
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Dissertations Dissertations and Theses

9-1-2013

Online Management of Resilient and Power
Efficient Multicore Processors
Rance Rodrigues
University of Massachusetts - Amherst, rance.rodrigues@gmail.com

Follow this and additional works at: http://scholarworks.umass.edu/open_access_dissertations

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Rodrigues, Rance, "Online Management of Resilient and Power Efficient Multicore Processors" (2013). Dissertations. Paper 830.

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/open_access_dissertations/830?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ONLINE MANAGEMENT OF RESILIENT AND POWER
EFFICIENT MULTICORE PROCESSORS

A Dissertation Presented

by

RANCE RODRIGUES

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2013

Department of Electrical and Computer Engineering

c© Copyright by Rance Rodrigues 2013

All Rights Reserved

ONLINE MANAGEMENT OF RESILIENT AND POWER
EFFICIENT MULTICORE PROCESSORS

A Dissertation Presented

by

RANCE RODRIGUES

Approved as to style and content by:

Israel Koren, Co-chair

Sandip Kundu, Co-chair

Russell Tessier, Member

Prashant Shenoy, Member

C.V. Hollot, Department Chair
Department of Electrical and Computer Engi-
neering

To my parents, my brother and my dearest wife.

ACKNOWLEDGMENTS

I am deeply grateful to a number of individuals who have encouraged, supported,

mentored and guided me during my pursuit of a M.Sc. and then a Ph.D. Without

this, my experience might not have been as memorable as it has been.

Firstly, I would like to offer my gratitude to my Advisor, Professor Sandip Kundu

who directed both my M.Sc. thesis and my Ph.D. dissertation from Fall 2007 to Sum-

mer 2013. He has been a great inspiration and a wonderful mentor and teacher. He

always made himself available, be it during a usual working day or a weekend, espe-

cially the one preceding a conference paper submission deadline. He always inspired

enthusiasm and led by example. His passion for quality research and publications

has left an everlasting impression on me. I still remember the first time I approached

a large scale C++ project. I was merely a rookie at the time, yet to master my

first program on linked lists. He took the time to sit down with me and explain to

me basic coding standards, coding styles and even reviewed my initial attempts at

coding. I made several mistakes, but he always encouraged me. Eventually, we ended

up coding an optical lithography simulator in C++ spanning more than 10K lines in

less than a year. This simulator was part of my M.Sc. thesis and after that, I have

never looked back.

I would also like to thank my second Advisor, Professor Israel Koren. Professor

Koren was a member on my M.Sc. thesis committee and we got acquainted during the

start of my Ph.D. Even Professor Koren always made himself available, weekday or

weekend. I still remember the first time when we were trying to submit a paper to a

major conference and he came down to my office space in the middle of a Saturday to

make sure that the experimental results were as expected. This has happened several

v

times. I also greatly appreciate the times he provided much needed criticism and

useful tips to help improve upon my mistakes. I can attribute all my accomplishments

(publications, awards etc.) to Professor Sandip Kundu and Professor Israel Koren and

will forever be in their debt.

I also offer my thanks to Dr.Susan Bronstein who was the Director of the Learning

Resource Center (LRC) here at UMass. It is always an interesting experience working

with people with a different expertise and Susan was no exception. I worked at the

LRC as a technical assistant and helped develop web pages and managed databases

for Susan. The fact that I have no loans to pay for my M.Sc. studies is all attributed

to Susan who offered me a Graduate Assistantship during my study. Thank you for

everything, for the wonderful working relationship and for the time you offered me a

jacket to help me get through my first New England Winter of which I obviously had

no clue in Fall 2007. I really appreciate everything.

There have also been many other people that have helped, mentored and supported

me during my Ph.D. I will go in chronological order. I would like thank Aswin for his

help and mentoring in setting up the optical lithography simulator during my M.Sc.

He was instrumental in inspiring me and teaching me several things about computer

programming. I also appreciate the help that Omer extended during the brief time

he was here at UMass. He was the one who helped me setup the SESC architectural

simulator and the benchmarks. My initial learning curve was made very short indeed

thanks to the readme’s and hints that he left in the code. I would also like to thank

him very much for those endless conversations over the phone after he graduated

in the effort to come up with that next awe inspiring computer architecture. His

motivation and determination continue to inspire me to this day.

I am also very lucky to have met friends like Neha and Hari who were always there

for me when I was down mentally or my progress hindered by segmentation faults.

Thank you Neha and Hari for those tennis and the coffee sessions. Thank you Neha

vi

for lending your car in the pursuit of my first US drivers license. Thank you for those

car rides to Hampshire college tennis and swimming classes. Both of you have made

a significant contribution in making my experience as a student a memorable and

enjoyable one.

I would also like to thank my lab mates Anup, Arunachalam, Sudarshan, Arunk-

umar, Bharath and Nithesh. I will never forget those long walks to the Computer

Science Department for that delicious coffee. Arunachalam was always there to help

with code snippets or writing portions of research papers. I still remember the time

when we spent the whole night writing a paper that was due the next morning. Your

persistence and ideas were of great help. Thank you for the support you provided by

sitting through rehearsals for my presentations. Your feedback and timely support

was the reason behind the few awards that I bagged and the several publications we

authored together.

I would also like to thank my brother and my parents for their support during the

last 6 years. I would like to offer special thanks to my brother Richard and his wife

Amoli for their support without which I would never have achieved whatever I have

to date. Thank you both for persisting with me and believing in me. Thank you for

those long talks on the phone regarding the GRE and potential Universities to apply

to. Thank you for helping me whenever I needed a code review or advice during the

initial stages of my graduate career. This Ph.D. degree is attributed to your support

and belief in me. I don’t think I will ever be able to thank you enough.

I would like to thank my parents-in-law and sister-in-law who have supported and

loved me unconditionally. Thank you for being there to listen to my pitches and

calling me before every competition and even making an effort to watch me present

my dissertation defense.

I would like to thank Hope Crolius, a wonderful neighbor and a dear friend who

has been an angel to my wife and me in the past 2 years. Thank you for letting us

vii

use your truck, for the wonderful gifts, plants and so many other things that I cannot

say enough. You have truly been part of all our happy moments.

Last but by no means the least, I would like to thank my wife Linzy. She has been

with me through the ups and downs and has always been supporting and advising

me. Thank you for helping me decide that pursuing a Ph.D. was the way to go for

me. I can’t tell you enough how important that discussion was. The way things

worked out, I am extremely happy and satisfied with what I have done for the last

6 years and this would not have happened without your timely advice and support.

Lastly, a special thank you for your continued patience during the time in which this

dissertation was written.

I would also like to thank the Computer Science department staff for the numerous

times that they provided me with change for the coffee machine. Your role has been

indispensable in my pursuit of a Ph.D. I would also like to thank UMass for the

wonderful opportunity that it has provided me with. I have come out of Graduate

school with a M.Sc. and a Ph.D. and no loans to show for these achievements. UMass

has the best opportunities for Graduate student’s via research, teaching and project

assistantships. Thank you UMass! I will miss you and all the wonderful people here

at the visually pleasing Amherst. Here’s to the beginning of a new life.

viii

ABSTRACT

ONLINE MANAGEMENT OF RESILIENT AND POWER
EFFICIENT MULTICORE PROCESSORS

SEPTEMBER 2013

RANCE RODRIGUES

B.E.E, MUMBAI UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren and Professor Sandip Kundu

The semiconductor industry has been driven by Moore’s law for almost half a

century. Miniaturization of device size has allowed more transistors to be packed into

a smaller area while the improved transistor performance has resulted in a significant

increase in frequency. Increased density of devices and rising frequency led, unfortu-

nately, to a power density problem which became an obstacle to further integration.

The processor industry responded to this problem by lowering processor frequency

and integrating multiple processor cores on a die, choosing to focus on Thread Level

Parallelism (TLP) for performance instead of traditional Instruction Level Parallelism

(ILP).

While continued scaling of devices have provided unprecedented integration, it

has also unfortunately led to a few serious problems:

The first problem is that of increasing rates of system failures due to soft errors

and aging defects. Soft errors are caused by ionizing radiations that originate from

ix

radioactive contaminants or secondary release of charged particles from cosmic neu-

trons. Ionizing radiations may charge/discharge a storage node causing bit flips which

may result in a system failure.

In this dissertation, we propose solutions for online detection of such errors in

microprocessors. A small and functionally limited core called the Sentry Core (SC) is

added to the multicore. It monitors operation of the functional cores in the multicore

and whenever deemed necessary, it opportunistically initiates Dual Modular Redun-

dancy (DMR) to test the operation of the cores in the multicore. This scheme thus

allows detection of potential core failure and comes at a small hardware overhead. In

addition to detection of soft errors, this solution is also capable of detecting errors

introduced by device aging that results in failure of operation. The solution is further

extended to verify cache coherence transactions.

A second problem we address in this dissertation relate to power concerns. While

the multicore solution addresses the power density problem, overall power dissipation

is still limited by packaging and cooling technologies. This limits the number of

cores that can be integrated for a given package specification. One way to improve

performance within this constraint is to reduce power dissipation of individual cores

without sacrificing system performance. There have been prior solutions to achieve

this objective that involve Dynamic Voltage and Frequency Scaling (DVFS) and the

use of sleep states. DVFS and sleep states take advantage of coarse grain variation

in demand for computation. In this dissertation, we propose techniques to maximize

performance-per-power of multicores at a fine grained time scale. We propose multiple

alternative architectures to attain this goal.

One of such architectures we explore is Asymmetric Multicore Processors (AMPs).

AMPs have been shown to outperform the symmetric ones in terms of performance

and performance-per-Watt for a fixed resource and power budget. However, effective-

ness of these architectures depends on accurate thread-to-core scheduling. To address

x

this problem, we propose online thread scheduling solutions responding to changing

computational requirements of the threads.

Another solution we consider is for Symmetric Multicore processors (SMPs). Here

we target sharing of the large and underutilized resources between pairs of cores.

While such architectures have been explored in the past, the evaluations were in-

complete. Due to sharing, sometimes the shared resource is a bottleneck resulting in

significant performance loss. To mitigate such loss, we propose the Dynamic Voltage

and Frequency Boosting (DVFB) of the shared resources. This solution is found to

significantly mitigate performance loss in times of contention.

We also explore in this dissertation, performance-per-Watt improvement of indi-

vidual cores in a multicore. This is based on dynamic reconfiguration of individual

cores to run them alternately in out-of-order (OOO) and in-order (InO) modes adapt-

ing dynamically to workload characteristics. This solution is found to significantly

improve power efficiency without compromising overall performance.

Thus, in this dissertation we propose solutions for several important problems to

facilitate continued scaling of processors. Specifically, we address challenges in the

area of reliability of computation and propose low power design solutions to address

power constraints.

xi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . ix

LIST OF TABLES . xviii

LIST OF FIGURES . xx

CHAPTER

1. INTRODUCTION . 1

2. ONLINE TESTING OF MULTICORES . 8

2.1 Introduction . 8

2.1.1 Solving the reliability problem . 8

2.2 Online Testing of the Execution Core . 9

2.2.1 Related work . 11
2.2.2 The proposed solution . 13

2.2.2.1 The Sentry Core (SC) . 13
2.2.2.2 Fault detection strategies . 16
2.2.2.3 Fault detection algorithm . 17

2.2.3 Evaluation framework . 18
2.2.4 Results . 19

2.2.4.1 Fault detection latencies . 20
2.2.4.2 Fault coverage . 24
2.2.4.3 Effect of number of branches committed before

signature comparison . 25

2.2.5 Conclusions . 25

xii

2.3 Cache Coherence Protocol Verification using the Sentry Core 26

2.3.1 Related work . 27
2.3.2 The proposed solution . 28

2.3.2.1 General working . 29
2.3.2.2 Mapping cache access transactions in hardware 31
2.3.2.3 Putting it all together . 32
2.3.2.4 Mathematical upper bound on the number of

transactions that may be logged and verified 34

2.3.3 Experimental setup . 35
2.3.4 Results . 35

2.3.4.1 Unlimited SC cache size . 36
2.3.4.2 Realistic SC cache size . 39

2.3.5 Conclusions . 44

3. IMPROVING POWER EFFICIENCY IN ASYMMETRIC
MULTICORES . 45

3.1 Related Work . 46

3.1.1 AMP architectures . 46
3.1.2 Thread scheduling in AMPs . 47

3.2 Improving the Performance/Watt of Asymmetric Multicores via
Phase Classification and Adaptive Core Morphing 48

3.2.1 Overview of the solution . 48
3.2.2 The proposed solution . 50
3.2.3 Determining the core parameters . 52

3.2.3.1 Benchmarks . 52
3.2.3.2 Core sizing . 52

3.2.4 Performance/Watt and performance evaluation 56

3.2.4.1 Impact of program phases . 58

3.2.5 Dynamic Online Reconfiguration . 60

3.2.5.1 The rule based dynamic core morphing (RDCM)
mechanism . 60

3.2.5.2 The phase classification based dynamic core
morphing (PCDCM) scheme . 63

xiii

3.2.5.3 Putting it all together . 69

3.2.6 Evaluation . 70

3.2.6.1 Baseline modes considered . 71
3.2.6.2 Performance/Watt analysis over the baselines 72
3.2.6.3 Overheads vs. benefits . 79

3.2.7 Determination of phase classification parameters 82
3.2.8 ITV vector length vs. performance/Watt benefits 85
3.2.9 Conclusions . 85

3.3 Scalable Thread Scheduling in Asymmetric Multicores for Power
Efficiency . 87

3.3.1 Methodology . 88
3.3.2 Performance/Watt analysis of

the two core types . 89
3.3.3 Dynamic Thread Scheduling . 90

3.3.3.1 Determining program affinity to a core online 91

3.3.4 Using performance counters to determine thread to core
affinity . 91

3.3.4.1 Performance / Power Modeling . 92
3.3.4.2 The complete thread scheduling framework 96

3.3.5 Evaluation . 98

3.3.5.1 Baseline configurations considered 99
3.3.5.2 Performance per watt analysis over the baselines 99

3.3.6 Conclusions . 104

4. IMPROVING THE POWER EFFICIENCY IN SYMMETRIC
MULTICORES . 106

4.1 Related work . 109

4.1.1 Sharing resources to improve yield and fault tolerance 110
4.1.2 Sharing resources for improving performance/

performance-per-Watt . 110
4.1.3 The AMD BulldozerTMarchitecture . 111

4.2 Shared Resource Multicore Architecture . 112

xiv

4.2.1 Preliminaries . 112

4.2.1.1 Sharing the FP ISQ and execution unit
(S FP QX) . 112

4.2.1.2 Sharing the FP execution unit only (S FP X) 112
4.2.1.3 Sharing the FP execution units as well as the integer

divide and multiply units (S FP INT) 113

4.3 Experimental setup . 113
4.4 Analysis of resource sharing in single threaded processors 115

4.4.1 Performance and performance/Watt results 115

4.4.1.1 Sharing the FP ISQ and execution units
(S FP QX) . 116

4.4.1.2 Sharing only the FP units (S FP X) 118
4.4.1.3 Extending the sharing to include INT divide and

multiply units (S FP INT) . 122

4.5 Analysis of sharing in SMT processors . 123

4.5.1 Performance analysis . 123

4.5.1.1 The S FP X and S FP INT architectures 124
4.5.1.2 S FP QX . 124

4.5.2 Performance/Watt analysis . 126

4.5.2.1 S FP X and S FP INT. 126
4.5.2.2 S FP QX . 127

4.6 Dynamic Frequency Boosting (DFB) and Dynamic Voltage and
Frequency Boosting (DVFB) . 127

4.6.1 Static Voltage Frequency Scaling . 130

4.6.1.1 Performance analysis . 130
4.6.1.2 Performance/Watt analysis . 131

4.6.2 Dynamic Voltage Frequency Scaling . 132

4.6.2.1 Switching between NM and HFM/HVFM 132

4.6.3 Performance and performance/Watt analysis when using the
proposed DFB or DVFM schemes . 137

4.6.3.1 Performance analysis . 137

xv

4.6.3.2 Performance/Watt analysis . 140
4.6.3.3 Percentage of execution time spent in the boosted

modes . 141

4.7 Implementing the dynamic boosting mechanisms . 143

4.7.1 Power overheads . 143
4.7.2 Performance overheads . 144

4.7.2.1 Cycles lost during operating mode transition 144
4.7.2.2 Synchronization between the VFI’s 144

4.8 Area savings . 145

4.8.1 Area savings based on literature . 145
4.8.2 Area savings as calculated by McPAT [63] 146
4.8.3 Area and power estimation of the on-chip voltage

regulator . 147

4.9 Conclusions . 147

5. IMPROVING POWER EFFICIENCY WITHIN INDIVIDUAL
CORES IN MULTICORES . 149

5.1 Related work . 152

5.1.1 Morphable or dynamic multicores . 152

5.2 Proposed Approach . 153

5.2.1 Architectural Details . 153
5.2.2 Implementation Details . 156

5.2.2.1 ED2P prediction mechanism . 156
5.2.2.2 Capturing Application Phase behaviour 160
5.2.2.3 Switching between OOO and InO modes 161
5.2.2.4 Morphing overheads . 162

5.3 Results and Analysis . 163

5.3.1 Trade-off analysis between energy savings and performance
loss . 164

5.3.2 Number of switches and time spent in InO mode 167
5.3.3 Benefits of core morphing in terms of performance/Watt 167

5.4 Conclusions . 168

xvi

6. FUTURE DIRECTIONS . 169

6.1 Error resilient processors . 169
6.2 Power efficient processors . 169

6.2.1 Thread scheduling in AMPs . 169
6.2.2 Resource sharing in multicores . 170
6.2.3 Polymorphic processors . 170

BIBLIOGRAPHY . 171

xvii

LIST OF TABLES

Table Page

2.1 Core parameters. 18

2.2 Chosen core parameters . 35

2.3 Minimum SC cache size required for ≈100% transaction coverage
when using general-purpose cores with L1 cache 32K 42

3.1 Parameter variation steps for the experiments . 53

3.2 Core configurations after the sizing experiments . 54

3.3 Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined) . 54

3.4 Chosen core parameters . 89

3.5 Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined, PP - Partially pipelined) . 89

3.6 Power and performance estimation of the other core using the
performance counters of the current core. L2m - L2 miss, TLBm
- TLB miss, S - Dispatch Stalls, F - # Fetched instructions 96

3.7 Online power estimation for the host core using its own performance
counters. L2m - L2 miss, TLBm - TLB miss, S - Dispatch Stalls,
F - # Fetched instructions . 96

4.1 Chosen core parameters. 113

4.2 Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined, PP - Partially pipelined) . 113

4.3 Characteristics of the considered workloads . 113

xviii

4.4 Workloads considered for the experiments where each core runs two
threads. The + sign between workloads indicates that they are
run on the same core and the is used as separator to indicate
what is run on cores 1 and 2. 114

4.5 The voltage and frequency levels considered for the two cores. 129

5.1 Power and performance estimation of the other mode using the
performance counters’ values in the current mode. L1h - L1 Hit,
Bmp- branch miss prediction, S - Store, L- Load, DS- Dispatch
Stall . 159

5.2 Baseline OOO core parameters considered. The values in parenthesis
represent the change while in InO mode. 163

5.3 Execution unit specifications for the baseline core. (P - Pipelined, NP
- Not pipelined, PP - Partially pipelined).The values within
parenthesis represent the change while in InO mode 163

5.4 number of switches per million instructions and percentage time
spent by benchmarks in morphed mode . 166

xix

LIST OF FIGURES

Figure Page

1.1 Trends in the number of transistors, operating frequency and power
dissipation in Intel CPUs. Figure courtesy4 . 2

1.2 Trends in the threshold voltage variability and soft error rates as a
function of scaling. Figures have been recreated using data
available in [8]. 2

2.1 The Sentry Core (SC) in a Multicore Processor . 10

2.2 Steps followed for online test by the SC . 14

2.3 An illustration of the fault detection mechanism . 17

2.4 The instruction distribution of the workloads used in the experiments.
Each workload was run for 10 million instructions. 19

2.5 The distribution of the detected faults as a function of the detection
latency for ammp. 20

2.6 The distribution of the detected faults as a function of the detection
latency for gcc. 21

2.7 The distribution of the detected faults as a function of the detection
latency for mcf. 21

2.8 Average detection latencies for data and control faults for all eight
benchmarks. 22

2.9 Data and control fault coverage for the benchmarks. 23

2.10 Effect of checking interval on fault detection latency. Data shown is
averaged for all considered benchmarks. 24

2.11 A Sentry Core (SC) in a shared memory multicore. 27

xx

2.12 Mapping cache transactions for each core in the SC cache. 31

2.13 Working example of transaction logging and retirement. The state
verifications are indicated by a star alongside the state in the SC
cache and any new state updates are indicated by italics font. 33

2.14 Fraction of transactions verified for various cache sizes when using
unlimited SC cache size. 36

2.15 Maximum size of the SC cache required such that all possible
transactions seen on the bus are verified. 38

2.16 Percentage of transactions that involve sharing cache lines amongst
cores for each workload and various general-purpose core cache
sizes. 39

2.17 Percentage of transactions unverified for the workload barnes for
various combinations of SC and general-purpose core cache
sizes. 40

2.18 Percentage of transactions unverified for the workload chokesly for
various combinations of SC and general-purpose core cache
sizes. 40

2.19 Percentage of transactions unverified for the workload ocean for
various combinations of SC and general-purpose core cache
sizes. 41

2.20 Sensitivity of the coverage of the proposed scheme to the number of
cores in the CMP for the workloads barnes, ocean and raytrace. 43

3.1 Baseline configuration for two heterogeneous cores. 49

3.2 Morphed configuration for two heterogeneous cores. The red dotted
lines/boxes indicate the connectivity for the strong morphed core
configuration and the black solid lines/boxes indicate connectivity
for the weak core. 51

3.3 Instruction composition of the 38 benchmarks when run for 5 billion
instructions. 53

3.4 Ratio of the IPC for the core configurations when going from lower to
higher sizes of ROB. 55

xxi

3.5 IPC/Watt and IPC for the 38 benchmarks considered when run on
each core configuration for 5 billion instructions. 57

3.6 Zoomed view of variations in the performance/Watt of epic when run
on each core configuration. 58

3.7 Zoomed view of variations in the performance/Watt of fft when run
on each core configuration. 59

3.8 AMP reconfiguration conditions for RDCM scheme. 62

3.9 Performance sensitivity analysis for determining window size and
history depth. 63

3.10 Online recording of application behavior via hardware counters and
phase table as done by Khan et al. in [46]. 64

3.11 Flowchart of Phase Classification algorithm. 66

3.12 Extending the phase table with IPC and Power entries for each core
in the AMP. Note that the number of instruction types in the
ITV vector has been reduced from 9 to 4. 67

3.13 Elements of the proposed PCDCM working together. The part of the
algorithm controlled by the software layer (Microvisor) is
indicated by the dotted red rectangle. 70

3.14 IPC/Watt improvement of the PCDCM scheme over the static and
swap only baselines for a subset of the workload combinations. 73

3.15 IPC/Watt improvement of the PCDCM scheme over the HMG and
RDCM baselines for a subset of the workload combinations. 74

3.16 Average, maximum and minimum IPC/Watt improvement of the
PCDCM scheme over the various baselines. 77

3.17 Weighted, geometric and harmonic IPC/Watt improvement over the
static baseline for increasing overhead for dynamic online
learning. 81

3.18 Sensitivity of the phase classification quality metrics to increasing
interval length (n). Note that the results for combinations of
phase classification parameters with the same interval length have
been averaged. 83

xxii

3.19 IPC/Watt improvement for various interval sizes. Note that the
results for combinations of phase classification parameters with
the same interval length have been averaged. 85

3.20 %Program unclassified and % standard deviation in IPC when using
a 9 entry and 4 entry ITV. It can be seen that quality only
degrades a little with respect to standard deviation in IPC. 86

3.21 Instruction distribution and IPC/Watt for the 38 benchmarks
considered when run on each core type for 1 billion
instructions. 90

3.22 Correlation of various performance counters in one core to the
observed IPC on the other core. 94

3.23 Correlation of various performance counters in one core to the power
consumed by the other core. 94

3.24 The thread scheduling flowchart. 97

3.25 IPC/Watt improvement of the proposed scheme against the Static
baseline. 100

3.26 IPC/Watt improvement of the proposed scheme against the
O Learning baseline. 100

3.27 IPC/Watt improvement of the proposed scheme against the G Oracle
baseline. 101

3.28 Speedup of the proposed scheme against the Static, O Learning and
the G Oracle schemes. 101

4.1 Overview of the studied resource sharing. ISQ = issue queue, FP =
floating-point, INT = integer. 108

4.2 The instruction distribution of the various workloads when run for
500 million instructions. The average over all workloads is also
shown. 115

4.3 Performance of the Big and Small cores resulting from the sharing of
the FP ISQ and execution units (S FP QX) between the cores
relative to a dual-core that does not share them for various
communication latencies (between zero to two cycles). 116

xxiii

4.4 Performance/Watt of the Big and Small cores resulting from the
sharing of the FP ISQ and execution units (S FP QX) between
the cores relative to a dual-core that does not share them for
different (zero to two cycles) communication latencies between the
cores and the shared units. 117

4.5 Performance of the Big and Small cores due to sharing of the FP
execution units (S FP X) relative to a dual-core that does not
share them, for different communication latencies. The different
bars correspond to various round-trip communication latencies
(zero to two cycles) between the cores and the shared units. 120

4.6 Performance/Watt of the Big and Small cores due to sharing of the
FP execution units (S FP X) relative to a dual-core that does not
share them, for different communication latencies. The different
bars correspond to various round-trip communication latencies
(zero to two cycles) between the cores and the shared units. 121

4.7 Performance and performance/Watt of the Big core and Small core in
S FP X and S FP INT configurations relative to a dual-core that
does not share resources for various communication latencies 123

4.8 Performance of the Big and Small cores in the S FP QX, S FP X,
S FP INT configurations relative to the baseline for various
communication latencies. Two threads were run on each core. 123

4.9 Performance/Watt of the Big and Small cores in the S FP QX,
S FP X and S FP INT configurations relative to a dual-core that
does not share resources for various communication latencies.
Two threads were run on each core. 126

4.10 The performance of the three resource sharing designs of the Small
core relative to the design that does not share resources, for
various workloads when operated in the NM, HFM and HVFM.
Latency of zero cycles was considered. 130

4.11 The performance/Watt of the three resource sharing designs of the
Small core relative to the design that does not share resources, for
various workloads when operated in the NM, HFM and HVFM.
Latency of zero cycles was considered. 131

4.12 The occupancy of the unit with the highest occupancy of all the
shared units, over intervals of 500 cycles for the workload
flops fbench when running on the Small core in S FP INT
configuration. 132

xxiv

4.13 A high level view of the feedback control mechanism that may be
used to control the voltage and frequency of the VFI containing
the shared resources. 133

4.14 Setting IntLen and HisD. The x-axis is read as IntLen HisD. The
thresholds were constant during these experiments and were set
to: upper = 85%, lower = 50%. The relative performance/Watt is
shown on the primary y-axis while the number of switches in
mode is shown on the secondary y-axis. 135

4.15 Relative performance of the Small core in the S FP X, S FP QX and
S FP INT configurations for various communication latencies
when run using DFB. Results presented are summarized over all
workloads for both the single threaded and SMT workloads. 137

4.16 Relative performance of the Small core in S FP X, S FP QX and
S FP INT configurations in NM, DFB and DVFB for
communication latency of one cycle when run using DFB. Results
presented are summarized over all workloads for both the single
threaded and SMT workloads. 138

4.17 Relative performance/Watt of the Small core in S FP X, S FP QX
and S FP INT configurations for various communication latencies
when run using DFB. Results presented are summarized over all
workloads for both the single threaded and SMT workloads. 139

4.18 Relative performance/Watt of the Small core in S FP X, S FP QX
and S FP INT configurations in NM, DFB and DVFB for
communication latency of one cycle when run using DFB. Results
presented are summarized over all workloads for both the single
threaded and SMT workloads. 141

4.19 Proportion of total execution time spent in boosted mode for the
S FP X, S FP QX and S FP INT configurations running single
threaded workloads. The Small core was run using DFB and
communication latency was set to one cycle. The average is also
shown. 142

4.20 Proportion of total execution time spent in boosted mode for the
S FP X, S FP QX and S FP INT configurations running SMT
workloads. The Small core was run using DFB and
communication latency was set to one cycle. The average is also
shown. 142

xxv

4.21 Floorplan of the Intel Nehalem processor. Courtesy Andrew Semin,
Intel Corporation.
http://www.notur.no/notur2009/files/semin.pdf. 145

5.1 IPC comparison between the OOO and InO cores when executing the
workload mcf. In the main figure, each point on the horizontal
axis represents 50K retired instructions. In the inset figure, IPC
for the the instructions from 0 - 10K have been sampled at 500
instructions. 150

5.2 High-level view of the proposed core morphing scheme. The baseline
OOO mode is shown at the top. The shaded regions indicate the
units of the baseline core that are power-gated to facilitate
in-order execution in InO mode. 151

5.3 The components of the power expended when the workload equake is
run in OOO and InO modes of operation. 154

5.4 Variation in R2 coefficient while estimating the performance in InO
mode using the values of PMCs observed in OOO mode. 158

5.5 % Average error observed in estimating IPC and power of OOO
(InO) mode using InO (OOO) counters. 159

5.6 % Average reduction in ED2P of the proposed scheme w.r.t the
baseline OOO core for different values of window length and
history depth. 161

5.7 % Reduction in ED2P vs threshold variation for various history
depths. 164

5.8 % Reduction in ED2P of proposed scheme w.r.t the baseline OOO
core. 165

5.9 % Reduction in EDP of proposed scheme w.r.t the baseline OOO
core. 166

5.10 % increase in IPC/Watt of proposed scheme w.r.t to the baseline
OOO core. 167

xxvi

CHAPTER 1

INTRODUCTION

The semiconductor industry has been driven by Moore’s law for almost half a

century. Miniaturization of device size has allowed more transistors to be packed into

a smaller area while the improved transistor performance has resulted in a significant

increase in frequency. Increased density of devices and rising frequency led, unfortu-

nately, to a power density problem. The supply voltage has not scaled at par with

technology [98]. Higher transistor density and operating frequencies therefore means

larger number of transistor switches per unit area per unit time. Hence, power density

increases. The trends in CPU characteristics over the years is shown in Figure 1.1.

The processor industry responded to the problem of power density by lowering pro-

cessor frequency and integrating multiple processor cores on a die [35]. This design

paradigm focuses more on TLP while traditional ILP is sacrificed. The emergence of

multicores is the reason for the right shift in the trend for power and frequency in the

Figure.

Even though scaling has enabled many benefits, it has also led to a few problems.

Scaling results in increased process variation [8] and soft error rates [5]. The trends

in the transistor threshold voltage variability and the soft error rates are shown in

Figure 1.2. Larger process variation results in significant variation in characteristics

of devices from what was intended at the design stage, which may be viewed upon as

defects [8]. Soft errors, where for a brief duration of time, data stored in storage nodes

are flipped due to radiation effects, also increase device unreliability. The CMOS wear-

out mechanisms such as dielectric breakdown (TDDB) of gate dielectrics, hot carrier

1

Figure 1.1. Trends in the number of transistors, operating frequency and power
dissipation in Intel CPUs. Figure courtesy4.

(a) Variation in Vt with scaling (b) Trend in soft error rate

Figure 1.2. Trends in the threshold voltage variability and soft error rates as a
function of scaling. Figures have been recreated using data available in [8].

2

injection (HCI) effect, negative Bias temperature instability (NBTI), electromigration

(EM), and stress induced voiding (SIV) etc. have all been documented to worsen with

technology scaling [98]. Hence, scaled devices are expected to experience failure in

operation while in the field. There is thus a need for mechanisms to detect and correct

such occurrences online.

In this dissertation, we propose mechanisms for online testing of multicore pro-

cessors. Our solution is based on the incorporation of a Sentry Core (SC), the goal

of which is to assist fault detection in a Chip Multiprocessor (CMP). The SC is akin

to service processors that have been used in the past in main-frame computers1 2.

Embedding the SC in the CMP allows the internal states of the CMP cores to be

accessed. The SC is a small and simple core with very limited functionality, most of

which has something to do with control of other cores. The proposed SC is so simple

that it can be assumed to be functionally correct and easily tested to ensure that it

is fault-free. Similar assumptions have been used for IBM service processors and the

UMich DIVA checker [3]. Whenever cores are found to be idle, the SC initiates test

codes on the cores and captures and compares responses to detect faulty behavior.

The proposed scheme thus enables low cost online error detection in multicores. Re-

sults indicate that a significant proportion of errors can be detected by the proposed

scheme.

The SC also enables cache coherence transaction verification. The SC has access

to the shared bus, just like the other cores in a shared bus CMP. It monitors and logs

all bus transactions, and is aware of the cache coherence protocol being implemented

in the system. By observing the source and type of bus transaction, it can predict

the expected next coherence state of that line for the requesting core and all other

cores that share that line. Whenever the same line appears on the bus again, the SC

1http://www.redbooks.ibm.com/abstracts/sg244757.html

2http://www1.ibm.com/support/docview.wss?uid=pos1R1003968aid=1

3

can verify that it transitioned to the correct state. If not, an error is flagged. Our

experiments show that a significant fraction of the transactions can be verified by the

SC by simply monitoring the shared bus.

Another problem that has come about with aggressive device scaling is increased

power density. Even though the multicore design paradigm resulted in lower power

density, multicores are always constrained by total power dissipation as allowed by

packaging and cooling technologies. Hence, either the number of cores on the chip

must be kept in check or the number of simultaneously operational cores must be

limited. In general, processors do not typically operate at the maximum possible

performance point. For example, Intel’s recent processors feature the Turbo Boost

feature3, where depending on certain characteristics (number of threads in the system-

per-power dissipation/temperature) frequency and voltage may be boosted for just

one or two cores such that thermal limits are not exceeded. However, when all cores in

the multicore are active, they operate at well below that in the boosted mode. Hence,

in general the operation of the multicores is limited by packaging limits. Better

architectures and mechanisms are thus needed such that performance-per-Watt is

maximized.

In this dissertation, we propose several solutions for the problem of power effi-

ciency. Different types of architectures are considered.

In AMPs [51, 52, 54, 30], cores of differing capabilities are all included on the

same chip. Dynamic thread scheduling is then used to assign threads to cores online

such that the objective function (performance, performance-per-Watt) is satisfied.

For a given resource and power budget, AMPs have been shown to outperform their

symmetric counterparts [51, 31, 38, 76]. However, thread scheduling in AMPs re-

3http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-
boost-technology.html

4http://www.gotw.ca/publications/concurrency-ddj.htm

4

mains a notorious problem. To mitigate this problem, we make use of performance

counters available in most modern processors [43, 19, 92]. These counters provide

useful information about the resource utilization in a processor. At regular time in-

tervals, they are sampled by a software layer, called the Microvisor which then makes

thread scheduling decisions based on this information. The Microvisor is similar to

the IBM millicode [36]. In addition to that, we also explore the dynamic morphing of

resources between cores in the AMP. The control of morphing is once again carried

out by the use of performance counters and the Microvisor. Results indicate that

significant performance-per-Watt benefits can be extracted by use of core morphing

and dynamic thread scheduling in AMPs.

For SMPs, we revisit resource sharing architectures. While these architectures

have been explored in the past [22, 53, 14], the evaluation has been incomplete.

Specifically, most previous work only explores the performance impact of such sharing

leaving the following questions unanswered.

1. What is the impact of sharing on performance and performance-per-Watt?

While sharing clearly results in power savings, for certain workloads, perfor-

mance loss may be too large.

2. What are the most important parameters influencing performance and performance-

per-power in resource sharing architectures? We show that latency and through-

put of the shared resources are dominant determinants of performance and

performance-per-power, but most previous studies ignore them.

3. How does sharing of resources play out for Big cores or Small cores? Mainstream

computing can be broadly classified into performance efficient (Big cores) and

power efficient (Small cores). It is thus necessary to study the impact of sharing

resources in both such architectures.

5

4. What is the impact of sharing in Simultaneously Multi-Threaded (SMT) proces-

sors? In particular, does sharing in SMT make performance or performance-per-

power better or worse? Given that most mainstream cores are SMT capable4,

studying impact of increased resource utilization due to sharing is important.

Our results show that while architectures that share execution units do provide power

benefits at a negligible performance penalty (∼5% on average), such benefits hold only

when the shared units have low latency and are highly pipelined. Performance and

performance-per-Watt loss are observed for workloads that exhibit high contention

for the shared execution units. To reduce the performance loss due to contention

we propose to increase the throughput of the shared resources via Dynamic Voltage

and Frequency Boosting (DVFB) which is controlled dynamically by the occupancy

rate. Our results show that such dynamic boosting not only overcomes losses due to

contention, but also results in significant increases in both performance (upto 13%)

and performance-per-Watt (upto 14%), while realizing considerable savings in area

(∼ 7-10% per core).

We also explore the potential for performance-per-Watt improvements in each in-

dividual core of a multicore. The observation is that thread swapping in AMPs incurs

non-negligible costs. The swapping overhead can vary from a few thousand [81] to

millions of cycles [6, 50] depending on the algorithm employed to swap threads and

the mechanism to exchange contexts. To amortize the large overhead associated with

thread swapping, in most proposals, thread swapping decisions are made at the gran-

ularity of hundreds of thousands to millions of instructions [6, 50]. Unfortunately, nu-

merous opportunities to improve performance-per-power and/or energy-delay-squared

product (ED2P) at a more fine grained instruction granularity are missed out by such

approaches [65]. Therefore, there is need for a mechanism to realize these opportu-

4www.intel.com

6

nities without incurring large thread swapping penalties. To achieve this we make

use of in-built debug mechanisms available in most modern processors to switch the

processor operation from out-of-order (OOO) to in-order (InO) at runtime depending

on current workload characteristics. Our results indicate that the proposed scheme

achieves an ED2P reduction of as much as 12% at a performance loss of less than

5% when compared to the baseline OOO-core.

Thus, in this dissertation we propose solutions for online error detection and power

efficient computing in present day multicore processors.

7

CHAPTER 2

ONLINE TESTING OF MULTICORES

2.1 Introduction

Errors in processor execution is a growing concern. Errors may result from multi-

ple sources. Untested manufacturing defects [90], transistor and interconnect wear-out

[8], variations in operating conditions such as voltage and temperature, and transient

errors due to cosmic radiation or α-particles lead to errors in device operations. They

must be detected and corrected during runtime. Thus, there is a growing need for

online mechanisms to detect and correct such errors in commodity products.

2.1.1 Solving the reliability problem

Traditional solutions for reliability rely on redundancy, either in hardware [3] or

in time [82, 74]. Commodity microprocessors are sensitive to cost and performance,

while also constrained by power. Hence, solutions such as triple modular redundancy

[91] do not apply to commodity processors. Some processors use error-correcting

code (ECC) to protect the cache [83]. Since ECC is relatively low overhead, this

is an acceptable solution for protecting all arrays in a processor. Such protection

provides coverage for more than half of the transistors in today’s processors. However,

the remaining half of the transistors found in the pipeline stages are vulnerable.

While there have been many solutions proposed to protect the various pipeline stages

[90, 79, 12], they tend to be costly and only protect a part of the processor. A

low-cost generic reliability solution for the entire processor processor can significantly

complement reliability coverage.

8

Existing solutions may be broadly classified into those that make use of time

[82, 74] and structural redundancy [3, 23, 90, 104, 66, 12]. Redundant Multi Threading

(RMT) [82, 74] is an example of time redundancy, in which a logical thread is run as

two physical threads. A difference in output of the threads indicates the presence of

an error. We propose a solution based on DMR, but the control and administration

of the mechanism is very different from existing DMR solutions. This scheme has

multiple applications and in this dissertation, we have explored online error detection

in the execution core as well as cache coherence transaction verification.

2.2 Online Testing of the Execution Core

We propose the addition of a core called the Sentry Core (SC) into the Chip

Multiprocessor (CMP). Its goal is to assist in fault detection, debug and diagnosis in

a CMP (Figure 2.1). It is similar to previous proposals that feature service processors

in main-frame computers or watchdog monitors [7, 3], but also differs in significant

ways. The most important differences are: (i) embedding the SC in the CMP allows

the internal states of the CMP cores to be accessed, and (ii) the SC is an active

participant in dealing with traps and interrupts. The SC is a small and simple core,

so simple that it can be assumed to remain functionally correct throughout the life

of the CMP. Similar assumptions have been used for IBM service processors and the

DIVA checker [3].

Whenever an idle core is detected, the SC initiates test routines on the cores.

It then captures and compares the resulting responses to detect faulty behavior.

The central idea is to have the SC capture signatures of the program execution that

reflect both the control flow and the data execution, which are then compared against

responses obtained online from another core in the CMP. More specifically, we collect

two signatures for the executing program. The first one is associated with the Program

Counter (PC) values of each committed branch instruction. The second is associated

9

Core SC Core Core

L1 L1 L1 L1

L2

Shared bus

Figure 2.1. The Sentry Core (SC) in a Multicore Processor

with the data and address of store instructions. Both of these are input into a

multiple-input signature-register (MISR). The SC performs the tasks of initializing

the MISR, collecting the signature of a fixed number of executed branches and store

instructions and comparing against the reference obtained dynamically from another

core running the same thread. Such a comparison reveals errors in the control flow of

the program as well as the data flow. Since the signatures are collected on committed

instructions, speculative execution has no effect on these signatures. We use virtual

addresses of the branch/store instructions for signature generation and hence, the

same signatures will be generated for two fault-free cores running the same code

segment. Lastly, while such monitoring is in progress, traps and interrupts will be

routed via the SC and any exception will halt the program execution allowing the SC

to access the appropriate signatures. When an error occurs, the signatures obtained

from the two cores will differ and the error will be detected.

The benefits of the proposed solution are: (i) online testing with minimal overhead,

(ii) scalability and (iii) lifecycle testability.

To validate the proposed approach we conducted experiments using the SESC

simulator [75] and used eight benchmarks from the SPEC 2000 suite [97]. We chose

these benchmarks and not specifically engineered test routines to show the potential

10

benefits of the SC regardless of the executed software. The development of test code

to accelerate fault detection is not out focus and is a part of future research. In the

experiments, faults were injected to result in a faulty behavior in a 4-core CMP and

the resulting fault detection latency and coverage were measured. The relationship

between the fault detection latency and the checking interval (time between signature

checks) was also analyzed. Our results indicate that even though the SC may add

an area overhead of up to 3% for the target system, the rich testing functionality it

provides makes it an attractive approach.

2.2.1 Related work

With aggressive technology scaling, aging defects afflict processors with progres-

sively worse delay and catastrophic faults. As a result, fault detection and correction

schemes have been a topic of considerable interest. Previous approaches may be clas-

sified into those that target certain structures in a processor ([12, 2, 17, 80]) and those

that target the entire processor ([3, 82, 74, 90, 68, 62, 91, 93, 95]). Of these a few of

them are directly comparable to our approach.

In [12], Bower et al. presented a scheme to detect and tolerate faults in array

structures of microprocessors. A similar scheme was presented by Rodrigues et al. in

[80]. Fault detection in integer ALU execution units is proposed by Abella et al. in [2].

Self test for register data flow is proposed by Carretero et al. in [17]. However, such

schemes only protect certain structures of the processor and do not provide chip wide

coverage. Chip wide error detection schemes have also been proposed. In [90], Shyam

et al. protect stages of the pipeline using BIST techniques. Meixner has proposed

Argus, a dynamic verification scheme for fault detection in simple cores [68]. Li et

al. [62] use high level symptoms with system restoration and re-execution on another

core to detect faults.

11

A few of the chip wide error detection approaches have similarities with ours.

Austin has proposed the DIVA checker [3] in which a small core is augmented to

check for computation correctness of its companion core. Whenever the results from

the two cores differ, the checker core commits its result and the pipeline of the larger

core is flushed. However, each core requires a DIVA core for error detection which is

not the case with our proposal where multiple cores may share a single SC. Replication

of pipeline stages [93] and complete replication of core execution for fault tolerance

has been explored via DMR/TMR in [91]. These approaches pose very high area

and power overhead (200/300%). Our SC based approach reduces these overheads

by initiating DMR only when cores are idle. Redundant Multi Threading (RMT)

approaches have also been proposed [82, 74], in which a logical thread is run as

two physical threads. One of the threads is leading while the other is trailing and the

leading thread provides certain inputs to the trailing thread. A difference in execution

indicates the presence of a fault. The states of the two threads are compared while

our SC based solution only compares the signatures. The amount of state information

compared in RMT is important as it determines the overhead. Smolens et al. [95]

proposed a solution in which the fingerprint of instructions between checkpoints is

compared for error detection. Here comparison of states is assumed to be done by

an error-free core. Our SC based solution collects signatures of committed branch

instructions and then compares them at regular intervals to detect faults. Since the

SC is responsible for signature comparison, there is considerably lower probability of

an error during this comparison. More recently, lau et al. [56], presented the partner

cores concept, where each complex core in a CMP is augmented with a small core

for reliability and performance improvements. However, just like DIVA pairing a

partner core with each complex core increases overhead. Thus, even though there are

similarities between our approach and the previous work, our scheme overcomes the

drawbacks of other approaches.

12

2.2.2 The proposed solution

Our scheme is built around the SC which verifies the fault-free operation of the

general-purpose processor cores. In this section, we describe the functionality and

hardware overhead of incorporating an SC in a CMP. The approach followed to detect

faults in the CMP is then presented.

2.2.2.1 The Sentry Core (SC)

The SC is a small and simple core with the objective of enabling quick fault

detection in a CMP. For that it requires to be able to test as well as collect responses

and then detect faults if any. For that, it is augmented with a variety of features

described next.

2.2.2.1.1 Control functions To assist in fault detection, the sentry core sup-

ports the following operations:

1. Detect idle cores: SC has the capability to detect if cores are idling.

2. Initialize MISR: initialize the MISR for each core participating in the test.

3. Duplicate: trigger a DMR/TMR (Dual/Triple Modular Redundancy) configu-

ration by replicating a process and executing it on two or three cores.

4. Collect MISR signature: collect and compare signatures periodically.

5. Suspend: halt one or all the processor cores to analyze their state.

6. Resume: resume the operation of a halted core(s).

7. Terminate: terminate a process on a core.

Only a subset of the various functions that the SC can perform have been listed.

This functionality can easily be added to any off-the-shelf processor that fits the de-

scription of the SC by extending the Instruction Set Architecture (ISA) [58, 59, 108,

13

1). Detect idle

core

2). Suspend

target core

3). Initialize

MISR on cores

4). Duplicate

thread on idle core

6). Halt cores

periodically and

collect and

compare signature

5). Resume thread

execution on cores

Figure 2.2. Steps followed for online test by the SC

103]. In most processors, the opcode field size is extensible. The additional instruc-

tions will be used to enable the functionality of fault detection and diagnosis. The

steps followed by the SC to initialize testing is shown in Figure 2.2. When the cores

are halted for signature comparison, the state of the cores must be saved so that

execution may later resume. After saving the state, the cores provide the current

control/data signatures to the SC (may be done via a write to a shared memory lo-

cation) and then resume execution when permitted to do so. The routine to save the

MISR state to a shared memory location may be the same as that followed for inter-

rupts. During interrupts, the program state is saved; the interrupt handling routine

is executed and the core then resumes operation after state restoration. A similar

procedure is followed during context switch while running multithreaded applications.

The saving of the MISR state to memory may thus be implemented as an interrupt

handling routine or as a context switch in the CMP. Thus, the overhead incurred due

to SC intervention for signature comparison is similar to that of a context switch.

14

Note that in the considered CMP, only the L1 caches are not shared. Hence, context

switch overhead is very small. We assume 1000 cycles as the context switch overhead

for the target system configuration based on inferences made from [61]. A custom

design will result in far lower overhead. In this work, we make use of the of the

interrupt based scheme due to its simplicity.

2.2.2.1.2 Hardware overheads The SC provides rich set of features for online

error detection in the CMP. This comes at a small hardware overhead. To estimate

the overhead of incorporating the SC itself in a CMP, we consider for example, the

EV4 (Alpha 21064), and EV6 (Alpha 21264) cores. The functionality of the EV4 is

sufficient to satisfy the requirements of an SC for a CMP comprising of EV6 cores. The

EV4 occupies about 11% of the area of an EV6 core [24]. Hence, for a dual/quad/eight

core CMP, the area overhead due to the SC reduces to 5.5/2.75/1.375%. This is an

acceptable overhead for the added functionality considering that DIVA [3] adds a 6%

overhead. While making this comparison in area, it is important to note that the SC

scheme is a more attractive solution when compared to DIVA. DIVA only allows error

detection but no additional options to diagnose the cause of the error. The SC has

dedicated ISA extensions and enhanced functionality that not only allows online error

detection, but also diagnosis. Further, a single SC can service a quad, eight or even a

sixteen core CMP. However, as the number of cores serviced by the SC increases, the

time slice that each core gets for service reduces. For many core systems, additional

SCs may be incorporated such that there is one SC for every m cores in the CMP.

We plan to evaluate this in the future. The above is just an example to illustrate

the size of the overhead. In reality, a customized (rather than an off-the-shelf) SC

design may have far lower area overhead (<1%). Incorporation of an SC results in

heterogeneity which increases the design time, but heterogeneity is no longer a novel

concept [3, 51] and hence may be considered an acceptable practice.

15

2.2.2.2 Fault detection strategies

Fault detection is possible if a reference is available for comparison. DMR is the

straightforward solution to this. However, as mentioned earlier, this results in large

overheads. Hence, the SC only initiates DMR if cores are found to be idle. In [67],

Meisner et al. note that on an average, cores in servers idle for 70% of the time.

The reason for this is that server processors are always designed for peak perfor-

mance, a situation rarely encountered. We use such idle cores for test. We thus

overcome the drawbacks of DMR. Whenever idle cores are found, the SC copies the

program state and program data of one core to another core. Both cores execute the

same program for a fixed number of instructions as determined by the SC. When the

number of branch instructions executed by the core reaches its pre-specified limit (a

programmable parameter), an interrupt is generated and the program is vectored into

a wait state as described earlier. The SC can then query the signatures generated

by the executed branch instructions as well as the memory write operations. If a

mismatch is encountered an error is detected. This scheme will be most effective for

heterogeneous multicores as the underlying hardware in the cores is different. The

scheme will work equally well for homogeneous multicores by ensuring run-time het-

erogeneity. Most modern processors feature a debug mode, where the core operation

mode is switched from OOO (out-of-order) to in-order [50]. This mode is mostly used

in the industry for offline testing before the product is released into the market. We

propose to use this mode online. On detection of an idle core in a homogeneous CMP,

the idle core mode of operation is switched to in-order. The trace generated by the

in-order core can then be used to validate that generated from the OOO core. The

mode of the in-order core is switched back after testing is complete. The proposed

scheme will thus work fine for any type of multicore.

16

Figure 2.3. An illustration of the fault detection mechanism

2.2.2.3 Fault detection algorithm

Once an idle core is detected, the SC begins the testing process. The SC copies

the program state of the core to be tested onto the idle core. The number of branch

instructions after which the signatures are to be compared is set (detailed experiments

on the choice of this variable to follow) and the cores then begin execution. After

committing n branch instructions, the branch counter resets to zero and an interrupt

is generated. Both cores then execute the interrupt handling routine and store the

MISR signature to the shared memory. The SC then collects and compares the

signatures. If they match and there is no job ready to be run on the idle core,

execution is resumed on each core for another n branch instructions. If however, the

signatures do not match, an error is detected. Figure 2.3 shows an example of running

a test code on two cores, the execution of which is faulty on one core and fault-free on

the other. The execution path taken is indicated by the solid lines with arrow heads.

It can be seen that due to an error in the computation of the value stored in register

a, the condition checked by the branch instruction evaluates to true for the faulty

core, and false for the fault-free core. As a result, the faulty core now executes along

17

a different path. The two cores then encounter different branch instructions and by

comparing the signatures of the execution traces on the two cores the SC can detect

the discrepancy in the signature. Similarly, if there was an error while storing a value

into register a, the store signature generated by the two cores would differ indicating

the presence of an error.

2.2.3 Evaluation framework

In our experiments we used the SESC architectural simulator [75] after modifying

the code to allow injection of faults to cause an erroneous behavior in the control

and data paths. We used eight SPEC CPU 2000 [97] benchmarks as test codes for

the sake of demonstrating the effectiveness of our approach. We assume that the

SC is incorporated in a symmetric quad core CMP in which one core is faulty. The

system parameters of general-purpose cores in the 4-core CMP are shown in Table

2.1. The benchmarks used were equake, ammp, swim, wupwise, applu, gzip, gcc,

mcf and were chosen so as to be representative of several classes of benchmarks

(FP/INT/load/store/Branch intensive) that would exercise different units within the

processor. The instruction distribution for each benchmark after executing them for

10 million instructions is shown in Figure 2.4.

Table 2.1. Core parameters.

Parameter Value

Frequency 2 Ghz
Fetch/Issue/Retire 4/4/4

ROB size 128
ISQ size 80 INT, 40 FP

Branch Prediction Hybrid: local bits 2, BTB 4096 entries
RAS size 64, Replacement policy LRU

Functional units 2 FP and 4 INT ALU 1 each of FP/INT MUL, DIV
Registers 104 INT and 80 FP
L1-D/I cache 64K, 8-way, 1 cycle

L2 cache 2M, 16-way, 10 cycle

18

0%

20%

40%

60%

80%

100%

BJ Load Store INT FP

Figure 2.4. The instruction distribution of the workloads used in the experiments.
Each workload was run for 10 million instructions.

Since we use a performance simulator, injecting faults into the system is imple-

mented through bit flips in the data structures used to simulate the architectural

components. For example, when an instruction is retired, a bit in the Reorder Buffer

(ROB) data structure is set to indicate that. If a fault is injected into that bit of

the ROB entry, other instructions waiting for this instruction to complete will never

resume execution. There are also cases where the injection of a fault may result in

multiple faults due to the way the simulator operates. To cause a faulty behavior

during a store operation, we either inject a single bit fault in the data register or

inject a fault into the address register, resulting in wrong data value or address. In

each benchmark run we have injected 100 data and control faults.

2.2.4 Results

Experimental results on the error detection latency and the fault coverage are now

presented. The latency is measured as the time elapsed between fault injection and

error detection. Since SC intervention incurs an overhead, results are also presented

19

0

10

20

30

40

50

60

70

%
 D

e
te

c
te

d
 f

a
u

lt
s

Fault detection latencies in millions of cycles

Control Data

ammp

Figure 2.5. The distribution of the detected faults as a function of the detection
latency for ammp.

on the effect of checking interval on error detection latency. Based on these exper-

iments, fault coverage results when using an SC checking interval of 100K branches

are presented.

2.2.4.1 Fault detection latencies

Results on fault detection latencies are shown in Figures 2.5, 2.6 and 2.8. We have

only included results for ammp, gcc and mcf as these were found to be interesting.

These results include both data and control faults for a fixed checking interval of

length n = 100K committed branches. For almost all the benchmarks shown, a

significant proportion of the injected faults (about 60% on average for control and

55% for data faults) are detected within 1 million cycles of execution. Control related

faults manifest themselves faster than data related faults and hence are caught earlier.

There are only a few faults which are detected at later stages and a majority of those

are data related faults.

20

0
10
20
30
40
50
60
70
80

%
 D

e
te

c
te

d
 f

a
u

lt
s

Fault detection latencies in millions of cycles

Control Data

gcc

Figure 2.6. The distribution of the detected faults as a function of the detection
latency for gcc.

0

10

20

30

40

50

60

70

%
 F

a
u

lt
s

ca
u

g
h

t

Fault detection latencies in millions of cycles

Control Data

mcf

Figure 2.7. The distribution of the detected faults as a function of the detection
latency for mcf.

21

0

0.5

1

1.5

2

2.5

A
v

er
a

g
e

fa
u

lt
 d

et
ec

ti
o

n

la
te

n
cy

 in
 m

il
li

o
n

s
Control

Data

Figure 2.8. Average detection latencies for data and control faults for all eight
benchmarks.

There is a relationship between the error detection latency and the instruction

distribution (see Figure 2.4). A fault injected into the system will manifest itself

only if the faulty unit was used during execution. For example, a fault in an integer

issue queue entry will manifest itself only if that entry is used, i.e., the program

should have executed a resonable number of integer (INT) instructions. The same

holds for floating-point (FP) instructions. The same holds for faults inserted into the

load/store queues. We found that on average, control related faults are caught earlier

for benchmarks with diverse instruction distribution (e.g., wupwise). If a majority

of the instructions are of a particular type, faults injected into the system that are

used during execution of the other instruction types may not be exercised and hence

never be detected. Further, memory intensive benchmarks spend considerable time

waiting for the memory operations to complete and as a result, control faults do

not manifest themselves fast or not at all. However, diverse instruction distribution

does not guarantee error detection. Often programs run loops which may execute

22

75

80

85

90

95

100

%
 F

a
u

lt
 c

o
v

e
r
a

g
e

Benchmarks

Control Data

Average control = 82%

Average data = 92%

Figure 2.9. Data and control fault coverage for the benchmarks.

the same type of instructions repeatedly thus potentially missing the ones that can

exercise the fault. In addition, since our scheme collects signatures only after n

branches are committed, a higher frequency of branches in the test routine results in

early fault detection (mcf, gzip, wupwise). If the branches are sparse, the fault may

be detected after a very long latency (swim) and the fault may even go undetected.

Hence, for control related faults, diverse instruction distribution and the proportion

of branch instructions play a major role in the final error detection latency. A similar

explanation exists for the data related faults. Since these faults will be exercised only

when data is being stored (to the caches), the larger the number of store instructions

the higher is the chance to exercise these faults (gcc). Here too, having frequent

branches may reduce the fault detection latency (gzip). The above discussions apply

to the plots showing detection latencies. Figure 2.8 shows the average control and

data fault detection latencies for all benchmarks.

23

0

0.5

1

1.5

2

F
a

u
lt

 d
et

ec
ti

o
n

 l
a

te
n

cy
 i
n

m
il

li
o

n
s

Total committed branches after which

signature check is done

Checking

overhead

Net fault detection

latency

Figure 2.10. Effect of checking interval on fault detection latency. Data shown is
averaged for all considered benchmarks.

2.2.4.2 Fault coverage

Instruction distribution also plays an important role in fault coverage. The fault

coverage for various benchmarks is shown in Figure 2.9. Larger the utlization of

different structures in the processor, higher is the chance of fault detection (e.g.

wupwise, ammp). The same holds for the coverage of data faults (gcc). An important

observation is that we were able to catch just 82% of the control faults as compared

to 92% of the data faults on average. The reason for this difference is that control

faults were mostly caught early or not caught at all. This happens as (i) control

faults if exercised, manifest themselves sooner, and (ii) some of the benchmarks are

either FP (equake) or INT (gzip) or memory intensive (gcc) and some have very few

branches (swim), and hence were not exercising all the injected faults as explained

earlier. Data faults were caught more often but with higher latencies. The most

notable result is that for gcc where 100% coverage of data faults was achieved due to

about 30% store and 10% branch instructions found in the mix. Overall, the scheme

was able to detect 87% of the (combined control and data) faults using standard

24

benchmarks rather than specifically engineered test routines, which greatly increases

the confidence in the ability of the proposed scheme to detect faults online.

2.2.4.3 Effect of number of branches committed before signature com-

parison

The frequency of signature check can have a significant impact on the effectiveness

of the proposed solution. Smaller the interval, the better is the expected result.

However, too frequent a signature check will result in large overhead (1000 cycles

for each comparison) for checking. Hence, we experimented with various checking

intervals. The average fault detection latency when using checking intervals of 1K,

10K, 100K, and 1000K committed branches is shown in Figure 2.10. Each bar in the

figure shows the average for both control and data faults. The net detection latency

is the fault detection latency with zero checking overhead. Hence the final detection

latency is the sum of the net detection latency and the overhead (total height of the

bars in the figure). It can be seen that for the smaller checking intervals even though

the net detection latency with no checking overhead is small, the checking overhead

is high due to very frequent checks. For larger checking intervals, even though the

net detection latency increases, there are fewer checks. Hence the final fault detection

latency with checking overhead is small. However, this trend continues only until a

100K interval length. After that, when using for example, a 1000K interval length,

even though the checking overhead is small (since there are very few checks) the fault

detection latency is very high. We therefore, used in our experiments 100K as the

interval length.

2.2.5 Conclusions

We have proposed a new approach for online admistration of testing multicore

processors running multithreaded programs. It is based on the incorporation of a

small core called the SC to the CMP. It has basic functions of initiating, halting

25

and querying processors. The added sentry core adds less than 3% in area, but

enables a rich set of testing features. In theory, the signatures of instruction path and

memory writes should provide complete coverage barring masked faults. Simulation

results validate that when the faults are triggered by the executing program, they

are detected. Further, the latency of detection from trigger to detection is small.

This is important because with a small latency a small test code will suffice for fault

detection. When using a 100K committed branches as checking interval, our approach

was able to detect about 82% of the injected control and 92% of the data faults with

an average detection latency of about 1 million cycles for control and 1.5 million

cycles for data faults.

2.3 Cache Coherence Protocol Verification using the Sentry

Core

So far we have observed the effectiveness of the SC in detecting online errors in

the execution core of the processor. This was one of the many applications possible

by such an architecture. We now explore the use of the SC to verify cache coherence

transactions in multicore systems.

Multicore and many core systems rely on inter-core communication via shared

memory. In such systems it is necessary to make sure that data consumed by all the

cores is up to date. Cache coherence protocols help ensure this [37]. Functional cor-

rectness of shared memory systems thus depends on the correctness of the coherence

hardware support. Ensuring correctness of the coherence hardware is difficult as even

simple protocols can have multiple states [109]. The state space further increases

when considering the state of a cache line shared across cores. Thus, there is need

for an online mechanism to verify the operation of cache coherence transactions.

In this dissertation, we propose an online scheme to verify the operation of the

cache coherence hardware in a snoopy bus multicore. We use the Sentry Core (SC)

26

Core 1

L1 cache

Shared bus

Core n

L1 cache

SC

L1 cache

L2 cache

Figure 2.11. A Sentry Core (SC) in a shared memory multicore.

architecture for this purpose. The SC has access to the shared bus, just like the other

cores (see Figure 2.11). It monitors and logs all bus transactions, and is aware of the

cache coherence protocol being implemented in the system. By observing the source

and type of bus transaction, it can predict the expected next coherence state of that

line for the requesting core and all other cores that share that line. Whenever the

same line appears on the bus again, the SC can verify that it transitioned to the

correct state. If not, an error is flagged. Our experiments using the SPLASH-2 [107]

benchmarks suggest that a significant fraction of the transactions can be verified by

the SC by simply monitoring the shared bus.

2.3.1 Related work

We present in this section, a brief summary of the literature that closely relates

to our proposal and point out the key differences.

In [16], Cantin et al. presented a variation of the DIVA checker [3] for cache

coherence verification. Just like DIVA does for functional correctness of the cores,

27

cache coherence transactions were verified using simpler logic. However, this scheme

requires the use of a separate network for global verification of coherence states. In

[25], Fernandez-Pascual et al. present a scheme for cache coherence verification in the

presence of network failures. This scheme cannot be used to ensure correct transition

of coherence states. A scheme to verify cache coherence with token coherence was

proposed by Meixner et al. in [69]. The scheme requires implementation of logical

timestamps, signature generation and comparison hardware. In [11], Borodin et al.

present a distributed system to verify cache coherence. In their solution, each cache

that participates in the coherence protocol is assigned a checker that verifies its op-

eration, which enables local verification. Global verification is done by observing the

shared bus. This scheme is closest to ours, but its overhead increases linearly with

the number of cores in the CMP, unlike ours where a single SC services a number

of cores. Furthermore, as will be shown later in this chapter this scheme may be

too conservative. In [21], DeOrio et al. present an algorithm to verify cache coher-

ence post-silicon. This algorithm, if implemented online, imposes a 26% performance

penalty which is unacceptable. Verification of the cache coherence protocol itself was

introduced by Zhang et al. in [109]. We next present our SC-based cache coherence

verification scheme.

2.3.2 The proposed solution

We propose the use of the SC for verifying the coherence protocol in snooping

bus multicores. General working of the system and a possible implementation of the

system in real hardware are described next. In this work, we assume the use of the

MESI protocol [37], but our approach can be applied to any coherence protocol. We

refer to the various MESI states as M-Modified, E-Exclusive, S-Shared and I-Invalid

throughout this work.

28

2.3.2.1 General working

The SC monitors all transactions on the shared bus and makes decisions about

the correctness of the transactions. Three steps are involved in the process: (i)

Transaction logging, (ii) Verification, and (iii) Retirement.

2.3.2.1.1 Transaction logging This is the first step of the cache coherence veri-

fication mechanism. Whenever a cache line is requested due to a read/write miss, it is

logged into the L1 cache of the SC. The hardware mapping of each cache access into

the SC cache in described in the next sub-section. We assume that along with the

address of the memory line being requested, its current coherence state in the sending

core is also broadcast. The same assumption has been made by Borodin et al. [11].

The SC logs the address of the access, current state of the line and, depending on

the transaction, the expected next state of the line. For a given cache line address,

entries are maintained for each core in the system. When the line is shared among

cores, the corresponding entries are updated, whenever such information is observed

on the bus.

2.3.2.1.2 Transaction verification After a request is logged, it is verified once

the line appears on the bus again. There are two types of verifications that need to

take place, i.e., (i) Local and (ii) Global. Local verification is conducted by computing

the expected next state of the transaction for the same core. Whenever the same line

appears on the bus, the SC can check if the line transitioned to the expected state.

For example, if a core has a read miss and the line was not found in the L1 of any

other core, its expected next state should be E (Exclusive) since it has exclusive access

to the line. Global verification happens by making sure that the state of this line is

consistent across cores. For example, a line existing in the S and M states in the L1

caches of two cores is an invalid situation that must be detected. This is done by the

SC by comparing the state of the line in each core, that is logged in its own cache.

29

Verification (local or global) happens whenever the line in question appears on the

bus. There are two ways in which this happens. The first is when a core requests

a line that is present in the cache of another core. In this case, the owner core will

respond to the requesting core with a copy of the line. This information is broadcast

on the bus along with the current coherence state of the line. Since this entry must

have been logged earlier along with the current state in the logging stage, the SC now

has access to the next state of that line. Comparing the current state to the state

predicted by the SC enables local verification. If the line is shared by multiple cores,

global verification is done by assessing the state of the line across cores. At this stage

a new entry is created for the requesting core and the relevant entries are updated

in the SC cache. The second verification opportunity arises when the cache of a core

is full and lines need to be evicted to make space. If the line that is to be evicted is

dirty (M state), a write to memory is initiated so that the main memory is kept up

to date. When a write is initiated, the address of the line and its current state are

broadcast on the bus and the SC then checks for local and global verification.

2.3.2.1.3 Entry retirement If every line that was accessed is logged but never

retired, the SC would need an unlimited cache size to log all the entries and the

scheme would not be practical. However, logged cache lines are not needed for an

unlimited period of time. Cache lines upon cache conflict have to be evicted from the

L1 cache. If the line is in the dirty state, it is written to main memory. Since the

cache line is dirty (M), no other core can have a copy of the line and once it has been

evicted from the L1 cache, the corresponding entry in the SC L1 cache is retired.

Sometimes, cache lines are in states other than M (S or E) and in this case, upon

cache conflict, these lines will be overwritten (since the line is consistent with main

memory in the S or E states and we do not care about lines in the I state). Whenever

this happens, our scheme requires that the SC be notified via the shared bus. The

entry is then retired from the SC cache. This event is expected to incur a small

30

SC L1 cache

Addr

Core 1 Core 2 Core N
Current

state

Expected

state

Current

state

Expected

state

Current

state

Expected

state

Cache tag

4 bits 4 bits

Total storage of 1 byte per core for a given cache line

1024 lines of 32 bytes each available in 32 KB SC cache for transaction logging

Memory

operation

2 bits per line

A

X

- - E S - S Read miss

S M S I S I Write

Requestor

ID

1

N

Upto 5 bits for

32 coresOne byte per core

Figure 2.12. Mapping cache transactions for each core in the SC cache.

penalty, since it increases traffic on the bus. However, we have observed this penalty

to be negligible in our experiments. Entries are also evicted from the SC cache when

they are invalidated (I). This also implies that any transaction that appears on the

bus with a state other than I, it must be logged in the SC cache, otherwise, an error

has occured.

2.3.2.2 Mapping cache access transactions in hardware

We have discussed how the SC logs, verifies and retires transactions from its own

cache. In this section we describe how each transaction is mapped into the SC cache

in hardware. In the considered system cache lines are assumed to be 32 bytes. The

SC cache is assumed to be the same size as that of the general-purpose cores. We have

assumed a 32KB L1 cache size and hence the total number of lines available is 1024.

The SC cache addressing is done using the same address as that of the operation

broadcast on the bus. Since we use the MESI protocol, we assume 4 bits each (13

total states along with transients) for current and expected next states of each core.

This requires 1 byte per core. There is also need to log the current memory operation

for each line and the requestor ID. Depending on these fields and the current state,

the SC can compute the expected next state. Transactions that appear on the bus

are either due to a read/write miss, memory push or invalidate. Hence, two bits

are reserved for the memory operation and 5 bits for the requestor ID, which allows

31

addressing up to 32 cores. The memory operation and requestor ID fields together

occupy a byte, leaving the other 31 bytes to store records for up to 31 cores in the

system. The SC cache is implemented as any general-purpose core cache, i.e., with

tags, sets and offset. Tags and sets are computed using the address of the memory

operation on the bus. Offset is computed using the requestor core ID. Figure 2.12

depicts the SC cache and its entries. Note that for lines exclusively held by a single

core, just one entry (1 byte of the available 31) will be used and the rest will be

wasted. Also if the number of cores in the system is less than 31, many entries

are never used. Instead, if the SC cache was customized such that the number of

bytes per line is equal to the number of cores in the multicore, not only would the

SC cache be used more effeciently, there would be more entries to store additional

cache transactions. However, this would complicate the design of the multicore. To

avoid this, we assume that the line size in the SC cache is identical to that in the

general-purpose core caches, i.e., 32 bytes.

2.3.2.3 Putting it all together

An example summarizing the above description is presented in Figure 2.13. For

simplicity, the memory operation and requestor ID fields in the SC cache have not

been shown, but appear in the text in the figure. All state updates are indicated in

italic fonts in the caches and any state verifications are indicated by a star alongside

the line state. In the example, two cores are considered. The contents of each core

cache and SC cache are shown in stages A through E. In stage A, Core 1 has exclusive

access to the line at address A. Its state is recorded in the L1 of Core 1 as well as

in that of the SC. Core 2 then requests a read for that line. This request is sent

on the bus and seen by Core 1 and the SC. The SC logs this request and knows,

based on the memory operation and requestor ID, what are the expected next states

for both cores. The SC accordingly updates those fields for each core. In stage B,

32

E

A

B

C

D

Addr Data State Valid

- - - 0

A D E 1

- - - 0

Core 1 L1 cache

Addr Data State Valid

- - - 0

- - - 0

- - - 0

Core 2 L1 cache Core 1 state Core 2 state

Addr Current expected Current expected

A E - - -

SC L1 cache

Core 2 requests for line with Addr A
Shared bus

Seen on bus- Core 2:A: state I

Addr Data State Valid

- - - 0

A D E 1

- - - 0

Core 1 L1 cache

Addr Data State Valid

- - - 0

- - - 0

- - - 0

Core 2 L1 cache Core 1 state Core 2 state

Addr Current expected Current expected

A E S I S

Core 1 responds to the request for the

line and also sends its current stateShared bus

Seen on bus- Core 1:A: state E

SC L1 cache

Addr Data State Valid

- - - 0

A D S 1

- - - 0

Core 1 L1 cache

Addr Data State Valid

- - - 0

A D S 1

- - - 0

Core 2 L1 cache Core 1 state Core 2 state

Addr Current expected Current expected

A S - S -

Core 1, 2 update the state of the line in

their cache. So does the SC.Shared bus

SC L1 cache

Addr Data State Valid

- - - 0

A D S 1

- - - 0

Core 1 L1 cache

Addr Data State Valid

- - - 0

A D S 1

- - - 0

Core 2 L1 cache Core 1 state Core 2 state

Addr Current expected Current expected

A S - S -

Core 1 has to evict the line due to cache miss

Shared bus

SC L1 cache

Seen on bus- Core 1:A: state S

Addr Data State Valid

- - - 0

X D E 1

- - - 0

Core 1 L1 cache

Addr Data State Valid

- - - 0

A D S 1

- - - 0

Core 2 L1 cache Core 1 state Core 2 state

Addr Current expected Current expected

A - - S -

X E - -

Cores update the state of the line in their caches

Shared bus

SC L1 cache

Figure 2.13. Working example of transaction logging and retirement. The state
verifications are indicated by a star alongside the state in the SC cache and any new
state updates are indicated by italics font.

33

Core 1 responds to the request from Core 2 and broadcasts the state of the line in its

cache. This helps the SC to verify the expected state for Core 1. In stage C, a static

snapshot of the system with updated states is shown. In stage D, Core 1 has a cache

miss and has to evict the line. This is observed on the bus and the SC can once again

verify its operation. Stage E shows a static snapshot of the states in the system after

the memory eviction for Core 1 is complete and the new line with address X having

arrived.

2.3.2.4 Mathematical upper bound on the number of transactions that

may be logged and verified

The SC cache is used to log and verify transactions. Hence, the size of the SC

cache determines the upper bound on the verification coverage that may be achieved.

We now discuss the desired SC cache size that will allow all transactions to be verified.

For simplicity, we assume a fully associative cache.

The minimum size of the SC cache required to log all transactions is
∑
linesV alid,

where linesV alid is the number of valid L1 cache lines, where no two lines have the

same address in memory. Note that for two cores sharing a line, only a single entry

will be maintained in the SC cache (refer to Section 2.3.2.2). The worst case arises,

when every L1 cache line in the multicore is valid and none are shared. In that case,

the minimum size of the SC cache is then n ∗ lines where lines is the number of

cache lines per L1 cache. In other words, the SC cache must be equal to n times the

L1 cache size. It may be noted that this calculation was done using fully associative

caches which is not always practical. Considering more realistic set-associative caches

this minimum requirement on the cache size may be larger than that just calculated.

However, as will be seen in the results, a key observation enables us to keep the

required SC cache size realistic.

34

Table 2.2. Chosen core parameters
Parameter Value Parameter Value

Issue 6 INTREG 96

FPREG 80 INTISQ 36

FPISQ 24 Load/Store units 3

LSQ 32 ROB 128

L1(I/D) 32K L2 2M

L1 associativity 8 L1 Linesize 32 bytes

L2 associativity 8 L2 Linesize 32 bytes

L1 hit latency 2 cycles L1 miss latency 10 cycles

L2 hit latency 15 cycles L2 miss latency 200 cycles

Freq (GHz) 2.4 Operation Out of order

2.3.3 Experimental setup

The shared memory multicore was simulated using the SESC simulator [75] which

was modified considerably to enable cache coherence transaction verification via the

SC. We used the SPLASH-2 workloads [107] for our experiments (cholesky, barnes,

fft, fmm, lu, ocean, radix and water). Each core in our multicore represents an Intel

Nehalem processor. The specifications of the core parameters that we have used are

shown in Table 2.2. We consider 8 cores in the multicore for all our simulations and

we simulate the workloads for 100 million instructions.

2.3.4 Results

We now present the results of using the SC for cache coherence verification. The

SC can verify transactions once they appear on the shared bus and is unable to verify

any transaction until it is seen on the bus. Hence, we present the fraction of cache

coherence transactions that can be verified. Note that any unverified transactions

will be verified in the near future when they will be seen on the bus, but after a

certain number of elapsed cycles. Cache line sharing is a function of the benchmark

used and thus, we analyzed the required size of the SC cache for each benchmark.

Following this, results are presented when using a realistic SC cache size to evaluate

the effectiveness of the system. sizes, the above mentioned experiments are carried

out for various cache sizes.

35

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
ra

ct
io

n
 o

f
tr

a
n

sa
ct

io
n

s
v

er
if

ie
d

2K 4K 8K 16K 32K

Figure 2.14. Fraction of transactions verified for various cache sizes when using
unlimited SC cache size.

2.3.4.1 Unlimited SC cache size

We now present results showing the fraction of transactions verified for unlim-

ited SC cache size and also the upper bound on the required SC cache size such

that maximum verification is possible for all benchmarks. The results are plotted in

Figures 2.14 and 2.15, respectively, for various general-purpose core cache sizes and

various benchmarks. Figure 2.14 shows that in general, a very high coverage is ob-

tained for smaller cache sizes and this reduces with increasing cache size, for the 100

million instructions that we simulated. This is intuitive since the smaller the cache,

the larger is the number of cache conflicts and evictions. Also with smaller caches,

a small proportion of the lines reside inside the L1 caches as compared to the total

transactions seen on the bus. This also increases the fraction of verified transactions.

It can be seen that other than radix and lu, all other workloads show greater than 0.9

coverage even when using a cache size of 32K. The reason for low coverage for radix

is that it comprises almost 90% floating-point operations and involves very limited

sharing of data. Most of the cache lines are exclusive and reside in the local cache

for long periods of time. Cache miss rates were also observed to be small for both

36

workloads, leading to fewer transactions on the bus, resulting in low coverage. It may

be noted that the fraction of verified transactions asymptotically tends to 1 as the

number of instructions executed increases. This is because the unverified transac-

tions are always dependent on the size of the general-purpose caches for reasons just

mentioned. But as the time increases, the number of transactions occuring on the

bus is very high and the fraction of unverified transactions reduces to zero. Hence,

even though some of the values in the plot suggest low verification ratio, it is due

to the 100 million instructions that we ran. Increasing this number will increase the

verification ratio. The number of cache lines required by the SC to log all entries is

shown in Figure 2.15. In the worst case, no cores in the system will share lines and

the cumulative sum of the lines occupied by all cores may need to be stored. From

the figure, it can be seen that barring the workloads barnes, lu, water, the amount

of storage required is the cumulative sum of all cache sizes and hence the capacity

requirement is very high (almost 256K for 32K cache sizes). This may imply that in

order to achieve high verification rates for larger cache sizes, the SC cache size may

needs to be prohibitively large. Fortunately, a key insight makes sure that this is not

the case.

2.3.4.1.1 Discussion From the results so far, we have seen that for verifying all

possible transactions using the SC, the SC cache size may have to be equal to the

sum of the cache sizes of all the cores in the system, for certain workloads. However,

the transactions considered so far include lines that are exclusively held in the cache

of a single core and those that are shared amongst the cores. We have seen in Section

2.3.2.2, that this situation results in the worst storage efficiency for the proposed

scheme. However, if something goes wrong in computing the cache line state while

the line is held exclusively, it very rarely results in error. For example, faulty change

of state of a line from one of the valid states (S or E) to M will result in write back

when this line is evicted from the cache, but the data will not be corrupted. The

37

1

2

4

8

16

32

64

128

256

S
C

 C
a

ch
e

si
ze

 o
cc

u
p

ie
d

 in
 K

B

2K 4K 8K 16K 32K

Figure 2.15. Maximum size of the SC cache required such that all possible transac-
tions seen on the bus are verified.

unnecessary write-back will have a small performance penalty, but may be worth it

if the trade-off allows all other transactions to be verified. The more malicious case

is when a fault causes a line in M state to move to a different state. Here, upon

eviction the line will not be written to memory and the memory will no longer be

up to date. This situation can be avoided by special encoding of the MESI states.

For example, one hot coding for the four MESI states will ensure that no single bit

error will ever go unnoticed. Thus, it may not be necessary to verify exclusively

held cache line states. The more interesting but challenging case is the verification

of line states globally across cores. We have observed that when the verification of

the exclusive line states is excluded, the cache size requirement of the SC to log all

transactions drops dramatically. Figure 2.16 shows the percentage of transactions that

are shared amongst cores for various cache sizes. It can be seen that barring barnes,

shared transactions for all other workloads account for a very small percentage of the

total transactions. Hence, by dropping the verification of exclusive states, the size

requirement for the SC cache can be reduced dramatically. In the next sub-section,

38

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

P
er

ce
n

ta
g

e
o

f
sh

a
re

d
 t
ra

n
sa

ct
io

n
s

a
m

o
n

g
st

 c
o

re
s

2K 4K 8K 16K 32K

Figure 2.16. Percentage of transactions that involve sharing cache lines amongst
cores for each workload and various general-purpose core cache sizes.

we focus therefore, on verifying only the transactions that involve lines shared among

cores.

2.3.4.2 Realistic SC cache size

We now present the results of our experiments to determine the capability of the

SC to verify memory transactions in a more realistic scenario. Here the SC cache size

is not unlimited and its associativity is identical to that of the caches of other cores

in the multicore.

2.3.4.2.1 Percentage of transactions verified We varied the size of the SC

cache as well as that of the general-purpose cores from 2K to 32K. In total, we ran

experiments for each workload for the 25 possible combinations of cache sizes of the

SC and the general-purpose cores. We show the results for the workloads which

exhibited the worst cases, i.e., barnes, cholesky and ocean in Figures 2.17, 2.18 and

2.19, respectively. For a small SC cache size, it is expected that the cache conflicts

in the SC cache during transaction logging will be high and thus, the percentage of

transactions verified will be smaller. For a fixed general-purpose core size, it can be

seen that the percentage of unverified transactions drops drastically with increasing

39

2K
4K

8K
16K

32K

0

10

20

30

40

50

60

2K
4K

8K
16K

32K

P
er

ce
n

ta
g

e
o
f

u
n

v
er

if
ie

d
 t

ra
n

sa
ct

io
n

s

Figure 2.17. Percentage of transactions unverified for the workload barnes for vari-
ous combinations of SC and general-purpose core cache sizes.

2K
4K

8K
16K

32K

0

10

20

30

40

50

60

2K
4K

8K
16K

32K

P
er

ce
n

ta
g
e

o
f

u
n

v
er

if
ie

d
 t

ra
n

sa
ct

io
n

s

Figure 2.18. Percentage of transactions unverified for the workload chokesly for
various combinations of SC and general-purpose core cache sizes.

40

2K
4K

8K
16K

32K

0

10

20

30

40

50

60

2K
4K

8K
16K

32K

P
er

ce
n

ta
g

e
o

f
u

n
v

er
if

ie
d

 t
ra

n
sa

ct
io

n
s

Figure 2.19. Percentage of transactions unverified for the workload ocean for various
combinations of SC and general-purpose core cache sizes.

SC cache size, which is expected. The worst case of 59% transactions unverified is

observed for the workload barnes when the SC cache size is set to 2K and that of the

general-purpose cores to 32K. However, this is not a realistic scenario as in general,

it is expected that the SC cache size will be at least equal to that of the general-

purpose cores. Looking at the data points in Figure 2.17 that represent equal SC

and general-purpose core cache sizes, it can be seen that in almost all cases 100%

transaction verification is possible. The only combination where this is not the case,

is when the cache sizes are set to 32K for barnes, where 1.3% unverified transactions

were observed. This is a very small fraction and this greatly increases our confidence

in the capability of the proposed scheme. The other workload that showed missed

transactions for same SC and general-purpose cache size is ocean, where 5.6% of the

transactions were missed for a cache size of 8K. For the rest of the workloads, setting

the SC cache size to 16K is enough to verify all transactions even when the general-

purpose core caches are set to 32K. In Table 2.3, the minimum size of the SC cache

required for 100% verification of shared transactions amongst the 8 cores with L1

41

Table 2.3. Minimum SC cache size required for ≈100% transaction coverage when
using general-purpose cores with L1 cache 32K

Workload Min SC L1 Workload Min SC L1

cholesky 16K lu 2K

barnes 32K ocean 16K

fft 2K radix 2K

fmm 2K water 2K

cache set to 32K, is shown. For a majority of the workloads, an SC cache of just

2K suffices. By excluding the verification of the the exclusive cache states, 100% of

the transactions can be verified using realistic SC cache sizes. This result also shows

that the proposal made by Borodin et al. [11] where a replica is maintained for each

cache, is pessimistic, since there for 8 cores and 32K caches, the total checker cache

size is 256K, as compared to 32K in the worst case for our scheme. Note that when

using 32K cache size, only 1.3% transactions are missed in the worst case of barnes.

2.3.4.2.2 Sensitivity to number of cores in the CMP Since the proposed

scheme is a centralized mechanism, the central verifier can be a bottleneck. To eval-

uate the scheme thoroughly, we varied the number of cores in the CMP from 2 to 32.

L1 cache size was set at 32KB. It is expected that with an increase in the number of

cores, the subset of lines shared by different pairs of cores may increase, which may be

too much for the limited SC cache to handle. The obtained transaction coverage for

three of the workloads barnes, ocean and raytrace are shown in Figure 2.20. Note that

for the other workloads, no drop in coverage was observed due to the low proportion

of transaction sharing even in a CMP comprising of 32 cores. In general, increase in

the number of cores reduces coverage which is expected. The workload barnes shows

the worst behavior which is once again attributed to the relatively high number of

shared transactions. When considering 32 cores, only 92% of the transactions were

verified. For ocean and raytrace, the worst case was observed was 92.5% and 95%

once again for 32 cores. It is interesting to note that even though ocean was observed

to have a lower proportion of shared transactions when compared to raytrace, the

42

barnes
ocean

raytrace

86

88

90

92

94

96

98

100

2

4

8

16

32

T
ra

n
sa

ct
io

n
 c

o
v

er
a

g
e

Figure 2.20. Sensitivity of the coverage of the proposed scheme to the number of
cores in the CMP for the workloads barnes, ocean and raytrace.

coverage drops faster. The reason for this is the lack of locality in the reference for

shared lines produced by it. Hence, even though the number of transactions is rather

small, the addresses of lines accessed causes conflict misses in the SC cache which

leads to poor transaction coverage. On an average, across all the 8 workloads consid-

ered, the transaction coverage observed was 100% , 99.9%, 99.5%, 98.9% and 97.3%

considering CMPs with 2, 4, 8, 16 and 32 cores respectively. This shows that even

though an increase in the number of cores will result a drop in transaction coverage,

it does not drop by much. We also conclude from these numbers that the SC based

scheme for cache coherence verification is scalable up to 16 cores without much of a

loss in coverage.

2.3.4.2.3 Time to verification time and performance penalty The SC pro-

vides error detection. Error recovery is assumed to be in place using a checkpointing

scheme [96]. If the error detection latency is larger than the checkpointing interval,

the system state will be corrupted. Thus, the latency to error detection is important.

In our experiments, we have observed that even in the worst case, the transaction

verification latency is a few thousand cycles which is well within reasonable check-

43

pointing intervals. The proposed scheme also results in increased bus traffic in the

cases where cache lines in the general-purpose cores are overwritten without write

back. We observed a 20% increase in bus traffic in the worst case, but this resulted

in performance loss of less than 2%.

2.3.5 Conclusions

We have presented and evaluated a new centralized mechanism to verify the cache

coherence transactions in a shared memory snooping bus multicore. The proposed

scheme is based on the incorporation of a small and simple Sentry Core that can be

assumed to be fault-free. The SC has access to the shared bus and it can log memory

requests seen on the bus, in its cache. Since it is aware of the cache coherence protocol,

based on the memory operation and the current state of the line requested, the SC

knows the expected next state for the line. Whenever the same line is seen again

on the bus, the SC compares the state of the line to what it computed and flags an

error if a discrepancy is found. As the scheme depends on logging of transactions

in a cache, its capabilities are determined by its cache size. Results were presented

on the upper bound of the scheme for unlimited SC cache size. A realistic scenario

was then presented where the SC cache was assumed to be similar to that of the

general-purpose cores. Results were presented for various combinations of SC and

general-purpose core cache sizes. These results indicate that in a realistic scenario

of equal SC and general-purpose core cache sizes, >94% of the transactions can be

verified. The performance penalty arising from the scheme was found to be less than

2% in the worst case. Our analysis also shows that using a centralized checker for

cache coherence may result in far lower hardware overhead in terms of additional

cache space required for checking.

44

CHAPTER 3

IMPROVING POWER EFFICIENCY IN ASYMMETRIC
MULTICORES

The growing transistor density in microprocessors has enabled very high perfor-

mance. However, the future generations of processors will be severely limited by

energy [40, 9]. Even though transistor dimentions have scaled, the supply voltage

scaling has been incremental if at all since the 130nm technology node [40]. The

major reason for this is that there is a limit on how much the transistor threshold

voltage can be scaled. As a result, transistor switching power has remained more

or less constant [65]. Further, during the evolution of the microprocessor over the

past decades, a number of performance enhancement techniques were applied at the

circuit and architecture level and all of these come at the cost of increased energy

consumption and power. The operation of every processor is limited by a power

envelope as defined by the packaging thermal limits. Since, the transistor density

has increased, but switching energy has not decreased, switching power density has

become prohibitive. As a result, we now have a situation where there is abundance

of transistors, but not all of them can operate at the same time. As a result, for long

now, there has been ongoing research on decreasing energy and power consumption.

Asymmetric multicore processors (AMP) is one of the means explored to achieve

power efficiency in multicores [51, 52, 54, 28, 1]. Here cores of differing capabilites

comprise the multicore. Each core is well suited to run a subset of the potential ap-

plications that will be run. During runtime, dynamic thread scheduling is facilitated

such that the best thread to core assignment is achieved at runtime. This results in

better resource utilization, lowering of resource idling and hence static power when

45

compared to their symmetric counterparts [54, 38, 106]. Hence power efficiency is

increased. However, thread scheduling in AMPs remains a difficult problem [4]. In

this chapter, we explore a couple of different strategies to schedule threads in AMPs

online.

3.1 Related Work

With the growing popularity of AMPs, a number of proposals involving dynamic

thread scheduling have been made on the subject. A brief survey on AMP architec-

tures and dynamic thread scheduling in AMPs is now presented.

3.1.1 AMP architectures

Kumar et al. in [51] proposed an architecture consisting of four core types. Each

core is designed such that all four of them fall at different points in the performance

and power continuum. Dynamic thread scheduling between these cores is made at run-

time to improve power efficiency. They later extended this scheme to multithreaded

applications in [52]. They also explored the design of an AMP, targeting area and

power efficiency in [54]. They use cores that match the resource requirements of cer-

tain types of workloads. Ghasi et al. [28] have also explored the benefits of AMPs

for performance, power energy delay product etc. In [1], Suleman et al. propose an

AMP consisting of cores of two types, one big and the other small. The big cores

are used to accelerate the critical serial portions of the code while the smaller ones

are used for the parallel portions. Apart from academia, recently, ARM has intro-

duced an AMP architecture called the big.LITTLE core [30] which consists of big and

small cores. The emergence of AMPs in the industry shows the general trend in the

industry regarding multicore design.

46

3.1.2 Thread scheduling in AMPs

With AMPs becoming more common, a number of thread scheduling techniques

have been recently proposed. We briefly overview the prior schemes which can be

broadly classified into those that employ offline profiling, online learning via sampling

and online estimation.

There have been a number of solutions based on offline profiling to determine

the best thread to core scheduling in AMPs. Khan et al. [45] propose regression

analysis along with phase classification to identify thread to core affinity. Shelepov

et al. [86] profile applications to determine what they call architectural signature of

the application. This signature (characterized by L2 cache misses) is unique for each

core type and is used to determine the thread scheduling online. In [18], Chen et al.

use cores in an AMP that differ with respect to issue width, branch predictor size

and L1 caches. They use multi-dimensional curve fitting to determine the optimal

thread to core assignment offline. All these approaches rely on offline profiling and

are not practical, since they require knowledge of the workloads that will be run on

the multicore.

Online learning based schemes offer a more practical solution to the AMP schedul-

ing problem. Kumar et al. [51] proposed an AMP consisting of cores of various sizes,

all running the same ISA. Whenever a new program is run or a new phase [87] is

detected, sampling is initiated and the core which provides the best power efficiency

is chosen. A similar approach was proposed by Becchi et al. [6] for performance

maximization of an AMP consisting of two types of cores. Optimal thread schedul-

ing was determined by forcing a thread swap between cores upon detection of phase

change. Winter et al. [106] study power management techniques in AMPs via thread

scheduling. They consider several algorithms, all based on program sampling.

There have also been proposals made on online estimation based schemes. Here,

based on the current characteristics of a workload being executed, its performance

47

on other core types of the system is estimated. However, the benefits of the scheme

will be determined by the accuracy of the estimation. Saez et al. [84] propose a

comprehensive scheduler for AMPs consisting of small and big cores using last level

miss rates of an application to estimate its performance on each core type. It is,

however, unclear whether using L2 misses alone is sufficient to make thread to core

assignment decisions such that performance/Watt is optimized. In [100], Srinivasan

et al. estimate the performance of the thread currently running on one core type, on

another core, using a closed form expression. These expressions were developed for

specific cores and a general approach was not provided. Koufaty et al. [50] determine

thread to core mapping in an AMP consisting of big and small cores, using program to

core bias which is estimated online using the number of external stalls (proportional

to cache requests going to L2 and main memory) and internal stalls (front end not

delivering instructions to the back end).

In this dissertation, we have explored the benefits of dynamic thread scheduling

in AMPs.

3.2 Improving the Performance/Watt of Asymmetric Multi-

cores via Phase Classification and Adaptive Core Mor-

phing

3.2.1 Overview of the solution

A dual core AMP architecture is considered where each core is moderately sized

and have complementary strengths. One of the two cores has strength in executing

integer (int) workloads while the other floating-point (fp) workloads. Thus, each core

is suited for specific workloads. The baseline architecture is shown in Figure 3.1. The

system always executes two threads with one thread on each core. The proposed

scheme also involves a novel core morphing functionality, where at runtime, the two

cores exchange execution resources. When it is determined at runtime that the work-

48

Instruction

fetch/decode ROB

Weak FPU

ISQ

Strong INT

ISQ

Weak FPU

units

Strong INT

units

 Strong Integer, Weak FP core

CDB

Instruction

fetch/decode ROB

Strong FPU

ISQ

Weak INT

ISQ

Strong FPU

units

Weak INT

units

Strong FP, Weak INT core

CDB

Core 1 - INT Core 2 - FP

Figure 3.1. Baseline configuration for two heterogeneous cores.

load may fare better with a core strong on both the int and fp fronts, the two cores

exchange resources such that in the resulting multicore, one core is strong on all fronts

and the other, weak on all fronts (details to soon follow). There are several benefits

to this approach.

1. It allows applications to exploit the most suitable core for better performance.

2. Individual cores remain modest in their sizing, therefore allowing the AMP to

meet the cost and power targets

3. When operated in the morphed mode, the realigned resources enable higher

levels of performance for the applications that can benefit from them

The benefits of AMPs have been stressed upon earlier. Further studies [70, 72, 38,

31, 41, 48, 72, 47, 65] have shown that reconfigurable architectures may increase the

benefits of AMPs even further. This provides a strong argument for our target mul-

ticore architecture. In this work we use hardware performance monitors to discover

thread to core affinity during runtime. Such discovery may trigger a thread swap

or core morphing. The trigger to initiate thread swapping or core morphing needs

49

to be determined online. We explore a couple of approaches, one based on offline

learning and the other online learning. In the offline scheme (called the Rule based

scheme), a subset of the workloads are studied and based on their characteristics,

rules to determine core reconfiguration are determined. These rules are then used

to make decisions online. In the other scheme no learning is required. Instead, the

workload characteristics are learned online using sampling and phase classification.

We evaluate and compare both the schemes.

3.2.2 The proposed solution

In this section, we describe in detail our proposed dynamic core morphing (DCM)

scheme. The target AMP consists of two cores per tile: a FP core and an INT core

where a multicore system may consist of as many such tiles as deemed appropri-

ate. The FP core features strong floating-point execution units but low performance

integer execution units, while the INT core features exactly the opposite. Other

differences between the cores include the number of virtual rename registers, issue

queues (ISQ) and LSQ. The values for these parameters were decided after extensive

sizing experiments explained in Section 3.2.3.

In the baseline configuration (Figure 3.1) the cores operate independently provid-

ing good performance with each core executing one thread. However, whenever it

is determined that a workload requires both floating-point and INT performance, a

dynamic morphing of the cores takes place. In this configuration, the INT core takes

control of the strong floating-point unit of the FP core to form a strong “Morphed

core” while relinquishing control of its own weak floating-point unit to the FP core.

The FP core thus becomes a “weak core.” Morphing results in two cores: (i) a strong

single-threaded core capable of handling both integer and floating-point intensive ap-

plications efficiently, and (ii) a weak core which consumes less power and does not

provide high performance. Instead of retaining the front end of the FP core as is,

50

Instruction

fetch/decode ROB

Weak INT

ISQ

Strong

FPU ISQ

Weak INT

units

Strong

FPU units

CDB

Weak FP, Weak INT

Instruction

fetch/decode ROB

Strong

INT ISQ

Weak FP

ISQ

Strong

INT units

Weak FP

ALU units

CDB

Strong INT, Strong FP

Logic to

enable

morphing

Logic

for

CDB

morph enable

Morphed Strong core Weak core

Figure 3.2. Morphed configuration for two heterogeneous cores. The red dotted
lines/boxes indicate the connectivity for the strong morphed core configuration and
the black solid lines/boxes indicate connectivity for the weak core.

its resources are appropriately sized down, as explained in Section 3.2.3, to suit the

application running on it and reduce power. The proposed dynamic morphing of the

cores is shown in Figure 3.2. If the morphed mode is no longer beneficial, the system

reconfigures itself back to the baseline mode.

Workload behavior tends to change with time. Hence, the ability to swap threads

between the two baseline cores could reduce the execution time significantly. Reduced

execution time would improve the performance/Watt with less idling and thus more

efficient utilization of resources. Therefore, in addition to the baseline and morphed

modes of operation, we also allow the two tightly coupled heterogeneous cores to swap

their execution contexts.

The proposed DCM scheme is a hardware-only solution that is autonomous and

isolated from the Operating System (OS) level scheduler. We assume that only the

initial scheduling is done by the OS in the baseline configuration. From then onwards,

51

the thread to core assignment is managed autonomously by our scheme to optimize

performance/Watt at fine-grain time slices.

From Figure 3.2, it can be seen that the proposed scheme requires additional

hardware such that runtime exchange of execution units is possible. To that end,

it must be augmented with multiplexers and logic to forward data. However, we

estimate the overhead due to this logic to be very small when compared to the area

of a dual core AMP.

3.2.3 Determining the core parameters

We intend to design the two cores such that each core is moderately sized and

is capable of running a wide variety of workloads with reasonable performance. We

conducted core sizing experiments to determine the sizes of the structures in the two

core types. Our goal is to focus on a set of parameters that have the largest impact

on the INT and FP cores. If the cores are undersized, the results of core morphing

would be biased and misleading.

We used SESC as our architectural performance simulator [75], and CACTI [89]

and Wattch [13] to estimate power.

3.2.3.1 Benchmarks

For the experiments, 38 benchmarks were selected from the SPEC suite [97],

MiBench suite [33] and the mediabench suite. [57]. The instruction type distribu-

tion of the selected benchmarks is depicted in Figure 3.3 showing the diversity of

workloads.

3.2.3.2 Core sizing

To determine the architectural parameters for the cores, we have started with a

baseline configuration and then upsized the parameter under consideration and re-

calculated the instructions per cycle (IPC) metric for each core type. Based on the

52

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BJ MEM INT FP

Figure 3.3. Instruction composition of the 38 benchmarks when run for 5 billion
instructions.

Table 3.1. Parameter variation steps for the experiments

Parameter Size Variation steps

DL1 32K 4-8-16-32
IL1 32K 4-8-16-32
L2 256K 32-64-128-256

LSQ 64 (each LD/SD) 16-32-48-64
ROB 256 32-48-64-128-256

INTREG 128 32-48-64-128
FPREG 80 32-48-64-80
INTISQ 128 16-32-64-128
FPISQ 64 8-16-32-64

53

Table 3.2. Core configurations after the sizing experiments

Parameter FP INT HMG Weak

DL1 4K 4K 4K 1K
IL1 4K 4K 4K 1K
L2 128K 128K 128K 64K
LSQ (each LD/SD) 32 32 32 32
ROB 128 128 128 64
INTREG 48 64 56 32
FPREG 64 32 48 32
INTISQ 32 32 32 16
FPISQ 32 16 24 8

Table 3.3. Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined)

Core FP DIV FP MUL FP ALU
FP 1 unit, 12 cyc, P 1 unit, 4 cyc, P 2 units, 4 cyc, P
INT 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 10 cyc, NP

HMG 1 unit, 66 cyc, NP 1 unit, 17 cyc, P 2 units, 7 cyc, P

INT DIV INT MUL INT ALU
FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP
INT 1 unit, 12 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc, P

HMG 1 unit, 66 cyc, NP 1 unit, 16 cyc, P 2 units, 1 cyc, P

IPC, the most appropriate value for each parameter was selected. The baseline con-

figuration along with the steps used for the parameter search are shown in Table 3.1.

The parameters that were varied for design space exploration were the L1 and L2

caches, reorder buffer (ROB), load store queue (LSQ), integer issue queue (INTISQ),

floating-point issue queue (FPISQ), floating-point registers (FPREG), and integer

registers (INTREG). For the sake of brevity only ROB sizing results are shown in

Figure 3.4. In the figure, each curve represents the ratio of the performance for the

core when going from a smaller to larger ROB. For the FP core, it can be seen that

there are several benchmarks that benefit when going from ROB of size 64 to 128

(equake, swim, applu, twolf, wupwise, fft, ffti and whetstone) but such benefit is no

longer seen when increasing the ROB size to 256. Hence, the size 128 is chosen for

the FP ROB. Based on similar observations, the ROB for the INT core was also sized

54

0

10

20

30

40

50

60

70

eq
u

ak
e

am
m

p

ar
t

sw
im

w
u

p
w

is
e

ap
si

ap
p

lu

b
zi

p
2

g
zi

p

g
cc

tw
o

lf

v
p

r

m
cf

cj
p

eg

d
jp

eg

b
as

ic
m

at
h

b
it

co
u

n
t

d
ij

k
st

ra

p
at

ri
ci

a

st
ri

n
g

se
ar

ch

b
lo

w
fi

sh
en

c

sh
a

ad
p

cm
en

c

ad
p

cm
d

ec

C
R

C
3

2

F
F

T

F
F

T
I

cp
u

ep
ic

fb
en

ch

fp
S

tr
es

s

in
tS

tr
es

s p
i

to
w

er
s

w
h

et
st

o
n

e

R
el

a
ti

v
e

p
er

ce
n

ta
g

e
p

er
fo

rm
a

n
ce

g
a

in
s

FP core going from 64 to 128

FP core going from 128 to 256

INT core going from 64 to 128

INT core going from 128 to 256

Figure 3.4. Ratio of the IPC for the core configurations when going from lower to
higher sizes of ROB.

to 128. Similar sizing experiments were conducted for the rest of the parameters and

the resulting core configuration is shown in Table 3.2.

For comparison, we intended to consider a homogeneous (HMG) dual core. For

a fair comparison between our dual-core AMP and a HMG design, the area of two

HMG cores should match the sum of the areas of the FP and INT cores. Hence,

the sizes of the structures for HMG were obtained by averaging those obtained for

the INT and FP cores. As mentioned earlier, whenever the multicore enters the

Morphed mode of operation, the FP core turns into a Weak core. Since this core

is not expected to provide a performance as high as the original FP core, we did

similar sizing experiments to try and downsize this core for energy efficiency. This is

once again reflected in Table 3.2. We did not include the final configuration of the

Morphed mode as it is nothing but a combination of the INT core with the FP units

of the FP core. The performance/Watt and performance of these cores are discussed

in the next section. The specifications of the execution units is shown in Table 3.3.

55

3.2.4 Performance/Watt and performance evaluation

In this section, the performance/Watt and performance of each core is analyzed by

running one application at a time on the various core types, i.e., FP, INT, Morphed,

HMG and Weak cores.

Each workload was run on each core type for 5 billion instructions and the

IPC/Watt and IPC results are plotted in Figure 3.5. With respect to perfor-

mance/Watt, we observe that 5 benchmarks (apsi, sixtrack, epic, pi, whetstone) in

the morphed mode show notable gains. Out of these, apsi shows 82% improvement

over its closest competitor, the FP core. This benefit is more modest for the bench-

marks epic (35%), whetstone (17%), pi (12%) and sixtrack (5%). The reason why

apsi shows substantial benefits is related to the temporal distribution of the instruc-

tion mix in apsi. We have observed that this happens due to the bursty nature of the

instruction types encountered when executing apsi.

What is depicted in Figure 3.5 represents the average behavior over 5 billion

instructions. However, program behavior may change over time. Hence static thread

to core scheduling may not be optimal. This is the reason why only 5 out of the 38

benchmarks show benefits when run on the morphed core throughout their execution.

In the rest of the 33 cases, the power expended by the morphed core outweighs the

obtained performance benefits resulting in poor performance/Watt over the entire

run. This is evident from Figure 3.5(b) that shows the IPC for all benchmarks on

the four types of cores. As can be seen from this figure, the morphed core performs

either equally well or better than the other core configurations when only IPC is

considered. Moreover, there is a bigger group of benchmarks (ammp, wupwise, apsi,

applu, sixtrack, FFT, FFTI, epic, unepic, fbench, pi, whetstone) that show significant

benefits from morphing and the gains are even higher (>150% for apsi). As we have

seen, such performance gain does not always result in a higher power efficiency.

56

(a) IP
C

/W
att fo

r all b
en

ch
m

ark
s

(b
) IP

C
 fo

r all b
en

ch
m

ark
s

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8

IPC

F
P

IN
T

M
o
rp

h
ed

W
eak

H
M

G

0

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

2
5

0
.0

3

0
.0

3
5

IPC/Watt

F
P

IN
T

M
o

rp
h

ed
W

eak
H

M
G

Figure 3.5. IPC/Watt and IPC for the 38 benchmarks considered when run on each
core configuration for 5 billion instructions.

57

(a) Study of epic

(b) Study of FFT

0

0.01

0.02

0.03

0.04

0.05

0.06

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

IP
C

/W
a
tt

P
e
r
c
e
n

ta
g
e
 i
n

st
r
u

c
ti

o
n

 d
is

tr
ib

u
ti

o
n

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

0

0.02

0.04

0.06

0.08

0.1

0.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

IP
C

/W
a
tt

P
e
r
c
e
n

ta
g
e
 i
n

st
r
u

c
ti

o
n

 d
is

tr
ib

u
ti

o
n

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

Figure 3.6. Zoomed view of variations in the performance/Watt of epic when run
on each core configuration.

3.2.4.1 Impact of program phases

We have seen that when static thread-to-core assignment is considered, over the

entire run of 5 billion instructions, some benchmarks benefit, some don’t, while some

others even lose out upon morphing, when performance/Watt is considered. Such

analysis does not take into account the effect of program phases [51, 87]. To demon-

strate this point, we present a detailed study of the benchmarks epic and fft that

show benefit from morphing. The objective is to investigate performance/Watt that

each core type provides when considering fine grained time slices. We also want to

study the effect that the varying instruction distribution of a benchmark may have

on performance/Watt achieved on each core type in the AMP.

The benchmarks epic and fft were run for a few million instructions and the results

depicting the performance/Watt of the workloads on each core type, as a function of

time is shown in Figures 3.6 and 3.7, respectively. The performance/Watt for each

core type (FP, INT and Morphed) is represented by the blue, orange and red curves,

marked with a ×, a dot and a triangle, respectively. The distribution of instruction

58

(a) Study of epic

(b) Study of FFT

0

0.01

0.02

0.03

0.04

0.05

0.06

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

IP
C

/W
a
tt

P
e
r
c
e
n

ta
g
e
 i
n

st
r
u

c
ti

o
n

 d
is

tr
ib

u
ti

o
n

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

0

0.02

0.04

0.06

0.08

0.1

0.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

IP
C

/W
a
tt

P
e
r
c
e
n

ta
g
e
 i
n

st
r
u

c
ti

o
n

 d
is

tr
ib

u
ti

o
n

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

Figure 3.7. Zoomed view of variations in the performance/Watt of fft when run on
each core configuration.

types at each time instant is represented by the area in the increasingly darker shades

(light grey - int, dark grey - fp, black - memory). For the plot showing the behavior

for epic, for the first 19 data points, the morphed core does not outperform either

the FP or the INT core and as a result, staying in the baseline mode of execution is

advisable. For the data points 20 to 37, the morphed core performs much better than

the other cores (35% on average when compared to the nearest competitor, the FP

core). Hence, there is a possibility of considerable performance/Watt gains to be made

by morphing. During subsequent stages of execution, the baseline mode of execution

again proves beneficial. This shows that by monitoring the program behavior at a

more fine-grain level, there are more opportunities for improving the power efficiency

by either morphing or exiting the morphed mode. At the same time, even though

gains are made for epic, careful consideration must be given to the performance/Watt

of the second thread running on the AMP which upon morphing gets assigned to the

weak core, potentially resulting in a drop in performance/Watt for that thread. A

similar in-depth study was carried out for the benchmark FFT (see Figure 3.7). It

can be seen that even though FFT shows a small benefit from morphing over the

59

entire run (see Figure 3.5), it can be seen from Figure 3.7 that thread swapping may

provide even better benefits. The study of the above two benchmarks helps infer

that the decision to swap or morph should be based on the current behavior (e.g.,

instruction mix) of the executing workloads. In the next section, we describe in detail

our dynamic decision making scheme.

3.2.5 Dynamic Online Reconfiguration

So far it has been established that the expected performance/Watt on each core

type is a function of the instruction distribution of the workload being executed. We

now describe the mechanism for dynamic decision making. As mentioned earlier, we

have explored the use of two types of dynamic decision making schemes. One of them

is based on offline analysis while the other, online learning. The offline scheme is

called the rule based dynamic core morphing (RDCM) scheme. The online version

is called phase classification based dynamic core morphing (PCDCM) scheme. Both

these schemes are now described.

3.2.5.1 The rule based dynamic core morphing (RDCM) mechanism

The RDCM scheme consists of two components: an online monitor and a perfor-

mance predictor. The online monitor continuously and non-invasively profiles certain

aspects of the execution characteristics of the committed instructions which is then

used to make decisions online.

3.2.5.1.1 Performance prediction at fine grain time slices We have seen

that there is certainly a relation between the performance/Watt and the instruction

distrubution of the workload to be executed. To detect change in an application’s

behavior, hardware support is needed. In other words we monitor the instruction

distribution and IPC of the workload being executed and accordingly make decisions.

60

We next describe the process that we have followed in order to make the morph/swap

decisions based on the instruction composition and IPC.

For our experiments, twelve benchmarks from the suite of 38 were chosen such that

they were diverse in nature. They were then run on each core type, and IPC/Watt

as well as the instruction distributions were noted for fixed number of committed

instructions, referred to as window. We then ran experiments where two threads

were considered. At the end of every window, we analyzed the relation between

the instruction types retired and the best thread to core assignment with respect to

performance/Watt. For example, at the end of a window, while running a combination

of apsi and fft, if it is noticed that the performance/Watt of running apsi on the

morphed core and fft on the weak core is higher than the baseline mode, this point

is marked as a potential switch point from baseline to morphed mode. Similarly,

preferred switching points to come out of the morphed mode and to swap threads were

identified. In this way, we found potential trigger points for morphing, swapping and

reverting to baseline mode. Averaging the values of the percentage of fp instructions,

percentage of int instructions and IPC that we have observed for the 132 combinations

of two (out of the 12) threads, we set the rules for reconfiguration that are included

in the algorithm in Figure 3.8.

It can be seen that in general the rules are intuitive. When a surge in floating-

point instructions is observed, it makes sense to move to the FP core. The same holds

for the decision to move to INT core. For switching to the morphed mode, there must

be an increase in the integer and floating-point instructions. When switching into the

morphed mode, we want to make sure that the performance of the thread that will

execute on the weak core is not compromised. Hence, morphing takes place when the

thread that will be run on the weak core has IPC less than 0.4 which was once again

determined during the offline experiments. When the benefits of the morphed mode

61

Algorithm for dynamic reconfiguration:

1. Threads T1 and T2 assigned randomly to cores

2. Do Swap if:

i. (%INTFP >= 44) and (%INTINT <= 30)

 OR

ii. (%FPINT >= 26) and (%FPFP <=13)

3. Go from baseline to morphed mode if:

i. For T1 (T2)

a. %(FP + INT) >= 50 and

b. (17<=%FP<=30) and (26<=%INT<=44)

ii. And T2 (T1)

a. IPC <= 0.4 and

b. %(FP + INT) < 60

4. Come out of morphed to baseline mode if:

i. Thread currently on morphed core shows

a. %(FP + INT) < 50

b. Use swap rules for thread to core assignment

5. End

• %INTFP – Integer instruction percentage of thread on FP core

• %INTINT - Integer instruction percentage of thread on INT core

• %FPFP – FP instruction percentage of thread on FP core

• %FPINT – FP instruction percentage of thread on INT core

Figure 3.8. AMP reconfiguration conditions for RDCM scheme

are predicted to have dimished (as indicated by the inequality in the Figure 3.8), the

AMP switches back to the baseline mode of operation.

3.2.5.1.2 Accounting for program phase changes We have defined the con-

ditions that determine a switch in the mode of operation for the AMP. However, it is

necessary to ensure that the decision is sticky. Otherwise the behavior of the dynamic

mechanism may be oscillatory. To avoid this, a reconfiguration decision is made only

if the same decision holds the majority for the past n windows, called history depth.

The history depth (indicated by n) and the size of the individual window have to

be determined experimentally. We have conducted a sensitivity study to determine

these parameters.

3.2.5.1.3 Determining the best window size and history depth Choosing

too small a window may result in noisy behavior, while too large a window may result

in loss of potential opportunities. Hence, we experimented with various window sizes

62

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

5 10 20 50 100 200 5 10 20 50 100 200 5 10 20 50 100 200 5 10 20 50 100 200

W
ei

g
h

te
d

 I
P

C
/W

a
tt

 S
p

ee
d

u
p

history depth

Window size 250 Window size 500 Window size 1000 Window size 2000

Figure 3.9. Performance sensitivity analysis for determining window size and history
depth.

of 250, 500, 1000 and 2000 instructions. The history depth n was varied from 5, 10,

20, 50, 100 and 200 in our experiments. For example, if window size 500 is chosen

with history depth 10, the scheme will rely on the behavior of the threads during the

5000 (500×10) recently committed instructions to make the reconfiguration decision.

For each combination of window size and history depth, about 140 multiprogrammed

workloads were run with a random combination of benchmarks from our set of 38.

The weighted speedup in terms of performance/Watt obtained is shown in Figure

3.9. It can be seen that the best speedup (taking into account a certain overhead

for reconfiguration) is obtained for a window size of 500 instructions and a history

depth of 5. A reconfiguration overhead of 1000 cycles has been considered in these

experiments.

3.2.5.2 The phase classification based dynamic core morphing (PCDCM)

scheme

The offline decision making mechanism requires offline analysis and as such may

not be ideal. This situation may be averted by using a online learning mechanism.

We have used the phase classification and sampling technique for online learning.

63

iALU

iMult

iDiv

iBJ

iLoad

iStore

fpALU

fpMult

fpDiv

i = integer

fp = floating point

Instructions

retired

Instruction

counters

Number of instructions =

interval n?

Capture

ITV

Classify

phase

Phase table

iMultiALU fpDivfpMult IPC

Figure 3.10. Online recording of application behavior via hardware counters and
phase table as done by Khan et al. in [46].

3.2.5.2.1 ITV based phase classification Instruction type vectors (ITV) were

introduced by Khan et al. in [46] for the purpose of program phase classification.

We adopt this scheme and modify it to better suit our purposes. The ITVs are cre-

ated using a circuit similar to that shown in Figure 3.10 where hardware counters

are used to count the number of committed instructions of certain types (9 types as

shown in the figure) during a specified interval. This interval corresponds to a fixed

number n of committed instructions with the value of n to be determined. Whenever

an instruction is retired, the appropriate instruction counter is incremented. After n

instructions have committed the resulting 9-element vector is captured and compared

to previously stored ITVs in the Phase Table. The already stored ITVs correspond to

previously encountered stable phases where a phase is classified as stable when at least

m consecutive intervals (of n committed instructions each) had almost identical ITVs.

The number m is another parameter of the scheme that needs to be determined. The

64

newly captured ITV is compared to each stored ITV by calculating the sum of the

absolute differences between their corresponding nine elements. If this sum is smaller

than a pre-specified threshold ∆ (a parameter that needs to be determined), then the

newly encountered phase is assigned the same phase ID as the one it was compared

against. This signifies that we expect the current behavior of the program to be very

similar to its behavior during the previously encountered phase with likely the same

performance and performance/Watt. If however, the sum exceeds the threshold value

∆, it becomes a potentially new phase but it needs to repeat m times before being

assigned a new stable phase ID. Every program may exhibit during its execution sev-

eral short-lived intermittent phases that do not justify actions like thread swapping or

core morphing. It is important therefore, to distinguish between stable and unstable

phases. The resulting algorithm to detect and classify phases is shown in Figure 3.11.

Experiments were carried out to determine the phase classification parameters, i.e.,

n, m and ∆. Details on these experiments can be found in in section 3.2.7. We found

that in general, the phase classification mechanism provides best benefits when the

interval range n is between 50K - 200K instructions, the %threshold is between 5 -

15% and the stable phase interval is between 2 - 8. For the rest of our experiments,

these parameters have been set as: n = 150K, %threshold = 7.5 and the stable phase

interval m=4.

3.2.5.2.2 Extending the phase table to include performance and power

entries We made a few changes to Khan’s [46] phase classification scheme as shown

in Figure 3.12. There are two major differences. (i) The number of instruction types

in the ITV vector has been reduced from 9 to 4, and (ii) there are additional entries

in the table to indicate the estimated IPC and power for each core type in the AMP.

Since the cores in the AMP mainly differ with respect to their capability of processing

int and fp instructions, we aggregate all int instructions into a single entry and all fp

instructions into another single entry. We also aggregate load and store instructions

65

Start

Programs begin

execution on

static AMP

Interval = n

Threshold = ∆

#Repeat intervals = m

phaseID = -1

#noPhases = 0

i = 0

tempID = -1

Execution

complete?

no

yes

End

Wait until n instructions

(interval) have committed

phaseID = -1?

Current phase

has repeated

itself

yes

Temporarily

store the

phase

information

associated

with this

phase

Temporary phase

information stored?

Calculate difference ∆

of this interval with that

of temporary phase

no

yes

Difference < ∆?

i == m?

no

Unstable phase detected.

Discard temporary phase

information. Retain current

phaseID as is

i = 0

yes

i= i+1

New phase

detected, enter

phase

information

into phase table

noPhases++

phaseID =

noPhases

i = 0
no

Calculate difference ∆

of this interval with that

of phaseID from table

Difference < ∆?

Current phase

has repeated

itself

yes

no

Calculate difference ∆ of

this interval with other

phaseIDs from table

Difference < ∆?
no

tempID == -1?

tempID = ID of phase

from table where

Difference < ∆

yes

yes

Calculate difference ∆ of this interval

with that of temporary phase

Difference < ∆?

no

i= i+1

i == m?
Phase change detected

phaseID = ID from

phase table

yes
no

yes
no

Unstable phase

detected. Retain

phaseID

tempID = -1

i = 0

no

yes

Figure 3.11. Flowchart of Phase Classification algorithm.

66

INT

FP

iBJ

Mem

Instructions

retired

Instruction

counters

Number of instructions =

interval n?

Capture

ITV

Classify

phase

Phase table

INT Mem
ITV

IPCi = IPC for core i

PWi = Power for core i

IPC and power for cores
IPC1 PW1 PWNIPCN

Figure 3.12. Extending the phase table with IPC and Power entries for each core
in the AMP. Note that the number of instruction types in the ITV vector has been
reduced from 9 to 4.

into a single entry called Mem. As is shown in section 3.2.8, such a reduction does

not compromise the benefits of the online mechanism. Further, to be able to use

effectively the information about already classified stable phases, there is a need to

collect per core type in the AMP, the performance and power for a given phase. We

do that by augmenting the phase table with 2 additional entries per core type, one

each for IPC and power. Since there are 4 core types in the considered AMP (FP,

INT, Morphed and Weak), there are 8 entries corresponding to the estimated IPC

and power for the given phase on each core type. Whenever a new stable phase is

identified, our scheme will store in the phase table the approximate values of the IPC

and the power consumed by each core during that phase.

Online measurement of IPC is straightforward, but the same cannot be said about

power measurement. To estimate power, we use performance event counters, avail-

able in almost every processor, as a proxy for power. Computer architects have for

long used performance monitoring counters as a proxy for estimating the power con-

sumption [43, 19, 92]. The accuracy of such estimates is not high, but still sufficient

for comparing the power consumed by different cores executing the same program.

We adopted a similar approach to estimate power online using performance counters.

67

If the approximate IPC and power consumption is available for each phase of an

application on each processor, a simple table lookup suffices to determine the best

thread to core mapping for future occurrences of the classified phase.

3.2.5.2.3 Online performance and power estimation The phase classifica-

tion mechanism tracks the current behavior of the workload. Whenever a new phase

is detected, or when a previously classified phase is encountered again, it indicates

that there is a change in the composition of instructions being executed for the appli-

cation. Hence, this is the point at which the performance/Watt of alternative thread

to core schedules are evaluated. In order to then determine the best thread to core

assignment, performance estimation of that phase on each core type in the AMP is

needed. As mentioned earlier, we achieve this by dynamic online learning where the

newly detected phase is run on each core in the AMP. A similar scheme has been

used by Kumar et al. [51] and Becchi et al. [6]. However, Kumar et al. sample

the program on each core type in the AMP, each time a new phase is detected even

if it has been previously encountered. Becchi et al. force a thread swap between

cores whenever a new phase is detected to estimate performance of the phase on each

core type. Sampling is clearly needed when new phases are detected, but not when

a previously encountered phase is detected again, if the information related to the

phase is available. Hence, during the proposed online learning process, the program

is executed once on each core type and the observed IPC and power information are

stored in the phase table. Since the AMP has 4 possible core types, this process must

be repeated 4 times.

The overheads of the online scheme stem from the online learning mechanism and

context switch on thread swap. We quantify the details of this overhead and its effect

on the benefits of our scheme in Section 3.2.6.

68

3.2.5.3 Putting it all together

We have so far described all the individual components of the RDCM and PCDCM.

The working of the entire system is now described next as depicted in Figure 3.13.

A software called the microvisor [46] is used to initialize and manage the phase clas-

sification mechanism as well as the performance and power estimation mechanisms

for both the RDCM and PCDCM schemes. This software is invisible to the OS and

is resident in between the OS and hardware. It collects information from cores and

makes the best thread to core assignment. It functions the same way as that proposed

by Khan et al. [46] or IBM’s millicode [36].

3.2.5.3.0.1 The microvisor This is the software layer that collects informa-

tion from the phase table on new phase or phase change detection in case of the

PCDCM scheme and the performance counters in case of the RDCM scheme. With

the information it has access to, it thus makes decisions. In case of PCDCM, if a

new phase is detected, the microvisor controls the process of the sampling mechanism

to estimate the IPC and it also collects the counter values that are used to estimate

power. The phase table is then updated with the IPC and power information for each

core type. If a phase change is detected, phase tables are looked up to fetch the IPC

and power values for that phase which are then used to make thread scheduling de-

cisions. In case of RDCM, the microvisor is aware of the rules that determine thread

swapping or core morphing. After sampling the performance counters, it applies the

data to the inequalities (as described in the Algorithm in Figure 3.8) to determine

the best core configuration. Since the microvisor does some computation whenever

phases are detected or repeated, it incurs an overhead which will soon be discussed

in section 3.2.6.3.

3.2.5.3.0.2 Determining the best thread to core assignment Whenever

a phase change is detected or a new phase is classified, a different thread to core

assignment or core configuration may be needed to optimize performance/Watt of

69

Start

Initial thread to core assignment is randomly chosen

Execution complete? End

Classify phases

Phase change detected?
No

No

Yes

New phase detected?

Sample the new phase on all

cores and estimate

performance and power.

Store estimated values in the

phase table

Yes

Yes

Look up phase

table to determine

best thread to core

assignment

No

MICROVISOR

Figure 3.13. Elements of the proposed PCDCM working together. The part of the
algorithm controlled by the software layer (Microvisor) is indicated by the dotted red
rectangle.

the applications being executed. This is determined by the microvisor. It collects

relevant information from the cores of both the workloads being executed and makes

a decision based on the performance/Watt of the various potential configurations. The

various thread to core assignments for the proposed AMP are: (i) thread0 running

on the FP core and thread1 on the INT core ([FP, INT]) or vice versa ([INT, FP])

(ii) thread0 running on the morphed core and thread1 on the weak core ([MR, WK])

or vice versa ([WK, MR]). Based on the current configuration of the AMP and the

information available to the microvisor, the best configuration is chosen such that

performance/Watt of the AMP is maximized.

3.2.6 Evaluation

We now present the results on the performance/Watt improvements provided

by the proposed PCDCM scheme. In the evaluation, we found that the RDCM

scheme performs better on an average than the baselines we considered, but it lost

out to the PCDCM scheme. Hence, results are presented on the improvement in

70

performance/Watt of the PCDCM scheme over the baselines and the RDCM scheme.

In these experiments, two threaded multi-programmed workloads were run on the

AMP. Execution stops when 5 billion instructions of either thread are retired. The

phase classification parameters were set to: Interval n = 150K, %threshold ∆ = 7.5

and stable phase interval m = 4 based on our search described in section 3.2.7.

We now describe the baselines that will be used for comparison. The perfor-

mance/Watt improvement achieved by PCDCM scheme over each baseline is then

evaluated. Since the proposed scheme relies on dynamic online learning in order to

determine the affinity of a newly detected phase to a core in the AMP, we present a

study on the effect of this overhead on the benefits.

3.2.6.1 Baseline modes considered

We compare the proposed PCDCM scheme to the following baseline configura-

tions:

1. Static: Here the AMP does not feature morphing or swapping of threads, but the

thread to core assignment is based on oracular knowledge of the best assignment

with respect to performance/Watt.

2. Swap: Here threads are allowed to swap between the cores. The decision to

swap is made in the same way as the proposed dynamic online scheme using the

ITV phase detection. The only difference is that the cores are not allowed to

morph. Comparison with this baseline will allow us to measure the true benefits

of the core morphing scheme.

3. HMG: This baseline consists of two homogeneous cores with parameters as

described in Section 3.2.3. This dual-core processor is symmetric and occupies

the same area as the FP and INT core AMP.

71

4. RDCM: This is the offline profiling-based DCM scheme. As described earlier,

core reconfiguration in this scheme relies on rules derived offline by profiling

a subset of the workloads considered. These rules are then applied to trigger

either morphing or thread swapping whenever deemed beneficial.

3.2.6.2 Performance/Watt analysis over the baselines

We considered three speedup metrics for comparing the proposed scheme to the

baselines. We define the following terms:

S0 = (IPC/Wattthread0)dynamic/(IPC/Wattthread0)baseline

S1 = (IPC/Wattthread1)dynamic/(IPC/Wattthread1)baseline

The various speedups considered are:

1. Weighted:

Speedupweighted = (S0 + S1)/2

2. Geometric:

Speedupgeometric = 2
√
S0 × S1

3. Harmonic:

Speedupharmonic = 2/(1/S0 + 1/S1)

From the set of 38 workloads, we randomly selected 100 combinations of two

threaded workloads and executed those using the PCDCM scheme and on each of the

baselines. A subset (40 of the 100) of the results are plotted in Figures 3.14 and 3.15.

These 40 were shortlisted by first sorting the results obtained for the 100 workload

combinations in ascending order of weighted IPC/Watt improvement over the baseline

and then choosing 10 worst cases, 10 best cases and 20 cases in between. It is clear

that in general (see Figures 3.14 and 3.15), a significant IPC/Watt improvement

72

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

(a) V
s th

e S
tatic b

aselin
e

(b
) V

s th
e S

w
ap

 o
n
ly

 d
y
n
am

ic b
aselin

e

Figure 3.14. IPC/Watt improvement of the PCDCM scheme over the static and
swap only baselines for a subset of the workload combinations.

73

(a) V
s th

e H
M

G
 b

aselin
e

(b
) V

s th
e R

D
C

M
 d

y
n

am
ic b

aselin
e

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

IPC/Watt improvement
W

eig
h

ted

G
eo

m
etric

H
a
rm

o
n
ic

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

Figure 3.15. IPC/Watt improvement of the PCDCM scheme over the HMG and
RDCM baselines for a subset of the workload combinations.

74

is observed when compared to any baseline. Also, amongst the worst cases for the

baselines (static and HMG), it can be seen that the IPC/Watt degradation is not very

high (0.86 in the worst case against HMG). Even when compared against the dynamic

baselines (Swap and RDCM), it can be seen that significant IPC/Watt improvement

is achieved on average.

3.2.6.2.1 Analysis of results We now provide detailed analysis and reasons on

why the PCDCM scheme performs better on average than both the static as well as

the dynamic baselines.

Static: In this baseline, no dynamic thread to core assignment takes place during

the run. However, the assignment is assumed to be done by an oracle and as such,

cannot be done in practice. It can be seen that significant IPC/Watt improvement is

achieved by PCDCM over this baseline. The static scheme cannot take advantage of

phase changes or changes in resource demands. We have seen that appliation resource

demands change over time and hence, the PCDCM scheme equipped with the phase

classification mechanism is better equipped to deal with these changes. For example,

over an entire run of 5 billion instructions, the workload equake shows an affinity to

the FP core (see Figure 3.5). However, during the experimental run, 11 phases were

detected for equake and affinity for the INT, Morphed or even the Weak core was ob-

served during those phases. The PCDCM scheme detects these phases, re-evaluates

the thread to core mapping and hence optimizes IPC/Watt. Hence, the PCDCM

scheme achieves significant improvement in IPC/Watt over the static baseline. Still,

there are a few workload combinations (3 out of of 100) where the PCDCM scheme

performs slightly worse than this baseline (see Figure 3.14(a)). For these workloads,

even though phases are detected and classified, at no point did PCDCM trigger a

reconfiguration, but phases were detected and the sampling overhead increased the

runtime. As a result, the IPC/Watt improvement is less than 1. However, on an

average, for all the 100 combinations (see Figure 3.16 where average, maximum and

75

minimum improvements over all baselines are plotted), a significant improvement of

16% is observed with respect to weighted IPC/Watt, which more than justifies the

rare cases where no reconfigurations take place.

Swap: This is one of the two baselines that are dynamic. Here phase classification is

used, but only thread swapping between cores is allowed. Although this scheme is dy-

namic, it can be seen that the IPC/Watt improvements are significant on average (see

Figure 3.16(a)). Also, there are only four cases where IPC/Watt improvement is < 1

(the leftmost workload combinations in Figure 3.14(b)). By allowing cores to morph,

the execution of the thread on the Morphed core is accelerated, while that on the

Weak core is slowed down. As a result, the phase combinations that are encountered

between the two workloads, when the cores have morphing capability and when they

do not, are very different. This results in sometimes, different reconfiguration deci-

sions made by the PCDCM and swap-only schemes. For example, when running the

workload combination mgrid,twolf (leftmost combination in Figure 3.14(b)) where a

speedup of 0.97 was observed, the PCDCM scheme performed morphing 10 times,

while the swap scheme made no reconfiguration. Since the proposed scheme is greedy

in its decision making, thread re-scheduling decisions are made even for the short

lived phases. Hence sometimes, the overheads outweigh the benefits which is what

led to the PCDCM scheme performing slightly worse. This however, is not a frequent

occurrence and it happens only in 4 out of the 100 combinations of workloads. There

were also several cases where this baseline performed as well as the PCDCM scheme

(14 of the 100 combinations). However for the rest of the workloads the PCDCM

scheme significantly outperforms this baseline. There are several instances where a

core that is strong on the integer and floating-point fronts was required. This is where

the advantage lies for the PCDCM scheme. Further, sometimes there are workloads

that are naturally affine to the weak core and hence this increases the benefits of

76

(a) Average IPC/Watt improvement

(b) Maximum IPC/Watt improvement

(c) Minimum IPC/Watt improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

Static Swap HMG RDCM

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t Weighted

Geometric

Harmonic

1

1.2

1.4

1.6

1.8

2

Static Swap HMG RDCM

IP
C

/W
a

tt
 i
m

p
r
o

v
e
m

e
n

t Weighted

Geometric

Harmonic

0.7

0.75

0.8

0.85

0.9

0.95

1

Static Swap HMG RDCM

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Weighted

Geometric

Harmonic

Figure 3.16. Average, maximum and minimum IPC/Watt improvement of the
PCDCM scheme over the various baselines.

77

the PCDCM scheme even further. The average IPC/Watt improvement over 100

combinations of workloads was found to be 9% (see Figure 3.16(a)).

It may be noted that the phase classification based “swap” scheme achieves a

weighted IPC/Watt improvement of about 8% over the static baseline. Hence, such

a dynamic swap scheme may be beneficial for architectures that do not or cannot

include the hardware support for morphing.

HMG: This baseline is an area-equivalent symmetric multicore. It can be seen that in

general, IPC/Watt is significantly improved by the PCDCM scheme, when compared

to this baseline. A thing worth noting is that the number of cases where PCDCM

performs worse is on the higher side (9 out of the 100 combinations) when compared

to the other baselines. Moreover, the worst case weighted IPC/Watt improvement of

0.86 is one of the worst when compared to all other baselines. This happens because

the HMG baseline is well suited to running certain homogeneous workload combina-

tions that exhibit phases, but no difference in execution characteristics on the various

core types in the AMP. For example, the left most workload combinations in Figure

3.15(a), i.e. CRC32, gcc, dijkstra, gzip and bzip2, bzip2 are all int intensive. In such

cases, having a homogeneous multicore may be a better option as both the threads

are affine to the same core type in the AMP, the thread assigned to the other core

type will suffer with respect to performance. This is evident from Figure 3.15(a).

If however, one of the workloads being executed has FP instructions, PCDCM may

perform better even if those workloads are similar. As an example, consider the sym-

metric workload combination FFTI, FFTI in Figure 3.15(a) which shows a weighted

IPC/Watt improvement of 25% when run on the PCDCM scheme. This happens as

FFTI shows phases which are FP/INT intensive or have both. Phases that have a

reasonable proportion of INT and FP instructions are naturally affine to the Morphed

core. PCDCM detects those and makes intelligent thread mapping decisions to im-

prove IPC/Watt. On an average for the 100 combinations, PCDCM scheme achieves

78

26% IPC/Watt improvement over the HMG baseline (see Figure 3.16(a)).

RDCM: This is the dynamic baseline that uses information learned offline to deter-

mine thread scheduling and morphing decisions online. The PCDCM scheme achieves

an improvement in IPC/Watt even over this scheme. The major reason for this is

that for the RDCM scheme, the rules are dependent on the workloads used for profil-

ing. Hence, when a workload that was not profiled earlier is encountered, the RDCM

scheme may not make the most optimal decisions. The PCDCM scheme on the other

hand relies on online learning and hence is independent of the incoming workload. It

however incurs the phase sampling overhead. Further, the RDCM scheme makes de-

cisions at fine grain instruction granularities while the PCDCM scheme makes those

at more coarser gain granularities. Hence, there are workload combinations where

the IPC/Watt improvement of PCDCM over RDCM is < 1. Still, on an average,

PCDCM achieves 6% IPC/Watt improvement over RDCM as seen in Figure 3.16(a).

One of the major benefits of the proposed PCDCM scheme is that it will always

make intelligent scheduling decisions irrespective of the incoming workloads, unlike

the RDCM scheme, the benefits of which depends on the training set used. Further,

the RDCM scheme’s rules are only valid for the architecture considered in this chap-

ter. For different architectures, a different set of rules may have to be determined.

This is not the case for the proposed scheme which will work just fine for any core

types. The PCDCM scheme is therefore, more scalable than the RDCM scheme.

3.2.6.3 Overheads vs. benefits

The PCDCM uses phase classification and phase tables controlled by the micro-

visor to provide performance/Watt benefits. However, this benefit comes at the cost

of an overhead. In this subsection, we quantify the software and hardware overheads

of the scheme and also present the effect of the overheads on its benefits.

79

3.2.6.3.1 Software overheads The software overheads in the proposed scheme

arise due to microvisor function, sampling to determine IPC and power information

and the times when cores need to swap thread contexts.

The microvisor is invoked whenever a new phase is detected or when a previously

detected phase is detected again. Table lookup is then performed and the information

is used to determine the weighted speedup metric which is then used to determine

the best thread to core mapping based on the newly detected phase. We estimate

the overhead of this procedure to be a few hundred cycles every time it happens. We

set this number conservatively, as 500 cycles for our experiments. It was observed

in our experiments (consisting of 100 combinations) that there were around 5 phases

detected on an average and, the maximum number of phases detected was 17. Also,

phase changes were detected around 800 times on average and the maximum number

of phase changes detected was 2020. Hence, the overhead due to microvisor invocation

was found to be (5 + 800) × 500 cycles which equals 402K cycles on average and, (17

+ 2020) × 500 cycles which equals around 1M cycles overhead for the worst case.

The second source of overhead comes about during the process of sampling. When

a new phase is detected, it is sampled on each core type for the defined interval length

n (150K instructions). Hence, a total of 600K + 4 × 150K instructions is executed

in total during the sampling phase. On an average, we estimated that it would take

around 1.5M cycles to execute this. During this dynamic online learning process, the

system continues with one of the core types and hence only 75% of the 1.5M cycles

is the actual overhead of sampling. Thus, a significant portion of the overhead is

due to online learning. In our experiments, as described earlier, average/maximum

phases detected were 5/17 and the corresponding average/maximum overhead due

to sampling were 7.5/25.5 million cycles. Considering that each experiment runs for

billions of cycles, this overhead in cycles comes to be around 0.2% on an average and,

0.8% in the worst case. It is worth noting that since we use the phase table, we avoid

80

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Weighted Geometric Harmonic

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Speedup metric

2.5M 5M 7.5M 10M

Figure 3.17. Weighted, geometric and harmonic IPC/Watt improvement over the
static baseline for increasing overhead for dynamic online learning.

the sampling process whenever the same phase is detected again. If that were not the

case, sampling would have to be done 2020 times in the worst case, for every phase

change and this would have significantly increased the overheads.

The third source of overhead stems from the context switch whenever the micro-

visor determines that the cores must swap their contexts or morphing of resources

must take place to maximize performance/Watt. It was observed in our experiments

that the thread swaps and hardware reconfigurations happened around 90 times on

average and around 1000 times in the worst case. This overhead can vary from one

architecture to the other depending on dedicated support for thread swapping and

context switch. Architectures with support for thread swapping may incur up to a

thousand cycles overhead while it may be significantly larger for those without such

support. We have assumed this overhead to be 1K cycles and hence the overhead

due to thread swapping/morphing may be estimated to be 90K and 1M cycles on an

average and in the worst case, respectively. Both of these are negligible considering

that we execute the benchmarks for billions of cycles. We experimented with various

context switch overheads of 10K, 50K, 100K and 1M cycles and found those to have

negligible effect on the benefits of the proposed scheme.

81

Of the three sources of overhead, the overhead due to sampling dominates the

others. To quantify the effect of these overheads on IPC/Watt improvement of our

approach, we increased the sampling overhead from 2.5 to 10 million cycles. The result

is plotted in Figure 3.17. It can be seen that even with a pessimistic overhead of 10

million cycles per sampling process, the scheme still achieves benefits of 14% weighted

IPC/Watt improvement over the static baseline (a drop of 2%), with respect to all

three speedup metrics. Hence, we can conclude that the proposed PCDCM scheme

has a low sensitivity to the sampling overhead.

For the RDCM scheme, the only overheads are those that arise due to microvisor

invocation and context switch, but no overhead due to sampling. Hence, the overheads

in the RDCM scheme are negligible.

3.2.6.3.2 Hardware overhead As mentioned earlier, in our experiments we no-

ticed the average number of phases detected to be about 5. For the worst case

scenario, this number went up to 17. Therefore, about 20 phase table entries may

be sufficient for most cases. Each entry in the phase table captures the ITV, the

performance and power information of the phase on each core types. Hence, an entry

in the table consists of 12 fields, totaling to about 240 fields (12 fields/entry × 20

entries) for the entire phase table. Even if each field requires 32 bits, the size of the

phase table would be less than 1 KB. Clearly, this is a small overhead considering the

total gate count of the dual core processor.

3.2.7 Determination of phase classification parameters

Khan et al. [46] have conducted experiments to determine the parameters of the

phase classification mechanism, namely: (i) interval length (n), (ii) phase detection

threshold (∆), and (iii) stable phase interval (m). We repeated these experiments in

order to (a) simplify the phase detection hardware and (b) improve the prediction

accuracy against a much larger and diverse set of benchmarks. Based on these exper-

82

(a) %Program unclassified Vs Interval length (b) %Standard deviation in IPC Vs Interval length

8.5

9

9.5

10

10.5

11

11.5

50K 100K 150K 200K 500K 1M

Interval length

%Program unclassified

0

2

4

6

8

10

12

14

50K 100K 150K 200K 500K 1M

Interval length

%Standard deviation in IPC

Figure 3.18. Sensitivity of the phase classification quality metrics to increasing
interval length (n). Note that the results for combinations of phase classification
parameters with the same interval length have been averaged.

iments, we reduced the ITV vector length from 9 to just 4, which cuts down the size

of phase detection hardware by nearly half. As will be shown in section 3.2.8, such a

reduction has little effect on the benefits of the phase chassification mechanism.

In order to determine the parameters for the phase classification mechanism, a

number of interval lengths n were experimented with, between 1K to 1M instructions.

In order to measure the quality of the phase classification mechanism, we use the

following two quality metrics: (i) percentage of the program that can be classified

into stable phases and (ii) standard deviation of the IPC between intervals classified

under the same phase ID. Reconfiguration decisions can only be made if the thread

under consideration is in a stable phase of execution. The benefits (in terms of

the resulting performance/Watt) depend on the standard deviation of IPC between

phases classified under the same phase. A high value of the standard deviation may

indicate that there is a large disparity between the projected IPC/Watt improvement

(due to the reconfiguration) and the real improvement. It is therefore, desirable that

most of the program is classified as stable, and that the standard deviation in IPC

between phases classified under the same ID is as low as possible.

We found that smaller intervals result in a high proportion of unstable phases and

higher standard deviation in IPC between intervals classified under the same phase.

83

Increasing the interval size results in a reduction of unstable phases and standard

deviation in IPC between phases. This happens due to the averaging effect that

takes place with an increasing interval size. However, a too large interval may result

in the entire program being classified as a single phase eliminating all the potential

benefits of our approach.

The ultimate purpose of phase classification is maximizing the IPC/Watt and we

need to find the values of the parametrs (n, ∆ and m) that will results in the highest

IPC/Watt. To reduce the size of the parameter space that needs to be explored we

only considered those combinations of phase classification parameters that yielded %

unstable phases and % standard deviation in IPC to be below 12%. This resulted in

a reduction of more than 65% in the search space size. The remaining combinations

of the phase classification parameters were: interval n varying from 50K to 1M in-

structions, threshold ∆ between 7.5 to 12% and the stable phase interval m varying

from 2 to 8. The general trends observed in % program classified as unstable and

% standard deviation in IPC for increasing interval size are shown in Figure 3.18.

Note that we have averaged results obtained for combinations of phase classification

parameters with the same interval size, in order to show the results in a single plot.

For each shortlisted combination of the phase classification parameters, we ran 100

random combinations of two threaded workloads from the set of 38 and calculated

the weighted IPC/Watt improvement over the static baseline with oracular thread

to core assignment. Here too, to show the results in a single plot, we averaged

the results observed for the same interval size. Figure 3.19 shows that the IPC/Watt

improvement is highest for the interval size of 150K. From the considered combinations

of the other phase classification parameters we found the largest speedup when using

a %threshold (∆) of 7.5% and a stable phase interval (m) of 4.

84

1.11

1.12

1.13

1.14

1.15

1.16

1.17

50K 100K 150K 200K 500K 1M
Interval length

IPC/Watt improvement

Figure 3.19. IPC/Watt improvement for various interval sizes. Note that the results
for combinations of phase classification parameters with the same interval length have
been averaged.

3.2.8 ITV vector length vs. performance/Watt benefits

As mentioned earlier, the proposed scheme may not need the details of all the nine

types of instructions. To illustrate the effect on the quality of phase classification when

reducing the number of ITV entries from 9 to 4, we measured both the quality defining

factors for both and the results are plotted in Figure 3.20. In this experiment, the

interval length n was kept at 150K instructions, the %threshold ∆ was kept at 7.5%

and the stable phase interval m was kept at 4.

It can be seen that there is only a small quality degradation with respect to

standard deviation of the IPC which is expected. The reduction in ITV length made

a difference of less than 1% in the achieved IPC/watt benefits. We used therefore, a

4 entry ITV to save hardware.

3.2.9 Conclusions

In this work we have presented a couple of online mechanisms to determine thread

to core assignment online to improve performance/Watt of an asymmetric multipro-

85

0

2

4

6

8

10

12

14

%Program unclassified %Standard deviation in IPC

9 entry ITV 4 entry ITV

Figure 3.20. %Program unclassified and % standard deviation in IPC when using
a 9 entry and 4 entry ITV. It can be seen that quality only degrades a little with
respect to standard deviation in IPC.

cessor system. The studied AMP architecture features two cores: one with strength in

floating-point computation and the other in integer intensive workloads. By morph-

ing the two cores, we obtained a core that is strong in both integer and floating-point

computations, but this resuls in the second core becoming much weaker. We de-

ployed adaptive core morphing alongside thread swapping, at runtime, to reassign

threads to cores using the above program phase classification. Two dynamic deci-

sion making mechanisms were considered. One of them, called the RDCM scheme

relies on information gleaned offline while the other called the PCDCM scheme ob-

tains such information online. Both schemes basically rely on the use of performance

monitors to make decisions online. To evaluate the schemes, static and dynamic re-

configuration alternatives were considered. Using the PCDCM scheme, substantial

performance/Watt gains are achieved. Our results show that the PCDCM scheme,

on an average, outperforms the static heterogeneous baseline by about 16%, the ho-

mogeneous baseline by 26% and the best dynamic baseline i.e. RDCM scheme by 6%,

with respect to weighted IPC/Watt. It is worth noting that the PCDCM scheme is

86

based on online learning with no prior knowledge regarding the individual capabilities

of the individual cores, and hence is not limited to the considered INT, FP dual-core

but is applicable to any heterogeneous AMP, unlike the RDCM scheme.

3.3 Scalable Thread Scheduling in Asymmetric Multicores

for Power Efficiency

So far, we have seen that rule based and online sampling based schemes can

significantly improve the performance-per-power of AMPs. However, the scheme

developed was specific to the INT FP AMP considered. In this section, we explore

an estimation based scheduling scheme that may be applied to generic AMPs. The

key idea is the online estimation of both the performance and power of an application

on all the other cores in the AMP, while it is being executed on the current core.

This is made possible by using the performance counters of the current core. A

relationship is established between the values of these counters in the core executing

the application and the expected performance and power of this application if it

would run on the other cores in the AMP. By estimating the performance and power

on other core types, informed thread scheduling decisions can be made without any

of the drawbacks of offline profiling and online learning. To illustrate our approach,

we consider an 8-core AMP comprising of two high performance cores (HPerf core)

with similar characteristics to an Intel Nehalem or AMD K10 processor, and six low

power cores (LP core) similar to an Intel Atom or AMD Bobcat. This choice is in line

with recent studies [6, 50, 84]. We present an extensive analysis to determine which

hardware performance counters (HPCs) should be used to predict both performance

and power. We then formulate expressions using the selected counters for estimating

the performance and power on other cores in the AMP. These expressions are used to

make real-time thread scheduling decisions in the AMP when eight threads are run.

The proposed scheme is compared against the static baseline AMP (the same dual

87

core type AMP with no thread swapping capability) with oracular knowledge of the

best thread to core mapping and a previously proposed online learning scheme [6]. We

also compare the proposed scheme to a greedy oracle scheduler. Our results indicate

that the proposed scheme achieves significant performance/Watt improvements over

all the baselines. In particular, on an average, 2X gains are observed when comparing

the proposed scheme to that based on online learning.

3.3.1 Methodology

To evaluate our approach (detailed in the next two sections), we selected an 8-

core AMP consisting of two core types at the two ends of the performance/power

spectrum - a high-performance core (HPerf) and a low-power core (LP). This is one

of the worst cases for a scheme for estimating the performance and power of the

second core based on the activities observed in the first core. In the considered 8-core

AMP, two cores are HPerf cores and 6 are LP cores. The list of core parameters

and execution latencies used for both the core types are shown in Tables 3.4 and

3.5, respectively. Most of the core parameters and latencies were taken from [26]. We

used SESC as our architectural performance simulator [75] and employed CACTI [89]

and Wattch [13] to calculate power with modifications to account for static power.

We are aware that Wattch has an error percentage of within 10% when compared to

layout-level power estimation tools. Our focus is on estimating instantaneous power

and we are mainly interested in detecting changes in the power profile (which may

trigger dynamic thread re-scheduling). Hence, comparison of the estimated power (by

using different counters) to the power calculated by Wattch is satisfactory. For our

experiments, we have selected 38 benchmarks: 16 benchmarks from the SPEC suite

[97], 14 from the embedded benchmarks in the MiBench suite [33], one benchmark

from the Mediabench suite [57], and 7 additional synthetic benchmarks. These 38

benchmarks encompass most typical workloads, for example, scientific applications,

88

Table 3.4. Chosen core parameters

Param LP HPerf Param LP HPerf

Issue 2 6 INTREG 64 96

FPREG 64 80 INTISQ NA 36

FPISQ NA 24 LS units 1 3

LSQ NA 32 ROB NA 128

L1(I/D) 32K 32K L2 512K 2M

Freq (GHz) 2.4 2.4 Type In-order OOO

Table 3.5. Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined, PP - Partially pipelined)

Core FP DIV FP MUL FP ALU

LP 1 unit, 60 cyc, NP 1 unit, 4 cyc, PP 1 unit, 5 cyc, P

HPerf 1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 units, 3 cyc, P

INT DIV INT MUL INT ALU

LP 1 unit, 207 cyc, NP 1 unit, 10 cyc, P 2 unit, 1 cyc, P

HPerf 1 unit, 23 cyc, P 1 unit, 8 cyc, P 8 units, 1 cyc, P

media encoding and decoding and security applications. The instruction distribution

of each of the considered workload is plotted in Figure 3.21.

3.3.2 Performance/Watt analysis of

the two core types

The two core types that comprise our AMP have very different characteristics with

one designed for high performance, while the other for low power. To quantify the

difference in the capabilities of the cores, we ran all the 38 benchmarks on both the

core types (LP and HPerf cores) for 1 billion instructions, after skipping the initial

5 billion that include the program initialization. The performance/Watt results are

shown in Figure 3.21. It can be seen that for some workloads, the HPerf core performs

better than the LP core (ammp, CRC32, pi) while it is vice-versa for certain other

workloads (equake, bitcount, sha). The performance per watt is a function of the

resource utilization. Efficient resource utilization leads to better figures. In general,

for benchmarks which are branch or memory intensive, HPerf core resource utilization

is not optimal and hence the performance per watt is lower than that of the LP core.

89

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

eq
u
ak
e

am
m
p

ar
t

sw
im

w
u
p
w
is
e

ap
si

ap
p
lu

b
zi
p
2

g
zi
p

g
cc

tw
o
lf

v
p
r

m
cf

si
x
tr
ac
k

v
o
rt
ex

m
g
ri
d

cj
p
eg

d
jp
eg

b
as
ic
m
at
h

b
it
co
u
n
t

d
ij
k
st
ra

p
at
ri
ci
a

st
ri
n
g
se
ar
ch

b
lo
w
fi
sh
en
c

sh
a

ad
p
cm
en
c

ad
p
cm
d
ec

C
R
C
3
2

F
F
T

F
F
T
I

cp
u

ep
ic

fb
en
ch

fp
S
tr
es
s

in
tS
tr
es
s p
i

to
w
er
s

w
h
et
st
o
n
e

P
er

fo
rm

a
n

ce
/W

a
tt

In
st

ru
ct

io
n

 d
is

tr
ib

u
ti

o
n

BJ Load Store INT FP HPerf LP

Figure 3.21. Instruction distribution and IPC/Watt for the 38 benchmarks consid-
ered when run on each core type for 1 billion instructions.

Clearly, for eight threaded workloads, a correct thread to core scheduling will yield

significant benefits, while an incorrect one, will have a much lower performance/Watt.

Figure 3.21 depicts the average behavior over 1 billion instructions and as such

only indicates the achieved IPC/Watt due to a fixed thread to core assignment. Many

programs exhibit phases with varying computational demands and each core in the

AMP may be beneficial for different phases during the program execution. A dynamic

thread to core assignment will be able to adapt to the time-dependent program be-

havior.

3.3.3 Dynamic Thread Scheduling

Determining the affinity of a program phase to a core in the AMP is crucial for

establishing a dynamic thread scheduling scheme. Since prior knowledge about the

computational needs of the different workload phases is generally unavailable, there

is a need to determine them online. Moreover, the dynamic thread scheduling scheme

should consider reassignment of a thread only when that thread has moved to a new

and stable phase otherwise the scheme’s overhead will become prohibitive. Even

before determining the affinity of a phase to a core, there is a need to detect and suc-

cessfully classify stable phases of execution in a program. Only stable phases should

90

be considered since short-lived (unstable) phases do not justify thread reassignment.

The phase classification scheme is the same as that used earlier with parameters (i)

interval length (i) n = 150K instructions, (ii) threshold ∆ = 7.5% and, (iii) m = 4.

The online mechanism used to determine the program phase to core affinity is next

described.

3.3.3.1 Determining program affinity to a core online

Once a phase classification mechanism is in place, we need to identify the affin-

ity of the current phase to the different cores in the AMP. The objective here is to

non-invasively predict program performance on other core types without the draw-

backs of online learning based on sampling. Hardware performance counters (HPCs)

reveal information about the characteristics of the thread currently being executed.

We therefore, decided to develop a scheme to predict power and performance of an

executing application on the host core, as well as other cores in the AMP using HPCs.

Our scheme is described in detail in the next section.

3.3.4 Using performance counters to determine thread to core affinity

Hardware performance monitoring counters (HPCs) reveal considerable amount of

information about the performance and power consumption of a thread [19, 92]. Most

prior research dealing with such estimations use HPCs to predict these characteristics

on the same core and not on another core in the AMP. To make thread to core

assignment decisions, there is a need to estimate the performance and power of the

thread on the host core as well as on the potential core where it may be executed.

Performance on the host core can be directly collected from the IPC counter, but there

is a need to estimate the power on the host core, as well as the expected performance

and power of the thread if it would be executed on the other cores. Thus, we need to

identify a set of counters that will enable prediction of power on the host core as well

91

as performance and power on the other cores. Our objective is to shortlist potential

counters with the most impact.

The performance counters studied by us can be grouped as follows:

• Instructions per Cycle (IPC): Power consumption of the processor is de-

pendent on its activity and the IPC counter provides a good measure of program

activity.

• Fetch counters: The IPC metric considers only the retired instructions, but in

a processor, many instructions are executed speculatively and then flushed from the

pipeline. To account for these, we considered # Fetched instructions, Branch correct

predictions (BCP) and, Branch mispredictions (BMP).

• Miss/Hit counters: Cache hits and misses play a significant role in perfor-

mance or power consumption of a core. In this regard, the following event counters:

L1 hit, L1 miss, L2 hit, L2 miss, page hit and, TLB miss are considered.

• Retired instructions counters: Performance/power consumption can vary

significantly depending on the type of the retired instructions (INT, FP, Memory,

Branch). Hence we considered retired instructions counters.

• Stalls: The activity of the processor will be low when it experiences depen-

dencies (data or resource conflicts) frequently. We consider stalls due to reservation

stations, re-order buffer (ROB), load/store queues (LSQ), register renaming and RAT

(Register Alias Table). We refer to this counter as Dispatch Stalls.

3.3.4.1 Performance / Power Modeling

To shortlist the most influential performance counters, we used correlation be-

tween the counters and the metric that is to be estimated. Estimating power on the

same core is not difficult and has been done in prior publications using 3 to 4 counters

[19, 92]. In contrast, estimation of the metrics on the other core is not straightfor-

ward. Our objective is to use the least number of counters to predict all the required

92

metrics. The reason behind this is not just to save hardware, but also to reduce the

number of counters that have to be monitored simultaneously. In current proces-

sors, the same counters are used for monitoring multiple events and it is not possible

to simultaneously obtain the count for two different events from the same hardware

counter [19]. We searched for counters that showed high correlation to power and

performance of the other core. Since we are interested in swapping threads (between

the LP and HPerf cores) at runtime, we need to estimate the performance/Watt of a

thread currently running on LP core, on HPerf core and vice-versa. To this end, we

need to analyze, offline, the correlation between the performance counters of the LP

(HPerf) core to the power and performance of the thread if it would execute on the

HPerf (LP) core. To accomplish this, we identified eight representative benchmarks

from the set of 38, such that they included: INT intensive (intStress,bitcount), FP

intensive (fpStress,equake), load/store intensive (gcc), have high IPC (apsi) and low

IPC (mcf,ammp). The 8 benchmarks were run on both the cores (LP and HPerf) for

1 billion instructions and the value of the above mentioned performance counters for

both the cores were sampled periodically after the commit of every 100K instructions

(equal to interval length n described earlier). All the counter values obtained were

normalized with respect to the number of cycles elapsed during that period. We then

computed the correlation between the normalized counter values of one core and the

observed power and performance on the other core, and the results are plotted in

Figures 3.22 and 3.23. As can be seen from the figures, the observed correlation to

both IPC and power is not very high as the counters used to estimate the performance

and power are in the other core. From the initial set of 15 counters, we shortlisted

L2 miss, TLB miss, # Fetched instructions, IPC, Power, retired INT, L1 hit and

Dispatch Stalls as they showed reasonable correlation to both IPC and power on the

other core. To reduce the number of performance counters that are involved in the

estimated IPC and power expressions for the other core, we investigated the correla-

93

-0.65

-0.45

-0.25

-0.05

0.15

0.35

0.55

0.75

C
o
rr
el
a
ti
o
n

LP counters to HPerf IPC HPerf counters to LP IPC

Figure 3.22. Correlation of various performance counters in one core to the observed
IPC on the other core.

-0.65

-0.45

-0.25

-0.05

0.15

0.35

0.55

0.75

C
o
rr
el
a
ti
o
n

LP counters to HPerf power HPerf counters to LP power

Figure 3.23. Correlation of various performance counters in one core to the power
consumed by the other core.

94

tion of each of the above selected parameters to the rest. The one which correlates

well with many other parameters could be used as a proxy for the rest. We found the

Fetched instructions to have a high correlation to power, while IPC of the current

core correlated well with retired INT and L1 hit counters. Therefore, based on this

observation, we chose L2 miss, TLB miss, # Fetched instructions, IPC and Dispatch

Stalls as the main performance counters to be used in our estimation scheme. Having

the same set of counters for both the metrics (performance and power on the other

core) and for both the core types (LP and HPerf) greatly simplifies the estimation

mechanism.

We then used the traces obtained from the 8 selected benchmarks to express

the observed performance and power on the other core as a function of the chosen

performance counters in the current core. A multi-dimensional curve fitting and

regression analysis was performed to obtain expressions for the estimated performance

and power for both the core types and these are shown in Table 3.6. A similar

procedure was followed to estimate power on the host core using its own counters.

We observed that the same set of counters, selected for estimating metrics on the

other core, shows a reasonably high correlation to the observed power on the host

core too (figure not included due to space constraints). The expression obtained for

the online power estimation for the considered dual-core type AMP is shown in Table

3.7.

The accuracy of the expressions obtained was then measured for all 38 workloads.

Counter values from the HPerf core were used to estimate its own power as well as

the performance and power of the LP core and vice versa. We observed that on an

average, the derived expressions estimated power on the host core with a 6.5% error,

and IPC and power on the other core with an error of 32% and 9%, respectively. The

resulting IPC/Watt average estimation error for the host core was 8%, and was 34.2%

for the other core. Even though the errors in estimating metrics for the other core

95

Table 3.6. Power and performance estimation of the other core using the perfor-
mance counters of the current core. L2m - L2 miss, TLBm - TLB miss, S - Dispatch
Stalls, F - # Fetched instructions

Estimating Parameter Expression

LP IPC exp(-41.8 × L2m - 30.2 × TLBm -
3.4 × S + 6.5 × IPC - 2.9 × F + 1.44)

HPerf IPC exp(-389.8 × L2m - 19.6 × TLBm +
3.9 × S + 20.3 × IPC - 22 × F - 3.6)

LP Power exp(-1.5 × L2m - 2.2 × TLBm -
0.6 × S + 1.2 × IPC - 0.5 × F + 2.9)

HPerf Power exp(-126.5 × L2m - 4.7 × TLBm +
3.9 × S + 4.2 × IPC - 6.2 × F - 0.4)

Table 3.7. Online power estimation for the host core using its own performance
counters. L2m - L2 miss, TLBm - TLB miss, S - Dispatch Stalls, F - # Fetched
instructions

Estimating Parameter Expression

LP Power exp(1.3 × L2m + 1.5 × TLBm +
0.5 × S + 0.5 × IPC + 0.03 × F + 1.7)

HPerf Power exp(-0.48 × L2m + 4.6 × TLBm -
0.35 × S + 1.3 × IPC - 0.5 × F + 3.3)

are quite high, they proved to be adequate for our purpose of making online thread

scheduling decisions. A high estimation error is not important if the right thread to

core assignment is made most of the time. We found in our experiments that the

proposed estimation based scheme made the right thread scheduling decision 92% of

the time, which is acceptable. As will be seen in Section 3.3.5, the 8% erroneous

decisions do not have a significant effect on the benefits of the proposed scheme.

3.3.4.2 The complete thread scheduling framework

Having a phase classification mechanism and a scheme to approximately estimate

the power and performance of the thread on other cores, we still need a way to govern

these two autonomous mechanisms and decide on thread reassignments. The task of

managing the phase classification mechanism and the collection of data from the

selected performance counters is assumed to be handled by a software layer called the

Microvisor. A similar layer has been used by Khan [46] and was previously developed

96

Start

Cores begin executing workloads

Execution complete?

End
Classify phases

New phase detected? Estimate performance and power on

other core types in AMP

Determine weighted IPC/Watt gains by

alternate thread to core assignments

Gain > threshold?

Reassign threads to core

Yes

No

Yes

No Yes

No

Figure 3.24. The thread scheduling flowchart.

by IBM [36]. Additional details on this software layer may be found in those papers.

We now describe the working of the entire system, as managed by Microvisor.

The flowchart of the procedure followed in the proposed scheme is shown in Figure

3.24. Eight workloads are run on the dual-core type AMP consisting of six LP and

two HPerf cores. Whenever a phase change is detected for any one of the threads by

our phase detection mechanism, the power on the host core as well as the power and

performance of the thread if executed on the other core are estimated by Microvisor,

based on the chosen performance counters (L2 miss, TLB miss, IPC and # Fetched

instructions) of the host core. The performance and power of the other core type

running other threads are also collected. The performance/Watt is then calculated

for the current and the alternate thread to core assignment. Based on this, the current

thread to core assignment may be changed.

The number of potential thread to core assignments to assess increases with the

number of simultaneous phase changes for the various workloads. For a single phase

change, when the thread on the LP core changes phase, there are two potential threads

that it may swap with, i.e. the two threads on the HPerf cores. Similarly, for a phase

change in a thread being executed on the HPerf core, there are six threads that it

may swap with. Hence, for single phase changes, there are up to six combinations

that have to be assessed. We found in our experiments that 92% of the time only

97

a single phase change is detected and the maximum number of simultaneous phase

changes detected was 3 (0.2% of the time). Hence, the number of combinations to

assess was far lower than the worst case of 8 simultaneous phase changes. Using

the estimated performance/Watt of the various threads in an alternate configuration,

the weighted performance/Watt improvement (geometric or harmonic speedups may

also be used) projected for the new thread to core assignment over the current one

is calculated. If the weighted speedup is over 3% (called decision threshold; detailed

study was conducted to set this value), the threads are swapped between the two

cores. If not, the current thread to core assignment is maintained. Swapping threads

between cores incurs an overhead due to context switch and cold cache misses. We

assume, conservatively, a swapping overhead of 1K cycles. We observed the system to

be not very sensitive to this overhead. Another source of overhead is the invocation

of the Microvisor. This was observed to be invoked, on an average, 700 times per

run, but this overhead is relatively small as it involves collection of counter statistics

and evaluation of the expression. This can be assumed to be at most a few hundred

cycles and we found this to have negligible effect on the results. By using phase

classification, the proposed scheme needs to make decisions only when stable phase

changes are detected, which is not very often. Hence, the overheads associated with

decision making are kept at bay. The proposed scheme is evaluated next and compared

against various baselines.

3.3.5 Evaluation

In this section, we report the results of our evaluation experiments. Multi-

programmed workloads were run on the AMP until one of the threads executed 1

billion instructions. The phase classification parameters were set to: Interval n =

150K, ∆ = 7.5% and stable phase interval m = 4.

98

We now describe the baselines that will be used for comparison. The perfor-

mance/Watt improvement achieved by the proposed scheme over each of the baselines

is then presented.

3.3.5.1 Baseline configurations considered

We compare our proposed scheme to the following baseline configurations:

• Static: Here the thread to core assignment is static, i.e., it never changes. This

fixed assignment is based on oracular knowledge of the best assignment over the entire

run of the workloads and as such is not practical.

• Online learning-based (O Learning) swapping scheme with sampling

overheads: Threads are dynamically swapped between the cores in this scheme.

Detection of phases (based on the ITV scheme) is used as a trigger to initiate a

possible swap and the learning is done by sampling the newly detected phase on the

other core type of the AMP. This baseline constitutes a modified version of the scheme

proposed by Becchi et al [6]. Sampling incurs an overhead and it is assumed to be

1M cycles [6]. Thread swapping overheads are also considered here.

• Greedy oracle (G Oracle): This baseline is capable of swapping threads

between the cores. The trigger is once again phase detection, but the thread to core

decisions are made based on oracular knowledge at that instant in time, regarding the

best current reassignment of threads to cores. No learning overheads are considered

for this baseline but thread swapping overheads are taken into account.

3.3.5.2 Performance per watt analysis over the baselines

We considered three speedup metrics to compare our proposed scheme to the

baselines. We first define the following terms:

S0 = (IPC/Wattthread0)proposed/(IPC/Wattthread0)baseline

S1 = (IPC/Wattthread1)proposed/(IPC/Wattthread1)baseline

The various speedups considered are:

99

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Workload combination ID

Weighted Geometric Harmonic

Worst cases Average cases Best cases

Figure 3.25. IPC/Watt improvement of the proposed scheme against the Static
baseline.

1

1.5

2

2.5

3

3.5

4

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Workload combination ID

Weighted Geometric Harmonic

Worst cases Average cases Best cases

Figure 3.26. IPC/Watt improvement of the proposed scheme against the O Learning
baseline.

1. Weighted: Speedupweighted = (S0 + S1)/2

2. Geometric: Speedupgeometric = 2
√
S0 × S1

3. Harmonic: Speedupharmonic = 2/(1/S0 + 1/S1)

From the set of 38 workloads, we randomly selected 100 combinations of eight

threaded workloads and had them executed using the proposed as well as each of

the baseline schemes. We have plotted a subset (30 of the 100) of those results

for various baselines in Figures 3.25, 3.26 and 3.27 for the Static, O Learning and

G Oracle baselines. The shown 30 combinations include the 10 worst results (out

of the 100), the 10 best results and 10 that showed average benefits with respect to

100

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
IP

C
/W

a
tt

 i
m

p
ro

v
em

en
t

Workload combination ID

Weighted Geometric Harmonic

Worst cases Average cases Best cases

Figure 3.27. IPC/Watt improvement of the proposed scheme against the G Oracle
baseline.

0.5

1

1.5

2

2.5

3

3.5

4

Average Maximum Minimum

W
ei

g
h

te
d

 I
P

C
/W

a
tt

im
p

ro
v

em
en

t

Static

O_Learning

G_Oracle

Figure 3.28. Speedup of the proposed scheme against the Static, O Learning and
the G Oracle schemes.

101

the weighted IPC/Watt metric. It is clear that in general, considerable IPC/Watt

improvement is achieved over the Static baseline and in particular, the O Learning

baseline, where speedup of up to 3.5X is observed. Amongst the worst cases, it can

be seen that an IPC/Watt degradation is observed when comparing against the static

baseline (0.99). However, when comparing to the O Learning, even the worst case

speedup is 1.14 which shows that the overhead of sampling negates the benefits of the

learning-based approach. When compared to the G Oracle baseline, barring a few

rare cases, there are no notable gains, as expected. We have also plotted the average,

minimum and maximum weighted IPC/Watt gains that the proposed scheme achieves

over the baselines in Figure 3.28. It can be seen that on an average, the proposed

scheme performs around 20% better than the Static baseline with respect to weighted

improvement, but what is more noteworthy is that the gain is 200% when compared

to the O Learning scheme. The reason for this is the overhead due to sampling

(discussed in detail in sub-section 3.3.5.2.1). It can also be seen that the proposed

scheme comes to within 92% of what the G Oracle scheme achieves with respect to

average weighted gains, which is very encouraging. We provide detailed analysis on

these results next.

3.3.5.2.1 Analysis of results

3.3.5.2.1.1 Static In this baseline, the thread to core assignment is kept the

same throughout the execution. This thread to core assignment is based on an oracle

and as such, cannot be done in practice. Still, it can be seen that significant IPC/Watt

improvement is achieved by the proposed scheme over this baseline (Figure 3.25). This

baseline never takes advantage of phase changes or changes in resource demands.

Even if over the entire run, a thread has an affinity for a certain core, there may be

periods where this thread would be more affine to another core in the AMP. Hence,

the proposed scheme achieves significant improvement in IPC/Watt over the Static

baseline. Still, there are a few workload combinations where the Static baseline

102

performs better. This is mainly due to the mispredictions made by the proposed

scheme and the fact that some workloads do not experience many phase changes.

However, looking at the average, it is clear that there are only a few mispredictions.

The overall benefits (20% on average for weighted gains) more than justify the losses

due to mispredictions.

3.3.5.2.1.2 O Learning This baseline is dynamic and whenever deemed ben-

eficial, the threads are swapped between cores. The decision to trigger swapping is

determined by the same mechanism that is used by the proposed scheme, i.e., phases

detected by the phase classification mechanism. Every time a phase change is de-

tected, this scheme initiates an online sampling mechanism. Hence, this scheme is

expected to predict thread to core reassignment more accurately than the proposed

scheme. However, as mentioned earlier, it suffers from a learning overhead. We found

that on an average, there are approximately 700 such events, significantly increasing

the overhead of this baseline. This is the reason why the benefits of the proposed

scheme over this scheme are higher than even what was obtained against the Static

scheme (see Figure 3.25 and 3.26, and Figure 3.28). We did not find any case where

this scheme performed better than the proposed scheme which is mainly due to the

overheads involved during sampling. As the number of core types and workloads

increase in the system, the number of phase changes and the number of sampling

intervals increase significantly, which nullifies any benefits of this scheme. When ig-

noring the learning overhead, this scheme performs better than the proposed scheme

by 5% on average, due to its more accurate predictions. This shows that even though

the proposed scheme is slightly inaccurate in its decision making, the decisions it

makes are good enough and they do not incur any learning overheads. These results

show that the proposed scheme is a more practical and scalable when compared to

the sampling based learning scheme.

103

3.3.5.2.1.3 G Oracle This baseline also has the ability to swap threads be-

tween the cores but makes swapping decisions based on oracular knowledge. From

Figures 3.27 and 3.28, it can be seen that in general, the proposed scheme performs

worse than this baseline. This is expected, as this baseline makes perfect thread to

core reassignments without incurring any overheads, which is not practical. What is

interesting is that the proposed scheme does better than this oracular scheme in a

few rare cases. The reason for this is that sometimes by taking a wrong decision (as is

done by the proposed scheme), the opportunities that come up later, as compared to

the case where always the right (greedy) decision is made, are different. Sometimes,

these additional opportunities may provide even better benefits. Still, on an average,

the proposed scheme performs worse than this scheme by 8%.

3.3.6 Conclusions

We have presented a novel technique to assist thread scheduling in AMPs in order

to maximize performance/Watt. The key idea is the use of program behavior on one

core to predict the power and performance of the application on other cores in the

AMP. We leverage the use of performance counters which are available in almost all

processors for such a prediction. To illustrate our approach, an eight-core AMP was

considered with two core types, one core designed to achieve high performance (HPerf)

(two cores) while the other for low power (LP) (six cores). Detailed experiments on the

choice of performance counters to estimate the performance and power on the HPerf

core while the application executes on the LP core and vice versa have been presented.

Approximate expressions based on the values of these counters were formulated to

assist in the thread to core assignment so as to maximize performance/Watt. Phase

classification was used to trigger the decision making process.

We compared our technique to a static baseline with best thread to core assign-

ment, an online learning based scheme, and an oracular scheme with ability to swap

threads between the cores. Our results indicate that the proposed scheme can achieve

104

considerable performance/Watt benefits of about 20% and 200% on an average, over

the static and online learning schemes, respectively. Moreover, the proposed scheme

performs worse than the oracular scheme by only 8% on average.

105

CHAPTER 4

IMPROVING THE POWER EFFICIENCY IN
SYMMETRIC MULTICORES

Several studies have promoted sharing of large but underutilized resources between

cores in a multicore processor [22, 53, 14] to reduce the silicon area at a marginal loss of

performance. For example, AMD in its BullDozer architecture [14] has implemented

sharing of the entire floating-point unit including reservation stations and execution

units. Several research publications, e.g., [22, 53], go beyond FP units and also suggest

sharing of caches, crossbars, branch predictors and large latency units. Most previous

work only explores the performance impact of such sharing leaving the following

questions unanswered.

1. What is the impact of sharing on performance and performance/power? While

sharing clearly results in power savings, for certain workloads, performance loss

may be too large.

2. What are the most important parameters influencing performance and perfor-

mance/power in sharing? We show that latency and throughput of the shared

resources are dominant determinants of performance and performance/power,

but most previous studies ignore them.

3. How does sharing of resources play out for Big cores or Small cores? Mainstream

computing can be broadly classified into performance efficient (Big cores) and

power efficient (Small cores). It is thus necessary to study the impact of sharing

resources in both such architectures.

106

4. What is the impact of sharing in Simultaneously Multi-Threaded (SMT) pro-

cessors? In particular, does sharing in SMT make performance or perfor-

mance/power better or worse? Given that most mainstream cores are SMT

capable1, studying impact of increased resource utilization due to sharing is

important.

In this chapter, we investigate the performance and performance-per-Watt im-

plications of sharing large and underutilized resources between a pair of cores in a

multicore processor. At first, we study sharing of the entire floating-point datapath

by two cores, similar to AMD’s Bulldozer [14], where the issue queue (ISQ) and the

FP execution units are shared. Using combination of workloads from various bench-

marks, we study both the performance and performance-per-Watt when compared to

the baseline architecture that does not involve sharing. Our findings show that while

sharing results in considerable power savings, the performance penalty may be high

(∼28%) for certain workload combinations.

To mitigate the impact on performance, while still retaining some of the power

benefits of sharing, we limit sharing to the underutilized execution units. For most

workloads, FP instructions are not frequently encountered. Hence, we first explore

sharing of just the FP execution units, while the individual cores retain their reser-

vation stations. This modification yields higher performance compared to previous

schemes. Still, a worst case performance loss of 14% is observed. Integer divide and

multiply instructions are also encountered infrequently. Therefore, we extend our

study to include the corresponding units. We find that sharing the integer divide and

multiply units has only a small impact on both performance and performance-per-

Watt. A summary of the resource sharing options explored in this section is shown

in Figure 4.1.

1www.intel.com

107

Fetch/Decode

Issue

Instruction

queue

INT ISQ

FP ISQ

Retire

FP ALU FP Mult FP DIV

Fetch/Decode

Issue

Instruction

queue

INT ISQ

INT units

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

INT units

Fetch/Decode

Issue

Instruction

queue

INT ISQ FP ISQ

Retire

FP ALU FP Mult FP DIV

Fetch/Decode

Issue

Instruction

queue

INT ISQFP ISQ

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

INT units INT units

Fetch/Decode

Issue

Instruction

queue

INT ISQ FP ISQ

ALU ALU

Retire

FP ALU FP Mult FP DIV

INT DIVINT Mult

Fetch/Decode

Issue

Instruction

queue

INT ISQFP ISQ

ALU ALU

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

(a) Sharing the issue queue and FP execution units (b) Sharing the FP execution units (c) Sharing the FP and integer divide and multiply units

Figure 4.1. Overview of the studied resource sharing. ISQ = issue queue, FP =
floating-point, INT = integer.

The utilization of the shared units depends on the width of the fetch and execu-

tion path. Accordingly, we target cores at opposite ends of the power/performance

spectrum. On the higher end of the performance scale we consider a superscalar

processor analogous in resources to Intel Nehalem/AMD K10 architecture (Big core).

At the lower end of the power scale, we consider a processor similar in resources to

Intel Atom/AMD Bobcat architecture (Small core). Our study includes both single

threaded and SMT processor architectures. We also analyze the sensitivity to commu-

nication latency between the cores and the shared units. Our results show that while

architectures that share execution units do provide power benefits at a negligible per-

formance penalty (∼5% on average), such benefits hold only when the shared units

have low latency and are highly pipelined. Performance and performance-per-Watt

loss are observed for workloads that exhibit high contention for the shared execution

units. To reduce the performance loss due to contention we propose to increase the

throughput of the shared resources via Dynamic Voltage and Frequency Boosting

(DVFB) which is controlled dynamically by the occupancy rate. Our results show

that such dynamic boosting not only overcomes losses due to contention, but also

108

results in significant increases in both performance (upto 13%) and performance-per-

Watt (up to 14%), while realizing considerable savings in area (∼ 7-10% per core).

The following are the key contributions of this section:

1. We present a study on the performance and performance-per-Watt implications

of three resource sharing alternatives for a dual-core processor.

2. We study the performance and performance-per-Watt implications of resource

sharing in SMT cores.

3. We analyze the sensitivity of resource-sharing architectures to latency and per-

formance of the shared resources.

4. We show that while execution unit sharing has negligible impact on performance

and positive impact on performance-per-Watt for most benchmark combina-

tions, there are cases where resource contention results in a penalty as high as

22%.

5. We present a dynamic voltage and frequency boosting (DVFB) scheme for the

shared resources to mitigate the impact of resource contention, that not only

compensates for the loss, but also increases the performance of most workload

combinations.

6. Finally, we describe a novel hardware-based feedback control mechanism for

DVFB that automates the dynamic control process.

4.1 Related work

The idea of resource sharing has long been in existence [20, 44, 22, 102, 15]. The

previous approaches can broadly be classified into those that target improvements in

fault tolerance, performance or performance/Watt.

109

4.1.1 Sharing resources to improve yield and fault tolerance

Sharing resources across cores to improve yield and reliability has been studied by

several researchers. [20] and [44] proposed sharing execution units to reduce the die

size and thus increase yield. [88] explored the possibility of using multiple execution

units already present within a processor to improve manufacturing yield at the cost

of performance degradation . A similar approach was followed in [99]. [94] make use

of the underutilized execution units for test. Here a small checker core incorporated

into the design of the larger core to check its operation. The checker core shares

execution units with the host core. [32] propose sharing each stage in pipeline between

neighbouring cores in a CMP. When one core experiences a pipeline stage failure, it

takes over or shares the healthy stage from the adjacent core. A similar approach but

only for fault tolerance of large execution units was adopted by [71]. In their scheme,

whenever a core experiences failure of a local large execution unit, it outsources the

execution of instructions to the neighboring core via a queue. [78] used integer (INT)

ALU sharing between cores for fault tolerance and potential performance mitigation

in the presence of failed components.

4.1.2 Sharing resources for improving performance/ performance-per-

Watt

The idea of sharing resources for performance or performance/Watt in a multi-

core has seen several manifestations. Simultaneous Multi-Threading (SMT) [102, 60]

was introduced more than a decade ago to improve the utilization of resources in

microprocessors. In SMT, multiple threads are run on the same core and threads

share and compete for core resources. Dynamic resource sharing occurs naturally

in SMT processors. [22] explore intermediate design points between the CMP and

SMT architectures where the sharing of the caches, branch predictor and long latency

execution units is explored. A similar study was presented in [53] where the caches,

crossbar and floating-point units were shared. Significant area savings at a minor loss

110

of performance were reported. Both these schemes only focus on performance and do

not consider performance/Watt. In addition, the impact of the shared resource ac-

cess latency, or the effects on SMT processors were not studied. [105] explore flexible

sharing of a pool of “execution engines” among various processor cores. By ensuring

that the producer and immediate consumers are sent to the same engine, efficient

usage of the shared units was made possible. Still, each engine requires a queue and

other data to keep track of producers and consumers which result in a complex de-

sign. In [10], authors propose the sharing of functional units across cores in a 3D

stacked die for online testing and/or performance improvement. A similar approach

to 3D resource sharing was proposed in [39] where the Reorder Buffer (ROB), register

file, instruction queue and the load/store queues were shared. Dynamic exchange of

execution units between pairs of cores was investigated in [76, 81]. Here, depending

on the current workload characteristics, the cores may exchange execution units to

maximize performance/Watt. The major advantage of such an architecture is that re-

source contention between the two cores does not take place but the design of the two

cores is complicated. Further, this scheme will always incur the hardware and power

overhead of two sets of execution units compared to the single set in our scheme.

4.1.3 The AMD BulldozerTMarchitecture

The first resource sharing architecture we study is similar to the AMD Bulldozer

design [14]. In AMD’s Bulldozer the fetch, decode and the entire FP execution

(reservation stations and execution units) are shared between pairs of cores in a dual-

core processor. In our study we also analyze a design that involves the sharing of the

FP execution only.

111

4.2 Shared Resource Multicore Architecture

We now present an overview of the target of our study – the shared resource multi-

core architecture. Hardware modifications necessary to support such an architecture

are also described.

4.2.1 Preliminaries

A high level view of the studied architectures is shown in Figure 4.1. We consider

the following three resource sharing alternatives.

4.2.1.1 Sharing the FP ISQ and execution unit (S FP QX)

Here the FP issue queue (ISQ) and FP execution unit are shared between two

cores. This architecture is similar to AMD’s Bulldozer but note that the Bulldozer

design also shares the fetch and decode units. Sharing leads to contention for resources

and the first point of contention here (in S FP QX) is the FP ISQ. Whenever FP

instructions are ready to be scheduled, the control logic first checks to see if there

is a slot available in the shared ISQ. Since the ISQ is shared, the number of entries

available per core is reduced. Hence, whenever both the cores sharing the ISQ run

FP intensive applications, the ISQ is expected to become a bottleneck in the design

which may lead to pipeline stalls and performance loss. Another source of stalls is

the shared execution units. Just like the ISQ, the effective number of execution units

available is reduced in the dual-core architecture. Hence, a higher number of stalls is

expected when FP intensive applications are run on the two cores that share the FP

units.

4.2.1.2 Sharing the FP execution unit only (S FP X)

In this instantiation, sharing of FP execution units only is explored. Unlike the

previous case, the only source of contention here is the availability of the FP execu-

tion units. Hence, we expect a lower performance loss but also lower power savings

compared to the previous scheme.

112

4.2.1.3 Sharing the FP execution units as well as the integer divide and

multiply units (S FP INT)

In this instantiation, in addition to the FP execution unit, integer divide and

multiply units are also shared. The number of stalls for this scheme is expected to

be higher than for the S FP X architecture but greater power savings is expected.

Since resources are shared in all three architectures, there is a need for a centralized

control mechanism that will grant access to the requester core. This is accomplished

by means of an arbiter shown in Figure 4.1. The arbiter accepts requests and de-

pending on the availability of the shared resource, grants access. Note that in all

three cases, accesses to the shared execution units are independent and hence multi-

ple requests may be sent to them at the same time. Once execution is complete, the

execution result must be forwarded to the core that generated the request. This is

accomplished by another arbiter that forwards the result to the rightful owner. We

do not provide implementation details of the arbiter, which is fairly straightforward.

4.3 Experimental setup

Table 4.1. Chosen core parameters.
Parameter Small Big Parameter Small Big Parameter Small Big

Issue 2 4 INTREG 64 96 FPREG 64 80

INTISQ 16 36 FPISQ 16 24 LS units 1 3

LSQ 32 32 ROB 56 128 L1(I/D) 32K 32K

L2 512K 2M Freq (GHz) 1.5 2.4 Type OOO OOO

Table 4.2. Execution unit specifications for the cores. (P - Pipelined, NP - Not
pipelined, PP - Partially pipelined)

Core FP DIV FP MUL FP ALU INT DIV INT MUL INT ALU
Small 1 unit, 60 cyc, NP 1 unit, 4 cyc, PP 1 unit, 5 cyc, P 1 unit, 207 cyc, NP 1 unit, 10 cyc, P 2 unit, 1 cyc, P
Big 1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 units, 3 cyc, P 1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 units, 1 cyc, P

Table 4.3. Characteristics of the considered workloads

barnes barnes cholesky cholesky fmm fmm lu lu radix radix raytrace raytrace

water water flops fbench equake art gzip ammp art ammp mcf gcc

113

Table 4.4. Workloads considered for the experiments where each core runs two
threads. The + sign between workloads indicates that they are run on the same core
and the is used as separator to indicate what is run on cores 1 and 2.

barnes+barnes barnes+barnes cholesky+cholesky cholesky+cholesky fmm+fmm fmm+fmm
lu+lu lu+lu radix+radix radix+radix raytrace+raytrace raytrace+raytrace

water+water water+water equake+art flops+fbench mcf+gcc art+ammp
equake+art gzip+ammp mcf+gcc flops+fbench equake+flops art+fbench

mcf+art gcc+ammp equake+gzip art+ammp mcf+flops gcc+fbench

To evaluate the idea of sharing infrequently used execution units for a wide va-

riety of architectures, we considered processor cores at the two ends of the perfor-

mance/power spectrum, i.e., a high-performance core (Big) and a low-power core

(Small). These cores are representative of the Intel Nehalem/AMD K10 and the Intel

Atom/AMD Bobcat architectures, respectively. In the rest of this section, we will

refer to them as Big and Small. Note that Big/Small refers to homogeneous dual-core

processors.

In Tables 4.1 and 4.2 we describe the resource sizes and execution resource char-

acteristics for the the two core types. The parameters were inspired by commercial

architectures [26].

SESC was used for architectural performance simulation [75]. We made significant

modifications to the simulator to enable shared resource execution with arbitration.

Power was estimated using Wattch [13] and Cacti [89]. In the experiments we tar-

geted 15 benchmarks: 7 from the SPLASH-2 [107] (barnes, cholesky, fmm, lu, radix,

raytrace, water) and 8 from the SPEC 2000 benchmark suite [97] (fbench, flops, art,

equake, gzip, ammp, mcf, gcc). These workloads were chosen for their instruction

distribution and performance diversity. Several combinations of workloads were con-

sidered for the two cores running single threads. We also considered the case of SMT,

where each core runs two threads for a four thread combination. Homogeneous work-

load combinations were created using multiple threads from the SPLASH-2 workloads.

We also created heterogeneous workloads by combining threads from the SPEC 2000

114

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Workloads

fpDiv

fpMult

fpALU

iStore

iLoad

iBJ

iDiv

iMult

iALU

Figure 4.2. The instruction distribution of the various workloads when run for 500
million instructions. The average over all workloads is also shown.

suite. The created workload sets are summarized in Tables 4.3 and 4.4 for the single

and SMT experiments, respectively. We thus tried to evaluate the studied architec-

tures over a broad spectrum of potential workloads. Each workload was run until the

sum of the instructions retired on the two core types equaled 500 million instructions.

The instruction distribution of each individual thread run is shown in Figure 4.2.

4.4 Analysis of resource sharing in single threaded processors

We first present results and analysis for processors running single threads per core.

Two cores share resources according to S FP QX, S FP X and S FP INT schemes

described in Section 3. The workloads run in these experiments are shown in Table

4.3.

4.4.1 Performance and performance/Watt results

In this section, the performance and performance/Watt of the studied architec-

tures relative to the one where no sharing takes place are presented. Sensitivity to

the shared resource access latency is also analyzed. In the next section we study the

115

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

Big Small

Figure 4.3. Performance of the Big and Small cores resulting from the sharing of
the FP ISQ and execution units (S FP QX) between the cores relative to a dual-core
that does not share them for various communication latencies (between zero to two
cycles).

effect of sharing in SMT processors where more than one thread runs on the same

core. To compare the resource sharing architectures with the one that does not, three

speedup metrics were used including the weighted, geometric and harmonic metrics.

For the sake of brevity, only the results using the harmonic metric are presented.

The harmonic speed-up metric is calculated as follows:

S0 = (IPCthread0)new/(IPCthread0)baseline

S1 = (IPCthread1)new/(IPCthread1)baseline

Speedupharmonic = 2/(1/S0 + 1/S1)

Here, baseline refers to the case where the cores do not share any unit. The perfor-

mance/Watt speedup/slowdown is calculated similarly.

4.4.1.1 Sharing the FP ISQ and execution units (S FP QX)

4.4.1.1.1 Performance analysis The performance of the Big and Small cores in

the S FP QX configuration relative to the non-sharing architecture is shown in Figure

4.3. Shared resource access latencies of zero, one and two cycles were considered. The

communication latency of zero cycles represents the ideal case where the design has

been optimized to support sharing. It can be seen that even in this scenario, a

significant performance loss is observed for both core types. Specifically, a worst case

116

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Latency 0 Latency 1 Latency 2

Big Small

Figure 4.4. Performance/Watt of the Big and Small cores resulting from the sharing
of the FP ISQ and execution units (S FP QX) between the cores relative to a dual-core
that does not share them for different (zero to two cycles) communication latencies
between the cores and the shared units.

performance penalty of 28% and 18% (workload cholesky cholesky when run on both

the cores) is observed for the Big and Small cores, respectively. This architecture

shares the FP ISQ and the FP execution units. Thus, two potential bottlenecks exist

in the system yielding a large performance penalty. Increasing the communication

latency results in an even larger performance penalty, as expected. This clearly

shows the sensitivity of such a resource sharing architecture to communication latency.

On an average, ∼5-10% performance penalty is observed for both the core types

which increases with communication latency. These results show that when sharing

resources between cores, special consideration must be given to the resource access

latency. The workloads that do not experience a slowdown are the ones with little

or no FP instructions in the mix (e.g., equake, art, gzip, gcc). Interestingly, the

Small core does not suffer as much as the Big core with respect to performance. The

Small core is moderately sized when compared to the Big core and consequently, the

experienced bottleneck has a greater effect in the case of the Big core.

4.4.1.1.2 Performance/Watt analysis The performance/Watt resulting from

the sharing of the FP ISQ and the FP execution units (S FP QX) relative to the non-

sharing architecture is shown in Figure 4.4 for both the core types. It can be seen that

117

performance/Watt improvements are achieved for most workloads on both the core

types, especially for the ones with no FP instructions. In general, FP instructions

are not as frequently encountered as integer ones and hence, for a majority of the

workloads this architecture will result in power savings. However, there are workloads

where the performance/Watt degrades by as much as 10% (e.g., cholesky cholesky

when run on the Big core) even with communication latency of zero cycles. This

indicates that even though, in general, this architecture results in power savings, for

workloads that contest for the shared resources, the performance/Watt will degrade.

On an average, a 2.5% improvement for the Big core and a 3.5% improvement for

the Small core were observed when the communication latency was set to zero cycles.

Increased latency reduces this improvement.

Even though the S FP QX architecture results in power savings in general, the

experienced performance penalty can be very large (∼28%). This results in poor per-

formance/Watt and hence, we explored alternative sharing schemes to help mitigate

the performance penalty.

4.4.1.2 Sharing only the FP units (S FP X)

4.4.1.2.1 Performance analysis The performance of the S FP X architecture

relative to the one where each core has its own execution units for the Big and Small

cores are shown in Figure 4.5 for the various workloads considered. For zero com-

munication latency, it can be seen that for all the workloads, there is no notable

performance penalty for the Big core. Even for cases where both threads highly uti-

lize the shared units, no performance penalty was observed (e.g., cholesky cholesky,

radix radix, flops fbench). This is because the Big core has large and fast execution

units that are fully pipelined and unless contention takes place in the same cycle, no

performance penalty will be experienced. This indicates that for a high performance

core, contention related performance loss will rarely be a problem when the consid-

118

ered execution units are shared even for workloads that include a large proportion

of instructions that need the shared units. The worst case performance penalty has

dropped to lower than 1% for the Big core, which is a significant improvement when

compared to the S FP QX architecture (∼28% performance loss in the worst case).

This shows that in the Big core, the major bottleneck is the FP ISQ. Increasing its

size may help mitigate the performance penalty but may result in power increase.

However, such an analysis is out of scope in this thesis. With an increase in com-

munication latency, there is a notable drop in performance. Still, for small latencies

(one to two cycles), the performance penalty is well within reasonable limits (within

5% even for communication latency of two). Note that communication latency of one

to two cycles is realistic. A similar assumption has been made in [22, 53, 32]. Hence,

for cores such as the Big core, for small shared resource communication latencies, the

performance loss is acceptable if FP execution units are shared between pairs of cores.

This is mainly attributed to the highly pipelined and low latency execution units.

The results obtained for the Small core do show notable performance penalty, even

for the ideal case of zero communication latency. This happens due to non-pipelined

and relatively higher latency execution units present in the Small core. Since not

all the execution units are pipelined, there is greater chance for contention for the

shared units. For example, for a non-pipelined multiplier with latency of 10 cycles,

the execution unit cannot accept any more requests during the 10 cycles that follow

this request. If this unit was pipelined, unless contention takes place in the same

cycle, a performance penalty will never be observed. In particular, the performance

loss is the worst for barnes barnes and flops fbench (13-14%). In both these cases, the

workloads running on each core exhibit significant proportion of FP instructions and

as a result contention is very high for the shared resources. The average performance

loss is within 8% for a two cycle communication latency. It is thus clear that for

cores with non-pipelined and large latency execution units, sharing may result in

119

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

Big Small

Figure 4.5. Performance of the Big and Small cores due to sharing of the FP exe-
cution units (S FP X) relative to a dual-core that does not share them, for different
communication latencies. The different bars correspond to various round-trip com-
munication latencies (zero to two cycles) between the cores and the shared units.

significant performance loss. When compared to the S FP QX architecture, for the

Small core the average performance loss drops from the observed 7% (for a zero cycle

communication latency) to around 3%. Hence, this architecture certainly results in

lower performance penalty.

4.4.1.2.2 Performance/Watt analysis Sharing the large and infrequently used

execution units results in static power savings. This is expected to improve perfor-

mance/Watt especially for the cases where no notable performance penalty is ob-

served. However, power savings are not as large as that observed for the S FP QX

architecture. The performance/Watt results obtained for both core types are shown

in Figure 4.6. We have already seen that for the Big core there is no notable perfor-

mance loss even for a communication latency of two cycles between the core and the

shared units. Performance/Watt improvements of >1 were observed for the Big core

with communication latency of one cycle. It can be concluded that for the Big core,

sharing of large execution units results in performance/Watt gains when considering

realistic communication latencies.

For the Small core, performance loss due to sharing even in idealized conditions

(communication latency of zero cycles) results in significant performance loss for

120

0.6

0.7

0.8

0.9

1

1.1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Latency 0 Latency 1 Latency 2

Big Small

Figure 4.6. Performance/Watt of the Big and Small cores due to sharing of the
FP execution units (S FP X) relative to a dual-core that does not share them, for
different communication latencies. The different bars correspond to various round-
trip communication latencies (zero to two cycles) between the cores and the shared
units.

several workloads. As a result, performance/Watt results are very modest with a

few workloads experiencing performance/Watt loss. Still, on an average the perfor-

mance/Watt gains are >1 for zero cycle communication latency. Figure 4.6 shows

performance/Watt gain of 1.5% on an average. Just like the Big core, increasing

this latency to more than one cycle results in overall performance/Watt loss when

compared to the baseline architecture. It is important to note that apart from two

workloads (barnes barnes, flops fbench) all other workloads show a small improve-

ment in performance/Watt. From Figure 4.5, it is observed that apart from those two

workloads, there were also others such as fmm fmm, raytrace raytrace that showed

performance loss but when considering performance/Watt, show improvements over

the baseline. Hence, execution unit sharing architectures do in general improve per-

formance/Watt.

Based on the results presented in this section, we can conclude that for Big cores,

sharing FP execution units results in almost no performance loss but may result in

small performance/Watt gains. In contrast, for Small cores, even though there is a

small performance/Watt gain for low communication latencies (between the core and

the shared units), performance and performance/Watt losses observed for a few work-

121

load combinations, make the sharing of FP execution units between such cores ques-

tionable. This architecture provides slightly lower performance/Watt as the S FP QX

architecture without considerable performance penalties which is a significant advan-

tage.

4.4.1.3 Extending the sharing to include INT divide and multiply units

(S FP INT)

Most prior work has explored the sharing of only the FP units between pairs of

cores [22, 53]. However, from Figure 4.2, it can be seen that apart from the workload

lu lu, no other workload shows any notable INT divide or multiply instructions. Thus,

sharing these units in addition to the FP units, is a natural extension. We call

the resulting architecture the S FP INT sharing architecture. We analyzed such

additional sharing and the average results obtained over all workloads when run on

each core type modelled as the S FP X sharing and S FP INT sharing architecture

with respect to performance and performance/Watt are plotted in Figures 4.7(a) and

4.7(b), respectively. Three possible communication latencies between the core and

the shared units are considered. All results are shown relative to the architecture

that does not share execution units. In general, it can be seen that for both the

core types, with respect to performance, S FP X sharing is slightly better than the

S FP INT sharing architecture and the opposite trend is observed with respect to

performance/Watt. However, the differences are too small to prefer one architecture

over the other. But since INT divide and multiply are relatively large execution units

and sharing them certainly yields area savings (details on area savings to soon follow).

Hence, we conclude that S FP INT sharing enhances the benefits of S FP X sharing

architectures.

122

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

S_FP_X

S_FP_INT

Big Small

(a) Performance

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

S_FP_X

S_FP_INT

Big Small

(b) Performance/Watt

Figure 4.7. Performance and performance/Watt of the Big core and Small core
in S FP X and S FP INT configurations relative to a dual-core that does not share
resources for various communication latencies.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Shared resource access latency in cycles

Average

Minimum

Big Small

S_FP_X S_FP_QX S_FP_INT S_FP_X S_FP_QX S_FP_INT

Figure 4.8. Performance of the Big and Small cores in the S FP QX, S FP X,
S FP INT configurations relative to the baseline for various communication latencies.
Two threads were run on each core.

4.5 Analysis of sharing in SMT processors

We now present results on the effect of sharing resources in SMT processors. In

these experiments, each core runs two threads. The various workload combinations

considered are shown in Table 4.4. For the sake of brevity, only average and minimum

speed-up over all the considered workloads for each of the three resource sharing

architectures relative to the baseline (where no sharing is implemented) are presented.

4.5.1 Performance analysis

The average and minimum performance achieved by the three resource sharing

architectures relative to the one with no sharing is shown in Figure 4.8.

123

4.5.1.1 The S FP X and S FP INT architectures

In general, we found that the architectures that only share execution units result in

more or less the same level of performance for both the core types. Hence, we discuss

both these architectures in this sub-section. Just as in the case of running one thread

per core, for the Small core, a larger performance penalty was observed when com-

pared to the Big core. As mentioned earlier, the window for contention is larger due

to the limited capability of the execution units in the Small core yielding a relatively

larger penalty. The worst case of 22% performance loss was observed for the workload

barnes+barnes barnes+barnes which constitues an increase of 8% over the observed

14% when running the workload barnes barnes in the earlier experiments. There were

also some low IPC workloads such as raytrace+raytrace raytrace+raytrace where per-

formance penalty was smaller than that obtained while running raytrace raytrace. On

an average, a 3% performance penalty was observed for the Small core.

For the Big core, ignoring communication latency, a 1% performance loss is ob-

served in the worst case and an even smaller penalty is seen on an average. This result

is similar to that observed when running only a single thread per core. This indicates

that even when up to four threads compete for the execution resources of the Big

core, limited performance penalty will be experienced, which is mainly attributed to

the large and fully pipelined execution units. In summary, we find that even in SMT

processors, sharing execution resources between cores is expected to result in negligi-

ble performance penalty in Big cores and sometimes a notable performance penalty

in Small cores.

4.5.1.2 S FP QX

From Figure 4.8 it is clear that the S FP QX architecture results in a larger

performance penalty than S FP X and S FP INT for both core types. Ignoring com-

munication latency, we have observed that an average performance loss of 4% and 5%

124

and a worst case loss of 22% and 25% were observed for the Big and Small cores, re-

spectively. This performance loss increases with an increase in communication latency

as expected. For the Small core, just as for the S FP X and S FP INT architectures,

the worst case was observed for the workload barnes+barnes barnes+barnes. Another

workload that exhibited a significant (17%) performance penalty was radix+radix radix+radix.

No performance penalty was observed for the same workload when running on the

S FP X and S FP INT architectures. This shows that this workload suffers mainly

from stalls in acquiring reservation station slots on the small core. Overall, the perfor-

mance loss goes up by 2% on an average when compared to the S FP X and S FP INT

for the Small core.

On the Big core, in the single threaded experiments, the workload cholesky cholesky

experienced the worst case of 28% performance loss. The loss was reduced to 16%

when running the workload cholesky+cholesky cholesky+cholesky in SMT mode. The

reason for this penalty drop is that in SMT mode, a multicore IPC of 0.35 was ob-

served, which was a drop from the observed IPC of 0.5 in the single threaded experi-

ments. Thus, additional stalls due to resource sharing do not have a high impact on

the performance. A worst case performance loss of 25% was observed for the work-

load water+water water+water. This constitutes a 8% increase in the observed 17%

performance penalty when running the workload water water. Hence, for the work-

load water, increasing the number of thread contexts per core results in an increased

penalty for the Big cores. The performance loss is higher by 4% when compared to

the S FP X and S FP INT architectures for the Big core.

In summary, performance is expected to degrade for a few workloads in either of

the sharing architectures. For the Big core, performance penalty is expected only in

the S FP QX design. When compared to the experiments where only single threads

were run on each core, performance penalty may sometimes be lower for SMT proces-

125

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Shared resource access latency in cycles

Average

Minimum

Big Small

S_FP_X S_FP_QX S_FP_INT S_FP_X S_FP_QX S_FP_INT

Figure 4.9. Performance/Watt of the Big and Small cores in the S FP QX, S FP X
and S FP INT configurations relative to a dual-core that does not share resources for
various communication latencies. Two threads were run on each core.

sors. The reason for this is that in SMT mode resource utilization is higher. Hence,

if IPC is low, performance penalty due to sharing is also low.

4.5.2 Performance/Watt analysis

The performance/Watt of the various resource sharing architectures relative to

the one with no sharing is shown in Figure 4.9.

4.5.2.1 S FP X and S FP INT

We have seen that for these architectures, little or no performance penalty was ob-

served on the Big core. Consequently, power savings that result from sharing resources

lead to performance/Watt gains. Such gains drop with an increase in the shared re-

source access latency. On an average, a performance/Watt gain of 3.1% and 3.5% were

observed for the S FP X and S FP INT designs on the Big core. On the Small core we

observed a significant performance penalty for some workloads. A worst case perfor-

mance/Watt loss of 8% was observed for the workload barnes+barnes barnes+barnes.

However, on an average, a small performance/Watt gain of around 1.7% and 1.4% is

observed for the S FP X and S FP INT architectures, on Small cores. Note that the

126

performance/Watt gain does not drop below 1 for either configuration on both the

Big and Small cores, even with a two cycle communication latency.

4.5.2.2 S FP QX

In general, performance loss on this architecture was larger than for the S FP X

and S FP INT architectures. However, the power savings were far greater. Hence,

even though the worst case performance/Watt loss of 8% was observed on the Big

cores, an average gain of 5% and a maximum gain of 11% were observed for the

workload radix+radix radix+radix.

A similar result was observed on the Small core, where an average performance/Watt

gain of 3.5% and a maximum gain of 7% were observed for the workload

raytrace+raytrace raytrace+raytrace.

In summary, this architecture results in better performance/Watt than the other

two. We have seen that the performance penalty is smaller in the case of SMT

processors. Therefore, in general, the performance/Watt gain also turns out to be

greater than for the single thread case.

4.6 Dynamic Frequency Boosting (DFB) and Dynamic Volt-

age and Frequency Boosting (DVFB)

In the previous experiments we have observed that some workload combinations

experience a significant loss of performance in shared architectures with a more pro-

nounced loss for Small cores. As indicated earlier, there are two reasons for this

performance degradation. The first one is contention for the shared resources and the

second reason is communication latency between the core and the shared resources.

Performance loss due to contention can be mitigated if the shared resources run faster.

This may be achieved via more powerful and small latency shared execution units [22].

However, as was observed in Figures 4.3 and 4.5, the performance of most workloads

127

does not degrade by sharing resources. Furthermore, increasing the strength of the

execution units will result in power inefficiency for these workloads. Therefore, we

propose the use of Dunamic Frequency Boosting (DFB) or Dynamic Voltage and

Frequency Boosting (DVFB) where, depending on the workload characteristics, the

voltage and/or frequency of only the shared execution units is increased. We only

consider boosting of the shared execution units and not the shared ISQ in the case

of the S FP QX configuration as accelerating the ISQ is not expected to yield any

benefit.

Selective boosting of the shared execution units is achieved via Voltage and Fre-

quency Islands (VFI) [55, 27, 42, 85]. In VFI, part of the processor core is operated

at one voltage and/or frequency, while another part may be operated at a different

voltage and/or frequency. For example, Ghosh et al. make use of voltage scalable

hybrid arithmetic units in [29] for power benefits. Most previous work makes use

of this concept for energy savings. Our objective is performance improvement of the

shared resources only during periods of resource contention. This may potentially also

result in performance/Watt improvement. Given that the shared execution units are

already separated from the cores, placing them in an island is relatively simple. We

did not consider full-chip voltage and frequency boosting due to its inherent power

inefficiency.

Performance boosting may be achieved by increasing the frequency of the shared

units. Often, power is the limiting factor that governs operating frequency. The fre-

quency may be increased as long as package thermal limits are not exceeded and the

circuit timing margins are not violated. Since the execution units are shared, increas-

ing their frequency results in a much smaller power increase than full-chip boosting.

Hence, if the circuits allow increasing the frequency of operation on demand, the

implementation is simple. We call this mode the High Frequency Mode (HFM). For

some circuits voltage may also need to be increased to meet the timing requirements.

128

We call this mode the High Voltage and Frequency Mode (HVFM) and this mode is

expected to incur a higher energy penalty. Note that these two modes are mutually

exclusive for a given design and are analyzed here for completeness of the evalua-

tion. Either the circuit allows HFM and HVFM is never needed or vice-versa. Thus,

in the shared resource VFI, three modes are considered; the Nominal Mode (NM)

with nominal voltage and frequency, the High Frequency Mode (HFM) and the High

Voltage and Frequency Mode (HVFM). The voltage and frequency levels used for

both core types in all the three modes are shown in Table 4.5. These values were

obtained from [24] and from data available on Intel’s turbo boost technology23. The

high frequency modes can potentially mitigate the performance loss due to resource

sharing. On the other hand, power overhead is also expected. It is thus necessary to

limit the use of these modes to only those instances when the shared resources are

overwhelmed.

In order to model the high frequency modes in our experiments, the latency of

the shared execution units was reduced proportionally to the gains provided by the

increase in frequency. Latencies are set back to the usual values when the system

returns to NM. Cycles are always measured in the units of the NM frequency. Hence,

we continue to use performance/Watt as the metric to measure relative speedup even

though the shared resource island may switch between NM and HFM/HVFM.

Table 4.5. The voltage and frequency levels considered for the two cores.

High Voltage and Frequency Mode (HVFM) High Frequency Mode (HFM) Nominal Mode (NM)
Core Voltage Frequency Voltage Frequency Voltage Frequency
Big 1.35V 3.4 GHz 1.1V 3.4 GHz 1.1V 2.4 GHz

Small 1.35V 2.13 GHz 1.1V 2.13 GHz 1.1V 1.5 GHz

We first present results on performance and performance/Watt when operating

the Small cores in the HFM/HVFM throughout the execution. A dynamic scheme

2http://www.intel.com/content/www/us/en/processors/core/core-i5-processor.html

3http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-
boost-technology.html

129

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Workloads

S_FP_X NM S_FP_X HFM S_FP_X HVFM
S_FP_QX NM S_FP_QX HFM S_FP_QX HVFM
S_FP_INT NM S_FP_INT HFM S_FP_INT HVFM

Figure 4.10. The performance of the three resource sharing designs of the Small
core relative to the design that does not share resources, for various workloads when
operated in the NM, HFM and HVFM. Latency of zero cycles was considered.

to switch between operation modes is then presented. We do not explore boosting

the performance of the Big core since the shared execution units are not expected to

become a bottleneck.

4.6.1 Static Voltage Frequency Scaling

Here the shared execution units are always operated in the boosted mode (HFM/HVFM)

irrespective of the workload characteristics. Such a scheme will result in increased

power dissipation but is an interesting case to study as a potential upper bound on

the performance mitigation possible by frequency boosting. The calculated harmonic

performance and performance/Watt speedups for all the considered workloads when

executed on small cores in SMT mode for the NM, HFM and HVFM operating modes

are shown in Figures 4.10 and 4.11, respectively. A shared resource communication

latency of zero cycles was considered to get a representative picture without loss of

generality.

4.6.1.1 Performance analysis

It can be seen that the performance is significantly improved in the boosted modes

(HFM/HVFM) for several workloads. In particular, the workloads barnes+barnes barnes+barnes,

radix+radix radix+radix and any workload running flops and fbench, show a consider-

130

0.9

0.95

1

1.05

1.1

1.15

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Workloads

S_FP_X NM S_FP_X HFM S_FP_X HVFM
S_FP_QX NM S_FP_QX HFM S_FP_QX HVFM
S_FP_INT NM S_FP_INT HFM S_FP_INT HVFM

Figure 4.11. The performance/Watt of the three resource sharing designs of the
Small core relative to the design that does not share resources, for various workloads
when operated in the NM, HFM and HVFM. Latency of zero cycles was considered.

able performance gain (7-20%) in the boosted modes of operation. There are also sev-

eral workloads such as cholesky+cholesky cholesky+cholesky, fmm+fmm fmm+fmm,

equake+art gzip+ammp, and mcf+gcc art+ammp where no notable improvement is

observed. There is no difference between the HFM and HVFM modes as is evident

from the figures. The boosted modes achieve a 4-5% on an average and a maximum

of 20% improvement in performance over the NM mode. Clearly, from a performance

stand point operating in the boosted mode is the best option.

4.6.1.2 Performance/Watt analysis

With respect to performance/Watt, it can be seen that there are workloads that

benefit from the HFM/HVFM. Workloads such as barnes+barnes barnes+barnes,

radix+radix radix+radix show a 6-7% improvement in performance/Watt. However,

there are several workloads where performance/Watt in the NM mode is the highest.

These workloads are cholesky+cholesky cholesky+cholesky, fmm+fmm fmm+fmm and

workloads containing the combination equake+art gzip+ammp and mcf+gcc art+ammp.

These were the workloads where no notable performance improvement was observed

(see Figure 4.10). Between the HFM and HVFM, the HVFM performs worse which

is expected. This mode requires a higher voltage and hence results in larger power

131

r

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

O
cc

u
p

a
n

cy

Intervals in multiples of 500 cycles

Figure 4.12. The occupancy of the unit with the highest occupancy of all the shared
units, over intervals of 500 cycles for the workload flops fbench when running on the
Small core in S FP INT configuration.

penalty than the HFM. These results clearly show that operating in the HFM or

HVFM modes is not desirable with respect to performance/Watt for several work-

loads. A dynamic scheme may yield better results.

4.6.2 Dynamic Voltage Frequency Scaling

To motivate the need for a dynamic scheme, we show in Figure 4.12 the occu-

pancy of the unit with the highest occupancy of all the shared units over intervals of

500 cycles for the workload flops fbench when run on the Small core. Occupancy is

measured as the number of cycles during which the unit is busy within the interval.

It can be seen that the worst case occupancy changes over time and some windows

show 100% occupancy while others, much less. Clearly a dynamic scheme is needed

to optimize both performance and performance/Watt.

4.6.2.1 Switching between NM and HFM/HVFM

We developed a simple hardware scheme to enable switching between the HFM/HVFM

and NM. The shared resources will form a bottleneck whenever the contention for any

one of the shared units increases. Occupancy or utilization of the shared execution

units can potentially provide a good estimate of whether the bottleneck exists. Hence,

132

Voltage and

frequency

regulator

Voltage

frequency

Shared execution units

Utilization counters

Control

logic

interval Change mode? Upper and

lower

threshold
History depth

Counters for n

Shared units

Figure 4.13. A high level view of the feedback control mechanism that may be used
to control the voltage and frequency of the VFI containing the shared resources.

we make use of resource occupancy or utilization as a metric to switch between the

NM and the boosted modes of execution.

Performance monitoring counters are available in most modern microprocessors

[19, 92]. For our purposes, we need as many counters as there are shared units to

count the number of busy cycles for each execution unit. Whenever the occupancy for

any shared unit exceeds a threshold (upper), the boosted mode is enabled. Switching

back to the NM takes place when utilization reduces below a threshold (lower). As the

occupancy of the execution units changes over time, it is necessary to keep checking

for utilization within small intervals. At the end of each interval, all the counters are

set to zero so that counting for the new interval may begin afresh. Furthermore, to

avoid too frequent voltage and/or frequency changes, a switch is initiated only if the

decision to switch was observed for atleast 90% of the last HisD windows, referred

to as history depth. For example, considering HisD = 10 a switch in operating mode

is affected only of the decision to switch was observed for atleast 9 of the 10 recent

windows. In the rest of this section, we refer to the scheme that switches between NM

and HFM as Dynamic Frequency Boosting (DFB) and the the scheme that switches

between NM and HVFM as Dynamic Voltage Frequency Boosting (DVFB)

A simple illustration of the mechanism to control the mode switching is shown in

Figure 4.13. There is a utilization counter for each shared execution unit. The control

133

logic monitors these counters and accepts as input certain parameters that we call in-

terval length, history depth, threshold upper and lower (soon to be introduced). The

utilization for that window is then calculated and depending on the current operating

mode of the VFI and the values of the input parameters, a change in operating mode

signal may be sent to the voltage and/or frequency regulator. Note that utilization

(proportion of busy cycles) is always measured with respect to the cycle time of NM.

Since the execution units are accelerated in the boosted modes, this effectively reduces

the utilization, potentially mitigating the bottleneck. The following four parameters

of the dynamic mechanism need to be determined:

1. The window or interval length (IntLen) in cycles after which the utilization

counters must be sampled. Choosing too small a value may result in noisy

behavior, while too large a value may result in missing potential opportunities.

2. The number of intervals to wait until high confidence decisions may be made.

This is called the history depth (HisD). A switch in mode is initiated only if

the decision to switch was observed for 90% of the last HisD windows. Here

as well, choosing too small a depth may result in frequent mode switches while

too large a depth may result is missing opportunities to switch mode.

3. The threshold to enter HFM/HVFM from NM. We call this Threshold Upper

(ThU). A mode switch takes place only when the utilization of one of the shared

execution units exceeds the ThU.

4. The threshold to go back into NM from HFM/HVFM. We call this Threshold

Lower (ThL). This mode switch takes place only when the utilization of all

shared execution units goes below the ThL.

The search space to determine the best optimal combination of parameter values

is very large, so reducing its size is necessary. Our objective is to find the set of

134

1
4
16
64
256
1024
4096
16384
65536
262144
1048576

0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05

2
0

_
5

5
0

_
2

1
0

0
_

1

2
0

_
1

0

5
0

_
4

1
0

0
_

2

2
0

0
_

1

2
0

_
3

0

5
0

_
1

2

1
0
0
_
6

2
0
0
_
3

2
0

_
5

0

5
0

_
2

0

1
0

0
_

1
0

2
0

0
_

5

2
0

_
1

0
0

5
0

_
4

0

1
0

0
_

2
0

2
0

0
_

1
0

2
0

_
3

0
0

5
0

_
1

2
0

1
0

0
_

6
0

2
0

0
_

3
0

2
0

_
5

0
0

5
0

_
2

0
0

1
0

0
_

1
0

0

2
0

0
_

5
0

#
S

w
it

ch
es

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Window size and history depth combinations

Average Average #Switches

Total (cycles)100 200 600 1000 2000 6000 10000

Figure 4.14. Setting IntLen and HisD. The x-axis is read as IntLen HisD. The
thresholds were constant during these experiments and were set to: upper = 85%,
lower = 50%. The relative performance/Watt is shown on the primary y-axis while
the number of switches in mode is shown on the secondary y-axis.

parameter values that results in performance and performance/Watt improvement

for a majority of the workloads.

The choice of parameter values is likely to be a function of the workload cur-

rently being executed. The best method may be to learn the behavior of all work-

loads offline and based on this, set the values of the parameters. However, this

method is not practical and is time consuming. In our experiments, the workloads

barnes+barnes barnes+barnes, raytrace+raytrace raytrace+raytrace and equake+art flops+fbench

were found to result in the worst performance and performance/Watt on the Small

core. Hence, we selected these workloads for the training experiments. The parame-

ters values determined in these experiments will be used for all the other workloads.

In this experiment, the boosted mode considered was HFM and an overhead of 10

cycles was used as the time to transition between operating modes (details on the

overhead to soon follow).

In our experiments we considered various values for the IntLen, HisD, ThL and

ThU. To reduce the search space, we carried out two different experiments. In the

first experiment we set ThL and ThU as constants and varied the IntLen and HisD.

In the second experiment, IntLen and HisD were set to constants and the values of

135

ThL and ThU were varied.

• Determining IntLen and HisD : The results of the first experiment are plotted

in Figure 4.14. Here ThL was set to 50% and ThU to 85%. IntLen was varied in

between 20 and 200 and HisD between 1 and 500. We found that combinations of

small IntLen and large HisD results in fewer mode switches. The number of mode

switches tends to increase with larger IntLen and small HisD. Small IntLen will al-

ways result in a noisy behavior. Note that a decision to switch mode is made only if

it holds for 90% the last HisD windows. With smaller IntLen stable decisions are not

always expected, reducing opportunities. Even though the number of mode switches

increases with larger IntLen and small HisD, sometimes it may result in thrashing

between modes and this results in performance/Watt degradation. It is thus neces-

sary to find the right compromise between the parameters. From the figure it can be

seen that th best compromise is achieved for parameter values where 600 cycles ≤

IntLen × HisD ≤ 2000 cycles. Based on this observation, we set IntLen to 20 and

HisD to 50.

Similar experiments were conducted to determine ThU and ThL. In these experi-

ments, we set IntLen = 20 and HisD = 50 based on the previous experiment. We

found that there was not much sensitivity to the thresholds and based on observations

set ThU = 85% and ThL = 50%.

In summary, the selected paramters are: IntLen = 20, HisD = 50, ThU = 85%,

ThL = 50%. In the rest of this section, we refer to the scheme that switches between

NM and HFM as Dynamic Frequency Boosting (DFB) and the scheme that switches

between NM and HVFM as Dynamic Voltage and Frequency Boosting (DVFB).

136

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

S_FP_X

S_FP_QX
S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Figure 4.15. Relative performance of the Small core in the S FP X, S FP QX and
S FP INT configurations for various communication latencies when run using DFB.
Results presented are summarized over all workloads for both the single threaded and
SMT workloads.

4.6.3 Performance and performance/Watt analysis when using the pro-

posed DFB or DVFM schemes

We now present the performance and performance/Watt achieved by the resource

sharing architectures equipped with DFB and DVFB. Results for the Big core are

not shown as the shared execution units were not found to be a bottleneck.

4.6.3.1 Performance analysis

The average, maximum and minimum relative performance of the DFB scheme

over the baseline inwhich no sharing takes place in the S FP X, S FP QX and S FP INT

configurations are shown in Figure 4.15 for communication latencies of zero to two cy-

cles. Results are shown for both single threaded and SMT workloads. A comparison

of the relative performance obtained in NM, DFB and DVFB modes are presented in

Figure 4.16.

Considering the single threaded workloads, the worst cases observed in the NM

for the S FP X and S FP INT configurations were for the workloads barnes barnes

with relative performance of 0.86 and flops fbench with relative performance of 0.87.

The performance of these workloads was significantly increased by 13-15% with an

137

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

NM DFB DVFB

S_FP_X
S_FP_QX

S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Figure 4.16. Relative performance of the Small core in S FP X, S FP QX and
S FP INT configurations in NM, DFB and DVFB for communication latency of one
cycle when run using DFB. Results presented are summarized over all workloads for
both the single threaded and SMT workloads.

observed relative performance of 0.99 and 1.026 for these two workloads, respectively.

On an average, performance was boosted by 3% for the S FP X configuration and by

4.5% for the S FP INT configuration when compared to the NM. Maximum improve-

ment in performance of 3% and 13% were observed for the S FP X and S FP INT

configurations, respectively over the baseline. There were instances where integer

divide and multiply units were bottlenecks for a few workloads (containing raytrace

or lu). Boosting the performance of these units resulted in significant performance

gains of as high as 13% for lu lu. For the S FP QX configuration, the worst case

was observed for barnes barnes, cholesky cholesky, water water and flops fbench with

relative performance of 0.84, 0.82, 0.88 and 0.84, respectively. Using DFB, the rel-

ative performance of these workloads was increased to 0.96, 0.83, 0.89 and 1.02,

respectively, but not all workloads showed such notable improvement. The reason

for this is that these workloads suffered more due to stalls in the ISQ and not the

execution units. On an average, performance improvement of 4% was observed for

the S FP QX configuration when compared to the NM. Increasing the latency of the

138

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
 p

er
 w

a
tt

Latency 0 Latency 1 Latency 2

S_FP_X S_FP_QX
S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Figure 4.17. Relative performance/Watt of the Small core in S FP X, S FP QX and
S FP INT configurations for various communication latencies when run using DFB.
Results presented are summarized over all workloads for both the single threaded and
SMT workloads.

shared resources results in a 2-3% drop in performance demonstrating the sensitivity

of these architectures to the latency.

With respect to the SMT workloads, for all the three configurations, the workload

barnes+barnes barnes+barnes showed worst case relative performance of 0.78. This

was boosted to 0.96 in all three configurations representing a 23% improvement in

performance. On an average, performance was improved by 4%, 3% and 5% for the

S FP X, S FP QX and S FP INT configurations, respectively, relative to the NM.

These architectures also compare well against the baseline architecture. The S FP X,

S FP QX and S FP INT configurations achieve performance of 1.01, 0.98 and 1.029,

respectively, relative to the baseline.

From Figure 4.16 we note that the benefits of the DFB and DVFB mechanisms

are very similar although they differ in the overhead to switch between operating

modes (DFB requiring 10 cycles vs. 20 cycles for DVFB).

139

4.6.3.2 Performance/Watt analysis

The performance/Watt results are summarized in Figures 4.17 for the DFB scheme,

and in 4.18 for the NM, DFB and DVFB schemes. Just as was the case with perfor-

mance, the DFB scheme significantly improves the performance/Watt.

For the single threaded workloads, the worst case workload combinations for

the S FP X and S FP INT configurations were barnes barnes and flops fbench with

relative performance/Watt of 0.96. This loss was mitigated with a 5% improve-

ment in performance/Watt in the DFB mode. For the S FP QX configuration, the

workloads barnes barnes, cholesky cholesky and flops fbench have a relative perfor-

mance/Watt of around 0.98. Among these, the relative performance of barnes barnes

and flops fbench improved to 1.039 and 1.07, respectively, while that of cholesky cholesky

was only improved to 0.985. Once again, stalls in the ISQ was the reason for this.

Maximum improvements of 5%, 11% and 12% and average improvements of 3%, 5%

and 4.5% were observed for the S FP X, S FP QX and S FP INT, respectively, over

the baseline. The corresponding average improvements were 2%, 2% and 3% for the

S FP X, S FP QX and S FP INT, respectively, over the NM.

For the SMT workloads, worst case relative performance/Watt of 0.91 was ob-

served when running the workload barnes+barnes barnes+barnes on both S FP X

and S FP INT configurations in the NM. This was improved to 1.01 and 1.005, re-

spectively, by the DFB scheme. The worst case for the S FP QX was a relative

performance/Watt of 0.94 running the same workload in NM. This was improved to

1.039 by running in DFB. A maximum improvement of 8%, 9% and 8.3% and av-

erage improvement of 3.1%, 4.7% and 4.3% in performance/Watt were observed for

the S FP X, S FP QX and S FP INT, respectively, over the baseline. This yields an

average improvement of 2-3% in performance/Watt when compared to the NM.

140

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
 p

er
 w

a
tt

NM DFB DVFB

S_FP_X
S_FP_QX S_FP_INT S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Figure 4.18. Relative performance/Watt of the Small core in S FP X, S FP QX
and S FP INT configurations in NM, DFB and DVFB for communication latency of
one cycle when run using DFB. Results presented are summarized over all workloads
for both the single threaded and SMT workloads.

From Figure 4.18 we note that the benefits of the DFB and DVFB mechanisms

are similar with DFB doing a little better (1-2%) since it does not incur the voltage

regulator power overhead.

4.6.3.3 Percentage of execution time spent in the boosted modes

The boosted modes should not be used all the time. If this is the case, the

processor was not properly sized and the results may be biased and misleading. In

Figures 4.19 and 4.20 the percentage of time spent in the boosted mode in the DFB

scheme is shown for the single and SMT workloads, respectively. Results are shown

for all three sharing configurations for a shared resource communication latency of

one cycle.

For the single threaded workload flops fbench, all the three configurations run

in the boosted mode for 100% of the time. This shows that for this workload, the

shared execution unit was a severe bottleneck. Other workloads that were executed

for most of the time (75-80%) in the boosted mode were lu lu and raytrace raytrace

when run in the S FP INT configuration. These workloads resulted in contention

141

0

0.2

0.4

0.6

0.8

1
P

er
ce

n
ta

g
e

o
f

ex
ec

u
ti

o
n

 s
p

en
t

in
 t

h
e

b
o

o
st

ed
 m

o
d

e

S_FP_X S_FP_QX S_FP_INT

Figure 4.19. Proportion of total execution time spent in boosted mode for the
S FP X, S FP QX and S FP INT configurations running single threaded workloads.
The Small core was run using DFB and communication latency was set to one cycle.
The average is also shown.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P
er

ce
n

ta
g

e
o

f
ex

ec
u

ti
o

n
 s

p
en

t
in

th
e

b
o

o
st

ed
 m

o
d

e

S_FP_X S_FP_QX S_FP_INT

Figure 4.20. Proportion of total execution time spent in boosted mode for the
S FP X, S FP QX and S FP INT configurations running SMT workloads. The Small
core was run using DFB and communication latency was set to one cycle. The average
is also shown.

142

for the integer multiply and divide operations. The DFB scheme detected this and

accordingly operated in the boosted mode. The remaining 9 workloads operate in

the boosted mode for 0-40% of the time. On an average, the Small core was operated

in the boosted mode for 17-25% of the time for all the three configurations. Similar

results were obtained for the DVFB mode.

For the SMT workloads, the number of workloads run in the boosted mode for all

three configurations is higher. Nearly 6 of the considered 15 workload combinations

run in the boosted mode for 70-100% of the time. In these experiments, contention

for the shared resources is higher than that observed when running single threaded

workloads. On an average, the Small core was operated in the boosted mode for

32-40% of the time and 9 of the 15 workloads operated in the boosted mode for

less than 20%. of the time. These results show that while some workloads prefer

to run in the boosted mode for longer duration than others, there are also several

workloads for which the NM suffices indicating that the target architecture was sized

appropriately.

4.7 Implementing the dynamic boosting mechanisms

The proposed DFB and DVFB schemes have shown significant potential to not

only mitigate performance loss, but in some cases result in both performance and

performance/Watt improvements over the baseline. However, implementing such

mechanisms may result in hardware and performance overheads. We now discuss

these overheads and present the resulting area overhead in the next sub-section.

4.7.1 Power overheads

With respect to power, a negligible power overhead is expected for DFB but for

DVFB, power is lost during conversion. Assuming that the on-chip voltage regulator

has a conversion efficiency of 90% [49], 10% of the power is wasted. We have found

this power to be around 1% of the total power expended in the processor and is

143

constitutes therefore, a very small overhead. This should be compared to the 12.5%

power consumed by the execution units (measured during simulation) in conventional

processors where no sharing takes place. Clearly, the overheads are far lower than

the benefits provided by the boosting schemes.

4.7.2 Performance overheads

The dynamic boosting schemes affect a shift in voltage and/or frequency whenever

deemed necessary. Two issues arise when employing such a dynamic control: (i) Lost

cycles during the transition in voltage and/or frequency, and (ii) synchronization

between the VFI’s.

4.7.2.1 Cycles lost during operating mode transition

For the DFB scheme, only few cycles are lost during the frequency transition.

IBM’s PowerTune technology [64] generates multiple frequencies which are selected

using multiplexers. The overhead to switch between frequencies was reported to be

one cycle. Even if a separate PLL is used to generate the additional frequency, the

overhead to transition between the two frequencies is not expected to be significant.

We have pessimistically assumed an overhead of 10 cycles for the DFB mode. For

the DVFB mode, in addition to frequency transition, a voltage transition is also

needed. In [24], it is reported that the dV/dT for on-chip voltage regulators is around

20mV/ns. In our scheme, the cores transition between 1.1 and 1.35V. Hence, the

time to transition between the two voltages is around 12.5ns. Considering that the

Small core operates at 1.5GHz, the overhead in cycles for voltage transition is about

20 cycles. Note that during this period, the shared execution units are not accessible

to avoid loss of signal integrity.

4.7.2.2 Synchronization between the VFI’s

Since the VFIs may sometimes operate at different frequencies and/or voltages,

this may lead to synchronization problems between the islands possibly leading to loss

144

~18% of area

~14% of area

Figure 4.21. Floorplan of the Intel Nehalem processor. Courtesy Andrew Semin,
Intel Corporation. http://www.notur.no/notur2009/files/semin.pdf.

of cycles. Note that synchronization problems will be avoided if buffers are inserted

at the boundary of the two VFI’s. In all the considered designs, buffers are already

present in the design (ISQ). Furthermore, by making use of certain types of FIFO

buffers [85] any penalty due to synchronization can be completely avoided. Hence, in

our experiments, we do not consider any overhead due to synchronization.

4.8 Area savings

In the target architecture, large and infrequently used resources are shared be-

tween cores. This certainly results in area savings. We present the estimated area

savings using data available in literature as well as a tool that estimates core area.

4.8.1 Area savings based on literature

Kumar et al. in [53] report that the area savings of sharing just the FP units

is around 6.1%. Hence, the S FP X configuration is expected to result in around

6-7% savings in area per core. In [88], Shivakumar et al. specify that the area

occupied by the INT and FP execution units is approximately 12-13%. In Figure

145

4.21, the floorplan of the Intel Nehalem processor is shown4. The approximate area

occupied by the execution units and the OOO scheduling logic (integer/FP ISQ and

ROB) is also shown. The execution units occupy around 18% of the area of the core.

Considering that ALUs account for a very small portion of the 18% occupied by the

execution units, the S FP INT configuration is expected to yield around 8-9% savings

in area per core. The OOO logic occupies 14% of the core area and assuming that

half of that is occupied by the ROB and the other half by the integer and FP ISQ, the

approximate area savings per core for the S FP QX configuration is around 9-10%.

4.8.2 Area savings as calculated by McPAT [63]

We have also estimated the area savings due to hardware resource sharing using

McPAT [63] for a 45nm technology. This tool takes as input the dual-core config-

uration and outputs the estimated area for each block in the floorplan. The Small

core was estimated to occupy 23mm2 while the Big core around 35mm2 excluding

the L2 cache. The area of the baseline Big dual-core is thus estimated to be around

70mm2 and that of the Small core around 46mm2. For the Big core, floating-point ex-

ecution units occupy 9.3mm2, the integer divide and multiply units occupy 0.47mm2

while the floating-point instruction window is reported to occupy 0.16mm2. Thus

for the Big dual-core the area savings of the S FP X, S FP QX and the S FP INT

architectures is around 13.2%, 13.5% and 14%, respectively. In the Small core, the

floating-point execution units occupy 4.6mm2, the integer divide and multiply units

occupy 0.47mm2 while the floating-point instruction window is reported to occupy

0.14mm2. Thus for the Small dual-core the area savings of the S FP X, S FP QX

and the S FP INT architectures is around 10%, 10.3% and 11% respectively.

These savings in area are certainly expected to be considerably larger than the

investment in real estate required for controlling access to the shared units.

4http://www.notur.no/notur2009/files/semin.pdf

146

4.8.3 Area and power estimation of the on-chip voltage regulator

Next, we estimate the area requirement for an on-die voltage converter. [34]

reports an area of 0.008mm2 for an output power of 0.1 Watts in 90nm technology.

We therefore, estimate an area of 0.16mm2 (20X) for an on-die voltage converter

with 2 Watts of output power. Considering that the die area of the Atom processor56

is around 24-26mm2, the area of the on-chip voltage regulator is negligible compared

to the execution core area.

4.9 Conclusions

We have investigated the performance and performance/Watt of multicore pro-

cessors that share infrequently accessed execution resources. Inspired by the AMD

BullDozer architecture, we studied the impact of sharing the floating-point (FP) ex-

ecution unit and issue queue between two cores in a dual-core processor. We then

expanded the scope of the study by considering a Big core that is akin to Intel

Nehalem processor and a Small core that is akin to Intel Atom processor. A vari-

ety of multi-programmed and multi-threaded workload combinations were studied in

single-threaded and Simultaneously Multi-threaded (SMT) modes. We found that

this architecture can sometimes result in large loss of performance (∼ 28%). To

mitigate this performance loss we limited the sharing to just the execution units in-

cluding FP and integer divide and multiply units. This reduced the performance

penalty to 14%. Sensitivity of the performance and performance/Watt of such ar-

chitectures to shared resource access latency was also investigated. It was found

that both performance and performance/Watt are highly sensitive to the communi-

cation latency. Our sensitivity study has further indicated that as long as the cores

5http://vsevteme.ru/attachments/show?content=7591

6http://ark.intel.com/products/35635/Intel-Atom-Processor-230-512K-Cache-1 60-GHz-533-
MHz-FSB

147

share high throughput execution units, for most of the workloads, a small gain in

performance/Watt is achieved at the expense of a small loss in performance. In or-

der to mitigate such loss in performance, a dynamic voltage and frequency boosting

(DVFB) scheme has been presented to accelerate execution in the shared resources.

Such dynamic boosting was found to completely negate the performance losses and

resulted in significant performance/Watt gains. The dynamic scheme improves the

performance and performance/Watt of resource sharing architectures by as much as

22% and 10%, respectively. We also observed a performance and performance/Watt

improvement of 13% and 14%, respectively, over non-sharing cores. Furthermore, the

performance/Watt/area improves by as much as 26.2%, increasing the attractiveness

of sharing.

148

CHAPTER 5

IMPROVING POWER EFFICIENCY WITHIN
INDIVIDUAL CORES IN MULTICORES

We have seen that AMPs are more suited to cater to the diverse needs of work-

loads. Often, the explored AMPs employ two kinds of cores: out-of-order (OOO) big

cores and in-order (InO) small cores [51, 77, 30]. . The big cores provide higher perfor-

mance while the in-order small cores are more power efficient. As the benefits of such

AMPs are highly dependent on a proper thread-to-core assignment, the threads are

swapped between the cores at runtime so that the objective function (performance,

performance/power, energy etc.) is improved for the current program phase.

However, thread swapping incurs non-negligible costs. The swapping overhead can

vary from a few thousand [81] to millions of cycles [6, 50] depending on the algorithm

employed to swap threads and the mechanism to exchange contexts. To amortize the

large overhead associated with thread swapping, in most proposals, thread swapping

decisions are made at the granularity of hundreds of thousands to millions of instruc-

tions [6, 50]. Unfortunately, numerous opportunities to improve performance/power

and/or energy-delay-squared product (ED2P) at a more fine grained instruction gran-

ularity are missed out by such approaches [65]. This point is illustrated in Figure 5.1

where the IPC resulting from running the workload mcf on the OOO and InO cores

is shown. In the Figure, the IPC is sampled at coarse grain instruction granularities

of 50K instructions. Here, it can be seen that at no point is the IPC of the InO

core comparable to that of the OOO core. However, when considering a more finer

instruction granularity of 500 instructions (inset), it can be seen that not only are

the IPCs of the two cores comparable, but at some points in the plot, the InO core

149

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

IP
C

Instructions retired

IPC(OOO)

IPC(Inorder)

0.12

0.14

0.16

0.18

5
0
0

2
0
0
0

3
5
0
0

5
0
0
0

6
5
0
0

8
0
0
0

9
5
0
0

IP
C

Instructions retired

Figure 5.1. IPC comparison between the OOO and InO cores when executing the
workload mcf. In the main figure, each point on the horizontal axis represents 50K
retired instructions. In the inset figure, IPC for the the instructions from 0 - 10K
have been sampled at 500 instructions.

outperforms the OOO core. The InO is the power efficient core and from the figure,

it is clear, that at smaller instruction granularities, there is even more potential to

make gains in performance/power by switching operation from OOO to the InO core.

However, swapping threads at such a small granularity in current AMPs, will likely

negate all benefits. Hence, there is need for a more fine grain switching mechanism

that does not incur large thread swapping penalties. Therefore, there is need for

a mechanism to realize these opportunities without incurring large thread swapping

penalties.

In this chapter, we propose a novel core morphing mechanism that reaps most of

the benefits of AMPs, without incurring the penalty associated with thread swapping.

Our proposed mechanism introduces heterogeneity within the same core by morphing

it from OOO to InO core and vice-versa. Certain Intel processors feature a special

debug mode in which the OOO core turns into an InO core [50]. We extend this

mechanism for energy efficiency by opportunistically switching to the InO mode, if

deemed beneficial. As the morphing is performed within the same core and the archi-

150

L1 I-Cache

Fetch BP Decode

Fetch BP Decode

 Morphing b/w OOO & InO

Reg

File

Execution Units

RAT ROB LSQ

Execution

Units(Reduced)Reg

File

L1 D-

cache

Front End Backend End

L2

cache
 Morphing b/w OOO & InO

Baseline OOO mode

Morphed InO mode

Figure 5.2. High-level view of the proposed core morphing scheme. The baseline
OOO mode is shown at the top. The shaded regions indicate the units of the baseline
core that are power-gated to facilitate in-order execution in InO mode.

tectural states are retained, the overheads associated with our scheme is negligible,

thus enabling fine-grained switching between OOO and InO modes.

At a base level, we consider a single complex superscalar core. In the baseline

mode, the core operates in the OOO mode providing high performance. However,

during low IPC phases of the program, the operation mode may be switched to the

InO mode for energy reduction. A similar switch is made from InO to OOO when

these benefits are predicted to have diminished. To achieve energy benefits with-

out impacting performance significantly, we employ energy-delay-squared product

(ED2P) as our optimization metric. The central idea of our proposal is the online

estimation of the expected ED2P of the executing thread in the other mode, while it

is being executed in the current mode. Based on such an estimation, the mode that

is expected to provide lower ED2P for the current program phase is then chosen.

The estimation is made possible by employing the performance monitoring counters

(PMCs) of the baseline core.

Our results indicate that the proposed scheme achieves an ED2P reduction of as

much as 12% at a performance loss of less than 4% when compared to the baseline

151

OOO-core. Since the proposed scheme makes use of existing facilities in a processor,

it has the advantage of being completely designed and verified in silicon and incurs

no hardware overheads unlike several comparable schemes [65, 48, 101, 73, 47]. The

key contributions of this chapter are:

1. Dynamic morphing within the same core between OOO and InO modes using

existing debug mechanisms in current microprocessors.

2. Analyzing the trade-off between performance loss and energy savings when

switching between OOO and InO modes of operation on the same core.

5.1 Related work

We now cover some of the recent advances made in literature that closely relate

to the proposed architecture.

5.1.1 Morphable or dynamic multicores

There have been several proposals that advocate dynamic morphing of multicores

or single cores such that performance and power efficiency is enhanced at run time. In

a number of proposals, the starting point is a multicore consisting of small cores which

then fuse together into a large OOO core on demand [48, 101, 73]. Such approaches

suffer from additional latencies that arise from combining resources from various cores.

A different scheme was adopted by Khubaib et al. in [47] where they start with a

baseline OOO core that morphs itself into a Simultaneously Multithreaded InO core

depending on the number of incoming threads. All such schemes require significant

changes to the microarchitecture to be designed in practice.

Dynamic sharing of processor resources for power and performance benefits is also

a well explored area. Kumar et al. [53] explore sharing of various large structures in

the multicore for energy and area savings. In [81], we have explored dynamic exchange

of execution units such that performance/Watt is improved. All such schemes require

152

extra circuitry that must be designed and verified. In, [65], Lukefahr et al. make a

proposal that is similar to ours. In their scheme heterogeneity is introduced into the

same core by provisioning two execution backends to the same core. One backend

is an OOO while the other is InO. Both backends share the same caches and fetch

units. The difference between this scheme and ours is explained in detail in the next

section.

5.2 Proposed Approach

In this section, we describe in detail both the architectural and implementation

details of the proposed core morphing scheme that supports switching between OOO

and InO modes at fine-grained time intervals.

5.2.1 Architectural Details

Figure 5.2 shows the considered baseline core which is a 4-way issue OOO super-

scalar core. The backend of the baseline core is provisioned with register alias table

(RAT), load/store queue (LSQ) and Re-Order Buffer (ROB) to facilitate OOO execu-

tion and InO commit. The exact sizes of these resources are discussed in Section 5.3.

During high-ILP program phases, significant performance benefits are achieved by ex-

ecuting the thread on the OOO baseline core. However, when the processor is waiting

for long-latency memory operations to complete or stalls due to dependencies, most

of the core resources are idle wasting static power.

For such low-IPC phases, a low-power InO core may be more energy efficient. In

order to highlight the difference between the power consumption in the OOO and

InO modes of operation, we analyzed the various components of the power spent

for each mode of operation when executing the workload equake. The results are

plotted in Figure 5.3. In general, it can be seen that the OOO mode consumes

considerably more power than the InO mode. The OOO mode relies heavily on

153

0

1

2

3

4

5

6

7

8

9

10

Issue Memory Execute Clock Total

P
o

w
er

 i
n

 W
a

tt
s

Power component

OOO

InO

Figure 5.3. The components of the power expended when the workload equake is
run in OOO and InO modes of operation.

speculative execution by making use of data structures such as the ROB and the

reservation stations to ensure OOO execution but in-order commit. Data movements

between these structures consume significant power. For some phases of a program,

this increase may not commensurate with the performance benefits resulting in poor

ED2P . It can be seen in the figure that the issue and execution stage power for

the OOO mode are significantly higher than the InO mode. These are the stages

where the data structures are used and accessed the most. This result shows that

the power expended in the OOO mode can be significantly higher than the InO

mode. When such increase in power is not accompanied with a significant performance

gain, a switch in mode from OOO to InO may be beneficial. To this end, during

low-ILP/memory intensive phases, we power off the ROB, RAT, and LSQ, enabling

only in-order execution/commit. Thus, the baseline OOO core is opportunistically

morphed into an InO core providing significant power benefits. In this mode the

baseline core supports only in-order execution and retirement of instructions. As the

performance of the core in InO mode is expected to be low, we reduce the fetch width

of the core from 4 to 2, and further, power off half of the decoders and, shut-down few

154

of the multiple execution units. The InO mode (see Figure 5.2) is thus more power

efficient than the baseline OOO mode. The configuration of the processor in the InO

mode is discussed in Section 5.3. While in InO mode, if the program moves to a

high-ILP phase, the shut down units are powered on, reverting back to the baseline

OOO execution. This dynamic morphing of the core is facilitated by the existing

debug capability in certain Intel processors that supports switching from OOO to

InO modes [50].

Our proposed core morphing scheme is similar to the one proposed by Lukefahr et

al. [65] but differs in the following ways. Firstly, Lukefahr et al. employ two different

backend pipelines and decode units while our scheme uses the same for both modes

(OOO and InO). The additional units increase the core area and design/verification

effort. More importantly, the scheme proposed in [65] requires the architectural states

to be transferred across the two pipelines which adds to the overhead. In contrast, the

same register file is used by the two modes in our scheme. Finally, our scheme differs

in when the mode switch (OOO to InO and vice versa) actually happens. Whenever

the scheme decides to switch from OOO to InO mode, the ROB is power gated and

the subsequent instructions are re-fetched in InO mode. Unlike [65], our scheme does

not delay the OOO to InO mode switch until all the other speculative instructions are

drained from the ROB. This way, we fully capitalize on the power benefits of moving

to the InO mode while keeping the switching complexity and ROB power overhead at

bay. When switching from InO to OOO mode, the ROB is powered back on and, the

head and tail pointers of the ROB are re-initialized to point to the same slot. Thus,

the ROB is presumed to be completely empty when the core is morphed back to the

baseline OOO mode. The fact that we make use of existing facilities in the processor

core to enable morphing makes our proposal much more practical and realizable.

Morphing from the OOO to InO modes of operation needs to be done at runtime.

This requires a mechanism that makes dynamic decisions depending on the character-

155

istics of the currently executing workload. A description of the mechanism employed

in this work is presented next.

5.2.2 Implementation Details

Prior knowledge about the computational resource requirements of different ap-

plications is generally not available beforehand. Hence, there is a need for an online

mechanism to characterize the time-varying program behavior and determine the

appropriate mode (OOO or InO) at runtime such that ED2P of the executing appli-

cation is minimized. The proposed core morphing scheme accomplishes this task by

estimating the expected ED2P of the current execution phase of the application in

both the modes (OOO and InO).

5.2.2.1 ED2P prediction mechanism

The current characteristics of the application being executed on a core can reveal

considerable information about how suitable the core is to that application. For

example, an application phase that results in a significant number of misses in the

level-1 cache will result in low performance and high energy consumption. Executing

this phase on an InO core would make more sense with respect to ED2P . In order

to assess the current characteristics of the application being executed, we make use

of Performance Monitoring Counters (PMC).

In order to estimate the ED2P , both performance and energy (power) need to

be measured or estimated. Performance measurement is straightforward, while real

time power or energy measurement is not. PMCs have been used as a proxy to

estimate power in the past [19, 92] and we follow a similar approach. Note that most

previous work makes use of PMCs to estimate power on the same core while we need

to estimate power and performance on the currently active mode (OOO/InO), as well

as the other mode (InO/OOO) to make an informed decision.

156

5.2.2.1.1 PMCs explored in this study There are many events that take place

in a modern processor but some of them provide better hints than others about the

performance and power of the currently executing application. To this end, we have

explored fourteen different performance counters. We considered (i) the number of

retired instructions of each type (integer, floating-point etc.), (ii) memory hit and miss

counters (level-1, level-2 and TLB misses), (iii) number of mis-predicted and correctly

predicted branch instructions, (iv) number of instructions fetched and instructions

retired per cycle (IPC), and (v) pipeline stall counters which consist of stalls resulting

due to lack of reservation station, load/store queue, RAT and ROB slots.

5.2.2.1.2 Shortlisting the PMCs In general, we expect a higher estimation ac-

curacy using large number of counters. However, there is a limit on the number of

counters that may be accessed at the same time. This limit varies from one architec-

ture to another. For example, in the Intel XScale processor [19], only two counters

may be accessed while for the AMD Phenom processor, at most five counters may be

accessed at the same time [92]. There is, therefore, a need to find a minimal subset

of PMCs that have the most impact on power and performance both in the currently

active mode, and the other.

To accomplish the task of making the right choice of PMCs, we devised an effi-

cient heurestic that searches the counter space iteratively. During each iteration, our

counter selection algorithm picks a new counter that best fits the estimating parame-

ter (performance or power) along with the set of counters already chosen in previous

iterations. We tried only linear models for curve-fitting and the best fit is qualified

by the R2 coefficient. During the initial few iterations, the value of the R2 coefficient

increases steeply as more counters are added, but it tends to saturate later. The best

set of counters is around the region where the R2 coefficient tends to saturate.

The result of one such counter selection experiment is shown in Figure 5.4. Here,

the expected performance of the application in InO mode is estimated using the

157

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14

R
2
 C

o
ef

fi
ci

en
t

Number of counters

Figure 5.4. Variation in R2 coefficient while estimating the performance in InO
mode using the values of PMCs observed in OOO mode.

values of PMCs observed in the OOO mode. As expected, increasing the number of

counters yields better R2. However, we arrive to the point of diminishing returns after

6 counters. These 6 counters were IPC, number of retired load and store instructions,

pipeline stalls, branch mis-predictions and level-1 cache hit rate. Similar experiments

were run to obtain expressions that can be used to estimate both performance and

power on both modes using PMCs. The final expressions obtained are shown in Table

5.1.

The average error observed when using PMCs on one mode (OOO/InO) to predict

power in that mode as well as performance and power on the other mode (InO/OOO)

is show in Figure 5.5. While estimating the OOO parameters (IPC and power) from

the InO mode using PMCs in the InO mode, average % error in estimating IPC and

power is around 16% and 10% respectively. Similarly average % error in computing

the InO parameters from OOO core was found to be 15% and 8% respectively. Error in

estimating power using counters in the same mode was found to be around 9% for the

OOO mode and 8% for the InO mode. Using the estimated power and performance

values, ED2P for both modes is then computed using PMCs from the currently

158

Table 5.1. Power and performance estimation of the other mode using the per-
formance counters’ values in the current mode. L1h - L1 Hit, Bmp- branch miss
prediction, S - Store, L- Load, DS- Dispatch Stall

Estimating Parameter Expression

InO ⇒ OOO IPC 4.5 ×10-3 × L1h + 4.417 × IPC -
0.0273 × Bmp - 2.3255

InO ⇒ OOO Power 0.080 × L1h + 71.15 × IPC -
0.4112 × Bmp - 38.46

InO ⇒ InO Power 0.0047 × L1h + 13.062 × IPC -
0.0069 × S - 7.4 ×10-5 × DS + 1.5547

OOO ⇒ InO IPC - 0.00616 × L1h + 0.06671 × IPC -
4.2 ×10-4 × Bmp - 7.5 ×10-5 × DS + 0.2768

OOO ⇒ InO Power -0.0039 × L1h+ 0.9022 × IPC +
0.0104 × S - 0.0103 × Bmp + 4.4669

OOO ⇒ OOO Power 0.0141 × L1h + 13.81 × IPC +
0.0295 × S - 0.0118 × Bmp - 0.2989

0
2
4
6
8

10
12
14
16
18

%
 A

v
er

a
g

e
er

ro
r

Average error in estimating IPC Average Error in estimating power

Figure 5.5. % Average error observed in estimating IPC and power of OOO (InO)
mode using InO (OOO) counters.

159

operating mode. The average error in ED2P estimation for both modes was found

to be around 20%, reflecting resonable accuracy of our prediction mechanism.

We have seen how ED2P can be estimated using PMCs in the proposed scheme.

The decision to move to the alternate mode of operation is the one that provides best

ED2P . The decision to switch mode of operation should be one of high confidence.

Otherwise, we risk running into oscillations between the two modes. This will likely

negate all benefits of the proposed scheme. Hence, it is necessary to ensure that the

decision to change operation mode is effected only if it expected to be long term.

Determining the confidence of a decision is described next.

5.2.2.2 Capturing Application Phase behaviour

After certain number of retired instructions, referred to as window, a tentative

morphing decision about the best mode (OOO or InO) is made based on the above

ED2P estimations. To avoid too frequent switching between the modes (InO and

OOO), we prefer to wait until the new execution phase of the thread has stabilized.

To that end, we base our morphing decision on the most frequent tentative decision

made for the past n retired instructions (n (history depth) = integer × window

length). For example, if for the past n committed instructions, moving from OOO

to InO mode was the frequent decision, it may be predicted that the application has

entered a phase where InO mode may provide lower ED2P . The window size and

history depth need to be determined experimentally. We have conducted a sensitivity

study to quantify the impact of window length and history depth (indicated by n)

on the achieved benefits. The window size and history depth combination that yields

the lowest ED2P for entire program execution would be the best choice.

The window length was varied from 250 to 1000 instructions. Within a particular

window, the history depth (n) was varied from 2000, 3000, 4000 and 5000. For

example, a history depth (n) of 2000 indicates that for a particular window, we

160

0

1

2

3

4

5

6

7

2K 3K 4K 5K 2K 3K 4K 5K 2K 3K 4K 5K

%
 A

v
er

a
g

re
 r

e
d

u
ct

io
n

 i
n

 E
D

2
 w

r.
t

to

O
O

O
 c

o
re

Window

length- 250

Window

length- 500

Window

length- 1000

Figure 5.6. % Average reduction in ED2P of the proposed scheme w.r.t the baseline
OOO core for different values of window length and history depth.

make a reconfiguration decision at the end of every 2000 instructions. To determine

the optimimum window size and the history depth, we ran a set of 10 benchmarks.

After each benchmark was run for 1 billion instructions (after skipping the initial 5

billion instructions), we computed the average reduction in ED2P of the proposed

scheme (that can switch between OOO and InO modes) over the baseline OOO core.

The decision to switch between operation modes is determined by the most frequent

decision made within the history depth. As shown in Figure 5.6, window length

of 500 and history depth of 3K provides the maximum reduction in ED2P . The

above computation of ED2P reduction takes into account the overhead for switching

between modes, as explained in the next section. Thus, in all our future experiments,

the window length of 500 and history depth of 3K is used.

5.2.2.3 Switching between OOO and InO modes

Due to the low overhead associated with our morphing scheme, we dynamically

morph from one mode to another at a fine-grained instruction granularity. As men-

tioned earlier, InO mode with reduced architectural units provides better energy

161

efficiency at the cost of performance. It is critical that we move into InO mode only

when we expect increased energy benefits without compromising performance signifi-

cantly. To minimize the performance loss encountered while running in this dynamic

configuration (OOO + InO modes), we use ED2P as the switching metric which

assigns higher weight to performance than energy.

At the end of every history depth, we decide to move to InO mode only if the

expected ED2P in InO mode is less than that of the OOO mode by a defined thresh-

old. This defined threshold is referred to as ED2P threshold (see Section 5.3). Based

on the window length and history depth determined previously, the proposed scheme

decides the best mode of operation (OOO or InO) to execute the current applica-

tion phase considering the recent tentative decisions (made for each window). Once

the decision to switch to InO mode is made, the ROB, LSQ and the RAT units are

powered off and the subsequent instructions are re-fetched for in-order execution.

5.2.2.4 Morphing overheads

Previously proposed schemes for morphing [81, 65] or swapping of threads between

asymmetric cores [51, 77, 6] incur large overhead and as a result, thread swapping

or morphing were done at a very coarse grain granularity. The overheads for these

schemes arise from the transfer of architectural state requiring a warm up the cache

and the branch predictor [77] or due to a high communication latency to send or

receive data operands [76]. In our proposed scheme, morphing is done within the core

and thus it avoids all the above overheads as there is no need to change the state of the

register file, caches and branch predictors. The overhead associated with our scheme

is due to the power gating/power up of the ROB, RAT and LSQ units and partial

power on/off of fetch, decode and execution units while switching between OOO and

modes. When power-gating individual units, there is no dynamic energy consumed

and the static energy consumed by these idle units is not very high providing us with

162

Table 5.2. Baseline OOO core parameters considered. The values in parenthesis
represent the change while in InO mode.

Param Value Param Value

Issue 4 (2) INTREG 96 (NA)

FPREG 80 (NA) INTISQ 36 (NA)

FPISQ 24 (NA) LS units 3 (1)

LSQ 32 (NA) ROB 128 (NA)

L1(I/D) 32K L2 2M

Freq (GHz) 2.4 Type OOO (InO)

Table 5.3. Execution unit specifications for the baseline core. (P - Pipelined, NP -
Not pipelined, PP - Partially pipelined).The values within parenthesis represent the
change while in InO mode

FP DIV FP MUL FP ALU

1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 (1) units, 3 cyc, P

INT DIV INT MUL INT ALU

1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 (2) units, 1 cyc, P

increased power savings. Power gating/power-on of all the blocks simultaneously may

lead to a sudden power surge and thus we employ staggered power gating where one

block is gated every clock cycle and thus requiring 6 clocks to gate the 6 blocks. Thus,

the total overhead when switching between modes is assumed to be 20 clock cycle

with additional margin (14 clock cycles) for every switch. The switch between OOO

and InO modes is handled in hardware and no changes are required to the operating

system.

5.3 Results and Analysis

In this section, we evaluate our proposed core morphing scheme. The core param-

eters considered in this work are listed in Tables 5.2 and 5.3. Most of these parameters

were taken from [26]. As shown in Table 5.2, the OOO core is provisioned with large

resources (e.g., integer and floating-point registers, issue queues and L2 cache) which

is representative of modern superscalar processors. The changes to the architectural

parameters and the execution units in the InO mode are shown in parenthesis in

Tables 5.2 and 5.3, respectively. We used SESC [75] as our architectural simulator

and employed Wattch [13] and CACTI [89] to measure power. The evaluation was

163

5

10

15

0

2

4

6

8

2K
3K

4K
5K E

D
2

 t
h

tr
es

h
o

ld
 v

a
ri

a
ti

o
n

A
v

er
a

g
e

R
ed

u
ct

io
n

 i
n

 E
D

2
 w

.r
.t

 t
o

b
a

se
li

n
e

O
O

O
 c

o
re

History depth variation within window length 500

Figure 5.7. % Reduction in ED2P vs threshold variation for various history depths.

carried out using 10 benchmarks from SPEC [97] and Mediabench suites [57]. Each

of the benchmarks were run for 1 billion instructions after skipping the first 5 billion

instructions.

5.3.1 Trade-off analysis between energy savings and performance loss

The decision to switch from one configuration mode to another is based on the

ED2P threshold. We now explain the process of determining the ED2P threshold.

The ED2P threshold was varied from 5% to 15% for different history depths and

window lengths. By analyzing the benefits with respect to ED2P for various combi-

nations of window lengths and history depths over all benchmarks, it was determined

that the window length of 500 provided the maximum benefits for all the thresholds.

In figure 5.7 we analyze the ED2P reduction for window length of 500 for various

thresholds and history depths. It can be seen that going from ED2P threshold of 5%

to 10% , the average reduction in ED2P when compared to the baseline OOO core

increases by 2-3%. As we further increase the ED2P threshold, the benefits tend to

drop by 1-2%. The reason for improved benefits when the threshold is changed from

5% to 10% is that for low threshold values the number of reconfiguration increases

164

0

2

4

6

8

10

12

14
% Reduction in ED^2P w.r.t to OOO core

% Decrease in IPC w.r.t to OOO core

Figure 5.8. % Reduction in ED2P of proposed scheme w.r.t the baseline OOO core.

significantly. Thus, for a threshold value of 10%, the number of reconfigurations tend

to stabilize and for threshold values beyond 10%, there is reduced benefit due to very

few reconfigurations. The ED2P threshold was thus set to 10%.

Having determined the ED2P threshold, history depth and window length, we

are now ready to determine the reduction in ED2P that can be achieved using the

proposed scheme over the baseline OOO core. The results obtained with respect to

ED2P reduction and performance loss is shown in Figure 5.8. Benchmarks such as

EQUAKE, MCF, GCC are observed to achieve substantial reductions in ED2P of

13%, 10% and 8%, respectively, with other benchmarks achieving an ED2P benefit

of within 5%. Since the ED2P threshold trades more weight for performance than

energy, the performance loss of all the benchmarks over the entire run is found to be

less than 4%.

So far in the proposed scheme, we assigned priority to performance loss over energy

savings and hence considered the ED2P metric. An alternatve approach would be

to prioritize energy savings. This is important in case of laptops and cell phones

where the end user is willing to tolerate more performance loss for increased energy

165

0

5

10

15

20

25
% Reduction in EDP w.r.t to OOO core

% decrease in IPC w.r.t OOO core

Figure 5.9. % Reduction in EDP of proposed scheme w.r.t the baseline OOO core.

Table 5.4. number of switches per million instructions and percentage time spent
by benchmarks in morphed mode

Benchmark Switches/million Percentage time spent in
instruction Morphed mode

mcf 450 76

equake 250 83

sha 420 30

pi 130 20

swim 180 26

art 80 18

gcc 140 44

bzip 120 23

twolf 180 21

vpr 210 30

savings. For such cases, we propose to use the Energy-Delay Product EDP since this

metric gives equal weight to both performance and energy. Results obtained when

using this metric is shown in Figure 5.9. The % reduction in EDP when compared

to the baseline OOO core was found to be 20% for EQUAKE, 14% for MCF and

10% for GCC with performance loss of 8%, 7% and 5%, respectively, while other

benchmarks achieving EDP benefits of up to 5% with a small performance penalty.

Thus, the EDP metric provides increased energy savings at the cost of performance

when compared to the ED2P metric.

166

0

2

4

6

8

10

12

14

P
er

ce
n

ta
g

e
in

cr
ea

se
 i

n
 I

P
C

/W
a

tt

Figure 5.10. % increase in IPC/Watt of proposed scheme w.r.t to the baseline OOO
core.

5.3.2 Number of switches and time spent in InO mode

The number of mode switches for the chosen window length and history depth is

shown in Table 5.4 for all the benchmarks. As expected, benchmarks which achieve

increased energy savings exhibit higher number of switches in mode. But, due to

sharing of architectural resources by both the modes, the switching overhead is negli-

gible for our scheme. The overall performance impact due to switching overhead was

found to be less than 1%.

Table 5.4 also shows the percentage of time spent by each benchmark in the InO

mode. Benchmarks such as EQUAKE, MCF and GCC that achieve increased energy

savings tend to stay in the InO mode for longer time periods as they have many

low-IPC phases. MCF and EQUAKE spend significantly more time in the InO mode

(70% and 78%, respectively). We observe that low IPC phases of application tend to

use the InO mode more frequently leading to increased energy savings.

5.3.3 Benefits of core morphing in terms of performance/Watt

Figure 5.10 shows the performance/Watt benefit obtained by the proposed mor-

phing scheme. The ED2P metric was used here to determine mode switching. Mem-

ory Intensive benchmarks such as EQUAKE, MCF and GCC again show a higher

167

IPC/watt benefit of about 12%, 9% and 8%, respectively, while other benchmarks

show an IPC/Watt gain of up to 6%. It is to be noted that the window length, his-

tory depth and ED2P threshold were kept the same even for these experiments. The

mentioned IPC/watt benefits were obtained at an average performance loss of about

4.2%.

5.4 Conclusions

Applications experience a change in characteristics over time. Hence, a different

core configuration (size of the ROB, number of execution units etc.) may be more

suitable with respect to energy and performance at different time instants. Tradi-

tionally, Asymmetric Multicores (AMP) have been considered to support the diverse

needs of applications. Here, depending on current application characteristics, threads

are swapped between the available cores in the AMP such that the objective function

(energy, performance etc.) is optimized. Prohibitive thread migration overheads limit

the instruction granularity at which such thread swapping decisions may be made,

even though many opportunities present themselves at fine grain granularities. In this

chapter, we have considered an architecture that is capable of realizing these bene-

fits. Here, depending on application characteristics, a superscalar OOO processor

may morph itself into an in-order (InO) core at runtime, if deemed to be beneficial.

Such morphing is made possible by using the existing debug feature present in cer-

tain Intel processors. The decision to morph between operation modes (OOO/InO)

is made using information gathered from performance monitoring counters. The pro-

posed scheme opportunistically morphs into InO mode to minimize Energy Delay

square Product. Our results indicate that ED2P reduction of up to 12% is possible

at a very small performance penalty of less than 4%. This result compares favorably

against similar proposals that impose far more hardware overhead.

168

CHAPTER 6

FUTURE DIRECTIONS

In this this dissertation, we have explored a few mechanisms for online manage-

ment of resilient and power efficient multicore processors. The future work based on

this dissertation is now presented.

6.1 Error resilient processors

There are several extensions that are planned for the Sentry Core (SC) architec-

ture.

1. SC for fault diagnosis in the multicore.

2. SC to detect errors in operation of directory coherence.

6.2 Power efficient processors

The following is the future work planned for power efficient computing.

6.2.1 Thread scheduling in AMPs

1. Improving the accuracy of estimation based scheduling.

2. Development of schemes to estimate performance and power on the host and

other cores in the presence of DVFS.

169

6.2.2 Resource sharing in multicores

1. Explore the effect of resource sharing in AMPs. As opposed to SMPs, such

sharing may have potential to boost both performance and performance-per-

Watt if the small cores in AMPs are given access to the underutilized big core

resources.

2. Explore sharing of other structures such as the ROB, reservation stations etc.

3. Explore sharing of structures in 3D architectures.

6.2.3 Polymorphic processors

So far, we have only considered morphing all the way from an OOO core to an

InO core. In the future, we plan to explore if there exists a middle ground operating

mode between the OOO and InO modes of operation. We will also consider core

morphing in the presence of DVFS.

170

BIBLIOGRAPHY

[1] Aater Suleman, M., Mutlu, O., Qureshi, M.K., and Patt, Y.N. Accelerating
critical section execution with asymmetric multicore architectures. Micro, IEEE
30, 1 (jan.-feb. 2010), 60 –70.

[2] Abella, J., Vera, X., Unsal, O., Ergin, O., and Gonzalez, A. Fuse: A technique
to anticipate failures due to degradation in alus. In On-Line Testing Symposium,
2007. IOLTS 07. 13th IEEE International (july 2007), pp. 15 –22.

[3] Austin, T.M. DIVA: a reliable substrate for deep submicron microarchitec-
ture design. In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual
International Symposium on (1999), pp. 196 –207.

[4] Balakrishnan, Saisanthosh, Rajwar, Ravi, Upton, Mike, and Lai, Konrad. The
impact of performance asymmetry in emerging multicore architectures. In Pro-
ceedings of the 32nd annual international symposium on Computer Architecture
(Washington, DC, USA, 2005), ISCA ’05, IEEE Computer Society, pp. 506–517.

[5] Baumann, R.C. Radiation-induced soft errors in advanced semiconductor tech-
nologies. Device and Materials Reliability, IEEE Transactions on 5, 3 (sept.
2005), 305 – 316.

[6] Becchi, Michela, and Crowley, Patrick. Dynamic thread assignment on hetero-
geneous multiprocessor architectures. In Proceedings of the 3rd conference on
Computing frontiers (2006), CF ’06.

[7] Benso, A., Di Carlo, S., Di Natale, G., and Prinetto, P. A watchdog processor
to detect data and control flow errors. In On-Line Testing Symposium, 2003.
IOLTS 2003. 9th IEEE (july 2003), pp. 144 – 148.

[8] Borkar, S. Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. Micro, IEEE 25, 6 (nov.-dec.
2005), 10 – 16.

[9] Borkar, Shekhar, and Chien, Andrew A. The future of microprocessors. Com-
mun. ACM 54, 5 (May 2011), 67–77.

[10] Borodin, D., et al. Functional unit sharing between stacked processors in 3d
integrated systems. In Embedded Computer Systems (SAMOS), 2011 Interna-
tional Conference on (july 2011), pp. 311 –317.

171

[11] Borodin, D., and Juurlink, B. H H. A low-cost cache coherence verification
method for snooping systems. In Digital System Design Architectures, Methods
and Tools, 2008. DSD ’08. 11th EUROMICRO Conference on (2008), pp. 219–
227.

[12] Bower, F.A., Sorin, D.J., and Ozev, S. A mechanism for online diagnosis of hard
faults in microprocessors. In Microarchitecture, 2005. MICRO-38. Proceedings.
38th Annual IEEE/ACM International Symposium on (2005).

[13] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architec-
ture, 2000. Proceedings of the 27th International Symposium on (june 2000).

[14] Butler, M., Barnes, L., Sarma, D.D., and Gelinas, B. Bulldozer: An approach
to multithreaded compute performance. vol. 31, pp. 6–15.

[15] Cakarevic, V., et al. Characterizing the resource-sharing levels in the ultrasparc
t2 processor. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on (2009), pp. 481–492.

[16] Cantin, Jason F., Lipasti, Mikko H., and Smith, James E. Dynamic verification
of cache coherence protocols, 2001.

[17] Carretero, J., Chaparro, P., Vera, X., Abella, J., and Gonzalez, A. Imple-
menting end-to-end register data-flow continuous self-test. Computers, IEEE
Transactions on 60, 8 (aug. 2011), 1194 –1206.

[18] Chen, Jian, and John, Lizy K. Efficient program scheduling for heterogeneous
multi-core processors. In Proceedings of the 46th Annual Design Automation
Conference (2009), DAC ’09.

[19] Contreras, Gilberto, and Martonosi, Margaret. Power prediction for intel xscale
processors using performance monitoring unit events. In Proceedings of the 2005
international symposium on Low power electronics and design (New York, NY,
USA, 2005), ISLPED ’05, ACM, pp. 221–226.

[20] Dao, Tuan Q. (Richardson, TX) Steiss Donald E. (Richardson TX). Shared
floating-point unit in a single chip multiprocessor, November 2000.

[21] DeOrio, A., Bauserman, A., and Bertacco, V. Post-silicon verification for cache
coherence. In Computer Design, 2008. ICCD 2008. IEEE International Con-
ference on (2008), pp. 348–355.

[22] Dolbeau, Romain, and Seznec, Andr. Cash: Revisiting hardware sharing in
single-chip parallel processor. Tech. rep., 2002.

[23] Ernst, Dan, et al. Razor: A low-power pipeline based on circuit-level timing
speculation. In Proceedings of the 36th annual IEEE/ACM International Sym-
posium on Microarchitecture (Washington, DC, USA, 2003), MICRO 36, IEEE
Computer Society, pp. 7–.

172

[24] Eyerman, Stijn, and Eeckhout, Lieven. Fine-grained dvfs using on-chip regula-
tors. ACM Trans. Archit. Code Optim. 8, 1 (Feb. 2011), 1:1–1:24.

[25] Fernandez-Pascual, R., Garcia, J.M., Acacio, M.E., and Duato, J. A low over-
head fault tolerant coherence protocol for cmp architectures. In High Per-
formance Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on (2007), pp. 157–168.

[26] Fog, A. The microarchitecture of intel, amd and via cpu. Tech. rep., Copenhagen
University College of Engineering, 2012.

[27] Garg, S., et al. Technology-driven limits on dvfs controllability of multiple
voltage-frequency island designs: A system-level perspective. In Design Au-
tomation Conference, 2009. DAC ’09. 46th ACM/IEEE (july 2009), pp. 818
–821.

[28] Ghiasi, Soraya, and Grunwald, Dirk. Aide de camp: Asymmetric dual core
design for power and energy reduction. Tech. rep., IEEE Trans. Inform. Theory,
2003.

[29] Ghosh, Swaroop, et al. Voltage scalable high-speed robust hybrid arithmetic
units using adaptive clocking. IEEE Trans. Very Large Scale Integr. Syst. 18,
9 (Sept. 2010), 1301–1309.

[30] Greenhalgh, P. Big.little processing with arm cortex-a15 and cortex-a7, sep.
2011.

[31] Grochowski, E., Ronen, R., Shen, J., and Wang, Hong. Best of both latency
and throughput. In Computer Design: VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings. IEEE International Conference on (oct. 2004).

[32] Gupta, S., et al. The stagenet fabric for constructing resilient multicore systems.
In Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on (nov. 2008), pp. 141 –151.

[33] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and
Brown, R.B. Mibench: A free, commercially representative embedded bench-
mark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE Interna-
tional Workshop on (dec. 2001).

[34] Hazucha, P., Karnik, T., Bloechel, B.A., Parsons, C., Finan, D., and Borkar,
S. Area-efficient linear regulator with ultra-fast load regulation. Solid-State
Circuits, IEEE Journal of 40, 4 (2005), 933–940.

[35] Held, Jim, Bautista, Jerry, and Koehl, Sean. White paper from a few cores to
many: A tera-scale computing research review, 2006.

[36] Heller, L. C., and Farrell, M. S. Millicode in an ibm zseries processor. IBM
Journal of Research and Development 48, 3.4 (may 2004), 425 –434.

173

[37] Hennessy, J.;, and Patterson, D. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 2003.

[38] Hill, M.D., and Marty, M.R. Amdahl’s law in the multicore era. Computer 41,
7 (july 2008), 33 –38.

[39] Homayoun, Houman, et al. Dynamically heterogeneous cores through 3d re-
source pooling. In Proceedings of the 2012 IEEE 18th International Symposium
on High-Performance Computer Architecture (2012), HPCA ’12, pp. 1–12.

[40] Horowitz, Mark. Scaling, power and the future of cmos. In Proceedings of the
20th International Conference on VLSI Design held jointly with 6th Interna-
tional Conference: Embedded Systems (Washington, DC, USA, 2007), VLSID
’07, IEEE Computer Society, pp. 23–.

[41] Ipek, Engin, Kirman, Meyrem, Kirman, Nevin, and Martinez, Jose F. Core fu-
sion: accommodating software diversity in chip multiprocessors. vol. 35, ACM,
pp. 186–197.

[42] Jang, Wooyoung, et al. Voltage and frequency island optimizations for many-
core/networks-on-chip designs. In Green Circuits and Systems (ICGCS), 2010
International Conference on (june 2010), pp. 217 –220.

[43] Joseph, Russ, and Martonosi, Margaret. Run-time power estimation in high per-
formance microprocessors. In Proceedings of the 2001 international symposium
on Low power electronics and design (New York, NY, USA, 2001), ISLPED ’01,
ACM, pp. 135–140.

[44] Kahle, James Allan (Austin, TX) Moore Charles Roberts (Austin TX). Shared
execution unit in a dual core processor, April 2004.

[45] Khan, Omer, and Kundu, Sandip. A self-adaptive scheduler for asymmetric
multi-cores. In Proceedings of the 20th symposium on Great lakes symposium
on VLSI (2010), GLSVLSI ’10.

[46] Khan, Omer, and Kundu, Sandip. Microvisor: A runtime architecture for ther-
mal management in chip multiprocessors. T. HiPEAC 4 (2011), 84–110.

[47] Khubaib, Suleman, M. Aater, Hashemi, Milad, Wilkerson, Chris, and Patt,
Yale N. Morphcore: An energy-efficient microarchitecture for high performance
ilp and high throughput tlp. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (Washington, DC, USA, 2012),
MICRO ’12, IEEE Computer Society, pp. 305–316.

[48] Kim, Changkyu, Sethumadhavan, Simha, Govindan, M. S., Ranganathan,
Nitya, Gulati, Divya, Burger, Doug, and Keckler, Stephen W. Composable
lightweight processors. In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Washington, DC, USA, 2007), MICRO
40, IEEE Computer Society, pp. 381–394.

174

[49] Kim, Wonyoung, Gupta, M.S., Wei, Gu-Yeon, and Brooks, D. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In High Per-
formance Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on (2008), pp. 123–134.

[50] Koufaty, David, Reddy, Dheeraj, and Hahn, Scott. Bias scheduling in hetero-
geneous multi-core architectures. In Proceedings of the 5th European conference
on Computer systems, EuroSys ’10.

[51] Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., and Tullsen, D.M.
Single-isa heterogeneous multi-core architectures: the potential for processor
power reduction. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on (dec. 2003).

[52] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., and Farkas, K.I.
Single-isa heterogeneous multi-core architectures for multithreaded workload
performance. In Computer Architecture, 2004. Proceedings. 31st Annual Inter-
national Symposium on (june 2004).

[53] Kumar, Rakesh, Jouppi, Norman P., and Tullsen, Dean M. Conjoined-core chip
multiprocessing. In Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture (Washington, DC, USA, 2004), MICRO 37,
IEEE Computer Society, pp. 195–206.

[54] Kumar, Rakesh, Tullsen, Dean M., and Jouppi, Norman P. Core architecture
optimization for heterogeneous chip multiprocessors. In Proceedings of the 15th
international conference on Parallel architectures and compilation techniques
(2006), PACT ’06.

[55] Lackey, D.E., et al. Managing power and performance for system-on-chip de-
signs using voltage islands. In Computer Aided Design, 2002. ICCAD 2002.
IEEE/ACM International Conference on (nov. 2002), pp. 195 – 202.

[56] Lau, Eric, Miller, Jason E., Choi, Inseok, Yeung, Donald, Amarasinghe, Saman,
and Agarwal, Anant. Multicore performance optimization using partner cores.
In Proceedings of the 3rd USENIX conference on Hot topic in parallelism
(Berkeley, CA, USA, 2011), HotPar’11, USENIX Association, pp. 11–11.

[57] Lee, Chunho, Potkonjak, Miodrag, and Mangione-Smith, William H. Media-
bench: a tool for evaluating and synthesizing multimedia and communicatons
systems. In Proceedings of the 30th annual ACM/IEEE international sympo-
sium on Microarchitecture (1997), MICRO 30.

[58] Lee, R.B. Multimedia extensions for general-purpose processors. In Signal
Processing Systems, 1997. SIPS 97 - Design and Implementation., 1997 IEEE
Workshop on (nov 1997), pp. 9 –23.

175

[59] Leibson, S. Reduce soc energy consumption through processor isa extension.
In System-on-Chip, 2007 International Symposium on (nov. 2007), pp. 1 –4.

[60] Levy, H.M., et al. Exploiting choice: Instruction fetch and issue on an im-
plementable simultaneous multithreading processor. In Computer Architecture,
1996 23rd Annual International Symposium on (may 1996), p. 191.

[61] Li, Chuanpeng, Ding, Chen, and Shen, Kai. Quantifying the cost of context
switch. In Proceedings of the 2007 workshop on Experimental computer science
(New York, NY, USA, 2007), ExpCS ’07, ACM.

[62] Li, Man-Lap, Ramachandran, P., Sahoo, S.K., Adve, S.V., Adve, V.S., and
Zhou, Yuanyuan. Trace-based microarchitecture-level diagnosis of permanent
hardware faults. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on (june 2008), pp. 22 –31.

[63] Li, Sheng, Ahn, Jung-Ho, Strong, R.D., Brockman, J.B., Tullsen, D.M., and
Jouppi, N.P. Mcpat: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on (2009),
pp. 469–480.

[64] Lichtenau, C., Ringler, M.I., Pfluger, T., Geissler, S., Hilgendorf, R., Heaslip,
J., Weiss, U., Sandon, P., Rohrer, N., Cohen, E., and Canada, M. Powertune:
advanced frequency and power scaling on 64b powerpc microprocessor. In Solid-
State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE
International (2004), pp. 356–357 Vol.1.

[65] Lukefahr, Andrew, Padmanabha, Shruti, Das, Reetuparna, Sleiman, Faissal M.,
Dreslinski, Ronald, Wenisch, Thomas F., and Mahlke, Scott. Composite cores:
Pushing heterogeneity into a core. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture (Washington, DC,
USA, 2012), MICRO ’12, IEEE Computer Society, pp. 317–328.

[66] M. Yilmaz et al. Self-Checking and Self-Diagnosing 32-bit Microprocessor Mul-
tiplier. In Test Conference, 2006. ITC ’06. IEEE International (2006).

[67] Meisner, David, Gold, Brian T., and Wenisch, Thomas F. Powernap: eliminat-
ing server idle power. In Proceedings of the 14th international conference on
Architectural support for programming languages and operating systems (New
York, NY, USA, 2009), ASPLOS XIV, ACM, pp. 205–216.

[68] Meixner, A., Bauer, M.E., and Sorin, D.J. Argus: Low-cost, comprehensive
error detection in simple cores. In Microarchitecture, 2007. MICRO 2007. 40th
Annual IEEE/ACM International Symposium on (dec. 2007), pp. 210 –222.

176

[69] Meixner, A., and Sorin, D.J. Error detection via online checking of cache co-
herence with token coherence signatures. In High Performance Computer Ar-
chitecture, 2007. HPCA 2007. IEEE 13th International Symposium on (2007),
pp. 145–156.

[70] Najaf-abadi, Hashem Hashemi, Choudhary, Niket Kumar, and Rotenberg, Eric.
Core-selectability in chip multiprocessors. In Proceedings of the 2009 18th In-
ternational Conference on Parallel Architectures and Compilation Techniques
(Washington, DC, USA, 2009), PACT ’09, IEEE Computer Society, pp. 113–
122.

[71] Pan, Abhisek, et al. Improving yield and reliability of chip multiprocessors.
In Proceedings of the Conference on Design, Automation and Test in Europe
(2009), DATE ’09, pp. 490–495.

[72] Pericas, Miquel, Cristal, Adrian, Cazorla, Francisco J., Gonzalez, Ruben,
Jimenez, Daniel A., and Valero, Mateo. A flexible heterogeneous multi-core
architecture. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (Washington, DC, USA, 2007), PACT
’07, IEEE Computer Society, pp. 13–24.

[73] Pricopi, Mihai, and Mitra, Tulika. Bahurupi: A polymorphic heterogeneous
multi-core architecture. ACM Trans. Archit. Code Optim. 8, 4 (Jan. 2012),
22:1–22:21.

[74] Reinhardt, Steven K., and Mukherjee, Shubhendu S. Transient fault detection
via simultaneous multithreading. In Proceedings of the 27th annual interna-
tional symposium on Computer architecture (New York, NY, USA, 2000), ISCA
’00, ACM, pp. 25–36.

[75] Renau, Jose. Sesc: Superescalar simulator, 2005.

[76] Rodrigues, R., Annamalai, A., Koren, I., Kundu, S., and Khan, O. Perfor-
mance per watt benefits of dynamic core morphing in asymmetric multicores.
In Parallel Architectures and Compilation Techniques (PACT), 2011 Interna-
tional Conference on (oct. 2011), pp. 121 –130.

[77] Rodrigues, R., et al. Scalable thread scheduling in asymmetric multicores for
power efficiency. In Computer Architecture and High Performance Computing
(SBAC-PAD), 2012 IEEE 24th International Symposium on (2012), pp. 59–66.

[78] Rodrigues, R., and Kundu, S. On graceful degradation of chip multiprocessors
in presence of faults via flexible pooling of critical execution units. In On-Line
Testing Symposium (IOLTS), 2011 IEEE 17th International (2011), pp. 67–72.

[79] Rodrigues, R., and Kundu, S. An online mechanism to verify datapath execu-
tion using existing resources in chip multiprocessors. In Test Symposium (ATS),
2011 20th Asian (nov. 2011), pp. 161 –166.

177

[80] Rodrigues, R., Kundu, S., and Khan, O. Shadow checker (SC): A low-cost
hardware scheme for online detection of faults in small memory structures of
a microprocessor. In Test Conference (ITC), 2010 IEEE International (nov.
2010), pp. 1 –10.

[81] Rodrigues, Rance, Annamalai, Arunachalam, Koren, Israel, and Kundu,
Sandip. Improving performance per watt of asymmetric multi-core processors
via online program phase classification and adaptive core morphing. vol. 18,
ACM, pp. 5:1–5:23.

[82] Rotenberg, E. AR-SMT: a microarchitectural approach to fault tolerance in
microprocessors. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-
Ninth Annual International Symposium on (june 1999), pp. 84 –91.

[83] Rusu, S., Tam, S., Muljono, H., Ayers, D., and Chang, J. A dual-core multi-
threaded xeon processor with 16mb l3 cache. In Solid-State Circuits Conference,
2006. ISSCC 2006. Digest of Technical Papers. IEEE International (feb. 2006),
pp. 315 –324.

[84] Saez, Juan Carlos, et al. A comprehensive scheduler for asymmetric multicore
systems. In Proceedings of the 5th European conference on Computer systems
(2010), EuroSys ’10.

[85] Semeraro, Greg, et al. Energy-efficient processor design using multiple clock
domains with dynamic voltage and frequency scaling. In Proceedings of the 8th
International Symposium on High-Performance Computer Architecture (2002),
HPCA ’02, pp. 29–.

[86] Shelepov, Daniel, Saez Alcaide, Juan Carlos, Jeffery, Stacey, Fedorova, Alexan-
dra, Perez, Nestor, Huang, Zhi Feng, Blagodurov, Sergey, and Kumar, Viren.
Hass: a scheduler for heterogeneous multicore systems. SIGOPS Oper. Syst.
Rev. 43 (April 2009).

[87] Sherwood, Timothy, Sair, Suleyman, and Calder, Brad. Phase tracking and
prediction. In Proceedings of the 30th annual international symposium on Com-
puter architecture (2003), ISCA ’03.

[88] Shivakumar, P., et al. Exploiting microarchitectural redundancy for defect tol-
erance. In Computer Design, 2003. Proceedings. 21st International Conference
on (oct. 2003), pp. 481 – 488.

[89] Shivakumar, Premkishore, Jouppi, Norman P., and Shivakumar, Premkishore.
Cacti 3.0: An integrated cache timing, power, and area model. Tech. rep., 2001.

[90] Shyam, Smitha, Constantinides, Kypros, Phadke, Sujay, Bertacco, Valeria, and
Austin, Todd. Ultra low-cost defect protection for microprocessor pipelines.
In Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems (New York, NY, USA, 2006),
ASPLOS XII, ACM, pp. 73–82.

178

[91] Siewiorek, Daniel P., and Swarz, Robert S. Reliable computer systems (3rd ed.):
design and evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998.

[92] Singh, Karan, Bhadauria, Major, and McKee, Sally A. Real time power esti-
mation and thread scheduling via performance counters. SIGARCH Comput.
Archit. News 37 (July 2009), 46–55.

[93] Slegel, Timothy J., Averill III, Robert M., Check, Mark A., Giamei, Bruce C.,
Krumm, Barry W., Krygowski, Christopher A., Li, Wen H., Liptay, John S.,
MacDougall, John D., McPherson, Thomas J., Navarro, Jennifer A., Schwarz,
Eric M., Shum, Kevin, and Webb, Charles F. Ibm’s s/390 g5 microprocessor
design. IEEE Micro 19, 2 (Mar. 1999), 12–23.

[94] Smolens, Jared C., et al. Efficient resource sharing in concurrent error detecting
superscalar microarchitectures. In Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture (2004), MICRO 37, pp. 257–268.

[95] Smolens, Jared C., Gold, Brian T., Kim, Jangwoo, Falsafi, Babak, Hoe,
James C., and Nowatzyk, Andreas G. Fingerprinting: bounding soft-error de-
tection latency and bandwidth. In Proceedings of the 11th international confer-
ence on Architectural support for programming languages and operating systems
(2004), ASPLOS-XI.

[96] Sorin, Daniel J., Martin, Milo M. K., Hill, Mark D., and Wood, David A.
SafetyNet: improving the availability of shared memory multiprocessors with
global checkpoint/recovery. In Proceedings of the 29th annual international
symposium on Computer architecture (2002), ISCA ’02.

[97] SPEC2000. The Standard Performance Evaluation Corporation (Spec CPI2000
suite).

[98] Srinivasan, J., Adve, S.V., Bose, P., and Rivers, J.A. The impact of technol-
ogy scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on (june-1 july 2004), pp. 177 – 186.

[99] Srinivasan, J., et al. Exploiting structural duplication for lifetime reliability
enhancement. In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd
International Symposium on (june 2005), pp. 520 – 531.

[100] Srinivasan, Sadagopan, Zhao, Li, Illikkal, Ramesh, and Iyer, Ravishankar.
Efficient interaction between os and architecture in heterogeneous platforms.
SIGOPS Oper. Syst. Rev. 45, 1 (Feb. 2011), 62–72.

[101] Tarjan, D., Boyer, M., and Skadron, K. Federation: Repurposing scalar cores for
out-of-order instruction issue. In Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE (june 2008), pp. 772 –775.

[102] Tullsen, Dean M., et al. Simultaneous multithreading: maximizing on-chip
parallelism. SIGARCH Comput. Archit. News 23, 2 (May 1995), 392–403.

179

[103] van de Waerdt, Jan-Willem, Vassiliadis, Stamatis, Das, Sanjeev, Mirolo, Sebas-
tian, Yen, Chris, Zhong, Bill, Basto, Carlos, van Itegem, Jean-Paul, Amirtharaj,
Dinesh, Kalra, Kulbhushan, Rodriguez, Pedro, and van Antwerpen, Hans. The
tm3270 media-processor. In Proceedings of the 38th annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Washington, DC, USA, 2005),
MICRO 38, IEEE Computer Society, pp. 331–342.

[104] Vasudevan, D.P., and Lala, P.K. A technique for modular design of self-checking
carry-select adder. In Defect and Fault Tolerance in VLSI Systems, 2005. DFT
2005. 20th IEEE International Symposium on (2005).

[105] Watanabe, Yasuko, et al. Widget: Wisconsin decoupled grid execution tiles. In
Proceedings of the 37th annual international symposium on Computer architec-
ture (2010), ISCA ’10, pp. 2–13.

[106] Winter, Jonathan A., Albonesi, David H., and Shoemaker, Christine A. Scalable
thread scheduling and global power management for heterogeneous many-core
architectures. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques (2010), PACT ’10.

[107] Woo, Steven Cameron, et al. The splash-2 programs: characterization and
methodological considerations. SIGARCH Comput. Archit. News 23, 2 (May
1995), 24–36.

[108] Yu, Pan, and Mitra, Tulika. Characterizing embedded applications for
instruction-set extensible processors. In Proceedings of the 41st annual De-
sign Automation Conference (New York, NY, USA, 2004), DAC ’04, ACM,
pp. 723–728.

[109] Zhang, Meng, Lebeck, A.R., and Sorin, D.J. Fractal coherence: Scalably
verifiable cache coherence. In Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on (2010), pp. 471–482.

180

	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	9-1-2013

	Online Management of Resilient and Power Efficient Multicore Processors
	Rance Rodrigues
	Recommended Citation

