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ABSTRACT 

BIOPHYSICAL STUDIES OF AXONAL TRANSPORT 
 

FEBRUARY 2014 
 

LESLIE C. CONWAY 
 

 B.S., UNIVERSITY OF MASSACHUSETTS LOWELL 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Jennifer L. Ross 
 

 

Intracellular transport provides a mechanism by which cellular material, such as 

organelles, vesicles, and protein, can be actively transported throughout the cell. This 

process relies on the activity of the cytoskeletal filament, microtubules, and their 

associated motor proteins. These motors are able to walk along microtubule tracks while 

carrying cellular cargos to enable the fast, regulated transport of these cargos. In cells, 

these microtubule filaments act as a binding platform for numerous different motor 

species as well as microtubule-associated proteins (MAPs). In addition, these filaments 

often form higher order structures, such as microtubule bundles. How motors navigate 

such complex, crowded tracks to ensure the efficient transport of cargos is unclear. 

While motor transport can be studied in vivo, such studies are complicated to interpret 

as there are many unknowns, such as which motor species are driving transport, which 

MAPs are bound to specific regions of microtubule tracks, and what types of microtubule 

architectures are present.  

In the studies presented here, motor transport was reconstituted in vitro, allowing 

for the precise control over motor types, motor densities, the relative number of motors 

per cargo, and the types of microtubule tracks present. To this simplified system, specific 

complexities were added to microtubule tracks to systematically study the effect of 
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certain track complexities on motor transport. Specifically, the effect of motor traffic and 

different microtubule bundle architectures on the transport properties of kinesin-1 motors 

was studied. In addition, the effect of motor domain mutations on the transport properties 

of kinesin-1 motors was also probed. These studies provide new insights into how motor 

transport is altered on microtubule tracks reminiscent of those present in the cell, as well 

as mechanisms utilized by kinesin motors to efficiently navigate these complex tracks.  
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CHAPTER 1 
 

INTRODUCTION 

1.1 Biophysics  

Biophysics is an interdisciplinary field that involves the application of physics to 

the study of biological questions. The field of biophysics entails a quantitative approach 

to provide new insights into the forces and energy-driven processes behind biological 

processes. Popular areas of biophysics research include protein folding, membrane 

biology, and motor proteins, to name a few. Motor proteins within the cell use energy 

derived from ATP hydrolysis to perform work. Current research interests are focused on 

how these motors function to transport cellular cargos and generate forces to rearrange 

and depolymerize cytoskeletal filaments.  

 In this dissertation, I aim to study the mechanisms by which microtubule motor 

proteins function to transport cargos throughout the cell. These motors walk along 

microtubule filaments to distribute organelles, proteins, mRNA, and other cellular cargos. 

In the cell, these microtubule tracks are extremely complex, as they can form higher 

order architectures and can be crowded with microtubule-associated proteins (MAPs) 

and motor proteins. I aim to understand how motor proteins navigate complex 

microtubule tracks reminiscent of what would be encountered in the cell. This question 

will be addressed using purified components to reconstitute motor transport in vitro. With 

this system, I will systematically build up the complexity of microtubule tracks by adding 

purified MAPs or motor traffic, or by introducing complex microtubule architectures, such 

as microtubule bundles. From these studies, I hope to develop a better understanding of 

the mechanisms used by microtubule motor proteins to efficiently navigate the complex 

tracks present in the cell.  
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1.2 Microtubules 

Microtubules are cytoskeletal filaments that spread throughout cells to provide 

structure to the cell, generate and maintain cell morphology, aid in the separation of 

genetic material during cell division, and function as tracks for microtubule motor 

proteins transporting cellular cargos. Microtubules are hollow tubes that are 25 nm in 

diameter and can grow up to lengths of many microns. These filaments are comprised of 

αβ-tubulin heterodimers that polymerize to form microtubules in the presence of 

guanosine triphosphate (GTP) (Arai and Kaziro, 1977). During polymerization, an α-

subunit of a tubulin dimer will only bind to a β-subunit of a dimer already in the 

microtubule, or vise versa. This creates a polarized structure where α-tubulin is exposed 

on one end of the filament, while β-tubulin is exposed on the opposite end (Figure 1.1A). 

These are referred to as the microtubule minus and plus ends, respectively (Fan et al., 

1996; Hirose et al., 1995). 

There are two types of interactions between αβ-tubulin heterodimers within a 

microtubule structure: longitudinal and lateral interactions. Longitudinal interactions 

describe the head-to-tail interactions of αβ-tubulin heterodimers which result in the 

formation of protofilaments (Figure 1.1A). These interactions are largely dominated by 

hydrophobic and polar interactions (Nogales et al., 1999).  
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Figure 1.1. Microtubule Structure.  

A. Polymerized microtubule structure comprised of -tubulin heterodimers. Minus and 
plus signs denote the polarity of the filament. A single protofilament is shown to the right 
of the microtubule structure. B. Structure of the tubulin heterodimer with helices (H) and 
-sheets (B) labeled for reference. GTP is bound to the N-site of -tubulin and GDP is 
bound to the E-site of -tubulin. Taxol (TAX) is shown bound to the -tubulin subunit. 
Tubulin heterodimer structure was adapted from Nogales et al, 1998. Reproduced with 
permission from Nature Publishing Group, Copyright (1998).  
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Lateral interactions occur between adjacent protofilaments at an angle, giving the 

microtubule the curvature required to form a hollow tube (Nogales et al., 1999). These 

interactions are largely maintained through electrostatic interactions (Nogales et al., 

1999). Lateral interactions are typically homologous, in that they involve interactions 

between two adjacent α-tubulin monomers or two adjacent β-tubulin monomers (referred 

to as a B lattice) (Song and Mandelkow, 1993). In some cases, an A lattice exists, where 

an α-tubulin monomer interacts with a β-tubulin monomer. This typically occurs at the 

seam of a microtubule (Song and Mandelkow, 1993). The seam results from the 

culmination of slight shifts in the lateral contacts between each protofilament. While B-

lattice interactions still occur between each neighboring protofilament, there is one point 

in the microtubule where the lattices no longer match up, which is referred to as the 

seam. Here, an α-tubulin monomer contacts a β-tubulin monomer, forming an A-lattice. 

Polymerization of microtubules is stimulated by the presence of GTP. Both α-and 

β-tubulin have a GTP binding site on the N-terminal region of the protein (Figure 1.1B) 

(Nogales et al., 1998). Because the GTP-binding site of α-tubulin is located at the dimer 

interface, the GTP is buried and cannot be hydrolyzed (Nogales et al., 1998). Thus, this 

site is referred to as the non-exchangeable, or N site. The GTP-binding site of β-tubulin 

is accessible until a new dimer binds. Upon binding of a new dimer, loop T7 and helix H8 

of the new α-subunit interacts with the exchangeable site (E site) GTP of the 

incorporated tubulin dimer (Nogales et al., 1998). This E site GTP is then hydrolyzed to 

GDP.  

Overall, α- and β-tubulin monomers are very similar in structure (Figure 1.1B). 

Both are compact structures formed by a core of two β-sheets surrounded by twelve α-

helices (Nogales et al., 1998). Each monomer is 4 nm in height, and therefore each αβ-

tubulin heterodimer is 8 nm in height (Nogales et al., 1998). On the outside surface of 



 

5 

the microtubule, helices H11 and H12 of both α- and β-subunits are exposed (Nogales et 

al., 1998). These two helices are important for mediating specific interactions with 

microtubule associated proteins (MAPs) as well as microtubule motor proteins (Nogales 

et al., 1998). In addition, both α- and β-subunits have a disordered C-terminal tail 

(Nogales et al., 1998). This tail is 10 or 18 amino acids in length for an α- or β-subunit, 

respectively (Nogales et al., 1998). These tails are highly acidic (negatively charged at 

neutral pH) and promote the association of MAPs and motors through electrostatic 

interactions (Nogales et al., 1998; Sackett, 1995). 

While microtubules are comprised entirely of αβ-tubulin dimers, these filaments 

can be modified post translationally to create distinct populations of microtubules 

throughout the cell. These post-translational modifications are reversible modifications 

that include acetylation, detyrosination, polyglutamylation, and polyglycylation of tubulin 

subunits that are incorporated into microtubule polymers (Janke and Bulinski, 2011). 

These modifications typically signify stable populations of microtubules and allow the cell 

to specifically regulate motor activity, MAP binding, and depolymerase or severing 

activity on specific subsets of microtubules within the cell (Janke and Bulinski, 2011). 

This allows for the fine tuning of microtubule dynamics and transport in specific regions 

of the cell. 

Acetylation involves the addition of an acetyl group to the α-subunit of tubulin 

(L'Hernault and Rosenbaum, 1985). This modification occurs on Lys40, a residue that is 

located inside the microtubule lumen (L'Hernault and Rosenbaum, 1985). Acetylation is 

commonly associated with stable microtubules, as these microtubules have been shown 

to be more resistant to drug-induced microtubule depolymerization (Matsuyama et al., 

2002). 
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Like acetylation, detyrosination occurs specifically on α-tubulin (Arce et al., 

1975). Detyrosination results in the removal of the last residue of the C-terminal tail of α-

tubulin, which is a tyrosine residue (Hallak et al., 1977). This modification has been 

shown to increase the binding affinity of kinesin-1 to microtubules 2.8-fold (Dunn et al., 

2008; Konishi and Setou, 2009; Liao and Gundersen, 1998), while decreasing the 

binding of CAP-Gly proteins, proteins that bind to growing microtubule plus ends (Bieling 

et al., 2008; Peris et al., 2006; Weisbrich et al., 2007). In addition, detyrosinated 

microtubules have been shown to exhibit increased stability in the presence of kinesin-

13 depolymerizing kinesins (Peris et al., 2009). 

Polyglutamylation and polyglycylation result in the addition of chains of glutamic 

acid or glycine to C-terminal tails of either α- or β-tubulin (Alexander et al., 1991; Edde et 

al., 1990; Redeker et al., 1994; Rudiger et al., 1992). These chains branch off of a 

glutamic acid residue within the C-terminal tail and can vary in length (Alexander et al., 

1991; Edde et al., 1990; Redeker et al., 1994; Rudiger et al., 1992). In cells, long chains 

of glutamic acid have been shown to increase the susceptibility of microtubules to 

microtubule severing proteins such as katanin and spastin, while short chains of 

glutamic acid have no effect (Sharma et al., 2007). Additionally, it has been observed 

that a decrease in polyglutamylation results in the disruption of binding of both kinesin-3 

(KIF1A) in neurons (Ikegami et al., 2007), as well as dynein (Kubo et al., 2010; 

Suryavanshi et al., 2010). 

In addition to diverse microtubule populations generated through post 

translational modifications of tubulin, microtubule architecture can take on distinct forms 

in different regions of the cell or different phases of the cell cycle. In interphase, 

microtubules radiate outwards from the microtubule organizing center, with all 

microtubule plus ends pointing to the cell periphery. In cells undergoing mitosis, 
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microtubules are bundled in an antiparallel array at the spindle midzone (Loiodice et al., 

2005). This antiparallel array enables the generation of forces by motors at the spindle 

midzone to ensure the proper segregation of genetic material during mitosis. Astral 

microtubules emanate from each centrosome during mitosis, pointing away from the 

spindle midzone, towards the cell cortex. Astral microtubules are oriented such that their 

plus ends point towards the cortex. This population of microtubules is important for the 

generation of forces which function to position the mitotic spindle (Palmer et al., 1992). 

In neurons, microtubule architecture varies depending on the region of the cell. In the 

cell body, microtubules form an array similar to that found in interphase cells. In the 

axons, microtubules are bundled by MAPs, forming parallel arrays of microtubules that 

are uniformly polarized with all microtubule plus ends pointing away from the cell body 

(Heidemann et al., 1981). In dendrites, microtubules are also bundled by MAPs, but the 

microtubules within these bundles are randomly oriented, with about 50% of microtubule 

plus ends pointing toward the cell body, and 50% of microtubule plus ends pointing away 

from the cell body (Baas et al., 1988). These specific arrangements of microtubules 

enable the polarized transport of cellular cargos by microtubule motor proteins. 

While the basic structure of all microtubules is the same, these filaments can be 

tuned by specific post translational modifications and by the architecture that they 

assemble. This enables microtubules to specifically direct the traffic of molecular cargos 

throughout the cell, as well as the generation of forces within the cell. 

1.3 Microtubule Motor Proteins  

 An important function of microtubules is to provide tracks for motor proteins. 

Motor proteins walk along these tracks while carrying cellular cargos, enabling the 

distribution of cargos throughout the cell. These cargos can include mRNA, proteins, 
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vesicles, or organelles. While small molecules are able to diffuse throughout the cell 

rather efficiently, large cargos rely on the active transport of motor proteins for 

movement throughout the cell at a rate faster than diffusion. In addition, motor transport 

can specifically direct the spatial distribution of cargos due to signals created by 

microtubule tracks, such as post translational modifications and microtubule architecture. 

This process of motor-driven transport of cargos throughout the cell is referred to as 

intracellular transport, or is also referred to as cargo transport. Two microtubule motor 

proteins important for intracellular transport include kinesin-1 and cytoplasmic dynein.   

 Cytoplasmic dynein is a member of the AAA+ (ATPase associated with various 

cellular activities) family of proteins (Neuwald et al., 1999). It is comprised of two 

dimerized heavy chains and several associated light chains (Vale, 2003). Each heavy 

chain has six concatenated AAA domains that form a ring. While the first four of these 

AAA domains have ATP binding and hydrolysis sites, only the first domain has been 

found to be essential for dynein motility (Reck-Peterson and Vale, 2004). A 15 nm 

coiled-coil stalk stretches from the hexamer of AAA domains to a microtubule binding 

domain (Asai and Koonce, 2001). Using energy derived from ATP hydrolysis, dynein is 

able to take processive steps along the microtubule. The steps of this motor are rather 

unrestricted and variable. The step size of dynein ranges from 4 to 32 nm (Reck-

Peterson et al., 2006). In addition, dynein stepping is not restricted to a single 

protofilament or direction. This motor has been shown to be able to side-step onto 

adjacent protofilaments (Reck-Peterson et al., 2006). In addition, while dynein is 

predominantly a minus-end directed motor, it has been shown to reverse direction during 

a processive run (Ross et al., 2006). 

 Dynactin associates with dynein and has been shown to be essential for dynein 

function. This protein is also involved in the attachment of cargos to the motor (Holleran 
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et al., 2001). In addition, dynactin has a microtubule binding domain which is thought to 

enhance dynein processivity by acting as a microtubule tether (King and Schroer, 2000). 

 Kinesin-1 is another important motor involved in intracellular transport, and will 

be the focus of this dissertation. This motor was first identified in 1985 during a 

purification process aimed to isolate the ATPase responsible for promoting the 

translocation of organelles along microtubules in giant squid axons (Vale et al., 1985a). 

A non-hydrolyzable version of ATP, AMP-PNP, had previously been shown to inhibit 

motility of cargos in giant squid axons, locking cargos onto microtubule filaments (Lasek, 

1984). This observation was used to help isolate kinesin motors. AMP-PNP was added 

to squid axoplasm supernatant in the presence of microtubules with the idea that kinesin 

motors would lock onto microtubules. Centrifugation was used to pellet the microtubules 

and separate any proteins that were not bound to microtubules. ATP and salt were 

added to promote the release of kinesin motors from microtubules. A second 

centrifugation resulted in the separation of released motors from microtubules and any 

remaining microtubule-bound proteins. The released motor was approximately 110 kDa 

in size, and was shown to promote the motility of microtubules in a microtubule gliding 

assay. This isolated motor was named ‘kinesin’, derived from the Greek word kinesis, 

which refers to movement (Vale et al., 1985a). 

 Kinesin-1 exists as a heterotetramer, consisting of two heavy chains and two 

associated light chains (Figure 1.2A). The two heavy chains dimerize through a coiled-

coil stalk, and the light chains associate with the C-terminal region of this stalk. The 

kinesin heavy chains are essential for microtubule binding and movement, while the 

kinesin light chains mediate interactions with cellular cargos. 

Each heavy chain consists of 960 amino acids that code for a globular N-terminal 

motor domain, a neck linker, an extended coiled-coil stalk, and a globular C-terminal tail 
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domain (Yang et al., 1989). The motor domain consists of a microtubule binding domain 

as well as a nucleotide binding site, where ATP binds (Yang et al., 1989). The kinesin 

motor domain interacts with both tubulin subunits, however the majority of the 

interactions are mediated through the β-subunit of tubulin (Gigant et al., 2013; Song and 

Mandelkow, 1993). A recent structure of the kinesin-1 motor head bound to a tubulin 

dimer shows that helix H12 and the H8-S7 loop of β-tubulin are important for interactions 

with loops L8 and L12, and the β-strand before loop L8 in the kinesin motor head (Figure 

1.2B) (Gigant et al., 2013). In addition, parts of helices H3, H11, and H12 and the H11-

H12 loop of α-tubulin were shown to be important to mediate interactions with loop L11 

and helices H4 and H6 of the kinesin motor head (Gigant et al., 2013). Interactions 

between kinesin and tubulin have been shown to be largely electrostatic and 

hydrophobic in nature (Woehlke et al., 1997).  

The motor domain is followed by a 14 amino acid flexible neck linker that joins 

the motor head to the coiled-coil stalk. The coiled-coil stalk is made up of α-helices and 

facilitates the dimerization of two kinesin heavy chains (Yang et al., 1989). This 

dimerization is essential for kinesin processivity (Hancock and Howard, 1998). In 

addition, a hinge region within the coiled-coil stalk allows the C-terminal tail of kinesin to 

fold over and interact with the motor domain. This conformation is stabilized by the 

presence of kinesin light chains and results in the autoinhibition of kinesin motors, as 

motors in this folded state are unable to release ADP from their nucleotide pocket and 

are unable to bind microtubules (Dietrich et al., 2008; Hackney and Stock, 2008; Verhey 

et al., 1998).  
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Figure 1.2. Kinesin-1 Structure and Microtubule Binding.  

A. Kinesin-1 shown as a compilation of known structures. Unknown parts of the structure 
are depicted as smooth domains. Figure adapted from Vale, 2003. Reproduced with 
permission from Elsevier. B. Structure of kinesin-1 bound to an -tubulin heterodimer. 
Regions involved in the kinesin-microtubule binding interaction are highlighted and 
further depicted in rotated model below. Figure adapted from Gigant et al., 2013. 
Reprinted with permission from Macmillan Publishers Ltd: Nature Structural & Molecular 
Biology (Gigant et al., 2013), 2013. 
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This autoinhibition mechanism is thought to be relieved upon binding to cargos 

(Coy et al., 1999). For the study of kinesin motors, truncated kinesin constructs are often 

used that prevent motor autoinhibition. These constructs have enough of the coiled-coil 

domain to facilitate dimerization, but lack the hinge region and tail region responsible for 

autoinhibition. In the studies presented in this dissertation, I use a truncated human 

kinesin construct, K560, which possesses only the first 560 amino acids of the human 

kinesin heavy chain (Woehlke et al., 1997). This construct allows for the study of 

constitutively active kinesin motors.  

When dimerized, kinesin walks processively towards the plus ends of 

microtubule filaments (Vale et al., 1985b). This motor steps along microtubules in a 

hand-over-hand manner (Yildiz et al., 2004), with one head bound to the microtubule at 

all times to prevent dissociation. The ATPase cycle of kinesin is tightly regulated to 

ensure that one motor head is bound to the microtubule at all times, allowing for 

processive motility (Figure 1.3) (Gilbert et al., 1998). Free in solution, kinesin motor 

heads are bound to ADP. Upon binding to the microtubule, head 1 releases its ADP and 

binds the microtubule tightly in an apo state. When ATP binds to head 1, conformational 

changes in the kinesin motor domain cause docking of the neck linker onto the motor 

domain (Rice et al., 1999). The neck linker interacts with the motor domain in such a 

way that it points towards the plus end of the microtubule. This neck linker docking 

biases the positioning of head 2 ahead of head 1, towards the microtubule plus end 

(Rice et al., 1999). When head 2 reaches its forward binding site, in front of head 1, it 

binds weakly to the microtubule. Following ATP hydrolysis on head 1, head 2 releases 

its ADP and binds tightly to the microtubule. Head 2 is now tightly bound to the 

microtubule in an apo state. After release of inorganic phosphate from the hydrolyzed 

ATP on head 1, this head is bound to ADP and unbinds from the microtubule. At this 
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point, the cycle begins again, with head 1 binding in front of head 2, resulting in the 

processive plus-end directed, hand-over-hand motility of kinesin. Kinesin-1 is able to 

take 100-200 consecutive steps, moving approximately 1-2 m, before dissociating from 

the microtubule. 
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Figure 1.3. Kinesin-1 ATPase Cycle. 

Schematic depicting the ATPase cycle of kinesin-1 dimeric motors. Motor heads are 
bound to the microtubule when in the apo state (white) or when bound to ATP (red). In 
the ADP-bound state (blue), motor heads are unbound from the microtubule. This figure 
was reprinted from Klumpp et al, 2003. Copyright (2003) American Chemical Society. 
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 Kinesin-1 has been shown to take steps that are 8 nm in size (Svoboda et al., 

1993), while following a single protofilament along a microtubule (Ray et al., 1993). This 

strict motility pattern is due to the short neck linker length and the specific binding region 

of kinesin on the microtubule. Each neck linker can stretch up to only 4 nm in length 

(Hariharan and Hancock, 2009). Thus, a walking motor can stretch its next head up to 8 

nm forward, due to the contributions of both neck linkers. This 8 nm distance is the same 

size as a tubulin dimer (Nogales et al., 1998). Therefore, with each step, a kinesin motor 

head can reach forward to its next binding site on the next adjacent tubulin dimer, with 

the center of mass of the motor moving 8 nm with each step. The size of the kinesin 

neck linker has been shown to be extremely important for the processive motility of 

these motors. Studies where the kinesin neck linker length has been made either longer 

or shorter have shown that even minor changes in neck linker length disrupt kinesin 

processivity (Shastry and Hancock, 2010). When the neck linker was shortened by just 

one amino acid, motors lost all processivity. This suggests that the wildtype neck linker 

is just long enough for kinesin to reach its next binding site. By removing one amino 

acid, this mutant could no longer reach its next binding site, thereby making it non-

processive. When the neck linker was extended by 1-3 amino acids, kinesin processivity 

was reduced proportionally. These results suggest that the short neck linker length is 

important for the generation of strain between the two motor heads, which thereby 

enables the tight coupling of the two motor heads (Shastry and Hancock, 2010).  

 In addition to kinesin-1 and cytoplasmic dynein, there are a number of other 

motor proteins that exist in the cell. All of these motors possess different motility 

properties, cargo binding preferences, and distributions throughout the cell. This 

diversity allows for the transport of cargos to be finely tuned in a cell where there are 

many different cargos that need to be transported to specific regions.
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1.4 Intracellular Transport 

Microtubule motors bind and transport a variety of cargos in the cell. These 

cargos include proteins that are just nanometers in size, vesicles that can be 50 nm – 1 

m in size, and organelles such as mitochondria, which can be as large as 10 m in 

diameter. The transport of these cargos within a cell is imperative for the survival of all 

cell types. Newly synthesized proteins must be distributed from their site of synthesis to 

where they are needed for their specific cellular function. For instance, newly 

synthesized proteins that must be secreted from the cell are packaged in secretory 

vesicles that must be transported to the cell periphery (Marks et al., 1994). Alternatively, 

extracellular material that needs to be degraded is endocytosed and must be transported 

from the cell membrane to lysosomal compartments within the cell (Settembre et al., 

2013). All of these diverse forms of traffic are mediated by motor proteins.  

 While intracellular transport is imperative for the survival of all cell types, it is 

especially important in neurons. Neurons are the basis of an organism’s signaling 

machinery. These cells transmit and receive signals that allow the brain to stimulate the 

movement of muscles within the body. These cells have numerous processes that 

emerge from their cell body. The majority of these are branched processes that function 

to receive signals from neighboring neurons, termed dendrites. Each neuron has a 

single long extension, referred to as the axon, which is responsible for sending signals to 

neighboring neurons or directly signaling to muscles. Axonal processes are extremely 

long relative to the size of the cell, extending up to 1 meter in length in some cases. 

These processes must be maintained in order to preserve their function, which requires 

the synthesis of new cellular materials and the capability of ridding these processes of 

material marked for degradation (Holzbaur, 2004). Because the majority of the 

machinery required for protein synthesis and degradation is located in the cell body, 
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neurons rely heavily on intracellular transport for delivery of new cellular material to 

these processes, and the removal of cellular material marked for degradation (Holzbaur, 

2004). This specific type of transport is referred to as axonal transport. 

 Axonal transport occurs on parallel arrays of bundled microtubules within the 

axon. These microtubules are all oriented such that the plus ends are pointed towards 

the axon terminal, while the minus ends are oriented close to the cell body (Baas et al., 

1988). This enables the organized traffic of newly synthesized material into the cell body 

primarily by plus end directed kinesin motors and removal of cellular material from the 

axon by minus end directed dynein motors. 

 Two distinct processes by which cargos are transported within the axon have 

been identified. These two transport processes are distinguished by their differing overall 

rates of transport, and are therefore referred to as fast and slow axonal transport. 

Cargos transported by both of these processes are actively transported at similar rates, 

however in slow axonal transport, movement is interrupted by long pauses, slowing their 

overall transport rates compared to cargos transported by fast axonal transport (Brown, 

2003). Fast and slow axonal transport are believed to be carried out by two different 

transport mechanisms. Fast axonal transport involves the movement of membrane 

bound organelles by a fixed team of motors. The mechanism which underlies slow 

axonal transport is less clear, but is thought to be due to the transient self-assembly of 

proteinaceous cargos with motors along the microtubule (Scott et al., 2011). 

 In order for cargos to be transported, motors must associate with them in some 

manner. Motors mediate a variety of attachment mechanisms with cellular cargos, which 

in part dictates cargo specificity. For kinesin motors, these attachments typically occur 

via the kinesin light chains (Vale and Fletterick, 1997).  
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 The kinesin light chain is comprised of an N-terminal coiled-coil domain followed 

by six tetratricopeptide repeat (TPR) motifs (Vale and Fletterick, 1997). The N-terminal 

coiled-coil domain mediates interactions with the kinesin heavy chain while the TPR 

domain is responsible for interacting with various cargos (Vale and Fletterick, 1997). 

There are four different isoforms of the kinesin light chain in humans, KLC1-4. These 

light chain isoforms have different expression patterns as well as slight structural 

differences that allow them to have different specificities for cargos (Zhu et al., 2012).  

 Kinesin motors are thought to bind cargos through an adaptor protein, rather than 

directly linking to membranous cargos (Figure 1.4). One well-studied example of this is 

the c-jun N-terminal kinase (JNK)-interacting proteins (JIPs): JIP-1, JIP-2, and JIP-3 

(Verhey et al., 2001). These proteins have been shown to be direct cargos of kinesin, as 

they interact directly with the kinesin light chain TPR domain, an interaction that is 

required for their distribution within cells (Verhey et al., 2001). JIP proteins are 

scaffolding proteins for the JNK family of MAP kinases. Thus, by binding to kinesin light 

chains, these proteins act as a scaffold, bringing together a complex of signaling 

proteins that can be specifically distributed throughout the cell by kinesin motor activity. 

In addition, these JIPs were shown to assemble transmembrane proteins that serve as a 

scaffold for kinesin binding to vesicles and organelles. JNK has been of recent interest in 

regard to treatments for Parkinson’s Disease, a neurodegenerative disease associated 

with the death of dopaminergic neurons. Neuronal death is mediated by apoptosis, and 

recent studies have begun to reveal the role of JNK signaling in the initiation of the 

apoptotic pathway (Dauer and Przedborski, 2003). Much interest lies in the development 

of therapies aimed to prevent JNK signaling in patients with Parkinson’s Disease (Dauer 

and Przedborski, 2003). 



 

19 

 Another, more direct interaction between kinesin light chains and cargos that has 

been observed is through the amyloid precursor protein (APP). APP is a transmembrane 

protein that has been shown to directly bind to the TPR domain of KLCs (Kamal et al., 

2000). This allows for kinesin motors to interact with membranous cargos via APP, and 

is another mechanism by which kinesin motors can bind and transport vesicular cargos. 

APP has been strongly associated with the onset and progression of Alzheimer’s 

Disease, as APP aggregates, or plaques, are often found in the brains of affected 

patients. These plaque formations are believed to be caused by mutations within the 

APP gene that promote APP aggregation, an increase in the production of proteolytic 

fragments of APP that are prone to aggregation, or defects in the transport of APP by 

molecular motors (Goldstein, 2001). 
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Figure 1.4. Cargo Binding Mechanism of Kinesin-1.  

This figure depicts the mechanism by which kinesin-1 binds membranous cargos 
through the JIP scaffolding protein. JIP acts as a scaffold to bring together signaling 
molecules and a transmembrane protein (ApoER2, in the case here) that functions to 
mediate attachments between kinesin motors and membranous cargos. Figure was 
adapted from (Rutter and Hill, 2006). 
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While individual motors can travel up to 1 or 2 m before dissociating from the 

microtubule, these length scales are small compared to the distances cargos must be 

transported to reach the ends of axonal processes. To increase the processivity of 

molecular cargos, multiple motors are often complexed to the same cargo (Gross et al., 

2007). These motors can be of the same species, but often include a mix of different 

motor species. Many studies have been done to understand the impact of multiple 

motors on the transport of a cargo. To start, these studies were simplified by studying 

multiple motors of a single motor species attached to a cargo. 

Both theoretical and experimental studies have been carried out to probe the 

effect of multiple kinesin motors on cargo transport. Both theory and experiments 

showed that by increasing the number of motors bound to a cargo, processivity of these 

cargos was enhanced (Beeg et al., 2008; Derr et al., 2012; Klumpp and Lipowsky, 

2005). This enhancement can be explained by the fact that additional motors bound to a 

cargo act as a tether when one motor dissociates. For single motors, a dissociation 

event would mean the end of a processive run. For cargos with multiple motors, when 

one motor dissociates, the cargo is still bound to the microtubule by other motors, which 

continue the cargo’s processive run. In addition, the dissociated motor is still attached to 

the cargo, and is therefore held in close proximity to the microtubule, allowing it to easily 

rebind after its dissociation. This enables cargos to be transported over lengths that are 

much longer than the run length of a typical single motor. 

One discrepancy between theoretical and experimental studies is the degree to 

which the processivity of these cargos is enhanced. Theoretical work consistently shows 

greater increases in processivity compared to what is observed in experimental studies 

(Derr et al., 2012; Klumpp and Lipowsky, 2005; Korn et al., 2009). This suggests that 
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there is some type of negative interference between multiple motors that are bound to a 

single cargo, which results in shorter run lengths than would be anticipated otherwise. 

One explanation for this discrepancy is that in multiple motor complexes, the detachment 

rate of kinesin motors is increased, a property that is not taken into account in theoretical 

models (Rogers et al., 2009). It is known that kinesin motors bound to the same cargo 

do not step in synchrony (Leduc et al., 2007). This asynchronous stepping would likely 

lead to a generation of forces within the motor-cargo complex (Rogers et al., 2009). A 

cargo transported by just two motors can be used as an example here. If the leading 

motor is stepping faster than the trailing motor, strain will be generated, stretching both 

motors. This generation of strain within the complex is thought to increase the unbinding 

rate of motors (Rogers et al., 2009). Thus, cargos transported by N motors often have 

less than N motors engaged with the microtubule, as many would often be in the 

unbound state. This would explain why experimental studies show shorter than expected 

run lengths compared to results generated by simplified theoretical studies. 

In addition, it has been shown that the velocity of cargos is independent of motor 

number. Cargos with variable numbers of motors have been shown to be transported at 

velocities identical to those of single motors (Beeg et al., 2008; Derr et al., 2012; Herold 

et al., 2012; Rogers et al., 2009). This suggests that the presence of multiple motors on 

a cargo does not interfere with the stepping rate of kinesin motors. 

One hallmark of axonal transport is the bidirectional transport of cargos (Schnapp 

et al., 1985). These cargos exhibit frequent reversals in direction during their transport. 

These reversals are attributed to the presence of two oppositely directed motors bound 

to one cargo. For example, kinesin and dynein are often bound to the same cargo 

(Welte, 2004).  
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 How oppositely directed motors cooperate to transport a cargo has been the 

focus of many recent studies. Two main hypotheses in the field are that bidirectional 

transport is regulated by 1) a tug-of-war mechanism or 2) a mechanism where motor 

activity is regulated such that only a single motor species is engaged at one time (Gross, 

2004). 

 In the tug-of-war model, oppositely directed motors bound to a cargo each walk 

in their own direction, creating a tug-of-war between the two motor species. Assuming 

the two sides are not perfectly balanced in the amount of force they are capable of 

generating, one side (one motor species) will win, determining the direction in which the 

cargo is transported. The amount of force generated by each side can be finely tuned by 

the number of motors and the amount of force each motor type is capable of producing. 

For instance, because the stall force of kinesin-1 is on the order of 5-6 pN (Svoboda et 

al., 1993), whereas the stall force of dynein is only approximately 1.1 pN (Mallik et al., 

2004), the number of dynein motors on a cargo would have to exceed that of kinesin by 

about 6- or 7-fold in order to win a tug of war (Hendricks et al., 2010). Changes in the 

number of motors bound during transport could result in directional reverses mid-

transport, as are observed in the bidirectional transport of cargos. 

 The second model used to describe bidirectional motility of cargos is that motors 

are regulated by an external factor. In this model, one motor species would be 

inactivated, allowing the other motor species to dominate motility. Factors that have 

been suggested to regulate motor activity include proteins or molecules that alter the 

recruitment of motors to a cargo, or scaffolding molecules that specifically tune the 

activity of motors (Hendricks et al., 2010). In the case of kinesin motors, it has been 

proposed that motor activity could be regulated by factors that promote or relieve the 

autoinhibition state of motors bound to cargo (Hendricks et al., 2010). 
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The tug-of-war model is supported by a number of studies which aim to identify 

and quantify motor species bound to endogenous cargos. These studies have shown 

that there is an approximate 6:1 ratio of dynein:kinesin motors bound to membranous 

cargos in cells (Hendricks et al., 2010; Soppina et al., 2009). Given the forces that 

dynein and kinesin motors are able to produce, this ratio makes it conceivable that a 

cargo could be transported in the direction of either kinesin or dynein motors, as is 

expected by the ability of these cargos to spontaneously switch directions. One study 

compared the bidirectional motility of purified neuronal transport vesicles in vitro to their 

motility in cells (Hendricks et al., 2010). These studies showed that there were no 

significant differences in motility in vitro versus in vivo. Thus, this suggests that the 

bidirectional motion observed was due to a tug-of-war mechanism, and not due to the 

presence of cytoplasmic regulators that tune the activity of a particular motor species. 

However, in this same study, there was a small subset of cargos that were observed to 

move predominantly in one direction in cells. This type of motility was not observed with 

purified cargos studied in vitro, suggesting that this subset of cargos is regulated by a 

mechanism which requires cytosolic regulatory factors. Therefore, this study proposes 

that both a tug-of-war mechanism as well as a mechanism that regulates specific motor 

activities exist to coordinate bidirectional transport in cells. Which cargo types, or when 

cargos are regulated by each of these mechanisms remains unknown. Additionally, the 

identification of factors that regulate motor coordination remains an open area of study.  

Intracellular transport is a highly complex process that must be tightly regulated 

and controlled to enable the efficient and proper distribution of cargos throughout the 

cell. While the above studies have provided insights into how this process works, studies 

aimed at achieving a better understanding of how intracellular transport is regulated in 

the cell are imperative to fully understand the mechanisms that underlie this process. 
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1.5 Neurodegenerative Disease 

The importance of intracellular transport is emphasized by the association 

between defects in axonal transport and neurodegenerative disease. Mutations in 

microtubule motors that disrupt motor motility have been associated with 

neurodegenerative disease (Perlson et al., 2010). Such disruptions in motor motility 

prevent the proper transport of newly synthesized material into the axon and the proper 

transport of material that must be degraded out of the axon. This has been shown to 

result in the degeneration of axons, which inhibits signaling between neurons and leads 

to the classic symptoms of neurodegenerative disease, such as paralysis and dementia. 

 One disease caused by neurodegeneration is hereditary spastic paraplegia. 

While this disease is typically caused by mutations in the spastin gene, there have been 

three autosomal dominant missense mutations described in the KHC gene of kinesin-1 

that cause this disease as well (Chevalier-Larsen and Holzbaur, 2006). These mutations 

are believed to prevent microtubule activation of ATP hydrolysis, affect the affinity of 

kinesin for microtubules, and disrupt dimerization of kinesin-1. Thus, these mutations 

severely disrupt kinesin-1 motility. Patients with this disease exhibit distal axon 

degeneration, a result of anterograde transport disruption. 

 Cytoplasmic dynein mutations have also been implicated in neurodegenerative 

disease. Patients with a mutation in the gene encoding the dynactin subunit, p150Glued, 

exhibit a late-onset, slowly progressive form of the motor neuron disease, distal 

hereditary motor neuropathy type VIIB (Perlson et al., 2010). These patients experience 

adult-onset vocal fold paralysis, facial weakness, and distal limb muscle weakness and 

atrophy. This particular mutation disrupts the folding of p150Glued, causing dynein to have 

a decreased affinity for the microtubule. In addition, this misfolding results in the 

formation of aggregates of this protein. These cells experience both a loss of function of 
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dynein and accumulate toxic aggregates, which could further disrupt axonal transport. 

Together, these defects lead to neuronal degeneration.  

 Defects in axonal transport are observed in a number of other neurodegenerative 

diseases, including Alzheimer’s disease and Parkinson’s disease (Perlson et al., 2010). 

Whether defective motor transport is the cause of these diseases, or rather a result of 

changes in the cell due to these disease states is unclear. If defects in motor transport 

are not the root cause, they are thought to at least contribute to the disease state 

(Perlson et al., 2010). 

 Mutations in microtubule motor proteins exhibit clear implications in the onset 

and progression of neurodegenerative disease. The study of these motors to better 

elucidate their mechanisms of transport along microtubules will help to gain a more clear 

understanding of how these motors could be perturbed in disease states. 

 1.6 Motivation 

 The numerous studies described above have provided the field with a 

fundamental understanding of the mechanisms by which kinesin motors are able to walk 

processively along microtubules, with or without cargos. The majority of these studies 

have used a bottom-up approach, studying purified kinesin motility on microtubule tracks 

comprised of purified tubulin subunits. This approach has allowed for the study of motor 

motility under consistent conditions, without any  heterogeneities that could arise from 

factors present in the cellular environment. These studies have developed a thorough 

understanding of how kinesin coordinates its processive motion along microtubule tracks 

in vitro. 

 To fully understand kinesin motility, we must understand how these motors 

function in the cell. The cell presents extremely complex microtubule tracks that kinesin 
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motors must navigate. These microtubules are coated with microtubule associated 

proteins (MAPs), microtubule motor proteins, and post-translational modifications that 

regulate the binding of these MAPs and motors. In addition, MAPs and motors bound to 

microtubules regulate the microtubule architecture in cells, often stimulating the 

formation of microtubule bundles. 

 How kinesin motors navigate these complex microtubule tracks will be the focus 

of this dissertation. I aim to build on the complexity of previous in vitro assays to study 

kinesin motility on microtubules crowded with microtubule motor proteins and on a 

common microtubule architecture found in cells, microtubule bundles. In addition, I aim 

to gain a better understanding of how particular residues in the kinesin motor domain 

contribute to the processive motility of kinesin motors required for the transport on 

microtubule tracks. With this work, I provide new insights into how kinesin motors 

maintain processivity, even on complex microtubule tracks similar to those that could be 

encountered in the cell. 
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CHAPTER 2 

MOTOR TRANSPORT OF SELF-ASSEMBLED CARGOS IN CROWDED 

ENVIRONMENTS 

 
 

This section was performed together with Derek Wood, Erkan Tüzel, and Jennifer L. 

Ross (Conway and Ross, 2013; Conway et al., 2012). Derek Wood modified an existing 

particle tracking code (provided by Maria Kilfoil) to be used for the analysis of the self-

assembled quantum dot cargos in this study. Erkan Tüzel has been working on modeling 

the system described here and participated in many valuable discussions regarding the 

interpretation of the results observed in my experimental system.  

 

2.1 Introduction 

  The motility properties of kinesin-1 have been well characterized using in vitro 

assays. These assays have been used to understand the transport properties of both 

single kinesin motors and cargos carried by multiple kinesin motors (Beeg et al., 2008; 

Block et al., 1990; Romberg et al., 1998; Vale et al., 1996; Yildiz et al., 2004). While 

these studies have provided valuable insights into the mechanisms by which kinesin-1 is 

able to walk along microtubules, these studies were done on microtubules assembled in 

vitro, devoid of additional motors or microtubule associated proteins (MAPs). These 

conditions are very different from what motors must face in the cell, where microtubules 

are crowded with motors and MAPs (Gross et al., 2007). 

 Despite the crowded conditions motors face in the cell, cargo transport is still 

carried out efficiently, as it must since this is an essential process for the survival of all 

cell types (Hirokawa, 1998). How motors ensure this efficient transport on crowded 
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microtubules is still unclear. Several recent studies have begun to shed light on this 

question. It has been shown that while stationary obstacles, such as the microtubule 

associated protein tau, disrupt kinesin processivity by causing motors to dissociate 

prematurely from the microtubule (Dixit et al., 2008; Ross et al., 2008; Telley et al., 2009; 

Vershinin et al., 2007), cargos transported by multiple motors were able to better handle 

these obstacles (Vershinin et al., 2007).  

How kinesin motors navigate microtubules with motile obstacles, or traffic, is not 

well understood. Here, I study the transport of both single kinesin motors and artificial 

Qdot cargos transported by multiple kinesin motors on microtubules crowded with 

additional motors. I show that motor traffic along the microtubule results in a decrease in 

both single motor and cargo velocity. Additionally, I observe that single motor 

processivity is reduced on crowded microtubules while cargos are still able to be 

transported over long distances, as was observed previously for static obstacles 

(Vershinin et al., 2007). Cargos are able to navigate microtubules crowded with high 

densities of motors by associating new motor attachments that allow them to remain 

tethered to the microtubule longer. I also speculate that new motor attachments on 

adjacent protofilaments could allow cargos to switch protofilament tracks to circumvent 

obstacles. These studies provide insights into how cargo transport is tuned to ensure 

efficient transport of cargos on tracks crowded with motile obstacles. 

 

2.2 Results 

2.2.1 Experimental Set-Up 

  To study motor motility on crowded microtubules, different densities of unlabeled 

motile kinesin motors were used to crowd the microtubule surface. Single GFP-tagged 
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kinesin motors or kinesin motors bound to artificial Qdot cargos were added to crowded 

microtubules to observe motility of single motors and cargos, respectively. 

Kinesin motors were initially attached to Qdot cargos through a specific streptavidin-

biotin linkage. To accomplish this, a HaloTag (Promega) was fused to the C-terminal end 

of the K560 human kinesin-1 construct. This 34 kDa tag forms a covalent bond with a 

variety of HaloTag ligands. Here, I used a PEG-biotin HaloTag ligand and streptavidin 

conjugated Qdots to initiate the formation of Qdot-kinesin complexes. 

During the formation of these Qdot-kinesin complexes, Qdots were added in a 

10-fold molar excess over kinesin. This ratio ensured the formation of Qdots with few 

kinesin bound, such that on average only one kinesin motor was able to interact with the 

microtubule at a time. To verify that single molecule levels of motors were bound to Qdot 

cargos, motility properties of single GFP-tagged kinesin motors were compared to those 

of Qdot-kinesin complexes on uncrowded microtubules. Because there is a pronounced 

increase in the observed run length of a cargo transported by two or more motors 

compared to a cargo transported by a single motor (Beeg et al., 2008; Block et al., 1990; 

Klumpp and Lipowsky, 2005; Korn et al., 2009; Kunwar et al., 2008; Muller et al., 2010; 

Vershinin et al., 2007), the distance a cargo is transported can be used to determine 

whether there are single or multiple motors bound to a cargo. I observed that single 

kinesin motors and Qdot-kinesin complexes had nearly identical run lengths (Figure 

2.1A), indicating that Qdot cargos were transported by a single motor under these 

conditions. 

However, when Qdot-kinesin complexes were added onto microtubules crowded 

with excess non-biotinylated kinesin motors, I found that these same Qdot cargos were 

transported distances greater than those observed on uncrowded microtubules (Figure 

2.1B). These longer run lengths indicate that multiple motors associate with a single 
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cargo on microtubules crowded with excess kinesin motors. Thus, I infer that when 

Qdot-kinesin complexes are added onto microtubules crowded with excess non-

biotinylated motors, these excess motors are able to form non-specific interactions with 

Qdot cargos, resulting in the self-assembly of Qdot cargos that are transported by 

multiple motors.  
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Figure 2.1. Run Length Comparison to Distinguish Single Motor versus Multi-
Motor Qdot Cargos 

A. Mean run length of single GFP-kinesin motors (N = 101) versus Qdot-kinesin 
complexes (N=19) on uncrowded microtubules. Error bars represent standard error of 
the mean. B. Mean run length of Qdot-kinesin complexes on uncrowded microtubules  
(N = 19) versus Qdot-kinesin complexes on microtubules crowded with 200 nM kinesin 
(N = 36). Error bars represent standard error of the mean. 
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Interestingly, these non-specific interactions occurred not only between non-

biotinylated HaloTag motors and Qdots, but between GFP-tagged kinesin motors and 

Qdots as well. When Qdots were added to microtubules coated with 50 nM GFP-kinesin 

(no biotinylated kinesin present), I saw that Qdots were able to translocate efficiently 

along microtubules (Figure 2.2). This suggests that this interaction is not specific to the 

HaloTag and further demonstrates that biotin is not required for this non-specific 

interaction. 
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Figure 2.2 Qdots are Transported by Non-Biotinylated Kinesin Motors 

Kymograph showing a Qdot transported on a microtubule coated with 50 nM GFP-
kinesin. The kymograph was extended beyond the length of the microtubule in order to 
visualize the increased fluorescence intensity along the entire length of the microtubule 
due to the presence of GFP kinesin. Vertical scale bar is 21 seconds. Horizontal scale 

bar is 0.5 m. 
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2.2.2 Non-Biotinylated Motors Transiently Interact with Qdot Cargos 

While I was able to show that non-biotinylated kinesin motors can form non-

specific interactions with Qdots, it is unclear how these non-specific interactions 

participate in the transport of Qdots. Do these motors bind the Qdot cargo and remain 

bound throughout the entire duration of Qdot transport or are they able to associate and 

dissociate throughout this transport process? Do motors bind and actively transport 

Qdots or do they weakly bind Qdots and act more like a conveyor belt over which the 

Qdot is passed along? 

To better understand the nature of this non-specific interaction between non-

biotinylated kinesin motors and Qdot cargos, I performed two-color single molecule 

experiments to visualize interactions between GFP-kinesin motors and 655 nm 

streptavidin Qdots during transport. These experiments were done on microtubules 

coated with a medium density of non-biotinylated kinesin motors (50 nM kinesin). I 

added 10% GFP-kinesin motors to non-biotinylated HaloTag kinesin motors to allow for 

the visualization of individual GFP-kinesin motors. In these assays, I witnessed events 

where a GFP-kinesin motor associated with a Qdot already bound to the microtubule 

(Figure 2.3A, B). I also observed events where a GFP-kinesin motor dissociated from a 

Qdot during transport (Figure 2.3C), events where a Qdot and GFP-kinesin bound the 

microtubule simultaneously, presumably already in complex (Figure 2.3D), events where 

a Qdot and GFP-kinesin dissociated from the microtubule simultaneously (Figure 2.3E), 

and events where a Qdot bound a GFP-kinesin motor already associated with the 

microtubule (Figure 2.3F).  
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Figure 2.3 Two-Color Single Molecule Assays Show Association and Dissociation 
of Kinesin Motors to Qdot Cargos 

 A-F. Example kymographs depicting various ways in which Qdots were observed to 
associate or dissociate GFP-kinesin motors while translocating along the microtubule. 
Left kymographs show GFP-kinesin motility, middle kymographs show Qdot motility, and 
right kymographs show a merge of the two channels. Scale bars in the vertical direction 
are 10 s and in the horizontal direction are 0.5 m. A,B. GFP-kinesin motor is observed 
to associate with a Qdot already bound to the microtubule. GFP-kinesin binding event is 
indicated by arrow head. C. GFP-kinesin motor is observed to dissociate from a Qdot 
while the Qdot is moving along the microtubule. GFP-kinesin dissociation event is 
indicated by arrow head. D. Qdot and GFP-kinesin are observed to bind the microtubule 
simultaneously. Single GFP-kinesin motors not associated with Qdots are also observed 
on the same microtubule (*). E. Qdot and GFP-kinesin are observed to dissociate from 
the microtubule simultaneously. A second Qdot is transported by unlabeled kinesin 
motors only (**). F. Qdot is observed to bind directly to a GFP-kinesin already bound to 
the microtubule. 
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In many cases, I observed that GFP-kinesin motors associated with Qdots 

walked with the Qdot during transport. From these experiments, I show that non-

biotinylated kinesin motors form transient interactions with Qdots, as they are able to 

associate and dissociate with Qdot cargos during transport. In addition, I show that when 

a kinesin motor non-specifically binds a Qdot cargo, it can remain in complex with the 

Qdot to actively aid in its transport along the microtubule. 

To further probe the interaction between non-biotinylated motors and Qdots, I 

investigated the binding affinity of non-biotinylated motors to Qdots. First, I used 

biotinylated polystyrene beads to perform bulk binding assays to pull down streptavidin 

Qdots and any Qdot-bound kinesin. I mixed biotinylated beads with 250 nM streptavidin 

Qdots and increasing concentrations of non-biotinylated HaloTag kinesin-1. After 

incubation, beads were pelleted to pull down streptavidin Qdots, and supernatant and 

pellet samples were run on a gel. Using both coomassie staining and western blotting, I 

was unable to detect any kinesin-1 bound to Qdots in these bulk binding assays (Figure 

2.4A,B). These results suggest that binding of non-biotinylated motors to Qdots in 

solution is rare. Because I observed binding events often in my assays, I used my 

experimental set-up to determine the affinity of non-biotinylated motors for Qdots using a 

visual binding assay. I added 50 nM non-biotinylated HaloTag kinesin to microtubules 

and increasing concentrations of Qdots to these kinesin-coated microtubules. Qdots 

were visualized in TIRF and the ratio of bound Qdots to kinesin was determined (Figure 

2.4C). From this data, I was able to calculate the KD for Qdot binding to kinesin to be 1.3 

mM. This low affinity further demonstrates the transient nature of the interaction between 

non-biotinylated kinesin motors and Qdots. 
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Figure 2.4 Binding Constant Estimate for Qdots Binding to Non-Biotinylated 
Kinesin 

A. After Qdot incubation with biotinylated beads, sample is centrifuged to pellet beads. 
After separation of supernatant and pellet, samples were illuminated with UV light to 
fluoresce Qdots and determine their location. Left tube shows bead pellet with bound 
Qdots, right shows supernatant without Qdots. B. Coomassie stained SDS-PAGE gels 
showing pellet and supernatant samples. For all concentrations of kinesin added, kinesin 
is detected only in the supernatant (arrows, ~100 kD band). C. Ratio of bound Qdots to 
kinesin as a function of the concentration of Qdots added. Because so few Qdots were 
found to bind to kinesin along microtubules, I estimate the concentration of free Qdots is 
equal to the concentration of Qdots added. The measurements made were in the linear 
regime of binding. The data was fit to the linear equation: y = mx, which was fit best 
when m = 7 ± 1 x 10-7 nM-1, R2 = 0.5. The inverse of this slope was used to estimate the 
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affinity of kinesin for microtubules, which was found to be 1.3 mM. Error bars represent 
the standard error of the mean. Large error bars are a result of many microtubules with 
zero Qdots bound. 
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In my experiments, I started with Qdots that were specifically conjugated to a 

single kinesin motor through a specific streptavidin-biotin linkage. How many motors 

ultimately transport a single cargo on microtubules crowded with excess kinesin is 

unknown, as many new motors associate due to non-specific interactions. To estimate 

the number of kinesin motors that non-specifically bind Qdot cargos on microtubules with 

50 nM non-biotinylated kinesin, I again used the two-color single molecule assay. In 

these experiments, I observed two populations of GFP-kinesin motors: those that were 

associated with Qdots and those that traveled separately as single motors (Figure 

2.3.D). In the cases where GFP-kinesin motors were associated with Qdots, I could 

compare the intensity in the GFP-channel to the intensity of a single GFP-kinesin moving 

along the same microtubule. From these measurements, I was able to estimate the 

number of GFP-kinesin motors associated with each Qdot (Figure 2.5, green data). I 

observed that the highest percentage of Qdots were associated with zero GFP-kinesin 

motors and that the data decreased with increasing numbers of associated GFP-kinesin 

motors. However, in the case of 5 and 6+ GFP-kinesin motors, the data is increased 

compared to 3 and 4 motors. The increase observed for 6+ GFP-kinesin motors is an 

artifact as this includes all data for 6 motors and greater. The increase observed for 5 

motors could be due to the presence of aggregated GFP-kinesin motors associated with 

Qdots. 
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Figure 2.5 Number of Kinesin Motors Bound to Qdot Cargos 

Histogram representing the number of GFP-kinesin motors bound to Qdots. Green data 
represents measurements from the two-color assays. Blue data represents the binomial 
fit used to estimate the total number of kinesin motors bound to Qdots in these 
experiments. 
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Because only 10% of the motors in this experiment were GFP-tagged, this 

quantification only represents a small population of the motors. To estimate the total 

number of kinesin bound to each Qdot, taking into account the HaloTag kinesin that is 

not visible, I fit the measured data to a binomial distribution. A binomial distribution is a 

discrete probability distribution that describes the possible ways of achieving a certain 

population size. This function is expressed as follows:  

 

Here, N refers to the population size; n refers to the sample size; and p is the sampling 

probability. In this function, the binomial coefficient: 

 

is referred to as ‘N choose n’. This expression is defined as follows: 

 

ܰ!
݊! ሺܰ െ ݊ሻ!

 

 

‘N choose n’ refers to the fact that there are n ways to achieve N. For example, if there 

were 2 motors on each Qdot cargo (N = 2), there could be 2 GFP-kinesin and 0 

unlabeled kinesin; 1 GFP-kinesin and 1 unlabeled kinesin; or 0 GFP-kinesin and 2 

unlabeled kinesin. These are the different possible ways to have N = 2 motors on the 

Qdot cargo. 

In the case of this experiment, the population size, N, which is the total number of 

kinesin motors (labeled and unlabeled) on each Qdot cargo is unknown. To determine 

this population size, I sampled the number of kinesin motors on Qdot cargos by counting 

the number of GFP-kinesin motors. This measured data is therefore the sample size, n. 
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Because 10% of the motors added were GFP-tagged, the probability, p, of sampling one 

of these GFP-kinesin motors in this experiment is 10%. 

Using these values, I calculated the binomial distribution for discrete values of N. 

For each of these distributions, I used a chi-squared test to calculate the goodness of fit: 

 

߯ଶ ൌ෍
ሺܱ െ ሻ2ܧ

ܧ
 

 

For N = 6 motors, I calculated a χ2 value of 0.03451. For N = 7 motors, I calculated a χ2 

value of 0.03435. For N = 8 motors, I calculated a χ2 value of 0.05284. Because the 

lowest χ2 value corresponds to the best fit, I found that the data was fit best when N = 7. 

Therefore, I determined that on average, there are a total of 7 motors bound to each 

Qdot in these experimental conditions. 

 

2.2.3 Motor Density on Crowded Microtubules 

To understand how different levels of crowding affect the transport of single 

motors and cargos, I probed motility on microtubules crowded with different 

concentrations of excess kinesin motors, ranging from 1 nM (not crowded) to 200 nM 

(highly crowded). To determine the actual levels of crowding for each condition, I 

calculated the motor density along these microtubules. GFP-tagged kinesin was added 

to microtubules at concentrations used in my experiments and kinesin binding to 

microtubules was visualized using TIRF microscopy. The fluorescence intensity along 

microtubules at each density was compared to the intensity of a single GFP-kinesin 

motor to estimate the number of motors bound per micron of microtubule. I observed a 

linear increase in motor density as the kinesin concentration was raised (Figure 2.6).  
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Figure 2.6 Motor Density on Crowded Microtubules 

A. Representative images of GFP-kinesin binding along microtubules at 5, 10, 25, 50, 
100, and 200 nM kinesin. Due to increasing levels of kinesin, these images are 
displayed with different linear look-up tables. For 5 and 10 nM, the gray scale is from 0 
to 1,000 on a 16-bit scale. For 25 nM, the gray scale is from 0 to 2,500. For 50 and 100 
nM, the gray scale is from 0 to 5,000. For 200 nM, the gray scale is from 0 to 10,000, 
which is saturated. Single GFP-kinesin motors are clearly visible at 5 and 10 nM. Scale 
bar is 1 m. B. Linear motor density of GFP-kinesin along the microtubule as a function 
of added GFP-kinesin. N = 50 microtubules for each density. Error bars represent 
standard error of the mean. The data was fit to the linear equation: y = mx which was fit 
best when m = 2.9 ± 0.2, R2 = 0.96. 
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At the highest kinesin concentration added (200 nM), I calculated that 

approximately 40% of the kinesin binding sites are saturated.  

Using this data, I was also able to calculate the KD value for kinesin binding to 

microtubules in my assays. I plotted the ratio of bound kinesin to tubulin dimers against 

the concentration of free kinesin (Figure 2.7).  
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Figure 2.7 Binding Constant Estimate for Kinesin Binding to Microtubules 

Ratio of bound kinesin to tubulin dimers plotted as a function of free kinesin 
concentration. The measurements made were in the linear regime of binding. The data 
was fit to the linear equation: y = mx, with the fit being best when m = 0.0161 ± 0.0009 
nM-1, R2 = 0.97. 
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The ratio of bound kinesin to tubulin dimers was determined by dividing the 

number of GFP-kinesin motors bound per m of microtubule by the total number of 

tubulin dimers in 1 m of microtubule (1625 tubulin dimers). The concentration of free 

GFP-kinesin was determined using the intensity of background GFP fluorescence for 

each chamber. I observed the relationship of the ratio of bound kinesin to tubulin dimers 

versus the concentration of free GFP-kinesin to be linear. To determine the KD value for 

kinesin binding to microtubules, I used the following equation that describes the 

relationship between the ratio of bound kinesin, the concentration of free kinesin, the 

stoichiometry (S) of kinesin binding to tubulin, and the KD: 

 

݋݅ݐܽݎ ൌ ܵ
ሾ݇݅݊݁݊݅ݏ௙௥௘௘ሿ

஽ܭ ൅ ሾ݇݅݊݁݊݅ݏ௙௥௘௘ሿ 

 

Because I observed a linear relationship between the ratio of bound kinesin versus free 

kinesin, I was not at saturating concentrations and can assume that I was in the dilute 

regime. In this dilute regime, I can make the assumption that the [kinesinfree] is << KD. 

Therefore, in the above equation, the denominator approaches KD and the ratio of bound 

kinesin is a linear function of [kinesinfree]: 

݋݅ݐܽݎ ൌ
ܵ
஽ܭ

ሾ݇݅݊݁݊݅ݏ௙௥௘௘ሿ 

 

Here, the slope of this linear equation is equal to S/KD. Because the stoichiometry (S) of 

kinesin binding to tubulin dimers is 1 motor head per 1 tubulin dimer, I know that the 

slope is equal to 1/KD. I fit the data to the linear equation: y = mx and found that the data 

was fit best when m = 0.0161 ± 0.0009 nM-1 (R2 = 0.97). Because the slope, m, is equal 
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to the inverse of the KD, I was able to calculate the KD of kinesin binding to microtubules 

to be 62 nM. 

 

2.2.4 Motility of Single Motors versus Cargos on Crowded Microtubules 

When single motors and cargos were added onto microtubules crowded with 

excess kinesin, distinct differences in motility were observed for both as crowding was 

increased (Figure 2.8). Interestingly, single motors and cargos behaved very differently 

from each other on crowded microtubules.  
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Figure 2.8 Representative Kymographs Showing Motility of Cargos versus Single 
Motors on Microtubules with Different Levels of Crowding 

Kymographs showing cargo or single motor motility on microtubules with 1 nM, 25 nM, 
or 200 nM excess kinesin. Top kymographs show Qdot cargo motility, bottom 
kymographs show single GFP-kinesin motor motility. All kymographs are on the same 
scale. Vertical scale bars are 2 sec and horizontal scale bars are 0.5 m. 
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As crowding was increased, I observed that single motor processivity was 

drastically reduced (Figure 2.9A). Single motors had run lengths of 1.75 m on 

uncrowded microtubules, and these run lengths dropped to 0.23 m on microtubules 

crowded with 200 nM kinesin. Conversely, cargo processivity was enhanced on crowded 

microtubules. On uncrowded microtubules, cargos were transported 1.75 m, likely by a 

single motor that was initially attached to the Qdot cargo. However, on microtubules 

crowded with 200 nM kinesin, cargo run lengths increased to an average of 6.23 m. 

This increase in processivity observed for cargos indicates that cargos are more likely to 

associate additional motors through non-specific interactions on crowded microtubules. 

These additional motors are able to help cargos navigate traffic better, allowing them to 

be transported over greater distances than if they were transported by a single motor.  

Similarly, I observed that the total association time of cargos was enhanced on 

crowded microtubules as well (Figure 2.9B). On uncrowded microtubules (1 nM kinesin), 

cargos remained bound to the microtubule for an average of 8.23 seconds, while on 

crowded microtubules (200 nM kinesin), this association time was increased to 99.27 

seconds. For single motors, I observed essentially no change in the total association 

time as microtubules became more crowded (Figure 2.9B). 
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Figure 2.9 Motility Properties of Single Motors and Cargos on Crowded 
Microtubules 

A. Run length was measured as the total distance traveled. Red circles show Qdot cargo 
data, green triangles show single GFP-kinesin motor data. B. Total association time was 
measured as the total time motors or cargos remained bound to the microtubule. Red 
circles show Qdot cargo data, green triangles show single GFP-kinesin data. C. Velocity 
was measured in two ways: the overall velocity where the total run length was divided by 
the total association time (blue squares, Qdot cargos and green triangles, single GFP-
kinesin motors). Second, for Qdot cargos, velocity was measured by averaging only the 
moving segments of runs, omitting all pauses (red circles). For all plots, N values for 
Qdot cargo measurements: [1 nM (N = 19); 5 nM (N = 36); 10 nM (N = 138); 25 nM (N = 
106); 50 nM (N = 49); 100 nM (N = 22); 200 nM (N = 36)] and for single GFP-kinesin 
measurements: [1 nM (N = 101), 25 nM (N = 104); 50 nM (N = 55); 75 nM (N = 54); 200 
nM (N = 103)]. Error bars represent standard error of the mean for all plots. 
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While single motors and cargos exhibited opposite motility properties in terms of 

run length and total association time, I observed similar trends in the velocity of single 

motors and cargos on crowded microtubules (Figure 2.9C). Velocity was first calculated 

by dividing the total distance traveled by the total association time of motors. I saw that 

single motors moved at velocities of 0.29 m/sec on uncrowded microtubules and 

slowed to 0.04 m/sec on crowded microtubules (200 nM kinesin). Similarly, I observed 

cargo velocities of 0.26 m/sec on uncrowded microtubules and slower velocities of 0.08 

m/sec on crowded microtubules (200 nM kinesin). Because I observed cargos to pause 

more frequently on crowded microtubules (as discussed in section 2.2.5), I wanted to 

determine whether this decrease in cargo velocity observed was due to motors actually 

moving slower, or whether it was an artifact of increased pausing. To differentiate 

between these two possibilities, I calculated the velocity by averaging only the moving 

segments of each run, thereby omitting any pauses from this measurement. I found that 

the velocities calculated were increased compared to velocity measurements including 

pauses. However, I still observed the same trend that the velocity of cargos is slowed on 

crowded microtubules (Figure 2.9C). This shows that both single motors and cargos 

move slower in the presence of traffic, and this decrease in velocity is not due to merely 

pausing more frequently on these crowded microtubules. 

 

2.2.5 Qdot Cargos Exhibit Pausing on Crowded Microtubules 

As mentioned previously, I observed an increased frequency of pausing of 

cargos transported on crowded microtubules. While these pauses were distinct in some 

cases, for cargos moving at slow velocities, it was difficult to distinguish between a 

pause and slow motion by eye (Figure 2.10A, left kymographs).  
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Figure 2.10 Pausing of Cargos on Crowded Microtubules 

A. Representative kymographs showing segments of Qdot cargo runs on microtubules 
with 1 nM, 25 nM, and 200 nM kinesin. Left kymographs show raw data, right 
kymographs show kymographs generated by particle tracking code. Gray shading 
indicates pauses as determined by the program using the described threshold. Vertical 
scale bars are 2 seconds; horizontal scale bars are 0.5 m. B. Percentage of time spent 
paused is measured as the percentage of time each individual cargo spent paused 
during its entire association time. For B and C: [1 nM (n = 19); 5 nM (n = 36); 10 nM (n = 
138); 25 nM (n = 106); 50 nM (n = 49); 100 nM (n = 22); 200 nM (n = 36)]. Error bars 
represent standard error of the mean (SEM). C. Spatial and temporal pause frequency 



 

55 

(blue and green circles, respectively) represent the average number of times a cargo 
pauses per micron or per second per run, respectively. D. Normalized distribution of 
cargo pause durations on microtubules with 1 nM (blue circles), 25 nM (red squares), 
and 200 nM (green diamonds) kinesin present. Each distribution was fit with an 
exponential decay shown as a line in the same color as the corresponding data. Decay 
constants representing characteristic pause durations for 1 nM, 25 nM, and 200 nM are 
0.21 ± 0.03 s (R2 = 0.92), 0.117 ± 0.007 (R2 = 0.99), and 0.088 ± 0.004 (R2 = 0.995), 
respectively. E. Decay constants from the exponential decay fits representing mean 
pause durations were plotted as a function of kinesin crowding. This data was found to 
decrease linearly with the log of kinesin concentration and was fit to the function: y = 
m(log(C)) + b and found m = -0.037 ± 0.004, b = 0.25 ± 0.006 (R2 = 0.99). 
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To study pauses during cargo motility, I used the particle tracking program to set 

a specific threshold that allowed me to pull out pauses from motion of all cargos. I used 

a threshold of two standard deviations below the mean instantaneous velocity for each 

moving cargo to take into account the wide range of cargo velocities observed, which 

was dependent on levels of crowding. Pauses determined using this threshold are 

indicated in Figure 2.10A (right kymographs) by gray shading. I found that the 

percentage of time cargos spent paused during a run increased as crowding along the 

microtubule increased (Figure 2.10B). Additionally, I observed that the frequency of 

cargo pausing, both per second and per micron traveled, increased as crowding was 

increased (Figure 2.10C). To understand whether the duration of individual pauses was 

affected by the levels of crowding along the microtubule, I measured the duration of 

individual pauses by cargos for three representative concentrations: 1 nM, 25 nM, and 

200 nM kinesin that correspond to low, medium, and high levels of crowding, 

respectively. For each concentration, the distribution of these pause durations was an 

exponential decay (Figure 2.10D). I fit each distribution to the exponential decay 

function:  

. 

In a normalized distribution, the decay constant, Ƭ, is equal to the mean. Therefore, Ƭ, in 

this case represents the mean pause duration. I found that the mean pause duration 

became shorter as crowding on the microtubule increased (Figure 2.10E). To further 

demonstrate that these are three distinct distributions, I plotted the data as cumulative 

probability distributions (Figure 2.11) and fit the data with the cumulative probability 

function for an exponential decay: y = 1 – exp(-βx). Here, I show that these are three 

distinct distributions. From these results, I show that while cargos pause more frequently 

y  Aexp  t  
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on crowded microtubules, the duration of these pauses actually become shorter with 

more motor traffic present on the microtubule. 
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Figure 2.11 Cumulative Probability Distributions for Qdot Cargo Pause Durations 

Qdot cargo pause duration data (solid thick lines) are fit to the cumulative probability 
function for an exponential decay (thin lines) with the equation: y = 1 – exp(-βx) for 
crowding kinesin concentrations of 1 nM (blue lines), 25 nM (red lines) and 200 nM 
(green lines). These three distributions were found to be distinct and fit best with values 
of β = 3.63 ± 0.005 (R2 = 0.94), 4.36 ± 0.01 (R2 = 0.90), and 5.14 ± 0.002 (R2 = 0.84), 
respectively. 
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2.2.6 Qdot Cargos Reverse on Crowded Microtubules 

I observed short reversals of cargos on crowded microtubules (Figure 2.12A). 

Because these reversals were short and difficult to distinguish by eye, I set a threshold 

using the particle tracking program to allow the program to identify reversals. To ensure 

that events pulled out as reversals were not artifacts of noise in the data, I set the 

threshold to 50 nm, meaning that a reversal event must be greater than 50 nm to be 

considered a reversal. This threshold is well above the resolution that exists for the time 

scale of the reversals (6 nm), ensuring that any reversals identified are not due to noise. 

Additionally, I measured reversals of stationary Qdots bound to the coverslip surface to 

estimate the noise floor. When I quantified the percentage of cargos that reversed at 

least once during their run, I observed a linear increase with the log of kinesin 

concentration (Figure 2.12B). The data measured was above the noise floor, which was 

calculated to be 5%. 
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Figure 2.12 Cargo Reversals on Crowded Microtubules 

A. Example kymograph showing cargo motility on crowded microtubules (50 nM 
kinesin). Kymograph shown is raw data, red trace shows kymograph generated by 
particle tracking program used to analyze data. Yellow arrowhead indicates short 
reversal in cargo motion in both raw data and data generated from particle tracking 
program. Vertical scale bar is 0.5 sec, horizontal scale bar is 0.5 m. B. Percentage of 
cargos that reverse at least once during a run is plotted against the total concentration of 
kinesin added to crowd microtubules. Dotted line indicates noise floor, as determined by 
measurement of percentage of stationary Qdots that reversed. Data was fit to a linear fit 
of the log of kinesin concentration: y = m*log(x) + b, where m = 8 ± 3 and b = 15 ± 2. 
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2.3 Discussion 

In my assays, I observed that Qdot cargos were able to form non-specific 

interactions with non-biotinylated motors (Figure 2.13A). How non-biotinylated motors 

non-specifically associate with Qdot cargos is unclear. The Qdot streptavidin conjugates 

used in this study are comprised of a semiconductor core and shell that is coated with a 

polymer to attach streptavidin molecules. Three potential mechanisms by which motors 

could bind non-specifically to Qdots are (1) motors could bind non-specifically to 

streptavidin molecules, but this would be limited to the small number of streptavidin 

molecules on the Qdots, (2) motors could bind non-specifically to exposed polymer, or 

(3) motors could get caught in the polymer coating if the brush is splayed because of the 

high radius of curvature of the Qdot (Figure 2.13B). 
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Figure 2.13 Non-Specific Interactions of Kinesin Motors with Quantum Dots 

A. Representation of assay set-up with Qdot-kinesin added onto microtubules with high 
densities of excess motors. Arrow indicates the direction in which kinesin motors walk 
along the microtubule. Plus and minus signs denote the polarity of the microtubule 
filament. B. Potential mechanisms by which kinesin-1 could non-specifically associate 
with Qdots. (i) Representation of streptavidin conjugated Qdots used in this study. (ii) 
Kinesin-1 could bind Qdot via streptavidin molecule. (iii) Kinesin-1 could bind Qdot via 
polymer coating. (iv) Kinesin-1 could bind Qdot by getting lodged into splayed polymer 
coating. 
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 Interestingly, bulk assays where only Qdots and non-biotinylated motors were 

mixed in solution did not show detectable binding events between Qdots and motors, 

suggesting that binding in solution, in the absence of microtubules, is rare. This is in 

contrast to my in vitro system, where binding events were observed frequently. This 

discrepancy can be explained when both the energy and local concentration of the 

species involved are considered. 

Free in solution, kinesin motors and Qdots move purely by diffusion and have 

energies that are on the same order of magnitude, ~ 1 kBT. Since I observe little binding 

between Qdots and non-biotinylated motors in solution, I conclude that such low 

energies are smaller than the energy barrier required for kinesin-Qdot binding.  The 

result is that the probability that an interaction event between a kinesin motor and a Qdot 

would result in a non-specific binding event is low in free solution. However, in my assay, 

there are two parameters that lower the energy barrier required for Qdot-kinesin binding. 

First, in my assay, kinesin motors have a higher energy than in solution, as they 

generate force as they walk along microtubules. Kinesin motors produce a maximum of 

~ 5 pN of force for every 8 nm step they take along the microtubule (Svoboda and Block, 

1994; Svoboda et al., 1993). Thus, I can estimate that in my assay, kinesin motors can 

do maximal work on the order of ~ 10 kBT. Given that I observed collisions between a 

non-biotinylated motor walking behind or in front of a Qdot to result in a high probability 

of binding, I conclude that the energy barrier for such binding is below 10 kBT. The 

energy barrier of insertion of a particle into a polymer brush is on the order of 10 kBT 

(Merlitz H, 2012), so the kinesin motor is likely to have enough energy to penetrate the 

brush. After intercalating into the brush, the motors might be kept there through van der 

Waals forces, but I was still able to observe motors dissociating from the Qdots, implying 

that the 10 kBT of energy is also enough to escape the brush. 
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Another factor in my system that could lower the energy barrier required for 

Qdot-kinesin binding is the local concentration of each species. An increased 

concentration of either species will drive the binding reaction forward, resulting in the 

production of more Qdot-kinesin complexes. In my system, microtubules are attached to 

a glass surface and kinesin motors bind these microtubules with high affinity (Kd = 62 

nM). This generates a high local concentration of motors and Qdots at the microtubule 

surface, favoring their interaction.  

The ability of non-biotinylated motors to non-specifically bind Qdot cargos in my 

system allows for Qdot cargos to self-assemble and disassemble throughout transport. 

The transient nature of such cargos strongly resembles those thought to be used in slow 

axonal transport (Scott et al., 2011). Slow axonal transport is the predominant 

mechanism by which cytosolic proteins are transported along the axon (Tytell et al., 

1981). This mechanism is distinct from that of fast axonal transport, which involves the 

transport of membranous cargos and membrane proteins. Fast axonal transport is 

understood relatively well; membrane proteins insert into membranous cargos which are 

transported by a fixed set of motors (Lorenz and Willard, 1978). The mechanism by 

which cytosolic proteins are transported is less clear. These proteins cannot insert into 

membranes, and thus must be transported through a mechanism different than that of 

membrane proteins. Studies have been carried out to characterize the motility of 

cytosolic proteins in axonal transport. These studies have revealed that the majority of 

cytosolic proteins are transported via slow axonal transport, and their transport is mostly 

carried out independent of membranous vesicles (Scott et al., 2011). While the basic 

transport properties of cytosolic proteins have been characterized, few studies have 

addressed the mechanism by which motors associate with these cargos to promote their 

transport. One recent study visualized the transport of fluorescently tagged cytosolic 
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proteins in vivo and characterized the observed motility using computational modeling 

studies (Scott et al., 2011). With these studies, a mechanism was proposed that 

describes the transport of cytosolic proteins by a mechanism where motors transiently 

associate and dissociate with complexes of cytosolic proteins to promote their transport. 

This type of transport, driven by the transient association of motors, resembles that 

which occurs in my self-assembled Qdot system. 

Interestingly, I observe several characteristics of transport in my system that 

resemble transport properties of slow axonal transport. First, the slow rate of Qdot cargo 

transport on crowded microtubules in my system is comparable to transport rates 

observed for cellular cargos in slow axonal transport. In cells, cargos transported by slow 

axonal transport have been shown to move at rates of 2-90 m/sec (Brown, 2003). In my 

system, I observe that Qdot cargos move at rates of 35-120 nm/sec on microtubules 

crowded with 200-50 nM kinesin, respectively. Second, early reports on slow axonal 

transport describe short reversals in cargo motion (Wang et al., 2000), similar to the 

reversals observed in my system. Because these studies were carried out in cells where 

multiple motor types are present, the reversals observed here cannot be clearly 

differentiated between elastic recoil and retrograde motors. However, my system 

supports the idea that short reversals in anterograde cargo motion do not necessarily 

have to be a result of retrograde motors.  

Compared to fast axonal transport, slow axonal transport is not well 

characterized. While recent studies have aimed to better characterize slow axonal 

transport, these studies have been restricted to in vivo studies and computational 

modeling. Here, I present a novel in vitro system that can be used to gain mechanistic 

insights into the transport process of slow axonal transport. The development of this in 

vitro system to study slow axonal transport can be used alongside current in vivo studies 
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to provide a tool to systematically probe the transport properties of slow axonal 

transport.   

In addition to acting as a system to study slow axonal transport, this system also 

allows for the study of kinesin motor motility on crowded microtubules. Here I studied 

how the motility of single kinesin motors compared to that of cargos transported on 

microtubules crowded with excess kinesin motors. The excess kinesin motors used in 

this study were motile motors, and can therefore be thought of as added traffic along the 

microtubule. 

When velocities of single motors and cargos were measured on microtubules 

with different levels of crowding, I found that both single motor and cargo velocities were 

decreased as crowding along the microtubule was increased. This decrease in velocity 

could be due to motors waiting for the next available binding site along the microtubule 

to open up. Kinesin-1 has a specific binding site along the microtubule (Hirose et al., 

1999; Uchimura et al., 2006). If this site is occupied by another motor, it will not be able 

to take its next step until the motor ahead moves. As microtubules become crowded with 

more motors, the probability that a motor’s next binding site will be occupied will 

increase, leading to an overall decrease in velocity. Such decreases in motor velocity on 

crowded microtubules were also observed in a recent study with kinesin-8 motors 

(Leduc et al., 2012). 

While the effect of crowding on velocity was similar for both single motors and 

cargos, I observed drastic differences in processivity under these same conditions. I 

observed that single motor processivity was reduced in the presence of added traffic 

along the microtubule, while cargo processivity was enhanced. The reduction in 

processivity of single motors on crowded microtubules suggests that traffic poses as an 

obstacle for single motors. Numerous studies have shown that kinesin-1 will dissociate 
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upon reaching static obstacles along the microtubule (Dixit et al., 2008; Ross et al., 

2008; Telley et al., 2009; Vershinin et al., 2007), as these motors are unable to switch 

protofilament tracks (Ray et al., 1993). While the traffic in this study is a motile obstacle, 

I show that it moves very slow compared to single motor velocities. Thus, this traffic 

could act as a stationary obstacle on short timescales, causing single kinesin motors to 

dissociate prematurely from the microtubule. However, in the case of Qdot cargos, I 

showed that these cargos were able to associate new motors on crowded microtubules. 

While a single motor would dissociate upon reaching slow moving traffic, a cargo with 

multiple motors has additional motors that will keep the Qdot cargo tethered to the 

microtubule, allowing it to wait for the slow-moving obstacles to move. In addition to 

helping cargos navigate microtubules with obstacles, multiple motors on a cargo have 

been shown previously to increase processivity on uncrowded microtubules as well 

(Beeg et al., 2008; Block et al., 1990; Klumpp and Lipowsky, 2005; Korn et al., 2009; 

Kunwar et al., 2008; Muller et al., 2010; Vershinin et al., 2007). This is again attributed to 

having additional motors present to maintain cargo attachment to the microtubule if a 

single motor dissociates. Thus, on microtubules with high levels of traffic, multiple 

motors on a cargo help to increase processivity by increasing the inherent cargo run 

length as well as by helping cargos to navigate behind slow moving obstacles.  

In experiments with 50 nM kinesin added to microtubules, I determined that there 

were 7 motors bound to Qdot cargos, and these cargos were able to travel 

approximately 4.5 m before detaching. Previous studies of cargos carried by multiple 

motors show that cargos transported by 3 motors can transport cargos up to 4-6 m 

(Korn et al., 2009; Kunwar et al., 2008). While I observed run lengths on a similar scale 

to what has been observed for cargos transported by only 3 motors, this can be 

explained by the fact that I have additional crowding in my experiments. I know from 
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single motor data that traffic negatively affects kinesin processivity. While I observed 

increased run lengths on crowded microtubules with multiple motors, these run lengths 

are most likely shorter than what would be observed if these cargos were transported by 

the same number of motors on uncrowded microtubules. In addition, the 7 motors that 

were determined to be associated with Qdot cargos includes all motors associated with 

the Qdot, some of which may not be in contact with the microtubule. 

During transport of Qdot cargos on crowded microtubules, I observed an 

increased frequency of pausing. These pauses are likely due to cargos encountering a 

slow-moving motor that is occupying the binding site needed for its next step. 

Interestingly, the mean pause duration actually decreased as traffic along the 

microtubule increased. While I would expect this mean pause duration to increase with 

increased traffic, as it would take longer for obstacles to move due to slower velocities, 

the decrease observed can be explained by the ability of Qdot cargos to associate more 

motors on these highly crowded microtubules. As Qdot cargos are transported along 

crowded microtubules, they are able to easily encounter and associate with motors 

along the protofilament on which they are traveling. As the levels of crowding increase 

along the microtubule, I believe that the probability of a Qdot associating with a motor on 

a neighboring protofilament increases. I speculate that a cargo associated with motors 

on multiple protofilaments would have the ability to switch protofilament tracks upon 

reaching an obstacle. This ability to circumvent obstacles would result in a decrease in 

pause duration compared to cargos that are unable to switch protofilaments and must 

wait for the obstacle to move.  

Another effect of high levels of crowding on Qdot cargo motility were short 

reversals in cargo motion during transport. I believe that these reversals are a result of 

having multiple motors associated to a single cargo. If a motor bound to the front end of 
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a cargo is traveling ahead of the other motors complexed to the cargo, the system will be 

under strain. If this front motor detaches from the microtubule, it would result in the 

system relaxing, which would be observed as the cargo rocking backwards to reposition 

itself over the remaining motors bound to the microtubule. These types of cargo 

reversals, or “bead flop” have been described previously using a microtubule gliding 

assay system, where it was shown that microtubules transported by 3 motors were 

observed to exhibit short jumps in both the forward and reverse direction during gliding 

(Leduc et al., 2007). In my experiments, I observed that cargo reversals increased 

linearly with the log of kinesin concentration added to microtubules. This is as expected 

as the probability of having multiple motors bound to a single cargo increases with 

increased crowding. In addition, the probability of having a front motor detach increases 

with increased crowding as well, as more obstacles in the form of traffic are introduced.  

While I observed a linear increase in the percentage of cargos that reverse, it 

was linear with the log of the kinesin concentration. If the kinesin concentration were to 

be plotted on a linear scale, I would see that the data would gradually saturate, rather 

than continue to increase linearly. The fact that this percentage does not continue to 

increase linearly with increasing kinesin concentrations, but begins to saturate at higher 

kinesin concentrations could be due to the limited size of the Qdot cargo used in these 

assays. Because I suspect that the probability of a cargo reversal is related to the 

number of motors bound to the cargo, at higher kinesin concentrations, the Qdot surface 

exposed to the microtubule could become saturated with kinesin motors. Above a certain 

kinesin concentration, these Qdot cargos cannot add any additional motors, and the 

probability of a cargo reversal would be expected to no longer increase. 

In these studies, I showed that cargos can reverse over short distances in the 

presence of a single motor type. While reversals observed in cargo transport are 
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typically attributed to a switch in motor type (ie dynein taking over), it is interesting to 

note that some short reversals may actually be driven by kinesin motors alone. 

From this study, I have shed light on the mechanisms by which cargos 

transported along crowded microtubules overcome motile obstacles to ensure efficient 

transport. I show that single motors alone are not able to navigate traffic efficiently. 

Cargos that are able to associate multiple motors move slow on microtubules with high 

levels of traffic, but are able to remain associated with the microtubule longer and I 

speculate that these cargos can circumvent obstacles by switching to a neighboring 

protofilament. These findings provide new insights into how cargos are efficiently 

transported on microtubules in cells, which are crowded with both motile and stationary 

obstacles. 

2.4 Methods 

2.4.1 Protein Purification. A human kinesin-1 construct truncated at amino acid 560 

fused to either a C-terminal Halo Tag (Promega) or GFP tag and a 6X His Tag was 

expressed using a pET17b expression vector. Expression with IPTG and affinity 

purification with Nickel beads (Qiagen) were carried out as described previously (Pierce 

and Vale, 1998). HaloTag-kinesin and GFP-kinesin concentrations were quantified by 

comparison to known BSA standards on a Coomassie-stained SDS-PAGE gel. 

2.4.2 Qdot-motor attachment. To label quantum dots (Qdots) with HaloTag kinesin, I 

used the HaloTag PEG-Biotin Linker (Promega) that covalently binds the HaloTag to 

generate a biotinylated kinesin. Qdot streptavidin conjugates, 525 nm emission 

(Invitrogen) were then bound to the kinesin. HaloTag kinesin, HaloTag PEG-Biotin 

Linker, and Qdot streptavidin conjugates were mixed in a 1:10:10 ratio, respectively, to 

ensure only one kinesin molecule per quantum dot. HaloTag kinesin and HaloTag PEG-
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Biotin Linker were incubated together first for 10 minutes at room temperature. Qdot 

streptavidin conjugates were then added and incubated for an additional 10 minutes at 

room temperature. Complexes were then kept on ice. 

2.4.3 Microtubule Preparation. Rhodamine labeled microtubules were prepared using 

a 1:13.5 ratio of labeled:unlabeled tubulin. Rhodamine labeled tubulin was purchased 

from Cytoskeleton, Inc. Unlabeled tubulin was purified from porcine brain as described 

previously (Peloquin et al., 2005). To prepare microtubules, both unlabeled and 

rhodamine labeled tubulin were brought to 5 mg/mL in PEM-100 (100 mM K-Pipes, pH 

6.8, 2 mM MgSO4, 2 mM EGTA) and incubated for 10 minutes on ice. Tubulin was 

centrifuged at 4oC for 10 minutes at 366,000 xg to remove tubulin aggregates. The 

remaining tubulin in the supernatant was mixed with 1 mM GTP and polymerized at 37oC 

for 20 minutes. 50 M Taxol was added to stabilize polymerized microtubules, followed 

by another 20 minute incubation at 37oC. Polymerized microtubules were centrifuged at 

25oC for 10 minutes at 14,000 x g to separate unincorporated tubulin. The microtubule 

pellet was resuspended in 50 L PEM-100 with 40 M Taxol. 

2.4.4 In Vitro Assays. Assays were carried out in 10 L flow chambers made of a glass 

slide attached to a cover slip with double-stick tape. Prior to use, cover slips were 

biologically cleaned and treated with dimethyldichlorosilane solution, 2% w/v (GE 

Healthcare). Flow chambers were first incubated with 2% anti-tubulin antibody in PEM-

100 for 5 minutes to attach microtubules, followed by a 5 minute incubation with 5% 

Pluronic F-127 (Sigma) in PEM-100 to block the surface. Rhodamine-labeled 

microtubules (0.05 mg/mL microtubules, 20 M Taxol in PEM-100) were allowed to bind 

for 10 minutes. Excess microtubules were removed with a wash step (10 mM DTT, 20 

M Taxol in PEM-100). To ensure a subset of Qdots with kinesin would reach the 

microtubule in crowded conditions, Qdots were bound to the microtubule in a rigor state 
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for 10 minutes (10 nM quantum dot labeled kinesin, 100 mM DTT in PEM-100). For 

assays in which the final kinesin concentration was 1 nM and 5 nM kinesin, 1 nM and 5 

nM Qdots with kinesin were bound during this step, respectively. Finally, motility mix was 

added to the chamber (same concentration of Qdots with kinesin as in previous step 

plus unlabeled HaloTag kinesin to achieve the correct final concentration of kinesin, 

0.05% Pluronic F-127, 25 M Taxol, 0.25 mg/mL BSA, 50 mM DTT, 0.5 mM ATP, 15 

mg/mL glucose, 0.5 mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-100) 

2.4.5 Two-Color Assays. Assays were set up similar to the in vitro assays described 

earlier. In the two-color assays, HaloTag PEG-Biotin Linker was not present. Following 

the wash step to remove excess microtubules, motility mix was added that contained 

Qdot streptavidin conjugates, 655 nm emission (Invitrogen) and a final concentration of 

50 nM kinesin (100 nM 655 nm Qdots, 45 nM unlabeled HaloTag kinesin, 5 nM GFP 

kinesin, 0.05% Pluronic F-127, 25 M Taxol, 0.25 mg/mL BSA, 50 mM DTT, 0.5 mM 

ATP, 15 mg/mL glucose, 0.5 mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-

100). 

Qdot and GFP kinesin motility were observed using Total Internal Reflection 

Fluorescence (TIRF) microscopy. Both Qdots and GFP kinesin were illuminated using a 

50 mW 488 Cyan laser (Spectra-Physics). Images were taken over a period of two 

minutes, and were recorded in both channels. GFP kinesin was imaged using a 500 ms 

exposure and 655 nm Qdots were imaged using a 200 ms exposure. Qdots were 

imaged every three frames. 

Kymographs of GFP kinesin associated with Qdots were generated. Line scans 

through the first pixel of these GFP kinesin runs were used to determine the intensity of 

GFP associated with Qdots. The same was done for a single GFP kinesin motor 

traveling on the same microtubule, which was not associated with a Qdot. Intensity plots 
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were fit to a gaussian to determine the intensity of GFP present. The intensity found for 

GFP which was associated with a Qdot was divided by the intensity of a single GFP 

kinesin motor on the same microtubule to determine the number of GFP kinesin motors 

associated with each Qdot. 

2.4.6 Imaging. An image of the microtubules was acquired using epi-fluorescence prior 

to imaging Qdots. Ten minute recordings of the Qdot motility were taken with a 70 ms 

exposure time using Total Internal Reflection Fluorescence (TIRF) microscopy with a 50 

mW 488 Cyan laser (Spectra-Physics) illumination built around an inverted Nikon Ti-E 

microscope (Nikon). The microscope uses a 60x 1.49 NA objective and images were 

collected using an electron multiplier CCD camera (Cascade II, Roper Scientifics) after a 

4x beam expander. The final pixel size was 67.5 nm. Images were acquired with no 

delay and saved as nd2 files and exported as 16-bit tif files. 

2.4.7 Data Analysis. Image sequences were imported and analyzed using custom 

MatLab programs modified from those used previously (Gao and Kilfoil, 2009). The 

program finds and tracks particles in sequences of Qdot images, finds microtubule 

tracks in the epi-fluorescence image, and correlates the Qdot motion with the 

microtubule to break out motion along the microtubule. It also analyzes run data for 

pauses and backward motion. I tested the resolution limits of the optical system and data 

analysis software using a fixed Qdot. The fixed Qdot was tracked for 100 – 1000 frames 

and the standard deviation was determined from the localizations. For small numbers of 

frames, the resolution was 6 nm, as previously reported for similar experimental systems 

(Ali et al., 2008). For longer movies, there was an uncorrectable drift that resulted in a 

larger resolution of 20 nm. This is still an order of magnitude higher resolution than the 

standard optical resolution of the microscope, calculated to be about 200 nm for the 

wavelengths I use and the 1.49 NA objective used. 
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Every frame in the image stack is first analyzed with a localization algorithm to 

extract the position of individual quantum dot cargos. This localization algorithm finds the 

centroid by fitting a 2D Gaussian to each Qdot cargo. The best-fit localization 

determined by a least squares fitting is taken to be the Qdot cargo position. The original 

image of the microtubule is then skeletonized, resulting in a list of pixel values that can 

be fit dynamically with an Nth order polynomial curve. This curve represents the position 

of the microtubule in space and is used as a reference to project the path of the Qdot 

cargo (which is culled from the results of the localization routine) along the microtubule. 

The displacement vector of the Qdot cargo at each time step is transformed into the 

basis defined by the normal and tangential unit vectors along the microtubule. This 

projection allows for more accurate calculations of its working velocity. Reverse motion 

is determined by negative tangential velocities. To ensure noise in the data was not 

mistaken as a reversal event, a threshold was set to allow only backwards motions 

occurring over a distance greater than 0.05 m to count as a reversal event. Data was 

further analyzed for pause events by using a threshold on the velocity; velocity lower 

than two standard deviations below the mean instantaneous velocity is considered to be 

paused. By filtering out such pauses, I can accurately calculate the moving velocity of 

the Qdot cargos, as well as investigate pausing behavior. Data was affected by boxcar 

averaging, as expected, so no averaging was used.  

2.4.8 Estimate of the Kinesin binding constant from images. I estimated the binding 

affinity by taking images of GFP-kinesin binding to microtubules with increasing 

concentrations of added kinesin. Using the lowest concentration, I estimated the 

intensity of a single GFP-kinesin. I recorded all images with the same exposure, camera, 

and laser settings so that the intensity of a single GFP-kinesin was consistent for each. 

The intensity along the length of microtubules coated with GFP-kinesin was measured 
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using ImageJ. The background intensity was subtracted from each image using line 

scans that extended perpendicular through the microtubule. The intensity of the 

corrected intensity along the microtubule was divided by the intensity of a single GFP-

kinesin to calculate the number of GFP-kinesins along the microtubule. This number of 

GFP-kinesins along the microtubule was divided by the length of the microtubule to find 

the number of kinesins per unit length. The ratio of bound GFP-kinesins to the number of 

tubulin dimers was determined by dividing the number of GFP-kinesins per unit length by 

1625 dimers, since that is the number of dimers in 1 μm of a 13-protofilament 

microtubule. The background intensity from GFP-kinesin images was used to determine 

the concentration of free kinesin not bound to microtubules.  

The ratio of bound kinesins to the tubulin dimers was plotted as a function of free 

kinesin concentration in the background, and it was found that the relationship was still 

linear. The linear behavior can be understood starting from the known dependence for 

binding:  

݋݅ݐܽݎ ൌ ܵ
ሾ௞௜௡௘௦௜௡೑ೝ೐೐ሿ

௄ವାሾ௞௜௡௘௦௜௡೑ೝ೐೐ሿ
. 

In the dilute regime, [kinesinfree] << KD, and the denominator approaches KD. In this limit, 

the ratio is a linear function of the free kinesin concentration:  

݋݅ݐܽݎ ൌ
ܵ
஽ܭ

ሾ݇݅݊݁݊݅ݏ௙௥௘௘ሿ 

Since the known stoichiometry of kinesin binding is 1 kinesin motor head to 1 dimer, the 

slope of the linear fit is inversely proportional to the binding affinity, KD. Fitting my data to 

a linear equation, the best slope is given by 0.0161 ± 0.0009 nM-1. The goodness of fit is 

R2 = 0.97. Inverting this slope gives an effective affinity of 62 nM. 

2.4.9 Estimate of the Qdot binding constant to kinesin using bulk assay. 

Biotinylated 1 m polystyrene beads (Spherotech) were washed 5 times in PEM-100. 
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Washed beads were mixed with 250 nM streptavidin Qdots and incubated for 1 hour at 

room temperature. Beads were centrifuged 2 minutes at 14,000 xg to remove unbound 

Qdots. Beads were then resuspended in 200 L κ-casein and incubated for 1 hour at 

room temperature. Beads were then centrifuged to remove excess κ-casein. Increasing 

concentrations of non-biotinylated HaloTag kinesin (25 nM to 1 M) were added to 

beads-Qdots and incubated for 1 hour at room temperature. Control samples without 

Qdots were used to determine the amount of kinesin present in the dead-volume 

between the large polystyrene beads. Beads were pelleted at 14,000 xg and the 

supernatant was separated. UV light was used to verify that Qdots had pelleted with 

biotinylated beads (Figure 2.4A). Supernatant and pellet samples were run on an SDS-

PAGE gel. Kinesin-1 was detected using coomassie staining and western blotting using 

an anti-kinesin heavy chain antibody (Millipore, MAB1614). 

2.4.10 Estimate of the Qdot binding constant to kinesin using visual assay. I 

created chambers with microtubules adhered to the surface, as usual in my assays. I 

added 50 nM kinesin without biotin and increasing concentrations of Qdots: (5 nM to 200 

nM). I allowed the kinesin and Qdots to bind to the microtubules as usual. I quantified 

the number of Qdots binding to microtubules in three regions of the chamber by taking a 

single still frame of each region. I divided by the length of the microtubule and averaged 

the number of Qdots per μm. The ratio of bound Qdots to the number of kinesin motors 

per unit length was calculated and plotted as a function of the added number of Qdots. 

Since so few Qdots bound to the microtubules, the free concentration of Qdots is likely 

equivalent to the concentration of added Qdots. The data showed a linear dependence, 

and was fit to a line equation with a single fit parameter. As above for kinesin, the slope 

is equivalent to the stoichiometry divided by the equilibrium dissociation constant. The 

stoichiometry is unknown, but assuming it is one gives a lower bound on the value of KD. 



 

77 

The data was best fit with a slope of 7.6 ± 1.6 x 10-7 nM-1, which corresponds to a KD 

value of 1.3 mM. 
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CHAPTER 3 

KINESIN MOTILITY ON MICROTUBULE BUNDLES 

 
 

I would like to acknowledge Joshua Pringle and Amanda Tan, who purified the MAP65 

used to make antiparallel microtubule bundles in this study. Additionally, I would like to 

thank Professor Patricia Wadsworth and Sai Balchand for their help with getting started 

with the CAD cell culture. 

 

3.1 Introduction 

In addition to obstacles and traffic along the microtubule, motors also face a 

complex architecture of cytoskeletal tracks when traveling in the cell. Rather than 

existing as single filaments, microtubules often exist within a bundle. There is an 

abundant number of microtubule-associated proteins (MAPs) in the cell that function to 

crosslink microtubules, resulting in the formation of these microtubule bundles. The 

spacing between microtubules within these bundles is determined by the size of the 

crosslinking MAP (Chen et al., 1992).  

Due to the inherent structural polarity of microtubules, there are three different 

types of microtubule bundles that can form: 1) parallel bundles where all microtubule 

plus ends point in the same direction, 2) antiparallel bundles where microtubules 

alternate polarity, with microtubule plus ends adjacent to a microtubule minus end, and 

3) randomly oriented microtubules where there is no specific orientation of microtubules 

within the bundle. 

MAPs are essential for the proper organization and maintenance of the 

microtubule cytoskeleton (Hirokawa, 1994). Depending on the region of the cell and the 
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stage of the cell cycle, different microtubule organizations are required. For example, 

parallel microtubules are found in the axon of neurons (Heidemann et al., 1981). This 

enables the polarized transport of new material into the axon by anterograde transport 

and the recycling of material back to the cell body by retrograde transport (Holzbaur, 

2004). Antiparallel bundles are found in the spindle midzone during mitosis and facilitate 

the separation of genetic material during cell division (Loiodice et al., 2005). Randomly 

oriented microtubule bundles are known to exist in dendrites (Baas et al., 1988). These 

bundle types are initiated and maintained by specific, and often multiple, MAPs. 

To date, in vitro studies aimed at understanding kinesin motility have mostly 

examined kinesin motors on single microtubules. How kinesin motors navigate bundled 

microtubules, a microtubule architecture that is prominent throughout the cell, is 

unknown. Here I study kinesin motility on three different types of microtubule bundles: 1) 

tightly packed, randomly oriented microtubule bundles formed by depletion forces 

(Figure 3.1A), 2) spaced, antiparallel microtubule bundles formed by MAP65 (Figure 

3.1B), and 3) parallel microtubule bundles formed from neuronal processes (Figure 

3.1C). I show that MAPs could help to organize microtubule bundles to promote kinesin 

motility in comparison to motility on tightly packed bundles. Interestingly, I also show that 

single kinesin motors often switch microtubule tracks within PEG and MAP65 bundles. 

This switching is observed as reversals in the direction of motility on bundles that contain 

antiparallel microtubules. Such reversals in direction are not observed on parallel 

microtubule bundles, indicating that they are likely due to kinesin switching to an 

oppositely oriented microtubule. 
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Figure 3.1 Microtubule Bundle Types 

Kinesin motility will be studied on three types of microtubule bundles. A. Tightly packed 
bundles will be formed in the presence of PEG, creating microtubule bundles with 
randomly oriented microtubules. B. Bundles with antiparallel microtubules will be formed 
by the presence of MAP65, creating microtubule bundles with a 25 nm spacing between 
filaments. C. Microtubule bundles formed in neuronal-like processes of differentiated 
CAD cells will be comprised of parallel microtubules. 
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3.2 Results 

3.2.1 Kinesin Motility on Single Microtubules in the Presence of PEG 

To study tightly packed, randomly oriented microtubule bundles, I used 

polyethylene glycol (PEG) mw 40,000 to generate depletion forces to bundle 

microtubules (Needleman et al., 2005). Depletion forces arise when large structures (in 

this case, microtubules) are present in solution with small particles (in this case, PEG). 

When two microtubules come in close enough proximity such that the PEG polymer can 

no longer fit in between, the PEG is excluded to the outside of the microtubules, creating 

an osmotic pressure that pushes the two microtubules together. Thus, when 

microtubules were mixed in solution with PEG, I was able to form tightly packed bundles 

of microtubules (Figure 3.4A). These bundles formed with microtubules in random 

orientations and consisted of a combination of parallel and antiparallel oriented 

microtubules (Needleman et al., 2005). 

Before looking at the motility of kinesin molecules on these bundles, I first 

characterized the effect of PEG alone on kinesin binding and motility. I compared kinesin 

binding and motility on single microtubules in the presence of 0% or 5% PEG (mw 

40,000). I first noticed a striking difference in the amount of kinesin bound to 

microtubules in the presence of PEG (Figure 3.2A). I measured the mean intensity of 

GFP-kinesin fluorescence along microtubules and observed an approximately 8-fold 

increase in kinesin binding on microtubules with 5% PEG (Figure 3.2B). This observed 

increase in the mean fluorescence intensity along microtubules in the presence of PEG 

could be due to 1) more individual motors bound along the microtubule or 2) the ability of 

PEG to cause multiple motors to associate together. To determine whether PEG causes 

multiple motor associations, I compared the fluorescence intensity of individual puncta 

on single microtubules in the absence and presence of PEG. A higher intensity of puncta 
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in the presence of PEG would imply that there are multiple motors in each puncta, and 

that PEG induces the formation of multiple-motor aggregates. I found that individual 

puncta on single microtubules in the absence and presence of PEG had similar 

fluorescence intensities (Figure 3.2C), indicating that PEG does not induce the formation 

of multiple-motor associations. Thus, puncta along microtubules in the presence of PEG 

correspond to single motors, and the increase in fluorescence observed along these 

microtubules is due to the association of more individual motors along the length of the 

microtubule. This increase in binding of kinesin motors to microtubules in the presence 

of PEG suggests that PEG increases the affinity of kinesin motors to microtubules. For 

further single molecule studies of kinesin in the presence of PEG, I used a 6-fold dilution 

of kinesin motors compared to what is used on microtubules in the absence of PEG in 

order to better observe single motors. 
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Figure 3.2 Effect of PEG on Kinesin Binding to Microtubules 

A. Representative images show kinesin binding in the presence and absence of PEG 
when identical concentrations of kinesin motors are added. Left image shows 
microtubule and right image shows kinesin molecules bound to the microtubule. Scale 
bar is 1 m. B. Mean intensity along microtubules in the GFP channel was measured to 
estimate the amount of kinesin motors bound to microtubules in the absence and 
presence of PEG. For each condition, 50 microtubules were measured. Error bars 
represent the standard error of the mean. C. Intensity of individual kinesin motors on 
single microtubules in the absence and presence of PEG. For motors in the absence of 
PEG, N = 61; for motors in the presence of PEG, N = 90. Error bars represent the 
standard error of the mean. 
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In addition to differences observed in kinesin binding in the presence of PEG, I 

also observed differences in the motility properties of kinesin motors (Figure 3.3A). I 

observed that the run length of kinesin was enhanced in the presence of PEG (Figure 

3.3B). In the presence of 0% PEG, motors traveled an average of 1.2 m before 

detaching, whereas in the presence of 5% PEG, motors traveled an average of 2.8 m. 

For distributions of measurements, see Appendix A, Figures A.1A and A.2A. Likewise, I 

observed that the association time, or the total time a motor remained bound to the 

microtubule before dissociating, increased from 4.1 sec in the absence of PEG to 11.7 

sec in the presence of 5% PEG (Figures 3.3C, A.1B, A.2B). I did not observe any effect 

of PEG on the velocity of motors. For all velocity measurements in this study, I 

calculated the moving velocity of motors. This measurement takes into account only the 

moving portions of a run, omitting any visible pauses from the measurement. I observed 

that motors moved at approximately 0.35 m/sec both in the absence and presence of 

PEG (Figures 3.3D, A.1C, A.2C). Interestingly, I also observed that the percentage of 

motors that paused during a run was higher in the presence of PEG (Figure 3.3E). 

From these studies, I show that PEG increases the interaction of kinesin motors 

with microtubules. This polymer enables motors to travel farther distances before 

dissociating from the microtubule and also causes increased pausing of motors during 

motility. 
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Figure 3.3 Kinesin Motility on Single Microtubules in the Presence of PEG 

A. Representative kymographs showing kinesin motility on microtubules in the absence 
and presence of PEG. Vertical scale bars are 5 seconds. Horizontal scale bars are 1 m. 
B. Run length measured as the total distance traveled by motors in the absence and 
presence of PEG. Error bars represent the standard error of the mean. C. Association 
time measured as the total time motors remained bound to the microtubule in the 
absence and presence of PEG. Error bars represent the standard error of the mean. D. 
Moving velocity of motors on microtubules in the absence and presence of PEG. Error 
bars represent the standard error of the mean. E. Percentage of motors that pause at 
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least once during a run in the absence and presence of PEG. Error bars represent the 
standard error of proportion. B-E. For data taken in the absence of PEG, N = 105. For 
data taken in the presence of PEG, N = 109.  
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3.2.2 Kinesin Motility on PEG Bundles 

I next studied kinesin motility on microtubule bundles formed in the presence of 

PEG (Figure 3.4A). By comparing the fluorescence intensity of a bundle of labeled 

microtubules to the fluorescence intensity of single labeled microtubules that were 

imaged in the absence of PEG, I determined that there are, on average, 7 microtubules 

per bundle when formed in the presence of 5% PEG.  

On PEG bundles, I observed two types of kinesin motility: 1) kinesin motors 

walked in a single direction along the microtubule bundle (Figure 3.4B, middle 

kymograph) and 2) kinesin motors were able to reverse direction while walking along the 

microtubule bundle, presumably by switching to a neighboring microtubule oriented in 

the opposite direction (Figure 3.4B, left kymograph).  
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Figure 3.4 Kinesin Motility on PEG Bundles 

A. Image of a microtubule bundle formed in the presence of 5% PEG. Image was 
acquired using a 500 ms exposure time. Scale bar is 1 m. B. Left kymograph shows 
examples of kinesin runs on PEG bundles with clear reversals in motor direction. Middle 
kymograph shows examples of kinesin runs on PEG bundles with no reversals in motor 
direction. Right kymograph depicts a reversal event observed on single microtubules in 
the presence of PEG. Vertical scale bars are 5 seconds. Horizontal scale bars are 1 m. 
C. Run length was measured as the total distance traveled on single MTs + PEG and 
PEG Bundles; and as the final distance traveled (∆x) for motors on PEG bundles. Error 
bars represent the standard error of the mean. D. Run lengths of motors that reverse 
direction on PEG bundles were compared to those of motors that do not reverse 
direction on PEG bundles. In addition, the average distance traveled before or after 
reversing direction on PEG bundles was measured (segments). Error bars represent the 
standard error of the mean. E. Association time was measured as the total time motors 
remained bound to single microtubules with PEG and PEG bundles. Error bars represent 
the standard error of the mean. F. Moving velocity of motors on single microtubules with 
PEG and PEG bundles. Error bars represent the standard error of the mean. G. 
Percentage of motors that pause at least once during a run on single microtubules with 
PEG and PEG bundles. Error bars represent the standard error of proportion. H. 
Percentage of motors that reverse directions at least once during a run on single 
microtubules without PEG, single microtubules with PEG, and PEG bundles. Error bars 
represent the standard error of proportion. C-H. For single microtubules with PEG, N = 
109; for PEG bundles, N = 87; for motors that reverse on PEG bundles, N = 30; for 
motors that do not reverse on PEG bundles, N = 57. 
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I compared the motility properties of kinesin motors walking on single 

microtubules in the presence of PEG to those of kinesin motors walking on PEG 

bundles. To compare the run length of motors on single microtubules versus microtubule 

bundles, I first measured the total run length, or total distance traveled, of all motors 

(Figures 3.4C, A.3A, A.4A). For motors that move in a single direction, this was the total 

distance traveled between when the motor landed on the microtubule and when the 

motor dissociated from the microtubule; for motors that reverse directions during a run, 

this was the absolute sum of all forward and reverse segments of the run. I found that 

there was no statistically significant difference in the average total run length of motors 

on PEG bundles compared to motors on single microtubules in the presence of PEG (p 

> 0.05). I also measured the run length as the final distance traveled, or ∆x, for motors 

on PEG bundles. For motors that move in a single direction, this would be the same 

distance as calculated previously; for motors that reverse directions, this was calculated 

as the distance between where the motor landed on the microtubule and where the 

motor finally dissociated from the microtubule (Figure 3.4C).  

Next, I looked at run lengths of motors that reverse directions on PEG bundles 

separately from those motors that travel only in one direction. I observed that motors that 

reverse directions have longer total run lengths (absolute sum of all segments) 

compared to motors that do not reverse directions during a run. I found that the total run 

length of motors that reverse direction was comparable to that of motors on single 

microtubules in the presence of PEG (Figures 3.4D, A.3B, A.4B). However, of motors 

that reverse direction on PEG bundles, the average distance traveled before or after a 

reverse in direction (individual segments of a run) was much shorter, and more 

comparable to the run lengths of motors traveling on PEG bundles that do not reverse 

direction (Figure 3.4D). 
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The total association time was measured as the total time a motor remained 

bound to the microtubule for motors on PEG bundles and for motors on single 

microtubules in the presence of PEG. I found that the total association time of motors on 

PEG bundles was longer than that of motors on single microtubules in the presence of 

PEG (Figures 3.4E, A.3C, A.4C). On single microtubules in the presence of PEG, motors 

remained bound for an average of 11.7 sec, whereas on PEG bundles, motors remained 

bound for an average of 24.9 sec. I also observed that motors traveling on PEG bundles 

moved slower compared to motors on single microtubules in the presence of PEG. 

Motor velocity dropped from 0.35 m/sec on single microtubules with PEG to 0.21 

m/sec on PEG bundles (Figures 3.4F, A.3D, A.4D). The velocity of motors that reverse 

direction on PEG bundles was calculated by averaging the velocities of individual 

segments of these runs. When the percentage of motors that pause during a run on 

single microtubules with PEG was compared to that on PEG bundles, I observed that 

more motors paused while traveling on PEG bundles (Figure 3.4G).  

As stated previously, I observed kinesin motors to reverse directions while 

walking on PEG bundles. I quantified the percentage of motors that reverse during a run 

and found that 34% of motors walking on PEG bundles reversed direction (Figure 3.4H). 

I did observe a small percentage of motors, 8%, that reversed direction on single 

microtubules in the presence of PEG (Figures 3.4B and 3.4H). I believe this small 

number could be due to the presence of a second, nearby microtubule that did not 

create an obvious increase in fluorescence to indicate an overlapping microtubule; or 

rather a second microtubule landed during imaging and was not present when the initial 

microtubule image was captured. Another possible explanation is that PEG increases 

the diffusive state of kinesin, creating motility that appears like reversals. This could 

occur if kinesin lands on the microtubule in an orientation such that the microtubule 
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binding domain is not oriented close to the microtubule. Positive residues in other 

regions of the motor could induce diffusion of the motor through these charged regions. 

In my typical assays, I would expect the motor to diffuse away from the microtubule if it 

did not form interactions with its microtubule binding domain. However, the presence of 

PEG in these experiments could keep the motor in close proximity through depletion 

forces, allowing it to diffuse along the microtubule instead of away from the filament. It 

should be noted that I did not see any reversals in direction when looking at kinesin 

motility on single microtubules in the absence of PEG (Figure 3.4H).  

Here I show that kinesin motility is reduced on the tightly packed, randomly 

oriented microtubule bundles created in the presence of PEG. Compared to motility on 

single microtubules in the presence of the same concentration of PEG used to make 

these bundles, I see that kinesin velocity is reduced, and processivity of motors that do 

not reverse is also reduced on PEG bundles. In addition, I see that more motors pause 

when traveling on PEG bundles compared to single microtubules in the presence of 

PEG. 

3.2.3 Kinesin Motility on Single Microtubules in the Presence of MAP65 

In the cell, microtubule bundles are formed by the presence of microtubule-

associated proteins (MAPs) that crosslink microtubules. Bundles formed by MAPs differ 

from the PEG bundles studied previously in that these bundles are spaced apart due to 

the presence of the crosslinking MAP. Here I study kinesin motility on antiparallel 

bundles formed in the presence of MAP65. This protein is a member of the MAP65 

family, which consists of MAP65, Ase1, and PRC1, homologs in plant, yeast, and 

human, respectively (Loiodice et al., 2005). MAP65 homodimerizes (Li et al., 2007a) to 

selectively crosslink anti-parallel microtubules (Gaillard et al., 2008; Loiodice et al., 2005; 
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Subramanian et al., 2010). Negative-stain electron microscopy of microtubules 

incubated with MAP65 show that microtubules are crosslinked with a 25 nm spacing 

between filaments (Chan et al., 1999).  

I first investigated the effect of MAP65 alone on kinesin motility. Kinesin motility 

on single microtubules with 110 nM MAP65 was compared to motility on single 

microtubules with 0 nM MAP65 present (Figure 3.5A). I observed a reduction in run 

length of kinesin motors walking on single microtubules in the presence of 110 nM 

MAP65 (Figures 3.5B, A.5A, A.6A). Kinesin motors traveled an average of 1.4 m on 

microtubules with 0 nM MAP65 added, whereas in the presence of 110 nM MAP65, this 

run length dropped to 0.81 m. No difference was observed when the association time of 

motors on microtubules with and without MAP65 was compared (Figures 3.5C, A.5B, 

A.6B). I also observed that MAP65 causes a reduction in velocity of kinesin motors 

(Figures 3.5D, A.5C, A.6C). On microtubules with 0 nM MAP65 present, motors moved 

at an average velocity of 0.38 m/sec, whereas in the presence of 110 nM MAP65, this 

velocity dropped to 0.28 m/sec. In addition, I observed a slight increase in the 

percentage of motors that pause during a run in the presence of MAP65 (Figure 3.5E). 

Without MAP65 present, I observed that 32% of motors pause. This percentage 

increased to 41% in the presence of MAP65. 

From these studies, I show that MAP65 affects kinesin motility on single 

microtubules by causing a reduction in processivity and motor velocity, as well as an 

increase in pausing.  
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Figure 3.5 Kinesin Motility on Single Microtubules in the Presence of MAP65 

A. Representative kymographs showing kinesin motility on microtubules in the absence 
and presence of MAP65. Vertical scale bars are 5 seconds. Horizontal scale bars are 1 
m. B. Run length measured as the total distance traveled by motors in the absence and 
presence of MAP65. Error bars represent the standard error of the mean. C. Association 
time measured as the total time motors remained bound to microtubules in the absence 
and presence of MAP65. Error bars represent the standard error of the mean. D. Moving 
velocity of motors on microtubules in the absence and presence of MAP65. Error bars 



 

95 

represent the standard error of the mean. E. Percentage of motors that pause at least 
once during a run in the absence and presence of MAP65. Error bars represent the 
standard error of proportion. B-E. For data taken in the absence of MAP65, N = 104. For 
data taken in the presence of MAP65, N = 91.  
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3.2.4 Kinesin Motility on MAP65 Bundles 

I next studied motility of kinesin on anti-parallel microtubule bundles formed by 

MAP65 (Figure 3.6A). As was described for PEG bundles, I calculated the number of 

microtubules in MAP65 bundles by comparing the fluorescence intensity to that of single 

microtubules. I found that, on average, there were 16 microtubules in bundles formed by 

MAP65. 

Similar to PEG bundles, I observed that kinesin motors were able to reverse 

direction while traveling on MAP65 bundles (Figure 3.6B, left and middle kymographs). I 

also observed motors that walk only in a single direction on these bundles (Figure 3.6B, 

right kymograph).  

I compared the run lengths of motors on single microtubules in the presence of 

MAP65 to those of motors on MAP65 bundles. Run lengths were calculated as 

described for kinesin motors on PEG bundles. I first measured the total distance traveled 

by motors (Figures 3.6C, A.7A, A.8A) and found that motors on MAP65 bundles traveled 

greater distances compared to motors on single microtubules in the presence of MAP65 

(p < 0.05). When I measured the final distance, or ∆x, traveled by all motors on MAP65 

bundles (Figure 3.6C), I observed that there was no statistically significant difference 

compared to the total distance traveled by motors on these bundles (p > 0.05) or 

compared to the run lengths of motors on single microtubules in the presence of MAP65 

(p > 0.05).  
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Figure 3.6 Kinesin Motility on MAP65 Bundles 

A. Image of a microtubule bundle formed in the presence of MAP65. Image was 
acquired using a 200 ms exposure time. Scale bar is 1 m. B. Representative 
kymographs showing kinesin motility on MAP65 bundles. Left and middle kymograph 
show examples of kinesin reversals on MAP65 bundles. Right kymograph shows 
examples of kinesin that travel in a single direction on MAP65 bundles. Vertical scale 
bars are 5 seconds. Horizontal scale bars are 1 m. C. Run length was measured as the 
total distance traveled on single MTs + MAP65 and MAP65 bundles; and as the final 
distance traveled (∆x) for motors on MAP65 bundles. Error bars represent the standard 
error of the mean. D. Run lengths of motors that reverse direction on MAP65 bundles 
were compared to those of motors that do not reverse direction on MAP65 bundles. In 
addition, the average distance traveled before or after reversing direction on MAP65 
bundles was measured (segments). Error bars represent the standard error of the mean. 
E. Association time was measured as the total time motors remained bound to single 
microtubules with MAP65 and MAP65 bundles. Error bars represent the standard error 
of the mean. F. Moving velocity of motors on single microtubules with MAP65 and 
MAP65 bundles. Error bars represent the standard error of the mean. G. Percentage of 
motors that pause at least once during a run on single microtubules with MAP65 and 
MAP65 bundles. Error bars represent the standard error of proportion. H. Percentage of 
motors that reverse directions at least once during a run on single microtubules without 
MAP65, single microtubules with MAP65, MAP65 bundles, and MAP65 bundles with 
PEG. Error bars represent the standard error of proportion. C-H. For single microtubules 
with MAP65, N = 91; for MAP65 bundles, N = 98, for motors that reverse on MAP65 
bundles, N = 23; for motors that do not reverse on MAP65 bundles,  N = 75. 
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Next I measured separately the total run lengths of kinesin motors that reversed 

direction on MAP65 bundles versus motors that walked only in one direction along 

MAP65 bundles. I found that the total run length of motors that reversed direction on 

MAP65 bundles was greater than both the run lengths of motors that did not reverse 

direction on MAP65 bundles, as well as motors traveling on single microtubules in the 

presence of MAP65 (Figures 3.6D, A.7B, A.8B). I found that the run lengths of motors 

that did not reverse direction on MAP65 bundles were comparable to run lengths of 

kinesin motors on single microtubules in the presence of MAP65 (Figures 3.6D, A.7B, 

A.8B). For motors that reverse direction on MAP65 bundles, I measured the average 

distance traveled before or after a reverse in direction (individual segments of a run). I 

found that the average length of these segments was comparable to both motors on 

MAP65 bundles that do not reverse and to motors on single microtubules in the 

presence of MAP65 (Figures 3.6D, A.7B, A.8B). 

I measured the total association time of motors on single microtubules in the 

presence of MAP65 and on MAP65 bundles (Figures 3.6E, A.7C, A.8C) and observed 

longer association times for motors on MAP65 bundles (p < 0.05). On single 

microtubules in the presence of MAP65, I see that motors remain bound for 5.2 sec, 

whereas on MAP65 bundles, this association time is increased to 8.4 sec.  I did not 

observe a change in motor velocity on MAP65 bundles compared to single microtubules 

in the presence of MAP65 (Figures 3.6F, A.7D, A.8D). Motors on both single 

microtubules with MAP65 and MAP65 bundles traveled at approximately 0.28 m/sec. I 

observed that the percentage of motors that pause is higher for motors on MAP65 

bundles compared to single microtubules in the presence of MAP65. I observed that 

41% of motors on single microtubules in the presence of MAP65 paused, whereas 60% 

of motors on MAP65 bundles were observed to pause. 
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As shown in the left and middle kymographs of Figure 3.6B, I observed that 

kinesin motors were able to reverse direction during a run on MAP65 bundles. I 

observed that 23% of motors on MAP65 bundles reversed direction, compared to 1% of 

motors on single microtubules in the presence of MAP65 (Figure 3.6H). As discussed for 

single microtubules in the presence of PEG, I do not believe that these reversals in 

motion on single microtubules are true reversals of motors. I suspect that there is 

another microtubule nearby that was not present in the initial microtubule image. I did 

not see any motors reverse on single microtubules in the absence of MAP65 (Figure 

3.6H). As introduced earlier, MAP65 bundles have a 25 nm spacing in between 

filaments, whereas PEG bundles consist of tightly packed filaments. I added 5% PEG to 

pre-formed MAP65 bundles that were already bound the chamber surface with anti-

tubulin antibodies. I saw that the percentage of motors that reverse on these microtubule 

bundles was increased compared to MAP65 bundles alone, as I observed 38% of 

motors to reverse when PEG was added. 

Unlike in the case of PEG bundles, where I observed kinesin motility to be 

disrupted on these tightly packed bundles, I do not see that kinesin motility is disrupted 

on MAP65 bundles in comparison to single microtubules with the same concentration of 

MAP65 present. I see no effect of the formation of bundles on kinesin motor velocity. I 

see that for motors that reverse direction, kinesin processivity is actually increased on 

MAP65 bundles compared to single microtubules with MAP65 present, while motors that 

do not reverse exhibit no difference in processivity compared to single microtubules with 

MAP65. 
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3.2.5 Kinesin Motility on Cellular Bundles 

Finally, I studied kinesin motility on parallel microtubule bundles derived from 

neuronal-like cells. For these experiments, I used CAD cells, a mouse central nervous 

system catecholaminergic cell line (Qi et al., 1997). Upon serum starvation, these cells 

differentiate to form neuronal processes (Figure 3.7A). These processes have been 

shown by EM to contain parallel arrays of microtubules and neurofilaments (Qi et al., 

1997). Studies have shown that many of the major MAPs typically found in axons are 

missing in differentiated CAD cells. However, MAP1b and LIS1 are thought to be present 

in these processes (Bisig et al., 2009; Li et al., 2006). In addition, both acetylated and 

tyrosinated tubulin have been detected in the neuronal processes of these differentiated 

cells (Bisig et al., 2009; Li et al., 2006).  

To study kinesin motility on these cellular bundles, I modified an existing protocol 

used to expose and stabilize the actin cytoskeleton of keratocytes (Sivaramakrishnan 

and Spudich, 2009). I treated differentiated CAD cells with detergent and Taxol to 

simultaneously expose and stabilize the microtubule cytoskeleton. Using BODIPY-Taxol, 

I showed that microtubule filaments are preserved after this procedure (Figure 3.7B). I 

was then able to add purified kinesin motors to this exposed microtubule network to 

study motility on axonal-like processes. 
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Figure 3.7 CAD Cells as a Model to Study Parallel Microtubule Bundles 

A. Differentiated CAD cells imaged with transmitted light. Scale bar is 3 m. B. 
Differentiated CAD cell following exposure of microtubule cytoskeleton. BODIPY-taxol 
was added to cytoskeleton to verify the presence of microtubules after treatment. Scale 
bar is 3 m. 
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I compared kinesin motility on CAD cell bundles to motility on single microtubules 

polymerized in vitro (Figure 3.8A). Unlike the PEG and MAP65 bundles studied, I did not 

observe any motors that reversed direction while walking on these cellular bundles. I 

measured run lengths of kinesin motors on CAD cell bundles and single microtubules 

polymerized in vitro (Figures 3.8B, A.9A, A.10A) and found that there was no statistically 

significant difference in run lengths between these two types of tracks (p > 0.05). I also 

found that there was no significant difference between motor association times (Figures 

3.8C, A.9B, A.10B) on CAD cell bundles versus single microtubules polymerized in vitro 

(p > 0.05). I did observe a statistically significant decrease in velocity of motors on CAD 

cell bundles compared to motors on single microtubules polymerized in vitro (p < 0.05). 

On single microtubules polymerized in vitro, motors moved at 0.44 m/sec, whereas on 

CAD cell bundles, this velocity was decreased to 0.35 m/sec (Figures 3.8D, A.9C, 

A.10C). This decrease in velocity observed for motors on CAD cell bundles could be due 

to the presence of endogenous MAPs along these microtubules. In addition, I did not 

observe a difference in the percentage of motors that paused on single microtubules 

polymerized in vitro versus on CAD cell bundles (Figure 3.8E).  
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Figure 3.8 Kinesin Motility on Cellular Bundles 

A. Representative kymographs showing kinesin motility on single microtubules 
polymerized in vitro and on microtubule bundles derived from CAD cells. Vertical scale 
bars are 2.5 seconds. Horizontal scale bars are 0.5 m. B. Run length measured as the 
total distance traveled by motors on single microtubules polymerized in vitro and on 
microtubule bundles derived from CAD cells. Error bars represent the standard error of 
the mean. C. Association time measured as the total time motors remained bound to 
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microtubules on single microtubules polymerized in vitro and on microtubule bundles 
derived from CAD cells. Error bars represent the standard error of the mean. D. Moving 
velocity of motors on single microtubules polymerized in vitro and on microtubule 
bundles derived from CAD cells. Error bars represent the standard error of the mean. E. 
Percentage of motors that pause at least once during a run on single microtubules 
polymerized in vitro and on microtubule bundles derived from CAD cells. Error bars 
represent the standard error of proportion. B-E. For data taken on single microtubules 
polymerized in vitro, N = 160. For data taken on microtubule bundles derived from CAD 
cells, N = 122.  
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3.3 Discussion 

I have examined the motility properties of kinesin-1 on microtubule bundles. 

Here, I have studied three different types of bundles: 1) tightly spaced, randomly 

oriented bundles formed in the presence of PEG, 2) antiparallel bundles with a 25 nm 

spacing between microtubules, and 3) parallel bundles derived from axonal-like 

processes. 

To create tightly spaced, randomly oriented microtubule bundles, I chose to use 

polyethylene glycol (PEG). While there are other crowders that could be used to induce 

bundle formation through depletion forces, I chose PEG due to the fact that it is an inert 

polymer. Other polymers, such as methylcellulose, are highly charged and could disrupt 

the interactions of kinesin motors with microtubules. Thus, PEG allows me to create 

depletion forces to form microtubule bundles without disturbing electrostatic interactions 

within the system. 

PEG acts as a molecular crowder, and can thus create an environment that 

resembles that of the cytoplasm, which is crowded with high concentrations of protein. 

The high concentration of protein in the cytoplasm generates an osmotic pressure within 

the cell, which has been estimated to be approximately 0.22 atm (Lodish et al., 2000). I 

calculated the osmotic pressure produced by the presence of PEG in my assays to be 

0.03 atm. This pressure created by 5% PEG is lower than that which is estimated in vivo. 

However, it is still interesting to consider the fact that the PEG in these assays generates 

an osmotic pressure within the system, a pressure that is absent in most in vitro assays. 

Future studies using different sized PEG polymers to create osmotic pressures that 

more closely resemble that which is present in the cytoplasm could provide further 

insights on the effect of intracellular pressure on motor transport. 
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I showed that PEG, in addition to initiating microtubule bundle formation, also 

affects the motility of kinesin motors on single microtubules. I observed an increased 

interaction of kinesin motors with microtubules in the presence of PEG. This was evident 

by both an 8-fold increase in kinesin binding along microtubules and an approximately 2-

fold increase in the run length of kinesin motors on single microtubules in the presence 

of PEG. The observed increase in interaction between kinesin and microtubules could 

be due to PEG induced depletion forces that act to keep kinesin motors in close contact 

with the microtubules. The increase in run length of motors on single microtubules in the 

presence of PEG could indicate that motors are more processive in the presence of 

PEG. Alternatively, it is possible that these motors dissociate after a typical run length of 

approximately 1m, but are kept in close range of the microtubule because of depletion 

forces, which allows them to immediately rebind the microtubule and continue walking. 

Because I used a 500 ms exposure time for these studies, it is possible that an event 

where kinesin unbinds and quickly rebinds would be viewed as continued processive 

motion in this time frame.  

I also observed an approximate 2-fold increase in the percentage of kinesin 

motors that pause on single microtubules in the presence of PEG. One explanation for 

this increase is that because the run lengths of motors double on microtubules with 

PEG, the probability that a motor will pause during its run could double as well, since it is 

walking for twice as long. A second explanation is that the additional pausing observed 

is due to obstacles along the lattice that would normally cause a motor to dissociate. In 

the presence of PEG, it is likely that motors would be able to remain bound to the 

microtubule upon encountering such obstacles, allowing it to wait for this obstacle to 

move. Such events would be observed as a pause in a kinesin run. A third explanation 

for this increase in pausing is that the PEG could induce a physical change to the 
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microtubule lattice that increases the propensity of kinesin to pause while traversing 

these tracks. 

Like PEG, I also observed that MAP65 alone affects kinesin motility on single 

microtubules. However, rather than enhancing motility, MAP65 reduced kinesin motility 

on single microtubules. I showed that the run length and velocity of kinesin motors were 

reduced on single microtubules with MAP65. I also observed a slight increase in the 

percentage of motors that pause in the presence of MAP65. This negative effect on 

kinesin motility suggests that the binding of MAP65 along the microtubule disrupts 

kinesin motility. MAP65 could disrupt the motility of kinesin by either specifically binding 

to and blocking the microtubule binding site of kinesin or by sterically blocking kinesin 

motility due to its size and position along the microtubule. Because kinesin and MAP65 

have different binding sites along the microtubule, as kinesin binds predominantly to β-

tubulin (Song and Mandelkow, 1993) while MAP65 binds to α-tubulin (Li et al., 2007b), I 

believe that MAP65 disrupts kinesin motility through a steric mechanism, rather than 

acting as a roadblock. I can compare my results with MAP65 to a known roadblock for 

kinesin, tau. In the presence of tau, kinesin run lengths are reduced by about 50%, 

however the velocity of motors is unaffected (Dixit et al., 2008). Thus, in the presence of 

a roadblock, kinesin motors are expected to show a reduced run length, but no change 

in velocity, resulting in a reduced association time of motors. In the presence of MAP65, 

I observed a reduction in run length, but also saw a reduction in velocity. These results 

are different than what is observed with tau, which acts as a physical roadblock for 

kinesin, and therefore suggests that MAP65 inhibits kinesin through a mechanism other 

than acting as a roadblock. This, together with the fact that MAP65 does not compete 

with kinesin-1 for a binding site on the microtubule (Li et al., 2007b; Song and 
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Mandelkow, 1993) supports the idea that MAP65 inhibits kinesin motility through a steric 

mechanism. 

When I observed kinesin motility on PEG bundles, I saw that motility was 

reduced on these tracks compared to single microtubules in the presence of PEG. This 

was shown by a reduction in run length for motors that did not reverse direction, a 

reduction in velocity, and an increase in the percentage of motors that pause on PEG 

bundles. While I did not observe a statistically significant reduction in run length when 

the total run length was calculated for all motors on PEG bundles, I observed a 

pronounced difference when the total run lengths of motors that reverse direction were 

calculated separately from those of motors that do not reverse. The total run lengths of 

motors that reverse direction on PEG bundles were similar to the run lengths of motors 

on single microtubules in the presence of PEG. However, the run lengths of motors that 

did not reverse direction were about half the length of motors on single microtubules in 

the presence of PEG. I observed a similar reduction when I calculated individual 

segment lengths of motors that reverse direction on PEG bundles. I also observed an 

increase in the percentage of motors that pause on PEG bundles, as well as a reduction 

in velocity of these motors, compared to motors on single microtubules with PEG. I 

believe that the decrease in velocity observed could be due to an increase in the number 

of short pauses of motors. While I calculated the velocity as the moving velocity so that 

pauses were excluded, short pauses could exist that are shorter than a single 500 ms 

time frame. These would not be distinguishable from motion and would therefore be 

included in the average moving velocity of motors. 

The fact that kinesin motility is reduced on PEG bundles compared to motility on 

single microtubules with PEG suggests that the architecture of PEG bundles creates 

obstacles for kinesin motors that disrupt motor motility. Two possibilities for how the 
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bundle architecture could disrupt motility are depicted in Figure 3.9A. One possibility is 

that staggered overlapping microtubules create roadblocks for kinesin motors (Figure 

3.9A, black arrowhead, a). A second possibility is that pockets are created within the 

bundle between overlapping segments of microtubules (Figure 3.9A, blue arrowheads, 

b). Motors could walk within these pockets, but the contact point where the two 

microtubules merge will act as an obstacle. I show that motors that are able to switch 

microtubule tracks (as indicated by a reversal) are able to overcome the reduction in 

processivity observed for motors that do not reverse. I presume that these motors are 

able to switch to a neighboring microtubule upon encountering an obstacle, enabling 

them to circumvent obstacles formed by the bundle architecture.  
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Figure 3.9 Kinesin Motility on PEG versus MAP65 Microtubule Bundles 

A. Schematic showing potential architecture of tightly packed PEG bundles. 
Microtubules are shown as red filaments, kinesin motors are shown in green. Black 
arrow points to a motor that could encounter a staggered, overlapping microtubule as an 
obstacle. Blue arrows point to motors that are walking in a pocket within the microtubule 
bundle. B. Schematic showing potential architecture of microtubule bundles formed in 
the presence of MAP65. Here, microtubules are spaced apart by 25 nm due to the 
presence of MAP65. 
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The ability of overlapping microtubules to pose as obstacles for kinesin motors is 

supported by previous work that has shown that kinesin motors have a high propensity 

for dissociating at perpendicular microtubule intersections when traveling on the 

‘underpass’ microtubule (Ross et al., 2008). Such intersections are obstacles that are 

similar to what could be encountered by kinesin motors traveling on PEG bundles, in that 

there is a microtubule filament blocking the path. Interestingly, in these microtubule 

intersection studies, a small percentage of motors on ‘underpass’ microtubules were 

able to switch microtubule tracks and walk along the perpendicular microtubule (Ross et 

al., 2008). Such events could be similar to the reversal events observed in my studies 

here, where kinesin motors switch to an oppositely oriented microtubule. 

Unlike in the case of PEG bundles, I did not observe MAP65 bundle architecture 

to negatively affect kinesin motility. I saw an increase in the total run length of motors on 

MAP65 bundles, which I found to be attributed to the subset of motors that are able to 

switch microtubules within the bundle. When I measured the run lengths of motors that 

reverse direction separately from those motors that do not reverse direction, I found that 

motors that reverse direction had much longer run lengths compared to motors on single 

microtubules in the presence of MAP65, whereas motors that do not reverse direction 

had run lengths comparable to those of motors on single microtubules in the presence of 

MAP65. In addition, I measured the length of individual run segments of motors that 

reverse direction and found that the average length before or after reversing direction 

was similar to the run length of motors on single microtubules in the presence of MAP65. 

Thus, I see that motors are able to travel the same distance on MAP65 bundles as 

motors on single microtubules in the presence of MAP65, with the exception of motors 

that are able to switch microtubule tracks, which I show to be more processive. This gain 

in processivity of motors that switch tracks over motors on single microtubules with 
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MAP65 suggests that motors on MAP65 bundles could be able to circumvent the 

obstacles (MAP65 molecules) that were shown to reduce the run length of kinesin 

motors on single microtubules. 

While kinesin velocity was reduced on PEG bundles, I saw that kinesin velocity 

was unaffected by the architecture of MAP65 bundles. I did, as with PEG bundles, see a 

similar increase in the percentage of motors that pause on MAP65 bundles. 

Taken together, these results suggest that the overall motility of kinesin is 

unaffected by the architecture of MAP65 bundles, which is in contrast to what was 

observed for kinesin motility on PEG bundles. One explanation for this difference is that 

the spacing between microtubules in MAP65 bundles creates a more organized bundle 

architecture that does not affect kinesin motility. As depicted in Figure 3.9B, 

microtubules themselves no longer pose as roadblocks as could occur in PEG bundles. 

While the MAP65 molecules crosslinking the microtubules in these locations could act as 

obstacles, they do not block motility on all protofilaments of that face of the microtubule, 

as tightly packed microtubules could in PEG bundles. Therefore, if a kinesin motor is 

walking along a protofilament that is not obstructed by MAP65, it could pass between 

these microtubules. This idea is further supported by the fact that a reduction in 

processivity was not observed for motors on CAD cell bundles, which are presumably 

also spaced apart by MAPs. It is also possible that I did not observe reduced 

processivity on MAP65 bundles because the run lengths were already shortened due to 

the presence of MAP65. These reduced run lengths were shorter than the reduced run 

lengths of kinesin motors on PEG bundles. Thus, on MAP65 bundles, it could be that 

kinesin motors never reached the length scale needed to observe a reduction in 

processivity that is caused by the bundle architecture. 
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On bundles formed from both PEG and MAP65, I observed some kinesin motors 

to reverse directions during a run. I believe these reversals occur when a kinesin motor 

switches tracks to a neighboring microtubule oriented in the opposite direction. This is 

supported by the fact that I did not observe any kinesin motors to reverse on parallel 

microtubule bundles derived from neuronal processes of CAD cells, where all 

microtubules are oriented in the same direction.  

How kinesin motors switch to adjacent microtubule tracks is unclear. I speculate 

that this could occur in one of two ways. First, motors could unbind, diffuse, and rebind 

to a neighboring microtubule within the 500 ms exposure time. If the motor landed on an 

adjacent microtubule oriented in the opposite direction within 250 nm of where the motor 

dissociated, this event would appear as a reversal in motility. Motors traveling within the 

bundle could be confined after dissociation from their original track. Rather than diffusing 

away from the microtubule, as is often observed in assays with single microtubules, 

diffusion of these motors is more likely to be restricted to short distances, increasing the 

probability that they will find a new binding site in close proximity on an adjacent 

microtubule. Future work with brighter fluorophores, such as quantum dots, that would 

allow for imaging with higher temporal and spatial resolution could allow for the 

visualization of such diffusion events. 

Depending on the position of microtubules within the bundle, a second 

mechanism by which kinesin motors could switch microtubule tracks during a run is if 

these motors actually step from one microtubule onto a neighboring microtubule track. 

While it is generally thought that kinesin-1 is very strict in its stepping pattern, only 

walking along a single protofilament with 8 nm steps, several studies have demonstrated 

that there is an approximately 15-20% probability that kinesin-1 will side-step onto an 

adjacent protofilament (Schaap et al., 2011; Yildiz et al., 2008). These side-steps were 
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observed with high resolution studies using quantum dots and atomic force microscopy 

(Schaap et al., 2011; Yildiz et al., 2008). Thus, it can be conceived that if a microtubule 

within a bundle is located in close enough proximity to the protofilament path on which a 

kinesin motor is traversing, that it could step onto this neighboring microtubule. In my 

studies, I observe motors to switch onto oppositely oriented microtubules. If motors were 

to step onto an oppositely oriented microtubule, they would have to reorient their motor 

domains such that they would be correctly directed to walk towards the plus end of the 

new microtubule track. Previous work has demonstrated that the kinesin-1 neck linker is 

a flexible polypeptide that can swivel during motility (Gutierrez-Medina et al., 2009; Hunt 

and Howard, 1993). Single kinesin motors propelling a microtubule in a filament gliding 

assay have been shown to be able to rotate the microtubule 360o, an action which has 

been attributed to the flexibility of the kinesin neck linker. This ability of the kinesin neck 

linker to swivel during motility could allow a kinesin motor to reorient its motor domain 

upon side stepping onto an adjacent, oppositely oriented microtubule within a bundle. 

While this mechanism of switching to adjacent microtubules is unlikely in the case of 

MAP65 bundles, where microtubules are spaced apart by 25 nm, it is a mechanism that 

could explain track switching in tightly packed, PEG bundles. 

I observed that a larger percentage of motors switch directions on PEG bundles 

compared to MAP65 bundles (34% versus 23%, respectively). This suggests that the 

tight spacing between microtubules in PEG bundles enables motors to more easily 

switch microtubule tracks, possibly by enabling motors to switch by side-stepping onto 

adjacent microtubules. It is likely that motors on MAP65 bundles are restricted to 

diffusion-based track switching whereas motors on PEG bundles could switch tracks by 

side-stepping or diffusion. While I saw only a 10% increase in the percentage of motors 

that switch tracks on PEG bundles compared to on MAP65 bundles, this percentage is 
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not entirely representative of the number of motors that switch tracks, and is likely 

depressed compared to the true percentage. In MAP65 bundles, all microtubules are 

oriented antiparallel to each other. This means that any kinesin motor that switches to an 

adjacent microtubule track will be detected, as it will always result in a reversal in kinesin 

motion. In the case of PEG bundles, microtubules are oriented randomly, with some 

adjacent microtubules aligned parallel, and others aligned antiparallel. Motors that switch 

to a parallel microtubule track will not be detected, as I do not have high enough 

resolution to identify these events. Thus, the reported percentage for motors that switch 

microtubule tracks on PEG bundles is most likely even higher than what I have 

measured here. I further show that tighter spacing between microtubules within a bundle 

increases the probability of motors switching microtubule tracks by adding PEG to pre-

formed MAP65 bundles. This addition of PEG increases the percentage of motors that 

reverse direction from 23% on MAP65 only bundles to 38% on MAP65 bundles with 

PEG. 

The studies presented here shed light on the mechanisms by which kinesin 

motors move on complex microtubule cytoskeletons, specifically microtubule bundles. 

These bundles are found in many areas of the cell. In neurons, for example, parallel 

microtubule bundles populate axonal processes while randomly oriented microtubule 

bundles are found in dendrites. All cell types generate antiparallel microtubule bundles 

during cell division at the spindle midzone. Transport of cargos by molecular motors 

along these microtubule bundle architectures is imperative for cell function. 

Here I demonstrate how kinesin motors navigate these complex microtubule 

networks. I show that MAPs are important for not only generating microtubule bundles in 

cells, but for maintaining spacing between microtubules within a bundle. I show that this 

spacing between microtubules could prevent overlapping, staggered microtubules from 
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posing as obstacles for kinesin motors. In addition, I show that the bundled architecture 

of microtubules could help to promote motility by allowing motors to switch microtubule 

filament tracks during transport to circumvent obstacles. The importance of such a 

mechanism is emphasized by the fact that cargos have been observed to switch 

microtubule tracks in vivo. In Ustilago maydis fungal cells, an antiparallel array of 

bundled microtubules populates the center of the cell. Here, cargos carried by kinesin-3 

are observed to exhibit bidirectional motion in the absence of dynein motors (Schuster et 

al., 2011). This suggests that these cargos are able to readily switch microtubule tracks 

within this antiparallel bundle. From the studies presented here, I propose that 

microtubule bundles formed by MAPs are imperative for the long distance transport of 

cargos, as they function to organize microtubule filaments within the bundle and provide 

adjacent tracks that motors can easily switch between to potentially avoid obstacles 

along their path. 

 

3.4 Methods 

 
3.4.1 Protein Purification. A human kinesin-1 construct truncated at amino acid 560 

fused to a C-terminal GFP tag and a 6x His Tag was expressed using a pET17b 

expression vector. Expression with IPTG and affinity purification with Nickel beads 

(Qiagen) were carried out as described previously (Pierce and Vale, 1998). A MAP65 

construct fused to an N-terminal 6x His Tag was expressed using a pET28a expression 

vector. This MAP65 construct was provided by the Dixit Lab. Expression with IPTG and 

purification with Nickel beads (Qiagen) were carried out as described previously (Tulin et 

al., 2012). GFP-kinesin and MAP65 protein concentrations were quantified by 

comparison to known BSA standards on a Coomassie-stained SDS-PAGE gel. 
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3.4.2 Microtubule Polymerization. Labeled microtubules were prepared using a 1:4 

ratio of labeled:unlabeled tubulin. Unlabeled tubulin was purified from porcine brain as 

described previously (Peloquin et al., 2005). Tubulin was labeled using DyLight 649 or 

DyLight 550 dyes as described previously (Hyman et al., 1991). To prepare 

microtubules, both unlabeled and labeled tubulin were brought to 5 mg/mL in PEM-100 

(100 mM K-Pipes, pH 6.8, 2 mM MgSO4, 2 mM EGTA). Tubulin was centrifuged at 4oC 

for 10 minutes at 366,000 xg to remove tubulin aggregates. The remaining tubulin in the 

supernatant was mixed with 1 mM GTP and polymerized at 37oC for 20 minutes. 50 M 

Taxol was added to stabilize polymerized microtubules, followed by another 20 minute 

incubation at 37oC. Polymerized microtubules were centrifuged at 25oC for 10 minutes at 

14,000 x g to separate unincorporated tubulin. The microtubule pellet was resuspended 

in 50 L PEM-100 with 40 M Taxol. 

3.4.3 Motility on Single Microtubules. Assays were carried out in 10 L flow chambers 

made of a glass slide attached to a cover slip with double-stick tape. Prior to use, cover 

slips were biologically cleaned and treated with dimethyldichlorosilane solution, 2% w/v 

(GE Healthcare). Flow chambers were first incubated with 2% anti-tubulin antibody in 

PEM-100 for 5 minutes to attach microtubules, followed by a 5 minute incubation with 

5% Pluronic F-127 (Sigma) in PEM-100 to block the surface. Labeled microtubules (0.05 

mg/mL microtubules, 20 M Taxol in PEM-100) were allowed to bind for 10 minutes. 

Excess microtubules were removed with a wash step (10 mM DTT, 20 M Taxol in PEM-

100). Finally, motility mix was added to the chamber (2 nM GFP kinesin, 0.05% Pluronic 

F-127, 25 M Taxol, 0.25 mg/mL BSA, 50 mM DTT, 0.5 mM ATP, 15 mg/mL glucose, 

0.5 mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-100). For motility on single 

microtubules in the presence of PEG, 5% PEG mw 40,000 was added to the microtubule 
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wash step and motility mix. For these assays, only 0.3 nM GFP-kinesin was added to the 

motility mix.  

3.4.4 Motility on PEG Microtubule Bundles. PEG microtubule bundles were made by 

mixing 0.05 mg/mL polymerized microtubules with 5% (w/w) PEG mw 40,000 and 20 M 

Taxol in PEM-100. Assays were carried out in 10 L flow chambers as described for 

motility assays on single microtubules. Flow chambers were first incubated with 2% anti-

tubulin antibody in PEM-100 for 5 minutes to attach microtubules, followed by a 5 minute 

incubation with 5% Pluronic F-127 (Sigma) in PEM-100 to block the surface. PEG 

microtubule bundles were allowed to bind for 10 minutes. Excess microtubules were 

removed with a wash step (10 mM DTT, 20 M Taxol, 5% PEG in PEM-100). Finally, 

motility mix was added to the chamber (0.14 nM GFP kinesin, 0.05% Pluronic F-127, 25 

M Taxol, 0.25 mg/mL BSA, 50 mM DTT, 0.5 mM ATP, 5% PEG, 15 mg/mL glucose, 0.5 

mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-100). 

3.4.5 Motility on MAP65 Microtubule Bundles. MAP65 microtubule bundles were 

made by mixing 0.05 mg/mL polymerized microtubules with 112 nM MAP65 and 20 M 

Taxol in PEM-100. Assays were carried out in 10 L flow chambers as described for 

motility assays on single microtubules. Flow chambers were first incubated with 2% anti-

tubulin antibody in PEM-100 for 5 minutes to attach microtubules, followed by a 5 minute 

incubation with 5% Pluronic F-127 (Sigma) in PEM-100 to block the surface. 

Microtubules labeled with DyLight 550 were added to the chamber and incubated for 10 

minutes. MAP65 microtubule bundles formed from microtubules labeled with DyLight 

649 were then allowed to bind for 10 minutes. Excess microtubules were removed with a 

wash step (10 mM DTT, 20 M Taxol, 112 nM MAP65 in PEM-100). Finally, motility mix 

was added to the chamber (0.7 nM GFP kinesin, 0.05% Pluronic F-127, 25 M Taxol, 
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0.25 mg/mL BSA, 50 mM DTT, 0.5 mM ATP, 112 nM MAP65, 15 mg/mL glucose, 0.5 

mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-100). 

3.4.6 CAD Cell Culture. CAD cells were maintained in DMEM/F12 (Gibco, 12400-024) 

media with 10% FBS. To induce differentiation, CAD cells were plated on 20 mm glass 

bottom dishes (20,000-40,000 cells per plate) in DMEM/F12 plus 10% FBS. After cells 

adhered to the glass dish, cells were rinsed two times in DMEM/F12 without FBS. Fresh 

DMEM/F12 media without FBS was added and the cells were left for 2-3 days to grow 

processes. 

3.4.7 Motility on CAD Cell Microtubule Bundles. To expose the microtubule 

cytoskeleton of differentiated CAD cells, a previously described protocol for studying the 

actin cytoskeleton was modified (Sivaramakrishnan and Spudich, 2009). Cells were 

washed two times in 85% PBS, followed by exposure to Extraction Buffer (50 mM 

Imidazole, pH 6.8, 50 mM KCl, 0.5 mM MgCl2, 0.1 mM EDTA, 1 mM EGTA, 50 mM 

Taxol, 1% Triton X-100, 4% PEG, mw 40,000) for 4 minutes. A Taxol Solution (85% PBS 

with 50 M Taxol) was added to the cells for 45 minutes to stabilize the microtubule 

cytoskeleton. Cells were then rinsed (1 mg/mL BSA, 50 M Taxol in PEM-100) for 5 

minutes. Finally, motility mix was added to the cells (0.7 nM GFP kinesin, 25 M Taxol, 1 

mg/mL BSA, 50 mM DTT, 0.5 mM ATP, 15 mg/mL glucose, 0.5 mg/mL glucose oxidase, 

0.15 mg/mL catalase in PEM-100). For experiments where the microtubule cytoskeleton 

was observed with fluorescent Taxol, was added as a tenth of the final Taxol 

concentration (5 M BODIPY-taxol with 45 M unlabeled taxol). 

3.4.8 Imaging. An image of the microtubules was acquired using epi-fluorescence prior 

to imaging GFP-kinesin in TIRF. Two minute recordings of kinesin motility were taken 

with a 500 ms exposure time using Total Internal Reflection Fluorescence (TIRF) 

microscopy with a 50 mW 488 Cyan laser (Spectra-Physics) illumination built around an 
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inverted Nikon Ti-E microscope (Nikon). The microscope uses a 60x 1.49 NA objective 

and images were collected using an iXon electron multiplier CCD camera (Andor) after a 

4x beam expander. The final pixel size was 67.5 nm. Images were acquired with no 

delay and saved as nd2 files and exported as 16-bit tif files. 

3.4.9 Data Analysis. Kinesin motility was analyzed using kymographs generated from 

the ImageJ plugin, MultipleKymograph. For velocity measurements, only the moving 

segments of runs were measured, so as to omit pauses from the overall velocity 

measurement. To determine the number of microtubules in PEG and MAP65 bundles, 

the fluorescence intensity of a single microtubule was compared to that of the 

microtubule bundle. Fluorescence intensity was determined by drawing a line 

perpendicular to the microtubule in ImageJ to create a plot profile. This data was fit to a 

Gaussian function in Kaleidagraph to determine the height of the fluorescence peak, 

which corresponds to the average fluorescence of the microtubule or microtubule 

bundle. The fluorescence intensity of a microtubule bundle was divided by the average 

fluorescence of a single microtubule to determine the number of microtubules within the 

bundle.   
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CHAPTER 4 

STUDY OF KINESIN MOTOR DOMAIN MUTANTS 

4.1 Introduction 

Intracellular transport relies on the proper function of microtubule motor proteins 

(Hirokawa, 1998). While there are numerous motor proteins involved in this transport 

process, disruption of just one motor type is enough to result in transport defects, and 

has been shown to be linked to the onset of neurodegenerative disease (Perlson et al., 

2010). A thorough understanding of the mechanism by which motor proteins function to 

transport cargo is imperative for tackling neurodegenerative disease. A common method 

used to gain mechanistic insights into protein function is to study specific mutants, where 

known amino acids have been substituted. 

One study aimed at characterizing the kinesin-1 motor domain used random 

mutagenesis to create mutations within the Drosophila kinesin heavy chain (KHC) 

(Brendza et al., 1999). These mutants were screened in vivo to determine which affected 

axonal transport in Drosophila. One of the mutants that arose from this study, E164K, 

was found to be lethal in Drosophila. Only 50% of flies with this mutation survived 

through later stages of development, and no flies survived to adulthood (Brendza et al., 

1999). A recent study of this E164K mutation in Drosophila examined the effect this 

mutation has on cargo transport (Djagaeva et al., 2012). By measuring the flux of 

labeled organelles past a certain point in Drosophila axons, it was shown that the flux of 

dense core vesicles was only approximately 35% of that observed in neurons with 

wildtype kinesin, while no mitochondria were observed in the segment examined with 

mutant motors (Djagaeva et al., 2012). 
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This E164K mutant was further studied in vitro to gain a better understanding of 

the role of this particular amino acid in kinesin motor motility. It was found that this 

mutant did retain some motility, as microtubule gliding assays with this protein showed 

movement of microtubules, although microtubule gliding rates were reduced 4-fold 

compared to wildtype motors (Brendza et al., 1999).  

Further biochemical studies were carried out to better characterize the 

differences between the E164K mutant and wildtype kinesin (Klumpp et al., 2004). For 

these studies, a second mutant was also studied where this residue was mutated to an 

alanine, E164A (Klumpp et al., 2003). First, it was found that ATP binding was 3-fold 

tighter in the case of E164K and E164A mutants compared with wildtype motors 

(Klumpp et al., 2004; Klumpp et al., 2003). Second, it was observed that while the ATP 

turnover rates of E164K and E164A mutants were reduced 2 to 4-fold, respectively, 

compared to wildtype motors, ATP hydrolysis rates were 2 to 4 times faster than that of 

wildtype kinesin (Klumpp et al., 2004; Klumpp et al., 2003). Third, these studies showed 

that only approximately 30% of the E164K and E164A kinesin mutants’ active sites were 

able to hydrolyze ATP (Klumpp et al., 2004; Klumpp et al., 2003).  

From these studies, it was hypothesized that these mutants are able to carry out 

the ATPase cycle normally on the first motor head, but get stalled on the second head 

(Klumpp et al., 2004; Klumpp et al., 2003). In this scenario, the first head of the mutant 

kinesin motors would be able to release ADP and tightly bind the microtubule (Figure 

4.1B). This head would then bind ATP, resulting in conformational changes that allow 

the second head to swing forward and bind the microtubule ahead of head 1. At this 

point, head 2 of a wildtype motor would only weakly bind the microtubule at first, and 

following ATP hydrolysis on head 1, would release its ADP and then tightly bind the 

microtubule. However, in the case of these mutants, the fast ATP hydrolysis at head 1 is 
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thought to cause head 2 to tightly bind the microtubule prematurely, before its release of 

ADP. This would inhibit ATP from binding to head 2, stalling the ATPase cycle. This 

hypothesis led to the conclusion that these mutant motors are unable to walk 

processively along the microtubule, and remain bound to the microtubule in a rigor state 

(Klumpp et al., 2004; Klumpp et al., 2003). 
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Figure 4.1 Kinesin E157 Residue is Located on the Motor Domain 

A. Crystal structure showing the human kinesin motor domain. Amino acid residue E157 
is highlighted in cyan. ATP binding pocket is highlighted in yellow. Structure constructed 
from PDB file 1BG2. B. ATPase cycle of the kinesin-1 motor. Different nucleotide states 
are indicated by motor domain coloring. Red indicates the ATP-bound state, blue 
indicates the ADP-bound state, and white indicates the apo state. Figure was reprinted 
from Klumpp et al, 2003. Copyright (2003) American Chemical Society. 
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While biochemical studies are a powerful tool in characterizing protein function, 

these studies provide information on the average behavior of many molecules. Here, I 

use Total Internal Reflection Fluorescence (TIRF) microscopy to visualize and study the 

motility properties of individual kinesin mutants. I study these mutants in the human 

kinesin gene, E157A and E157K. I show that both mutants are actually able to take 

many consecutive steps, allowing for their processive motion along the microtubule. 

While these mutants move slower and have shorter run lengths compared to wildtype 

motors, they are able to take up to 100 consecutive steps before dissociating. In 

addition, I show that motility of E157K motors are drastically reduced in gliding assays 

compared to motility in single molecule studies of this mutant. These results show that 

while both single E157A and E157K mutant motors possess some defects in motility, 

E157K motility defects are more pronounced in a multiple-motor assay. I hypothesize 

that the E157K mutant could have a defect in its ability to work cooperatively with 

multiple motors. The results presented here are in contrast to conclusions from prior 

studies and provide an interesting avenue to study mechanisms by which cargo 

transport can be disrupted.  

 

4.2. Results  

4.2.1 Single Molecule Studies of Kinesin E157 Mutants  

To further characterize the motility defects of kinesin E164 mutants, I introduced 

this mutation into a GFP-tagged human kinesin construct. In the human construct this 

residue corresponds to amino acid 157. As in the Drosophila construct, this residue is 

located close to the microtubule binding surface and is far from the nucleotide binding 

site (Figure 4.1A). I created two mutants, E157A and E157K, where I replaced the 
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negatively charged glutamic acid with either a neutrally charged alanine or a positively 

charged lysine, respectively.  

I used Total Internal Reflection Fluorescence (TIRF) microscopy to study the 

motility properties of single kinesin motors. Contrary to what was concluded from earlier 

studies of these kinesin mutants, I observed that these mutants were not stalled on the 

microtubule, but were in fact able to walk processively along microtubules (Figure 4.2A). 

While both wildtype and mutant motors were able to walk processively, there were 

differences in motility between these motors. I observed a reduction in run length of 

kinesin E157A and E157K mutant motors compared to wildtype motors (Figures 4.2B, 

A.11A, A.12A). While wildtype motors moved an average of 1.6 m before dissociating 

from the microtubule, this was reduced to approximately 0.8 m for both mutant motors. 

I observed a slight reduction in the total association time, or total time motors remained 

bound to the microtubule, of mutant motors compared to wildtype motors (Figures 4.2C, 

A.11B, A.12B). I saw that wildtype motors remained bound for an average of 3.6 sec, 

while E157A and E157K mutants remained bound for 2.5 sec and 2.8 sec, respectively. I 

also observed these mutant motors to move slower in comparison to wildtype motors 

(Figures 4.2D, A.11C, A.12C). Wildtype motors moved at an average rate of 0.45 

m/sec, while mutant motors both moved at approximately 0.31 m/sec. Last, I 

observed that the percentage of wildtype motors that pause during a run was greater 

than that of both E157A and E157K mutant motors (Figure 4.2E). I saw that 26% of 

wildtype motors paused, whereas only 5% of E157A and 14% of E157K motors paused. 

Here I demonstrate that while E157A and E157K kinesin motors exhibit shorter 

run lengths and slower velocities compared to wildtype motors, these mutants are still 

able to walk processively along the microtubule, taking up to 100 consecutive steps 

before dissociating. 
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Figure 4.2 Single Molecule Studies of Mutant Kinesin Motors 

A. Kymographs depicting single motor motility of wildtype and mutant kinesin motors. 
Horizontal scale bars are 0.5 m. Vertical scale bars are 2.5 sec. B. Run length was 
measured as the total distance traveled by wildtype or mutant motors before 
dissociation. Error bars represent the standard error of the mean. C. Total association 
time was measured as the total time wildtype or mutant motors were associated with the 
microtubule during a run. Error bars represent the standard error of the mean. D. Moving 
velocity of wildtype and mutant motors. Error bars represent the standard error of the 
mean. E. Percentage of wildtype and mutant motors that pause at least once during their 
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run. Error bars represent the standard error of proportion. B-E. For all plots, number of 
motors measured for WT, E157A, and E157K was 115, 117, and 74, respectively.  
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4.2.2 Multiple-Motor Studies of Kinesin E157 Mutants 

I next examined how multiple mutant kinesin motors cooperate to transport 

cargo. I used the microtubule gliding assay, where kinesin motors are attached to the 

chamber surface such that their motor domains are oriented into the chamber. When 

microtubules are added in the presence of ATP, kinesin motors bind and propel these 

filaments though the chamber, which is observed as microtubule gliding. This assay is 

one method used to study multiple motor transport, as many kinesin motors work 

together to move a single microtubule. 

I performed microtubule gliding assays on three different surface densities of 

wildtype or mutant kinesin motors (Figure 4.3A). With wildtype kinesin, I observed that 

microtubule gliding velocities increased as the surface density of kinesin decreased 

(Figure 4.3B). I observed a similar dependence of gliding velocity on the surface density 

of motors in assays with the E157A kinesin mutant. Despite this similar trend, the gliding 

velocities of microtubules in assays with the E157A kinesin mutant were reduced by a 

factor of approximately 1.4 for all three surface densities tested. 

Interestingly, I did not observe a surface density dependence on the gliding 

velocity of microtubules in assays with the E157K mutants (Figure 4.3B). Gliding 

velocities did not increase as the surface density of motors decreased in this case, but 

rather remained relatively constant. Like the E157A kinesin mutant, microtubule gliding 

velocities in assays with E157K kinesin were reduced compared to wildtype. In assays 

with the highest motor density, gliding velocities with E157K kinesin were similar to those 

with E157A kinesin and were reduced by a factor of approximately 1.4 compared to 

wildtype. At the lowest surface density, gliding velocities with E157K kinesin were 

reduced more dramatically, by a factor of 5, compared to wildtype kinesin. 
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Figure 4.3 Multiple-Motor Gliding Assays with Wildtype and Mutant Kinesin Motors 

A. Example kymographs of gliding assays with wildtype or mutant kinesin motors on 
different surface densities of motors. Horizontal scale bars are 1 m. Vertical scale bars 
are 20 sec. B. Gliding velocities of microtubules on different surface densities of wildtype 
and mutant kinesin motors. Number of microtubules measured for WT, E157A, and 
E157K motors on 950 motors/m2, respectively: 60, 60, 60. For 95 motors/m2: 67, 60, 
60. For 47.5 motors/m2: 51, 60, 67.  Error bars represent standard error of the mean. 
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Here I show that in multiple motor gliding assays, E157A kinesin motors exhibit a 

similar reduction in velocity compared to wildtype motors as was observed in single 

molecule assays. With high motor densities, E157K mutants also show a similar 

reduction in velocity as was observed in single molecule assays. However, on lower 

motor surface densities, I see a greater reduction in velocity of microtubules propelled by 

E157K motors compared to wildtype motors. 

4.3 Discussion 

Drosophila possessing the kinesin E164K mutation exhibit severe transport 

defects, rendering this mutation lethal (Brendza et al., 1999; Djagaeva et al., 2012). 

Studies aimed at understanding how this mutation disrupts kinesin motility concluded 

that this mutation created a rigor kinesin that was unable to walk along microtubules 

(Klumpp et al., 2004; Klumpp et al., 2003). Such a mutation would understandably 

disrupt transport and lead to lethality. From the results presented here, I show that this 

mutant, while possessing motility defects, is not a rigor mutant. I show that both E157A 

and E157K kinesin mutants are able to take up to 100 steps before dissociating from the 

microtubule, and are therefore able to walk processively along microtubules. Knowing 

that these mutants are not truly rigor, I aimed to fully characterize these mutants to 

better understand the mechanism by which these mutants disrupt transport.  

From single molecule studies, I observed that both E157A and E157K kinesin 

mutants exhibit slower velocities and shorter run lengths compared to wildtype kinesin 

motors. I observed that the velocity of mutants was reduced approximately 1.4-fold 

compared to wildtype motors. This decrease in velocity could be explained by a reduced 

ATP turnover rate, as was observed in previous studies of these mutants (Klumpp et al., 

2004; Klumpp et al., 2003). The approximately 2-fold reduction in run length observed 
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for both E157A and E157K mutants could be due to either a cooperativity defect 

between the two kinesin motor heads of a single dimer, or could be due to a decreased 

affinity of these mutant motors for microtubules. Previous work has suggested that in 

Drosophila, Glu164 could be involved in an electrostatic interaction with a positively 

charged residue on the other motor head at the dimer interface (Brendza et al., 1999). 

Such an interaction could mediate cooperativity between the two motor domains, 

disruption of which would likely lead to loss of coordination between the two heads, and 

thus a decrease in processivity. Alternatively, it should be noted that single molecule 

experiments with the E157K kinesin mutant required five times the amount of protein 

compared to wildtype kinesin in order to witness motility events. This suggests that the 

E157K mutant could have a decreased affinity for microtubules. Further studies are 

needed to directly measure the effect of this mutation on the binding affinity of E157K to 

microtubules, but such a decrease in affinity could also explain a decrease in motor 

processivity. Alternatively, there could be a high probability of these motors to bind, and 

quickly unbind microtubules due to cooperativity defects that disrupt coordination 

between the two heads, which could prevent motors from taking any steps. If these 

events were fast, it is possible that they would not be observed given the time resolution 

used in these studies to visualize GFP-tagged motors. I also observed that a lower 

percentage of mutant motors paused during a run compared to wildtype kinesin motors. 

This difference could be due to the shorter run lengths observed for mutant motors. If 

there is a probability that a motor will pause during a run, motors that move shorter 

distances will have a lower probability of pausing. 

I showed that when the negatively charged Glu157 was mutated to either a neutral 

charge or a positive charge, both mutants exhibited similar behavior in single molecule 
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assays. This suggests that the observed differences in the single molecule motility of 

these mutants is due to the loss of a negative charge at this particular residue. 

In microtubule gliding assays, many motors work together to transport a single 

filament. I observed a velocity dependence on the surface density of kinesin motors for 

assays with both wildtype and E157A kinesin. I showed that for these motors, 

microtubule gliding velocities increased as the surface density of motors decreased. This 

has been observed previously for wildtype motors and is thought to be due to negative 

interference which occurs when high densities of motors transport a single microtubule 

(Bohm et al., 2000). While I saw a similar trend in that velocity increased as the surface 

density of motors decreased for both wildtype and E157A motors, I observed a reduced 

gliding velocity for E157A motors in comparison to wildtype motors. Across all surface 

densities tested, there was an approximately 1.4-fold decrease in motor velocity of 

E157A motors compared to wildtype. This decrease was similar to the decrease 

observed in single motor assays.  

Interestingly, I did not see a velocity dependence on surface density in the case 

of E157K mutants. Rather, gliding velocities were relatively constant on all E157K 

kinesin surface densities. On the highest motor surface density (950 motors/m2), gliding 

velocities were similar to those of E157A and were reduced 1.4-fold compared to 

wildtype motors. Again, this was similar to the decrease in velocity observed in single 

motor studies. However, as the surface density of motors was decreased, there was a 

further fold reduction in velocity of E157K motors compared to wildtype motors. On the 

lowest motor density (47.5 motors/m2), I showed that E157K gliding velocities were 

reduced by a factor of 5 compared to wildtype velocities. On these lower surface 

densities, I am eliminating the effects of negative interference that occurs on crowded 

surfaces and am better probing the cooperative nature between motors transporting a 
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single filament. The fact that E157K gliding velocities do not increase as this negative 

interference is relieved suggests that these motors could have a defect in their ability to 

cooperate with other motors to transport a single cargo, as such a large reduction in 

velocity was not observed in the case of single molecule assays.  

An alternative explanation as to why I observe such large reductions in gliding 

velocities with E157K mutant motors could be explained if only a small percentage of 

these mutant motors successfully bind and walk along microtubules, while the majority 

bind and release without stepping. Unlike in single molecule assays, motors in gliding 

assays are all bound to the surface and I am forced to observe the effect of all motor 

interactions with microtubule. Events where kinesin motors bind briefly and release 

without taking any steps would slow the overall gliding velocity of filaments. This type of 

drag would not be relieved upon diluting the surface density of motors if there is a certain 

percentage of binding events that do not produce productive motion of filaments. Thus, 

this could be another explanation for the large reduction in gliding velocities observed 

with E157K mutants. 

These studies provide insight into the behavior of single E157A and E157K 

kinesin mutants as well as how multiple motors cooperate to transport a single cargo. I 

show that while both mutants exhibit reduced velocities and run lengths compared to 

wildtype motors in single motor assays, they are still processive and able to move up to 

0.8 m along a microtubule before dissociating. Multiple motor gliding assays suggest 

that E157K mutants could possess a defect in their ability to work cooperativity with 

multiple motors. Alternatively, these motors could be defective in their ability to bind and 

walk along microtubules, with a high percentage of binding events resulting in release 

from microtubules without any stepping. Here, I show that transport defects observed in 

vivo with these mutant motors are not a result of these mutants binding in a rigor state to 
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microtubules. I show that these mutants are able to disrupt motility either through a 

defect in cooperativity between multiple motors transporting a single cargo or through an 

inability to productively bind and walk along microtubules. 

 

4.4 Methods 

4.4.1 Constructs. A human kinesin-1 construct truncated at amino acid 560 fused to a 

C-terminal GFP tag and a 6X His Tag was used. E157A and E157K kinesin mutants 

were generated using site-directed mutagenesis. Mutants were verified by sequencing. 

4.4.2 Protein Purification. Wildtype and mutant kinesin constructs were expressed 

using a pET17b expression vector. Expression with IPTG and affinity purification with 

Nickel beads (Qiagen) were carried out as described previously (Pierce and Vale, 1998). 

GFP-kinesin concentration was quantified by comparison to known BSA standards on a 

Coomassie-stained SDS-PAGE gel. 

4.4.3 Microtubule Preparation. Rhodamine labeled microtubules were prepared using 

a 1:13.5 ratio of labeled:unlabeled tubulin. Rhodamine labeled tubulin was purchased 

from Cytoskeleton, Inc. Unlabeled tubulin was purified from porcine brain as described 

previously (Peloquin et al., 2005). To prepare microtubules, both unlabeled and 

rhodamine labeled tubulin were brought to 5 mg/mL in PEM-100 (100 mM K-Pipes, pH 

6.8, 2 mM MgSO4, 2 mM EGTA) and incubated for 10 minutes on ice. Tubulin was 

centrifuged at 4oC for 10 minutes at 100,000 xg to remove tubulin aggregates. The 

remaining tubulin in the supernatant was mixed with 1 mM GTP and polymerized at 37oC 

for 20 minutes. 50 M Taxol was added to stabilize polymerized microtubules, followed 

by another 20 minute incubation at 37oC. Polymerized microtubules were centrifuged at 
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25oC for 10 minutes at 14,000 x g to separate unincorporated tubulin. The microtubule 

pellet was resuspended in 50 L PEM-100 with 40 M Taxol. 

4.4.4 Single Molecule Assays. Assays were carried out in 10 L flow chambers made 

of a glass slide attached to a cover slip with double-stick tape. Prior to use, cover slips 

were biologically cleaned and treated with dimethyldichlorosilane solution, 2% w/v (GE 

Healthcare). Flow chambers were first incubated with 2% anti-tubulin antibody in PEM-

100 for 5 minutes to attach microtubules, followed by a 5 minute incubation with 5% 

Pluronic F-127 (Sigma) in PEM-100 to block the surface. Rhodamine-labeled 

microtubules (0.05 mg/mL microtubules, 20 M Taxol in PEM-100) were allowed to bind 

for 10 minutes. Excess microtubules were removed with a wash step (10 mM DTT, 20 

M Taxol in PEM-100). Finally, motility mix was added to the chamber (1 nM WT or 

E157A kinesin; or 5 nM E157K kinesin, 0.05% Pluronic F-127, 25 M Taxol, 0.25 mg/mL 

BSA, 50 mM DTT, 0.5 mM ATP, 15 mg/mL glucose, 0.5 mg/mL glucose oxidase, 0.15 

mg/mL catalase in PEM-100). 

4.4.5 Gliding Assays. Assays were carried out in 10 L flow chambers made of a glass 

slide attached to a cover slip with double-stick tape. Flow chambers were first incubated 

with kinesin for five minutes, followed by a chamber wash (5 mg/mL BSA, 120 M Taxol, 

40 mM DTT in PEM-100). Rhodamine-labeled microtubules (0.05 mg/mL microtubules, 

20 M Taxol in PEM-100) were then allowed to bind for 2 minutes. Finally, motility mix 

was added to the chamber (50 M Taxol, 50 mM DTT, 1 mM ATP, 15 mg/mL glucose, 

0.5 mg/mL glucose oxidase, 0.15 mg/mL catalase in PEM-100). 

4.4.6 Imaging. For single molecule assays, an image of the microtubules was acquired 

using epi-fluorescence prior to imaging single GFP-kinesin motors. Two minute 

recordings of GFP-kinesin motility were taken with a 500 ms exposure time using Total 

Internal Reflection Fluorescence (TIRF) microscopy with 50 mW 488 Cyan laser 
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(Spectra-Physics) illumination built around an inverted Nikon Ti-E microscope (Nikon). 

The microscope uses a 60x 1.49 NA objective and images were collected using an 

electron multiplier CCD camera (Cascade II, Roper Scientifics) after a 4x beam 

expander. The final pixel size was 67.5 nm. Images were acquired with no delay and 

saved as nd2 files and exported as 16-bit tif files. For gliding assays, rhodamine-labeled 

microtubules were imaged using epi-fluorescence. Microtubules were imaged with a 500 

ms exposure, every 10 seconds for a total duration of 5 minutes. Imaging was performed 

with a Nikon Ti-E microscope using a 60x 1.49 NA objective. Images were collected 

using an electron multiplier CCD camera (Cascade II, Roper Scientifics). The final pixel 

size was 270 nm. Images were saved as nd2 files and exported as 16-bit tif files. 

4.4.7 Data Analysis. Single molecule motility was analyzed using kymographs 

generated by the ImageJ plugin, MultipleKymograph. For velocity measurements, the 

moving velocity was calculated by measuring only moving segments of runs, thereby 

excluding any pauses from the measurement. Gliding velocities were measured using 

the ImageJ plugin, MtrackJ (Meijering et al., 2012). 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Summary 

 Motor proteins must transport cargos over long distances along microtubule 

tracks to mediate the widespread distribution of cargos throughout cells. These 

microtubule tracks form complex architectures and are crowded with microtubule-

associated proteins and other motor proteins. How motors navigate these complex 

tracks to ensure efficient transport of cargos is unclear. An understanding of the 

mechanisms by which motors navigate complex cytoskeletal tracks is imperative for a 

more detailed understanding of intracellular transport, a process that has many 

implications for neurodegenerative disease. 

In this dissertation, I have used in vitro assays to reconstitute kinesin motor 

motility using purified components. The most basic of these assays uses wildtype motors 

on microtubules polymerized from purified tubulin subunits, stripped of any associated 

microtubule-associated proteins and motors. Using this system, I have systematically 

studied how motors navigate microtubule tracks with specific complexities added. 

Specifically, I have discussed how motor traffic, microtubule bundle architecture, and 

motor domain mutations affect the transport properties of kinesin-1, as well as 

mechanisms used by kinesin-1 to help efficiently navigate these complex tracks. 

5.1.1 Transport of Self-Assembled Qdot Cargos 

 I first studied how the transport of single kinesin motors and cargos transported 

by kinesin motors was affected by traffic along the microtubule. In these experiments, I 

added excess motile kinesin motors to microtubules to create traffic along these tracks. I 
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was able to show that the quantum dot (Qdot) cargos used in this system were able to 

form non-specific attachments to motors along the track. Such a system where cargo-

motor complexes can self-assemble dynamically resembles a proposed mechanism for 

the transport of proteinaceous cargos in slow axonal transport (Scott et al., 2011).  

 I showed that in the case of both single kinesin motors and cargos transported by 

multiple kinesin motors, transport was slowed in the presence of motor traffic along the 

microtubule. Interestingly, I found that while this traffic caused a severe reduction in 

processivity of single motors, cargo processivity actually increased due to the ability of 

cargos to form non-specific attachments to motors along the microtubule, enabling their 

transport by multiple motors. In addition, I showed that while cargos paused more 

frequently as traffic was increased, the duration of these pauses actually decreased in 

more crowded conditions. I suggest that on microtubules with higher crowding, Qdot 

cargos are able to more readily associate motors on adjacent protofilaments. I speculate 

that this would allow a cargo to switch protofilament tracks to circumvent an obstacle 

that would normally result in a longer pause duration. I also observed reversals of cargo 

motion on crowded microtubules. I attribute these reversals to cargos with multiple 

motors bound. If the system is under strain and a front motor detaches, cargo reversals 

would be observed as the Qdot cargo rocks backward and repositions itself over the 

remaining motors engaged with the microtubule. 

 These studies provide insights into how cargo motility is maintained on 

microtubules crowded with motors. In these circumstances, transport of cargos by 

multiple motors is essential. I show that cargos actually take advantage of these 

crowded conditions to help successfully navigate these same crowded tracks. The 

crowded conditions enable cargos to bind and exchange motors easily, allowing cargos 
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to be transported further and navigate around obstacles by attaching to motors on 

neighboring tracks. 

5.1.2 Motor Transport on Bundled Microtubules 

 I next studied how the architecture of microtubule tracks affects kinesin motility. I 

prepared three types of microtubule bundles: 1) tightly packed bundles with randomly 

oriented microtubules formed by depletion forces in the presence of PEG, 2) antiparallel 

bundles formed by MAP65, with a 25 nm interspacing between filaments, and 3) 

endogenous parallel microtubule bundles from neuronal-like processes of differentiated 

CAD cells. These different bundle types allowed for the understanding of how the 

spacing between microtubules and the orientation of microtubules within a bundle affect 

motility. 

 In cells, MAPs generate microtubule bundles with spacing between filaments 

within the bundle. I show that this spacing is essential for motor motility. On tightly 

packed microtubule bundles formed in the presence of PEG, I saw that kinesin motility 

was reduced, as motors exhibited shorter run lengths and slower velocities on PEG 

bundles compared to single microtubules in the presence of PEG. I did not observe a 

reduction in processivity or velocity in the case of MAP65 bundles. While I did observe a 

reduction in velocity on CAD cell bundles, I did not observe a reduction in processivity. 

This reduction in velocity is likely attributed to MAPs on these cellular bundles that I 

could not control for in my single microtubule assay, and not an effect of the bundle 

architecture. This data suggests that the spacing between microtubules is essential for 

organizing the microtubule bundle and preventing staggered, overlapping microtubules 

within the bundle from acting as obstacles for kinesin motors.  
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 In the case of microtubule bundles that possess oppositely oriented microtubules 

(PEG and MAP65 bundles), I observed motors that switch direction during a run. I 

believe that these reversals in direction are due to motors switching to an adjacent, 

oppositely oriented microtubule track. This is supported by the fact that I did not observe 

these reversals in the case of CAD cell bundles, where all microtubules are oriented in 

the same direction. I showed that the ability of motors to switch to adjacent microtubule 

tracks within a bundle enhances the processivity of kinesin motors. For example, in the 

case of PEG bundles that reduce motor motility, I showed that motors that were able to 

switch microtubule tracks recovered processivity, and had run lengths similar to motors 

on single microtubules with PEG. However, motors that did not reverse exhibit reduced 

run lengths compared to motors on single microtubules with PEG. Thus, this ability to 

switch microtubule tracks may be a mechanism by which kinesin motors use to avoid 

obstacles along their path.  

5.1.3 Kinesin Motor Domain Mutants 

 Lastly, I probed how specific mutations within the kinesin motor domain affect 

motor transport. I mutated amino acid 157 in the human kinesin heavy chain, changing 

this negatively charged glutamic acid to either a positively charged lysine (E157K) or a 

neutrally charged alanine residue (E157A). This residue is positioned close to the 

microtubule binding face of the motor domain, and has been demonstrated to disrupt 

transport in vivo (Brendza et al., 1999; Djagaeva et al., 2012). I aimed to understand the 

mechanism behind these observed transport defects. 

 With single molecule studies, I showed that these mutant motors behaved similar 

to each other in that both E157A and E157K mutants exhibited a reduction in run length 

and velocity. Interestingly, I found that in multiple motor gliding assays, these mutants 
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behaved differently. I carried these assays out on three different surface densities of 

kinesin motors. In the case of wildtype motors, I observed that gliding velocity was 

increased as the surface density was decreased, indicating that there is negative 

interference between motors on dense surfaces. For E157A mutants, I observed a 

similar increase in velocity as the surface density of motors was decreased. As 

expected, for all surface densities, I observed a decrease in the velocity of gliding 

filaments compared to assays with wildtype motors. This decrease was proportional to 

the decrease in velocity observed in single molecule assays. I saw a similar decrease in 

gliding velocity with E157K motors compared to wildtype motors on high densities of 

motors. However, in the case of E157K motors, I did not observe an increase in the 

gliding velocity as the surface density of motors was decreased. The gliding velocities 

remained relatively constant across all surface densities of E157K motors. Thus, for low 

surface densities of E157K motors, I observed an even greater-fold reduction in the 

E157K gliding velocities compared to wildtype motors.  

This behavior suggests that E157K motors could possess a defect that affects 

their ability to work cooperatively with multiple motors to transport a single filament. An 

alternative interpretation of this data can be made based on my observation that there 

were fewer motility events observed in single molecule assays with E157K motors 

compared to assays with identical concentrations of wildtype or E157A motors. This low 

number of motility events could be due to a high probability of E157K motors to bind 

microtubules and quickly release without stepping, which could be caused by a lack of 

coordination between two motor heads within a dimer. It is possible that such events 

would not be observed with the time resolution used in these studies. Motors with a high 

probability of binding but not stepping would act to create drag in a microtubule gliding 

assay, and could provide another explanation for the behavior of E157K motors in these 
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multiple motor gliding assays. This work provides new insights into the mechanism by 

which these kinesin mutants could cause transport defects in vivo. 

 

5.2 Future Directions 

 Using the system where I crowded microtubules with excess motors to probe the 

effect on single motor and cargo motility, I showed that cargos were able to form non-

specific attachments with motors along the microtubule. I believe that at high crowding 

along the microtubule, cargos are able to readily associate motors on adjacent 

protofilaments, allowing them to navigate around obstacles. In the case of these 

experiments, obstacles encountered were slow moving motors, generated by traffic 

along the microtubule. Further studies using non-motile obstacles, such as a rigor 

kinesin or the MAP, tau, would be interesting to probe the mechanism by which self-

assembled cargos are able to navigate around stationary obstacles on microtubules 

crowded with excess motors. Using a rigor kinesin, a mutant that binds microtubules 

tightly and does not release, would allow for the direct comparison of how self-

assembled cargos are able to navigate around moving versus stationary obstacles. 

Using the MAP, tau, would enable the study of the extent to which these self-assembled 

cargos are able to navigate around obstacles that could exist in neurodegenerative 

disease states. Aggregates of tau along microtubules is a hallmark of neurodegenerative 

diseases, such as Alzheimer’s Disease (Ackmann et al., 2000). These aggregates can 

be generated in vitro by adding high concentrations of tau to assays. Unlike kinesin 

obstacles which bind to a single protofilament on the microtubule, these tau aggregates 

are likely to simultaneously block many adjacent protofilaments. Thus, these would pose 

as a very different obstacle than rigor kinesin mutants, and would require cargos to 
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associate new motors on multiple adjacent protofilaments to allow it to navigate around 

such a large obstacle. Addition of these different types of non-motile obstacles to my 

assay would allow for a better understanding of how, and whether, self-assembled 

cargos are able to ensure proper transport along microtubules in the case of healthy 

cells versus diseased cells exhibiting signs of neurodegeneration.  

 Another interesting avenue to pursue would be to study how cargoes with 

multiple motors are transported along microtubule bundles. Here I have studied how 

single motors navigate these complex microtubule architectures. In cells however, 

transport is more complex, as cargos are often carried by multiple motors. The study of 

cargos transported by multiple kinesin motors or cargos transported by multiple species 

of motors would be interesting as these are representative of cargos transported in vivo. 

Specifically, it would be interesting to study how a cargo complexed to many motors of a 

single species is transported on bundles with antiparallel microtubules. Cargos that are 1 

m in diameter would span over many different microtubule tracks within a bundle. 

Assuming these cargos have motors distributed randomly on their surface, they would 

likely have motors simultaneously interacting with many different filaments within the 

bundle. On bundles with antiparallel microtubules, this would be interesting as there 

could be motors of the same species pulling in opposite directions on the cargo. This 

would resemble a tug-of-war, which is typically only thought of when two different motor 

species (i.e. Kinesin and Dynein) pull on the cargo in opposite directions. In dendrites, 

microtubule bundles are comprised of randomly oriented microtubules. Therefore, these 

bundles are likely to possess microtubules that are oriented antiparallel to one another. 

These studies could provide insights into how cargos are transported over long 

distances in dendrites. 
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 In studies with E157K mutant motors, I have shown that there is a further 

reduction in microtubule gliding velocities compared to velocities observed in single 

molecule assays. This suggests that the defects in transport with these mutants is 

further exacerbated in multiple motor assays, and could explain the severe defects in 

transport observed in vivo. I have provided two hypotheses for the mechanism by which 

E157K mutant kinesin motors disrupt the transport of cargos in vivo. One mechanism is 

that these mutants are defective in their ability to cooperate with other motors to 

transport a single cargo. A second mechanism could be that these mutants are unable to 

properly coordinate between heads within a single dimer, resulting in many motors that 

bind and fall off before taking any steps.  

 In gliding assays, there are many motors that function to transport a single 

microtubule. This assay is messy in that the number of motors transporting microtubules 

is unknown as not all motors bound to the coverslip could be oriented in such a way to 

be capable of producing effective steps. Studies of cargos with just a few motors 

attached could provide further insight into whether and how these motors are defective 

in cooperative transport. New studies have shown that protein and DNA scaffolds can be 

used to link known numbers of motors to a single cargo (Derr et al., 2012; Diehl et al., 

2006; Furuta et al., 2013). This tool could be used here to better understand how the 

number of motors bound to a cargo affects transport.  

 Studies of E157K mutants with higher temporal resolution could help probe 

whether there is a large probability that motors bind microtubules without taking any 

productive steps. In the studies presented here, mutants were tagged with GFP and a 

500 ms exposure time was required to image motors. This time resolution would not 

allow for the visualization of events where motors bind and quickly unbind without taking 

any steps. Tagging these mutant motors with quantum dots would allow for imaging with 
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much faster acquisition times, and would potentially allow for the visualization of such 

events if they are occurring.  

 The studies presented in this dissertation address how motors carry out transport 

on complex microtubule tracks, as well as how specific residues in the kinesin motor 

domain contribute to the efficient transport of cargos on these tracks. The suggested 

studies here would further build on the current understanding of how motors navigate the 

crowded, complex tracks that exist in the cell.  
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APPENDIX A 

DISTRIBUTIONS OF SINGLE MOLECULE DATA 

 

 

Figure A.1 Kinesin Motility on Single Microtubules in the Presence of PEG: 
Histograms 

A.  Distributions of run length measurements of motors on single microtubules in the 
absence (red bars) and presence of PEG (blue bars). B. Distributions of association time 
measurements of motors on single microtubules in the absence and presence of PEG. 
C. Distributions of moving velocity measurements of motors on microtubules in the 
absence and presence of PEG. A-C. For data taken in the absence of PEG, N = 105. 
For data taken in the presence of PEG, N = 109. 
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Figure A.2 Kinesin Motility on Single Microtubules in the Presence of PEG: 
Cumulative Probability Distributions 

A.  Cumulative probability distributions of run length measurements of motors on single 
microtubules in the absence (red) and presence of PEG (blue). B. Cumulative probability 
distributions of association time measurements of motors on single microtubules in the 
absence and presence of PEG. C. Cumulative probability distributions of moving velocity 
measurements of motors on microtubules in the absence and presence of PEG. A-C. 
For data taken in the absence of PEG, N = 105. For data taken in the presence of PEG, 
N = 109. 
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Figure A.3 Kinesin Motility on PEG Bundles: Histograms 

A. Distributions of total run length measurements of motors on single MTs + PEG (blue 
bars) and PEG Bundles (red bars); and the final distance traveled (∆x) for motors on 
PEG bundles (green bars). B. Distributions of run length measurements of motors on 
single microtubules + PEG (blue bars), of motors that reverse direction on PEG bundles 
(green bars) and motors that do not reverse direction on PEG bundles (cyan bars). In 
addition, the average distance traveled before or after reversing direction on PEG 
bundles was measured (segments, red bars). C. Distributions of association time 
measurements of motors on single microtubules + PEG (blue bars) and on PEG bundles 
(red bars). D. Distributions of moving velocity measurements of motors on single 
microtubules with PEG (blue bars) and PEG bundles (red bars). A-D. For single 
microtubules with PEG, N = 109; for PEG bundles, N = 87; for motors that reverse on 
PEG bundles, N = 30; for motors that do not reverse on PEG bundles, N = 57. 
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Figure A.4 Kinesin Motility on PEG Bundles: Cumulative Probability Distributions 

A. Cumulative probability distributions of total run length measurements of motors on 
single MTs + PEG (blue) and PEG Bundles (red); and the final distance traveled (∆x) for 
motors on PEG bundles (green). B. Cumulative probability distributions of run length 
measurements of motors on single microtubules + PEG (blue), of motors that reverse 
direction on PEG bundles (green) and motors that do not reverse direction on PEG 
bundles (cyan). In addition, the average distance traveled before or after reversing 
direction on PEG bundles was measured (segments, red). C. Cumulative probability 
distributions of association time measurements of motors on single microtubules + PEG 
(blue) and on PEG bundles (red). D. Cumulative probability distributions of moving 
velocity measurements of motors on single microtubules with PEG (blue) and PEG 
bundles (red). A-D. For single microtubules with PEG, N = 109; for PEG bundles, N = 
87; for motors that reverse on PEG bundles, N = 30; for motors that do not reverse on 
PEG bundles, N = 57. 
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Figure A.5 Kinesin Motility on Single Microtubules in the Presence of MAP65: 
Histograms 

A. Distributions of run length measurements of motors on microtubules in the absence 
(red bars) and presence (blue bars) of MAP65. B. Distributions of association time 
measurements of motors on microtubules in the absence and presence of MAP65. C. 
Distributions of moving velocity measurements of motors on microtubules in the absence 
and presence of MAP65. A-C. For data taken in the absence of MAP65, N = 104. For 
data taken in the presence of MAP65, N = 91.  
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Figure A.6 Kinesin Motility on Single Microtubules in the Presence of MAP65: 
Cumulative Probability Distributions 

A. Cumulative probability distributions of run length measurements of motors on 
microtubules in the absence (red) and presence (blue) of MAP65. B. Cumulative 
probability distributions of association time measurements of motors on microtubules in 
the absence and presence of MAP65. C. Cumulative probability distributions of moving 
velocity measurements of motors on microtubules in the absence and presence of 
MAP65. A-C. For data taken in the absence of MAP65, N = 104. For data taken in the 
presence of MAP65, N = 91. 
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Figure A.7 Kinesin Motility on MAP65 Bundles: Histograms 

A. Distributions of run length measurements of motors on single MTs + MAP65 (blue 
bars) and MAP65 bundles (red bars); and the final distance traveled (∆x) for motors on 
MAP65 bundles (green bars). B. Distributions of run length measurements of motors on 
single microtubules with MAP65 (blue bars), of motors that reverse direction on MAP65 
bundles (green bars), motors that do not reverse direction on MAP65 bundles (red bars). 
In addition, the average distance traveled before or after reversing direction on MAP65 
bundles was measured (segments, cyan bars). C. Distributions of association time 
measurements of motors on single microtubules with MAP65 (blue bars) and MAP65 
bundles (red bars). D. Distributions of moving velocity measurements of motors on 
single microtubules with MAP65 (blue bars) and MAP65 bundles (red bars). A-D. For 
single microtubules with MAP65, N = 91; for MAP65 bundles, N = 98, for motors that 
reverse on MAP65 bundles, N = 23; for motors that do not reverse on MAP65 bundles,  
N = 75. 
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Figure A.8 Kinesin Motility on MAP65 Bundles: Cumulative Probability 
Distributions 

A. Cumulative probability distributions of run length measurements of motors on single 
MTs + MAP65 (blue) and MAP65 bundles (red); and the final distance traveled (∆x) for 
motors on MAP65 bundles (green). B. Cumulative probability distributions of run length 
measurements of motors on single microtubules with MAP65 (blue), of motors that 
reverse direction on MAP65 bundles (green), motors that do not reverse direction on 
MAP65 bundles (red). In addition, the average distance traveled before or after reversing 
direction on MAP65 bundles was measured (segments, cyan). C. Cumulative probability 
distributions of association time measurements of motors on single microtubules with 
MAP65 (blue) and MAP65 bundles (red). D. Cumulative probability distributions of 
moving velocity measurements of motors on single microtubules with MAP65 (blue) and 
MAP65 bundles (red). A-D. For single microtubules with MAP65, N = 91; for MAP65 
bundles, N = 98, for motors that reverse on MAP65 bundles, N = 23; for motors that do 
not reverse on MAP65 bundles, N = 75. 
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Figure A.9 Kinesin Motility on Cellular Bundles: Histograms 

A. Distributions of run length measurements of motors on single microtubules 
polymerized in vitro (red bars) and on microtubule bundles derived from CAD cells (blue 
bars). B. Distributions of association time measurements of motors on single 
microtubules polymerized in vitro (red bars) and on microtubule bundles derived from 
CAD cells (blue bars). C. Distributions of moving velocity measurements of motors on 
single microtubules polymerized in vitro (red bars) and on microtubule bundles derived 
from CAD cells (blue bars). A-C. For data taken on single microtubules polymerized in 
vitro, N = 160. For data taken on microtubule bundles derived from CAD cells, N = 122.  
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Figure A.10 Kinesin Motility on Cellular Bundles: Cumulative Probability 
Distributions 

A. Cumulative probability distributions of run length measurements of motors on single 
microtubules polymerized in vitro (red) and on microtubule bundles derived from CAD 
cells (blue). B. Cumulative probability distributions of association time measurements of 
motors on single microtubules polymerized in vitro (red) and on microtubule bundles 
derived from CAD cells (blue). C. Cumulative probability distributions of moving velocity 
measurements of motors on single microtubules polymerized in vitro (red) and on 
microtubule bundles derived from CAD cells (blue). A-C. For data taken on single 
microtubules polymerized in vitro, N = 160. For data taken on microtubule bundles 
derived from CAD cells, N = 122.  
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Figure A.11 Single Molecule Studies of Mutant Kinesin Motors: Histograms 

A. Distributions of run length measurements for wildtype and E157 mutant kinesin 
motors. B. Distributions of association time measurements for wildtype and E157 mutant 
kinesin motors. C. Distributions of moving velocity measurements for wildtype and E157 
mutant kinesin motors. For all plots, number of motors measured for WT, E157A, and 
E157K was 115, 117, and 74, respectively. Error bars represent standard error of the 
mean. 
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Figure A.12 Single Molecule Studies of Mutant Kinesin Motors: Cumulative 
Probability Distributions 

A. Cumulative probability distributions of run length measurements for wildtype and 
E157 mutant kinesin motors. B. Cumulative probability distributions of association time 
measurements for wildtype and E157 mutant kinesin motors. C. Cumulative probability 
distributions of moving velocity measurements for wildtype and E157 mutant kinesin 
motors. For all plots, number of motors measured for WT, E157A, and E157K was 115, 
117, and 74, respectively. Error bars represent standard error of the mean. 
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APPENDIX B 
PROTOCOLS 

 

B.1 Tubulin Purification from Pig Brains 

 
Stock Solutions:  PM Buffer (200mL)   PMG Buffer (200mL) 
200mM PIPES  100mL     76mL 
200mM EGTA   2mL     2mL 
100mM MgSO4  2mL     2mL 
13.7M Glycerol  -------     116mL 
 
 
    Super PMG (200mL) 
1M PIPES   16mL 
1M MgSO4   2mL 
200mM EGTA   2mL 
13.7M Glycerol  175.2mL 

 
 

1. Clean pig brains (3) and put in pre-tared 1L beaker 
 Remove meniscus, etc. (use kimwipe to help clean) 
2. Weigh cleaned brains: _______g 
3. Put brains in blender 
 Add 0.5mL PM buffer per 1g of brain.  Volume of PM: ______mL 
4. Pulse blender to homogenize brains (~5 seconds/pulse to prevent mixture from 
heating up) 
5. Pour homogenized brains into ultra centrifuge tubes 
6. Balance tubes 
7. centrifuge at 100,000 xg for 45 minutes at 2oC with 50.2 Ti rotor 
8. Pour supernatant into 500mL graduated cylinder (use pasteur pipette to get all sup) 
 Volume of sup: ________mL 
9. Add same volume of PMG to the sup (1:1 PMG:sup ratio) 
 *If sup volume is greater than 100mL, add ½ volume of sup as super PMG 
10. Add GTP to final concentration of 1mM 
 ______mL of 100mM GTP stock 
11. Cover graduated cylinder with parafilm and mix by inverting 
12. Put sup into new ultra centrifuge tubes and balance 
13. Polymerize MTs for 45 minutes at 37oC in water bath 
14. Set ultra centrifuge to 37oC, place T865 rotor in 37oC incubator to warm up 
15. Centrifuge at 100,000 xg in T865 rotor for 45 minutes at 37oC 
 

These are the 1X Pellets (can drop freeze and store at -80oC or continue) 
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2X Pellets 
 

1. Add PM to pellets using 1/5 volume of original homogenate (1X pellets, step 3) 
 Volume of PM Buffer added: ______mL 
2. Using a thin, pointed spatula, scrape pellet off side of cfuge tube and into PM buffer 
 Lightly shake tube to make sure pellet is loose 
 Quickly dump PM buffer + pellet into 15mL dounce in ice slurry 
 Repeat for each pellet 
3. Homogenize pellets in ice cold dounce until no large chunks seen (will be cloudy) 
 Homogenize on ice every 2-3 minutes, for a total of 30 minutes (avoid excessive 
            bubbling) 
4. Put homogenized tubulin into ultra (T865) centrifuge tubes 
5. Centrifuge 100,000 xg for 30 minutes at 2oC 
6. Pour sup into graduated cylinder and approximate volume 
 Volume of supernatant: ________mL 
7. Add PMG buffer 1:1 with supernatant 
 Add ______mL PMG 
8. Add GTP to final concentration of 1mM 
 Add ______L 100mM GTP stock 
9. Parafilm cylinder and mix by inverting 
10. Put supernatant into new ultra T865 centrifuge tubes and incubate 45 minutes at 
37oC in water bath 
11. Centrifuge at 37oC for 45 minutes at 100,000 xg 
12. Remove most of sup, leaving a small amount to cover pellets 
13. Drop freeze pellets in liquid nitrogen and store at -80oC 
 

High Salt Purification 
 

1. Quickly thaw 2X pellets in 37oC water bath 
2. Remove excess supernatant that froze with pellet 
3. Take 2X pellets (2) and homogenize with dounce in 5mL PM buffer for 30 minutes on 
ice (Homogenize on ice every 2-3 minutes, for a total of 30 minutes, avoid excessive 
bubbling) 
4. Spin at 100,000 xg at 4oC (T865 rotor) for 30 minutes 
5. Save sup and add: 0.5 M PIPES 
   10% DMSO 
   1 mM GTP 
   2 mM EGTA 
   1 mM MgSO4 

6. Incubate at 37oC for 10 minutes 
7. Spin 20 minutes at 20,000 xg at 37oC (T865 rotor) 
8. Using dounce, homogenize pellet in 4mL PEM-100 on ice for 30 minutes 
9. Spin 30 minutes at 100,000 xg at 4oC (T865 rotor) 
10. Save supernatant as high salt purified tubulin 
11. Bring tubulin to 5 mg/mL using PEM-100 
12. Aliquot and drop freeze in liquid nitrogen, store in -80oC 
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B.2 Fluorescent Labeling of Tubulin 

Adapted from Mitchison Lab Protocol 
 

 
BUFFERS: 
 
5X BRB-80   High pH Cushion   Labeling Buffer 
400 mM PIPES  0.1 M NaHEPES, pH 8.6  0.1 M NaHEPES, pH 
8.6 
5 mM MgCl2   1 mM MgCl2    1 mM MgCl2 
5 mM EGTA   1 mM EGTA    1 mM EGTA 
pH 6.8 with KOH  60% (v/v) glycerol   40% (v/v) glycerol 
 
 
Quench   Low pH Cushion   PEM-100 
2X BRB-80   60% (v/v) glycerol   100 mM Na-PIPES 
100 mM K-Glutamate  in 1X BRB-80    1 mM MgSO4 
40% (v/v) gycerol       1 mM EGTA 

pH 6.8 
 
 
1. Thaw high-salt purified tubulin:  _______mg in ________mL 
2. Add MgCl2 to 4 mM: __________L of 1M stock 
3. Add GTP to 1 mM: ____________L of 100 mM stock 
4. Incubate on ice 5 minutes 
5. warm to 37oC 
6. Add DMSO to 10% final concentration: _________L 
 *add in 2 steps, mix gently but thoroughly 
7. Incubate at 37oC for 45 minutes 
8. Warm 15mL high pH cushion in a 25 mL centrifuge tube to 37oC 
9. Layer MTs onto cushion (with cut 1mL pipette tip) 
10. Spin for 35 minutes in T865 rotor at 53,000 rpm (285,500 xg) at 37oC 
11. Dissolve 1mg of dye into 50L DMSO  
 (ie DyLight 650 NHS Ester, Prod #62265, Thermo Scientific) 
12. Warm 3 mL Labeling Buffer to 37oC 
13. After spin, remove the supernatant above the cushion 
14. Rinse supernatant-cushion interface 2 times (1mL each) with warm Labeling Buffer 
15. Remove cushion 
16. Resuspend pellet in 600L warm Labeling Buffer using cutoff large pipette tip 
 *keep tubulin warm during resuspension 
 *continue resuspending until no chunks of tubulin are visible 
17. Add the dye to the tubulin (should be 10-20 fold molar excess of dye to tubulin) 
 *can estimate tubulin concentration by assuming 70% recovery of starting tubulin 
18. Incubate at 37oC for 45 minutes 
 *gently vortex mixture every 2-3 minutes during labeling reaction 
 
19. Warm 1mL Quench to 37oC 
      Warm 5mL Low pH cushion in 10mL centrifuge tube to 37oC 
20. Add equal volume of Quench to labeling reaction and mix well 
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21. Incubate 5 minutes at 37oC 
22. Layer labeling reaction onto low pH cushion 
23. Centrifuge 35 minutes at 50,000 rpm (225,600 xg) in 50Ti rotor at 37oC 
24. Warm 3 mL 1x BRB-80 to 37oC 
25. Remove the supernatant from above the cushion 
26. Rinse the supernatant-cushion interface 2 times with 1 mL warm 1x BRB-80 
27. Remove cushion 
28. Rinse pellet with 1 mL warm 1x BRB-80 
29. Resuspend pellet in 800L of ice cold PEM-100 using cutoff large pipette tip 
30. Transfer resuspended chunks of the pellet to a small ice cold dounce (1-2mL 
volume) in an  ice cold water bath 
31. Resuspend pellet by gentle douncing until suspension is uniform 
 *continue douncing intermittently for total time of 30 minutes 
32. Spin depolymerized tubulin for 20 minutes at 71,000 rpm (227,000 xg) in small ultra 
at 4oC 
33. Transfer supernatant to a new tube and estimate volume: __________L 
34. Add:  BRB-80 to 1x:    __________L of 5x stock 
     MgCl2 to 4 mM: _________L of 1M stock 
     GTP to 1 mM:    _________L of 100 mM stock 
35. Incubate on ice for 5 minutes 
36. Warm to 37oC for 2 minutes 
37. Add ½ volume of glycerol (33% v/v final) and mix well 
38. Incubate 45 minutes at 37oC 
39. Warm 5 mL Low pH cushion in 10 mL cfuge tube to 37oC 
40. Layer MTs onto cushion 
41. Spin 35,000 rpm (110,600 xg) in 50Ti rotor at 37oC for 35 minutes 
42. Warm 4 mL 1x BRB-80 to 37oC 
43. After spin, remove supernatant above the cushion 
44. Rinse the supernatant-cushion interface 2 times with 1 mL 1x BRB-80 
45. Remove the cushion 
46. Rinse pellet 2 times with 1 mL 1x BRB-80 to remove residual glycerol 
47. Resuspend pellet in 300L ice cold PEM-100 using cut large pipette tip 
 *pellet should resuspend easily 
48. Transfer to dounce and homogenize in ice water slurry for 20-30 minutes 
49. Transfer to small ultra cfuge tubes 
50. Spin for 15 minutes at 144,400 xg in small ultra at 4oC 
51. Recover sup and bring to 5 mg/mL final concentration 
52. Aliquot and drop freeze in LN2 
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Calculate Protein Concentration: 
 
 
                  [A280 - (Amax x CF)]    
Protein Concentration (M) =  ____________________________  x  dilution factor 

εprotein 

 

εtubulin @ 280nm  = 115,000 M-1 cm-1 

CF = A280 of fluorophore / Amax of fluorophore 
 
 
 
Calculate Degree of Labeling: 
 
 
              Amax of labeled protein x dilution factor 
Moles dye per mole protein =    ______________________________________________________________ 

         εfluor x protein concentration (M) 
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B.3 Microtubule Polymerization 

 
1. Thaw aliquot of labeled and aliquot of unlabeled tubulin and put on ice 

*bring tubulin to final concentration of 5 mg/mL using PEM-100 (if not already at 5 
mg/mL) 

2. Mix tubulin at desired ratio of labeled:unlabeled  (typically use 25% labeled tubulin) 
3. Centrifuge 10 minutes at 4oC in small ultra centrifuge at 90,000 rpm (366,000 xg) to  
    remove tubulin aggregates 
4. Add supernatant to a new 1.5mL tube 
5. Add GTP to 1 mM final concentration 
6. Incubate 20 minutes at 37oC  
7. Add Taxol to 50 M 
8. Incubate 20 minutes at 37oC 
9. Spin 10 minutes at room temperature in tabletop centrifuge at 16,000 xg 
10. Discard supernatant 
11. Resuspend pellet in PEM-100 + 40 M Taxol (use cut pipette tip to minimize  
      shearing of microtubules) 
 
 
1:100 Microtubule Dilution for Use in Assays 
 

98 L PEM-100 
1 L 2 mM Taxol 
1 L 5mg/mL polymerized microtubules 
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B.4 Kinesin-1 Purification 

Day One: 
1. Transform kinesin DNA into Rosetta cells 
2. Make 400 mL TPM media in 1L flask: 
   8g Tryptone 
   6g Yeast Extract 
   1.6g NaCl 
   0.8g Na2HPO4 
   0.4g KH2PO4 
   Add dH2O to bring final volume to 395.6 mL and autoclave 

  *4 mL 20% Glucose     
*400 L 100 mg/ml Ampicillin *add to media after autoclaved (same day   
  growing cells) 
 

3. Make buffers if needed (sterile filter and store in 4oC) 
 
Lysis Buffer:   Wash Buffer:   Elution Buffer: 
50 mM NaPO4, pH 8.0 50 mM NaPO4, pH 6.0 50 mM NaPO4, pH 7.2 
250 mM NaCl   250 mM NaCl   500 mM Imidazole 

   1 mM MgCl2   250 mM NaCl 
       1 mM MgCl2 

 
Day Two: 
1.  First thing in the morning, make 5 mL starter culture: 
             5 mL TPM media 
             50 L 20% Glucose 
             5 L 100mg/ml Ampicillin 
             15 colonies from transformation plate 
2.  Incubate starter culture on 37oC shaker until culture is cloudy (approximately 2 hours) 
3.  Once starter culture is cloudy, add to 400 mL TPM media (*add glucose and 
ampicillin to TPM media) 
4.  Grow cells to OD 1-2 in TPM media (usually grow to about 1.7) 
5.  Let culture cool to room temperature 
6. Induce with IPTG (final concentration of 0.2 mM) 
7. Shake at room temp overnight 
 
Day Three: 
5.  Spin down cells for 10 minutes at 4oC, 5,000 rpm 
6.  Pour off supernatant, freeze pellet in -80oC for 1 hour 
 *pellet can also be left at -80oC for purification on a different day 
7.  Put pellet on ice and resuspend in 30mL cold Lysis Buffer (keep on ice during 
resuspension) 

        To Lysis buffer, add: 30 l 2mg/mL Aprotonin 
                30 l 2mg/mL Leupeptin 

      30 l 2mg/mL Pepstatin 
                             30 l Tween-20 
              150 l 100mM ATP 

8. Add 62mg Lysozyme 
9. Rock at 4oC for 20 minutes 
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10. Add 15ul DnaseI (Sigma) 
11. Sonicate 1 minute on ice (setting 3) 
12. Centrifuge 30 minutes, 4oC, 40,000xg (T865 rotor) 
 
Bead Equilibration: 
*put beads on rocker for ~30 minutes to get beads fully into solution before using 
1. Add 500ul Ni beads to 2mL tube, add 1.5mL Lysis Buffer, invert tube 10 times, spin 2 
min at 500xg, remove sup without disturbing bead bed 
2. Repeat for a total of 4 times 
 
13. Pour supernatant into 50mL conical tube (*20 L gel sample*) 
14. Add 620 l 1M Imidazole to supernatant 
15. Add some supernatant to beads, and bring back and forth to get beads into 
supernatant conical 
16. Incubate at 4oC on rocker for 1.5 hours 
 
 
Wash and Elution Buffers: 
 
Wash Buffer:   Elution Buffer:  PEM-100: 
25 mL Wash Buffer  2.5 mL Elution Buffer  12 mL PEM-100 
25 L 100mM ATP  2.5 L 100mM ATP  12 L 100 mM ATP 
 
17. Flow Lysate sup+beads through column (*gel sample of FT*) 
 *Lysate FT may be put in -80oC freezer and used for another purification 
18. Flow 25mL Wash Buffer (with ATP added) over column (*gel sample of FT*) 
19. Flow 150 L Elution Buffer+ATP over column and collect first fraction (*gel sample*) 
20. Flow 500 L Elution Buffer+ATP over column for fractions 2-5 (*gel samples*) 

*kinesin will usually be in fraction 2 
 
 
 

21. dot blot to verify fraction containing kinesin: 
 -with pencil, draw 5 circles on a piece of filter paper, label circles Elutions 1-5 
 -add 1 L of each fraction to respective circles 
 -stain with coomassie for 30 seconds 
 -destain 
 
Buffer Exchange: 
1. Remove top and bottom cap of NAP-5 column 
2. Allow buffer to completely drain by gravity flow 
3. Add 10 mL PEM-100+ATP and allow to completely enter gel bed 
4. Add 500 L of elution with protein (determined by dot blot) 
5. Put new 1.5 mL tube under column 
6. Add 1 mL PEM-100+ATP and collect eluate (*20 L gel sample*) 
 
Add 200 L 60% sucrose (10% final concentration) to buffer exchanged kinesin 
Aliquot 
Drop freeze in liquid nitrogen and store in -80oC 
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B.5 Coverslip Cleaning and Silanization 

 
Notes: *For both cleaning and silanization, use a glass box and metal coverslip racks. 

*Before coverslip cleaning, use alconox soap to thoroughly clean glass box and  
racks 
*In between EVERY step (even ddH2O water rinses), rinse box 3xs with tap 
water followed by 3xs with ddH2O 

 *Make sure that anything that comes in contact with silane is completely dry 
 
Coverslip Cleaning: 
 

1.  Immerse coverslips in 100% acetone for 1 hour 
2.  Immerse coverslips in 100% ethanol for 10 minutes 
3.  Rinse 2 times in ddH2O, 5 minutes each 
4.  Immerse coverslips in 0.1M KOH for 15 minutes (prepare just before use) 
 3.05g KOH into 500ml ddH2O 
5.  Rinse 3 times in ddH2O, 5 minutes each 
6.  Air dry coverslips overnight (cover racks with foil to prevent dust from landing on 
coverslips) 
7.  Rinse glass box with ddH2O and let dry overnight (cover) 
 
 
Silanization of Coverslips: 
 

1.  Once cleaned coverslips and glass box have dried completely, immerse in 2% DDS 
for 5 minutes (dimethyldichlorosilane solution, 2% w/v-GE Healthcare, PlusOne, Repel-
Silane ES, cat # 17-1332-01) 
2.  Use funnel to pour silane solution back in bottle for reuse 
3.  Immerse coverslips in 100% ethanol for 5 minutes 
4.  Immerse coverslips in fresh 100% ethanol for 5 minutes 
5.  Rinse coverslips 3 times in ddH2O 
6.  Air dry coverslips 
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B.6 GFP-Kinesin Single Molecule Assay 

5% Pluronic F127 
50 mg Pluronic F127 
1 mL PEM-100 
     *incubate overnight at 37oC to get into solution 
     *before each use, spin 1 minute @ 14,000xg, to remove aggregates 
      after spin, transfer sup to new tube (keep this), leaving ~100 L at bottom of tube 
 
Deoxy 
1.2 mg Glucose Oxidase (Sigma G-2133, stored in -20oC dessicator) 
 28.1 L Catalase (Sigma C-3155, stored in 4oC) 
 91.9 L ddH2O 

Store at 4oC, remake after 1 week 
 
2% Anti-Tubulin           0.5% Pluronic F127 
0.4 L 50% anti-tubulin antibody (Millipore, MAB1864)      22.5 L PEM-100 
9.6 L PEM-100           2.5 L 5% Pluronic F127 
          
1:100 Microtubules   PEM-Taxol Wash  1:100 GFP Kinesin 
98 L PEM-100   98 L PEM-100  98 L PEM-100 
1 L 2 mM Taxol   1 L 2 mM Taxol  1 L 1M DTT 
1 L 5mg/mL microtubules  1 L 1M DTT   1 L GFP-kinesin 
 
 
1. Clean slide with 70% ethanol and assemble chamber using silanized coverslip (do not 
clean 
    silanized coverslip with ethanol) and doublestick tape, creating a chamber that holds 
~10L 
2. Add 10 L 2% anti-tubulin antibody, incubate 5 minutes 
3. Add 10 L 5% Pluronic F127, incubate 5 minutes 
4. Add 10 L 1:100 Microtubules, incubate 10 minutes 
5. Add 10 L PEM-Taxol Wash 
6. Add 10 L  Motility Mix 
  X L PEM-100 
  2 L 0.5% Pluronic F127 
  0.5 L 1 mM Taxol 
  0.5 L 10 mg/mL BSA in PEM-100 
  1 L 1M DTT 
  X L 1:100 GFP-kinesin (typically use 1-2 L) 
  1 L 20 mM Mg-ATP 
  1 L 300 mg/mL Glucose 
  1 L Deoxy 
  -------------------------- 
  20 L final volume 
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B.7 Qdot Cargos 

 
430 nM Halo Kinesin 
X L PEM-100 
1 L 1M DTT 
X L Halo Kinesin (430 nM final concentration) 
------------------------- 
20 L final volume 
 
 
1:10:10 Kinesin:Ligand:Qdot Incubation 
*Before using Qdots, spin in tabletop centrifuge for 3 minutes at 5,000xg at 4oC 
 

1. Mix: 
2.1 L 430 nM Halo Kinesin 
9 L 1M PEG-biotin ligand 

2. Incubate at room temperature 10 minutes 
3. Add 9 L 1 M Qdots (take from top after they have been spun down) 
4. Mix and incubate at room temperature 10 minutes 
5. Incubate on ice 4-6 hours 
 *kinesin is now at 45 nM 
 *Qdots are now at 450 nM 
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B.8 Qdot Cargo Assays 

 
2% anti-tubulin antibody  1:100 Microtubules  PEM-Taxol 
0.4 mL anti-tubulin antibody  98 L PEM-100  98 L PEM-100 
9.6 mL PEM-100   1 L 2 mM Taxol  1 L 2 mM Taxol 
     1 L 5 mg/mL MTs  1 L 1M DTT 
 
 
Qdot-Kinesin 
X L PEM-100   *use 45 nM kinesin as starting concentration. For final 
kinesin  
1 L 1M DTT    densities on MT greater than or equal to 10 nM, use final  
X L Qdot-Kinesin*   concentration of 10 nM Qdot-Kinesin. For 1 or 5 nM final  
------------------------   densities, use final concentrations of 1 or 5 nM Qdot-
kinesin here) 
10 L final volume 
 
 
1. Clean slide with 70% ethanol and assemble chamber with silanized coverslip and 
doublestick tape 
2. Add 10 L 2% anti-tubulin, incubate 5 minutes 
3. Add 10 L 5% Pluronic F127, incubate 5 minutes 
4. Add 10 L 1:100 Microtubules, incubate 10 minutes 
5. Add 10 L PEM-Taxol Wash 
6. Add 10 L Qdot-Kinesin, incubate 10 minutes 
7. Add 10 L Motility Mix 
  X L PEM-100 
  2 L 0.5% Pluronic F127 
  0.5 L 1 mM Taxol 
  0.5 L 10 mg/mL BSA 
  1 L 1M DTT 
  X L Qdot-Kinesin (same final concentration as step 6) 
  X L Unlabeled Halo Kinesin* 
  1 L 10 mM ATP 
  1 L 300 mg/mL Glucose 
  1 L Deoxy 
  ----------------------------------- 
  20 L final volume 

*final concentration should be final 
kinesin density desired on MTs 
minus what was added as Qdot-
Kinesin in motility mix 
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B.9 Kinesin Motility on PEG Bundles 

 
1:10 MTs        5% PEG Bundles   0.5% Pluronic F127 
8.8 L PEM-100       19.5 L PEM-100   22.5 L PEM-100 
0.2 L 2 mM Taxol       0.5 L 2 mM Taxol   2.5 L 5% F127 
1 L 5 mg/mL Microtubules      25 L 10% PEG, mw 40,000 
         5 L 1:10 Microtubules 
                  Incubate at 37oC, 10 minutes 
 
 
2% Anti-Tubulin Antibody PEM-Taxol+5% PEG   1:500 GFP-Kinesin 
0.4 L YL1/2 tubulin abody 22 L PEM-100   247 L PEM-100 
9.6 L PEM-100  0.25 L 2 mM Taxol   2.5 L 1M DTT 
    0.25 L 1M DTT   0.5 L GFP-kinesin 
    2.5 L 50% PEG, mw 40,000     *make up right  
             before addition to 
             motility mix* 
 
 
1. Clean glass slide with 70% ethanol and assemble chamber with silanized coverslip 
and 
    doublestick tape 
2. Add 10 L 2% anti-tubulin antibody, incubate 5 minutes 
3. Add 10 L 5% Pluronic F127, incubate 5 minutes 
4. Add 10 L 5% PEG microtubule bundles, incubate 10 minutes 
5. Add 10 L PEM-Taxol+5% PEG 
6. Add 10 L Motility Mix 
  X L PEM-100 
  2 L 0.5% Pluronic F127 
  0.5 L 1 mM Taxol 
  0.5 L 10 mg/mL BSA in PEM-100 
  1 L 1M DTT 
  2 L 50% PEG, mw 40,000 
  X L 1:500 GFP-kinesin (typically use approximately 0.5 L) 
  1 L 10 mM ATP 
  1 L 300 mg/mL Glucose 
  1 L Deoxy 
  ---------------------------------- 
  20 L final volume 
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B.10 Kinesin Motility on MAP65 Bundles 

 
1:10 MTs     2% MAP65 Bundles    
8.8 L PEM-100    X L PEM-100     
0.2 L 2 mM Taxol    0.45 L 2 mM Taxol    
1 L 5 mg/mL Microtubules   X L MAP65 (112 nM final concentration) 
      4.5 L 1:10 Microtubules 
      ---------------------------------- 
      45 L final volume 
           Incubate at 37oC, 10 minutes 
 
 
2% Anti-Tubulin Antibody   PEM-Taxol+2% MAP65    
0.4 L YL1/2 tubulin antibody   X L PEM-100    
9.6 L PEM-100    0.45 L 2 mM Taxol    
      0.45 L 1M DTT    
      X L MAP65 (112 nM final concentration) 
      
                 
       
0.5% Pluronic F127    1:100 GFP-Kinesin 
22.5 L PEM-100    98 L PEM-100 
2.5 L 5% F127    1 L 1M DTT 
      1 L GFP-kinesin 
 
 
1. Clean glass slide with 70% ethanol and assemble chamber with silanized coverslip 
and doublestick tape 
2. Add 10 L 2% anti-tubulin antibody, incubate 5 minutes 
3. Add 10 L 5% Pluronic F127, incubate 5 minutes 
4. Add 10 L 2% MAP65 microtubule bundles, incubate 10 minutes 
5. Add 10 L PEM-Taxol+2% MAP65 
6. Add 10 L Motility Mix 
  X L PEM-100 
  2 L 0.5% Pluronic F127 
  0.5 L 1 mM Taxol 
  0.5 L 10 mg/mL BSA in PEM-100 
  1 L 1M DTT 
  X L MAP65 (112 nM final concentration) 
  X L 1:100 GFP-kinesin (typically use approximately 0.5 L) 
  1 L 10 mM ATP 
  1 L 300 mg/mL Glucose 
  1 L Deoxy 
  ---------------------------------- 
  20 L final volume 
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B.11 Cad Cell Culture 

 
DMEM/F12 Media (Gibco, 12400-024) 
 

1.  Add entire packet of powder to 1 L flask (rinse packet with ddH2O to get all powder 
into beaker) 
2.  Add 1.2g of NaHCO3 
3.  Bring volume to ~890 mL with ddH2O 
4.  Add 10mL 100x antibiotic/antimycotic 
5.  pH to 7.3 with NaOH or HCl 
6.  Bring final volume to 900mL with ddH2O 
7.  Add 100mL serum (or dH2O for (-) serum media) 
7.  Filter sterilize in hood 
 
Splitting Cad Cells 
 

1.  Add 4.5 mL DMEM/F12 media + 10% serum to 25cm2 T-flask (Becton-Dickinson, 35-
3082) 
2.  Put T-flask with media in incubator for 5-10 minutes 
3.  Using 1 mL pipette, pipette cells up and down against surface to get all cells in 
solution 
4.  Add 0.5 mL cells to new flask 
5.  Split cells every 3-4 days (ie Monday and Friday) 
 
Plating Cad Cells for Differentiation 
 

1. Plate 20,000-40,000 cells per glass bottom dish (In Vitro Scientific, 35mm Dish with 
20mm Bottom Well, D35-20-1.5-N) in DMEM/F12 media + 10% serum 
2.  Allow cells to adhere to surface 
3.  Rinse cells 2 times in DMEM/F12 (-) serum media 
4.  Add 2 mL DMEM/F12 (-) serum media 
5.  Allow cells to grow processes for 2-3 days 
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B.12 Cad Cell Membrane Extraction 

 

Adapted from: Sivaramakrishnan and Spudich. 2009. Coupled myosin VI motors 
facilitate unidirectional movement on an F-actin network.  JCB. 187: 53-60. 
 
 
Extraction Buffer 
50 mM Imidazole, pH 6.8 
50 mM KCl 
0.5 mM MgCl2 
0.1 mM EDTA 
1 mM EGTA 
50 M Taxol 
1% Triton X-100 
4% PEG, mw 40,000 
 
1.  Wash cells gently with 85% PBS, 2 times 
2.  Add 150 L Extraction Buffer to well in plate with differentiated cells, let sit 4 minutes 
3.  Add 150 L 85% PBS + 50 M Taxol solution to well, let sit 45 minutes 
4.  Rinse cells with PEM-100 + 50 M Taxol + 1 mg/mL BSA solution, let sit 5 minutes 
5.  Add 150 L motility mix with final concentration of 1 mg/mL BSA 
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B.13 Kinesin-1 Gliding Assay 

 
Chamber Wash  1:100 Microtubules         Activation Mix 
22.5 L PEM-100  98 L PEM-100   45.5 L PEM-100 
25 L 10 mg/mL BSA  1 L 2 mM Taxol   0.5 L 2 mM Taxol 
     (In PEM-100)  1 L 5 mg/mL MTs        1 L 1M DTT 
1.5 L 2mM Taxol       1 L 100 mM Mg-ATP 
1 L 1M DTT        1 L 300 mg/mL Glucose 
         1 L deoxy 
 
 
1. Clean coverslip and slide with 70% ethanol and assemble chamber with double stick 
tape 
2. Add 10 L purified kinesin to chamber, incubate 5 minutes 
3. Add 10 L Chamber Wash to chamber 
4. Add 10 L 1:100 Microtubule dilution to chamber, incubate 2 minutes 
5. Add 10 L Activation Mix to chamber 
6. Image microtubules 
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