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bstract

Simulation of the electricity market participant’s behaviour is important for producers and consumers to determine their bidding strategies and
or regulating the market rules. In literature, for this aim a lot of papers suggest to use the well-known theory of non-cooperative games and the
oncept of Nash equilibrium. Unfortunately they cannot be applied in an easy way when a multi-players game has to be considered to simulate the

peration of the electricity market. In this paper, the authors suggest to use the new theory of evolutionary games and the concept of near Nash
quilibrium to simulate the electricity market in the presence of more than two producers. In particular, an opportune genetic algorithm has been
eveloped; from the results reported in the paper, it is clear that this algorithm can be usefully utilised.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Market simulators are increasingly used to replicate the
ehaviour of electricity market participants (producers and con-
umers). These have to reproduce the actual electricity market
peration as closely as possible. Thus, their design must to
ake into account all of the electricity market rules and peculia-
ities.

The electricity market is organised in two sessions: the day-
head market and the reserve market. In particular, in an auction
ase day-ahead market, the market operator processes the bid
nformation provided by the producers and consumers and
ggregates this information creating hourly offer and demand
urves, respectively. Once the bids are submitted, a market
learing algorithm matches the production and demand curves
roducing a series of hourly equilibrium prices and accepted
uantities.

Identifying the electricity market equilibrium is an objective

oth for market participants and for regulators: for participants
ecause the market equilibrium shows long-term bidding strate-
ies of their rivals; for regulators because in this way the market

∗ Corresponding author. Tel.: +39 0984494689; fax: +39 0984494713.
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ower monitoring and corrective measures implementing are
ossible.

To achieve this objective, it is necessary to design a market
imulator that is: (1) to create a realistic electricity market model,
2) to simulate how participants generate their bids and, so, (3)
o identify admissible market equilibrium. Step 1 is performed
y means of a sophisticated optimisation technique that selects
roducers and consumers bids; step 2 is performed by opportune
onsumer–producer bids linear stepwise model and step 3 is
mplemented using the concepts of non-cooperative games and
ash equilibrium (NE) [1,2].
However, there are some difficulties in designing a rigorous

arket simulator applicable to the electricity market. One of
hem is due to transmission system constraints that complicate
he market clearing mechanism and cause the income functions
o be non-differentiable and non-concave. Another difficulty is
o identify NE when three or more players participate in the same

arket as in the electricity one [3].
Several approaches can be used to overcome the above men-

ioned difficulties. Among them the attention is focused on
athematical and evolutionary programming.

The mathematical programming approach uses a numeri-

al framework such as: the linear complementarity problem;
athematical programming with equilibrium constraints; or a

onventional optimisation technique. This approach can find the

mailto:sorrentino@deis.unical.it
dx.doi.org/10.1016/j.epsr.2007.04.005
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E of a multiplayer game that has differentiable and concave
ncomes. Then, when transmission constraints or population
apacity bounds are present this approach has difficulties in
etermining NE because the income functions can be non-
ifferentiable and non-concave.

On the contrary, the evolutionary programming approach
equires neither differentiability nor concavity of the income
unctions, so it can be used in an effective way [4,5]. In the con-
ext of evolutionary programming, the evolutionary game theory
s based on the player’s evolutionary learning. Besides, Riech-

ann [6] showed that the canonical genetic algorithm (GA)
ased on the economic learning processes corresponded to evo-
utionary games and noted that the learning process results in
near Nash equilibrium”.

From the above considerations, in the paper, a GA is designed
o simulate a multiplayer electricity market with transmission
ystem constraints, in order to analyze the behaviour of the
roducers in a real life market.

A continuous strategy for the producers is assumed and, for
he sake of simplicity, no consumers’ competition is considered.
he multi-zonal market framework is adopted for the market
learing algorithm to take into account transmission system
onstraints such as the Italian power exchange (PX).

In the first part of the paper, the basic characteristics of the
dopted market model and the concepts of evolutionary games
re illustrated. Then the implemented GA evolutionary game for
lectricity market simulation is reported in detail.

In this context, the numerical experiment is performed in
rder to demonstrate how the proposed market simulator works
ell to simulate the behaviour of the producers.

. Market model

In this section the market participants and power exchange
PX) models that will be used for the simulator, are presented.

.1. Producer model

As well known, production cost function is a quadratic func-
ion:

T(QV) = c0 + c1QV + c2QV2 (1)

here QV is the produced energy in MWh.
From (1) it is possible to consider the following marginal cost

unction:

= ∂CT

∂QV
= c1 + 2c2QV (2)

he utility may increase its production up to its maximum capac-
ty Pmax and construct its trading price curves either from the
arginal cost or from the incremental cost curve. The incremen-

al cost curve will provide a utility with the minimum price to
eceive from the sale of energy.
Since marginal costs are linear functions, producers’ bids are
lso considered a linear function and then the bid price is

Vk
j = mλ with m > 1 for jth producer in area-k (3)

m

Q
p
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hen, the decision variable is m which denotes the bid curve
lope.

It is worth to underline that more complex strategies can be
dopted without any difficulty inside the model f.i. taking into
ccount ramping limit, etc.

Being the basic aim of the paper to propose a simulation tech-
ique of the competitive environment the simplest but effective
roducer model is adopted.

.2. Consumer model

Consumers are modelled in a simple way because the main
urpose of the electricity market simulator proposed in this paper
s to analyze the behaviour of producers; then each consumer bid
s considered a fixed couple of price-quantity values.

.3. Market clearing algorithm

A network-constrained single period auction to minimize
nergy price is used to clear the market. It results in an optimi-
ation problem. The power system is divided into several areas
onnected by interconnection lines: if no congestion is detected
n the interconnection lines, a unique energy price is determined
or the system; otherwise the market is split in two or more zones
orresponding to the area where the congestion is detected and
ach sub-market is cleared and then equilibrium price is valuated
or each zone.

The complete formulation of the optimisation problem,
enoted as PX model, is as follows:

ax
∑

k,i

QAk
i PAk

i −
∑

k,j

QVk
jPVk

j (4)

.v.

≤ QVk
j ≤ QVk

j ∀j, k (5)

≤ QAk
i ≤ QAk

i ∀i, k (6)

k,j

QVk
j −

∑

k,i

QAk
i = 0 (7)

Rh =
∑

k

Sk
hQVNk ∀h (8)

INFh ≤ TRh ≤ MAXFh (9)

here (4) indicates the energy transactions; (5) and (6) are the
ounds of energy quantities of producers and consumers bids;
7) defines the energy balance in the system neglecting losses; (8)
nd (9) concern the energy flowing through the interconnections
nd its limit.

It is worth to underline that this model is adopted by PX in
taly [7]. The optimisation problem is linear and so it can be
olved by the well known methods and algorithms.
If QVk
j is accepted QVk

j = QVk
j this means that the Lagrange

ultiplier ρk
j related to the upper limit constraint of type (5) on

Vk
j is different from zero. As well known a Lagrange multi-

lier is the increment of the objective function in consequence



Systems Research 78 (2008) 475–483 477

o
s
p
t
(
(

e

P

O

P
p
t
a

•

•
•

3

d
t
d
G
n
a

3

n
a
i
c
e
a
S

P
a

d
l
a
i
i
t
i
c

o

o
t
s
s
p
c
t
d
t
o

p

P
p
g

i
i
g

D
a
f

(

(
(

R

D. Menniti et al. / Electric Power

f a unitary relaxation of the related constraint. In this case, con-
idering ρk

j , the unitary relaxation means that 1 MWh of the j
roducer in zone k is sold. In this case the increment of the objec-
ive function is the difference between the price to pay energy
zonal equilibrium price P*k) and the price offered by the seller
PVk

j).
From this consideration and how described in [7] the zonal

quilibrium price is given by

∗k = ρk
j + PVk

j (10)

bviously, this is true for each generator j in a zone k: ρk
j +

Vk
j in equal to P*k for each k. It is worth to underline that, in

resence of congested network the Lagrange multipliers related
o transmission constraints are, in general, different from zero
s the constraints are met and so they affect zonal prices.

It is clear that:

Every consumer bid with bid price above P*k is completely
accepted.
Every producer bid with bid price below P*k is accepted.
Bids with a price equal to P*k can be partially accepted.

. Genetic algorithm as evolutionary game

In this section, using the results reported in [6,8], it will be
emonstrated that a canonical GA can be considered an evolu-
ionary game. According to this aim three assumptions will be
iscussed in detail: (a) every GA is an evolutionary game; (b) in
A learning processes, populations tend to converge towards a
ear Nash equilibrium; (c) a concept of evolutionary superiority
nd evolutionary stability exist.

.1. Canonical genetic algorithm and evolutionary games

The economic market process can be reproduced by an Eco-
omic GA. A canonical GA whose individuals are economic
gents is called Economic GA. The fitness related to each
ndividual is its economic success in the market against the
ompetitors, then, in economic GAs the fitness related to an
conomic agent does not only depend on its own strategy, but
lso on the strategies of all other agents involved in the model.
o the following proposition holds:

roposition 1 (Economic GA). An economic GA is a GA with
state-dependent function.

In the economic market process, every economic agent pro-
uces its strategy by a process of learning. There are two kinds of
earning: social, learning by interaction within a single economic
gents population, examples of social learning are learning by
mitation and learning by communication; individual, learn-
ng by experiment. They are variety generating processes. In
he canonical GA these processes are reproduction that can be

nterpreted as learning by imitation, crossover as learning by
ommunication, and mutation as learning by experiment.

The market plays the role of variety restricting process, i.e.
nly the “best” strategies survive. In canonical GA, there is

t
a
r
o

Fig. 1. Similitude between GA and market process.

ne restricting process which is the genetic operator of selec-
ion. GA selection decreases the number of different economic
trategies within the population. It firstly evaluates the economic
uccess of each strategy in the market and selects strategies to be
art of the next population. The used selection operator (often
alled roulette-wheel selection) consists of repeatedly drawing
he strategies from the pool of the old population to be repro-
uced in the next one, on the basis of its relative fitness which is
he ratio of its market success to the sum of the market success
f all strategies in the population.

Fig. 1 shows the similitude between the economic market
rocess and canonical GA process.

roposition 2 (GA-evolutionary games). Every simple, one-
opulation, economic genetic algorithm is an evolutionary
ame.

In order to provide some evidence for this proposition, a def-
nition is needed that clearly states what an evolutionary game
s. This paper makes use of the definition by Friedman [8], who
ives three characteristics for an evolutionary game:

efinition 1 (Evolutionary game; Friedman). An evolution-
ry game is a dynamic model of strategic interaction with the
ollowing characteristics:

a) higher income strategies tend over time to displace lower
income strategies;

b) there is inertia;
c) players do not intentionally influence other players’ future

actions.

iechmann [8] demonstrates how GA matches the characteris-

ics (a), (b) and (c). In a few words GA learning models describe
repeated economic game. Imagine an economic genetic algo-

ithm using a population of M genetic individuals with the length
f each individual’s bit string of L. Each individual represents
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he strategy of the economic agent. Due to the binary coding
f genetic individuals, this means that each genetic individual
epresents one out of N = 2L different values constituting the set
f available strategies S. This means that the GA is able to deal
ith every economic strategy in the set of all available strate-
ies S. Thus, the GA can be interpreted as a repeated symmetric
ne population M person game with up to N pure strategies.
ut, compared to normal evolutionary games, within most eco-
omic GA learning models, the rules of the game are different.
hereas in evolutionary games most of the time a strategy is

epeatedly paired with single competing strategies, in genetic
lgorithm learning, each strategy plays against the whole aggre-
ate rest of the population. Instead, every economic agent aims
o find a strategy belonging to S performing as well as possible
elative to its environment, which is completely determined by
he current population and its objective function (R).

At a first glance, it is the structure of genetic algorithms and
volutionary models that suggests a close relationship between
As and evolutionary game theory: both face the central struc-

ure of a population of economic agents interacting within some
ell-defined economic environment and aiming to optimize

ndividual behaviour.

.2. Genetic population as near Nash equilibrium

It is known, that every economic agent aims to find the best
erforming strategy i with respect to the objective function R and
iven the strategies of the rest of his population n. This means
hat every economic agent faces the problem:

ax
i ∈ S

R(i) (11)

here S is the set of the possible strategies.
This immediately leads to the concept of Nash equilibrium.
Nash strategy of an economic agent is defined as the best

trategy given the strategies of the competitors, and it is exactly
hat every economic agent, alias genetic individual, is trying to

chieve.
Although selection and reproduction tends to drive the

opulation towards Nash equilibrium, mutation (learning by
xperiment) prevents the population from fully reaching such
quilibrium. Obviously, a mutation probability value greater
han zero is necessary to cover a wider search region. It can
e so concluded that genetic population represents a state which
s not a real Nash equilibrium point but it is “not far from it”.
his state will be called “near Nash equilibrium”.

Then, the following proposition can be stated.

roposition 3 (GA populations-near Nash equilibrium). In
very simple one—population, economic genetic algorithm, the
opulation tends over time to move to a Nash equilibrium with-
ut fully reaching it.

.3. Evolutionary stability and superiority of genetic

opulation

In the evolutionary game it is important to define the con-
ept of evolutionary stability. The evolutionarily stable strategies

i
t

a
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re based on the notion that invading strategies are somehow
ejected or eliminated from the population.

GAs present a clear concept of rejection: every strategy will
e exposed to a test, which has been described as a one-against-
he-rest game in the previous sections. Then the strategy will
e reproduced or rejected with a probability depending on its
erformance (i.e. market performance) in this game. Indeed,
A reproduction has two main features: it selects due to perfor-
ance and it selects due to probability; a bad strategy will be

ejected in this way almost surely although not with probability
ne.

Thus, a refined concept of evolutionary stability is needed for
enetic algorithms: a genetic population is evolutionarily stable
f the process of the genetic algorithm rejects an invasion by one
r more strategies from the genetic population.

In GA the concept of evolutionary stability is replaced by the
oncept of an evolutionarily superior population. More formally,
genetic population n̄ will be called evolutionarily superior to
opulation m̄ if it exhibits two characteristics:

. Every strategy contained within population n̄ maintains or
increases its fitness value with respect to the one in the basic
population m̄, while at least one strategy increases its fitness
in n̄ than in m̄.

. The invading strategies k ∈ {m̄/n̄} are the worst performing
strategies contained in m̄, so that they will be most surely
rejected.

This definition of evolutionary superiority induces a partial
rdering on the space of genetic populations, which resembles
he concept of Pareto superiority.

. Market simulator

The main objective of this section is to show how it is possible
o simulate the electricity market by GA-evolutionary games.

.1. Representation

The main problem is to represent the decision variables as
enetic individual. As said each participant, in particular pro-
ucer, submits a couple of quantity and price; so two variables
ave to be considered. For the sake of simplicity only the price
s considered as a decision variable in competition; this assump-
ion is realistic as it is reasonable to suppose that the quantity of
nergy is strictly related to technical limits.

The price is an integer number expressing the unitary price in
uro per MWh easily convertible in binary string of opportune
ength for crossover and mutation operation and represents the
ndividual of genetic population.

An individual represents the price offered by a producer and
o the population represents the set of prices offered by the pro-
ucers operating in same market. The evolution of this individual

n the population represents the “natural” competitive game in
he market.

Obviously, the price may vary inside realistic minimum
nd maximum values, in this case the possible producers’
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rices; note that in such a way a continuous strategy is
dopted.

.2. Initialization

The initial population is randomly valuated; for each producer
price is chosen randomly between the minimum and maximum
alues above defined.

.3. Fitness evaluation

In the paper the attention is focused on the dynamic of bid
rice; the quantity offered by each producer is assumed constant.
he fitness is calculated in two steps, as follows:

Step 1. Using the individuals of the population as producers’

price PVk
i , and the fixed energy quantity QVk

j , run the PX

model to clear the market and find the equilibrium price P*.
Step 2. The fitness of each individual i is calculated as follows:

fi = P∗kQVk
i − CT(QVk

i ) ∀i, k (12)

where QVk
i is the accepted quantity according to the clearing

market model depicted in Section 2.3. Note that the fitness of
each individual is related to the value of the other individual:
it is “state dependent”.

.4. Selection and competition

The problem of selecting the parents in offspring popula-
ion is important for evolution. Parents are selected according
o their fitness. In this paper a roulette rule selection method
s used. Imagine a roulette wheel where all the individuals of
he population are placed; the size of the section in the roulette
heel is proportional to the value of the fitness function of every

ndividual—the bigger the value, the larger the section. A marble
s thrown in the roulette wheel and where it stops the individual
s selected. Clearly, the individuals with a higher fitness value
ill be selected more often.
This process can be described by the following algorithm:

. [Sum] Calculate the sum of all individual fitness in the
population—sum S.

. [Select] Generate a random number from the interval (0,S)–r.

. [Loop] Go through the population and sum the fitness from
0–sum s. When the sum s is greater then r, stop and return
the individual to where you are.

f course, Step 1 is performed only once for each population.

.5. Creation of offspring

In this paper a single point crossover is used between two
ndividual selected using the procedure illustrated in Section

.4. The selected individuals are converted in binary strings of
pportune length compatible with the required precision. One
rossover point is selected, the binary string from the beginning
f the individual to the crossover point is copied from the first

2

3

4
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arent, and the rest is copied from the other parent. Naturally,
he individual that has the best fitness value is reproduced as it
s in the next population.

After the crossover, mutation is performed inverting the
elected bits with a given probability.

.6. Iterative algorithm and termination criteria

To simulate the competition, several populations have to be
erformed; nevertheless not all the populations are a solution of
he competition: only a population satisfying the condition of
volutionary superiority with respect to a previous solution is
etected as a solution to the evolutionary game. This population
epresents the set of best strategies of the market participants.
he diversity of populations is so based on the concept of evo-

utionary superiority given in Section 3.3.
Having in mind to simulate the behaviour of the producers

ver a long period, the proposed algorithm will be stopped when
he predefined maximum number of populations is reached.

The iterative algorithm that simulates the electricity market
s summarized as follows:

(a) Perform the initialisation procedure illustrated in Section
4.2, and then obtain the population that is conventionally
fixed as problem solution.

b) Fitness evaluation.
.1) Solve the PX model.
.2) Calculate the income of each producer and assign the rela-

tive value as fitness to each individual.
d) If the new population is evolutionarily superior with respect

to the actual problem solution then the solution is updated
otherwise not.

(e) Apply the selection, competition and creation of offspring;
then obtain the new population.

(f) If the predefined maximum number of populations is
reached then go to (g) else repeat steps (b)–(f).

g) Obtain the final solution.

The above algorithm is illustrated in Fig. 2.

. A numerical example

The aim of this numerical example is to show how the pro-
osed market simulator works well to simulate the behaviour of
he producers. In particular, the simulator is used for a 10-player
ay-ahead energy market simulation to investigate how the price
hanges when multiple producers are in competition. Moreover,
he number of ten producers is a realistic case [1].

The following simplifying hypotheses have been made:

. the total power required by the consumers is QA =
11, 000 MWh;
. only one zone is considered;

. QA =
10∑

i=1

QVi;

. PVi ∈ [5, 30], i = 1, . . . , 10
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art of the algorithm.
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Table 1
Quantity of energy of the producers (MWh)

QV1 1500
QV2 1200
QV3 1300
QV4 1000
QV5 800
QV6 1050
Fig. 2. Flow ch

For the case considered in the paper according to point 3 all
he producers bids will be selected so the producers quantities
re fixed, i.e. production cost are fixed so maximize the fitness
s translated in maximizing the total income.

The consumer price bid is 35 D /MWh; note that is higher than
he producer price bid upper bound so the consumers will be in
ny case satisfied. In Table 1 the bounds of the power offered by
roducers are reported. For sake of simplicity only one zone is
onsidered.

According to (3) the hypothesis 3 implies that m is a con-
inuous variable with opportune bounds in consequence of the
arginal cost of each producer.
A random population has been chosen as the initial evolu-

ionary superior population for simulation and it is reported in
able 2; its clearing price is 13 D /MWh.

QV7 700
QV8 900
QV9 1700
QV10 950
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Table 2
Initial population

Producer Income (D ) Price (D /MWh)

1 19500.00 11.00
2 15600.00 6.00
3 16900.00 9.00
4 13000.00 12.00
5 10400.00 5.00
6 14300.00 7.00
7 4550.00 13.00

1

d
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T
E

P

1
2
3
4
5
6
7
8
9
1

T
E

P

1
2
3
4
5
6
7
8
9
1

8 11700.00 10.00
9 23400.00 8.00
0 13650.00 5.00

After 64 populations an evolutionary superior population is
etected and is reported in Table 3 and a clearing price equal to
7 D /MWh is reached.

Comparing the initial solution and the solution obtained at
4th population, it is clear that the income is higher for each
ndividual; moreover, the strategy has been modified by the pro-
ucers that have a worst income in the initial solution. Note that
he clearing price is increased by 107.7% and so the increase in
ncome is up more than 100% for several individuals. Besides it
an be underlined that the 9th individual, having the best fitness
n initial population, is reproduced in the analyzed population.
After 425 populations another evolutionary superior solution
s detected with a clearing price equal to 29 D /MWh. The pop-
lation is reported in comparison with the solution at the 64th
opulation in Table 4.

i
i
i
b

able 3
volutionary superior population at 64th population compared with the initial one

roducer Payoff (D ) at 64th
population

Payoff (D ) at 0th
population

Payoff (D )
improveme

40500.00 19500.00 +107.7
32400.00 15600.00 +107.7
25650.00 16900.00 +51.77
27000.00 13000.00 +107.7
21600.00 10400.00 +107.7
29700.00 14300.00 +107.7
18900.00 4550.000 +315.4
24300.00 11700.00 +107.7
48600.00 23400.00 +107.7

0 28350.00 13650.00 +107.7

able 4
volutionary superior population at 425th population compared with 64th population

roducer Payoff (D ) at
425th population

Payoff (D ) at 64th
population

Payoff (D )
improveme

43500.00 40500.00 +7.41
34800.00 32400.00 +7.41
27550.00 25650.00 +7.41
29000.00 27000.00 +7.41
23200.00 21600.00 +7.41
31900.00 29700.00 +7.41
20300.00 18900.00 +7.41
26100.00 24300.00 +7.41
52200.00 48600.00 +7.41

0 30450.00 28350.00 +7.41
ms Research 78 (2008) 475–483 481

It is clear that the income increases slowly with respect
o the last solution. This means we are close to a reasonable
quilibrium point. Note that the 3rd individual determines the
quilibrium price in both populations.

After 654 populations another evolutionary superior solution
s detected with a clearing price equal to 30 D /MWh. The pop-
lation is reported in comparison with the solution at the 425th
opulation in Table 5.

Note that also in this case the income increase is below 4%,
nd then we are very near to the final solution.

Indeed also after 1500 populations no evolutionarily superior
olution is detected so we can conclude that no producer has
onvenience in changing his strategy: a “near Nash equilibrium”
s detected; after 654 generations the price cap is reached and
ach competitor has maximized his income.

Comments: As expected in the presence of an oligopoly the
learing market price increases: a kind of collusion exists (see
ig. 3). The income is strictly dependent on the state of the
opulation. It can be noted that the 9th individual (in bold in
he tables) by his income increase for the price strategy has
he same price strategy as the other individuals in the popu-
ation.

Looking at Fig. 4, it can be noted that the income increase,
or each producer, with different slope in a first stage then they

ncrease in the same way. That is an equilibrium of power market
s reached. It is confirmed by Figs. 5–8 that report how the total
ncome is divided in percent by the producers. Moreover, it can
e seen that such values are very close to those that represent,

nt (%)
Strategy/price (D /MWh)
at 64th population

Strategy/price (D /MWh)
at 0th population

12.00000 11.00000
8.000000 6.000000

27.00000 9.000000
7.000000 12.00000

13.00000 5.000000
14.00000 7.000000

8.000000 13.00000
18.00000 10.00000

8.000000 8.000000
23.00000 5.000000

nt (%)
Strategy/price (D /MWh)
at 425th population

Strategy/price (D /MWh)
at 64th population

24.00000 12.00000
27.00000 8.000000
29.00000 27.00000

6.000000 7.000000
8.000000 13.00000

19.00000 14.00000
5.000000 8.000000

12.00000 18.00000
8.000000 8.000000

26.00000 23.00000
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Table 5
Evolutionary superior population at 654th population compared with 425th population

Producer Payoff (D ) at
654th population

Payoff (D ) at
425th population

Payoff (D )
improvement (%)

Strategy/price (D /MWh)
at 654th population

Strategy/price (D /MWh)
at 425th population

1 45000.00 43500.00 +3.45 23.00000 24.00000
2 36000.00 34800.00 +3.45 23.00000 27.00000
3 28500.00 27550.00 +3.45 30.00000 29.00000
4 30000.00 29000.00 +3.45 10.00000 6.000000
5 24000.00 23200.00 +3.45 22.00000 8.000000
6 33000.00 31900.00 +3.45 10.00000 19.00000
7 21000.00 20300.00 +3.45 19.00000 5.000000
8 27000.00 26100.00 +3.45 27.00000 12.00000
9 54000.00 52200.00 +3.45 8.000000 8.000000
10 31500.00 30450.00 +3.45 27.00000 26.00000

Fig. 3. Clearing price over generations.

Fig. 4. Income over generations.

Fig. 5. Total income repartition among producers at iteration 0.

Fig. 6. Total income repartition among producers at iteration 64.

Fig. 7. Total income repartition among producers at iteration 425.

Fig. 8. Total income repartition among producers at iteration 654.
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Fig. 9. Energy offered by producers.

n percent respect to the total, the quantity of energy offered by
he producer (Fig. 9).

. Conclusion

In the paper a GA-evolutionary game is proposed to simulate
he behaviour of two or more producers operating in the same
lectricity market. The GA can be used to forecast, over a long
eriod, the electricity price and how the competition can influ-
nce it. A future aim of the authors is to implement evolutionary
ames among producers and consumers taking into account also
nterzonal congestions, an elastic demand and so to use the pro-
osed market simulator for more realistic cases. The basic idea
s to perform competition between two populations: producers
nd consumers and using the clearing market model to evaluate
he economic success of the competitors.
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ppendix A. List of symbols

T(QVk
i ) is the cost function for individual i

[

[
[

ms Research 78 (2008) 475–483 483

i fitness of each individual i
AXFh, MINFh maximum and minimum power flowing rate

on interconnection h.
TR is the number of interconnections among areas
* energy national price
*k is the market cleared price in area k
Ak

i buyer i in zone k price
Vk

j seller/buyer bid price

Ak
i buyer i in zone k bought power

Ak
i buyer i in zone k offered power

Vk
j seller i in zone k sold power

Vk
j seller i in zo+ne k required power

objective function
k
h sensitivity coefficient of power flowing on the inter-

connection h
ubscript i denotes buyers
ubscript j denotes sellers
uperscript k denotes the market zone
Rh power flowing on interconnection h (h = 1, . . ., NTR)
VNk = ∑

jQVk
j − ∑

iQAk
i is the power injection in area k
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