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Abstract 

Metropolitan smog alerts are prominent public information campaigns designed to enhance public 

health and to curb driving and other emissions.  Unlike many other voluntary information-based 

environmental policies, air quality alerts target household behavior via forecast information about 

ambient concentrations rather than firm or product characteristics.  This paper explores behaviors 

with high emissions (driving) and with high exposure (outdoor recreation) and underscores the 

difference between altruistic and risk aversion motivations.  Behavioral impacts are identified using 

the threshold nature of daily air quality forecasts.  A regression discontinuity (RD) design finds 

elderly users and exercisers tend to curtail their use of a major park following smog alerts.  The RD 

design also reveals that households do not drive less on smog alert days.  Juxtaposing high emissions 

behavior with high exposure behavior in the same study highlights how public forecast information 

may better trigger some responses and struggle to trigger others. 
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INTRODUCTION 

The purpose of forecasts is often to inform and affect behavior.  For instance, metropolitan 

smog alerts serve as a key element in a public information campaign designed to curb driving and 

other emission-causing behavior.  Environmental forecasts made available to the public are 

ubiquitous in the United States.  Forecasts about snowfall, natural disasters, droughts, pollen, pest 

and infectious disease outbreaks, and a host of other phenomena range in time horizons from hours 

to centuries.  The behavioral effects of these public forecasts are often taken for granted, assumed, 

or completely neglected – rarely are they actually measured.  Yet behavioral responses to forecast 

information can be critical to achieving environmental, public health, and other goals. 

This article focuses on a specific example of using smog alerts to change behavior in Atlanta.  

Similar forecast programs exist in over 300 major cities nationwide.  This publicly available forecast 

seeks to affect ozone-producing behavior in a city with severe air quality problems, thus making it of 

particular interest to policymakers using it as a low-cost tool to improve air quality and influence 

transportation demand.  These forecasts also serve public health goals by informing residents when 

to take precaution to avoid risks.  A better understanding of the behavioral impacts of programs like 

this can inform environmental, health, and transportation policy as well as those more generally 

interested in using public information to voluntarily “nudge” behavior.  The results indicate that 

Atlanta households do not drive less under smog alerts on average, despite the aims of the state’s air 

quality plan.  They also indicate mixed effects of smog alerts on park usage, with some sensitive 

populations reducing exposure in parks following smog alerts.     

The next section frames the analysis with some policy background and a review of previous 

empirical evidence.  Key issues are highlighted next in a discussion of activity choice that 

incorporates private and public interests and distinguishes between air quality and smog alerts.  This 

general framework predicts an ambiguous effect of smog alerts on driving and a negative impact on 

outdoor activities.  The results section reports the findings of an analysis of park usage data using a 
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regression discontinuity design that leverages the discontinuous or “threshold” nature of the smog 

alert system.  The results suggest that at least the sensitive populations (elderly, exercisers) do seem 

to reduce their park use on alert days, and likely those who would otherwise do strenuous activities 

in the park become low-intensity walkers.  The analysis employs a similar method to describe the 

impacts of daily air quality forecasts on driving behavior.  The conclusions highlight the 

complications of using forecasts as part of a public information campaign.  There does seem to be 

some positive effect on informing sensitive populations to avoid air pollution-related health risks, 

but the overall influence of the public information campaign to switch to alternative travel modes is 

not evidenced in the Atlanta data.  

 

BACKGROUND 

Policy Context 

 Recent years have seen a rise in information-based and voluntary policies (Niles and Lubell 

2012).  Following the command-and-control policies typical of the major federal environmental 

legislation (e.g., CAA, CWA, ESA, RCRA), a second wave of federal environmental legislation and 

regulatory efforts has emphasized the role of information provision in improving environmental 

quality and promoting voluntary “green” or healthy behavior.  Various informational regulations like 

the Toxic Release Inventory (TRI) and other voluntary programs (e.g., Project XL, Energy Star, 

Green Lights, 33/50 Program) have gained prominence in the policy landscape and received 

considerable attention by researchers (e.g., Alberini and Segerson 2002, OECD 2003, Konar and 

Cohen 1997, Khanna 2001, Shapiro 2005, Koehler 2007, Shimshack et al. 2007, Darnall and Sides 

2008, Innes and Sam 2008, Brouhle et al. 2009, Bae et al. 2010).  Some voluntary programs rely more 

on information provision than others.  In a Symposium on Voluntary Environmental Programs in 

this journal, Lyon and Maxwell (2007) discuss the role of information diffusion even in voluntary 
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programs targeting firm behavior.  The more information-based policies (e.g., ecolabeling, 

certification) tend to focus on firm behavior or product labeling to drive consumer demand.    

 This analysis focuses on air quality alerts – a type of voluntary, information-based 

environmental policy that offers two important departures from this literature.  First, they target 

household-level behavior via public information provision without providing information about 

product or firm qualities.  Second, the information provided is forecast information that describes 

future environmental quality and may prove inaccurate.  Because cost-effective attainment of federal 

Clean Air Act (CAA) standards involves reducing peak air pollution levels1 rather than average air 

pollution levels, policy mechanisms to reduce emissions during episodes of especially poor air quality 

become particularly attractive to local policymakers.  Being able to forecast such episodes enables 

policymakers to enact temporary, episode-specific measures that are likely much less costly than 

permanent emissions reductions.   

 Air quality advisories target the days when it matters most – those peak pollution days when 

the National Ambient Air Quality Standards (NAAQS) are violated – in an attempt to reduce 

polluting behavior.2  To achieve compliance with the NAAQS, states must submit their State 

Implementation Plans (SIPs) that demonstrate how their nonattainment area will achieve 

compliance by particular deadlines.  State regulators must select enough abatement mechanisms so 

1  Technically, it involves the average of the fourth-highest ozone levels in that year and the previous two years' 

fourth-highest ozone level.  Details on the determination of the NAAQS for each pollutant can be found at  

http://www.epa.gov/air/criteria.html . 

2 Air quality alerts take various forms in the 300-plus U.S. cities offering them.  Forecasts are typically issued the 

day before and accompanied by some background information and possible recommended responses.  There is 

considerable variety across cities in the information provided, pollutants being forecast, and alert threshold used.  

Some air quality alert programs are coupled with incentive-based policy changes (e.g., discounted transit) or 

mandates.  Atlanta’s Clean Air Campaign is predominantly voluntary and advisory. 
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that their projected air quality levels are in compliance.  States frequently opted for voluntary 

abatement programs in their SIPs, raising the question of how much emission reduction these 

programs yield.  The SIP for Atlanta (Georgia Department of Natural Resources and Environmental 

Protection Division 2001), for example, noted that its voluntary ozone abatement program would 

account for at least 3 percent of its emissions reduction needed to demonstrate attainment.3  The 

alert program is one such program. 

 Of course, air quality alerts may serve goals other than pollution reduction and compliance 

with the CAA.  Often, air quality alerts serve public health purposes.4  Informing residents about 

bad air quality episodes gives them information so that they can avoid or reduce exposure on those 

days.  Responses that reduce exposure may inadvertently raise emissions.  For example, commuters 

might avoid exposure by trading in their bicycles (with high exposure and low emission) for their 

cars (with low exposure but high emission) when the alert is sounded.  Unexpected or not, the 

impact of the forecast information is ultimately an empirical question.  This paper provides evidence 

on both kinds of behavioral impacts (emissions reductions, exposure avoidance) in Atlanta. 

Literature Review 

3  In its summary emissions budget calculations, the SIP includes the voluntary Partnership for a Smog-free Georgia 

(PSG) as an “off-model” source of motor vehicle emissions reductions that amount to a 5.6% reduction in VOC and 

1.8% reduction in NOx emissions.  The SIP goes so far as to refer to a 20% reduction in vehicle miles traveled in the 

region due to the PSG, expecting mobile source emissions reductions far in excess of the amount used in its 

calculations (Georgia Department of Natural Resources and Environmental Protection Division 2001).  

4 An e-mail survey conducted of air quality forecasting agencies revealed that, among the 44 agencies responding 

(whose alerts cover 81 different regions), roughly half of the areas’ alert messages advised the public to avoid 

exposure and to reduce emissions; while a fifth only recommended avoidance behavior and a fifth only 

recommended emissions reduction.  Atlanta’s alert program includes both recommendations in its messaging. 
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Existing evidence on the public’s responsiveness to smog alerts suggests that a significant 

impact may be likely.  First, a study of Atlanta’s early smog alert program (back when it was the 

PSG) in 1998 suggests significant impacts of forecasts on driving behavior (Henry and Gordon 

2003).  They conclude that alert days were associated with 5.5 fewer miles driven per commuter, 

even more for government employees, and no significant difference in the number of driving trips.  

They also note several factors such as boredom with public information campaigns and greater 

elasticity of transportation behavior in the long-run – both of which suggest that an analysis of 

behavior in 1998, only the first year of the program, might not reflect the more long-term effects of 

public forecast information.  The present analysis uses a broader sample, controls for some 

rescheduling of trips and substitution of trips within households, and examines forecast effects at a 

later date, perhaps after the novelty of the alerts has worn off and residents adjusted their travel 

behavior.  Concurrent with Henry and Gordon (2003), Cummings and Walker (2000) examine actual 

traffic volumes in Atlanta in the summer of 1998.  Their fixed-effect approach finds that May ozone 

action days experienced somewhat less traffic volume (0.2 – 8.9 percent) than was predicted, but this 

difference may just be noise.   

Welch et al. (2005) measure the impacts of a similar smog alert program in Chicago on 

transportation behavior.  They fail to find significant effects of “Ozone Alert Days” on overall 

ridership on Chicago Transit Authority trains, but they do observe changes consistent with riders 

shifting their schedules to avoid rail travel during afternoon hours.  Their study is limited to public 

rail turnstile counts, however, lending little insight into individual responses.  It does suggest, 

however, that aggregate measures of forecast impacts may mask subtle and complex shifts in travel 

behavior. 

A series of recent studies in California investigates the effects of air quality alerts on 

behavior.  Neidell (2004, 2005a, 2009) observes indirect evidence of averting behavior (i.e., avoiding 

exposure) in response to air quality forecasts by examining how hospital visitation for respiratory 
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problems differs between days with alerts and days without alerts.  Neidell shows a particularly 

strong effect of alerts in reducing hospital visitation for children.  This suggests that people do seem 

to take precaution on those days to avoid exposure.  By tracking attendance at major Los Angeles 

institutions, Neidell (2005b) finds more direct evidence of behavioral changes in response to air 

quality alerts.  As expected, visitation at attractions associated with more outdoor activity (e.g., LA 

Zoo, Griffith Park Observatory) fell on alert days.  This is primarily due to declined in visitation by 

youth and elderly patrons, again signaling that more sensitive populations are more responsive to 

alert information.  This is also consistent other survey research showing that parents of asthmatics 

claiming to be more responsive and to have greater willingness to pay to avoid exposure for their 

children than others (McDermott et al. 2006, Mansfield et al. 2006).  Sensitive populations and those 

with lower-cost substitute activities (such as locals rather than tourists) may undertake averting 

behavior in Southern California.  Zivin and Neidell (2009) observe forecast fatigue, where behavior 

changes on the first day of an air quality episode that spans multiple days, but largely resumes its 

normal pattern by the second day.  This provides evidence consistent with the idea that ozone 

forecasts can promote averting behavior especially among sensitive populations and when substitute 

activities are low cost.  Cutter and Neidell (2009) show how smog alerts in the San Francisco Bay 

Area affect transportation behavior.  They find decreases in total daily traffic flows and insignificant 

increases in transit ridership following “Spare the Air” (STA) advisories. Sexton’s (2011b) recent 

working paper attempts to further untangle the impacts from the informational and incentive-based 

STA program. 

 The generalizability of these findings may be limited by many factors.  The results in the 

California studies may not extend well to other states and cities, especially those with different 
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transportation or recreation alternatives.5  Moreover, the quality of the forecast and its dissemination 

may differ in important ways across contexts and over time.  Programs themselves may be more 

than just informational, as the Bay Area’s Spare the Air program included free transit on alert days.  

The present analysis considers a different city (Atlanta) and, for the first time, assesses the impacts 

of smog alerts on both emission-causing behavior (driving) and averting behavior (outdoor 

recreation) in the same study area.  This should add more evidence on behavioral impacts of forecast 

information as well as allow for a direct comparison of the more private-interest responses (to 

reduce exposure) and the more public-interest responses (to reduce emissions).  Because the new 

case study city’s air quality alert program emphasizes both self-protection and emissions reduction in 

its messaging, and it does not include any special incentives on alert days (e.g., transit prices do not 

change), it offers an excellent opportunity to test the relative influences of altruistic and averting 

responses to these public alerts. 

 

BEHAVIORAL RESPONSES TO AIR QUALITY ALERTS 

Travel Mode Choices 

 For a traveler who must choose a mode of transport, several factors likely play a role – a few 

of which are especially important in the context of air quality alerts.  We might expect a traveler to 

select a mode by weighing alternative modes’ direct travel costs (including travel time) and indirect 

costs, which includes differential exposure to environmental risks.  The modes might also be more 

than instrumental means of transport; some modes might be more or less enjoyable.  Moreover, a 

“warm glow” might be enjoyed by travelers who select more environmentally friendly modes.  

Suppose our hypothetical traveler compares available modes in terms of these costs and benefits.  

5 Sexton’s (2011) working paper uses a national sample to offer preliminary measures of an average effect in the 

U.S. 
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We might then expect their “best” option to depend these factors – potentially each of which might 

vary with air pollution levels.   

 Comparing one day with high air pollution levels to a cleaner but otherwise identical day 

might reveal a behavioral response.   Although travel times or intrinsic enjoyment of different modes 

might vary with air pollution levels, the primary interest here is with two forces affecting the mode 

decision: risk aversion and altruism.  Risk averting preferences would lead travelers to switch away 

from high-exposure modes on days with high air pollution levels.  This avoidance confers a private, 

internal benefit to the traveler in the form of better personal health.  In practice, this might mean 

avoiding walking, biking, or even waiting outside for public transit on more polluted days.  

Alternatively, an altruistic motivation might especially lead to “greener,” lower emission mode 

choices on more polluted days.  The altruistic traveler realizes benefits from “going green” and 

helping (or at least not harming) the public’s air quality.  In practice, altruistic travelers might take 

transit or travel later in the day in order to mitigate their harm to the airshed on those days.   

 It is possible, or even likely, that risk aversion and altruistic motivations push behavior in 

opposing directions.  Which force is stronger may depend on the relative strength of preferences for 

private or public gains, or on the individual’s perceived efficacy of their choice in reducing their risk 

or helping others.  As the model in Appendix B shows, the critical issue is how smog alerts alter the 

marginal costs and marginal benefits of choosing a “greener” mode.  Travelers compare how their 

private (averting) and public (altruistic) net benefits of particular mode choices change when alerts 

are issued.  While private interests might be expected to dominate, at least on average, this analysis 

focuses on air quality alerts rather than pollution levels as such.  The public alerts emphasize altruistic 

responses through messaging that calls for pro-social behavior, and alerts are sounded when 

emissions reduction produces more of a public good (i.e., attainment of the NAAQS). On balance, 

how behaviors respond to news of worsened air quality is an empirical question.   
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 For a formal, mathematical version of this discussion, see Appendix B.  This economic 

model offers a transparent and simplified characterization of the mode choice problem in order to 

highlight the ways in which air quality alerts might affect equilibrium behavior.  For decisions that 

do not involve emissions, such as the choice between running outside or walking outside for 

exercise, the choice context is much simpler.  There is no altruism component as none of the 

alternatives produce emissions.  The averting behavior remains and hypothesized behavioral 

response is a straightforward reduction in exposure. 

   

AIR QUALITY ALERTS AND REGRESSION DISCONTINUITY DESIGN 

Atlanta’s ozone alert program lends itself to analysis via a regression discontinuity (RD) 

design.  The treatment – issuing a smog alert – follows clearly from the running variable, ozone level 

forecasted, exceeding a threshold (85ppb).  The forecast variable provides an observable assignment 

of each observation into either a treated (alert) or nontreated (no alert) status.  The outcome variable 

(e.g., daily miles driven) should be a continuous function of the assignment variable, and the 

treatment effect on the outcome should be visible as a discontinuity when the forecast exceeds the 

cutoff.  An advantage of the RD design is that other factors influencing behavior (e.g., weather, age, 

transit options) should vary smoothly around the threshold.  This creates an opportunity to identify 

the effect of policy treatment separate from other confounding factors using an RD design.  Lacking 

a randomized experiment, this RD design functions like a “close cousin” (Lee and Lemieux 2010) 

and offers an excellent opportunity to identify the effects of an information policy that is otherwise 

difficult to robustly detect.  The possible discontinuity will be observed via visual inspection of the 

data as well as local regressions and nonparametric RD tests in the next section. 

The design of air quality alert programs seem very well suited for evaluating using an RD 

approach.  The power of the RD design in effectively replicating a randomized experiment locally – 

i.e., for forecast values close around the threshold that triggers the alerts – is a direct consequence of 
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the assumption that individuals have at best imprecise control over their forecasted levels.  Thus, the 

most important threat to the validity of an RD design is the possibility that an individual can 

precisely manipulate the assignment variable (Lee and Lemieux 2010).  If an individual could control 

the forecasted ozone level, for instance, the RD approach would not apply.  On its face, only the 

forecasters themselves might be able to exert such direct control, and otherwise households could 

only imprecisely affect their forecasted ozone levels by manipulating the day they enter the sample.  

(Even that is minimized in this context given the unit of observation in the park usage analysis, 

discussed below, and the fact that respondents to the travel survey have their diary day randomly 

assigned.)  But, for values just above and below the threshold, they should appear independently 

distributed.  This kind of sorting around the cutoff discussed by McCrary (2008) is examined below 

for the driving behavior analysis.   

The advantages of using an RD design include its approximating a “local” randomized 

experiment and that its assumptions can actually be tested.  Implementing an RD approach requires 

the researcher to make some design choices.  This includes choices about how to graph the data and 

how to estimate regressions.  The data at hand influence these choices, so they are discussed in more 

detail below.  The general principle involves selecting bandwidths (or bin size for histograms) that 

balance the need for sufficient data density to obtain locally smooth distributions and the risk of bias 

from observations far from the threshold.  In a sense, this reflects a common between precision and 

bias.  Restricting bandwidths to very small or local values may reduce bias but comes at the expense 

of greater noise in the analysis.  Because the running variable is discrete (only integers are forecast), 

some of these design choices are simplified in this context (Lee and Lemieux 2010). 
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EVIDENCE OF SMOG FORECASTS’ EFFECTS ON OUTDOOR RECREATION 

Data 

To assess whether Atlanta’s ozone alerts encourage averting behavior and reduced outdoor 

activity raises questions about the nature of the outdoor activity.  Strenuous activities such as 

running are commonly discouraged on “red alert” days.  The analysis here focuses on behavioral 

change for outdoor activities, measuring both the amount and the intensity of that outdoor activity 

in an attempt to discern whether people reduce their outdoor recreation time or merely alter their 

type of outdoor recreation. This analysis combines data on park usage with a dataset of air quality 

forecasts for Atlanta.  Air quality modelers at the Georgia Institute of Technology provide data on 

the next-day forecasts provided to the Georgia Environmental Protection Division for use in their 

Clean Air Campaign (Chang 2005).  When the forecasted ozone levels exceed 84 parts per billion, an 

ozone alert is issued to news outlets, sent to other audiences, and posted on highway signs.  The 

alert includes suggestions to both reduce emissions (e.g., carpool, avoid refueling in the morning) 

and reduce exposure (e.g., limit outdoor exertion).   

Usage patterns of a large, central Atlanta park were recorded during the summer of 2005.  

(The Appendix describes the data collection in more detail.)  In short, two observers recorded 

passersby in Piedmont Park on 35 days, spread across different days of the week and various 

afternoon hours at two different park locations.  Seven of those days had alerts forecasted.  These 

data permit exploring several ways in which ozone levels and alerts might affect park usage.  First, 

aggregate park usage is measured as the count of passersby during a 30-minute observation period 

(i.e., a “sitting”).6  Second, the proportions of different subgroups of passersby composing that 

aggregate are also examined.  Aggregate park use variables for each 30-minute sitting are constructed 

6  The total number of visible park occupants at the beginning of each observation period can also be used to proxy 

for park usage at the time.  No significant results are evident for this measure. 
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as deviations from the average usage for a given day of the week, time period of day, location in the 

park, and coder.  Measures of aggregate park use are available for 124 instances during the summer 

of 2005.  Finally, characteristics of each group passing by the observer can be used to describe the 

types of users and uses in the park at that time.  Of course, many such groups are singletons.  

Measures of characteristics of particular groups of passersby are observed 4047 times during the 

summer.   

Given that park usage is unlikely to affect air quality and is not seen as conferring a warm 

glow effect on poor air quality days, the theoretical model above suggests that avoidance will be the 

dominant response on days with alerts.  Park use is expected to fall, and strenuous activities (e.g., 

exercise) and sensitive populations (e.g., kids, elderly) are expected to be even more responsive to 

such alerts.  In the absence of a genuine threshold effect in the health impacts of ozone, any effect 

of alerts most likely represents a behavioral impact of the program’s information campaign.   

Results 

The regression discontinuity research design lends itself well to this empirical application.  

The forecasted ozone levels serve as the running variable, and the data are examined on either side 

of the 85ppb cutoff.  To explore how the measures of outdoor recreation differ on either side of the 

cutoff, Figures 1 and 2 display the graphs showing how park usage (on the vertical axis) varies across 

the ozone forecast level.  A treatment effect of alerts would be visible as a sharp discontinuity at the 

85 ppb threshold (just to the right of the red vertical line).  Panels A, B, and C indicate total park 

use, share of users exercising, and share of users that are elderly, respectively.  Figure 1 shows simple 
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weighted average values for the outcome variables, while Figure 2 uses a nonparametric smoothing 

(around a bandwidth of 6 ppb).7   

These results show that any discontinuous impact of alerts on park usage arises at the 

individual passerby level rather than the aggregate level.  There is no significant discontinuity for the 

aggregate traffic flow at sittings at the alert threshold (Panel A in Figures 1 and 2).  There does 

appear to be a significant discontinuity for the proportion of passersby that are exercising (Panel B 

in Figures 1 and 2) and for the proportion of elderly in each group passing by (Panel C in Figures 1 

and 2).   

 

[FIGURE 1 ABOUT HERE] 

[FIGURE 2 ABOUT HERE] 

 

Formal tests for these discontinuities, as well as several other measures of park usage for 

subpopulations or specific activities, are presented in Table 1.  Following Imbens and Lemieux 

(2008), local linear regressions are run on either side of the 85ppb cutoff to examine whether or not 

a discontinuity exists.  Nichols (2007) suggests a test for discontinuity by comparing the outcomes at 

the cutoff predicted by two different local linear regressions, one estimated above and one estimated 

below the cutoff.  This computed difference is bootstrapped (1000 replications) to allow for a test of 

discontinuity.  Alternatively, Ludwig and Miller (2007) suggest a nonparametric RD design that tests 

7 Other bandwidths were explored, and a bandwidth of 6 is chosen to best illustrate the RD design here.  Following 

Lee and Lemieux (2010), a test for whether the bandwidth is narrow enough fails to reject the hypothesis that there 

are within-bin trends in the data (p=0.29 for the share exercising; higher p-values for other activity measures).   
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for discontinuity following Hahn, Todd, and Van der Klaauw (2001) and Porter (2003).8  Table 1 

reports the results of this RD test.  Several bandwidths for the local regression are tested to assess 

the sensitivity of results; smaller bandwidths trade off reduced bias for weaker ability to detect 

discontinuities.  The park data do not support bandwidths of 5 ppb or smaller.  Following Lee and 

Lemieux (2010), an inspection of the graphs and diagnostic tests point to desired bandwidths 

between 6 and 10 as balancing the improved precision of the estimates against introducing more 

bias.9 

The aggregate traffic flow in a given sitting exhibits no significant discontinuity at the cutoff 

for all users or various subgroups.  Elderly traffic flow is one exception, where the composition of 

elderly in the flow falls by about 2 percentage points following alerts.  Even if the aggregate flow 

remains the same around the cutoff, its make-up changes and reflects some interesting responses by 

park users.  Across many bandwidths (6 and larger), the smog alert “treatment” points to observed 

passersby being 16 – 33 percentage points less likely to be exercising.  This effect is largest when the 

bandwidth is small, suggesting a strong local impact.  To place this in context, the average passerby 

group is about 43 percent exercisers at the threshold.  Runners, a subset of exercisers, exhibit a 

8  This test arises from kernel-weighted linear regressions to the left and right on the cutoff, with the treatment effect 

calculated as the difference in the left and right limits of the regressions at the cutoff.  The triangle kernel is used 

because of its preferred boundary properties.  The standard errors are computed following Porter (2003).   

9 Around the cut-off of 85ppb, relatively little curvature is observed for most outcome variables in the park analysis, 

suggesting bandwidth choice may not matter much.  The optimal bandwidth chosen via cross-validation (Lee and 

Lemieux 2010) is between 7 and 10, depending on the outcome measure.  For total passersby, the optimal bandwidth 

may be much larger, but the conclusions are unaffected as Table 1 demonstrates. 
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similar effect (approximately 8 – 18 percentage points) from the alerts, although this effect is 

weakest and insignificant for the small bandwidth of 6.10   

The proportion of kids or elderly might also exhibit some discontinuity at the threshold if 

these sensitive populations react to the alerts.  For smaller bandwidths (≤ 10), the proportion of 

elderly in each group passing is about 0.05 lower on smog alert days.  The effect fades at large 

bandwidths.11  The proportion of kids is lower on alert days, although the effect size varies 

substantially as bandwidth varies from 6 (insignificant) to 10 (-0.14) to 20 (-0.03).  The effect on the 

proportion of females is negative 14 percentage points and significant at the smallest bandwidth (6), 

zero at the middle bandwidth (10), and 11 percentage points and positive at the larger bandwidth 

(20).  These unstable results for kids and females prevent firm conclusions.  Overall, smog alerts do 

not appear to significantly affect the aggregate park usage, even by sensitive subgroups, except for 

the elderly.  Individual groups of passersby, on the other hand, do appear affected by smog alerts – 

exercisers and elderly compose less of park users. 

The validity of the RD approach here depends on other factors that might explain park 

usage either not varying at all or varying smoothly around the cutoff point of 85ppb.  The close 

10  The significant negative effects on exercising and running on a per-passerby basis is consistent with results for 

aggregate flows per sitting.  With far fewer observations at the aggregate level, effect estimates are much less 

precise.  Nonetheless, proportion of elderly in the aggregate traffic flow falls by 10 – 14% on alert days (with p-

values less than 0.30).  The proportion of runners falls from 3 – 11%.  This gives some confirmation of the RD 

analysis done on a per-passerby basis, although imprecision remains.   

11  This negative effect is robust to a variety of bandwidths and model constructions.  If the typical group passing by 

has 5% fewer elderly on smog alert days, and aggregate park usage is unaffected by the alerts, we should expect the 

count of elderly to also fall significantly on those days.  The RD approach finds a discontinuity in counts of elderly 

per sitting, although estimated much less precisely, with elderly counts falling by -1.4, which is 2.9% of the average 

flow of 49.03 passersby per sitting.     
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correlation between temperature and ozone levels, and that weather likely affects park usage, might 

confound conventional regression approaches.  At least when ozone levels are near the 85 ppb 

threshold, however, weather variables like temperature do little to predict the alert treatment.  To 

verify this, the Porter (2003) approach used above finds a difference of less than 1 degree 

Fahrenheit, a discontinuity that is insignificant at any bandwidth.  Similarly, windspeed makes no 

significant jumps at the 85ppb threshold, while cloud cover is minor in all observations on either 

side of the cutoff (i.e., no precipitation).  Weather cannot explain why behavior changes at the 

threshold. 

In all RD analyses, sorting around the cutoff is a concern.  Piedmont Park is quite accessible 

to nearby residents and many users can easily reschedule their visits.  Thus, we might expect to see a 

lower density of observations on the righthand side of the 85ppb cutoff and more on the lefthand 

side.  This can be taken as evidence of some effectiveness of the public information campaign.  To 

test for this, the Nichols (2007) bootstrapping approach is taken to test for a discontinuity in the 

density of observations around the cutoff.  The results are inconclusive and highly sensitive to the 

choice of bandwidth.  More tellingly, a RD approach indicates that party size is significantly larger 

after smog alerts are sounded (effect = 1.1, p<0.05).  This result is consistent with solo park users 

being more elastic in response to smog alerts, as they do not have to coordinate with companions.  

It is also consistent with joggers switching to walking on alert days and walkers tending to cluster in 

the park (either in fact or in appearance to the observers). 

 

[TABLE 1 ABOUT HERE] 
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EVIDENCE OF SMOG FORECASTS’ EFFECTS ON DRIVING BEHAVIOR 

Data 

This air quality public information campaign also sought to affect driving behavior to reduce 

emissions.  Assessing drivers’ sensitivity to smog alerts requires coupling air quality forecast data 

with driving behavior data.  The driving data come from the Atlanta Regional Commission (ARC).  

The ARC, the formal metropolitan planning organization for Atlanta, conducted a household travel 

survey in 2001 and 2002 in order to inform its regional transportation planning.  Sampled 

households were randomly assigned two consecutive days over which each household member was 

to record their travel information.  The data were collected from April 2001 to April 2002, except 

for July.  With a response rate of 66 percent, 8,069 households completed the travel diaries, 

representing 21,323 persons, 14,449 vehicles, and 126,127 places visited during the two-day sample.  

See ARC (2003) for further details about the survey administration.   

The outcome variable of interest here is daily vehicle-miles-traveled (VMT) by households.  

The hypothesis tested is that daily VMT falls on alert days, corresponding to a primary goal of the 

alert program and a prominent metric in transportation planning.  Of course, smog alerts might 

affect other aspects of driving in Atlanta (e.g., frequency, timing, destinations).  For brevity and 

because it is the best proxy for the emitting behavior of policy interest, this analysis focuses on 

mileage of trips.  VMT is aggregated to the household level to control for within-household 

substitutions and, except where noted, the ARC’s sample weights are used.  Aggregating driving 

behavior to the household level and restricting the sample to the 2001 ozone season (May – 

September) reduces the effective sample to 991.  

Results 

Using the log of the household’s daily miles driven as the outcome variable, the data look 

noisily distributed across ozone prediction levels.  In Figure 3, there does not appear to be an 

obvious pattern in driving and ozone predictions.  More importantly, there does not appear to be a 
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significant discontinuity at the cutoff point, indicated with a vertical line.  If anything, perhaps, there 

is an increase in driving on alert days.  Figure 4 shows a similar story with histograms of average 

outcome variables across forecast levels for a variety of binwidths.  The results in Panel A of Figure 

4 differ from Figure 3 somewhat because the sample-weighted averages are used in Figure 4.  The 

results do not appear sensitive to binwidth choice.   

 

[FIGURE 3 ABOUT HERE] 

[FIGURE 4 ABOUT HERE] 

 

Several tests for discontinuity are performed.  The results of the bootstrapped tests from 

Nichols (2007), for bandwidths ranging from 3 to 10 and for local mean smoothing or for local 

linear regression, all fail to reject the hypothesis that VMT is different above the threshold.  

Depending on the bandwidth and smoothing, (unweighted) household VMTs appear 3 – 18 percent 

higher with alerts – though none of these effects are remotely significant.  Porter’s (2003) 

nonparametric tests generally reveal similar results, except at small bandwidths (e.g., ≤ 5).  

Regardless, the discontinuity is never significant at conventional levels.  The insignificant but 

positive effects at the cutoff appear very sensitive to the sample weighting.  Using the sample 

weighting provided by ARC and examining bandwidths from 3 to 12, the nonparametric smoothing 

shows 0 – 17 percent lower household VMTs with smog alerts – though again none of these effects 

are remotely significant.  Figure 5 shows the nonparametric curves for a representative set of 

bandwidths (3, 6, and 12).  The drop-off in VMT evident at high forecasted ozone levels results 

from few observations in that range.  At the least, that drop-off and variation at lower ozone levels 

are not the result of the smog alert issued at the 85ppb threshold.   

 

[FIGURE 5 ABOUT HERE] 
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Table 2 summarizes the results across different bandwidth selections.  It shows that 

household miles driven may fall once the 85ppb threshold is passed, but this effect is very noisy and 

indistinguishable from zero.  This conclusion is not sensitive to the choice of bandwidth.  A more 

focused analysis excludes evening driving, when emissions will not affect that day’s ozone levels.  

This RD analysis is similar, with no significant treatment effects. 

While the smog alerts may not have a significant impact when measured log-miles, perhaps 

the effect exists in linear miles.  The results across the bandwidth range also fail to reject the 

hypothesis of no treatment effect.  There are a few influential observations, however, and when the 

two households traveling over 500 miles that day are dropped (perhaps reasonable considering these 

miles are unlikely to be predominantly in the Atlanta airshed), the evidence of discontinuity becomes 

much stronger and is now statistically significant at the 10 percent level.  The ozone alerts here 

appear to cause a significant reduction in household VMTs.  This significant effect is only found in 

linear VMT with outliers dropped.  It disappears if the analysis is restricted to daytime VMTs this 

might affect peak ozone.  The insignificant threshold effects hold for log-VMT regardless of 

restricting the time of day or dropping the two influential observations. 

Table 2 also reports a test for discontinuity in household size.  This variable is not expected 

to exhibit discontinuities around the 85ppb threshold, and if it did it would call into question the 

attribution of any treatment effect to the alerts.  Household size does not appear discontinuous at 

the threshold.  Other household demographic variables (e.g., age, years of schooling, income) are 

also tested for discontinuities around the 85ppb threshold.  The results generally support the use of 

the alerts as an exogenous treatment as observations on either side of the threshold closely resemble 

each other.  As in the park usage analysis, weather variables can be tested for whether they show a 

discontinuity at the forecast alert cutoff.  Rainfall in particular may affect driving. Here, again, 
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precipitation shows no discontinuity, as it shows no variation whatsoever around the threshold.  (In 

the sample, as is typical in Atlanta, precipitation prevents ozone from reaching high levels.)   

 

[TABLE 2 ABOUT HERE] 

 

The possibility of sorting around the 85ppb threshold is of some importance here.  Sampled 

households cannot choose which side of the threshold they are on.  Yet the sampling design of the 

ARC travel diary survey leads to observations being dropped if that household took no trips on a 

given day.  This might lead to observations clustering on the lefthand side of the threshold if 

households responded to smog alerts by taking no trips when ozone forecasts reached 85ppb.  

Alternatively, if households tended to respond by taking at least one trip on smog alert days, there 

might be sorting to the righthand side of the threshold.  Given that non-travelers were not sampled, 

sorting by households onto one side of the cutoff or the other has substantive implications as it 

suggests the smog alert is affecting driving behavior.  This possibility is explored graphically in 

Figure 6, where the share of observations falling into each ppb ‘bin’ is plotted against local mean-

smoothed curves on the right and left of the cutoff (triangle kernel, width of 6).  The discontinuity is 

robust to different constructions (e.g., other width, local linear regression).  It appears that some 

sorting may be occurring where the threshold marks a discontinuous jump in the frequency of 

observations.  A test from Nichols (2007) shows that the density of observations is greater at the 

threshold.  The bootstrap procedure with 1000 replications to test whether local linear regressions 

(width of 6, triangle kernel) on the left and right side of the cutoff yield different density values, 

indicates a statistically significant 0.013 difference.  At different bandwidths, the density of 

observations appears 0.01 higher to the right of the cutoff.  This modest sorting is consistent with 

an increased tendency to take at least one trip on alert days, relative to similar days without an alert.  

Again, it does not support the hypothesis that the smog alert discourages trip-taking. 
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[FIGURE 6 ABOUT HERE] 

 

 In summary, there does not appear to be strong evidence of a negative effect on household 

VMTs of smog alerts in Atlanta in the summer of 2001.  There could be many reasons for this, 

including offsetting effects of private interests (i.e., driving to avoid exposure) and public interests 

(i.e., taking transit to contribute to the public good) as described in the theoretical model above.12  

Alternatively, the smog alerts may have low salience and low dissemination, or travelers may simply 

be very inelastic in their short-run travel demand.  Perhaps the strongest evidence of a treatment 

effect comes in the discontinuity in the density at the cutoff.  Sorting appears somewhat likely, 

consistent with households being more likely to take a driving trip on the righthand side of the 

cutoff than the left.  

 The results for both the park visitation and the household driving analyses are subject to 

some important limitations.  Both datasets rely heavily on measures of behavior that could include 

error or even bias.  Student observers in the park may mistakenly code some passersby.  Travel diary 

respondents may incorrectly recall their daily activity.  In both cases, this approach assumes 

measurement error in the outcome variables is independent of that day’s air quality level.  For the 

travel diary analysis, this dataset – with all its limitations – has been frequently used by Atlanta’s 

regional transportation planners.  The park use data, conversely, is a novel observational approach to 

collecting data inexpensively.  Accordingly, it lacks a richer set of demographic control variables 

12 If the alerts triggered different behavioral responses in different households such that they offset and the average 

response appeared minimal (i.e., some households altruistically reduced VMT while others drove more to avoid 

exposure), then the variance in the VMT measure should exhibit a discontinuity at the threshold.  For this sample, 

the standard deviation of household VMT actually falls from 1.23 below the threshold (and above 83ppb) to 1.06 

above the threshold (and below 87ppb).  Offsetting appears unlikely to account for this. 
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(making the RD design even more appealing) and lacks external validity checks.  In both cases, as 

the original datasets had no overt connection or design features related to air quality whatsoever, the 

threat of air quality issues biasing the data is minimized. 

 

DISCUSSION 

The impact of public forecasts on decisions and behavior has been demonstrated in sectors 

like the environment, transportation, and health.  Air quality forecasts operate at the nexus of all 

three sectors.  Smog alerts’ impact on many behaviors (e.g., jogging, walking, driving) in Atlanta are 

complex and results are mixed.  The RD approach offers substantial improvements in research 

design over previous research in Atlanta.  Juxtaposing high emissions behavior (driving) with high 

exposure behavior (park use) in the same study area highlights how public forecast information may 

better trigger some responses and struggle to trigger others.   This is especially likely when private 

and public interests may appear incompatible for some behaviors (commuting) and not for others 

(exercising).  Thus, the failure find robust evidence of negative impacts of smog alerts on VMT in 

Atlanta comes as little surprise, despite the aims of the Clean Air Campaign.  The RD approach does 

show, on the other hand, that the elderly and exercisers may be quite responsive in terms of 

avoiding outdoor recreation.  Responsiveness by subgroups may be masked when looking at 

aggregate measures. 

The role of forecasts as a policy may be more nuanced than some imagine, especially when 

forecasts are used to affect the outcome being forecast.  Assumptions that “more information is 

better” or that public forecasts represent neutral information provision may not hold up in practice.  

Forecast information may not have the desired or even intuitive effects.  Smog alerts may 

inadvertently encourage pedestrians to seek shelter in cars.  Moreover, these public forecasts may 

have dramatically different effects in different contexts.  Some areas or activities may have few 

‘marginal’ decisionmakers, for whom new public forecast information pushes them past a tipping 

 



24 

point and into a new behavior.  This might partly explain why these results depart from previous 

work.  Fewer or more costly alternative travel modes in Atlanta relative to San Francisco could help 

account for the difference in driving responses.  Future research would do well to provide evidence 

explaining the regional variation in responsiveness.  

This empirical analysis takes advantage of the discontinuous or threshold nature of the 

ozone alert program.  This allows the effect of the forecast or alert to be disentangled from the 

effect of the ozone levels themselves.  While this peculiar design feature of the public policy is a 

boon for program evaluation researchers, it may not make for good policy.  It raises interesting 

questions for policy design.  The color-coded air quality alert system, not unlike other public 

information campaigns like the former Homeland Security Advisory System, simplifies the messages 

and converts continuous risk or safety information into a categorical signal.  Preprocessing the data 

may substantially affect behavior.  Simpler messages have important consequences for public use of 

the information, one possible implication being that worsening air quality will only affect behavior if 

it crosses some threshold.  This entails lost opportunities for averting behavior for air quality 

changes that do not cross thresholds.  Conversely, time and cognitive costs of more information 

may imply that less information elicits more reaction.  When there is no special health effect 

associated with the threshold, this begs a question of whether the forecast information is being 

optimized to promote public health (or, perhaps, to elicit volunteers to help achieve compliance with 

the NAAQS).  Given cognitive limits, a significant behavioral response at an arbitrary point may be 

better than a muted response across a wider range of circumstances.   

The results from the RD approach suggest that ozone alerts have little influence on emitting 

behavior like driving – in contrast to some earlier work in Atlanta and to recent results for San 

Francisco.  The variation in forecast impacts over space and time warrant systematic research efforts 

to progress our understanding of this prevalent policy tool beyond single-city case studies.  One 

novel aspect of this study is the application of an RD approach in the same city to activities that 
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likely have tensions between private and public interests, such as driving, and also to activities with 

predominantly private interests, such as park use.  The results offer more evidence that forecasts 

effectively foster averting behavior but have limited stimulation of altruistic responses from drivers 

at least in Atlanta.  That averting behavior is facilitated in both Atlanta and the California settings 

may be heartening for proponents of information-based policies, whereas the absence of similar 

impacts on driving behavior in Atlanta may owe to paucity of alternative transit options in this 

setting.  Other explanations worth examining include differences in alert awareness, in content and 

dissemination of the alerts, in alert program longevity and incentives, and in population 

characteristics.  Further research is needed to explore how forecast information affects different 

choice settings and different decisionmakers. 
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APPENDIX A:  DATA COLLECTION IN PIEDMONT PARK 

During the summer of 2005, two undergraduate students were trained to make observations 

in a prominent, central Atlanta park (www.piedmontpark.org).  At each sitting, the observer would 

sit on a park bench and look ahead at a fixed point across the path.  He would record the 

characteristics of each group passing in front of him for a 30-minute spell.  Then, he would move to 

another location in the park for another similar sitting.  The seating location and fixed point was 

identical across all sittings for each of the two locations.  One park location, at the main (western) 

pedestrian entrance, was selected for maximum traffic.  The other park location, near the other 

(southwestern) primary pedestrian entrance, was selected to capture predominantly exercisers and 

those taking laps around Lake Clara Meer.  Their unit of observation was a “group passing by”.   

Each group was coded for the time of observation, the size of the party (mean = 1.92, median = 1) 

as well as several other characteristics (e.g., mode of travel, activity, dogs, age, gender).  Multiple 

activities were coded according to whether the passersby were observed to be exercising, socializing, 

playing, taking care of children, etc.  Age codes were limited to how many passerby were clearly over 

age 60, how many were clearly under age 15, and how many were toddlers or younger.  Because 

there was no interaction whatsoever with park users, and given the difficulty of estimating ages of 

people passing by, the age observations may be inaccurate.  (For purposes of this study, this might 

not systematically bias the results, or it might introduce measurement error that serves to attenuate 

the estimated effects.)  At the beginning and end of each sitting, the observer would record the total 

number of people visible from their position (whether they were passing by or not).   

The sittings were scheduled for Mondays, Wednesdays, Fridays, and Saturday.  (The 

Monday, July 4 date was switched to July 5.)  On each weekday, four sittings were scheduled.  The 

first began at one location around noon, the second commenced at the other location approximately 

38 minutes later.  The third sitting began at one location around 5:00pm, followed about 38 minutes 

later by the fourth sitting at the other location.  On weekend dates, only two sittings were scheduled 

 

http://www.piedmontpark.org/
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(one for each location) with a start time at approximately 2:00pm.  (The start times for the first 

sitting ranged from 11:00am to 1:45pm with an average of 12:04.  The start times for the third sitting 

ranged from 3:40 to 5:30 with an average of 4:45pm.)  The dates ranged from May 27 to August 1.   

 
[TABLE 3 ABOUT HERE] 
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APPENDIX B:  A BEHAVIORAL MODEL OF MODE CHOICE AND AIR QUALITY 

 Consider a model of a traveler who must choose a mode of transport.  For simplicity, 

variables will be presented here in continuous form, although reality likely constrains many to be 

discrete choices.  The advantage to presenting the decision model in mathematical form is in its 

transparency and precision.  This lets the analyst clarify which and how factors influence choices and 

strips away nonessential elements.  Let the actor’s utility (U) depends on travel time (T), exposure to 

environmental risks (E), and a “warm glow” (G) feeling from making an environmentally friendly 

choice.  Assume that U = U(T, E, G) is increasing in G and decreasing in T and E.  Let M describe 

the mode choice.  In a discrete setting, M = 0 for drivers, and M = 1 for those taking public transit 

or walking.  In a continuous setting, M might span a continuum from driving alone (M = 0) to 

walking (M = 1), with other modes such as rail, bus, and biking ranging in between.  As M increases, 

travel times T increase as well as exposure E (i.e., TM > 0, EM > 0).  Let environmental exposure 

E = E(M; P) where P is ambient pollution concentrations and EP ≥ 0.  Let travel time T = T(M; A, 

M~i), where A is a binary “smog alert” and M~i represents congestion or the average amount of M 

chosen by other travelers.  Assume that TMA ≥ 0 as the additional travel time of “going green” is 

unlikely to be less on smog alert days and may even be more (Niedell and Cutter 2007).  Further, 

assume the marginal exposure penalty of greener travel does not fall on alert days.  EMA should be 

positive if exposure is effectively zero when M = 0, regardless of pollution levels, and alerts correlate 

with P.  The warm glow G = G(M; A) such that GM ≥ 0 and GMA > 0 as “going green” contributes to 

a warm glow feeling, and this marginal utility increases when an alert has been sounded.13  Finally, 

assume that the individual decisionmaker is inconsequential as far as affecting congestion (i.e., 

13  The essential assumption here is that the effect of A on the marginal utility of G be positive (i.e., ∂UG/∂A > 0).  

This is done by assuming GMA > 0 and UGA = 0. Alternatively, this could be modeled as G = G(M) such that GM ≥ 0 

and UGA > 0.  In that case, the UGGMA term in equation (1) can be replaced by UGAGM with equivalent effect. 
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∂M~i/∂M ≡ M~iM = 0) and affecting air pollution (i.e., ∂P/∂M ≡ PM = 0).  Of course, in the 

aggregate, these trivial impacts of individuals might amount to significant impacts.  The traveler thus 

takes A, P, and M~i as given. 

 The actor chooses M to maximize U, leading to first-order conditions that: 

 UM = UTTM + UEEM + UGGM ≥ 0 

The second-order conditions (UMM < 0) are likely to hold unless UTM >> 0.14  For a traveler who has 

selected an optimal mode M* in equilibrium, the policy question is how exogenous shocks to P and 

A affect M*.  For alerts: 

 UMA = UTATM + UTTMA + UEAEM + UEEMA + UGGMA   

As long as alerts do not affect the marginal disutility of travel time and exposure, this expression 

reduces to: 

UMA = UTTMA + UEEMA + UGGMA 

The first two terms are nonpositive while the last one (UGGMA) is positive.  Thus, whether drivers 

switch to higher or lower M values depends on whether the alert has a greater effect on the disutility 

of travel time and exposure or a greater effect on the warm glow of contributing to the public good.  

The inequality condition is: 

(1) [ ] 0*
*

>
<

≡
∂
∂

⇒
<
>

+− AMAGMAEMAT M
A

MGUEUTU  

14  That “going green” effects a much smaller disutility of time is an important point of emphasis in many marketing 

campaigns for public transit, including Atlanta’s.  This model supports this marketing strategy, as a decision-maker 

convinced that UTM is very large will tend in equilibrium to eschew driving in favor of greener alternatives.  

Assuming that UGM = UEM = 0, UMM = UTMTM +UTTMM + UEEMM + UGGMM.  It seems reasonable to expect that 

TMM ≥ 0 and GMM ≤ 0, as there is probably declining warm glow returns to greener modes just as travel times rise at 

an increasing rate with greener modes. 
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When an alert sounds, drivers who perceive greater altruistic impacts of taking an alternative model 

and lesser adverse effects of not driving on their travel times and exposure will tend to switch.  

Conversely, those travelers not driving may begin driving when an alert is sounded if they perceive 

greater health or congestion costs associated with their alternative modes and relatively minor warm 

glow losses from driving on alert days.   

The relative magnitudes of TMA, EMA, and GMA are obviously important in understanding 

mode switching behavior – whether the traveler undertakes averting behavior (and drives) or 

altruistic behavior (and takes transit).  This is the most important insight from this model.  The 

magnitude that matter most are the impacts of alerts on the marginal (time-saving, exposure-

reducing, or glow-generating) effects of mode choice and not the direct marginal impact of alerts on 

travel time, exposure, or warm glow.  Public officials might seek to influence these critical factors via 

advertising or, for TMA, reducing congestion in alternative modes on alert days.  Arguably, EMA = 0 

because there is no special threshold effect of pollution exposure associated with the alert.  (For the 

8-hour average ozone level with an alert sounded at 85ppb, EM is virtually the same at 84ppb and 

85ppb.)  This makes MA
* > 0 more likely to hold in condition (1).  Yet if travelers are generally 

unaware of P and use A to proxy for it, then EMA is quite likely to be nonzero (and likely positive as 

air pollution disproportionately affects travelers in alternative modes).  Moreover, UEA may be 

negative as travelers perceive greater marginal health risks during a smog alert.  It follows that  

(2) [ ] 0*
*

>
<

≡
∂
∂

⇒
<
>

++− AMAGMEAMAEMAT M
A

MGUEUEUTU  

In equation (1) or (2), compared to EMA = 0, the circumstances when A proxies for P appear less 

favorable to MA
* > 0.  Disseminating the crude indicator with an impression that threshold effects 
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exist can undermine the effectiveness of the alert program.  There is still ambiguity in the prediction, 

however.15   

Modeling Other Exposure Choices 

 The economic model developed here describes a particular choice – which mode of 

transportation to use for a given trip – but speaks to a more general sort of decision.  This approach 

might apply to any decision that affects the decisionmaker’s exposure or risk and garners the 

decisionmaker some warm glow under certain conditions.16  Here, a tradeoff exists between what is 

selfishly desirable (driving to reduce risk and travel time) and publicly desirable (not driving to 

reduce emissions).  Whether altruistic actors opt for the “green” behavior in response to a public 

alert depends on the relative weights of this tradeoff – some of which policymakers can directly 

influence.  The model shows some ambiguous results, especially when the alert is also the 

decisionmaker’s sole proxy for environmental risk.  

15  From a public information campaign perspective, this model highlights a tension around the current, binary “red 

alert” system.  Portraying a threshold effect in the alert system may encourage driving on bad days to protect one’s 

health, but such a threshold may be necessary to spur altruists to action on those days.  An incremental signal of 

pollution might prove too weak a signal to trigger UG to rise.   

16  Suppose that M describes the location of a non-emitting activity, like exercise, whether it is exclusively indoors 

(0) or outdoors (1).  The first-order condition above has UGGM = 0, and assume that UTTM = 0.  This leaves the 

inequality condition in equation (1) as merely UEEMA < 0 ⇒ MA
* < 0.  The alert unambiguously leads to less outdoor 

(high-exposure) activity.  Relaxing the assumption that UTTM = 0 might alter this, if we allow for differential travel 

costs for indoor activities.  Suppose that the alternative to jogging outside is to exercise in a gym, which might 

charge or be less convenient (i.e., TM < 0).  If the inconvenience of indoor activities increases with alerts (i.e., TMA > 

0), the equation (2) returns to ambiguity as the decision-maker weighs the additional exposure against the addition 

inconvenience associated with alerts.  This inconvenience might arise if gyms become congested or charge extra on 

alert days. 
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Figure 1: Mean (for binwidth=1) of total passersby, exercising passersby, elderly passersby  

 

 

* Note: Means are shown at various ozone forecast levels.  The total passersby outcome variable 

is measured per sitting, as a deviation from the mean as described in the text.  The shares of 

exercising passersby and elderly passersby variables are measured on a per party passing by 

basis, with means weighted by party size.  See the Appendix for more data details. 
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Figure 2: Nonparametric discontinuity (bandwidth = 6) of total passersby, exercising 
passersby, elderly passersby 

 

 
 

* Note: Means are shown at various ozone forecast levels.  The total passersby outcome variable 

is measured per sitting, as a deviation from the mean as described in the text.  The shares of 

exercising passersby and elderly passersby variables are measured on a per party passing by 

basis, with means weighted by party size.  See the Appendix for more data details. 
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Table 1:  Estimation results from RD analysis of Piedmont Park data 
    Estimated treatment effect 

(std. err.) 
N receiving positive weight 

Variable # of 
obs. 

mean at 
cutoff 

Bandwidth 
6 10 20 

Total passersby per 30-minute 
sitting (measured in 
deviations from mean) 

124 23.0846 7.320 
(30.1895) 
N=24 

-7.423 
(23.3713) 
N=32 

-4.518 
(20.9861) 
N=62 

Proportion of total passersby 
exercising per 30-min. sitting 
(measured in deviations) 

124 0.0561 -0.136 
(0.1277) 
N=24 

-0.129 
(0.0926) 
N=32 

-0.100 
(0.0694) 
N=62 

Proportion of total passersby 
as kids per 30-minute sitting 
(measured in deviations) 

124 0.0278 0.082 
(0.0896) 
N=24 

-0.019 
(0.0645) 
N=32 

-0.018 
(0.0419) 
N=62 

Proportion of total passersby 
as elderly per 30-min. sitting 
(measured in deviations) 

124 0.0137 -0.014 
(0.0119) 
N=24 

-0.020** 
(0.0086) 
N=32 

-0.017** 
(0.0066) 
N=62 

      
Group passing by is 
exercising (weighted by  
group size) 

4256 0.4260 -0.327** 
(0.0579) 
N=1123 

-0.265** 
(0.0450) 
N=1410 

-0.156** 
(0.0337) 
N=2426 

Group passing by is running 
(weighted by  group size) 

3683 0.2427 -0.078 
(0.0538) 
N=914 

-0.169** 
(0.0433) 
N=1185 

-0.177** 
(0.0308) 
N=2130 

Proportion of kids in group 
passing by (weighted by  
group size) 

4258 0.1982 0.010 
(0.0315) 
N=1124 

-0.138** 
(0.0217) 
N=1409 

-0.027** 
(0.0164) 
N=2412 

Proportion of elderly in group 
passing by (weighted by  
group size) 

4258 0.0584 -0.053** 
(0.0132) 
N=1124 

-0.048** 
(0.0089) 
N=1412 

-0.014** 
(0.0063) 
N=2412 

Proportion of females in group 
passing by (weighted by  
group size) 

4258 0.2275 -0.142** 
(0.0431) 
N=1124 

0.010 
(0.0335) 
N=1412 

0.113** 
(0.0268) 
N=2412 

*, ** indicates significance at the 10%, 5% level, respectively. 
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Figure 3:  ln(household miles driven) by ozone prediction 
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Figure 4:  Weighted average of ln(VMT), for binwidth=1, 2, 3 
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Figure 5:  Nonparametric discontinuity in ln(VMT), bandwidth = 3, 6, 12 
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Table 2:  Estimation results from RD analysis of travel diary data 
    Estimated treatment effect 

(std. err.) 
N receiving positive weight 

Variable # of 
obs. 

mean at 
cutoff 

Bandwidth 
3 6 12 

ln(household miles driven 
that day), weighted 

1023 3.8204 -0.275 
(0.3970) 
N=155 

-0.169 
(0.2773) 
N=183 

-0.088 
(0.2050) 
N=372 

ln(household miles driven 
before 5pm that day), 
weighted 

931 3.0302 -0.247 
(0.3425) 
N=139 

0.159 
(0.2675) 
N=165 

0.277 
(0.2220) 
N=338 

ln(household miles driven 
that day), weighted; 
miles>500 dropped 

1021 3.8204 -0.121 
(0.3855) 
N=154 

-0.216 
(0.2724) 
N=182 

-0.129 
(0.2022) 
N=371 

      
household miles driven that 
day, weighted 

1200 83.0679 . 
(38.9423) 
N=181 

-25.227 
(24.9093) 
N=211 

-16.254 
(15.9073) 
N=431 

household miles driven that 
day, weighted; miles>500 
dropped 

1198 83.0679 -50.676* 
(28.2787) 
N=180 

-37.640* 
(19.3224) 
N=210 

-27.260** 
(12.5004) 
N=430 

household miles driven 
before 5pm that day, 
weighted 

1145 22.4691 -45.143 
(29.8319) 
N=175 

12.185 
(18.6179) 
N=203 

12.117 
(12.6389) 
N=414 

household miles driven 
before 5pm that day, 
weighted; miles>500 dropped 

1143 22.4691 . 
(9.1062) 
N=174 

-0.565 
(7.7584) 
N=202 

0.464 
(6.8999) 
N=413 

      
household size, weighted 1200 2.7439 0.248 

(0.4682) 
N=181 

-0.194 
(0.3422) 
N=211 

-0.162 
(0.2687) 
N=431 

*, ** indicates significance at the 10%, 5% level, respectively. 
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Figure 6:  Density of observations (i.e., “share”) across ozone forecast levels 
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Table 3:  Descriptive Statistics from Piedmont Park Sample 
Variable # obs. mean std. dev. min max 

(per sitting)      
Total passersby 124 49.03 39.92 4 230 
Total exercising passersby 124 16.55 12.92 0 67 
Total running passersby 124 12.46 9.34 0 52 
Total kid passersby 124 4.72 10.40 0 77 
Total elderly passersby 124 0.89 1.41 0 6 

(per party)      
Time of day 4047 15.18 2.25 11.02 18.6 
Day of week (Mon.= 1) 4047 3.29 1.97 1 6 
Number of people 4047 1.50 1.39 1 46 
Number of elderly (over 60) 4047 0.03 0.20 0 3 
Number of toddlers or younger 4047 0.03 0.21 0 4 
Number of kids 4047 0.14 1.13 0 43 
Number of females 3933 0.32 0.65 0 5 
Exercising? 4045 0.42 0.49 0 1 
Strolling? 4045 0.56 0.50 0 1 
Relaxing? 4045 0.02 0.12 0 1 
Childcare? 4045 0.05 0.22 0 1 
Socializing? 4045 0.24 0.43 0 1 
Primary mode:  walk 3683 0.60 0.49 0 1 
Primary mode:  run 3683 0.20 0.40 0 1 
Primary mode:  bike 3683 0.14 0.35 0 1 
Primary mode:  skate 3683 0.05 0.21 0 1 
Primary mode:  other 3683 0.01 0.09 0 1 
Forecasted ozone alert? 4047 0.17 0.37 0 1 
Forecasted ozone level 4047 68.52 15.44 36 105 

 
 

 


