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Abstract

We present a novel Bayesian topic model for learning discourse-level document struc-
ture. Our model leverages insights from discourse theory to constrain latent topic assign-
ments in a way that reflects the underlying organization of document topics. We propose
a global model in which both topic selection and ordering are biased to be similar across a
collection of related documents. We show that this space of orderings can be effectively rep-
resented using a distribution over permutations called the Generalized Mallows Model. We
apply our method to three complementary discourse-level tasks: cross-document alignment,
document segmentation, and information ordering. Our experiments show that incorpo-
rating our permutation-based model in these applications yields substantial improvements
in performance over previously proposed methods.!

1. Introduction

A central problem of discourse analysis is modeling the content structure of a document.
This structure encompasses the topics that are addressed and the order in which these topics
appear across documents in a single domain. Modeling content structure is particularly
germane for domains that exhibit recurrent patterns in content organization, such as news
and encyclopedia articles. These models aim to induce, for example, that articles about
cities typically contain information about History, Economy, and Transportation, and that
descriptions of History usually precede those of Transportation.

Previous work (Barzilay & Lee, 2004; Elsner, Austerweil, & Charniak, 2007) has demon-
strated that content models can be learned from raw unannotated text, and are useful in
a variety of text processing tasks such as summarization and information ordering. How-
ever, the expressive power of these approaches is limited: by taking a Markovian view on
content structure, they only model local constraints on topic organization. This shortcom-
ing is substantial since many discourse constraints described in the literature are global in
nature (Graesser, Gernsbacher, & Goldman, 2003; Schiffrin, Tannen, & Hamilton, 2001).

In this paper, we introduce a model of content structure that explicitly represents two
important global constraints on topic selection.? The first constraint posits that each doc-

1. Code, data sets, annotations, and the raw outputs of our experiments are available at
http://groups.csail.mit.edu/rbg/code/mallows/.

2. Throughout this paper, we will use “topic” to refer interchangeably to both the discourse unit and
language model views of a topic.



ument follows a progression of coherent, nonrecurring topics (Halliday & Hasan, 1976).
Following the example above, this constraint captures the notion that a single topic, such
as History, is expressed in a contiguous block within the document, rather than spread over
disconnected sections. The second constraint states that documents from the same domain
tend to present similar topics, in similar orders (Bartlett, 1932; Wray, 2002). This constraint
guides toward selecting sequences with similar topic ordering, such as placing History be-
fore Transportation. While these constraints are not universal across all genres of human
discourse, they are applicable to many important domains, ranging from newspaper text to
product reviews.?

We present a latent topic model over related documents that encodes these discourse
constraints by positing a single distribution over the entirety of a document’s content or-
dering. Specifically, we represent content structure as a permutation over topics. This
naturally enforces the first constraint since a permutation does not allow topic repetition.
To learn the distribution over permutations, we employ the Generalized Mallows Model
(GMM). This model concentrates probability mass on permutations close to a canonical
permutation. Permutations drawn from this distribution are likely to be similar, thereby
ensuring that the second constraint holds. A major benefit of the GMM is its compact
parameterization using a set of real-valued dispersion values. These dispersion parame-
ters allow the model to learn how strongly to bias each document’s topic ordering toward
the canonical permutation. Furthermore, the number of parameters grows linearly with the
number of topics, thus sidestepping tractability problems typically associated with the large
discrete space of permutations.

We position the GMM within a larger hierarchical Bayesian model that explains how a
set of related documents is generated. For each document, the model posits that a topic
ordering is drawn from the GMM, and that a set of topic frequencies is drawn from a multi-
nomial distribution. Together, these draws specify the document’s entire topic structure, in
the form of topic assignments for each textual unit. As with traditional topic models, words
are then drawn from language models indexed by topic. To estimate the model posterior, we
perform Gibbs sampling over the topic structures and GMM dispersion parameters, while
analytically integrating out the remaining hidden variables.

We apply our model to three complex document-level tasks. First, in the alignment
task, we aim to discover paragraphs across different documents that share the same topic.
In our experiments, our permutation-based model outperforms the Hidden Topic Markov
Model (Gruber, Rosen-Zvi, & Weiss, 2007) by a wide margin — the gap averaged 28% per-
centage points in F-score. Second, we consider the segmentation task, where the goal is to
partition each document into a sequence of topically coherent segments. The model yields
an average P, measure of 0.231, a 7.9% percentage point improvement over a competitive
Bayesian segmentation method that does not take global constraints into account (Eisen-
stein & Barzilay, 2008). Third, we apply our model to the ordering task, that is, sequencing
a held out set of textual units into a coherent document. As with the previous two appli-
cations, the difference between our model and a state-of-the-art baseline is substantial:
our model achieves an average Kendall’s 7 of 0.602, compared to a value of 0.267 for the
HMM-based content model (Barzilay & Lee, 2004).

3. An example of a domain where the first constraint is violated is dialogue. Texts in such domains follow
the stack structure, allowing topics to recur throughout a conversation (Grosz & Sidner, 1986).



The success of the permutation-based model in these three complementary tasks demon-
strates its flexibility and effectiveness, and attests to the versatility of the general document
structure induced by our model. We find that encoding global ordering constraints into
topic models makes them more suitable for discourse-level analysis, in contrast to the local
decision approaches taken by previous work. Furthermore, in most of our evaluation sce-
narios, our full model yields significantly better results than its simpler variants that either
use a fixed ordering, or are order-agnostic.

The remainder of this paper proceeds as follows. In Section 2, we describe how our ap-
proach relates to previous work in both topic modeling and statistical discourse processing.
Section 3.1 provides a problem formulation, followed by an overview of our content model
in Section 3.2. At the heart of this model is the distribution over topic permutations, for
which we provide background in Section 3.3, before employing it in a formal description of
the model’s probabilistic generative story in Section 3.4. Section 4 discusses the estimation
of the model’s posterior distribution given example documents, using a collapsed Gibbs
sampling procedure. Techniques for applying our model to the three tasks of alignment,
segmentation, and ordering are explained in Section 5. We then evaluate our model’s per-
formance on each of these tasks in Section 6, before concluding by touching upon directions
for future work in Section 7.

2. Related Work

We describe two areas of previous work related to our approach. From the algorithmic
perspective, our work falls into a broad class of topic models. While earlier work on topic
modeling took the bag of words view of documents, many recent approaches have expanded
topic models to capture some structural constraints. In Section 2.1, we describe these ex-
tensions and highlight their differences from our model. On the linguistic side, our work
relates to research on modeling text structure in statistical discourse processing. We sum-
marize this work in Section 2.2, drawing comparisons with the functionality supported by
our model.

2.1 Topic Models

Probabilistic topic models, originally developed in the context of language modeling, have
today become popular for a range of NLP applications, such as text classification and
document browsing. Topic models posit that a latent state variable controls the generation
of each word. Their parameters are estimated using approximate inference techniques,
such as Gibbs sampling and variational methods. In traditional topic models such as Latent
Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003; Griffiths & Steyvers, 2004), documents
are treated as bags of words where each word receives a separate topic assignment, and words
assigned to the same topic are drawn from a shared language model.

While the bag of words representation is sufficient for some applications, in many cases
this structure-unaware view is too limited. Previous research has considered extensions of
LDA models in two orthogonal directions, covering both intrasentential and extrasentential
constraints.



Modeling Intrasentential Constraints One promising direction for improving topic
models is to augment them with constraints on topic assignments of adjoining words within
sentences. For example, Griffiths, Steyvers, Blei, and Tenenbaum (2005) propose a model
that jointly incorporates both syntactic and semantic information in a unified generative
framework, and constrains the syntactic classes of adjacent words. In their approach, the
generation of each word is controlled by two hidden variables, one specifying a semantic
topic and the other specifying a syntactic class. The syntactic class hidden variables are
chained together as a Markov model, whereas semantic topic assignments are assumed to
be independent for every word.

As another example of intrasentential constraints, Wallach (2006) proposes a way to
incorporate word order information, in the form of bigrams, into an LDA-style model. In
this approach, the generation of each word is conditioned on both the previous word and
the topic of the current word, while the word topics themselves are generated from per-
document topic distributions as in LDA. This formulation models text structure at the
level of word transitions, as opposed to the work of Griffiths et al. (2005) where structure
is modeled at the level of hidden syntactic class transitions.

Our focus is on modeling high-level document structure in terms of its semantic content.
As such, our work is complementary to methods that impose structure on intrasentential
units; in fact, it should be possible to combine our model with constraints on adjoining
words.

Modeling Extrasentential Constraints Given the intuitive connection between the
notion of topic in LDA and the notion of topic in discourse analysis, it is natural to assume
that LDA-like models can be useful for discourse-level tasks such as segmentation and
topic classification. This hypothesis motivated research on models where topic assignment
is guided by structural considerations (Purver, Kording, Griffiths, & Tenenbaum, 2006;
Gruber et al., 2007; Titov & McDonald, 2008), particularly relationships between the topics
of adjacent textual units. Depending on the application, a textual unit may be a sentence,
paragraph, or speaker utterance. A common property of these models is that they bias
topic assignments to cohere within local segments of text.

Models in this category vary in terms of the mechanisms used to encourage local topic
coherence. For instance, the model of Purver et al. (2006) biases the topic distributions
of adjacent utterances (textual units) to be similar. Their model generates each utterance
from a mixture of topic language models. The parameters of this topic mixture distribu-
tion is assumed to follow a type of Markovian transition process — specifically, with high
probability an utterance v will have the same topic distribution as the previous utterance
u — 1; otherwise, a new topic distribution is drawn for u. Thus, each textual unit’s topic
distribution only depends on the previous textual unit, controlled by a parameter indicating
whether a new topic distribution is drawn.

In a similar vein, the Hidden Topic Markov Model (HTMM) (Gruber et al., 2007) posits
a generative process where each sentence (textual unit) is assigned a single topic, so that
all of the sentence’s words are drawn from a single language model. As with the model of
Purver et al., topic transitions between adjacent textual units are modeled in a Markovian
fashion — specifically, sentence 7 has the same topic as sentence 7 — 1 with high probability,
or receives a new topic assignment drawn from a shared topic multinomial distribution.



In both HTMM and our model, the assumption of a single topic per textual unit allows
sections of text to be related across documents by topic. In contrast, Purver et al.’s model
is tailored for the task of segmentation, so each utterance is drawn from a mixture of topics.
Thus, their model does not capture how utterances are topically aligned across related
documents. More importantly, both HTMM and the model of Purver et al. are only able
to make local decisions regarding topic transitions, and thus have difficulty respecting long-
range discourse constraints such as topic contiguity. Our model instead takes a global view
on topic assignments for all textual units, by explicitly generating an entire document’s
topic ordering from one joint distribution. As we show later in this paper, this global view
yields significant performance gains.

The recent Multi-Grain Latent Dirichlet Allocation model (MGLDA; Titov & McDonald,
2008) has also studied topic assignments at the level of sub-document textual units. In
MGLDA, a set of local topic distributions is induced for each sentence, dependent on a
window of local context around the sentence. Individual words are then drawn from either
these local topics, or from document-level topics as in standard LDA. MGLDA represents
local context using a sliding window, where each window frame comprises overlapping short
spans of sentences. In this way, local topic distributions are shared between sentences in
close proximity.

MGLDA can represent more complex topical dependencies than the models of Purver
et al. and Gruber et al., because the window can incorporate a much wider swath of local
context than two adjacent textual units. However, MGLDA is unable to encode longer
range constraints, such as contiguity and ordering similarity, because sentences not in close
proximity are only loosely connected through a series of intervening window frames. In
contrast, our work is specifically oriented toward these long-range constraints, necessitating
a whole-document notion of topic assignment.

2.2 Modeling Ordering Constraints in Statistical Discourse Analysis

The global constraints encoded by our model are closely related to research in discourse
on information ordering, with applications to text summarization and generation (Barzilay,
Elhadad, & McKeown, 2002; Lapata, 2003; Karamanis, Poesio, Mellish, & Oberlander, 2004;
Elsner et al., 2007). The emphasis of that body of work is on learning ordering constraints
from data, with the goal of reordering new text from the same domain. These methods build
on the assumption that recurring patterns in topic ordering can be discovered by analyzing
patterns in word distribution. The key distinction between prior methods and our approach
is that existing ordering models are largely driven by local constraints, with limited ability
to capture global structure. Below, we describe two main classes of probabilistic ordering
models studied in discourse processing.

Discriminative Models Discriminative approaches aim directly to predict an ordering
for a given set of sentences. Modeling the ordering of all sentences simultaneously leads
to a complex structure prediction problem. In practice, however, a more computationally
tractable two-step approach is taken: first, probabilistic models are used to estimate pair-
wise sentence ordering preferences; next, these local decisions are combined to produce a
consistent global ordering (Lapata, 2003; Althaus, Karamanis, & Koller, 2004). Training
data for pairwise models is constructed by considering all pairs of sentences in a document,



with supervision labels based on how they are actually ordered. Prior work has demon-
strated that a wide range of features are useful in these classification decisions (Lapata,
2003; Karamanis et al., 2004; Ji & Pulman, 2006; Bollegala, Okazaki, & Ishizuka, 2006).
For instance, Lapata (2003) has demonstrated that lexical features, such as verb pairs from
the input sentences, serve as a proxy for plausible sequences of actions, and thus are effec-
tive predictors of well-formed orderings. During the second stage, these local decisions are
integrated into a global order which maximizes the number of consistent pairwise classifica-
tions. Since finding such an ordering is NP-hard (Cohen, Schapire, & Singer, 1999), various
approximations are used in practice (Lapata, 2003; Althaus et al., 2004).

While these two-step discriminative approaches can effectively leverage information
about local transitions, they do not provide any means for representing global constraints.
In more recent work, Barzilay and Lapata (2008) demonstrated that certain global prop-
erties can be captured in the discriminative framework using a reranking mechanism. In
this set-up, the system learns to identify the best global ordering given a set of n possible
candidate orderings. The accuracy of this ranking approach greatly depends on the quality
of selected candidates. Identifying such candidates is a challenging task, given the large
search space of possible alternatives.

The approach presented in this work differs from existing discriminative models in two
ways. First, our model represents a distribution over all possible global orderings. Thus,
we can use sampling mechanisms that consider this whole space, rather than being limited
to a subset of candidates as with ranking models. The second difference arises out of the
generative nature of our model. Rather than focusing on the ordering task, our order-aware
model effectively captures a layer of hidden variables that explain the underlying structure
of document content. Thus, it can be effectively applied to a wider variety of applications,
including those where sentence ordering is already observed, by appropriately adjusting the
observed and hidden components of the model.

Generative Models Our work is closer in technique to generative models that treat
topics as hidden variables. One instance of such work is the Hidden Markov Model (HMM)
content model (Barzilay & Lee, 2004). In their model, states correspond to topics and
state transitions represent ordering preferences; each hidden state’s emission distribution is
then a language model over words. Thus, similar to our approach, these models implicitly
represent patterns at the level of topical structure. The HMM is then used in the ranking
framework to select an ordering with the highest probability.

In more recent work, Elsner et al. (2007) developed a search procedure based on sim-
ulated annealing that finds a high likelihood ordering. In contrast to ranking-based ap-
proaches, their search procedure can cover the entire ordering space. On the other hand,
as we show in Section 5.3, we can define an ordering objective that can be maximized very
efficiently over all possible orderings during prediction, once the model parameters have
been learned. Specifically, for a bag of p paragraphs, only O(pK) calculations of paragraph
probabilities are necessary, where K is the number of topics.

Another distinction between our proposed model and prior work is in the way global
ordering constraints are encoded. In a Markovian model, it is possible to induce some global
constraints by introducing additional local constraints. For instance, topic contiguity can
be enforced by selecting an appropriate model topology (e.g., by augmenting hidden states



to record previously visited states). However, other global constraints, such as similarity in
overall ordering across documents, are much more challenging to represent. By explicitly
modeling the topic permutation distribution, we can easily capture this kind of global
constraint, ultimately resulting in more accurate topic models and orderings. As we show
later in this paper, our model substantially outperforms the approach of Barzilay and Lee
on the information ordering task to which they applied the HMM content model.

3. Model

In this section, we describe our problem formulation and proposed model.

3.1 Problem Formulation

Our content modeling problem can be formalized as follows. We take as input a corpus
{di,...dp} of related documents, and a specification of a number of topics K. Each docu-
ment d is comprised of an ordered sequence of Ny paragraphs (pq1,...,pd,n,). As output,
we predict a single topic assignment zq, € {1,..., K} for each paragraph p.* These z val-
ues should reflect the underlying content organization of each document — related content
discussed within each document, and across separate documents, should receive the same z
value.

Our formulation shares some similarity with the standard LDA setup, in that a common
set of topics is assigned across a collection of documents. The difference is that in LDA
each word’s topic assignment is conditionally independent, following the bag of words view
of documents, whereas our constraints on how topics are assigned let us connect word
distributional patterns to document-level topic structure.

3.2 Model Overview

We propose a generative Bayesian model that explains how a corpus of D documents can
be produced from a set of hidden variables. At a high level, the model first selects how
frequently each topic is expressed in the document, and how the topics are ordered. These
topics then determine the selection of words for each paragraph. Notation used in this and
subsequent sections is summarized in Figure 1.

For each document d with N, paragraphs, we separately generate a bag of topics t4 and
a topic ordering my. The unordered bag of topics t4, which contains N; elements, expresses
how many paragraphs of the document are assigned to each of the K topics. Note that tg
reflects the frequency of each topic, and that some topics may not appear at all. Variable
ty is constructed by taking Ng samples from a distribution over topics €, a multinomial
representing the probability of each topic being expressed. Sharing 6 between documents
captures the intuition that certain topics are more likely across the entire corpus.

The topic ordering variable 74 is a permutation over the numbers 1 through K that
defines the order in which topics appear in the document. We draw 7y from the Generalized
Mallows Model, a distribution over permutations that we explain in Section 3.3. As we will

4. In well structured documents, paragraphs tend to be internally topically consistent (Halliday & Hasan,
1976), so predicting one topic per paragraph is sufficient. However, we note that our approach can be
applied with no modifications to other levels of textual granularity, such as sentences.
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P g. . tqy ~ Multinomial(0)

z — paragraph topic assignment vy~ GMM(p)
B — language model parameters of mq = Compute-m(vy)

each topic z; = Compute-z(ty, 74)
w — document words for each paragraph p in d
K — number of topics for each word w in p
D — number of documents in corpus w ~ Multinomial(3;, ,)

Ny — number of paragraphs in
document d

N, — number of words in paragraph p

Algorithm: Compute-7 Algorithm: Compute-z
Input: Inversion count vector v Input: Topic counts t, permutation w
Create an empty list 7 Create an empty list z
m[l] — K end «— 1
for j = K —1 down to 1 for k=K to 1

for i = K — 1 down to v[j] for i =1 to t[r[k]]

m[i 4+ 1] — 7] z[end] «— ml[k]

w[v[j]] < j end — end + 1

Output: Permutation w Output: Paragraph topic vector z

Figure 1: The plate diagram and generative process for our model, along with a table of
notation for reference purposes. Shaded circles in the figure denote observed
variables, and squares denote hyperparameters. The dotted arrows indicate that
7 is constructed deterministically from v according to algorithm Compute-m, and
z is constructed deterministically from t and 7 according to Compute-z.



see, this particular distribution biases the permutation selection to be close to a single
centroid, reflecting the discourse constraint of preferring similar topic structures across
documents.

Together, a document’s bag of topics t4 and ordering 7y determine the topic assignment
24 for each of its paragraphs. For example, in a corpus with K = 4, a seven-paragraph
document d with t4 = {1,1,1,1,2,4,4} and 74 = (2,4, 3, 1) would induce the topic sequence
zqg = (2,4,4,1,1,1,1). The induced topic sequence z, can never assign the same topic to
two unconnected portions of a document, thus satisfying the constraint of topic contiguity.

We assume that each topic k is associated with a language model B;. The words of a
paragraph assigned to topic k are then drawn from that topic’s language model 8. This
portion is similar to standard LDA in that each topic relates to its own language model.
However, unlike LDA, our model enforces topic coherence for an entire paragraph rather
than viewing a paragraph as a mixture of topics.

Before turning to a more formal discussion of the generative process, we first provide
background on the permutation model for topic ordering.

3.3 The Generalized Mallows Model over Permutations

A central challenge of the approach we have presented is modeling the distribution over
possible topic orderings. For this purpose we use the Generalized Mallows Model (GMM,;
Fligner & Verducci, 1986; Lebanon & Lafferty, 2002; Meila, Phadnis, Patterson, & Bilmes,
2007; Klementiev, Roth, & Small, 2008), which exhibits two appealing properties in the
context of this task. First, the model concentrates probability mass on some canonical or-
dering and small perturbations (permutations) of that ordering. This characteristic matches
our constraint that documents from the same domain exhibit structural similarity. Second,
its parameter set scales linearly with the number of elements being ordered, making it
sufficiently constrained and tractable for inference.

We first describe the standard Mallows Model over orderings (Mallows, 1957). The
Mallows Model takes two parameters, a canonical ordering o and a dispersion parameter p.
It then sets the probability of any other ordering 7 to be proportional to e PU™o)  where
d(m, o) represents some distance metric between orderings m and o. Frequently, this metric
is the Kendall T distance, the minimum number of swaps of adjacent elements needed to
transform ordering 7 into the canonical ordering ¢. Thus, orderings which are close to the
canonical ordering will have high probability, while those in which many elements have been
moved will have less probability mass.

The Generalized Mallows Model, first introduced by Fligner and Verducci (1986), refines
the standard Mallows Model by adding an additional set of dispersion parameters. These
parameters break apart the distance d(m,o) between orderings into a set of independent
components. Each component can then separately vary in its sensitivity to perturbation.
To tease apart the distance function into components, the GMM distribution considers the
inversions required to transform the canonical ordering into an observed ordering. We
first discuss how these inversions are parameterized in the GMM, before turning to the
distribution’s definition and characteristics.

Inversion Representation of Permutations Typically, permutations are represented
directly as an ordered sequence of elements — for example, (3,1,2) represents permuting



the initial order by placing the third element first, followed by the first element, and then
the second. The GMM utilizes an alternative permutation representation defined by a vec-
tor (v1,...,vx_1) of inversion counts with respect to the identity permutation (1,..., K).
Term v; counts the number of times when a value greater than j appears before j in the
permutation. For instance, given the standard form permutation (3,1,5,6,2,4), v = 3
because 3, 5, and 6 appear before 2; the entire inversion count vector would be (1, 3,0, 2,0).
Likewise, our previous example permutation (2,4,3,1) maps to inversion counts (3,0, 1).
Note that the jth inversion count v; can only take on integer values from 0 to K — j in-
clusive. Thus the inversion count vector has only K — 1 elements as vk is always 0. The
sum of an entire inversion count vector is simply that ordering’s Kendall 7 distance from
the canonical ordering.

Every distinct vector of inversion counts corresponds to a distinct permutation, and vice
versa. To see this, note that for each permutation we can directly compute its inversion
counts. Conversely, given a sequence of inversion counts, we can construct the unique
corresponding permutation. We insert items into the permutation, working backwards from
item K. Assume that we have already placed items j + 1 through K in the proper order.
To insert item j, we note that exactly v; of items j 4 1 to K must precede it, meaning that
it must be inserted after the vjth item in the current order (See algorithm Compute-7 in
Figure 1). Since there is only one place j can be inserted that fulfills the inversion counts,
we see by induction that exactly one permutation can be constructed to satisfy the given
inversion counts.

In our model, we take the canonical topic ordering to always be the identity ordering
(1,..., K). Because the topic numbers in our task are completely symmetric and not linked
to any extrinsic meaning, fixing the global ordering to a specific arbitrary value does not
sacrifice any representational power. In the general case of the GMM, the canonical ordering
is a parameter to the distribution.

Probability Mass Function The GMM assigns probability mass to a particular order
based on how that order is permuted from the canonical ordering. More precisely, it asso-
ciates a distance with every permutation, where the canonical ordering has distance zero
and permutations with many inversions with respect to this canonical ordering have larger
distance. The distance assignment is based on K — 1 real-valued dispersion parameters
(p1,--.,pr—1). The distance of a permutation with inversion counts v is then defined to
be > ; Pjvj, and the GMM’s probability mass function is exponential in this distance:

e~ Zj PjVj

¥(p)
K1 e PiVi
! S .

GMM(v; p) =

where 1(p) = I, ¥;(p;) is a normalization factor with value:

1— ef(Kfj‘i'l)pj

1—ePi

Vi(pj) =

10



Setting all p; equal to a single value p recovers the standard Mallows Model with a Kendall
7 distance function. The factorization of the GMM into independent probabilities per
inversion count makes this distribution particularly easy to apply; we will use GMM; to refer
to the jth multiplicand of the probability mass function, which is the marginal distribution
over vj:

e Pivi

¥ilps)
Due to the exponential form of the distribution, requiring that p; > 0 constrains the GMM
to assign highest probability mass to each v; being zero, i.e., the distributional mode is the

canonical identity permutation. A higher value for p; assigns more probability mass to v;
being close to zero, biasing j to have fewer inversions.

GMM;(vj; pj) = 3)

Conjugate Prior A major benefit of the GMM is its membership in the exponential
family of distributions; this means that it is particularly amenable to a Bayesian represen-
tation, as it admits a natural independent conjugate prior for each parameter p; (Fligner
& Verducci, 1990):

GMMy(p; | vj0,v0) e(—Pivi0—log;(p;))vo (4)

This prior distribution takes two parameters v and v;o. Intuitively, the prior states that
over vy previous trials, the total number of inversions observed was 1yv;9. This distribution
can be easily updated with the observed v; to derive a posterior distribution.

Because each v; has a different range, it is inconvenient to set the prior hyperparameters
vj,0 directly. In our work, we instead assign a common prior value for each parameter p;,
which we denote as pg. Then we set each v; ¢ such that the maximum likelihood estimate of
pj is po. By differentiating the likelihood of the GMM with respect to pj, it is straightforward
to verify that this works out to setting:

1 K—j+1 -
ero — 1 e(E—j+hpo — 1" (5)

/Uj70 =

3.4 Formal Generative Process

We now fully specify the details of our model, whose plate diagram appears in Figure 1.
We observe a corpus of D documents, where each document d is an ordered sequence of
Ny paragraphs, and each paragraph is represented as a bag of words. The number of
topics K is assumed to be pre-specified. The model induces a set of hidden variables that
probabilistically explain how the words of the corpus were produced. Our final desired
output is the distributions over the paragraphs’ hidden topic assignment variables. In the
following, variables subscripted with 0 are fixed prior hyperparameters.

1. For each topic k, draw a language model Bj, ~ Dirichlet(/3p). As with LDA, these are
topic-specific word distributions.

2. Draw a topic distribution @ ~ Dirichlet(6p), which expresses how likely each topic is
to appear regardless of position.

3. Draw the topic ordering distribution parameters p; ~ GMMy(pg, o) for j = 1 to
K — 1. These parameters control how rapidly probability mass decays for having

11



more inversions for each topic. A separate p; for every topic allows us to learn that
some topics are more likely to be reordered than others.

4. For each document d with N, paragraphs:
(a) Draw a bag of topics t4 by sampling Ny times from Multinomial(8).

(b) Draw a topic ordering 74, by sampling a vector of inversion counts vq ~ GMM(p),
and then applying algorithm Compute-7 from Figure 1 to vg.

(c) Compute the vector of topic assignments z; for document d’s paragraphs, by
sorting tg4 according to 74, as in algorithm Compute-z from Figure 1.5

(d) For each paragraph p in document d:

i. Sample each word w in p according to the language model of p: w ~
Multinomial(3., ).

3.5 Properties of the Model

In this section we describe the rationale behind using the GMM to represent the ordering
component of our content model.

e Representational Power The GMM concentrates probability mass around one cen-
troid permutation, reflecting our preferred bias toward document structures with sim-
ilar topic orderings. Furthermore, the parameterization of the GMM using a vector of
dispersion parameters p allows for flexibility in how strongly the model biases toward
a single ordering — at one extreme (p = co) only one ordering has positive probabil-
ity, while at the other (p = 0) all orderings are equally likely. Because p is comprised
of independent dispersion parameters (pi, ..., pr—1), the distribution can assign dif-
ferent penalties for displacing different topics. For example, we may learn that middle
sections (in the case of Cities, sections such as Economy and Culture) are more likely
to vary in position across documents than early sections (such as Introduction and
History).

e Computational Benefits The parameterization of the GMM using a vector of dis-
persion parameters p is compact and tractable. Since the number of parameters grows
linearly with the number of topics, the model can efficiently handle longer documents
with greater diversity of content.

Another computational advantage of this model is its seamless integration into a larger
Bayesian model. Due to its membership in the exponential family and the existence
of its conjugate prior, inference does not become significantly more complex when the
GMM is used in a hierarchical context. In our case, the entire document generative
story also accounts for topic frequency and the words within each topic.

One final beneficial effect of the GMM is that it breaks the symmetry of topic as-
signments by fixing the distribution centroid. Specifically, topic assignments are not

5. Multiple permutations can contribute to the probability of a single document’s topic assignments zg4,
if there are topics that do not appear in tq. As a result, our current formulation is biased toward
assignments with fewer topics per document. In practice, we do not find this to negatively impact model
performance.
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invariant to relabeling, because the probability of the underlying permutation would
change. This sidesteps the problem of topic identifiability, where a model may have
multiple maxima with the same likelihood due to the underlying symmetry of the
hidden variables. Non-identifiable models (which includes standard LDA) may cause
sampling procedures to jump between maxima or produce draws that are difficult to
aggregate across runs.

Finally, we will show in Section 6 that the benefits of the GMM extend from the theo-
retical to the empirical: representing permutations using the GMM almost always leads to
superior performance compared to alternative approaches.

4. Inference

The variables that we aim to infer are the paragraph topic assignments z, which are deter-
mined by the bag of topics t and ordering 7 for each document. Thus, our goal is to estimate
the joint marginal distributions of t and 7 given the document text, while integrating out
all remaining hidden parameters:

P(t,m, | w). (6)

We accomplish this inference task through Gibbs sampling (Geman & Geman, 1984; Bishop,
2006). A Gibbs sampler builds a Markov chain over the hidden variable state space whose
stationary distribution is the actual posterior of the joint distribution. Each new sample
is drawn from the distribution of a single variable conditioned on previous samples of the
other variables. We can “collapse” the sampler by integrating over some of the hidden
variables in the model, in effect reducing the state space of the Markov chain. Collapsed
sampling has been previously demonstrated to be effective for LDA and its variants (Griffiths
& Steyvers, 2004; Porteous, Newman, Ihler, Asuncion, Smyth, & Welling, 2008; Titov &
McDonald, 2008). It is typically preferred over the explicit Gibbs sampling of all the hidden
variables, because of the smaller search space and generally shorter mixing time.

Our sampler analytically integrates out all but three sets of hidden variables: bags of
topics t, orderings 7, and permutation inversion parameters p. After a burn-in period,
we treat the last samples of t and 7 as a draw from the posterior. When samples of the
marginalized variables @ and (3 are necessary, they can be estimated based on the topic
assignments as we show in Section 5.3. Figure 2 summarizes the Gibbs sampling steps of
our inference procedure.

Document Probability As a preliminary step, consider how to calculate the probability
of a single document’s words w, given the document’s paragraph topic assignments z4, and
the remaining documents and their topic assignments. Note that this probability is decom-
posable into a product of probabilities over individual paragraphs, where paragraphs with
different topics have conditionally independent word probabilities. Let w_,; and z_4 indi-
cate the words and topic assignments to documents other than d, and W be the vocabulary
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Figure 2: The collapsed Gibbs sampling inference procedure for estimating our model’s
posterior distribution. In each plate diagram, the variable being resampled is
shown in a double circle, and its Markov blanket is highlighted in black; other
variables, which have no impact on the variable being resampled, are grayed out.
Variables 8 and 3, shown in dotted circles, are never explicitly depended on or
re-estimated, because they are marginalized out by the sampler. Each diagram is
accompanied by the conditional resampling distribution for its respective variable.
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size. The probability of the words in d is then:

K
P(wa | w4, 60) = [ | / P(wa | 24, 8¢) P(By | 2,w—a: Bo) dBy
k=1 " Bk

K

= H DCM({Wdﬂ' P24 = k‘} | {W—d,i PZ2—di = k}vﬁo)a (7)
k=1

where DCM(+) refers to the Dirichlet compound multinomial distribution, the result of
integrating over multinomial parameters with a Dirichlet prior (Bernardo & Smith, 2000).

For a Dirichlet prior with parameters o = («,...,aw ), the DCM assigns the following
probability to a series of observations x = {z1,...,x,}:
L(¥;05) rp DN (x,6) + o)
DCM(x; ) = J H ) (8)
[T,T(0,) LT+, a))

where N (x,1) refers to the number of times word ¢ appears in x. Here, I'(+) is the Gamma
function, a generalization of the factorial for real numbers. Some algebra shows that the
DCM'’s posterior probability density function conditioned on a series of observations y =
{y1,...,yn} can be computed by updating each a; with counts of how often word i appears
iny:

DCM(x | y,a) = DCM(x; 1 + N(y,1),...,aw + N(y, W)). (9)

Equations 7 and 9 will be used to compute the conditional distributions of the hidden
variables. We now turn to how each individual random variable is resampled.

Bag of Topics First we consider how to resample t4;, the ith topic draw for document
d conditioned on all other parameters being fixed (note this is not the topic of the ith
paragraph, as we reorder topics using 7y, which is generated separately):

P(tg; =t|...) oc P(ta; =t |t_(4;),00) P(Wq|tq, 74, W_q,2_q, 50)
N(t_(44):t) + 0o
[t_(a,)l + Kb

P(Wd ‘ Z7Wfdaﬁ0)7 (10)

where t, is updated to reflect t5; = t, and z,4 is deterministically computed in the last step
using Compute-zfrom Figure 1 with inputs t; and 74. The first step reflects an application
of Bayes rule to factor out the term for wg; we then drop superfluous terms from the
conditioning. In the second step, the former term arises out of the DCM, by updating
the parameters 6y with observations t_(4;) as in equation 9 and dropping constants. The
latter document probability term is computed using equation 7. The new ¢4, is selected by
sampling from this probability computed over all possible topic assignments.

Ordering The parameterization of a permutation 7, as a series of inversion values vy ;
reveals a natural way to decompose the search space for Gibbs sampling. For each document
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d, we resample vg; for j = 1 to K — 1 independently and successively, according to its
conditional distribution:

P(vgj=v|...) o< Pvg; =v|p;) P(Wq|ta, ma, W_a,2_q,[0)
= GMM;(v; pj) P(wq | 2, Ww_g, (o), (11)

where 74 is updated to reflect vg; = v, and z4 is computed deterministically according to
tqy and my. The first term refers to equation 3; the second is computed using equation 7.
This probability is computed for every possible value of v, which ranges from 0 to K — j,
and term vy ; is sampled according to the resulting probabilities.

GMM Parameters For each j = 1 to K — 1, we resample p; from its posterior distribu-
tion:

Zd Ud,j vj,00
P /)‘ —(}MM p" : ’
( J ‘ ) 0 < 7 N v

, N+ Vo> , (12)

where GMMj is evaluated according to equation 4. The normalization constant of this
distribution is unknown, meaning that we cannot directly compute and invert the cumu-
lative distribution function to sample from this distribution. However, the distribution
itself is univariate and unimodal, so we can expect that an MCMC technique such as slice
sampling (Neal, 2003) should perform well. In practice, MATLAB’s built-in slice sampler
provides a robust draw from this distribution.®

Computational Issues During inference, directly computing document probabilities on
the basis of equation 7 results in many redundant calculations that slow the runtime of
each iteration considerably. To improve the computational performance of our proposed
inference procedure, we apply some memoization techniques during sampling. Within a
single iteration, for each document, the Gibbs sampler requires computing the document’s
probability given its topic assignments (equation 7) many times, but each computation
frequently conditions on only slight variations of those topic assignments. A naive approach
would compute a probability for every paragraph each time a document probability is
desired, performing redundant calculations when topic assignment sequences with shared
subsequences are repeatedly considered.

Instead, we use lazy evaluation to build a three-dimensional cache, indexed by tuple
(i,7,k), as follows. Each time a document probability is requested, it is broken into in-
dependent subspans of paragraphs, where each subspan takes on one contiguous topic as-
signment. This is possible due to the way equation 7 factorizes into independent per-topic
multiplicands. For a subspan starting at paragraph i, ending at paragraph j, and as-
signed topic k, the cache is consulted using key (i, 7, k). For example, topic assignments
zq = (2,4,4,1,1,1,1) would result in cache lookups at (1,1,2), (2,3,4), and (4,7,1). If a
cached value is unavailable, the correct probability is computed using equation 7, and the
result is stored in the cache at location (i,7, k). Moreover, we also record values at every
intermediate cache location (7,1, k) for [ =i to j — 1, because these values are computed as
subproblems while evaluating equation 7 for (7,7, k). The cache is reset before proceeding
to the next document, as the conditioning changes between documents. For each document,
this caching guarantees that there are at most O(N, 3K ) paragraph probability calculations.

6. In particular, we use the slicesample function from the MATLAB Statistics Toolbox.
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In practice, because most individual Gibbs steps are small, this bound is very loose, and
the caching mechanism reduces computation time by several orders of magnitude.

We also maintain caches of word-topic and paragraph-topic assignment frequencies,
allowing us to rapidly compute the counts used in equations 7 and 10. This form of caching
is the same as what is used by Griffiths and Steyvers (2004).

5. Applications

In this section, we describe how our model can be applied to three challenging discourse-
level tasks: aligning paragraphs of similar topical content between documents, segmenting
each document into topically cohesive sections, and ordering new unseen paragraphs into
a coherent document. In particular, we show that the posterior samples produced by our
inference procedure from Section 4 can be used to derive a solution for each of these tasks.

5.1 Alignment

For the alignment task, we wish to find how the paragraphs of each document topically
relate to paragraphs of other documents. Essentially, this is a cross-document clustering
task — an alignment assigns each paragraph of a document into one of K topically related
groupings. For instance, given a set of cell phone reviews, one group may represent text
fragments that discuss Price, while another group consists of fragments about Reception.

Our model can be readily employed for this task: we can view the topic assignments
z as cluster labels. For example, for two documents d; and do with topic assignments
zq, = (2,4,4,1,1,1,1) and z4, = (4,4,3,3,2,2,2), paragraph 1 of d; is grouped together
with paragraphs 5 through 7 of do, and paragraphs 2 and 3 of dy with 1 and 2 of do. The
remaining paragraphs assigned to topics 1 and 3 form their own separate per-document
clusters.

Previously developed methods for cross-document alignment have been primarily driven
by similarity functions that quantify lexical overlap between textual units (Barzilay & El-
hadad, 2003; Nelken & Shieber, 2006). These methods do not explicitly model document
structure, but they specify some global constraints that guide the search for an optimal
alignment. Pairs of textual units are considered in isolation for making alignment deci-
sions. In contrast, our approach allows us to take advantage of global structure and shared
language models across all related textual units, without requiring manual specification of
matching constraints.

5.2 Segmentation

Segmentation is a well-studied discourse task, where the goal is to divide a document into
topically cohesive contiguous sections. Previous approaches have typically relied on lezical
cohesion — that is, similarity in word choices within a document subspan — to guide the
choice of segmentation boundaries (Hearst, 1994; van Mulbregt, Carp, Gillick, Lowe, &
Yamron, 1998; Blei & Moreno, 2001; Utiyama & Isahara, 2001; Galley, McKeown, Fosler-
Lussier, & Jing, 2003; Purver et al., 2006; Malioutov & Barzilay, 2006; Eisenstein & Barzilay,
2008). Our model relies on this same notion in determining the language models of topics,
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but connecting topics across documents and constraining how those topics appear allow it
to better learn the words that are most indicative of topic cohesion.

The output samples from our model’s inference procedure map straightforwardly to
segmentations — contiguous spans of paragraphs that are assigned the same topic num-
ber are taken to be one segment. For example, a seven-paragraph document d with topic
assignments zg = (2,4,4,1,1,1,1) would be segmented into three sections, comprised of
paragraph 1, paragraphs 2 and 3, and paragraphs 4 through 7. Note that the segmenta-
tion ignores the specific values used for topic assignments, and only heeds the paragraph
boundaries at which topic assignments change.

5.3 Ordering

A third application of our model is to the problem of creating structured documents from
collections of unordered text segments. This text ordering task is an important step in
broader NLP tasks such as text summarization and generation. For this task, we assume
we are provided with well structured documents from a single domain as training examples;
once trained, the model is used to induce an ordering of previously unseen collections of
paragraphs from the same domain.

During training, our model learns a canonical ordering of topics for documents within
the collection, via the language models associated with each topic. Because the GMM
concentrates probability mass around the canonical (1,. .., K) topic ordering, we expect that
highly probable words in the language models of lower-numbered topics tend to appear early
in a document, whereas highly probable words in the language models of higher-numbered
topics tend to appear late in a document. Thus, we structure new documents according to
this intuition — paragraphs with words tied to low topic numbers should be placed earlier
than paragraphs with words relating to high topic numbers.

Formally, given an unseen document d comprised of an unordered set of paragraphs
{p1,...,pn}, we order paragraphs according to the following procedure. First, we find
the most probable topic assignment Z; independently for each paragraph p;, according to
parameters 3 and 6 learned during the training phase:

Z?i = argmaXP(zi =k | p27ﬁ70)
k

=argmax P(p; | zi =k, Bx)P(zi =k | 9). (13)
k

Second, we sort the paragraphs by topic assignment Z; by ascending value — since (1... K)
is the GMM'’s canonical ordering, this yields the most likely ordering conditioned on a single
estimated topic assignment for each paragraph. Due to possible ties in topic assignments,
the resulting document may be a partial ordering; if a full ordering is required, ties are
broken arbitrarily.

A key advantage of this proposed approach is that it is closed-form and computationally
efficient. Though the training phase requires running the inference procedure of Section 4,
once the model parameters are learned, predicting an ordering for a new set of p paragraphs
requires computing only pK probability scores. In contrast, previous approaches have
only been able to rank a small subset of all possible document reorderings (Barzilay &
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Lapata, 2008), or performed a search procedure through the space of orderings to find an
optimum (Elsner et al., 2007).7
The objective function of equation 13 depends on posterior estimates of 3 and 6 given
the training documents. Since our collapsed Gibbs sampler integrates out these two hidden
variables, we need to back out the values of 3 and 6 from the known posterior samples of
z. This can easily be done by computing a point estimate of each distribution based on the
word-topic and topic-document assignment frequencies, respectively, as is done by Griffiths
and Steyvers (2004). The probability mass B};’ of word w in the language model of topic k
is given by:
g = Nolk,w) + fo
£ Ns(k) + Wik’
where Ng(k,w) the total number of times word w was assigned to topic k, and Ng(k) is the

total number of words assigned to topic k, according to the posterior sample of z. We can
derive a similar estimate for 6y, the prior likelihood of topic k:

(14)

~ Ny(k) + 0o

=9\ 7Y 15
k Ny + Kby’ (15)

where Ny(k) is the total number of paragraphs assigned to topic k according to the sample
of z, and Ny is the total number of paragraphs in the entire corpus.

Following the standard setup used in previous work, we assume that the input to the
ordering algorithm is an unordered set of textual units. However, in some applications some
partial ordering preferences can be observed. For instance, in multidocument summariza-
tion, such partial orderings can be supplied by original documents. Even though they can
be mutually inconsistent, they still provide useful information (Barzilay et al., 2002). Our
model can easily integrate these kinds of observed information as a prior for predicting the
final ordering.

6. Experiments

In this section, we evaluate the performance of our model on the three tasks presented in
Section 5: cross-document alignment, document segmentation, and information ordering.
We first describe some preliminaries common to all three tasks, covering the data sets,
reference comparison structures, model variants, and inference algorithm settings shared by
each evaluation. We then provide a detailed examination of how our model performs on
each individual task.

6.1 General Evaluation Setup

Data Sets In our experiments we use five data sets, briefly described below (for additional
statistics, see Table 1):

7. The approach we describe is not the same as finding the most probable paragraph ordering according to
data likelihood, which is how the optimal ordering is derived for the HMM-based content model. Our
proposed ordering technique essentially approximates that objective by using a per-paragraph maximum
a posteriori estimate of the topic assignments rather than the full posterior topic assignment distribution.
This approximation makes for a much faster prediction algorithm that performs well empirically.

19



Articles about large cities from Wikipedia

Corpus Language | Documents | Sections | Paragraphs | Vocabulary | Tokens
ClitiesEn English 100 13.2 66.7 42,000 4,920
CitiesEn500 | English 500 10.5 45.9 95,400 3,150
CitiesFr French 100 10.4 40.7 31,000 2,630
Articles about chemical elements from Wikipedia

Corpus Language | Documents | Sections | Paragraphs | Vocabulary | Tokens
Elements English 118 7.7 28.1 18,000 1,920
Cell phone reviews from PhoneArena.com

Corpus Language | Documents | Sections | Paragraphs | Vocabulary | Tokens
Phones English 100 6.6 24.0 13,500 2,750

Table 1: Statistics of the data sets used in our evaluations. All values except vocabulary
size are the average per document.

e (litiesEn: Articles from the English Wikipedia about the world’s 100 largest cities by
population. Common topics include History, Culture, and Demographics. These arti-
cles are typically of substantial size and share similar content organization patterns.

o (litiesEn500: Articles from the English Wikipedia about the world’s 500 largest cities
by population. This collection is a superset of CitiesEn. Many of the lower-ranked
cities are not well known to English Wikipedia editors — thus, compared to CitiesEn
these articles are shorter on average and exhibit greater variability in content selection
and ordering.

e (itiesFr: Articles from the French Wikipedia about the same 100 cities as in CitiesEn.

e Flements: Articles from the English Wikipedia about chemical elements in the peri-
odic table,® including topics such as Biological Role, Occurrence, and Isotopes.

e Phones: Reviews extracted from PhoneArena.com, a popular cell phone review web-
site. Topics in this corpus include Design, Camera, and Interface. These reviews are
written by expert reviewers employed by the site, as opposed to lay users.”

This heterogeneous collection of data sets allows us to examine the behavior of the
model under diverse test conditions. These sets vary in how the articles were generated,
the language in which the articles were written, and the subjects they discuss. As a result,
patterns in topic organization vary greatly across domains. For instance, within the Phones
corpus, the articles are very formulaic, due to the centralized editorial control of the website,
which establishes consistent standards followed by the expert reviewers. On the other hand,
Wikipedia articles exhibit broader structural variability due to the collaborative nature of

8. All 118 elements at http://en.wikipedia.org/wiki/Periodic_table, including undiscovered element 117.
9. In the Phones set, 35 documents are very short “express” reviews without section headings; we include
them in the input to the model, but did not evaluate on them.
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Wikipedia editing, which allows articles to evolve independently. While Wikipedia articles
within the same category often exhibit similar section orderings, many have idiosyncratic
inversions. For instance, in the CitiesEn corpus, both the Geography and History sections
typically occur toward the beginning of a document, but History can appear either before
or after Geography across different documents.

Each corpus we consider has been manually divided into sections by their authors,
including a short textual heading for each section. In Sections 6.2.1 and 6.3.1, we discuss
how these author-created sections with headings are used to generate reference annotations
for the alignment and segmentation tasks. Note that we only use the headings for evaluation;
none of the heading information is provided to any of the methods under consideration. For
the tasks of alignment and segmentation, evaluation is performed on the datasets presented
in Table 1. For the ordering task, however, this data is used for training, and evaluation is
performed using a separate held-out set of documents. The details of this held-out dataset
are given in Section 6.4.1.

Model Variants For each evaluation, besides comparing to baselines from the literature,
we also consider two variants of our proposed model. In particular, we investigate the
impact of the Mallows component of the model by alternately relaxing and tightening the
way it constrains topic orderings:

e (Constrained: In this variant, we require all documents to follow the exact same canon-
ical ordering of topics. That is, no topic permutation inversions are allowed, though
documents may skip topics as before. This case can be viewed as a special case of
the general model, where the Mallows inversion prior pg approaches infinity. From
an implementation standpoint, we simply fix all inversion counts v to zero during
inference.19

e Uniform: This variant assumes a uniform distribution over all topic permutations,
instead of biasing toward a small related set. Again, this is a special case of the full
model, with inversion prior pg set to zero, and the strength of that prior 1y approaching
infinity, thus forcing each item of p to always be zero.

Note that both of these variants still enforce the long-range constraint of topic contiguity,
and vary from the full model only in how they capture topic ordering similarity.

Evaluation Procedure and Parameter Settings For each evaluation of our model
and its variants, we run the collapsed Gibbs sampler from five random seed states, and take
the 10,000th iteration of each chain as a sample. Results presented are the average over
these five samples.

Dirichlet prior hyperparameters for the bag of topics 6y and language models 3y are set
to 0.1. For the GMM, we set the prior dispersion hyperparameter pg to 1, and the effective

10. At first glance, the Constrained model variant appears to be equivalent to an HMM where each state ¢
can transition to either ¢ or ¢ + 1. However, this is not the case — some topics may appear zero times
in a document, resulting in multiple possible transitions from each state. Furthermore, the transition
probabilities would be dependent on position within the document — for example, at earlier absolute
positions within a document, transitions to high-value topics are unlikely, because that would require all
subsequent paragraphs to have a high-value topic.
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sample size prior 1y to be 0.1 times the number of documents. These values are minimally
tuned, and similar results are achieved for alternative settings of 6y and Jy. Parameters pg
and vy control the strength of the bias toward structural regularity, trading off between the
Constrained and Uniform model variants. The values we have chosen are a middle ground
between those two extremes.

Our model also takes a parameter K that controls the upper bound on the number of
latent topics. Note that our algorithm can select fewer than K topics for each document,
so K does not determine the number of segments in each document. In general, a higher K
results in a finer-grained division of each document into different topics, which may result
in more precise topics, but may also split topics that should be together. We report results
in each evaluation using both K = 10 and 20.

6.2 Alignment

First, we evaluate the model on the task of cross-document alignment, where the goal
is to group textual units from different documents into topically cohesive clusters. For
instance, in the Cities-related domains, one such cluster may include Transportation-related
paragraphs. We first present details of the specific evaluation setup targeted to this task,
before turning to the results.

6.2.1 ALIGNMENT EVALUATION SETUP

Reference Annotations To generate a sufficient amount of reference data for evaluat-
ing alignments, we use section headings provided by the authors. We assume that two
paragraphs are aligned if and only if their section headings are identical. These headings
constitute noisy annotations in the Wikipedia datasets: the same topical content may be
labeled with different section headings in different articles (e.g., for CitiesEn, “Places of
interest” in one article and “Landmarks” in another), so we call this reference structure the
noisy headings set.

It is not clear a priori what effect this noise in the section headings may have on eval-
uation accuracy. To empirically estimate this effect, we also use some manually annotated
alignments in our experiments. Specifically, for the CitiesEn corpus, we manually anno-
tated each article’s paragraphs with a consistent set of section headings, providing us an
additional reference structure to evaluate against. In this clean headings set, we found
approximately 18 topics that were expressed in more than one document.

Metrics To quantify our alignment output, we compute a recall and precision score of
a candidate alignment against a reference alignment. Recall measures, for each unique
section heading in the reference, the maximum number of paragraphs with that heading
that are assigned to one particular topic. The final score is computed by summing over each
section heading, and dividing by the total number of paragraphs. High recall indicates that
paragraphs of the same section headings are generally being assigned to the same topic.
Conversely, precision measures, for each topic number, the maximum number of para-
graphs with that topic assignment that share the same section heading. Precision is summed
over each topic and normalized by the total number of paragraphs. High precision means
that paragraphs assigned to a single topic usually correspond to the same section heading.
Recall and precision trade off against each other — more finely grained topics will tend to
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improve precision at the cost of recall. We also present one summary F-score in our results,
which is the harmonic mean of recall and precision.

Statistical significance in this setup is measured with approzimate randomization (Noreen,
1989), a nonparametric test that can be directly applied to nonlinearly computed metrics
such as F-score. This test has been used in prior evaluations for information extraction and
machine translation (Chinchor, 1995; Riezler & Maxwell, 2005).

Baselines For this task, we compare against two baselines:

e Hidden Topic Markov Model (HTMM; Gruber et al., 2007): As explained in Sec-
tion 2, this model represents topic change between adjacent textual units in a Marko-
vian fashion. HTMM can only capture local constraints, so it would allow topics to
recur non-contiguously throughout a document. We use the publicly available imple-
mentation,'! with priors set according to the recommendations made in the original
work.

e (lustering: We use a repeated bisection algorithm to find a clustering of the para-
graphs that maximizes the sum of the pairwise cosine similarities of the items in each
cluster.'? This clustering was implemented using the CLUTO toolkit.'® Note that
this approach is completely structure-agnostic, and treats documents as bags of para-
graphs rather than sequences of paragraphs. These types of clustering techniques
have been shown to deliver competitive performance for cross-document alignment
tasks (Barzilay & Elhadad, 2003).

6.2.2 ALIGNMENT RESULTS

Table 2 presents the results of the alignment evaluation. On all of the datasets, the best
performance is achieved by our model or its variants, by a statistically significant and usually
substantial margin.

The comparative performance of the baseline methods is consistent across domains —
surprisingly, clustering performs better than the more complex HTMM model. This obser-
vation is consistent with previous work on cross-document alignment and multidocument
summarization, which use clustering as their main component (Radev, Jing, & Budzikowska,
2000; Barzilay, McKeown, & Elhadad, 1999). Despite the fact that HTMM captures some
dependencies between adjacent paragraphs, it is not sufficiently constrained. Manual ex-
amination of the actual topic assignments reveals that HTMM often assigns the same topic
for disconnected paragraphs within a document, violating the topic contiguity constraint.

In all but one domain, the full GMM-based approach yields the best performance com-
pared to its variants. The one exception is in the Phone domain. Here, the Constrained
baseline achieves the best result for both K by a small margin. These results are to be
expected, given the fact that this domain exhibits a highly rigid topic structure across all
documents. A model that permits permutations of topic ordering, such as the GMM, is too
flexible for such highly formulaic domains.

11. http://code.google.com/p/openhtmm/

12. This particular clustering technique substantially outperforms the agglomerative and graph partitioning-
based clustering approaches for our task.

13. http://glaros.dtc.umn.edu/gkhome/views/cluto/
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CitiesEn CitiesEn CitiesEn500
Clean headings Noisy headings Noisy headings

Recall | Prec | F-score | Recall | Prec | F-score || Recall | Prec | F-score

Clustering 0.578 | 0.439 | * 0.499 0.611 | 0.331 | * 0.429 0.609 | 0.329 | * 0.427

o | HTMM 0.446 | 0.232 | * 0.305 0.480 | 0.183 | * 0.265 0.461 | 0.269 | * 0.340
Il | Constrained 0.579 | 0.471 | % 0.520 0.667 | 0.382 | * 0.485 0.643 | 0.385 | * 0.481
¢ | Uniform 0.520 | 0.440 | % 0.477 0.599 | 0.343 | * 0.436 0.582 | 0.344 | * 0.432
Our model 0.639 | 0.509 0.566 || 0.705 | 0.399 0.510 || 0.722 | 0.426 0.536
Clustering 0.486 | 0.541 | % 0.512 0.527 | 0.414 | * 0.464 0.489 | 0.391 | * 0.435

< | HTMM 0.260 | 0.217 | * 0.237 0.304 | 0.187 | * 0.232 0.351 | 0.234 | * 0.280
Il | Constrained 0.458 | 0.519 | * 0.486 0.553 | 0.415 | % 0.474 0.515 | 0.394 | % 0.446
i | Uniform 0.499 | 0.551 | % 0.524 0.571 | 0.423 | % 0.486 0.557 | 0.422 | * 0.480
Our model 0.578 | 0.636 0.606 || 0.648 | 0.489 0.557 || 0.620 | 0.473 0.537

CitiesFr Elements Phones
Noisy headings Noisy headings Noisy headings

Recall | Prec | F-score | Recall | Prec | F-score || Recall | Prec | F-score

Clustering 0.588 | 0.283 | * 0.382 0.524 | 0.361 | * 0.428 0.599 | 0.456 | % 0.518

< | HTMM 0.338 | 0.190 | * 0.244 0.430 | 0.190 | * 0.264 0.379 | 0.240 | * 0.294
Il | Constrained 0.652 | 0.356 0.460 0.603 | 0.408 | % 0.487 || 0.745 | 0.506 0.602
¢ | Uniform 0.587 | 0.310 | * 0.406 0.591 | 0.403 | * 0.479 0.656 | 0.422 | % 0.513
Our model 0.657 | 0.360 0.464 || 0.685 | 0.460 0.551 0.738 | 0.493 0.591
Clustering 0.453 | 0.317 | % 0.373 0.477 | 0.402 | % 0.436 0.486 | 0.507 | * 0.496

< | HTMM 0.253 | 0.195 | % 0.221 0.248 | 0.243 | * 0.246 0.274 | 0.229 | * 0.249
II | Constrained 0.584 | 0.379 | * 0.459 0.510 | 0.421 | * 0.461 0.652 | 0.576 0.611
¢ | Uniform 0.571 | 0.373 | % 0.451 0.550 | 0.479 | © 0.512 0.608 | 0.471 | % 0.538
Our model 0.633 | 0.431 0.513 || 0.569 | 0.498 0.531 || 0.683 0.546 0.607

Table 2: Comparison of the alignments produced by our model and a series of baselines and
model variations, for both 10 and 20 topics, evaluated against clean and noisy sets
of section headings. Higher scores are better. Within the same K, the methods
which our model significantly outperforms are indicated with * for p < 0.001 and
o for p < 0.01.
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Finally, we observe that the evaluations based on manual and noisy annotations exhibit
an almost entirely consistent ranking of the methods under consideration (see the clean and
noisy headings results for CitiesEn in Table 2). This consistency indicates that the noisy
headings are sufficient for gaining insight into the comparative performance of the different
approaches.

6.3 Segmentation

Next we consider the task of text segmentation. We test whether the model is able to
identify the boundaries of topically coherent text segments.

6.3.1 SEGMENTATION EVALUATION SETUP

Reference Segmentations As described in Section 6.1, all of the datasets used in this
evaluation have been manually divided into sections by their authors. These annotations
are then used to create reference segmentations for evaluating our model’s output. Recall
from Section 6.2.1 that we also built a clean reference structure for the CitiesEn set. That
structure encodes a “clean” segmentation of each document, because it adjusts the granu-
larity of section headings to be consistent across documents. Thus, we also compare against
the segmentation specified by the CitiesEn clean section headings.

Metrics Segmentation quality is evaluated using the standard penalty metrics P, and
WindowDiff (Beeferman, Berger, & Lafferty, 1999; Pevzner & Hearst, 2002). Both pass a
sliding window over the documents and compute the probability of the words at the end
of the windows being improperly segmented with respect to each other. WindowDiff is
stricter, and requires that the number of segmentation boundaries between the endpoints
of the window be correct as well.'

Baselines We first compare to BayesSeg (Eisenstein & Barzilay, 2008),!5 a Bayesian
segmentation approach that is the current state-of-the-art for this task. Interestingly, our
model reduces to their approach when every document is considered completely in isolation,
with no topic sharing between documents. Connecting topics across documents makes for
a much more difficult inference problem than the one tackled by Eisenstein and Barzilay.
At the same time, their algorithm cannot capture structural relatedness across documents.

Since BayesSeg is designed to be operated with a specification of a number of segments,
we provide this baseline with the benefit of knowing the correct number of segments for
each document, which is not provided to our system. We run this baseline using the
authors’ publicly available implementation;'% its priors are set using a built-in mechanism
that automatically re-estimates hyperparameters.

We also compare our method with the algorithm of Utiyama and Isahara (2001), which
is commonly used as a point of reference in the evaluation of segmentation algorithms.
This algorithm computes the optimal segmentation by estimating changes in the predicted

14. Statistical significance testing is not standardized and usually not reported for the segmentation task,
so we omit these tests in our results.

15. We do not evaluate on the corpora used in their work, since our model relies on content similarity across
documents in the corpus.

16. http://groups.csail.mit.edu/rbg/code/bayesseg/
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CitiesEn CitiesEn CitiesEn500
Clean headings Noisy headings Noisy headings

P WD | # Segs Py WD | # Segs Py WD | # Segs
BayesSeg 0.321 | 0.376 12.3 || 0.317 | 0.376 13.2 || 0.282 | 0.335 10.5
U&ld 0.337 | 0.404 12.3 || 0.337 | 0.405 13.2 || 0.292 | 0.350 10.5
U&l 0.353 | 0.375 5.8 || 0.357 | 0.378 5.8 | 0.321 | 0.346 5.4
o | Constrained | 0.260 | 0.281 7.7 || 0.267 | 0.288 7.7 1 0.221 | 0.244 6.8
II | Uniform 0.268 | 0.300 8.8 || 0.273 | 0.304 8.8 || 0.227 | 0.257 7.8
¢ | Our model 0.253 | 0.283 9.0 || 0.257 | 0.286 9.0 || 0.196 | 0.225 8.1
< | Constrained || 0.274 | 0.314 10.9 || 0.274 | 0.313 10.9 || 0.226 | 0.261 9.1
Il | Uniform 0.234 | 0.294 14.0 || 0.234 | 0.290 14.0 || 0.203 | 0.256 12.3
< | Our model 0.221 | 0.278 14.2 || 0.222 | 0.278 14.2 || 0.196 | 0.247 12.1

CitiesFr Elements Phones
Noisy headings Noisy headings Noisy headings

Py WD | # Segs Py WD | # Segs Py WD | # Segs
BayesSeg 0.274 | 0.332 10.4 || 0.279 | 0.316 7.7 1 0.392 | 0.457 9.6
U&l 0.282 | 0.336 10.4 || 0.248 | 0.286 7.7 | 0.412 | 0.463 9.6
U&l 0.321 | 0.342 4.4 || 0.294 | 0.312 4.8 || 0.423 | 0.435 4.7
< | Constrained 0.230 | 0.244 6.4 0.227 | 0.244 5.4 0.312 | 0.347 8.0
II | Uniform 0.214 | 0.233 7.3 || 0.226 | 0.250 6.6 || 0.332 | 0.367 7.5
| Our model 0.216 | 0.233 7.4 || 0.201 | 0.226 6.7 || 0.309 | 0.349 8.0
< | Constrained || 0.230 | 0.250 7.9 || 0.231 | 0.257 6.6 || 0.295 | 0.348 10.8
I | Uniform 0.203 | 0.234 10.4 0.209 | 0.248 8.7 0.327 | 0.381 9.4
| Our model 0.201 | 0.230 10.8 || 0.203 | 0.243 8.6 0.302 | 0.357 10.4

Table 3: Comparison of the segmentations produced by our model and a series of baselines
and model variations, for both 10 and 20 topics, evaluated against clean and noisy
sets of section headings. Lower scores are better. BayesSeg and U&I are given the
true number of segments, so their segments counts reflect the reference structures’
segmentations. In contrast, U&I automatically predicts the number of segments.
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language models of segments under different partitions. We used the publicly available
implementation of the system,'” which does not require parameter tuning on a held-out
development set. In contrast to BayesSeg, this algorithm has a mechanism for predicting
the number of segments, but can also take a pre-specified number of segments. In our
comparison, we consider both versions of the algorithm — U&I denotes the case when the
correct number of segments is provided to the model, and U&I denotes when the model
estimates the optimal number of segments.

6.3.2 SEGMENTATION RESULTS

Table 3 presents the segmentation experiment results. On every data set, our model outper-
forms the BayesSeg and U&I baselines by a substantial margin regardless of K. This result
provides strong evidence that learning connected topic models over related documents leads
to improved segmentation performance.

The best performance is generally obtained by the full version of our model, with three
exceptions. In two cases (CitiesEn with K = 10 using clean headings on the WindowDiff
metric, and CitiesFr with K = 10 on the Py metric), the variant that performs better than
the full model only does so by a minute margin. Furthermore, in both of those instances,
the corresponding evaluation with K = 20 using the full model leads to the best overall
results for the respective domains.

The only case when a variant outperforms our full model by a notable margin is the
Phones data set. This result is not unexpected, given the formulaic nature of this dataset
as discussed earlier.

6.4 Ordering

The final task on which we evaluate our model is that of finding a coherent ordering of a
set of textual units. Unlike the previous tasks, where prediction is based on hidden variable
distributions, ordering is observed in a document. Moreover, the GMM model uses this
information during the inference process. Therefore, we need to divide our data sets into
training and test portions.

In the past, ordering algorithms have been applied to textual units of various granu-
larities, most commonly sentences and paragraphs. Our ordering experiments operate at
the level of a relatively larger unit — sections. We believe that this granularity is suitable
to the nature of our model, because it captures patterns at the level of topic distributions,
rather than local discourse constraints. The ordering of the latter has been studied in the
past (Karamanis et al., 2004; Barzilay & Lapata, 2008) and these two types of models can
be effectively combined to induce a full ordering (Elsner et al., 2007).

6.4.1 ORDERING EVALUATION SETUP

Training and Test Data Sets We use the CitiesEn, CitiesFr and Phones data sets
as training documents for parameter estimation as described in Section 5. In addition, we
introduce additional sets of documents from the same domains as test sets. Table 4 provides

17. http://www2.nict.go.jp/x/x161/members/mutiyama/software.html#textseg
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Corpus Set Documents | Sections | Paragraphs | Vocabulary | Tokens
CitiesEn Training 100 13.2 66.7 42,000 4,920
Testing 65 11.2 50.3 42,000 3,460
CitiesFr Training 100 10.4 40.7 31,000 2,630
Testing 68 7.7 28.2 31,000 1,580
Phones Training 100 6.6 24.0 13,500 2,750
Testing 64 9.6 39.3 13,500 4,540

Table 4: Statistics of the training and test sets used for the ordering experiments. All values
except vocabulary are the average per document. The training set statistics are
reproduced from Table 1 for ease of reference.

statistics on the training and test set splits (note that out-of-vocabulary terms in the test
sets are discarded).!®

Even though we perform ordering at the section level, these collections still pose a
challenging ordering task: for example, the average number of sections in a CitiesEn test
document is 11.2, comparable to the 11.5 sentences (the unit of reordering) per document
of the National Transportation Safety Board corpus used in previous work (Barzilay & Lee,
2004; Elsner et al., 2007).

Metrics We report the Kendall’s T rank correlation coefficient for our ordering experi-
ments. This metric measures how much an ordering differs from the reference order — the
underlying assumption is that most reasonable sentence orderings should be fairly similar
to it. Specifically, for a permutation 7 of the sections in an N-section document, () is
computed as

d(m, o)

(3)

where d(7, o) is, as before, the Kendall 7 distance, the number of swaps of adjacent textual
units necessary to rearrange 7 into the reference order. The metric ranges from -1 (inverse
orders) to 1 (identical orders). Note that a random ordering will yield a zero score in ex-
pectation. This measure has been widely used for evaluating information ordering (Lapata,
2003; Barzilay & Lee, 2004; Elsner et al., 2007), and has been shown to correlate with
human assessments of text quality (Lapata, 2006).

T(m)=1-2 (16)

Baselines and Model Variants Our ordering method is compared against the original
HMM-based content modeling approach of Barzilay and Lee (2004). This baseline delivers
state-of-the art performance in a number of datasets, and is similar in spirit to our model
— it also aims to capture patterns at the level of topic distribution (see Section 2). Again,
we use the publicly available implementation,'® with parameters adjusted according to the

18. The Elements data set is limited to 118 articles, preventing us from splitting it into reasonably sized
training and test sets. Therefore we do not consider it for our ordering experiments. For the Cities-
related sets, the test documents are shorter because they were about cities of lesser population. On the
other hand, for Phones the test set does not include short “express” reviews, and thus exhibits higher
average document length.

19. http://people.csail.mit.edu/regina/code.html
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CitiesEn | CitiesFr | Phones

Content Model 0.245 0.305 0.256
K — 10 Constrained 0.587 0.596 0.676
Our model 0.571 0.541 0.678

K — 20 Constrained 0.583 0.575 0.711
Our model 0.575 0.571 0.678

Table 5: Comparison of the orderings produced by our model and a series of baselines and
model variations, for both 10 and 20 topics, evaluated on the respective test sets.
Higher scores are better.

values used in their previous work. This content modeling implementation provides an A*
search procedure that we use to find the optimal permutation.

We do not include in our comparison local coherence models (Barzilay & Lapata, 2008;
Elsner et al., 2007). These models are designed for sentence-level analysis — in particular,
they use syntactic information, and thus cannot be directly applied for section-level ordering.
As we state above, these models are orthogonal to topic-based analysis; combining the two
approaches is a promising direction for future work.

Note that the Uniform model variant is not applicable to this task, since it does not
make any claims to a preferred underlying topic ordering. In fact, from a document likeli-
hood perspective, for any proposed paragraph order the reverse order would have the same
probability under the Uniform model. Thus, the only model variant we consider here is
Constrained.

6.4.2 ORDERING RESULTS

Table 5 summarizes ordering results for the GMM- and HMM-based content models. Across
all data sets, our model outperforms content modeling by a very large margin. For instance,
on the CitiesEn dataset, the gap between the two models reaches 35%. This difference is
expected: in previous work, content models have been applied to short formulaic texts. In
contrast, documents in our collection exhibit higher variability than the original collections.
The HMM does not provide explicit constraints on generated global orderings. This may
prevent it from effectively learning non-local patterns in topic organization.

We also observe that the Constrained variant outperforms our full model. While the
difference between the two is small, it is fairly consistent across domains. These results
suggest that a more constrained model, which does not aim to explain away idiosyncratic
variations, can better capture strong ordering patterns that are likely to be observed in
unseen documents.

6.5 Discussion

Our experiments with the three separate tasks reveal some common trends in the results.
First, we observe that our single unified model of document structure can be readily and
successfully applied to multiple discourse-level tasks, whereas previous work has proposed
separate approaches for each task. This versatility speaks to the power of our topic-driven
representation of document structure. Second, within each task our model outperforms
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state-of-the-art baselines by substantial margins across a wide variety of evaluation sce-
narios. These results strongly support our hypothesis that augmenting topic models with
discourse-level constraints broadens their applicability to discourse-level analysis tasks.

Looking at the performance of our model across different tasks, we make a few notes
about the importance of the individual topic constraints. Topic contiguity is a consistently
important constraint, allowing both of our model variants to outperform alternative base-
line approaches. In most cases, introducing a bias toward similar topic ordering, without
requiring identical orderings, provides further benefits when encoded in the model. More
flexible models achieve superior performance in the segmentation and alignment tasks. In
the case of ordering, however, this extra flexibility does not pay off, as the model distributes
its probability mass away from strong ordering patterns likely to occur in unseen data.

We can also identify the properties of a dataset that most strongly affect the performance
of our model. The Constrained model variant performs slightly better than our full model
on rigidly formulaic domains, achieving highest performance on the Phones data set. When
we know a priori that a domain is formulaic in structure, it is worthwhile to choose the
model variant that suitably enforces formulaic topic orderings. Fortunately, this adaptation
can be achieved in the proposed framework using the prior of the Generalized Mallows
Model — recall that the Constrained variant is a special case of the full model.

However, the performance of our model is invariant with respect to other data set char-
acteristics. Across the two languages we considered, the model and baselines exhibit the
same comparative performance for each task. Moreover, this consistency also holds between
the general-interest cities articles and the highly technical chemical elements articles. Fi-
nally, between the smaller CitiesEn and larger ClitiesEn500 data sets, we observe that our
results are consistent.

7. Conclusions and Future Work

In this paper, we have shown how an unsupervised topic-based approach can capture content
structure. Our resulting model constrains topic assignments in a way that requires global
modeling of entire topic sequences. We showed that the Generalized Mallows Model is a
theoretically and empirically appealing way of capturing the ordering component of this
topic sequence. Our results demonstrate the importance of augmenting statistical models
of text analysis with structural constraints motivated by discourse theory. Furthermore,
our success with the GMM suggests that it could be applied to the modeling of ordering
constraints in other NLP applications.

There are multiple avenues of future extensions to this work. First, our empirical results
demonstrated that for certain domains, providing too much flexibility in the model may
in fact be detrimental to predictive accuracy. In those cases, a more tightly constrained
variant of our model yields superior performance. An interesting extension of our current
model would be to allow additional flexibility in the prior of the GMM by drawing it from
another level of hyperpriors. From a technical perspective, this form of hyperparameter
re-estimation would involve defining an appropriate hyperprior for the Generalized Mallows
Model, and adapting its estimation into our present inference procedure.

Additionally, there may be cases when the assumption of one canonical topic ordering
for an entire corpus is too limiting, e.g., if a data set consists of topically related articles
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from multiple sources, each with its own editorial standards. Our model can be extended
to allow for multiple canonical orderings, by positing an additional level of hierarchy in
the probabilistic model — document structures are generated from a mixture of several
Generalized Mallows Models, each with its own distributional mode. In this case, the
model would take on the additional burden of learning how topics are permuted between
these multiple canonical orderings. Such a change to the model would greatly complicate
inference, as re-estimating a Generalized Mallows Model canonical ordering is in general NP-
hard. However, recent advances in statistics have produced efficient approximate algorithms
with theoretically guaranteed correctness bounds (Ailon, Charikar, & Newman, 2008), and
exact methods that are tractable for typical cases (Meila et al., 2007).

More generally, the model presented in this paper assumes two specific global constraints
on content structure. While domains that satisfy these constraints are plentiful, there are
domains where our modeling assumptions do not hold. For example, in dialogue it is well
known that topics recur throughout a conversation (Grosz & Sidner, 1986), thereby violating
our first constraint. Nevertheless, texts in such domains still follow certain organizational
conventions, e.g., the stack structure for dialogue. Our results suggest that explicitly in-
corporating domain-specific global structural constraints into a content model would likely
improve the accuracy of structure induction.

Another direction of future work is to combine the global topic structure of our model
with local coherence constraints. As previously noted, our model is agnostic toward the
relationships between sentences within a single topic. In contrast, models of local coherence
take advantage of a wealth of additional knowledge, such as syntax, to make decisions about
information flow across adjoining sentences. Such a linguistically rich model would provide
a powerful representation of all levels of textual structure, and could be used for an even
greater variety of applications than we have considered here.

Bibliographic Note

Portions of this work were previously presented in a conference publication (Chen, Branavan,
Barzilay, & Karger, 2009). This article significantly extends our previous work, most notably
by introducing a new algorithm for applying our model’s output to the information ordering
task (Section 5), and considering new data sets for our experiments that vary in genre,
language, and size (Section 6).
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