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a b s t r a c t

This paper proposes an approach for generation portfolio allocation based on mean–variance–skewness
(MVS) model which is an extension of the classical mean–variance (MV) portfolio theory, to deal
with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally
by considering the maximization of both the expected return and skewness of portfolio return while
simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective
optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO)
based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using
a case study of the PJM electricity market, the performance of the MVS portfolio theory based method
Generation portfolio management
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bette

1

(
a
m
f
o
d
c
o
f
t
w
t
e
i
r

a
i
h
F

s

0
d

ulti-objective particle swarm
ptimization
ortfolio allocation

can provide significantly
for trading.

. Introduction

Based on trading protocols, the competitive electricity markets
EMs) essentially consist of energy market (day-ahead, hour-ahead,
nd real-time balancing market) and several contractual instru-
ents, such as forward and future contracts [1]. Forward and

uture contracts are similar, but future contracts are exclusively
f financial type while forward contracts comprise the physical
elivery of the energy. In competitive environment, generation
ompanies (GenCos) are required to devise their own strategies
n how to optimally allocate their generation capacities to the dif-
erent markets for profit maximization. Moreover, while deriving
he profit based generation strategies, the GenCos are confronted
ith volatile electricity prices and other uncertainties like conges-

ion in transmission lines, unscheduled generating unit outages,
tc. Therefore, while making the trading decision, GenCos’ objective
s not only to maximize its profit, but also to manage the associated
isks and this problem can be viewed as a portfolio optimization.

In the last decade, the comprehensive studies [2,3] on various

spects of risk assessment and management for GenCos in compet-
tive electricity markets have been conducted. Value at Risk (VaR)
as been applied to risk assessment in electricity markets [4,5].
or hedging the spot price risks for market participants, different
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r portfolios in the situation where non-normally distributed assets exist
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forward contracts with their valuation are proposed in [6–8]. In
EMs, statistical studies of hedging strategies using financial instru-
ments have been demonstrated in [9,10]. Moreover, some research
papers [11–13] have also discussed the problem of allocating the
generation capacities between the spot market and various con-
tracts. Majority of aforementioned works for electricity portfolio
optimization have employed the standard portfolio optimization
approach, i.e., mean–variance (MV) formulation [14] which is pre-
cisely a first step of portfolio management. The MV model is a
bi-criteria optimization problem where a rational portfolio choice
is based on trade-off between risk and return.

However, the standard MV model is based on the assumption
that each asset’s return follows a normal distribution, so that asset
returns can be portrayed only by their first (mean) and second
(variance) central moments of distributions. But, substantial num-
ber of studies in finance sector [15–20] argued that the higher
moments cannot be neglected unless there are reasons to believe
that the asset returns are symmetrically distributed around the
mean. Moreover, they point out the importance of skewness in the
portfolio management. On the other end, empirical studies [21–23]
in competitive electricity markets provide evidence indicating that,
because of high volatility, spot price as well as return series exhibit
statistically significant levels of positive skewness. To support this

argument, a detail analysis of historical return of the spot market
and bilateral contracts in PJM electricity market is presented in this
paper. This study shows that because of high volatility in spot price,
it follows the positively skewed distribution and therefore, GenCos
returns do not exactly follow the normal distribution.
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Looking to the above issues in electricity portfolio manage-
ents, this paper is mainly contributing the followings:

Using mean–variance–skewness (MVS) model, which is an exten-
sion of the classical MV portfolio theory, this paper proposed
an approach for generation portfolio allocation considering the
maximization of both the expected return and skewness while
simultaneously minimizing the risk.
The MVS portfolio theory is competing and conflicting non-
smooth three objectives optimization problem. Third central
moment is non-concave function and hence, it looks difficult
to solve the resulting MVS portfolio optimization problem.
Therefore, unlike single objective optimization method being
used in the portfolio literature [11,12], this paper proposed
a multi-objective particle swarm optimization (MOPSO) based
meta-heuristic method to provide Pareto frontier in single run.

This paper is organized as follows. Section 2 provides a brief
eview of MVS portfolio framework followed by single and multi-
bjective portfolio optimization formulation. The brief concept of
ulti-objective optimization along with Pareto-optimal front and
OPSO are presented in Section 3. The proposed MVS based gen-

ration allocation modeling is derived in Section 4 and a case study
f the PJM electricity market is given in Section 5 to demonstrate
he effectiveness of the proposed method. Finally conclusions are
rawn in Section 6.

. Mean–variance–skewness Portfolio framework

A prerequisite to use the mean–variance (MV) framework is
ither the relevant distribution of asset returns is normally dis-
ributed or the utility function is approximated by only the first
wo moments. As a results MV approach does not take into account
he higher moments in order to describe the investor’s assessment
f the probability distribution. The first moment represents the
xpected returns. The second and higher central moments char-
cterize the uncertainty associated to the returns. Investors prefer
o maximize the odd portfolio moments and to minimize the even
nes. All the even moments measure dispersion (thus, volatility)
hich is undesirable due to increase in the uncertainty of returns.
n the other hand, the odd moments express measures of asym-
etry and it can be seen as a way to decrease the extreme values on

he loss side and increase them on the gains. For example, maximiz-
ng positive skewness (positive skewness refers to a right-handed,
longated tail for the density function) may decrease the probabil-
ty of having negative returns. As a result, investors are in favor of
ncluding skewness in portfolio selection problem because it seems
hat the combinations that result are more accurate and these give
he investors a broader idea of how they can benefit from a portfo-
io.

The mean–variance–skewness (MVS) model first proposed by
onno and Suzuki [18] is a direct extension of the classical
ean–variance (MV) portfolio model. The MVS model is most

ppropriate choice to the situation where the skewness of the
eturn of assets plays significant role in choosing an optimal port-
olio. The general MVS model for portfolio selection problem with

(N ≥ 2) risky assets can be described as follows. Let wp and R
enote, respectively, the (N × 1) vector of proportionate weight

nd expected returns of the N risky assets in the portfolio p. ˝ and

represent the non-singular (N × N) variance–covariance matrix
nd the (N × N2) skewness–coskewness matrix of the N risky asset
eturns, respectively. The first (mean), second (variance), and third
skewness) central moments, respectively, of the return of a given
ms Research 80 (2010) 1314–1321 1315

portfolio p are given by:

E(rp) =
N∑

i=1

wpiE(ri) = w′
pR (1)

�2(rp)=
N∑

i=1

N∑
j=1

wpiwpj�ij=w′
p˝wp=

N∑
i=1

w2
pi�

2
i +

N∑
i=1

N∑

j = 1
j /= i

wpiwpj�ij

(2)

s3(rp) =
N∑

i=1

N∑
j=1

N∑
k=1

wpiwpjwpksijk=w′
p�(wp ⊗ wp)

s3(rp)=
N∑

i=1

w3
pis

3
i +3

N∑
i=1

N∑

j=1
j /= i

w2
piwpjsiij+

N∑
i=1

N∑

j=1
j /= i

N∑

k=1
k /= j
k /= i

wpiwpjwpksijk

(3)

where wpi and ri represent the weight of asset i in the portfolio p
and the return on the asset i, respectively. �2

i
and �ij represent the

variance of return on the asset i and covariance between the returns
of assets i and j, respectively. s3

i
and sijk represent skewness of the

return of asset i and coskewness between the returns of assets i,
j, and k, respectively. The sign ⊗ stands for the Kronecker symbol
product.

The MVS model is competing and conflicting multi-objective
optimization problem. An optimal portfolio should maximize both
the expected return and skewness while minimizing the risk associ-
ated with the return (i.e., variance) simultaneously, as stated below.

(Prob1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maximize f1(wp) =
[
E(rp)

]
minimize f2(wp) =

[
�2(rp)

]
maximize f3(wp) =

[
s3(rp)

]

subject to
N∑

i=1

wpi = 1, wpi ≥ 0

(4)

2.1. Single objective optimization formulation

Most of the traditional algorithms reformulate a given multi-
objective optimization problem into a single objective-function
with the help of weighting factors. Using this approach, classical
MV portfolio optimization problem in [11,12] has been solved using
quadratic programming with help of risk aversion factor. Similarly,
a single objective-function of the above multi-objective program-
ming problem (e.g. Prob1) can be formed by combining the three
objective functions and then the same can be optimized by assign-
ing relative weights to represent the importance of each individual
function as given below.

(Prob2)

⎧⎪⎨
⎪⎩

minimize f (wp)=
[
−ˇ1

[
E(rp)

]
+ˇ2

[
�2(rp)

]
−ˇ3

[
s3(rp)

]]

subject to
N∑

i=1

wpi = 1, wpi ≥ 0

(5)

where ˇ1, ˇ2 and ˇ3 represent investor’s relative preference for
expected return, risk and skewness, respectively. The Prob2 is a
constrained nonlinear programming problem and generally solved

using nonlinear programming techniques. Classical optimization
methods like goal programming [19] and linear programming [20],
have been used to solve the above problem. However, in order to
make this method working, an apriori assumption of the relative
importance of each objective has to be incorporated. This makes the
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olution to be guided in a given direction based on the judgment of
he investor.

.2. Multi-objective optimization formulation

In order to prevent subjectivity coming into the solution space
f traditional single objective optimization formulation, the con-
ept of Pareto dominance has been introduced. According to this
rinciple, instead of giving an absolute (scalar) value to a solution,
partial order is defined based on dominance. A solution is said to
ominate another solution when it is better on one objective, and
ot worse on all the other objectives. For this class of formulation,
eighting factor is not required and thus, no a-priori information

n the problem is needed. The objective space to be optimized
onstitutes the mutually conflicting objective functions as given
ellow.

Prob3)

⎧⎪⎨
⎪⎩

minimize F(wp) =
[
−

[
E(rp)

]
,
[
�2(rp)

]
, −

[
s3(rp)

]]

subject to
N∑

i=1

wpi = 1, wpi ≥ 0
(6)

To address the limitations of the conventional optimization
ethods when generating the Pareto-optimal front, the meta-

euristic optimization algorithms have been successfully applied
o the multi-objective optimization problems. One class of meta-
euristic optimization techniques, multi-objective particle swarm
ptimization (MOPSO) proposed by Coello and Lechuga [24] allows
he PSO algorithm to be able to deal with multi-objective opti-

ization problems. Because MOPSO allows concurrent exploration
f different points of the Pareto front, they can generate multiple
olutions in a single run. The optimization can be performed with-
ut a-priori information about objectives’ relative importance. This
aper proposed MOPSO to efficiently solve the problem (Prob3) for
VS portfolio optimization.

. Multi-objective particle swarm optimization

Brief concept of multi-objective optimization followed by multi-
bjective PSO (MOPSO) is presented in this section.

.1. Multi-objective optimization (MOO) concept and Pareto front

Most of the real-world problems employ the simultaneous
ptimization of several objective functions, which are often
onflicting in nature and equally important. In general, multi-
bjective minimization problem with n decision variables and m
bjective functions (fi : �n → �, i = 1, 2, . . . , m) associated with
onstraints can be stated as [24,25]:

inimize F(�x) =
[
f1(�x), f2(�x), . . . , fm(�x)

]
(7)

ubject to

i(�x) ≤ 0; i = 1, 2, . . . , k (8)

j(�x) = 0; j = 1, 2, . . . , p (9)

here �x = [x1, x2, . . . , xn] ∈ X is vector of decision variables, X is
he decision space and gi, hj : �n → � are the constraint functions
f the problem. The solution to MOO problems does not consist of
single solution (as in global optimization); rather aim is to deter-
ine from among the set F(�x) of all vectors which satisfy (8) and[ ]
9) for the particular set of values �x∗ = x∗
1, x∗

2, . . . , x∗
n which yield

est compromise solutions among all the objective functions. The
ost commonly used notion of optimality adopted in MOO is the

o-called Pareto-optimality, which can be explained with the con-
ept of dominance relation [25]. The vector �x∗ corresponding to the
Fig. 1. Pareto-optimality, nondominated and dominated solutions: bi-objective
case.

solution included in the Pareto-optimal set are said to be nondom-
inated (by other solutions) and for a given Pareto-optimal set, the
corresponding objective function values in the objective space are
called the Pareto front. Concepts of the Pareto-optimal front, non-
dominated and dominated solutions are further explained in Fig. 1.
The axes on Fig. 1 (f1 and f2) are two objective functions. Possi-
ble solutions for minimization are presented in the f1–f2 plane. In
general, there are two major goals to achieve while solving MOO
problem: (1) to find a set of solutions as close as possible to the
true Pareto-optimal front and (2) to achieve a well-distributed set of
solutions, as a results we can assure a good set of trade-off solutions
among the objectives.

3.2. Multi-objective PSO (MOPSO)

MOPSO is an extensive version of the standard PSO to handle
multiple objectives by redefining global and local best individuals in
order to obtain a Pareto-front of optimal solutions. In the standard
PSO [26], the global best particle is determined easily by selecting
the particle which has the best position. The velocity and position
of each particle in single-objective PSO can be modified by [26]

vk+1
id

= w × vk
id + c1R1(pbestid − xk

id) + c2R2(gbestd − xk
id) (10)

xk+1
id

= xk
id + vk+1

id
(11)

where d = 1, 2, . . . , D, i = 1, 2, . . . , S and S is the size of the swarm.
c1 and c2 are two positive acceleration coefficients which keep bal-
ance between the particle’s individual and social behavior. R1 and
R2 are uniformly distributed random numbers in [0,1] added in the
model to introduce stochastic nature. The inertia weight of the par-
ticle, w, is suitably selected to control the exploration properties of
the algorithm.

Since MOO problems have a set of Pareto-optimal solutions,
each particle of the population should use Pareto-optimal solutions
to select one of its global best particles. Therefore, choosing the
global best and local best to guide the swarm particles becomes
nontrivial task in multi-objective domain. Another consideration
is the method of maintaining and keeping the Pareto-optimal
solutions. Typically, these solutions are stored in an archive-like
database which is updated after each iteration in order to maintain
a pure set of nondominated solutions. The MOPSO algorithm with

the use of crowding distance mechanism together with mutation
operator, called “MOPSO-CD [27]”, has been used in this paper. The
mutation operator is used to improve the exploration capability of
the MOPSO. The flow chart of MOPSO-CD algorithm is depicted in
Fig. 2 and its brief explanation is given in Appendix A.
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Fig. 2. Flow chart o

. Electricity portfolio allocation problem and its MVS
odeling

In competitive electricity markets, for a GenCo, a number of dif-
erent assets are available for constructing a portfolio. For instance,
n asset for a generator can be the power sold through the spot
nergy market, the power sold through forward contracts, or the
utures contracts hold for risk hedging against spot price volatil-
ty. GenCos make extensive use of spot energy market to sell their
utput power on an hourly or half-hourly basis. Therefore, the spot
lectricity price has significant impact on GenCos’ profits. More-
ver, it can also influence the prices of other financial instruments,
uch as future and option contracts. Therefore, spot price fluctu-
tion is a major and most important risk source for the GenCos.
lthough the trading quantity and price are decided in advance in

he physical forward contract, the main risk in such contract is the
isk associated with the congestion charges. The congestion charge
etween any two locations is the product of the spot price dif-
erence between these two locations and the transmitted energy
quantity in MWh) [11]. For instant, locational marginal prices
LMPs) in case of PJM electricity market are highly volatile, there-
ore, only local contracts signed with local customers are risk-free
rades and non-local contracts signed with non-local customers are
isky trades due to the uncertainty in congestion charges. There are
nancial instruments, such as financial transmission rights (FTRs),
o deal with risk associated with the congestion charges. Inclusion
f FTRs in presented model is beyond the scope of this paper.

This paper mainly considers risky assets: spot energy mar-
et and the bilateral non-local contracts. However, the proposed
pproach can be extended for other assets like future contracts,
ption contracts, etc. Similar to works in [3] and [11], it is assumed

hat there are n areas or pricing zones in an electricity market. A
enCo is located in Area 1 and other areas are labeled from Area
to Area n. To simplify, suppose that the GenCo could sign one

ilateral contract with other each area’s customers at fixed energy
PSO-CD algorithm.

price. Hence, the GenCo has n potential transactions during the
planning (or decision period), i.e., one risky transaction traded in
the spot market and n − 1 risky non-local bilateral contracts. Now,
question is how to optimally allocate these GenCos’ assets in a deci-
sion period. To answer this question, the mathematical MVS model
(which discussed in previous section) for generation portfolio opti-
mization has been derived in this section.

Unlike, in the financial markets of electricity markets, the total
cost of generation depends on the cost functions of individual
generators and the amount of their generator power outputs.
Assume that the production cost of a generator in the trading inter-
val is quadratic function of generator output power, PG , pc(PG) =
(a + bPG + cP2

G), where a, b, c are generating unit cost coefficients.
According to [12,13], the return of each asset in a decision period is
defined as (total revenue − total cost)/total cost. Assume that there
are T trading intervals in a decision period. The decision period
could be a day, a week, a month, a year or several years, etc. The
mathematical derivations of returns characteristic up to second
central moments (mean and variance), presented in this paper,
have been quoted from [11]. The main contribution of this paper
is to incorporate third central moment (skewness) while obtain
the generation portfolio and that is mathematically derived in this
section. The following nomenclatures will be used when deriving
the returns and its associated distribution characteristics of each
asset.

t, i index of the trading interval and trading area
E and �S

i,t
expectation and tth trading interval’s spot energy price of
Area i

�B
i,t

tth trading interval’s contract price signed with customers
of area i

� congestion charge factor (0 ≤ � ≤ 1)

ri return on ith trade; i = 1 represents trading in spot energy

market, and i = 2∼n denotes bilateral contract with the ith
area’s customers

E(ri), �2(ri), s3(ri) expected return, variance, and skewness of return on ith
trade
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Section 4 shows that the returns of the electricity assets are function
of the spot energy price in the decision period, the empirical analy-
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.1. Return model of spot energy market

According to the previous definition of the return, the return
haracteristics of the trading in spot energy market during the
ecision period can be calculated using following equations.

E(r1) =
∑T

t=1E(�S
1,t)PG,t −

∑T
t=1(a + bPG,t + cP2

G,t)∑T
t=1(a + bPG,t + cP2

G,t)

E(r1) = M

T∑
t=1

E(�S
1,t)PG,t − 1, where M = 1∑T

t=1(a + bPG,t + cP2
G,t)

(12)

2(r1) = M2
T∑

t=1

P2
G,t�

2(�S
1,t) (13)

3(r1) = M3
T∑

t=1

P3
G,ts

3(�S
1,t) (14)

.2. Return model of non-local contracts

(ri) = M

T∑
t=1

PG,t[�B
i,t − �[E(�S

i,t) − E(�S
1,t)]] − 1; i = 2∼n (15)

�2(ri) = M2
T∑

t=1

P2
G,t�

2[�2(�S
1,t) + �2(�S

i,t) − 2 Cov(�S
1,t, �S

i,t)];

i = 2∼n

(16)

3(ri) = M3
T∑

t=1

P3
G,t�

3[s3(�S
1,t) − s3(�S

i,t) − 3Coskew(�S
1,t, �S

1,t, �S
i,t)

+ 3Coskew(�S
1,t, �S

i,t, �S
i,t)]; i = 2∼n (17)

.3. Covariance between risky trades

ij = Cov(ri, rj) = M2
T∑

t=1

P2
G,t�

2[�2(�S
1,t) − Cov(�S

1,t, �S
i,t)

− Cov(�S
1,t, �S

j,t) + Cov(�S
i,t, �S

j,t)]; i, j = 2∼n (18)

1j = Cov(r1, rj) = M2
T∑

t=1

P2
G,t�[�2(�S

1,t)−Cov(�S
1,t, �S

j,t)]; j = 2∼n

(19)

.4. Coskewness between risky trades

1jk = Coskew(r1, rj, rk) = M3
T∑

t=1

P3
G,t�

2[s3(�S
1,t)

− Coskew(�S
1,t, �S

1,t, �S
j,t) − Coskew(�S

1,t, �S
1,t, �S

k,t)
+ Coskew(�S
1,t, �S

j,t, �S
k,t)]; j, k = 2∼n (20)
ms Research 80 (2010) 1314–1321

sjjk = Coskew(rj, rj, rk)=M3
T∑

t=1

P3
G,t�

3[s3(�S
1,t)

+ Coskew(�S
1,t, �S

j,t, �S
j,t) − Coskew(�S

1,t, �S
1,t, �S

k,t)

− Coskew(�S
j,t, �S

j,t, �S
k,t)

− 2(Coskew(�S
1,t, �S

1,t, �S
j,t) − Coskew(�S

1,t, �S
j,t, �S

k,t))];

j, k = 2∼n

(21)

s11k = Coskew(r1, r1, rk) = M3
T∑

t=1

P3
G,t�[s3(�S

1,t)

− Coskew(�S
1,t, �S

1,t, �S
k,t)]; k = 2∼n (22)

In the above equations, the estimation of E(�S
i,t

), �2(�S
i,t

),

Cov(�S
i,t

, �S
j,t

), s3(�S
i,t

) and Coskew(�S
i,t

, �S
j,t

, �S
k,t

) is a spot-price fore-
casting problem, which is an applied area of research field. In this
paper, they are simply estimated based on historical data according
to the statistical method. To model the daily and seasonal period-
icity, the sample of the spot energy price in the tth trading interval
consists of historical data in similar hours and months.

5. Case study

To demonstrate the effectiveness of the
mean–variance–skewness (MVS) portfolio theory based proposed
model for generation portfolio allocation, this paper considers the
case study of PJM electricity market [28]. The PJM energy market
consists of two-settlements (day ahead and real-time) spot market
with locational marginal price (LMP) which are calculated at each
bus in every 5 min. LMP reflects the value of the energy at the
specific location at a given time. For this study, let us consider
three pricing zones viz., PECO, PEPCO, and PENELEC zones in
PJM markets and only risky assets for trading. Suppose a GenCo
owing a 455 MW generation unit with a quadratic cost function of
pc(PG) = 1000 + 16.19PG + 0.00048P2

G , is located in PECO control
zone (Area 1). This GenCo has three trading settlements to sell
electricity: (1) trading in spot energy market, (2) bilateral contract
with customer in PEPCO zone (Area 2), and (3) bilateral contract
with customer in PENELE zone (Area 3).

Assume that on 31st July 2007, a GenCo in PECO zone is seek-
ing for optimal portfolio allocation solution, i.e., determining the
optimal trading amount (or trading ratio) of each market for the
decision period of month of August 2007. The GenCo will rely
its decision on the historical PJM market data from the month of
August 1999–2006, which are published on the website of PJM
electricity market [28]. The trading interval is one hour, so there
are 744 (=24 × 31) trading intervals in the decision period. First,
based on historical data and the return models derived in Section
4, the returns distribution of each asset (i.e., trading in spot energy
market and through bilateral contracts) are tested for normality.
Then, multi-objective optimal portfolio allocation with skewness
(described in Section 2) is determined with the MOPSO based algo-
rithm.

5.1. Testing for normality of return distribution

As a first step, it is required to test whether the GenCo’s returns
sis initially examines the normality of spot energy prices. Then, the
return distribution characteristics are tested for normality. These
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Table 1
Distribution tests results.

Jarque-Bera test
statistic (critical
value: 5.9915)

Lilliefors test statistic
(cutoff value: 0.0886)

Best 0.3572 0.0348
Median 22.6078 0.1741
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Table 2
Estimated returns.

Spot energy market Bilateral contract-1 Bilateral contract-2

1.80 1.54 1.60

Table 3
Variance–covariance matrix of the distribution of returns.

Spot energy
market

Bilateral
contract-1

Bilateral
contract-2

Spot energy market 0.0148 0.0021 0.0058
Bilateral contract-1 0.0021 0.0031 0.0015
Bilateral contract-2 0.0058 0.0015 0.0037

Table 4
Skewness–coskewness matrix of the distribution of returns.

sijk (×10−3)

Spot energy
market

Bilateral
contract-1

Bilateral
contract-2

k = 1 (Spot energy market)
Spot energy market 0.4794 0.1335 0.2152
Bilateral contract-1 0.1335 0.0782 0.0846
Bilateral contract-2 0.2152 0.0846 0.1314

k = 2 (Bilateral contract-1)
Spot energy market 0.1335 0.0782 0.0846
Bilateral contract-1 0.0782 0.0376 0.0526
Bilateral contract-2 0.0846 0.0526 0.0561

k = 3 (Bilateral contract-2)
Worst 726.6603 0.3980
Return in spot
energy market

14.5339 0.1747

ests provide the ground work for constructing an optimal portfolio
ith inclusion of skewness in MV portfolio model. The normality of

eturns is tested using Jarque-Bera [29] and Lilliefors [30] numer-
cal methods. Both the Jarque-Bera and Lilliefors test methods are
erformed at 5% level of significance and results are presented in
able 1. Since there are 744 spot prices in this example, Table 1
resents only the best, the median, and the worst (approxima-
ion to normal distribution) from the 744 samples, which have the

inimal, median, and maximal Lilliefors test statistic, respectively.
f the Jarque-Bera and Lilliefors test statistic is greater than their
espective critical values, then the null hypothesis of normality can
e rejected (at 5% level of significance). Test results presented in
able 1 show that only in case of the best spot energy prices, the
ull hypothesis of normality cannot be rejected. The null hypoth-
sis of normality is rejected in case of both the median and worst
pot energy prices. Table 1 also shows the normality test results
or the return in the spot energy market. Since both the Jarque-
era and Lilliefors test statistic values are significantly higher than
heir respective critical values, the null hypothesis of normality is
ejected in case of the return in the spot energy market as well.

These asymmetry and tail characteristics can also be more
ntuitively viewed through the frequency distribution of the
pot energy market return, as depicted in Fig. 3. It shows that
he distribution is skewed to right from the peak near value
f 2.5. Coefficient of skewness (equal to third central moment
skewness)/(standard deviation)3), for spot energy market is
ound to be 0.4083 (a symmetrical distribution has zero value).
he distribution characteristics for the other electricity assets

returns from bilateral contracts in this numerical study) are
lso tested and it was found that they also show positive skew-
ess. Two cases with different set of contract prices (viz, case
: �B

2 = 51.2 US$/MWh, �B
3 = 41.0 US$/MWh and case 2: �B

2 =

Fig. 3. Frequency distributions of the spot energy market return.
Spot energy market 0.2152 0.0846 0.1314
Bilateral contract-1 0.0846 0.0526 0.0561
Bilateral contract-2 0.1314 0.0561 0.0812

52.5 US$/MWh and �B
3 = 42.2 US$/MWh) for costumer in PEPCO

and PENELE pricing zones, respectively, are considered in this
study. The estimated return, variance–covariance (second cen-
tral moment), and skewness–coskewness (third central moment)
matrices for case 1 are shown in Tables 2–4, respectively, for each
asset’s return. Both statistical analysis and graphic illustration show
that the non-normality is significant; therefore, there is a need to
utilize the information about the skewness to obtain the optimal
portfolio in the electricity markets.

5.2. Solving the multi-objective portfolio problem

To efficiently solve the multi-objective MVS portfolio theory
based model for electricity portfolio selection without a-priori
information about objectives’ relative importance, this paper pro-
posed MOPSO algorithm for portfolio optimization. Before applying
MOPSO to solve portfolio problem, representation of a particle must
be formulated. The quality of an individual string of the population
is found using fitness evaluation function as given by equation (6).

Based on fitness values, pbest and gbest are initialized. Then, algo-
rithm follows the computational steps as depicted in Fig. 2. The
main constraint,

∑N
i=1wpi = 1, is handled through the normaliza-

tion of each wpi dividing by their sum. The tuning parameters of

Table 5
MOPSO parameters.

Parameter Values

Population size 200
External archive size 200
Mutation rate (PMUT) 0.5
Initial inertia weight (wmax) 0.9
Final inertia weight (wmin) 0.4
Maximum iterations 500
Acceleration constants (c1 and c2) 2.0
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Table 6
Pareto-optimal solutions.

Bilateral contact prices Portfolio model Energy allocation proportion Expected return

Spot energy market Bilateral contract-1 Bilateral contract-2

B

M
i

l
r
C
M
s
o
o
s
t
o
p
s

�2 = 51.2 US$/MWh MV 0.4303
�B

3 = 41.0 US$/MWh MVS 1.00
�B

2 = 52.5 US$/MWh MV 0.3877
�B

3 = 42.2 US$/MWh MVS 0.9838

OPSO algorithm are selected through experiment and presented
n Table 5.

MOPSO is first applied for MV theory based electricity portfo-
io selection, where only first two central moments (i.e., expected
eturns and risk) are optimized. Then, since distribution of Gen-
os’ returns are non-normal and exhibits positive skewness; the
VS portfolio model is used to utilize the information about the

kewness (third central moments) and optimized using MOSPO to
btain the optimal generation portfolio. The distribution of Pareto-
ptimal set over the MV and MVS efficient frontiers for case 1 are
hown in Figs. 4 and 5, respectively. It can be seen that the MOPSO

echnique preserves the diversity of the non-dominated solutions
ver the efficient frontier and solves effectively the multi-objective
ortfolio problem in a single run. Once, a set of Pareto-optimal
olutions is obtained through MOPSO, GenCo needs to select one

Fig. 4. MV portfolio frontier.

Fig. 5. MVS portfolio frontier: three objectives space.
0.4182 0.1515 1.6621
0.00 0.00 1.8007
0.3385 0.2738 1.6991
0.0162 0.00 1.7976

optimum solution, which satisfies the respective goals. For this, the
fuzzy membership functions [31] that represent the goals of each
objective function are used. The best trade-off solutions for MV and
MVS frontier are depicted on their efficient frontier in Figs. 4 and 5,
respectively, and correspondingly electricity portfolio allocations
are presented in Table 6.

Simulation results presented in Table 6 indicate that in MV
framework GenCo participates in spot and contract market (con-
tract 1) with almost equal share of 43.03% and 41.82% respectively,
whereas its share in contract 2 is only 15.15%. This can be jus-
tified by looking to the returns distribution characteristics in
Tables 2 and 3. Although the expected return in contract 1 is less
than that in contract 2, GenCo’s share is higher in contract 1 than
in contract 2 because contract 1 is associated with low risk. It can
be seen from Figs. 4 and 5 that when skewness is considered, the
optimal portfolio is pushed further up on the efficient frontier sig-
nifying GenCo can get a higher return if it includes skewness in
its decision making process. The corresponding asset proportions
are presented in Table 6 and it is observed that GenCo gets higher
return in comparison to MV based portfolio allocation (refer last
column in Table 6). This suggests that the MV optimal criteria will
lead to sub-optimal portfolios in the presence of skewness. More-
over, to observe the effect of bilateral contract prices on portfolio
allocations, case 2 has also been analyzed. The simulation results
based on MV and MVS portfolio model are presented in Table 6.
These results show that the optimal proportion to be allocated to
the bilateral contract, is increasing with the increase of bilateral
contract price.

6. Conclusions

The simulation results presented in this paper supports the
view that electricity assets have significant non-normal return
characteristics and because of this, GenCo should consider all the
first three central moments (mean, variance, and skewness) of the
return distribution while deriving the generation portfolio alloca-
tion. Therefore, the mean–variance–skewness (MVS) model utilizes
the multi-objective particle swarm optimization (MOPSO) as opti-
mization tool is proposed in this paper. The performance of MVS
model is compared with the classical mean–variance (MV) model
using a case study of the PJM electricity market. Simulation results
reveal that the MVS model can provide better portfolios in compar-
ison to the MV model particularly when assets have non-normal
return characteristics.

Appendix A.

Particle swarm optimization (PSO), due to its fast convergence
for solving single-objective optimization problems [26], has been
extended for solving multi-objective optimization (MOO) prob-
lems, called “multi-objective PSO” (MOPSO) [24]. When dealing

with MOO problem, every particle represents one potential solution
and all the particles in the swarm can search for the different parts
of the Pareto-optimal front simultaneously. Therefore, MOPSO can-
not use equation (10) (in Section 3.2) in a straight forward manner
for pbest and gbest. As a result, selection of the local and global best
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guide for each particle in the swarm is a crucial step in MOPSO
algorithm. Indeed, in the recent years some other techniques have
been incorporated into multi-objective-PSO algorithms in order to
make better convergence to the true Pareto-optimal front as well as
to achieve a well-distributed Pareto-optimal set of solutions [32].

This paper presents an implementation of MOPSO-CD [27] that
incorporating the mechanism of crowding distance computation
in the global best selection, for MVS generation portfolio allocation
and therefore, it briefly explained here. In MOPSO-CD, all the non-
dominated solutions found along the search process are stored in
a bounded external archive. Whenever this archive is full, it will be
truncated using crowding distance mechanism. This promotes to
implicitly maintain the diversity among the non-dominated solu-
tions stored in the external archive since those solutions which are
most crowded area are most likely to be replaced by a new solution.
The mutation operator of MOPSO boosts the exploration capabil-
ity and thereby preventing premature convergence due to existing
local Pareto-fronts in some optimization problems (that means
helps to improve the global search). At the end of the execution, all
the particles stored in the external archive give us an approximation
of the true Pareto-optimal front. The pseudo-code of MOPSO-CD is
given below and its block diagram shown in Fig. 2. More details of
this algorithm and pseudo-code for computing crowding distance
can be found in [27].
Pseudo-code for MOPSO-CD
Initialize swarm and size of external archive
Evaluate objective functions
Store pbests
Store non-dominated particles in external archive
Iter = 0;
while (Iter < Itermax); where Itermax is the maximum number of iterations

Compute the crowding distances in external archive
Select the global best guide (using crowding distances)
Update velocity and positions of the particles
if (Iter < (PMUT × Itermax)); where PMUT is the probability of mutation

Perform mutation
end if
Evaluate objective functions
Update external archive
Update pbests
Iter = Iter + 1

end while
Report results (external archive)
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