneatg ™" & (M%) and

(x M9 £ (min)y - Any other mixing (i.e., scatter points not in
A) is numerical unmixing that is accounted for in two distinct
diagnostics defined next.

C2 “Range-preserving” unmixing

“Range-preserving” unmixing is defined as numerical un-

P. H. Lauritzen et al.: Transport tests

value of the distance functiaf, is only added to one of the
diagnostic functions, so

1
= Z;dkAAk. (C6)

Supplementary material related to this article is
available online at: http://www.geosci-model-dev.net/5/
887/2012/gmd-5-887-2012-supplement.zip
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are shifted to the convex side of the pre-existing functional

relation or below the convex hull but not outside the range ofEdited by: H. Garny

the initial data:

1 i di AAg,
A 0,

k=1

if (xx. &) € B,

by =
else

(C3)
whereZB is the dark shaded areas in Fgfl defined by
B= {(x,@ ‘ Otk &) € ™, x M9 x [£(MN, g (M)

and(x, &) ¢ A}' (C4)
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