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Optimal pricing in electrical networks 
over space and time 

Roger E. Bohn* 

Michael C. Caramanis** 

and 

Fred C. Schweppe*** 

An electrical system is modelled with a transmission network, customers, central generators, 
and independent generators. The system is subject to stochastic failures and stochastic 
demand parameters. Optimal spot prices are derivedfor the system. They vary stochastically 
with space and time, and depend on electrical load flow patterns. The price difference 
between two locations or two voltage levels, and the wheeling charge between them, will 
change magnitude and sometimes sign over time, as a function of events throughout the 
network. Current spatial pricing methods are significantly different from the spot-price- 
based methods derived here. 

1. Introduction 

* An essential feature of modern electric power systems is their use of transmission and 

distribution networks to convey power among producers and users. These networks play 
a critical role in reducing costs and improving reliability, by allowing the effective 

"pooling" of diverse generators and customers. Their configuration and operation 
influence the optimal spatial and temporal patterns of production, transmission, and use 

of electricity. To the extent possible, without incurring uneconomically high transactions 

costs, the characteristics of the network should be reflected in the price of electricity at 

different locations and times. 
A theory of electricity pricing that accurately reflects the underlying physical and 

engineering properties of electricity has not yet been developed. This article attempts to 

provide such a theory. The results we derive are quite different from spatial pricing results 

for conventional commodities. For example, optimal spatial prices of electricity depend 

* Harvard University. 
** Boston University and M.I.T. Energy Laboratory. 
*** Massachusetts Institute of Technology and M.I.T. Energy Laboratory. 
Many people have provided valuable comments on our earlier papers, for which we are grateful. Benjamin 

Hobbs, William Brownell, Professor Alvin Klevorick of the Editorial Board, and an anonymous referee provided 
especially useful comments on a draft paper. We are indebted to Professor Richard Schmalensee for stimulating 
us to conduct this research. We alone are responsible for any errors. Valuable financial support for this research 
has been provided by the Division of Research of Harvard Business School. 

360 



BOHN, CARAMANIS, AND SCHWEPPE / 361 

critically on time; they change radically and stochastically as functions of demand and 
supply events across hundreds of miles. It is theoretically possible to have negative prices 
at some points for short periods, i.e., pay users to consume. 

Four characteristics of electricity affect its optimal spatial pricing. First, for every 
unit injected at one end of a transmission line, less than one unit can be removed at the 
far end. The difference is transmission losses. Second, each transmission line has a 
maximum safe capacity. Third, an energy balance constraint must be observed at all 
times. The transmission system itself has little ability to buffer supply-demand imbalances. 
Fourth, electrical flows cannot be directly allocated among transmission lines. For 
example, if a generating plant is connected to two transmission lines, it cannot control 
how much of its output goes along each line. Of course, the flow along one line can be 
reduced to zero by disconnecting the line. But for alternating current systems, if the line 
is connected, the amount flowing over it cannot be directly controlled. 

These characteristics result in spatial prices for electricity that differ qualitatively 
from prices for most other commodities.' 

2. Model specification 

* For the most part, we start from the customary specification of the "peak load 
pricing" problem (Crew and Kleindorfer, 1979). We assume a single welfare-maximizing 
public utility, which owns and operates multiple generating plants, and sells to independent 
customers, who have stochastic demands. We extend the classical models in four ways. 
First, demand and supply are spatially located. Second, all electricity travels over a fixed 
network. Lines of this network are subject to stochastic outages and to fixed safe flow 
limits. Transmission losses are a nonlinear function of the amount carried. Third, both 
demands and generator availability are stochastic.2 Fourth, we assume the utility can set 
and communicate prices instantly, and can set a different price for each customer location 
at each moment. We call this "spot pricing." Vickrey, who first proposed it (1971), called 
it "responsive pricing." With spot pricing, the utility can induce socially optimal behavior 
by each customer and avoid system overload without having to resort to collective or 
individual rationing schemes. 

For simplicity we assume that demands are independent of past and future prices, 
and correspondingly for generating costs. Therefore, we can solve our model as a single- 
period "deterministic" model. The solution is contingent on the current state of nature; 
as that evolves, so do optimal spot prices. Hence, all utility decisions (prices, outputs) are 
stochastic. 

O Generation. The utility owns J generating units. Unit j has maximum output Kj, 
marginal generating cost Xj, and availability dj(t) at time t.' Marginal generating costs 

' Several previous authors have examined how electricity prices should vary over space. Only Scherer 
(1977) used an approximately accurate model of transmission system limits and losses. He did not discuss why 
or how much prices varied over space. Dansby (1980) assumes a radial transmission system with all generation 
at the hub, which is a special case and gives results that do not generalize. There are other problems with his 
formulation. 

Schuler and Hobbs (1981) and Uri (1976) effectively assume that transmission costs can be dealt with by 
constant "freight charges," i.e., some number of cents per kilowatt hour per mile transmitted. This turns out to 
be incorrect, as we shall show. A later model by Hobbs uses a linearized version of the correct equations, as in 
Scherer (1977). 

2 In fact, generator outages affect prices and control needs more than unanticipated demand fluctuations 
do. A single large generator's output can be more than 10% of a system's load and can fall to zero within a few 
seconds. Such events are larger and harder to predict than the stochastic component of demand variation. Chao 
(1983) models generation with independent generator outages. 

3 Tildes on a indicate exogenous random variables. 
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equal heat rate times fuel price, plus variable maintenance costs. For convenience, units 
are numbered in order of operating costs, i.e., XI ? X2, ... ? Xj. Unit availability is an 
exogenous stochastic random variable between 0 and 1 which places a limit on generator 
output. Let Yj(t) be output from unit j at t, a utility decision variable. Then it is 
constrained to satisfy: 

O < Yj(t) < KjAj(t) Vj. (1) 

o Demand. Individual customers act independently. Their demands depend on time of 
day, weather, the price of electricity, the price of other inputs, and so on. A customer 
may be a firm, a household, or a neighboring utility. We shall model customers as price- 
taking expected profit-maximizing firms. Let Fi be the short-run value-added function for 
customer i's use of electricity. Thus, it is i's profit, minus the cost of all nonelectricity 
variable inputs. It depends on the customer's electricity use Di(t) and on the random 
"weather" variable 0w(t), which reflects exogenous economic and weather variables. Thus 
Fi = Fi(Di(t), 0(t)), and the customer will choose Di(t) to maximize its profit:4 

profit for i = Fi(Di(t), 0(t)) - pi(t)Di(t) (2) 

OFi(Di(t), 0i(t)) = 
Pi (t), (3) 

0Di(t) 

which implies Di(t) Di(pi(t), 0(t)) because of customer profit maximization. Since 0(t) 
is experienced by all customers, their demands will be correlated. Di(t) may be negative, 
i.e., a "customer" may in fact be a net producer of electricity. The optimal spot price is 
the same whether a "customer" is a net user or a net generator. 

o Transmission. A complete characterization of the network at time t requires that we 
know the flows and losses along each line, and the net injections or withdrawals at each 
node. These are related by a number of equations, which are discussed in detail in the 
Appendix. 

Let the flows along each line at time t be given by the vector 

Z(t) = KZI(t), * . *, ZK(t)>. 

Then total real power losses throughout the network are:5 

L(t) = L(Z(t)). (4) 

An electric power system has an energy balance constraint. 

, Yj(t) = , Di(t) + L(t). (5) 
j i 

Attempting to violate this constraint, by either excessive or inadequate generation, will 
within seconds cause an uncontrolled blackout of the system. Generators will automatically 
disconnect from the network to avoid physical damage. 

Other network constraints must also be observed. Flows in each line must not exceed 
design limits, or the line will fail: 

Zmin,kbk (t) ? Zk (t) < Zmaxkbk (t), (6) 

where bk(t) is a stochastic 0-1 variable which is 0 when line k is out of operation,6 and 
Zmin,k and Zmax,k are design limits for line k. 

4 w(t) is a vector-valued exogenous stochastic variable. 
Directions of flows in Z are assigned arbitrarily. A negative Zk(t) indicates an actual flow direction 

opposite to the assigned direction. 
6 For AC electricity, 0 <b < 1 is essentially impossible. 
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The power flows Z(t), in turn, depend on generation and demand at each node: 

Z(t) = Z(X(t), D(t), b(t)), (7) 

where Y(t) and D(t) are the vectors of generation and demand augmented to have one 
element for each node, and b(t) = Kb1(t), ..., bK(t)>. Z(t) also depends on network 
characteristics defined in the Appendix, including which nodes connect to which lines, 
and line impedances. Z(t) is determined by Kirchoff's laws, which are as follows. First, 
the algebraic sum of all line flows into each node is zero. Second, the algebraic sum of 
all voltage drops around any loop of a network equals zero. This leads to the inability to 
allocate flows, mentioned in Section I (Elgerd, 1971). 

0 Optimization. We use the standard welfare criterion of maximizing consumers' plus 
producers' surplus, subject to the previously discussed constraints. These constraints 
depend on the utility's capital stock of generators and transmission lines and on the 
stochastic exogenous variables. For pricing and operational decisions, we maximize short- 
run welfare with a fixed capital stock. That is, at time t we wish to maximize, over 
generator output levels Yj(t) and customer prices pi(t), 

Max I Fi(Di(t), ii(t)) - AjYj(t), (8) 
i j 

subject to constraint (1) for all generators J, inverse demand functions (3) for all customers 
i, and network constraints (4)-(7).7 Bohn et a. (1983) derive optimal investment 
conditions for long-run expected welfare maximization. 

3. Model solution 

a We now have a constrained optimization problem. Some of the dual variables will 
turn out to have interpretations as optimal prices; others will be the shadow values of 
additional capacity. 

The Lagrangian to be maximized over all generation levels Yj and over prices pi(t) 
is: 

z Fi(Di(p1(t), W(t)), W(t)) [customer value added] 

- X1Yj(t) [fuel costs] 

+O(t)[ Yj(t) - L(t) - Di(t)] [energy balance constraint] 
I i 

, 1Aj(t)[ Yj(t) - KA(t)] [unit capacity constraint] 
i 

- (Zk(t) -Zk,max)f7kmax(t) [transmission line constraints, one pair per line]. 
k 

+2: (Zk(t) -Zkmin)7kmin(t) (9) 
k 

7 Another constraint is that the line flow pattern Z(t) will lead to voltage deviations at different points, 
which should not be allowed to exceed design limits. Reactive energy is also produced and affects losses and 
voltages. Finally, because of system stability problems, there may be constraints on total flows on all lines into 
a region. See Joskow and Schmalensee (1983, Chapter 4). We shall not discuss these constraints further, since 
they can be handled analogously to our treatment of equation (6). 
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Here 0(t) is the shadow price of another unit of demand at a "general" location. It will 
turn out to be the optimal spot price at one of the nodes which is arbitrarily chosen as 
the zero point for measurement. This node is termed the "swing bus" in power system 
parlance. The multiplier ,uj(t) is the shadow value of extra generating capacity of type j. 
It is zero except when generator j is fully loaded. flk(t) is the crucially important shadow 
value of additional transmission capacity: 

Ok(t) = nk,.m(t) - nk,min(t)- (10) 

It is nonzero when line k is fully loaded. It is positive if the line is fully loaded in the 
"forward" direction; negative if the line is fully loaded in the "backwards" direction. 

o Solution. The Lagrangian (9) can be differentiated to obtain the first-order conditions 
for the various generator outputs Yj and customer electrical use Di. A central utility 
cannot calculate the socially optimal Di(t) since it does not know iw'(t) or the value-added 
functions Fi(Di, %). But by setting prices pi(t) properly and relying on customer profit 
maximization, the utility can induce socially optimal behavior. The optimal price p*(t) 
for customer i at time t turns out to be:8 

optimal spot price to i = [social cost of additional demand at the swing bus] 

X [1 + incremental losses caused by i] 

+ [transmission constraint terms, summed over lines] 

p*(t) = 0(t) 1 + IL (t) + z 
a 

jk(t) (lt1) 'I Di(t)] k Di(t) 

This is the key equation of optimal spatial spot pricing for electricity, and it gives 
the value of energy at time t and location i. Most of the remainder of this article is 
devoted to expanding, explaining, and exploiting it. We shall assume for now that the 
utility has completely solved (9) conditional on the exogenous variables so that it has 
output levels for each of its generators, and prices leading to demands at each major 
customer node. 

The pattern of demand and generation at each node plus the condition of the 
network uniquely determine flows Z(t) and L(t). We shall show that (11) can be evaluated 
and interpreted as a function of Z(t).9 

o Interpreting 0, the shadow price on demand. The most important component of (1 1) 
is 0(t), which is the same for all customers. Define system lambda X(t) as the short-run 
marginal generating cost. Specifically, it is the cost of generating another kilowatt hour 
of electricity from a marginal unit, then getting it back to the swing bus despite losses 
and transmission constraints. 

Then 

0(t) = X(t) + Q(t) 

[shadow price] = [marginal + [curtailment 
generating premium]. (12) 
cost] 

Here ,ut) is the premium needed to curtail demand back to available supply, when 
rationing would otherwise be necessary. This is a generalization of Riordan's (1984, 

8 Derivations are in Caramanis, Bohn, and Schweppe (1982) and Bohn (1982, Chapter 3 Appendix). 
9 If some or all customers are not on spot prices, equation (11) can still be evaluated in terms of Z(t). 

Demands of these customers are exogenous constraints which augment (9). 
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p. 110) statement of optimal pricing in the case of one generation technology with 
deterministic availability: ". . . [I]n excess capacity states, set price at short-run marginal 
cost; . . . otherwise, price to equate demand with capacity. . .. 

To show how 0(t) can be decomposed, and to define X(t) precisely, first consider the 
case where there is at least one marginal generating unit, i.e., there exists a unit m 
satisfying: 

0 < Ym(t) < dm(t)Km. (13) 

Then by complementary slackness, the shadow value of capacity, Aim(t), is temporarily 
zero. But for Ym(t) > 0, ,um(t) can be zero only if the value of electricity at location m is 
exactly the cost of generating there:10 

Xm = P*M(t). (1 3a) 

Furthermore, since there is one marginal generating unit, there is some available 
generating capacity for the system as a whole; therefore, the shadow price 0 on the energy 
balance constraint (5) does not contain any rationing premium, and (12) becomes 
0(t) = X(t). Using (1 3a) and setting 0(t) = X(t) in equation (1 1), we get a precise definition 
of system marginal costs considering transmission losses and constraints: 

Xm + I[-ay k(t)] 

X(t) =L(t) (14) 

OYm(t) 

Here Xm is the direct cost of incremental generation at m. The denominator is the losses 
due to generating at m instead of at the swing bus. The summation term is the effect of 
generation at m on ameliorating or aggravating binding transmission constraints." 

Consider now the other case in which all available units are fully used, i.e., there is 
no generating unit on the margin. Then all available units j have local price higher than 
cost: 

Pj (t) = Xj + uj (t) > X, for all j with aj(t) > 0. (1 3b) 

We can still define X(t) by using equation (14) for the most expensive unit, unit J, 
substituted for m in the equation. But because of (1 3b) we need a positive curtailment 
premium, pQ(t) > 0, to make the equations balance. 

Thus, when there is a generator on the margin, ti(t) is zero.'2 It becomes nonzero 
whenever rationing would otherwise be needed to avoid excess demand. Figure 1 illustrates 
this. Figure 1's "supply curve" is the envelope of the Xj's of all available units, out to the 

J 
limit z aj(t)Kj.'3 Thereafter it rises vertically. The "instantaneous demand curve" 

j=1I 
I 

measures z Di(p#(Q(t), wi(t))). That is, total demand depends on individual prices, which 

in turn depend on 0(t), the price at the swing bus, and other terms discussed below. 

10 Prices in (11) can also be defined for generating nodes j with +C3L/ICDi replaced by -C3L/ICYj since a 
positive demand is equivalent to negative generation, and similarly for the OZk/ODi. 

" Note that in the nonspatial case (14) is just X(t) = Xm, a well-known definition. Common power system 
practice is to consider losses but not transmission constraints: X(t) = Xm/(l - OLI/Ym). 

12 In the model we are using, , may also be nonzero when Xm+I - Xm is large, putting a vertical step in 
the system supply function. In that case ,(t) will be proportional to jAm(t), the capacity constraint multiplier on 
the last generator in use. In reality, marginal costs Xj are upward sloping in Yj, and few systems have such 
vertical steps. 

13 Even though we have assumed that each generator has a constant marginal cost Xj, because of losses the 

system supply curve is not exactly piecewise linear. 
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FIGURE 1 

DETERMINATION OF Oi(t) 

PRICE AT 
SWING BUS 

X*1 

A l(t)_ 

SUPPLY CURVEl 

aj (t) Kj E (t) Ki 

*NOTE THAT GENERATING COST Xi MUST BE ADJUSTED AS IN EQUATION (14). 

The optimal 0(t) is found at the intersection of the supply and demand curves. It is 
misleading, however, to think of 0 as "the market equilibrium price" in a spatial public 
utility market. First, there is no single correct price since different prices are optimal at 
different locations. Second, the only "equilibrium" is a dynamic one. As ivi, b(t), and 
especially the unit availabilities aj(t) evolve, 0(t) will change rapidly and stochastically. 
Figure 2 shows nonspatial X(t) for a medium-sized Midwestern utility over one month. 
Both the pattern and the level of prices changed radically week to week. Observe that 
any conventional time-of-day price, with three levels and set a year in advance, would 
track X(t) very poorly. 

o The effect of losses on optimal spatial price differences. The shadow price 0 is usually 
the largest component of optimal spot prices in equation (1 1), and it is the same at all 
points. But to get the price at each point, 0 must be multiplied by a term involving 
incremental transmission losses, aL(t)/aDj(t). This term may be greater or less than one. 
It depends on the location and voltage level of the customer. Customers at locations that 
cause a larger system loss when they increase their demands are charged a higher price, 
and conversely for customers or generators that cause a smaller loss. We shall now 
examine this in detail. 

From equation (11), the difference between optimal spot prices at two locations at 
one time is: 

p~"() - 7(t)= 0() [aL(t) __aL (t) 1 cZk (t) _9 aZk (t)1[kt). (5 
L= Di(t) c9Dj (t)J k L Di(t) aDj (t) (15) 

The first term is the difference in incremental losses caused by the two customers, times 
the current value of 0(t). The second term is the differential effect of each customer's 
incremental demand on transmission capacity limits throughout the network. It is zero if 
no transmission constraints are currently taut. We shall now discuss the incremental 
effect of demand at different points on total system losses, aL/aDi. 

The key approximation for losses is a modification of equation (4):14 

L(t) Z'(t)RZ(t), (16) 

14 See the Appendix. 
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FIGURE 2 

ACTUAL SYSTEM LAMBDA, (W/kwh) 
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where 

Z(t) = vector of real power flows in each line k at time t, in kw, 
R = diagonal matrix of line resistances. 

Thus losses are an approximately quadratic function of line flows. This nonlinearity is 
fundamental to our results. Note that the incremental loss in a line is proportional to its 
flow times its resistance: 

aLk 
= 2ZkRk, (17) 

where Rk is the kth diagonal element of R. 
Hence, the price difference is: 

p*(t) - pj*(t) = 20(t)Z'(t)R d - + term involving n(t). (18) 1 
_~~~~ 0D1 aD~j 

Since flows Z(t) depend on the level and spatial pattern of demand at t, and so does 0(t), 
we see that both absolute and proportional price differences depend on the level and spatial 
pattern of demand at t. When i and j are directly connected by line k, equation (18) can 
be transformed to 

p*(t) - pj(t) _ 20(t)RkZk(t) + term involving i(t), (19) 
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where Zk(t) is the flow from j to i. If i and j are connected by several lines, (19) holds for 
each line individually. 

The proof of (19) in the two-bus case is straightforward: Z and R in (18) are scalars 
Zk(t) and Rk, respectively, and the bracketed term is unity,'5 giving (19). The general 
network case requires the further assumption that the resistance/inductance ratio is constant 
across all transmission lines. The proof is developed in the Appendix. 

Note from (16) that total losses in line k are approximately RkZk(t). Define the 
average percentage line loss at time t as the total loss divided by the amount of power 
flowing through the line, RkZk(t).'6 Typically it is a few percent in a moderately loaded 
line, and up to 20% in a heavily loaded line. Hence, when i7(t) = 0 

p*(t) - pj(t) _ 20(t) X [average percentage line loss in line k at time t]. (20) 

From (19) and (20) we have the following results for general networks when transmission 
constraints are not binding: 

Result 1. The percentage price difference between two locations at time t equals 
approximately twice the average percentage loss at t over the line connecting them, 
provided that transmission constraints are not binding. 

Result 2. The absolute and percentage price difference between two points are approximately 
proportional to the flow over the line connecting them, provided that transmission 
constraints are not binding. If the flow is nonzero, the price at the "upstream" point is 
lower than at the "downstream" point. 

Result 3. The absolute level of price differences among all points in the network when 
transmission constraints are not binding is ceteris paribus proportional to 0(t), which is 
greater than or equal to X(t). Therefore, the absolute level of price differences is stochastic. 

These results are different from those for conventional commodities, which have 
transportation costs that depend only on distance and are constant over time. For 
example, applying Result 3 to Figure 2 suggests that optimal spatial prices between two 
points of that utility vary more than 2:1 on most days and more than 5:1 on occasion."7 

An example clarifies spatial prices. Suppose that at noon on a particular day the 
average line losses in a network are as shown in Figure 3. As long as no transmission 
line is at its capacity limit, approximate optimal percentage price differences between any 

FIGURE 3 

HYPOTHETICAL AVERAGE FRACTIONAL LOSSES AND DIRECTION OF FLOWS 

3E 

E1_ 5% 2] < < 

9%~~6 

5 Define one bus as the "swing bus," i.e., the source of extra generation when demand increases. Then an 
increase in demand at the swing bus has no effect on Z. An increase at the other bus increases flow Z by the 
amount of increased demand. 

16 This terminology is awkward but necessary. There are four possible ways of calculating line losses by 
using one concept from each of the following pairs: average versus marginal, and percentage versus absolute. 
Furthermore, all four fluctuate over time. This terminology distinguishes them. 

17 These ratios are conservative since in most lines Zk(1) and flk(t) are positively correlated with W(A). 
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pair of points may be read directly from the average percentage losses in Figure 3. If we 
take node 6 as the swing bus, then P6 (noon) = 0* (noon) and 

pt (noon) = .840 pt = 1.180 

PI = .940 pt = 1.280 

pt= 1.120 pt = 1.00. 

In this example, average losses of about 5% on each line give a price difference of 44% 
between ends of the network, which is surprisingly large.18 

o Pricing by voltage level. An immediate application of Result 1 is to prices for 
different voltages. Voltage stepdown transformers have electrical losses analogous to those 
of transmission lines, and the low voltage distribution system usually has high percentage 
losses. Thus, a kilowatt hour provided at a high voltage costs less to generate than one 
provided at a low voltage from the same substation. Present practice is to charge according 
to the average stepdown and distribution loss. Equation (20) shows, however, that the 
optimal price difference is twice the average loss percentage. Similar analysis can be used 
for the value of buyback energy provided at different voltages and locations, a topic hotly 
argued in discussions of cogeneration. 

o Transmission capacity limits. So far we have discussed only transmission losses in 
equation (15). What happens if some transmission lines are at full capacity at time t, so 
that the flk(t) are not all zero? The optimal prices at all points may change as a result. 
The amount of price increase for customer i depends on (dZk)/(dDi), i.e., on how much 
power flow in the critical line is affected by i's demand. Even if the customer is not 
directly connected to the taut line, this derivative may be nonzero. Ponrajah (1984) works 
out a 24-node numerical example of this effect. 

For example, suppose in Figure 3 that line 5, connecting points 3 and 6, would be 
overloaded if only losses were considered in setting prices. Then 715(t) must rise as much 
as necessary to cause demand and generation patterns to readjust. The change in r75 
affects every price in this network, by amount r75 aZ5(t)/aDi(t). Hence, p3(t), p4(t), and 
p5(t) will all rise. Other prices also change, proportionally to the marginal impact of 
demand at those points on Z5. The shadow price 775(t) must be determined empirically, 
as it depends on the responsiveness of demand at different points to price changes. 

Result 4. If two points are connected by any line that is fully loaded, the price difference 
between them is larger than that given by Result 1. In effect, the two points become 
separate markets for electricity, with their own supply and demand curves. 

o Line flows. It is clear that spatial pricing depends on the pattern of power flows 
through the network. The flows Z(t) are in turn determined by the spatial pattern of 
demand and generation and the network configuration. Essentially, Kirchoff's laws say 
that Nature allocates flows so as to minimize transmission losses."9 

An approximation to the solution (see the Appendix) is: 

Z(t) -- [H] [ Y(t) -D(t)], (21 ) 

18 Note that examining losses and optimal price differences along any two paths connecting two nodes 
gives the same result. In Figure 3 the difference between nodes 2 and 3 is .186, whether measured 2 - 6 - 3, 
or directly 2 - 3. This is so because flows in electrical networks adjust appropriately. The choice of swing bus 
also does not matter in calculating p,7's. 

19 This "minimize loss" formulation holds for the DC load flow problem; we have not been able to prove 
it for the AC load flow, but it is a useful way to think about flows. 
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where Y(t) - D(t) is the vector of net generation minus use at each node. The matrix H 
is called the "transfer admittance matrix," and it gives the effect of net generation at each 
node on flows in each line. It is a familiar matrix to power systems engineers. It is not a 
sparse matrix; that is, demands at one point affect flows throughout the network. It 
depends on the network configuration at the moment, b(t), and on time-invariant 
characteristics of transmission lines (resistance, inductance, connectance). 

From equation (21), we see that changes in demands, in network structure due to 
line outages, or in generation pattern will lead to different flows Z(t). A change in Di(t) 
at one location may affect Zk(t) for distant lines. 

Furthermore, any of these events will change prices throughout the network. 
Combining (21) with optimal prices in (1 1) and with losses in (16) gives in terms of flows 
(see the Appendix): 

p*(t) -_ 0(t) [I- 2 ZT(t)RH]Hr(t), (I11a) 

where p*(t) is the vector of optimal spot prices at each location, and 

p*(t) -_ 0(t)[ I- 2B(t) * (X(t) -D(t))] - Hr(t), (I lb) 

where B is a matrix that depends only on the current network interconnections and time- 
invariant line characteristics. Equations (1 lb) or (1 a) therefore give quick ways to 
calculate approximately optimal spot prices. The matrix B. as well as H, is nonsparse. 
Therefore: 

Result 5. The price difference between any two points in the network will depend on 
demands throughout the network. The price differences will change over time, both in 
absolute amount (dollars per kilowatt hour) and as a percentage of 0(t). 

For example, consider the simple network of Figure 4. The power flow ZI(t) is 
approximately the sum of demands D3(t) and D4(t). Then pT(t) depends on both demands. 
Define node 1 as the swing bus: pic(t) = 0(t). From (19) we get 

pT(t) _ 0(t)[l + 2(R12 + R23)D3(t) + 2R12D4(t)], 

where Rij = resistance of the line from i to j. Hence, customer 3 pays a higher price and 
a higher location premium when either it or customer 4 demands more, even if the cost 
of generation 0(t) remains constant. If either location's demand rises to the point that 

ZI(t) reaches Z7"x, then both locations will see prices rise still further, by 71(t). 
It is quite possible that the sign of pt(t) - pt(t) will change over the course of a day, 

as the direction and magnitude of power flows change owing to cyclic demand and to 
changes in optimal dispatch patterns. In fact, it is conceivable that the absolute price at 
a particular point could be negative.20 

FIGURE 4 

A SIMPLE NETWORK 

D4 (t) 

Z1 (t) 

D3(t) 

20 This can happen if transmission line k is heavily loaded, and demand at some point will reduce its load 
by causing flows Zk(t) to change. This will be reflected in the term involving fk in equation (11), which can take 
on positive or negative values. If it is negative enough, the absolute price at some location can be negative. 
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0 Optimal dispatch. In the nonspatial case, optimal Yj(t) are found by dispatching 
m 

units in order of marginal costs Xj until z dj(t)Kj equals or exceeds total demand. The 
j=1 

mth unit is not fully loaded and determines X(t). 
In the spatial problem, this solution is inaccurate. It may be that X5 < X6, but that 

unit 5 will have a greater effect on system losses than unit 6, i.e., OL/0Y5 > OL/0Y6. 
Which unit should be dispatched if more generation is needed? 

The optimal solution of (9) has the property that unit j should be operated if it 
would be optimal for a private owner facing spot pricing to do so, i.e., if pj(t) >j. 

The p*(t) can thus be found by iterating. Each iteration goes from trial p*(t) to 
Y(t) - D(t) to Z(t)22 to a new guess for p*(t).23 This method is equivalent to present 
dispatching algorithms.24 Small generators can be controlled by telling them their spot 
price rather than their generation level. The same method can be used to help coordinate 
neighboring utilities that are not jointly dispatched.25 

4. Market definition and spatial competition 

* Various proposals have been advanced to allow some form of competition in portions 
of the electric power industry. How competitive would the results be? In large part this 
depends on the legal and institutional arrangements specified in the deregulation proposal 
(Joskow and Schmalensee, 1983; Bohn et al., 1984). 

But, in any case, the preceding analysis sheds light on how to define the relevant 
market when attempting to analyze the likely extent of competition. We show here that 
the relevant market definition will be quite fluid. At some times a generator may have 
no effective competitors and thus considerable power to affect prices. At other times, the 
same generator may find itself competing with generators hundreds of miles away. The 
stronger the transmission system, the more effective competition will be. 

A full analysis of competition requires modelling reactions of each generating firm 
to the price it is paid and to the prices and outputs of competitors. Rather than create 
and solve a full oligopolistic model, we look at one issue only: what is the initial effect of 
one generator's output decisions on the prices seen by itself and by competitors, before 
competitors' reactions are factored into the analysis? Specifically how do spatial issues 
influence these effects? 

We assume a central administrator follows equation (11) at all times.26 Suppose 
generator j is considering changing its output Yj. How much impact will that have on its 
price p7*(t), and on the price paid to competitor i, assuming i does not respond?27 

To elaborate these interactions without using an involved model, we consider 
competing generators with outputs {Yi} located at each of N network nodes, but all 
demand D located in one node. The energy balance equation (demand equals total 

21 Seeming indeterminancy for marginal units with p"*(t) = X,, is avoided by the fact that the true short- 
run marginal cost curve for generators is U-shaped. 

22 A more accurate version of equation (21) is used. 
23 Equation (1 a) or (1 b) is used at some nodes, while more accurate versions are used at nodes that are 

on the margin. 
24 Solving a large system can require solution of several thousand simultaneous equations, using a special 

computer-implemented algorithm. 
25 Price-based control has advantages, but is complex for large generators. At a minimum, spinning reserve 

pricing would also be needed; this is the subject of research. 
26 Since ( 11) is derived by assuming pure price-taking behavior, a central coordinator with enough 

information might wish to alter (11) to influence oligopolists to be more competitive. (Luh et al., 1982.) Even 
in this framework spatial issues will still affect the outcome. 

27 Calculating the total impact would require imbedding the following results in a model of response by all 
competitors. 
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generation minus losses) removes one degree of freedom and allows expression of network 
losses L and line flows Z as a function of power injections in all but one arbitrarily 
selected node, the swing bus. Assigning the index 1 to the demand node and selecting it 
as the swing bus, we have: 

N O 
L = L(Y2, Y3, ...,YN); D = YE-L; p (t) 0(t) 

ao 02F _ OL\ 

aYi aD 2 a yij 

where F is the aggregate value-added function of consumers at node 1. For a Cournot 
competitive world where in the short run only demand responds to a generator's change 
of output, while all other generators maintain constant output levels, equation ( 11) can 
be differentiated to give: 

=-O,~ t) (9_ aL~ 02F Oi2Zk 8Zk (77k 

aioj1OA1 ~ dO k . (22) 09 YYj (9Y aY ai) T~)d2 k 17a 09 _ ar Ayk (2 

Equation (22) shows that different generators do not have the same control over their 
own prices, i.e., api*/0Yi # ap7*/0Yj. But when transmission capacity is not binding, v 
= 0, equation (22) becomes symmetric in i, j, thereby implying that Opi*/8Yj = OP7-/OYi, 
and firms have equal effects on each other. 

To exploit equation (22) further, consider a network consisting of two nodes 
connected by a single transmission line with resistance R. Suppose that the flow Z(t) is 
from node 2 to node 1, with generators in both nodes, but all demand in node 1 only. 
Using the approximation for losses of equation (17), noting that Z(t) _ Y2(t), and 
assuming that demand is characterized by instantaneous price elasticity of response e(t), 
we obtain the following with equation (22) for 7 = 0: 

dpt(t) 80(t) 02F 0(t) 
Y(t) - Ya(t) = aD2(t) D(t)E(t) (2) 

apl'(t) 0____ 

= 20(t)R + (I - 2R Y2(t))2 t)(24) 

Op1P(t) _ pt'(t) 0(t) 
0Y2t) &Y(t)= (1 - 2RY2(t)) .(25) a YAOt a Y, (t) D(t),E(t) (5 

Since e(t) is a negative quantity, equations (23) and (24) imply that the "downstream" 
firms (node 1) have more control over their own price than upstream firms, i.e., 
a1P I > P21 if 

2RD(t)IE(t)I < 1 - (1 - 2R Y2(t))2. (26) 

From equations (22) to (26) we see that: 

(1) Firms in the two nodes have different abilities to influence their own prices. 
Downstream firms have more control than upstream firms when demand is relatively 
unresponsive to price changes. As the strength of the network increases (R decreases), the 
importance of location decreases. 
(2) The ability to influence prices changes over time as Y,(t), Y2(t), D(t), and E(t) change. 
(3) If the transmission line connecting the nodes is fully loaded, then 7 will adjust as 
necessary to keep the flow at that level. Even if firm 2 has more generating capacity and 
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pQ(t) > X2, pO(t) will be just the level to encourage the feasible flow, and firm 2 will not 
have an incentive to increase output further. Firm 1 can adjust its output over a range 
without affecting P2(t). Each city therefore becomes its own market "island," with 
(temporarily) no competitive interaction. 
(4) Firms always have an equal ability to affect each other's price. 

These results mean that the market in each city will on occasion be much less 
competitive than it was a few hours earlier. In the worst case, there might be only one 
generator on the margin in the downstream city with an effectively noncompetitive 
market. How often this will happen depends on the strength of the transmission system, 
the location, ownership and type of generators, and the space-time pattern of demand. 

In conclusion, because of losses and transmission constraints it is not enough to 
show that on the basis of "average" demand patterns, a region of the country will be 
reasonably competitive under deregulation. Different demand patterns and generator 
availability scenarios must be considered, each of which will show different ability by 
generators to affect their own prices. In some areas the transmission system will need 
strengthening before deregulation can lead to approximately competitive behavior by 
generators. See also Schmalensee and Golub (1984). 

5. Conclusions 

* Practical application of spatial spot prices at some levels would not be a major 
departure from present practice. Power control centers already collect and process much 
of the necessary information, and use it for real time dispatch of their generators. Spatial 
prices at major network nodes are developed as an intermediate calculation.28 

Because of transactions costs, it is not desirable to use spatial spot prices for all 
customers and independent generators. Some partial spot pricing will be advantageous 
for some large customers and independent generators. Three possible arrangements are:29 

(1) Hourly spot pricing. Prices are recalculated once an hour, and do not change until 
the next hour. Telephone or other methods can be used to communicate the prices to 
customers/generators. For most customers prices are differentiated by region and voltage 
levels. For interutility sales and purchases from large independent generators, location- 
specific prices would be worth calculating. 
(2) Twenty-four hour update prices. Prices are recalculated once a day, with a different 
price for each hour. 
(3) Monthly time-of-day pricing. Prices are recalculated once a month for the following 
month. They can be communicated by newspaper advertisements or by mail. Current 
time-of-day metering technology can be used. 

All of these prices can coexist. The formulas for the underlying optimal spot prices 
remain the same. The actual prices that should be charged to customers not on full spot 
prices are approximately equal to the expected value of optimal spot prices plus a 
covariance term. Selecting which customer should be on which rate cannot be done 
perfectly because of adverse selection problems, but heuristic classification schemes will 
probably give good results. See Bohn (1982). 

The methodology we have developed here, of pricing both losses and transmission 
constraints at each point in a network in real time, is applicable to other commodities. 
Natural gas appears to fit quite well, although the interesting price dynamics will have a 
period of weeks instead of hours. Similar models may also be possible for other 

28 Transmission constraints are generally not incorporated into the prices, however. Thus, more software 
development would be necessary. 

29 These are discussed in more detail in Caramanis, Bohn, and Schweppe (1982). 
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commodities, such as network-interconnected information facilities with spatially distributed 
users (Agnew, 1973), and long distance data transmission.30 

Appendix 

* Derivation of electric network relationships. In the following subsections we derive: (1) losses on a line; (2) 
line flows as a function of network characteristics and bus injections; (3) network losses; and (4) spot price 
differences at the ends of a line. We conclude with a note on the approximations and assumptions we 
have made. 

o Losses on a line. Consider a line k with resistance Rk, inductance Xk, impedance magnitude 
Zk = (Xk ? Rk)"2, and admittance magnitude 2k = z4'. Define 

Z12, Z21: the real power flows at each end of the line (Z,2 is the power flow out of bus 
1 towards bus 2); 

Lk: real power losses in line k: Lk = Z12 + Z21; 

A = 6- 62 the difference of voltage angles at each end of the line; 
b = cos-'(Rk/zk) = sin-'(Xk/zk): impedance-resistance angle compatible with the definition of zk; 

I VII, I V21: voltage magnitude level at each end of the line. 

Assume3' IVI = IV21 = 1. It follows that 

Z 2 = Qd[cos b - cos(b - i\)] (Al) 
and 

Z21 = 2k[cos b - cos(b + A)]. (A2) 

With the use of trigonometric identities equation (A 1) implies 

Z12= -2k[sin( / )sin( )]. 

Assume b > A\. We then have the approximation, 

Z12 - -22k sin b sin(2). (A3) 

Assuming A/2 is small, we have the approximation, 

Z12 - 22k sin b_ 
A 

u XA_ 'A 
2 

Q2 XkAd (A4) 2 ZA 

and similarly for Z21. 

Assuming Rk < Xk, we approximate zA. = (X + Rb"2 XK Q -'. Substituting above, we obtain 

Z12 - _Z2, - Q2kA. (A5) 

With the use of (Al) and (A2), the line losses are given by 

Lk = Z12-Z21 = 22k cos b[l - cos A]. (A6) 

Assuming AX is small (as in (A4)) and using the definition for b yield 

LA = Rk k2z2 (A7) 

Finally, substituting approximation (A5) yields 

Lk = Rk(Z,2 )2 = Rk(Z21 )2. (A8) 

30 When multiple data carriers serve a single customer, there will be opportunities for one carrier to 
improve its load factor and revenues at the expense of others, by offering prices closer to spatial spot prices. 
Smart customer PBX's already route calls over the cheapest available circuit; the main change needed will be to 
alter the "dispatch order" in response to real-time price updates from carriers. 

3I Note that voltage magnitude is a normalizing factor used throughout this Appendix. Readers should 
keep this in mind when trying to verify the units of subsequent results or considering the use of the relationships 
developed. 
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0 Line flows as a function of network characteristics and bus injections. Define 

P: [(N-i1) X I] vector of bus injections (generation minus demand at bus i, i =2, 3, N); 
P.: injection at the swing bus (i = 1); 
Q. R: K X K diagonal matrix of line admittances and resistances respectively, K lines; 
A: [K X (N - 1)] network incidence matrix with 0, 1, -1 elements corresponding to network 

interconnections; 
Z: [K X 1] vector of line flows; 
_: [(N - 1) X 1] vector of voltage angles at each bus; at swing bus 6, = 0; 
A = Ab: [(N-1) X 1] vector of angle differences across all lines; 
L: total line losses: L = Z Lk. 

k 

e: column vector of all ones; 
e*: column vector of all zeros except for 1 in the kth line. 

The energy balance constraint, e'P + PI - L = 0, reduces degrees of freedom by 1. It is thus necessary to 
select arbitrarily and to specify one of the nodes; i.e., 61 = 0. 

Since the sum of all powers entering a bus is zero, 

P = A'Z. (A9) 

Combining equation (A9) and the matrix form of (A5) yields 

P = A'QAb. (A I0) 
Solving for 6, we obtain 

6 = (A'QA)-'P. (Al l) 

Substituting into the matrix form of (A5) yields 
Z = HP, (A 12) 

where H = QA(A'QA)-'. H is called the transfer admittance matrix. 

E Network losses. By using (A8), the total line losses L become L = Z'RZ. Substituting Z from (A 12) yields 

L = P'BP, (A13) 

where B = (A'QA)-'A'QRQA(A'QA)-'. Assuming R = aQ-', i.e., a constant resistance-inductance ratio across all 
transmission lines, we obtain 

B = a(A'QAf)-' = (A'R-'A)- '. (A 14) 

E Spot price differences at the ends of a line. Define 

p*: (N- 1) vector of spot prices; 

p,: spot price at swing bus. 

From equation (1 1) we have 

c9L 8aZ 
p ap) ap- 

Pt= 0, (A 15) 

where -q is the column vector of Lagrangian multipliers. 
Using (A 12) and (A 13), we obtain 

p* = 6(e - 2BP) - H'-q. (A16) 

With the additional approximation of a constant resistance-inductance ratio that gives (A 14) and with the 
substituting of P from (A10), we get 

p* = 0(e - 2ab) - H'-. (A 17) 

Define further d as the vector of price differences across the ends of lines, i.e., d = Ap*. Equation (A 17) 
then yields 

d = -2aAb - A'H'-q = -2aOQf'Z - A'H'-q. (A 18) 

Equation (A 18) shows that the price difference across each line, disregarding -q terms, is proportional to 
the voltage angle difference across each line or the real power flow through the line. 
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0 Note on the approximations and assumptions made. The assumptions made in equations (A3), (A4), and 
(A6) are b > Az, A\ small, X > R, and constant voltage magnitude levels. These assumptions are reasonable and 
are often used in actual utility operations and planning for transmission lines. The additional assumption made 
in (A 14) postulating a constant resistance-inductance ratio for all transmission lines may lead to larger 
approximation errors than are tolerable for operational decisions. But the results thus obtained are useful in 
increasing one's intuitive understanding of spatial network pricing and can be used in long-term planning studies 
where general behavior modelling is important, but high accuracy is not required. 

The assumptions made in equations (A3)-(A5) can become more inaccurate for lower voltage, subtransmission 
and distribution lines. Thus, when dealing with certain actual operational conditions, it may be necessary to use 
more accurate approximations or even to use the full "AC load flow" equations. It should be noted that standard 
computer programs are available for performing such calculations and are used when necessary by power system 
engineers. 

A short review of the relevant engineering literature is available from the authors upon request. 
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