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Abstract. It is the purpose of this paper to propose a standard
test case suite for two-dimensional transport schemes on the
sphere intended to be used for model development and facili-
tating scheme intercomparison. The test cases are designed to
assess important aspects of accuracy in geophysical fluid dy-
namics such as numerical order of convergence, “minimal”
resolution, the ability of the transport scheme to preserve fil-
aments, transport “rough” distributions, and to preserve pre-
existing functional relations between species/tracers under
challenging flow conditions.

The experiments are designed to be easy to set up. They
are specified in terms of two analytical wind fields (one non-
divergent and one divergent) and four analytical initial con-
ditions (varying from smooth to discontinuous). Both con-
ventional error norms as well as novel mixing and filament
preservation diagnostics are used that are easy to implement.
The experiments pose different challenges for the range of
transport approaches from Lagrangian to Eulerian. The mix-
ing and filament preservation diagnostics do not require an
analytical/reference solution, which is in contrast to standard
error norms where a “true” solution is needed. Results using
the CSLAM (Conservative Semi-Lagrangian Multi-tracer)
scheme on the cubed-sphere are presented for reference and
illustrative purposes.

1 Introduction

A basic building block in any fluid dynamics solver is the
transport operator that approximates the evolution of the
bulk motion of a scalar. Despite intense research in transport

schemes intended for global modeling on the sphere, only
test 1 of the widely used test case suite byWilliamson et al.
(1992) seems to be the standard test, whereas other (newer)
test cases are, in general, only optionally used. Test 1 in
Williamson et al.(1992) is referred to asthe solid-body ad-
vection test case, and the exact solution is simply the trans-
lation of the initial condition so that the center of the distri-
bution follows a great circle. The flow field is non-divergent
and does not challenge the transport operator with respect
to deformation or divergence. In the last decade other non-
divergent global test cases have been proposed such as static
(Nair and Machenhauer, 2002) and moving vortices (Nair
and Jablonowski, 2008) test cases that include deformation.
Also for these tests the analytical solution is known at all
times. Scheme developers do, in general, not publish results
for all test cases and, perhaps more importantly, they often
choose different parameter settings making it more difficult
to compare results for different schemes. A purpose of this
paper is to provide specific guidelines for test case setup in
terms of parameters, resolution, time step, and diagnostics.

Perhaps more challenging, analytical wind fields were
recently proposed byNair and Lauritzen(2010). The La-
grangian fluid parcels follow complex trajectories (not great
circles or small circles) making it harder to compute the an-
alytical solution throughout the simulation. FollowingLeV-
eque(1996) the flow has a “time-reversing” component so
that after one period the exact solution equals the initial con-
dition. Half way through the simulation, however, the initial
distributions are deformed into thin filaments and an “over-
laid” translational flow transports the filaments as they de-
form. This problem is very challenging. A divergent wind
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field is proposed inNair and Lauritzen(2010) as well which
is in contrast to most idealized wind fields in the literature.
The combination of both divergent and deformational flow
constitutes a more realistic atmospheric/ocean transport than,
for example, solid-body advection flow.

The idealized transport experiments listed above are all
based on a single tracer, and accuracy is quantified in
terms of conventional errors norms, i.e., quantifications of
the differences between the analytical (exact) and numer-
ically computed solutions. In some geophysical fluid dy-
namics problems, such as the transport of long-lived species
in the stratosphere and aerosol-cloud interactions (Ovtchin-
nikov and Easter, 2009), it is not only important that in-
dividual species/tracers are transported accurately, but also
the maintenance of pre-existing functional relations between
species/tracers is important. Such models also cannot ac-
cept non-physical transport or redistribution of tracer that
is not accompanied by resolved motion of air masses. Fol-
lowing Lagrangian fluid parcels, interrelations between trac-
ers are conserved; however, any non-Lagrangian scheme will
almost certainly perturb such relations. Nevertheless, La-
grangian schemes in realistic divergent flows must eventually
combine parcels or create new ones, and that process will
not likely preserve the relationships. Numerical errors that
perturb pre-existing functional relations can resemble “real”
mixing similar to what is observed in nature when mixing
occurs (hereafter referred to as “real mixing”) or the trun-
cation errors can introduce unmixing (i.e., spurious mixing)
(Thuburn and Mclntyre, 1997). A quantification and classi-
fication of mixing between interrelated tracers was recently
proposed inLauritzen and Thuburn(2012). For a more exten-
sive overview of test cases for global models and desirable
properties for transport schemes intended for atmospheric
modeling, see, for example, the recent book chapter byLau-
ritzen et al.(2011).

The purpose of this paper is to propose a minimal and chal-
lenging test case suite with specific guidelines on the imple-
mentation and diagnostics, thereby facilitating intercompar-
ison of schemes and establishing a benchmark data base for
future developers. In the derivation of the tests, we sought
to minimize the workload on transport scheme developers
while evaluating their schemes in terms of a wide range of
quantitative measures of accuracy considered important for
geophysical fluid dynamics. Therefore, we assume that mod-
elers have already tested their schemes in simpler settings
such as with solid-body and static/moving vortices test cases
and we do not repeat those tests here.

Almost any test case suite could be extended to include
more tests that could provide more insights into specific
aspects of accuracy particularly useful for some classes of
schemes and applications. For example,Ullrich et al. (2012)
found it insightful (for evaluating higher-order approxima-
tions to Lagrangian cell sides) to transport a constant us-
ing the initial condition wind field for the shallow water
test case 3 ofWilliamson et al.(1992). Similarly, one could

use the actual observed winds in test case 7 inWilliamson
et al.(1992) to generate more complex structures in the tracer
field. To produce filaments that eventually become sub-grid-
scale in a context where the analytical solution is known, one
may use the moving vortices test case (Nair and Jablonowski,
2008) and run it out further than the 12 days suggested in the
test case description. The tests presented in this paper are not
meant to be exhaustive and developers usually have preferred
idealized tests specific for their application. It is the intent of
this paper to present a minimal test bed based on just two
analytic wind fields and four initial conditions that address
a wide range of accuracy aspects, challenge both Lagrangian
and Eulerian schemes with realistic conditions typical of 3-D
flows, and make it straight forward to compare results from
different schemes since we provide detailed instructions on
test case setup and diagnostics. In doing so, we believe this
test case suite provides new insights into accuracy beyond
the much simpler and most widely used standard solid-body
advection test case and associated standard error norms.

The test case proposal is organized as follows. In Sect.2
the transport equation(s) is introduced followed by formu-
las for the analytical initial conditions and wind fields. The
section is concluded with discretization details such as “def-
inition” of resolution and maximum Courant numbers. The
actual test case setup is given in Sect.3 and it is divided into
six categories designed to do the following: assess numeri-
cal convergence rates, “minimal” resolution, filament preser-
vation, transport of discontinuous distributions, maintenance
of pre-existing non-linear functional relations, and transport
under divergent flow conditions. A list of algorithmic con-
siderations/properties such as size of computational stencil,
stability criterion, and number of function evaluations is put
forward in Sect.4. The paper is concluded with a summary
of the test cases.

2 General problem formulation

2.1 Transport equation(s)

Consider a transport scheme that approximates the solution
to the continuity equation for a passive (does not feed back
on the flow) and inert (no sources or sinks) tracer:

∂(ρφ)

∂t
+ ∇ · (ρφV )= 0, (1)

whereρ is the fluid density,V is the two-dimensional flow
velocity vector, andφ is the tracer mixing ratio per unit mass.
Note that the discretized scheme is not necessarily based on
the continuity equation written in flux-form as in Eq. (1) but
could also be based on the advective form

Dφ

Dt
= 0, (2)
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or cell-integrated Lagrangian form

D

Dt

∫
A(t)

ρ φ dA= 0, (3)

whereA(t) is a Lagrangian area andD/Dt is the total or
material derivative. If tracer densityρ φ (flux-form Eq.1 or
cell-integrated Lagrangian Eq.3) and not mixing ratioφ (ad-
vective form Eq.2) is the prognostic variable, one needs to
“extract” the mixing ratioφ from ρ φ, which obviously re-
quires the solution to the continuity equation for fluid density
ρ (see, e.g.,Nair and Lauritzen2010for details). The mix-
ing ratioφ is used for all diagnostics/analyses and not tracer
densityρ φ.

Define the discrete transport operatorT that advances the
numerical solution forφ in time:

φn+1
k = T (φnj ), j ∈H, (4)

wheren is the time-level index,k is the index for the grid
cell/point, andH is the set of indices defining the “halo” or
computational stencil required byT . To compute the numer-
ical solutionφn+1

k , an initial condition, a prescribed velocity
field, and (if applicable) the solution to the continuity equa-
tion for fluid densityρ are required.

2.2 Initial conditions

For fluid density (if needed) the initial condition isρ(t =
0)= 1 for all test cases. Four initial conditions for mixing ra-
tio φ are used and defined in sub-sections below. We use one
infinitely smooth (C∞) initial condition, one quasi-smooth,
one discontinuous, and one non-linearly correlated with the
quasi-smooth initial condition. It may be argued that the dis-
crete initial conditions should be as consistent as possible
with the numerical method. For example, a finite-volume
method is usually based on cell-averaged prognostic vari-
ables, and the initial condition in cellk, φk, should be ob-
tained by integrating the continuous initial conditionφ over
thek-th control volume. Similarly, methods that preserve and
transport internal moments of the tracer distribution (e.g.,
Prather, 1986) should initialize these moments by integrat-
ing over the continuous starting distribution. Standard prac-
tice, however, is to use the value of the continuous initial
condition evaluated at the centroid of the control volume as
representative for the cell-averaged value, and higher-order
moments (if applicable) are zero. It has been shown for finite-
volume schemes that standard error norms may vary signif-
icantly when using point or cell-averaged values for initial
conditions and for computing error norms (e.g.,Lauritzen
et al., 2010; Zerroukat et al., 2002). However, the conclu-
sions drawn from the results are independent of the choice of
exact solution (cell average versus grid-point value) as long
as the schemes are compared with the same choice for exact
solution in a consistent manner. Therefore, the initial con-
dition and exact solution are based on grid-point values at

the centroid of the grid cell for finite-volume methods and
at quadrature/finite-difference points for basis-function/grid-
point methods.

All four initial conditions forφ are based on two distribu-
tions centered about(λi,θi), i = 1,2:

(λ1,θ1) = (5π/6,0), (5)

(λ2,θ2) = (7π/6,0), (6)

whereλ is longitude andθ is latitude in radians. The distri-
butions are symmetrically placed in the flow field to assess
the symmetry of the numerically computed solution.

2.2.1 Gaussian hills

Smooth Gaussian surfaces/hills can be defined as follows:

hi(λ,θ)= hmaxexp{−b[(X − Xi)
2
+ (Y − Yi)

2
+ (Z − Zi)

2
]}, (7)

where the height1 and width are determined byhmax = 0.95
and b = 5, respectively (Levy et al., 2007). The absolute
Cartesian coordinates (X, Y, Z) and spherical(λ,θ) coordi-
nates are related through

(X, Y, Z) = (R cosθ cosλ, R cosθ sinλ, R sinθ), (8)

where radiusR is the radius of the sphere. The coordinates
for the center of the Gaussian distribution (Xi , Yi , Zi) are
computed by inserting(λi,θi) into Eq. (8) and evaluating the
right-hand side.

The Gaussian hills distribution is defined as the sum of the
two Gaussian hillsh1 andh2 (Eq.7):

φ = φ(gh)(λ,θ)= h1(λ,θ)+h2(λ,θ) (9)

and is graphically shown in Fig.1a. Note thatφ(gh) is in-
finitely smooth (C∞).

2.2.2 Cosine bells

Similarly, two symmetrically located cosine bells are defined
as follows:

hi(λ,θ)=
hmax

2
[1+ cos(πri/r)] if ri < r, (10)

where the amplitudehmax = 1, base radiusr = R/2, and
great circle distance between(λ,θ) and the center(λi,θi)
is ri = ri(λ,θ), with

ri(λ,θ)= R arccos[sinθi sinθ + cosθi cosθ cos(λ− λi)].

The initial conditionφ consists of a background valueb
and two cosine bells defined above:

φ = φ(cb)(λ,θ)=

b+ ch1(λ,θ) if r1 < r,
b+ ch2(λ,θ) if r2 < r,
b otherwise,

(11)

where the background value isb = 0.1 and amplitudec =

0.9, such thatφ ∈ [0.1,1.0] (see Fig.1b).

1note thatNair and Lauritzen(2010) used ahmax value of one
which is different from the value used here
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Fig. 1. Contour plots for the four initial conditions for mixing ratioφ. (a) depicts the infinitely smooth (C∞) initial condition constructed
from Gaussian surfaces,(b) the cosine bells initial condition which isC1, (c) the non-smooth slotted cylinders initial condition, and(d) is
the initial condition, which is nonlinearly correlated with(b).

2.2.3 Slotted cylinders

For the discontinuous case, the double cosine-bells (Eq.11)
are replaced byslotted-cylinders(Zalesak, 1979):

φ = φ(sc)(λ,θ)= (12)
c if ri ≤ r and|λ− λi | ≥ r/(6R) for i = 1,2,
c if r1 ≤ r and|λ− λ1|< r/(6R) andθ − θ1 <−

5
12r/R ,

c if r2 ≤ r and|λ− λ2|< r/(6R) andθ − θ2 >
5
12r/R ,

b otherwise,

where, again, the background value isb = 0.1 and amplitude
c = 1 (see Fig.1c).

2.2.4 “Correlated” cosine bells

An initial distribution that is nonlinearly “correlated” with
the cosine bells initial condition is defined as

φ = φ(ccb) = ψ
(
φ(cb)

)
. (13)

The nonlinear functional relation is given by

ψ(χ)= aψ χ
2
+ bψ , (14)

where

aψ = −0.8 and bψ = 0.9. (15)

For a contour plot of the correlated cosine bells see Fig.1d.

2.3 Wind fields

In this test case suite, we use two deformational wind fields:
one non-divergent and one divergent. The components of the
non-divergent velocity vectorV (λ,θ, t) and the stream func-
tion

u = −
∂ψ

∂θ
, (16)

v =
1

cosθ

∂ψ

∂λ
, (17)

are given by

u(λ,θ, t) =
10R

T
sin2(λ′)sin(2θ) cos

(
πt

T

)
+

2π R

T
cos(θ) (18)

v(λ,θ, t) =
10R

T
sin(2λ′)cos(θ) cos

(
πt

T

)
, (19)

ψ(λ,θ, t) =
10R

T
sin2(λ′)cos2(θ)cos

(
πt

T

)
−

2π R

T
sin(θ), (20)

respectively, whereλ′
= λ− 2πt/T . In non-dimensional

unitsT = 5 andR = 1. An “Earth”-like dimensionalization
of the wind fields may be obtained by settingT = 12 days
andR = 6.3712× 106 m. Schemes based on characteristics
(typically Lagrangian schemes) may use the algorithm given
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Fig. 2.Same as Fig.1 but for the numerical solution att = T/2 using CSLAM with a time step1t = T/120 and resolution of1λ= 1.5◦.

in Nair and Lauritzen(2010) for the computation of parcel
trajectories.

When either of the initial conditions given in Sect.2.2
are transported by the non-divergent wind field, they are de-
formed into thin filaments half way through the simulation
and these are simultaneously being transported eastward by
the solid-body component of the flow (see Figs.2 and3). At
maximum deformation, the filaments are approximately 10◦

wide when using the cosine bells initial condition.
To challenge schemes under divergent flow conditions, we

use the following wind field (Nair and Lauritzen, 2010, their
case-3 with a “constant background wind field”):

u(λ,θ, t) = −5
R

T
sin2

(
λ′

2

)
sin(2θ)cos2(θ) cos

(
πt

T

)
+

2π R

T
cos(θ), (21)

v(λ,θ, t) =
5

2

R

T
sin(λ′)cos3(θ) cos

(
πt

T

)
, (22)

whereR andT have the same values as for the non-divergent
velocity field. The non-divergent flow field (Eqs.18 and19)
is used for all tests except the test described in Sect.3.6, for
which the divergent winds are used (Eqs.21and22).

The exact solution for all tests is known att = T , and it is
identical to the initial condition

φ(t = T )= φ(t = 0). (23)

We do not have an exact solution throughout the simula-
tion when using either the non-divergent or divergent flow
field.

Note that the first part of the simulation (t ∈ [0,T /2])
is typical of atmospheric/oceanographic flows in that fea-
tures collapse to smaller scales, whereas the second part
(t ∈ [T/2,T ]), in which the reverse occurs, is atypical of
atmospheric/oceanographic flows though convenient for ob-
taining a problem with an exact solution. The background
mean flow ensures that errors, in general, do not cancel when
the deformational part of the flow reverses.

2.4 Discretization details

We specify resolution in terms of average grid-spacing in de-
grees at the Equator of the sphere1λ. For methods based on
quadrature methods, the “average resolution” should be spec-
ified in terms of mean distance between quadrature points.
We define the (maximum) Courant number as

CN =
1t Umax

1λ
(
π

180◦
) (24)

where1t is the time step andUmax is the maximum zonal
wind speed. For the non-divergent flow, the non-dimensional
and dimensional (“Earth”)Umax are given by

Umax ≈ 3.26 andUmax ≈ 100.07ms−1, (25)

respectively.
This definition of Courant number obviously does not

emphasize local Courant numbers (in particular for non-
isotropic grids); it is defined to facilitate comparison of max-
imum Courant numbers across discretization grids.

The time step1t should be a “typical/practical” time step
for performing tracer transport with the scheme in question.
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Fig. 3. Same as Fig.2 but for CSLAM with a shape-preserving reconstruction function filter (seeLauritzen et al., 2010for details on the
filter).

However, investigating accuracy as a function of time step is
also of interest. For example, if the transport scheme permits
long time steps (Courant number>1), it is advised to run the
tests with an “Eulerian” time step (Courant number≤ 1) as
well.

Often limiters/filters are applied to render the numeri-
cally computed solution physically realizable. These may be
shape-preserving, positive definite, monotone, and/or non-
oscillatory limiters/filters. If schemes have a limiter/filter op-
tion, the tests should be run both without and with lim-
iters/filters. If the limiters/filters are formulated in terms of
tunable parameters for minima and maxima, the test case
suite should be run with parameters used in “practical” ap-
plications of the scheme. For example, a tunable parameter
(if applicable) should be set for a minimum value of mixing
ratio that is zero, although in this test case suite the back-
ground value is non-zero..

Accuracy is assessed in terms of several diagnostics. First
of all, we use standard error norms that are defined in Ap-
pendix A. These require knowledge of the “true” (analytic)
solution and are therefore computed at timet = T when the
true solution is known. Secondly, we use recently proposed
mixing diagnostics (Sect.3.5; Appendix B and C) as well as
a novel filament preservation diagnostic (Sect.3.3). As these
diagnostics do not require an analytical solution, we compute
them at the time of maximum deformation (t = T/2) before
the flow “reversal”, which is less physical.

For reference purposes, we provide results using
the CSLAM (Conservative Semi-Lagrangian Multi-tracer)

scheme (Lauritzen et al., 2010) on the cubed-sphere grid. The
CSLAM configuration used here is described in detail inNair
and Lauritzen(2010).

3 Test cases

The diagnostics/test cases are designed to assess the follow-
ing:

1. numerical order of convergence,

2. “minimal” resolution,

3. ability of the transport scheme to preserve filaments,

4. ability of the transport scheme to transport “rough” dis-
tributions,

5. ability of the transport scheme to preserve pre-existing
functional relations between tracers,

6. ability of transport scheme to deal with divergent flows
(Nair and Lauritzen, 2010).

Each category is discussed in separate sections below.

3.1 Numerical order of convergence: Gaussian hills

This test is designed to assess the formal (or “optimal”) or-
der of convergence of the scheme under quasi-realistic flow
conditions on the sphere. This is done as follows. Standard
error norms using the Gaussian hills initial condition Eq. (9)

Geosci. Model Dev., 5, 887–901, 2012 www.geosci-model-dev.net/5/887/2012/
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Fig. 4. Convergence plots for `2 (first column), and `∞ (second column), respectively, computed with CSLAM with Gaussian hills initial
conditions. The keys with ‘CN5.5’ and ‘CN1.0’ refer to simulations using a time-step of T/120 and T/600, respectively. The keys with the
word filter in them refer to simulations using a shape-preserving filter. The upper and lower heavy lines on each plot correspond to the slopes
of second- and third-order convergence rates, respectively.
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Fig. 5. Convergence plot for `2 computed with CSLAM with cosine
bells initial conditions. The keys are as in Fig. 4. The heavy line is
`2 = 0.033 and is used to define ‘minimal’ resolution.

based on point values (parcels) control volumes for which
the point values are representative must be defined. Note that375

the ‘control volumes’ should span the entire domain without
overlaps or ‘cracks’ between them.

Define the filament preservation diagnostic

`f (τ,t) =

{
100.0× A(τ,t)

A(τ,t=0) if A(τ,t= 0) 6= 0,

0.0, otherwise.
(30)

For infinite resolution (continuous case) and a non-divergent
flow, `f (τ,t) is invariant in time: `f (τ,t= 0) = `f (τ,t) =
100 for all τ . At finite resolution, however, the filament di-380

agnostic even for an exact scheme should not necessarily be
preserved since the solution must be truncated to the discrete
grid. That said, usually the numerical truncation errors are
much larger than the grid truncation error at least at moder-
ate resolutions.385

The experimental setup is as in section 3.2, that is, use
the non-divergent wind field ((18) and (19)) and cosine bells
initial condition (11). At half time, t= T/2, the filament
preservation diagnostic `f (τ,t = T/2) is computed at 19
equi-distant discrete intervals (τ =0.10, 0.15, 0.15,0.20, ...,390

0.95, 1.00) without and (if applicable) with limiters/filters at
∆λ= 1.5◦, ∆λ= 0.75◦ as well as at the ‘minimal’ resolution
∆λ= ∆λm. The filament diagnostic should be computed as
a function of τ ∈ [0.1,1.0] (see Fig.6). The threshold value
for which `f (t=T/2) is less than,for example 80, is a mea-395

sure for how well filaments are preserved.

Numerical diffusion will tend to decrease `f for large τ
values (maxima decrease) and increase `f for low τ values
(gradients are ‘smeared’). An ‘extreme’ situation is shown
on Fig. 6(a) where `f is plotted as a function of τ for the400

highly diffusive 1st-order version of CSLAM. This much
improves when using the higher-order version of CSLAM
(Fig. 6(b)). Note that the non-shape-preserving versions of
CSLAM produce values of `f less than 100.0 for low thresh-
old values (τ < 0.1). This also indicates an error in tracer405

transport due to undershoots (φ< 0.1), which are not repre-
sented in the `f diagnostic.

3.4 Transport of ‘rough’ distribution: slotted-cylinders

To challenge shape-preserving filters/limiters (if applicable)
we use discontinuous initial conditions, that is, standard er-410

ror norms for the simulated solution at t=T using the slotted
cylinders initial condition and non-divergent winds ((18) and
(19)) are computed using the transport scheme without and
(if applicable) with limiters/filters at resolutions ∆λ= 1.5◦,
∆λ = 0.75◦ as well as at the ‘minimal’ resolution ∆λm.415

Contour plots of the solution at t= T/2 and t= T (Fig. 7)
using a contour interval of 0.05 in the range [0.0 : 1.1] are
shown.

Fig. 4. Convergence plots for̀2 (first column) and̀ ∞ (second column), respectively, computed with CSLAM with Gaussian hills initial
conditions. The keys with “CN5.5” and “CN1.0” refer to simulations using a non-dimensional time step ofT/120 andT/600, respectively.
The keys with the wordfilter in them refer to simulations using a shape-preserving filter. The upper and lower heavy lines on each plot
correspond to the slopes of second- and third-order convergence rates, respectively.

and non-divergent wind field (Eqs.18 and19) at resolutions
ranging from approximately1λ= 3◦ to1λ= 0.3◦ for fixed
Courant number are computed. The choice of resolutions
should provide enough data points on a “convergence plot”
(e.g., log(`2) as a function of log(N)) in the resolution inter-
val of interest, to generate a “credible” estimate of numerical
rate of convergence. For example, the following resolutions
could be used:1λ= 3◦, 1.5◦, 0.75◦, 0.375◦. The runs should
be performed without any limiting/filtering and (if applica-
ble) also with limiters/filters enforcing shape-preservation,
monotonicity and/or non-oscillatoriness in the numerically
computed solution.

These simulations with infinitely smooth (Gaussian hills)
initial conditions should provide a numerical estimate of the
“optimal” numerical convergence rate of the scheme. A way
to estimate numerical (empirical) convergence ratesK2 and
K∞, for `2 and`∞ respectively (see Fig.4), is to perform
a least-squares linear regression of the form (Harris et al.,
2010):

log(`i)=Ai −Ki log(1λ), i = 2,∞. (26)

3.2 “Minimal” resolution 1λm: cosine bells

In many geophysical fluid dynamics applications using state-
of-the-art physical parameterization packages, increases in
horizontal resolution come at significant computational cost.
It is therefore of interest to assess the absolute error in ad-
dition to convergence rates. To do that we repeat the experi-
ment described in Sect.3.1but with cosine bells initial con-
dition (11) to find the “minimal” resolution. We define the
“minimal” resolution1λm as the1λ-value for which`2 is
approximately 0.033, when using an unlimited scheme and
the cosine bells Eq. (11) initial condition (the Courant num-
ber used for defining1λm should be one typically used by
the scheme). A convergence plot can conveniently be used
to find the “minimal” resolution by finding the intersection
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Fig. 4. Convergence plots for `2 (first column), and `∞ (second column), respectively, computed with CSLAM with Gaussian hills initial
conditions. The keys with ‘CN5.5’ and ‘CN1.0’ refer to simulations using a time-step of T/120 and T/600, respectively. The keys with the
word filter in them refer to simulations using a shape-preserving filter. The upper and lower heavy lines on each plot correspond to the slopes
of second- and third-order convergence rates, respectively.
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Fig. 5. Convergence plot for `2 computed with CSLAM with cosine
bells initial conditions. The keys are as in Fig. 4. The heavy line is
`2 = 0.033 and is used to define ‘minimal’ resolution.

based on point values (parcels) control volumes for which
the point values are representative must be defined. Note that375

the ‘control volumes’ should span the entire domain without
overlaps or ‘cracks’ between them.

Define the filament preservation diagnostic

`f (τ,t) =

{
100.0× A(τ,t)

A(τ,t=0) if A(τ,t= 0) 6= 0,

0.0, otherwise.
(30)

For infinite resolution (continuous case) and a non-divergent
flow, `f (τ,t) is invariant in time: `f (τ,t= 0) = `f (τ,t) =
100 for all τ . At finite resolution, however, the filament di-380

agnostic even for an exact scheme should not necessarily be
preserved since the solution must be truncated to the discrete
grid. That said, usually the numerical truncation errors are
much larger than the grid truncation error at least at moder-
ate resolutions.385

The experimental setup is as in section 3.2, that is, use
the non-divergent wind field ((18) and (19)) and cosine bells
initial condition (11). At half time, t= T/2, the filament
preservation diagnostic `f (τ,t = T/2) is computed at 19
equi-distant discrete intervals (τ =0.10, 0.15, 0.15,0.20, ...,390

0.95, 1.00) without and (if applicable) with limiters/filters at
∆λ= 1.5◦, ∆λ= 0.75◦ as well as at the ‘minimal’ resolution
∆λ= ∆λm. The filament diagnostic should be computed as
a function of τ ∈ [0.1,1.0] (see Fig.6). The threshold value
for which `f (t=T/2) is less than,for example 80, is a mea-395

sure for how well filaments are preserved.

Numerical diffusion will tend to decrease `f for large τ
values (maxima decrease) and increase `f for low τ values
(gradients are ‘smeared’). An ‘extreme’ situation is shown
on Fig. 6(a) where `f is plotted as a function of τ for the400

highly diffusive 1st-order version of CSLAM. This much
improves when using the higher-order version of CSLAM
(Fig. 6(b)). Note that the non-shape-preserving versions of
CSLAM produce values of `f less than 100.0 for low thresh-
old values (τ < 0.1). This also indicates an error in tracer405

transport due to undershoots (φ< 0.1), which are not repre-
sented in the `f diagnostic.

3.4 Transport of ‘rough’ distribution: slotted-cylinders

To challenge shape-preserving filters/limiters (if applicable)
we use discontinuous initial conditions, that is, standard er-410

ror norms for the simulated solution at t=T using the slotted
cylinders initial condition and non-divergent winds ((18) and
(19)) are computed using the transport scheme without and
(if applicable) with limiters/filters at resolutions ∆λ= 1.5◦,
∆λ = 0.75◦ as well as at the ‘minimal’ resolution ∆λm.415

Contour plots of the solution at t= T/2 and t= T (Fig. 7)
using a contour interval of 0.05 in the range [0.0 : 1.1] are
shown.

Fig. 5.Convergence plot for̀2 computed with CSLAM with cosine
bells initial conditions. The keys are as in Fig.4. The heavy line is
`2 = 0.033 and is used to define “minimal” resolution.

between the horizontal linè2 = 0.033 and the convergence
curve for`2 (see Fig.5). The quasi but not infinitely smooth
initial conditions (Cosine bells instead of Gaussian hills) are
used in order to challenge the schemes with respect to weak
non-smoothness.

The “minimal” resolution1λm will be used in the remain-
ing test cases. The choice of threshold for1λm is based on
results for CSLAM (a resolution for which the thin filaments
are marginally resolved). The “minimal” resolution (as de-
fined here) for CSLAM is1λ= 1.5◦ and1λ≈ 1◦ when us-
ing a time step ofT/120 (maximum Courant number is ap-
proximately 5.2) andT/600 (maximum Courant number is
approximately 1.0).

3.3 “Filament” preservation diagnostic `f : cosine bells

Realistic flows often deform distributions into thin filaments
that, in general, are challenging to represent by Eulerian and
semi-Lagrangian transport schemes that use a fixed grid in

www.geosci-model-dev.net/5/887/2012/ Geosci. Model Dev., 5, 887–901, 2012



894 P. H. Lauritzen et al.: Transport tests

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l f

τ

(a) 1st-order CSLAM

1.5°
0.75°

 0

 20

 40

 60

 80

 100

 120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

l f

τ

(b) 3rd-order CSLAM

1.5°
1.5°, shape-preserving

0.75°
0.75°, shape-preserving

Fig. 6.Filament diagnostics̀f (t = T/2) as a function of threshold valueτ for different configurations of the CSLAM scheme with Courant
number 5.5.(a) first-order version of CSLAM at1λ= 1.5◦ and1λ= 0.75◦, and (b) third-order version of CSLAM with and without
shape-preserving filter at resolutions1λ= 1.5◦ and1λ= 0.75◦.

space (e.g.,Behrens et al., 2000). A measure of how well a
transport scheme preserves gradients (in particular thin fila-
ments) is relevant for many tracer applications (e.g., transport
of long-lived tracers such as chemical species in the strato-
spheric vortices). Filaments are created when material sur-
faces stretch and gradients increase. When the thickness of
the filaments reach the scale at which molecular diffusion (or
some other diffusive process) becomes important, the fila-
ments are no longer preserved but gradients are eroded. For
the flow and initial conditions considered here, the filaments
should, for all practical purposes, be preserved by the trans-
port scheme, as the physical scale of the filaments is approx-
imately 10◦ at maximum deformation. We do therefore not
assess how transport schemes represent the filament erosion
process that appears in nature since those “diffusive” pro-
cesses take place at scales several magnitudes below 10◦. If
such processes are of interest, we suggest to use the moving
vortices test case ofNair and Jablonowski(2008) and ex-
tend the simulation time so that the filaments are stretched
to a level where such processes are important and/or change
the parameters in theNair and Lauritzen(2010) flow field
to increase the amount of deformation (see, e.g.,Kent et al.,
2012).

The “filament” preservation diagnostic is formulated as
follows. DefineA(τ, t) as the spherical area for which the
spatial distribution of the tracerφ(λ,θ) satisfies

φ(λ,θ)≥ τ, (27)

at timet , whereτ is the threshold value. For a non-divergent
flow field and a passive and inert tracerφ, the areaA(τ, t) is
invariant in time.

The discrete definition ofA(τ, t) is

A(τ, t)=

∑
k∈G

1Ak, (28)

where1Ak is the spherical area for whichφk is representa-
tive andG is the set of indices

G = {k ∈ (1, ...,K) |φk ≥ τ } , (29)

whereK is the number of grid cells. For Eulerian finite-
volume schemes,1Ak is the area of thekth control volume.
For Eulerian grid-point schemes, a control volume for which
the grid-point value is representative must be defined. Sim-
ilarly, for fully Lagrangian schemes based on point values
(parcels), control volumes for which the point values are rep-
resentative must be defined. Note that the “control volumes”
should span the entire domain without overlaps or “cracks”
between them.

Define the filament preservation diagnostic

`f (τ, t)=

{
100.0×

A(τ,t)
A(τ,t=0) if A(τ, t = 0) 6= 0,

0.0, otherwise.
(30)

For infinite resolution (continuous case) and a non-
divergent flow,`f (τ, t) is invariant in time:`f (τ, t = 0)=

`f (τ, t)= 100 for allτ . At finite resolution, however, the fil-
ament diagnostic even for an exact scheme should not nec-
essarily be preserved since the solution must be truncated to
the discrete grid. That said, usually the numerical truncation
errors are much larger than the grid truncation error at least
at moderate resolutions.

The experimental setup is as in Sect.3.2, i.e., uses the
non-divergent wind field (Eqs.18 and19) and cosine bells
initial condition Eq. (11). At half time, t = T/2; the fil-
ament preservation diagnostic̀f (τ, t = T/2) is computed
at 19 equi-distant discrete intervals (τ =0.10, 0.15, 0.20,
0.25, ..., 0.95, 1.00) without and (if applicable) with lim-
iters/filters at1λ= 1.5◦,1λ= 0.75◦ as well as at the “min-
imal” resolution1λ=1λm. The filament diagnostic should
be computed as a function ofτ ∈ [0.1,1.0] (see Fig.6). The
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Fig. 7. Contour plot of the CSLAM numerical solutionφ at resolution1λ= 1.5◦ and time stepT/120 using the slotted-cylinders initial
condition at timet = T/2 (a andc) andt = T (b andd) using no filter/limiter (a and b) and a shape-preserving filter (c andd). The standard
error norms for the unfiltered/unlimited solution are`2 = 0.24,`∞ = 0.79,φmin = −0.19, andφmax= 0.15, and for the shape-preserving
solution they arè2 = 0.26,`∞ = 0.80,φmin = 0.0, andφmax= −4.34× 10−3.

threshold value for which̀f (t = T/2) is less than, for ex-
ample, 80 is a measure for how well filaments are preserved.

Numerical diffusion will tend to decreasèf for largeτ
values (maxima decrease) and increase`f for low τ values
(gradients are “smeared”). An “extreme” situation is shown
in Fig.6a wherè f is plotted as a function ofτ for the highly
diffusive first-order version of CSLAM. This much improves
when using the higher-order version of CSLAM (Fig.6b).
Note that the non-shape-preserving versions of CSLAM pro-
duce values of̀ f less than 100.0 for low threshold values
(τ < 0.1). This also indicates an error in tracer transport due
to undershoots (φ < 0.1), which are not represented in the`f
diagnostic.

3.4 Transport of “rough” distribution: slotted-cylinders

To challenge shape-preserving filters/limiters (if applicable),
we use discontinuous initial conditions, i.e., standard error
norms for the simulated solution att = T using the slotted
cylinders initial condition and non-divergent winds (Eqs.18
and19) are computed using the transport scheme without and
(if applicable) with limiters/filters at resolutions1λ= 1.5◦,
1λ= 0.75◦ as well as at the “minimal” resolution1λm.
Contour plots of the solution att = T/2 andt = T (Fig. 7)
using a contour interval of 0.05 in the range[0.0 : 1.1] are
shown.

3.5 Preservation of pre-existing functional relation:
cosine bells and correlated cosine bells

In the tests described in the previous sections, the accuracy
is assessed in a single-tracer setup. Now we consider two
tracers that are both advected by the same non-divergent flow
field (Eqs.18and19). The initial conditions for the two trac-
ers are the cosine bells initial condition (Eq.11) and cor-
related cosine bells (Eq.13), respectively (see Fig.1b and
d). The mixing ratios of the two tracers are referred to as
χ and ξ . Following Lagrangian parcels, any functional re-
lation between tracers should mathematically be preserved
at all times, and hence any deviation from the pre-existing
functional relation between the tracers is essentially numer-
ical error introduced by the transport scheme. Note that the
“ideal” scheme could be a scheme that does not exactly pre-
serve pre-existing functional relations, but for which the nu-
merical errors are less than physical diffusive processes in
nature.

In any case transport schemes should not disrupt func-
tional relations in unphysical ways. Numerical errors that
perturb such relations essentially introduce mixing or un-
mixing between the tracers.Lauritzen and Thuburn(2012)
provide a discussion of the physical importance of trans-
port schemes not disrupting tracer interrelationships in

2 a bug was identified in the code used for computing mixing
diagnostics in Lauritzen and Thuburn (2012).
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Fig. 8.Scatter plots att = T/2 for two non-linearly correlated species/tracers based on cosine bells initial conditions using first-order version
of CSLAM (a and d), standard CSLAM based on bi-parabolic reconstruction functions (b and e) and standard CSLAM with a shape-
preserving filter (c andf). First and second row use1λ= 1.5◦ and1λ= 0.75◦ resolutions, respectively. The solid lines mark the boundaries
between the areas used to classify the numerical mixing. On each plot the mixing diagnostics`r , `u and`o are given.2

unphysical ways with special focus on non-linear chemistry.
The numerical errors that perturb pre-existing functional re-
lations between tracers will be referred to asnumerical mix-
ing or simply mixing in this paper (one could equally well
use terminology such as tracer variance dissipation instead of
mixing). In nature such processes that change the correlation
between two tracers come about through diffusive processes,
and, for reactive tracers, through chemical reactions between
tracers. The purpose of this test is to quantify the amount
of mixing and the physical realizability of the mixing that a
scheme introduces through truncation errors. Note that pre-
serving correlations are, however, no guarantee for accuracy,
as one may design schemes that satisfy tracer interrelations
but are otherwise inaccurate; as formulated byThuburn and
Mclntyre (1997), “shaping two tracer fields the same way
does not imply shaping them the right way”.

Scatter plots, where tracer 1 (χ using cosine bells initial
condition) and tracer 2 (ξ using correlated cosine bells initial
condition) are plotted against each other, are used to quantify
the numerical mixing or unmixing introduced by the scheme
(see Fig.8). As discussed inThuburn and Mclntyre(1997),
no Eulerian scheme can exactly preserve pre-existing non-
linear relations between two tracers, and hence scatter points
(χk,ξk) will, in general, deviate from the pre-existing func-
tional relation curveψ as the simulation evolves. The way in
which the scatter points deviate from the non-linearψ-curve
has implications for the character of the numerical mixing
that the transport scheme introduces. For this test it is crucial
that features collapse in scale, and we therefore consider scat-
ter plots using prognosed mixing ratios at half time (t = T/2)

when the initial condition has deformed into thin filaments
and collapsed to smaller scales compared to the initial condi-
tion.

Following Lauritzen and Thuburn(2012), the numerical
mixing (deviation of scatter points(χk,ξk) fromψ-curve) is
classified into three categories:

– “Real” mixing: numerical mixing that resembles “real”
mixing (e.g.,Thuburn and Mclntyre, 1997) when scatter
points move to the concave side ofψ . All other devia-
tions from the pre-existing functional curve follow spu-
rious unmixing, which is accounted for in two separate
categories.

– “Range-preserving” unmixing: numerical unmixing
within the range of the initial data, i.e., scatter points
are shifted to the convex side of the pre-existing func-
tional relation or below the convex hull but not outside
the range of the initial data.

– Overshooting(or equivalently expanding range unmix-
ing): numerical unmixing that is not “range-preserving”
unmixing, which for this specific test case setup is
(χ,ξ) /∈ [0.1,1.0]

2.

The deviation of the scatter points from theψ-curve is
quantified in terms of a normalized shortest distance between
(χk,ξk) and theψ-curve referred to asdk. For the specific
parabolic non-linear correlation function used here (Eq.14),
the normalized distance functiondk is given in Appendix B.

The three diagnostics that quantitatively account
for numerical mixing that resembles “real” mixing,
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Fig. 9. Plotted as in Fig.7 but for the divergent flow field (1t = T/120, resolution1λ= 1.5◦, and maximum Courant number is approxi-
mately 3.2).

“range-preserving” unmixing and overshooting are referred
to as`r , `u, and`o, respectively, and are formally defined in
Appendix C. For more discussion on numerical mixing and
the physical reasoning behind the classification of the mix-
ing, seeLauritzen and Thuburn(2012). Note that knowledge
of the exact solution is not needed for the computation of the
mixing diagnostics.

Using the non-divergent flow field, we compute the mix-
ing diagnostics (̀r , `u, `o) half way through the simulation
t = T/2 using two non-linearly correlated tracer distribu-
tions χ = φ(cb) and ξ = φ(ccb) as initial conditions (cosine
bells and correlated cosine bells) at resolutions1λ= 1.5◦,
1λ= 0.75◦ and1λm using the unlimited and (if applicable)
shape-preserving scheme. The scatter plots, that is, the mix-
ing ratio of one tracer (with cosine bells initial conditions)
against the other (with non-linearly correlated cosine bells
initial condition) at these resolutions, are shown in Fig.8.

It is noted that transport schemes can be designed to pre-
serve linear pre-existing functional relations, i.e., a scheme
will preserve linear correlations between species/tracers if
the transport operatorT satisfies

T (Aφ+B)= AT (φ)+BT (1)= AT (φ)+B, (31)

whereA andB are constants (Lin and Rood, 1996; Thuburn
and Mclntyre, 1997). It is assumed that schemes have already
been tested with respect to preservation of linear correlations
without and (if applicable) with limiters/filters.

3.6 Transport under divergent flow conditions:
cosine bells

Most idealized test cases are formulated in terms of non-
divergent wind fields. Since realistic flows are divergent it
should be demonstrated that the transport operator can han-
dle divergent winds. We repeat the experiment described in
Sect.3.4using the divergent wind field (see Eqs.21and22),
cosine bells initial conditions Eq. (11), and the same time
steps. Solutions using CSLAM are shown on Fig.9.

Error norms for unlimited CSLAM at1λ= 1.5◦ resolu-
tion with 1t = 120/T are `2 = 1.90× 10−2, `∞ = 3.22×

10−2, φmin = −2.33×10−2, andφmax = −1.45×10−2. Sim-
ilar for shape-preserving CSLAM, we obtain:`2 = 4.22×

10−2, `∞ = 0.11,φmin = 0.0,φmax = −0.13.

4 Algorithmic considerations

Overall, algorithmic considerations or properties are docu-
mented. By algorithmic considerations we refer to general
properties/characteristics of the scheme that usually impact
scheme implementation, stability, and data-flow. Below is a
non-exhaustive list of algorithmic considerations/properties:

– size of halo/stencilH used to update a cell/grid-point
value;

– for multi-step time-stepping algorithms, specify number
of stages (right-hand side evaluations);
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– number of integral/functional evaluations (if applicable)
per time-stepping stage;

– maximum Courant number for which the transport
scheme is stable;

– amount of information (if any) that can be re-used to
transport additional tracers (multi-tracer efficiency).

5 Summary

Below is a summary of the proposed test case suite. In terms
of implementation work, only two flows fields and four ini-
tial conditions are needed. The accuracy is assessed using tra-
ditional/conventional error norms as well as novel filament-
preservation and mixing diagnostics. For convenience the
standard error norms̀i , i = 2,∞, φmin andφmaxare com-
puted at the end of the simulationt = T when the exact so-
lution is known (i.e., it equals the initial condition). All mix-
ing diagnostics̀ i , i = r,u,o, and the filament diagnostic̀f
(they do not require knowledge of the analytical solution to
the transport equation) are computed half way through the
simulation att = T/2 when the fields are most deformed.

For the non-divergent flow field (Eqs.18 and19), the fol-
lowing experiments and associated diagnostics are proposed:

1. numerical order of convergenceshowing convergence
plots and computing numerical convergence ratesKi
for `i , i = 2,∞, for the resolution range approximately
1λ= 3◦ to1λ= 0.3◦ using Gaussian initial conditions
for the unlimited and (if applicable) shape-preserving
scheme (Sect.3.1),

2. “minimal” resolution computing “minimal” resolution
1λm for which `2 ≈ 0.033 using cosine bells initial
condition for the unlimited and (if applicable) shape-
preserving scheme (Sect.3.2),

3. “filament” preservation plotting the filament preser-
vation diagnostic`f (at t = T/2) using the cosine
bells initial condition for the unlimited and (if appli-
cable) shape-preserving scheme at resolutions1λ=

1.5◦, 1λ= 0.75◦, and1λ=1λm as a function ofτ
(Sect.3.3),

4. “rough” distribution showing contour plots (using con-
tour interval of 0.1 starting at 0.0) at timest = T/2,T
and computing̀ i , i = 2,∞, φmin and φmax at res-
olutions1λ= 1.5◦, 1λ= 0.75◦, and1λ=1λm for
the slotted-cylinder initial conditions (12) using the un-
limited and (if applicable) the shape-preserving scheme
(Sect.3.4), and

5. mixing diagnosticsshowing scatter plots and comput-
ing mixing diagnostics̀ i , i = r,u,o, for the two non-
linearly correlated tracers based on cosine bells for the
unlimited and (if applicable) shape-preserving scheme

at resolutions1λ= 1.5◦, 1λ= 0.75◦, and1λ=1λm
(Sect.3.5).

Using the divergent flow field (Eqs.21and22),

6. Divergent flow conditionscomputing standard error
norms `i , i = 2,∞, φmin and φmax at resolutions
1λ= 1.5◦, 1λ= 0.75◦, and1λ=1λm using cosine
bells initial conditions using the same time steps as used
for test4 above (Sect.3.6) using the unlimited and (if
applicable) shape-preserving scheme.

In addition to accuracy diagnostics under different flow con-
ditions and using different initial conditions, we report on
algorithm properties/characteristics by

7. Algorithmic considerationsspecifying size of compu-
tational stencil, number of right-hand side evaluations
in multi-stage time-stepping schemes, stability criteria,
and amount of information that can be re-used for each
additional prognostic tracer.

Some results for the CSLAM scheme are given in this pa-
per. Full results for the benchmark tests using CSLAM and a
dozen of other state-of-the-art transport schemes are reported
on in a separate publication (Lauritzen et al., 2012). Fortran
code to compute mixing diagnostics (`i , i = r,u,o) and the
filament diagnostic̀ f is available in the Supplement. Also
Gnuplot scripts to compute convergence ratesKi , i = 2,∞,
as well as NCL (NCAR Command Language) scripts for
plotting are available in the supplemental material. Model-
ers are especially encouraged to use the same color Table for
contour plotting as used in the NCL script provided in the
Supplement to facilitate visual scheme intercomparison.

Appendix A

Standard error measures

If φ = φ(λ,θ, t) is the transported mixing ratio field, then
global normalized standard errors are defined byWilliamson
et al.(1992):

`2 =

[
I [(φ−φT )

2
]

I [(φT )2]

]1/2

,

`∞ =
max∀λ,θ |φ−φT |

max∀λ,θ |φT |
,

φmax =
max∀λ,θ (φ)− max∀λ,θ (φT )

1φ0
,

φmin =
min∀λ,θ (φ)− min∀λ,θ (φT )

1φ0
,

whereφT andφ0 are, respectively, the exact/analytical so-
lution, and its initial value,1φ0, is the difference between
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and minimum value of the initial condition, and the global
integral I is defined as follows,

I(φ) =
1

4π

∫ 2π

0

∫ π/2

−π/2
φ(λ,θ,t)cosθdλdθ.

Appendix B625

Definition of distance function dk

The ‘minimum’ distance function dk is defined as the min-
imal normalized Euclidean distance between the correlation
point (χk,ξk) and the preexisting functional relation curve
(χ,ψ(χ)) within the range of the initial condition

dk =Lk(χ(ψ)
k ), (B1)

where

χ
(ψ)
k = min

[
max

(
χ(min),χ

(root)
k

)
,χ(max)

]
. (B2)

constrains the shortest distance to the initial condition in-
terval [χmin,χmax], and the normalized distance function is
given by

Lk(χ) =

√(
χk−χ
Rχ

)2

+
(
ξk−ψ(χ)

Rξ

)2

, (B3)

where

Rχ =χ(max)−χ(min), (B4)

Rξ = ξ(max)−ξ(min) =ψ
(
ξ(max)

)
−ψ

(
ξ(min)

)
. (B5)

For this particular test case setup Rχ = 0.9, Rξ = 0.792, and
the ‘root’ χ(root)

k is given by

χ
(root)
k = ck+

1
ck

(
13
75
− 5

12
ξk

)
, (B6)

where

ck =
1
60

[
65340χk+12

√
12(125ξk−52)3 +29648025χ2

k

]1/3

.

(B7)

Appendix C
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For the two-tracer test (section 3.5) three mixing diagnostics
are used and defined below (Lauritzen and Thuburn, 2011).
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Appendix B

Definition of distance functiondk

The “minimum” distance functiondk is defined as the min-
imal normalized Euclidean distance between the scatter
point (χk,ξk) and the pre-existing functional relation curve
(χ,ψ(χ)) within the range of the initial condition

dk = Lk(χ
(ψ)
k ), (B1)

where

χ
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[
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(
χ (min),χ

(root)
k

)
,χ (max)

]
(B2)

constrains the shortest distance to the initial condition in-
terval [χmin,χmax

], and the normalized distance function is
given by
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, (B3)
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integral I is defined as follows,

I(φ) =
1

4π

∫ 2π

0

∫ π/2

−π/2
φ(λ,θ,t)cosθdλdθ.
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Definition of distance function dk

The ‘minimum’ distance function dk is defined as the min-
imal normalized Euclidean distance between the correlation
point (χk,ξk) and the preexisting functional relation curve
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Fig. C1. A schematic of the classification of numerical mixing. If
a scatter point is located in the area labeled withA (mathemati-
cally defined in Eq.C2), it is categorized as“real” mixing . Sim-
ilarly, for the area labeled withB (defined in Eq.C4), it is cate-
gorized asrange-preserving unmixing. The remaining part of the
domain is referred to asovershooting. The thick solid line is the
pre-existing non-linear functional relation curve. See text orLau-
ritzen and Thuburn(2012) for details.
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Appendix C

Numerical mixing diagnostics

For the two-tracer test (Sect.3.5), three mixing diagnostics
are used and defined below (Lauritzen and Thuburn, 2012).

C1 Mixing that resembles “real” mixing

“Real” mixing is defined as numerical mixing that resembles
“real” mixing, in that values are shifted to the concave side of
the pre-existing functional relation only (areaA on Fig.C1):

`r =
1

A

K∑
k=1

{
dk1Ak, if (χk,ξk) ∈A,
0, else,

(C1)
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whereK is the total numbers of cells/points in the domain,
1Ak is the spherical area of grid cellk andA is the total
area of the domain,A=

∑K
k=11Ak. The distance function

dk is the shortest normalized distance between the numer-
ically computed scatter point(χk,ξk) and the pre-existing
functional curve within the range of the initial conditions.
For the quadratic functional relationψ given in Eq. (14) with
coefficients (15), the explicit formula fordk is given in Ap-
pendix B. The domainA (“convex hull”) is shown on Fig.C1
and is mathematically defined as

A=

{
(χ,ξ)

∣∣∣∣χk ∈ [χ (min,χ (max)
] andF(χk)≤ ξk ≤ ψ(χk)

}
, (C2)

whereF is the straight line that connects(χ (min),ξ (max)) and
(χ (max),ξ (min)). Any other mixing (i.e., scatter points not in
A) is numerical unmixing that is accounted for in two distinct
diagnostics defined next.

C2 “Range-preserving” unmixing

“Range-preserving” unmixing is defined as numerical un-
mixing within the range of the initial data, i.e., scatter points
are shifted to the convex side of the pre-existing functional
relation or below the convex hull but not outside the range of
the initial data:

`u =
1

A

K∑
k=1

{
dk1Ak, if (χk,ξk) ∈ B,
0, else,

(C3)

whereB is the dark shaded areas in Fig.C1defined by

B =

{
(χ,ξ)

∣∣∣∣(χk,ξk) ∈ [χ (min,χ (max)
] × [ξ (min,ξ (max)

]

and(χk,ξk) /∈A
}
. (C4)

Note that the shape-preservation constraint is not necessarily
enough to guaranteèu = 0, since the scheme must be semi-
linear and monotone according toHarten(1983) to guaran-
tee `u = 0 (Thuburn and Mclntyre, 1997). Only first-order
schemes will satisfy these constraints (Godunov, 1959).

C3 Overshooting

Overshooting (or equivalently expanding range unmixing) is
defined as unmixing that is not accounted for in the`r and`u
diagnostic:

`o =
1

A

K∑
k=1

{
dk1Ak, if (χk,ξk) /∈A and (χk,ξk) /∈ B,
0, else.

(C5)

For a shape-preserving scheme,`o = 0.
The mixing diagnostics are “mutually exclusive” in the

sense that for a particular scatter point(χk,ξk), a non-zero

value of the distance functiondk is only added to one of the
diagnostic functions, so

`r + `o + `u =
1

A

∑
A

dk1Ak. (C6)

Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/5/
887/2012/gmd-5-887-2012-supplement.zip.
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