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Abstract
Potential applications for gene-based tissue engineering therapies in the oral and maxillofacial
complex include the delivery of growth factors for periodontal regeneration, pulp capping/dentin
regeneration, and bone grafting of large osseous defects in dental and craniofacial reconstruction.

Part 1 reviewed the principals of gene-enhanced tissue engineering and the techniques of
introducing DNA into cells. This manuscript will review recent advances in gene-based therapies
for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping
and periodontal regeneration.

i. Introduction
The goal of gene-enhanced tissue engineering is to regen-
erate lost tissue by the local delivery of cells that have been
genetically-enhanced to deliver physiologic levels of spe-
cific growth factors. The basis for this approach lies in the
presence of a population of progenitor cells that can be
induced, under the influence of these growth factors, to
differentiate into the specific cells required for tissue
regeneration, with guidance from local cues in the wound
environment [1].

From a tissue engineering approach, the oral cavity has
significant advantages compared to other sites in the
body, including easy access and observability. Potential
applications for gene-based tissue engineering therapies
in the oral and maxillofacial complex include the delivery
of growth factors for periodontal regeneration, pulp cap-
ping/dentin regeneration, treatment of malignant neo-
plasms of the head and neck [2], regeneration for bone
grafting of large osseous defects in dental and craniofacial

reconstruction (e.g. bone augmentation prior to pros-
thetic reconstruction, fracture repair, and repair of facial
bone defects secondary to trauma, tumor resection, or
congenital deformities), and articular cartilage repair
[3,4].

This manuscript will review recent advances in gene-based
therapies for dental hard tissue regeneration, specifically
as it pertains to dentin regeneration/pulp capping and
periodontal regeneration.

ii. Gene-based therapies for dentin/pulp
regeneration
A. Background
The goal of modern restorative dentistry is to functionally
and cosmetically restore lost tooth structure. Destroyed
coronal tooth structure, most commonly resulting from
dental caries, is currently restored using metal or polymer-
based materials; primarily silver amalgam, resin-based
composites and metal or porcelain crowns. Although
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these conventional restorative materials have proven to be
highly effective at preserving teeth, they have a limited
life-span and ultimately require replacement. It is esti-
mated that in the United States alone, close to 200 million
restorations, or 2/3 of all restorations placed by dentists,
involve the replacement of failed restorations [5]. Moreo-
ver, a significant percentage of these restored teeth ulti-
mately undergo pulpal necrosis, requiring either tooth
extraction or endodontic treatment and prosthetic
buildup. Therefore, development of novel techniques to
regenerate, as opposed to repairing, lost tooth structure
would have significant benefits.

Potential applicability of any dental hard tissue regenera-
tive protocol could include the regeneration of an entire
missing tooth or the regeneration of specific components
of an otherwise viable tooth (e.g. a decayed tooth with
early pulpal involvement). The lack of any enamel form-
ing cells in the enamel of fully developed erupted teeth
precludes the potential for cell-based approaches for
enamel regeneration.

In contrast, the regeneration of dentin is feasible because
dentin is in intimate contact with an underlying highly
vascular and innervated pulpal tissue, forming a tightly-
regulated "dentin-pulp complex". During primary tooth
formation, dentin is produced by odontoblastic cells
located within the pulp. Following tooth eruption, the
secretory activity of these cells is down-regulated,
although they continue to produce secondary dentine at a
low level. Pulpal tissue retains a limited potential to repair
itself following various insults. These healing stages in the
pulp resemble those of other hard tissues. Depending on
a number of poorly defined factors, surviving post-mitotic
odontoblastic cells can secrete tertiary dentin, a process
known as reactionary or reparative dentinogenesis, or,
alternatively, perivascular progenitor cells in the pulp can
be triggered to differentiate into odontoblastic-like cells
under the influence of specific growth factors [6,7].

Of the numerous growth factors normally expressed dur-
ing primary odontogenesis (for a review of these factors,
see [8]), members of the transforming growth factor beta
(TGF-beta) superfamily, including several members of the
bone morphogenetic protein family (e.g. BMP-2, BMP-7),
and insulin-like growth factor-1 (IGF-1) appear to play a
key part in the induction of odontoblast-like cell differen-
tiation from progenitor pulpal cells [9-12]. A number of
these growth factors are incorporated into the developing
dentin matrix during initial tooth formation, forming a
reservoir from which they can be released following den-
tin breakdown.

The origin of pulpal progenitor cells remains elusive,
although recent evidence suggests that they are associated

with the smooth muscle cells and pericytes of pulpal
blood vessels [13]. Migration of these newly proliferating
stem cells to the injury site may, in part, be mediated by
endothelial injury [14]. Glucocorticosteroids may also
play a role in promoting differentiation of pulpal
multipotential mesenchymal progenitor cells into odon-
toblast-like cells [15].

B. Conventional techniques for inducing pulpal repair
Calcium hydroxide has long been the "gold standard" for
pulp capping [16]. Its effectiveness at promoting dentinal
bridge formation over small pulpal exposure sites is
believed to be related to a combination of antimicrobial
activity (attributed to high pH) and its ability to stimulate
tertiary dentin formation (attributed to the release of cal-
cium ions). Recently, mineral trioxide aggregate (MTA)
has been proposed as an alternative to calcium hydroxide
for pulp capping. In vitro [17] and in vivo studies [18] sug-
gest that MTA may be more effective at inducing dental
hard tissue formation than calcium hydroxide, possibly
via a physicochemical reaction in which released calcium
ions react with tissue phosphates to form hydroxyapatite.

C. Research methodologies
Tooth organ culture techniques can be used for short-term
in vitro applications. However, an animal model is needed
to assess the long-term feasibility of GETE approaches to
dental hard tissue regeneration because the regenerative
process involves the interplay between several tightly reg-
ulated biologic systems including the host immune
response, hormonal control, and poorly-defined growth
factors.

Commonly used animal models for examining the effects
of pulp capping agents on teeth include the dog [19],
monkey [20], ferret [21], and rat [22]. Lagomorphs, such
as the rabbit, have also been used [23,24]. However, both
rat and rabbit teeth are continually erupting and have an
open apical foramen. These two latter models have an
inherent self-reparative capacity and share more similarity
to human deciduous teeth and permanent teeth with
immature root formation. Therefore, they are well-suited
to studying the differentiation of dental progenitor cells.

The most common experimental protocol involves the
creation of a mechanical pulpal exposure. This technique
fails to replicate the most common clinical scenario in
which the dentin-pulp complex is destroyed by bacterial-
induced inflammation. Therefore, models have been
developed in which pulpal inflammation is induced by
the injection of lipopolysaccharide [25].

D. Research to date
To date, attempts to regenerate lost dental hard tissue have
met with mixed results.
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a. Growth factor delivery
While intrapulpal implantation of TGF-beta1 can induce
differentiation of odontoblast-like cells and reparative
dentin formation in the immediate vicinity of the
implanted site [26], its usefulness as a pulp capping agent
is limited [27]. Application of insulin-like growth factor-1
(IGF-1) to mechanically exposed pulps appeared to
reduce inflammation, preserve pulp vitality and promote
pulpal repair in the rabbit [23]. In vitro experiments sug-
gest that dentin matrix extract (DME), which contains a
complex mixture of bioactive molecules, is capable of
inducing differentiation of pulp progenitor cells into
odontoblast-like cells [28]. Efforts at forming reparative
dentin in vivo using dentin matrix extract [29-31], supra-
physiologic doses of recombinant BMPs [32,22], bone sia-
loprotein [33] or amelogenin gene splice products [34]
have resulted in either minimal dentin formation or
excessive quantities of ectopic bone-like material that
occlude the pulp canals. In one rat model [32], pulp cap-
ping with MTA produced significantly more dentin sialo-
phosphoprotein (DSP), a marker of dentinoblast
differentiation, compared to recombinant BMP-7. A plau-
sible explanation for these varied results is that the deliv-
ery of a single bolus of a morphogenic protein with a short
in vivo half-life does not provide the sustained delivery of
physiologic levels of these proteins required for complete
hard tissue regeneration. Moreover, it appears that higher
concentrations of some growth factors may have an oppo-
site effect, inducing apoptosis of putative progenitor cells
[29].

b. Stem cell delivery
A number of recent studies have demonstrated that stem
cells, of both dental and non-dental origin, are capable of
inducing odontogenesis and regenerating dentin [35].
Human adult dental pulp contains a population of cells
("dentin pulp stem cells"; DPSCs) with stem cell-like
properties such as self-renewal and the ability to differen-
tiate into adipocytes and neural-like cells [36], but not
chondroblasts [37]. Tooth-like tissues have been engi-
neered by implanting single cell suspensions isolated
from porcine third molar tooth buds seeded onto polyg-
lycolic acid beads into the omenta of athymic rats [38].
While this preliminary research is extremely promising,
one of the disadvantages of these techniques in their cur-
rent state is the inability to regulate the shape and size of
the regenerated tissue [39].

Deciduous teeth [40] contain a population of more
immature multipotent stem cells ("stem cells from
human exfoliated deciduous teeth"; SHED), that in con-
trast to DPSCs, are capable of forming dentin-like struc-
tures but not a complete dentin-pulp complex. Explants
consisting of adult bone marrow stem cells and oral epi-
thelium from E10.0 mouse embryos have the potential to

form crude tooth-like tissues when grown in kidney cap-
sules [41].

Supplementation of autologous tooth-derived progenitor
stem cells with supraphysiologic levels of recombinant
growth factors appears to hold promise for dentin/pulp
regeneration. In a dog model, isolates of autologous pulp-
derived cells, expanded in culture and supplemented with
rhBMP-2, appear to stimulate the differentiation of odon-
toblasts as well as to promote new dentin formation [42].

c. Gene-enhanced tissue engineering for growth factor delivery
To date, only a few groups have actively investigated the
use of GETE in dentin/pulp regeneration. Transfer of
BMP-7 ex vivo transduced autologous dermal fibroblasts
in a collagen hydrogel into an experimentally-induced fer-
ret model of reversible pulpitis induces reparative den-
tinogenesis and regeneration of the dentin-pulp complex
[25]. However, in this same model, in vivo transduction of
inflamed pulpal tissue with recombinant adenovirus con-
taining the BMP-7 cDNA was ineffective at producing den-
tinogenesis.

In vivo ultrasound-mediated delivery of BMP-11 (Growth/
differentiation factor 11) cDNA to mechanically-exposed
canine pulp tissue was effective at promoting significant
amounts of reparative dentin formation in vivo, with min-
imal pulpal inflammation or necrosis [43]. Expression of
dentin sialoprotein mRNA, a marker associated with
odontoblastic differentiation, was confirmed. These find-
ings contrast with earlier results in which gene delivery by
electroporation resulted in thermally-induced pulpal
necrosis [44]. Ex vivo transplantation of BMP-11-trans-
fected autogenous dental pulp stem cells stimulated repar-
ative dentin formation in the dog model [45]. These
transfected dental pulp stem cells expressed markers of
odontoblastic differentiation in vitro.

E. Challenges and potential pitfalls
Prolonged pulpal infection will lead to severe hemody-
namic changes and inflammation, compromising the
vitality of the dentin-pulp complex. In vivo gene therapy
techniques will likely only be effective for dentin regener-
ation/pulp capping situations in which some viable, unin-
fected apical pulpal tissue containing an adequate
number of pulp progenitor stem cells is still present after
all infected/necrotic pulpal tissue has been excavated.

Ex vivo approaches, in which growth factor-enhanced cells
are transplanted into the tooth, might be viable alterna-
tives for those situations in which there is substantial
inflammation. Implanted cells would require a source of
oxygen and nutrients to sustain viability. Therefore the
local wound environment requires the ability to develop
a vascular bed; either from remaining elements of the den-
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tal pulp or in the presence of a patent apical foramen. The
ability of implanted cells to survive in an animal model of
dental pulp exposure has been previously demonstrated
[43]. Interestingly, in the myocardial injury model, trans-
fection of bone marrow-derived stem cells with the
fibroblast growth factor-2 (FGF-2) gene increases cell sur-
vival under hypoxic conditions [46]. This observation
could potentially be exploited to increase the effectiveness
of GETE approaches for dentin regeneration.

In addition to neovascularization, complete restoration of
the dentin-pulp complex will also require regeneration of
the pulpal nerve supply. The BPMs appear to play a role in
stimulating nerve regeneration, while angiogenesis is reg-
ulated by VEGF.

Key questions regarding our understanding of factors reg-
ulating the dentin-pulp complex remain unanswered. For
example, it is not understood how, under normal physio-
logic conditions, complete mineralization of the pulp is
prevented, while dentin formation continues to occur at
the periphery [47]. As our understanding of these signal
transduction mechanisms increases, additional
approaches for gene-enhanced tissue regeneration of the
dentin-pulp complex will likely be developed.

iii. Gene-based therapies for periodontal 
regeneration
A. Background
The periodontal attachment comprises a heterogeneous
population of tissues and cells that function, in part, to
attach the tooth to the supporting alveolar bone. Addi-
tional functions include homeostasis, repair of damaged
tissue and proprioception. Major components of the per-
iodontium include the gingiva, periodontal ligament
(PDL), cementum and the surrounding alveolar bone.

The word "periodontitis" literally means "inflammation
around the tooth." In dentistry, periodontitis refers to a
microbial-induced inflammation of the structures sur-
rounding and supporting the teeth with resultant destruc-
tion of the attachment fibers and supporting bone that
hold the teeth in the mouth. Left untreated, it can lead to
tooth loss.

Periodontal disease involves a complex interaction, medi-
ated in large part by an individual's host immune
response to microbial colonization of the periodontal
attachment apparatus, modified by host factors such as
tobacco smoking, underlying disease states, level of
plaque control and genetic susceptibility [48]. A number
of studies [49] have shown an apparent causal link
between genetic polymorphisms of the proinflammatory
cytokine interleukin-1 (IL-1) and the severity of periodon-
tal disease in specific populations.

It is estimated that mild periodontitis affects greater than
90% of the adult population [50]. However, attempts at
determining the exact prevalence of periodontitis in adult
populations are complicated by the variability in parame-
ters examined between different researchers. Moderate to
severe periodontal disease, defined loosely as periodontal
attachment loss that predisposes the patient to tooth
mobility and loss, affects at least 15% of adults over the
age of 30 years of age [51]. In the US, the economic cost
of treating and preventing periodontal disease was esti-
mated at $14,300,000,000 in 1999 [51].

B. Conventional techniques for periodontal repair
Currently, much of the armamentarium available to the
periodontist and general dentist is focused on arresting
periodontal disease progression by reducing the microbial
levels in the periodontal attachment apparatus and alter-
ing the local environment to discourage reattachment of
these pathogens. These techniques, which include non-
surgical techniques such as scaling and root planing and
surgical procedures such as open flap debridement for
access and resective techniques, are designed to remove
diseased tissue and promote an ideal environment for per-
iodontal repair. The ultimate goal is to prepare an endo-
toxin and pathogen-free local environment that promotes
reattachment to the root surface. These approaches gener-
ally result in repair, characterized by healing of the wound
site by formation of an epithelial reattachment. This epi-
thelial attachment, known as a long junctional epithelial
attachment, is formed by keratinocytes that migrate into
the pocket from the crevicular epithelium. The principal
disadvantage of these techniques is that they represent
repair of the diseased site with a non-physiologic epithe-
lial attachment. They fail to regenerate a strong attach-
ment between root surface and neighboring alveolar
bone.

The ultimate goal of periodontal therapy remains the
predicable three-dimensional repair of an intact and func-
tional periodontal attachment that replicates its pre-dis-
ease structure. Current approaches to regenerating lost
attachment have been hampered by the necessity to regen-
erate several tissue types: root cementum, alveolar bone
and intervening periodontal ligament in a coordinated
fashion.

C. Research methodologies
Recently, several promising approaches to periodontal tis-
sue regeneration have been developed. Proper evaluation
of the clinical success rates of these different techniques
has been hampered by a lack of consistency in experimen-
tal techniques used to induce periodontal defects among
different groups, as well as disparities in the methods used
to analyze the outcome. Proper evaluation of the validity
of these techniques should ideally follow a sequential
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approach involving in vitro experiments, followed by in
vivo confirmation in an animal model, ultimately leading
to human clinical trials. The effectiveness of any perio-
dontal regenerative approach should be evaluated in vivo
by a combination of intraoral radiology, three-dimen-
sional micro computed tomography (microCT), and his-
tologic/immunohistochemical techniques [52].

The most popular animal models used for the assessment
of periodontal regenerative protocols involve [53] liga-
ture-induced periodontal defects in the non-human pri-
mates (especially the cynomolgus and rhesus monkeys,
which share marked similarity to the human periodon-
tium in terms of structure, plaque flora, and inflammatory
infiltrate), and beagle dogs (which have a different micro-
flora and much faster bone turnover rate compared to
humans).

Obvious ethical issues preclude the en bloc harvesting of
tooth, periodontal ligament attachment and supporting
alveolar bone that would be required for microCT and
histologic evaluation in human clinical trials [54]. There-
fore, by necessity, the assessment of efficacy in clinical tri-
als requires a combination of intraoral radiographic
evaluation and clinical assessment of attachment gain.
Attempts to statistically analyze the effectiveness of these
techniques has been hampered by the observation that
some subpopulations appear to respond better to treat-
ment than others.

Identification of the type of cementum produced is also a
vital component of the evaluation of any successful perio-
dontal regenerative procedure. There are four principal
types of cementum [55,56]. Acellular extrinsic fiber
cementum (AEFC) contains extrinsic fibers (Sharpey's fib-
ers), laid down by PDL, and serves to anchor the root to
the PDL. This type of cementum should be viewed as the
"gold standard" in periodontal regeneration. Cellular
mixed stratified cementum (CMSC), found in the apical
and furcation regions of molars areas, consists of a mix-
ture of AEFC and cellular intrinsic fiber cementum. Cellu-
lar intrinsic fiber cementum, known as repair cementum,
is typically seen in association with reparation of resorp-
tion defects. It lacks Sharpey's fibers and therefore has no
direct role in tooth attachment. Acellular afibrillar cemen-
tum, also called coronal cementum, is found only on
enamel at the cementoenamel junction. Its precise func-
tion is unknown.

D. Research to date
a. Bone replacement grafting
Bone replacement grafting techniques, principally using
autogeneic and allogeneic grafts, are widely used in the
clinical setting. Evidence suggests that autogenously har-
vested cancellous bone grafts, obtained from iliac crest,

the maxillary tuberosity or healing tooth extraction sock-
ets, are capable of producing statistically significant bone
fill. The limited ability of cancellous bone grafts to repair
and/or regenerate bone and periodontal attachment
involves at least three separate but distinct mechanisms:
the ability of bone to act as a biocompatible scaffold, the
presence of specific growth factors within the bone matrix,
and, depending on the source of graft material employed,
the existence of a small population of bone marrow stem
cells that may be capable of differentiating into the spe-
cific cells required for bone/periodontal regeneration.
Disadvantages with the use of fresh iliac crest grafts
include root resorption and the requirement for a second
surgical site. Moreover, histological evidence of true peri-
odontal regeneration in these cases has been limited [57].
In many instances, alveolar bone regeneration is seen in
association with the formation of a long junctional epi-
thelium, representing periodontal repair and not true
regeneration.

Limited human clinical studies have demonstrated histo-
logical evidence of periodontal regeneration, primarily
limited to the base of the defect, through the use of decal-
cified freeze-dried allogeneic bone (DFDB) grafts
obtained from commercial tissue banks [58]. Drawbacks
include the possibility of eliciting a host immune
response, the risk of disease transmission, and the appar-
ent wide variability in the concentration of bone and per-
iodontal-inductive agents (and hence biological activity)
between different preparations.

b. Guided tissue regeneration
Guided tissue regeneration (GTR) is an approach to
regaining periodontal attachment loss involving the surgi-
cal implantation of a cell-impermeable barrier between
detoxified root surface and the crevicular epithelium. The
goal is to retard the migration of crevicular epithelium
into the space between the newly prepared root surface
and the neighboring alveolar bone, thereby avoiding the
formation of a long junctional epithelium. Presumably
this affords time for the selective repopulation of the root
surface by cells from within the PDL space. This approach
may also permit putative progenitor cells within the peri-
odontal defect to differentiate into the specific cell types
required for the regeneration of a functional periodontal
attachment under the stimulus of poorly defined signal-
ing/growth factors. A Cochrane review of published stud-
ies [59] suggests that guided tissue regeneration can be
effective at regenerating periodontal attachment to a lim-
ited extent, but the overall response rate is unpredictable.
Differences may be related to variations in the numbers of
putative progenitor stem cells and the concentrations of
appropriate signaling factors in the periodontal defect site
between patients.
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c. Growth factor delivery
A number of approaches for periodontal regeneration that
are currently being investigated involve direct delivery of
growth factors. The scientific basis behind these newer
periodontal regenerative approaches lies in part with the
existence of putative precursor cells within the vicinity of
the periodontal attachment. These cells are believed to be
capable of differentiating into the more specialized cell
types required for the reconstruction of a functioning per-
iodontal attachment apparatus (osteoblasts, cementob-
lasts, fibroblasts), under the influence of specific growth
factors. Putative growth factors common to both cemen-
tum and bone include [55] members of the TGF-beta
superfamily, such as the BMPs, as well as IGF-I and IGF-II,
platelet-derived growth factors (PDGFs), epidermal
growth factor (EGF), and the fibroblast growth factors
(FGFs). In addition, cementum-derived growth factor
(CGF), an isoform of IGF-I, appears to be cementum-spe-
cific [60]. These growth factors can be further subdivided
into those that stimulate osteogenesis (e.g. bone morpho-
genetic proteins), those that promote cellular differentia-
tion (e.g. platelet-derived growth factor) and angiogenesis
(e.g. vascular endothelial growth factor; [61]), and those
that regulate the epithelial mesenchymal interactions
involved in initial tooth formation (e.g. Embdogain™).

Emdogain™ (Strauman AG, Basel, Switzerland), a mixture
of enamel matrix proteins, primarily amelogenins, iso-
lated from developing porcine teeth, has been approved
by the U.S. Food and Drug Administration (FDA) for
regeneration of angular intrabony periodontal defects.
Although the mode of function is not known, the pro-
posed mechanism behind using enamel matrix proteins is
that these proteins are believed to be involved in forming
the periodontal attachment apparatus during initial tooth
development. The addition of these proteins to periodon-
tal defect sites may be effective at promoting periodontal
regeneration by recapitulating the environment during
initial tooth attachment. Recent studies [62] have shown
that Emdogain™ contains both TGF-beta and BMP growth
factors, that may contribute to its clinical effectiveness. A
systematic review of published clinical trials [63] suggests
that Emdogain™ affords results similar to those seen with
the use of GTR.

Platelet-rich plasma (PRP) is a component of autologous
whole blood isolated following the centrifugation of the
plasma. PRP acts as a source of growth factors including
PDGF and TGF-beta, both of which appear to be critical
growth factors involved in periodontal regeneration. The
availability of several commercial kits to isolate PRP at
chairside has contributed to its increasing popularity
among clinicians. Preliminary studies [64,65] suggest that
while PRP may have limited effectiveness at promoting
periodontal regeneration, results with PRP for bone regen-

eration have been contradictory [66]. Wide differences in
the concentration of growth factors between different
preparations and between different patients may account
for some of the disparate results. Large scale human stud-
ies are required before this technique can be recom-
mended for routine use.

Recombinant human BMP-2 (rhBMP-2) and rhBMP-7
have been extensively investigated as to their ability to
regenerate periodontal structures. Ankylosis has been
observed in some models of periodontal regeneration,
although results have been conflicting. In furcation
defects, BMP-2 caused ankylosis at the cementum-enamel
junction in a dog model [67], whereas, in baboons, BMP-
7 did not [68]. These differences may be related, in part,
to the animal models, type of defect created, whether the
treated teeth are in occlusion, as well as the carriers used
[9]. Other growth factors employed with varying success
have included PDGF +/- IGF-I [69,70], FGF-2 [71], TGF-
beta1 [72], and brain-derived neurotrophic factor [73].
Several reviews detailing the strengths and weaknesses of
these different growth factors for periodontal regeneration
have been written [74-76].

As our understanding of the different growth factors
involved in dental development increases, the number of
potential therapeutic agents will likewise grow. However,
the principal drawback with these techniques is that these
growth factors, which generally have a short in vivo half-
life, are delivered as a single non-physiologic bolus in
most techniques. Development of controlled-release
delivery approaches has the potential to significantly
increase their clinical effectiveness [77].

c. Cell delivery
The exact source of periodontal precursor cells has yet to
be determined, although it is believed that they are most
likely located within the PDL. A population of multipo-
tent postnatal stem cells have been isolated from human
PDL (PDLSCs) that are capable of generating cementum/
PDL-like structures when transplanted into immunodefi-
cient rats [78]. These PDLSCs expressed the cell surface
marker STRO-1, an early mesenchymal stem cell marker,
and have the potential to differentiate into fat cells follow-
ing induction with an adipogenic cocktail. These adult
stem cells can be recovered from cryopreserved solid tis-
sue isolated from the periodontal ligament of extracted
third molars and are likewise able to generate cementum
and periodontal ligament-like structures in vivo [79].

The use of bone marrow-derived stem cells for periodon-
tal regeneration has also been evaluated. Preliminary
results involving 7 patients who received autologous iliac
crest bone marrow cells demonstrated some gain of clini-
cal attachment [80].
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d. Gene-enhanced periodontal regeneration
The goal of gene-enhanced periodontal regeneration is to
reclaim the lost regenerative capacity within the PDL
space. While GETE can be used in conjunction with stem
cells, this technique has the greatest potential if it can be
adapted for use with easily harvestable fully mature cells
(e.g. gingival fibroblasts, periodontal ligament fibrob-
lasts). These cells are then genetically-enhanced to express
growth factors that are involved in the initial formation of
both dental and periodontal attachment tissues. In short,
this approach is intended to mimic the normal biological
process that occurs as these tissues are formed early in
development. More specifically, transient morphogen
stimulation, combined with local cues in the wound envi-
ronment, primes progenitor cells within the periodontal
ligament to differentiate into the specific cells required for
the production of root cementum, alveolar bone and PDL fib-
ers in a coordinated fashion.

GETE for periodontal regeneration is still in its infancy. A
couple of preliminary studies have confirmed that this is
a promising approach. Syngeneic dermal fibroblasts
transduced ex vivo with an adenoviral vector expressing
BMP-7 (Ad-BMP-7) in a gelatin carrier were implanted
into submerged, surgically-created periodontal-alveolar
bone defects in the rat [81]. Significant bridging of the
alveolar defect was seen in conjunction with new cemen-
tum formation and fibrous connective tissue attachment.
Interestingly, new bone formation occurred through a
process of endochondral ossification. Direct in vivo trans-
fer of PDGF-B stimulated both alveolar bone and cemen-
tum regeneration in a rat acute periodontitis model [82].

E. Challenges and potential pitfalls
It can be seen from the above discussion that successful
regeneration requires the sequential coordination of a
number of tightly-related processes. First, endotoxin con-
tamination of the root surface needs to be reduced. Then,
progenitor cells within the PDL need to differentiate into
several cell types (i.e. osteoblasts, cementoblasts, fibrob-
lasts, and endothelial cells). These cells must subse-
quently synthesize and release their specific cellular
products in a coordinated and sequential manner to ulti-
mately regenerate AEFC and Sharpey's fibers, connecting
the root surface to the alveolar bone and thus regenerating
a functional periodontal ligament.

In the future, the incorporation of biomimetic motifs into
matrices (e.g. addition of cementum-derived attachment
protein, a cementum-derived protein that appears to pro-
mote adhesion of mineral-forming mesenchymal cells to
root cementum; [83] holds significant potential for
increasing the success rate of periodontal regenerative
protocols.

A number of unknowns remain to be answered before
ideal conditions for periodontal regeneration can be
developed. For example, the specific factors that induce
differentiation along cementoblast lineage, as well as the
origin of cementoblasts, are not known [55].

v. Practical considerations and future prospects
While it is anticipated that in the future, gene-enhanced
tissue engineering approaches will afford great potential
for both dentin-pulp and periodontal regeneration, this
approach would currently face significant regulatory hur-
dles prior to government approval. With the continued
development of improved methods for gene delivery to
cells as well as advances in our knowledge of the molecu-
lar basis of tooth formation and periodontal homeostasis,
it is reasonable to anticipate that a simple chairside proto-
col could be developed in the future. This might involve
either the direct delivery of the DNA of interest to the pul-
pal/periodontal tissue, or the isolation of a small amount
of gingival tissue from the patient, transduction/transfec-
tion of the DNA at chairside, and reimplantion of the
gene-enhanced cells into the tooth or periodontal liga-
ment space.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
Both authors contributed equally.

References
1. Muramatsu T, Hamano H, Ogami K, Ohta K, Inoue T, Shimono M:

Reduction of osteocalcin expression in aged dental pulp.  Int
Endod J 2005, 38:817-821.

2. Chen S, Fribley A, Wang CY: Potentiation of Tumor Necrosis
Factor-mediated apoptosis of oral squamous cell carcinoma
cells by adenovirus-mediated gene transfer of NF-{kappa} B
inhibitor.  J Dent Res 2002, 81:98-102.

3. Grande DA, Breitbart AS, Mason JM, Paulino C, Laser J, Schwartz RE:
Cartilage tissue engineering: current limitations and solu-
tions.  Clin Orthop Rel Res 1999, 367:S176-185.

4. Grande DA, Mason J, Light E, Dines D: Stem cells as platforms for
delivery of genes to enhance cartilage repair.  J Bone Joint Surg
2003, 85(Supp 2):111-116.

5. Arnst C, Carey J: Biotech bodies.  Business Week 1998, July:42-49.
6. Saito T, Ogawa M, Hata Y, Bessho K: Acceleration effect of

human recombinant bone morphogenetic protein-2 on dif-
ferentiation of human pulp cells into odontoblasts.  J Endodont
2004, 30:205-208.

7. Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J,
About I: Activation of human dental pulp progenitor/stem
cells in response to odontoblast injury.  Arch Oral Biol 2005,
50:103-108.

8. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP: Making a tooth:
growth factors, transcription factors, and stem cells.  Cell Res
2005, 15:301-316.

9. Cheifetz S: BMP receptors in limb and tooth formation.  Crit
Rev Oral Biol Med 1999, 10:182-198.

10. Helder MN, Karg H, Bervoets TJ, Vulicevic S, Burger EH, D'Souza RN,
Woltgens JH, Karsenty G, Bronckers AL: Bone morphogenetic
protein-7 (osteogenic protein-1, OP-1) and tooth develop-
ment.  J Dent Res 1998, 77:545-554.
Page 7 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16218974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16218974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15916718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15916718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10759421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539457


Head & Face Medicine 2006, 2:16 http://www.head-face-med.com/content/2/1/16
11. Mitsiadis TA, Rahiotis C: Parallels between tooth development
and repair: conserved molecular mechanisms following cari-
ous and dental injury.  J Dent Res 2004, 83:896-902.

12. Yamashiro T, Tummers M, Thesleff I: Expression of bone mor-
phogenetic proteins and Msx genes during root formation.  J
Dent Res 2003, 82:172-176.

13. Shi S, Gronthos S: Perivascular niche of postnatal mesenchy-
mal stem cells in bone marrow and dental pulp.  J Bone Mineral
Res 2003, 18:696-704.

14. Mathieu S, El-Battari A, Dejou J, About I: Role of injured endothe-
lial cells in the recruitment of human pulp cells.  Arch Oral Biol
2005, 50:109-113.

15. Alliot-Licht B, Bluteau G, Magne D, Lopez-Cazaux S, Lieubeau B,
Daculsi G, Guicheux J: Dexamethasone stimulates differentia-
tion of odontoblast-like cells in human dental pulp cultures.
Cell Tissue Res 2005, 321:391-400.

16. Murray PE, Windsor LJ, Smyth TW, Hafez AA, Cox CF: Analysis of
pulpal reactions to restorative procedures, materials, pulp
capping, and future therapies.  Crit Rev Oral Biol Med 2002,
13:509-520.

17. Ham KA, Witherspoon DE, Gutmann JL, Ravindranath S, Gait TC,
Opperman LA: Preliminary evaluation of BMP-2 expression
and histologic characteristics during apexification with cal-
cium hydroxide and mineral trioxide aggregate.  J Endodontol
2005, 31:275-279.

18. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I: Physic-
ochemical basis of the biologic properties of mineral trioxide
aggregate.  J Endodont 2005, 31:97-100.

19. Koliniotou-Koumpia E, Tziafas D: Pulpal responses following
direct pulp capping of healthy dog teeth with dentine adhe-
sive systems.  J Dent 2005, 33:639-647.

20. Ham KA, Witherspoon DE, Gutmann JL, Ravindranath S, Gait TC,
Opperman LA: Preliminary evaluation of BMP-2 expression
and histologic characteristics during apexification with cal-
cium hydroxide and mineral trioxide aggregate.  J Endodontol
2005, 31:275-279.

21. Rutherford RB, Gu K: Treatment of inflamed ferret dental
pulps with recombinant bone morphogenetic protein-7.  Eur
J Oral Sci 2000, 108:202-206.

22. Six N, Lasfargues JJ, Goldberg M: Differential repair responses in
the coronal and radicular areas of the exposed rat molar
pulp induced by recombinant human bone morphogenetic
protein 7 (osteogenic protein 1).  Arch Oral Biol 2002,
47:177-187.

23. Haddad M, Lefranc G, Aftimos G: Local application of IGF1 on
dental pulp mechanically exposed: in vivo study on rabbit.
Bull Group Int Rech Sci Stomatol Odontol 2003, 45:12-17.

24. Miserendino LJ, Levy GC, Abt E, Rizoiu IM: Histologic effects of a
thermally cooled Nd: YAG laser on the dental pulp and sup-
porting structures of rabbit teeth.  Oral Surg Oral Med Oral Pathol
1994, 78:93-100.

25. Rutherford RB: BMP-7 gene transfer to inflamed ferret dental
pulps.  Eur J Oral Sci 2001, 109:422-424.

26. Tziafas D, Alvanou A, Komnenou A, Gasic J, Papadimitriou S: Effects
of basic fibroblast growth factor, insulin-like growth factor-II
and transforming growth factor beta1 on dental pulp cells
after implantation in dog teeth.  Arch Oral Biol 1998, 43:431-444.

27. Tziafas D, Belibasakis G, Veis A, Papadimitriou S: Dentin regenera-
tion in vital pulp therapy: design principles.  Adv Dent Res 2001,
15:96-100.

28. Jin LJ, Ritchie HH, Smith AJ, Clarkson BH: In vitro differentiation
and mineralization of human dental pulp cells induced by
dentin extract.  In vitro Cell Dev Biol Anim 2005, 41:232-238.

29. Smith AJ, Patel M, Graham L, Sloan AJ, Cooper PR: Dentine regen-
eration: key roles for stem cells and molecular signalling.
Oral Biosci Med 2005, 2:127-132.

30. Ishizaki NT, Matsumoto K, Kimura Y, Wang X, Yamashita A: His-
topathological study of dental pulp tissue capped with
enamel matrix derivative.  J Endodon 2003, 29:176-179.

31. Tziafas D, Kalyva M, Papadimitriou S: Experimental dentin-based
approaches to tissue regeneration in vital pulp therapy.  Con-
nec Tis Res 2002, 43:391-395.

32. Andelin WE, Shbahang S, Wright K, Torabinejad M: Identification of
hard tissue after experimental pulp capping using dentin sia-
loprotein (DSP) as a marker.  J Endodont 2003, 29:646-650.

33. Decup F, Six N, Palmier B, Buch D, Lasfargues JJ, Salih E, Goldberg M:
Bone sialoprotein-induced reparative dentinogenesis in the
pulp of rat's molar.  Clin Oral Investig 2000, 4:110-119.

34. Goldberg M, Six N, Decup F, Lasfargues JJ, Salih E, Tompkins K, Veis
A: Bioactive molecules and the future of pulp therapy.  Am J
Dent 2003, 16:66-76.

35. Shi S, Bartold P, Miura M, Seo B, Robey P, Gronthos S: The efficacy
of mesenchymal stem cells to regenerate and repair dental
structures.  Orthod Craniofac Res 2005, 8:191-199.

36. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A,
DenBesten P, Robey PG, Shi S: Stem cell properties of human
dental pulp stem cells.  J Dent Res 2002, 81:531-535.

37. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirum-
bolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N,
Franchina M, Grossi A, Bagnara GP: Multipotent mesenchymal
stem cells with immunosuppressive activity can be easily iso-
lated from dental pulp.  Transplant 2005, 80:836-842.

38. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC: Tis-
sue engineering of complex tooth structures on biodegrada-
ble polymer scaffolds.  J Dent Res 2002, 81:695-700.

39. Honda J, Sumita Y, Kagami H, Ueda M: Histologic and immunohis-
tochemical studies of tissue engineered odontogenesis.  Arch
Histol Cytol 2005, 68:89-101.

40. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S:
SHED: stem cells from human exfoliated deciduous teeth.
PNAS 2003, 100:5807-5812.

41. Modino SA, Sharpe PT: Tissue engineering of teeth using adult
stem cells.  Arch 2005, 50:255-258.

42. Iohara K, Makashima M, Ito M, Ishikawa M, Nakasima A, Akamine A:
Dentin regeneration by dental pulp stem cell therapy with
recombinant human bone morphogenetic protein 2.  J Dent
Res 2004, 83:590-595.

43. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A:
Induction of reparative dentin formation by ultrasound-
mediated gene delivery of growth/differentiation factor 11.
Human Gene Ther 2003, 14:591-597.

44. Nakashima M, Mizunuma K, Murakami T, Akamine A: Induction of
dental pulp stem cell differentiation into odontoblasts by
electroporation-mediated gene delivery of growth/differen-
tiation factor 11 (Gdf11).  Gene Ther 2002, 9:814-818.

45. Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T,
Akamine A: Stimulation of reparative dentin formation by ex
vivo gene therapy using dental pulp stem cells electrotrans-
fected with growth/differentiation factor 11 (Gdf11).  Human
Gene Ther  2004, 15:1045-1053.

46. Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, Chung JH, Kim BS,
Lee H, Joung B, Park S, Choi D, Jang Y, Chung NS, Yoo KJ, Hwang KC:
Transfection of mesenchymal stem cells with the FGF-2
gene improves their survival under hypoxic conditions.  Mol
Cells 2005, 19:402-407.

47. Goldberg M, Smith AJ: Cells and extracellular matrices of den-
tin and pulp: a biological basis for repair and tissue engineer-
ing.  Crit Rev Oral Biol Med 2004, 15:13-27.

48. Pihlstrom BL, Michalowicz BS, Johnson NW: Periodontal diseases.
Lancet 2005, 366:1809-1820.

49. Kinane DF, Shiba H, Hart TC: The genetic basis of periodontitis.
Periodontol 2000 2005, 39:91-117.

50. American Academy of Periodontology: Position paper: Epidemi-
ology of periodontal diseases.  J Periodontol 2005, 76:1406-1419.

51. Brown LJ, Johns BA, Wall TP: The economics of periodontal dis-
eases.  Periodontol 2000 2002, 29:223-234.

52. Hedberg EL, Kroese-Deutman HC, Shih CK, Lemoine JJ, Liebschner
MA, Miller MJ, Yasko AW, Crowther RS, Carney DH, Mikos AG,
Jansen JA: Methods: a comparative analysis of radiography,
microcomputed tomography, and histology for bone tissue
engineering.  Tissue Eng 2005, 11:1356-1367.

53. Weinberg MA, Brai M: Laboratory animal models in periodon-
tology.  J Clin Periodontol 1999, 26:335-340.

54. Leib AM, Kowalski CJ: Human histologic research: is it neces-
sary? humane? ethical?  J Periodontol 2005, 76:1207-1210.

55. Bosshardt DD: Are cementoblasts a subpopulation of osteob-
lasts or a unique phenotype?  J Dent Res 2005, 84:390-406.

56. Cho MI, Garant PR: Development and general structure of the
periodontium.  Periodontology 2000 2000, 24:9-27.

57. American Academy of Periodontology: Position paper. Periodon-
tal regeneration.  J Periodontol 2005, 76:1601-1622.
Page 8 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15557394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10872990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10872990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11839353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11839353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11839353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14535054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11767280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11767280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12640751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12640751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16223338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16223338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16223338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11218498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11218498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11218498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12744417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12716973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12716973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15271965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15271965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15271965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14761897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16298220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16135066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16259591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16259591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16259591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16018766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16018766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11276876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11276876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171453


Head & Face Medicine 2006, 2:16 http://www.head-face-med.com/content/2/1/16
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

58. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC:
The efficacy of bone replacement grafts in the treatment of
periodontal osseous defects. A systematic review.  Ann Period-
ontol 2003, 8:227-265.

59. Needleman I, Tucker R, Giedrys-Leeper E, Worthington H: Guided
tissue regeneration for periodontal intrabony defects-a
Cochrane Systematic Review.  Periodontol 2000 2005,
37:106-123.

60. Ikezawa K, Hart CE, Williams DC, Narayan AS: Characterization
of cementum-derived growth factor as an insulin-like growth
factor-I-like molecule.  Connect Tissue Res 1997, 36:309-319.

61. Murphy WL, Simmons CA, Kaigler D, Mooney DJ: Bone regenera-
tion via a mineral substrate and induced angiogenesis.  J Dent
Res 2004, 83:204-210.

62. Suzuki S, Nagano T, Yamakoshi Y, Gomi K, Arai T, Fukae M, Katagiri
T, Oida S: Enamel matrix derivative gel stimulates signal
transduction of BMP and TGF-beta.  J Dent Res 2005,
84:510-514.

63. Esposito M, Grusovin MG, Coulthard P, Worthington HV: Enamel
matrix derivative (Emdogain™) for periodontal tissue
regeneration in intrabony defects.  The Cochrane Database of Sys-
temic Reviews 2005, 4:. Art. No.;CD003875.pub2.

64. Okuda K, Tai H, Tanabe K, Suzuki H, Sato T, Kawase T, Saito Y, Wolff
LF, Yoshiex H: Platelet-rich plasma combined with a porous
hydroxyapatite graft for the treatment of intrabony defects
in humans: a comparative controlled clinical study.  J Periodon-
tol 2005, 76:890-898.

65. Sammartino G, Tia M, Marenzi G, diLauro AE, D'Agostino E, Claudio
PP: Use of autologous platelet-rich plasma (PRP) in perio-
dontal defect treatment after extraction of impacted third
molars.  J Oral Maxillofac Surg 2005, 63:766-770.

66. Roldan JC, Jepsen S, Miller J, Freitag S, Rueger DC, Acil Y, Terheyden
H: Bone formation in the presence of platelet-rich plasma vs.
bone morphogenetic protein-7.  Bone 2004, 34:80-90.

67. Sigurdsson TJ, Nygaard L, Tatakis DN, Fu E, Turek TJ, Jin L, Wozney
JM, Wikesjo UM: Periodontal repair in dogs: evaluation of
rhBMP-2 carriers.  Int J Periodont Res Dent 1996, 16:524-537.

68. Ripamonti U, Heliotis M, Rueger DC, Sampath TK: Induction of
cementogenesis by recombinant human osteogenic protein-
1 (hOP-1/BMP-7) in the baboon (Papio ursinus).  Arch Oral Biol
1996, 41:121-126.

69. Giannobile WV, Finkelman RD, Lynch SE: Comparison of canine
and non-human primate animal models for periodontal
regenerative therapy: results following a single administra-
tion of PDGF/IGF-I.  J Periodontol 1994, 65:1158-1168.

70. Howell TH, Fiorellini JP, Paquette DW, Offenbacher S, Giannobile
WV, Lynch SE: A phase I/II clinical trial to evaluate a combina-
tion of recombinant human platelet-derived growth factor-
BB and recombinant human insulin-like growth factor-I in
patients with periodontal disease.  J Periodontol 1997,
68:1186-1193.

71. Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ike-
zawa K, Saho T, Nozaki T, Okada H: Recombinant human fibrob-
last growth factor (bFGF) stimulates periodontal
regeneration in class II furcation defects created in beagle
dogs.  J Periodont Res 2003, 38:97-103.

72. Wikesjo UM, Razi SS, Sigurdsson TJ, Tatakis DN, Lee MB, Ongpipat-
tanakul B, Nguyen T, Hardwick R: Periodontal repair in dogs:
effect of recombinant human transforming growth factor-
beta1 on guided tissue regeneration.  J Clin Periodontol 1998,
25:475-481.

73. Takeda K, Shiba H, Mizuno N, Hasegawa N, Mouri Y, Hirachi A,
Yoshino H, Kawaguchi H, Kurihara H: Brain-derived neuro-
trophic factor enhances periodontal tissue regeneration.  Tis-
sue Eng 2005, 11:1618-1629.

74. Anusaksathien O, Giannobile WV: Growth factor delivery to re-
engineer periodontal tissues.  Curr Pharm Biotech 2002,
3:129-139.

75. King GN, Cochran DL: Factors that modulate the effects of
bone morphogenetic protein-induced periodontal regenera-
tion: a critical review.  J Periodontol 2002, 73:925-936.

76. Nakashima M, Reddi H: The application of bone morphogenetic
proteins to dental tissue engineering.  Nat Biotech 2003,
21:1025-1032.

77. King GN: The importance of drug delivery to optimize the
effects of bone morphogenetic proteins during periodontal
regeneration.  Curr Pharm Biotech 2001, 2:131-142.

78. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J: Inves-
tigation of multipotent stem cells from human periodontal
ligament.  Lancet 2004, 364:149-155.

79. Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S: Recov-
ery of stem cells from cryopreserved periodontal ligament.
J Dent Res 2005, 84:907-912.

80. Kawaguchi H, Hayashi H, Mizuno N, Fujita T, Hasegawa N, Shiba H,
Nakamura S, Hino T, Yoshino H, Kurihara H, Tanaka H, Kimura A,
Tsuji K, Kato Y: Cell transplantation for periodontal disease. A
novel periodontal tissue regenerative therapy using bone
marrow mesenchymal stem cells (In Japanese).  Clin Calcium
2005, 15:99-104.

81. Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV:
Gene therapy of bone morphogenetic protein for periodon-
tal tissue engineering.  J Periodontol 2003, 74:202-213.

82. Jin QM, Anusaksathien O, Webb SA, Printz MA, Giannobile WV:
Engineering of tooth-supporting structure by delivery of
PDGF gene therapy vectors.  Mol Ther 2004, 9:519-526.

83. Yokokoji T, Narayanan AS: Role of D1 and E cyclins in cell cycle
progression of human fibroblasts adhering to cementum
attachment protein.  J Bone Miner Res 2001, 16:1062-1067.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14971256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14971256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14971256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15655028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15655028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15655028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9610889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9610889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9610889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15948682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15948682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15948682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8833601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8833601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8833601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7877089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7877089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7877089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9444594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9444594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9444594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12558943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12558943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12558943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9667481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9667481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9667481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16259615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16259615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12211503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12211503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12211503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16183789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16183789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15995304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12666709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12666709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12666709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15093182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15093182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15093182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11393783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11393783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11393783
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	i. Introduction
	ii. Gene-based therapies for dentin/pulp regeneration
	A. Background
	B. Conventional techniques for inducing pulpal repair
	C. Research methodologies
	D. Research to date
	a. Growth factor delivery
	b. Stem cell delivery
	c. Gene-enhanced tissue engineering for growth factor delivery

	E. Challenges and potential pitfalls

	iii. Gene-based therapies for periodontal regeneration
	A. Background
	B. Conventional techniques for periodontal repair
	C. Research methodologies
	D. Research to date
	a. Bone replacement grafting
	b. Guided tissue regeneration
	c. Growth factor delivery
	c. Cell delivery
	d. Gene-enhanced periodontal regeneration

	E. Challenges and potential pitfalls

	v. Practical considerations and future prospects
	Competing interests
	Authors' contributions
	References

