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A dynamic birth-death model via Intrinsic Linkage 

Robert Schoen1 

Abstract 
BACKGROUND 
Dynamic population models, or models with changing vital rates, are only beginning to 
receive serious attention from mathematical demographers. Despite considerable 
progress, there is still no general analytical solution for the size or composition of a 
population generated by an arbitrary sequence of vital rates. 

 

OBJECTIVE 
The paper introduces a new approach, Intrinsic Linkage, that in many cases can 
analytically determine the birth trajectory of a dynamic birth-death population. 

 

METHODS 
Intrinsic Linkage assumes a weighted linear relationship between (i) the time trajectory 
of proportional increases in births in a population and (ii) the trajectory of the intrinsic 
rates of growth of the projection matrices that move the population forward in time. 
Flexibility is provided through choice of the weighting parameter, w, that links these 
two trajectories. 

 

RESULTS 
New relationships are found linking implied intrinsic and observed population patterns 
of growth. Past experience is "forgotten" through a process of simple exponential 
decay. When the intrinsic growth rate trajectory follows a polynomial, exponential, or 
cyclical pattern, the population birth trajectory can be expressed analytically in closed 
form. Numerical illustrations provide population values and relationships in metastable 
and cyclically stable models. Plausible projection matrices are typically found for a 
broad range of values of w, although w appears to vary greatly over time in actual 
populations. 

 

CONCLUSIONS 
The Intrinsic Linkage approach extends current techniques for dynamic modeling, 
revealing new relationships between population structures and the changing vital rates 
that generate them. 

                                                           
1 E-mail: rschoen309@att.net. 
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1. Introduction 

Over the last century, the stable population has been the dominant mathematical model 
in demography. It is based on unchanging age-specific rates of birth and death and the 
constant growth and age structures those rates produce. Of course, in actual 
populations, age-specific vital rates change over time, often substantially. The ability to 
model such changes in behavior, and to analytically determine their implications for the 
size and age structure of a population over time, remains a challenge for mathematical 
demography. 

Previous work has explored dynamic models, that is models with time-varying 
vital rates. Skellum (1967) was the first to analyze cyclical stability. Coale’s (1972) 
pioneering book examined the implications of changing rates in birth-death models. Lee 
(1974) analyzed interactions between population stocks and flows with a focus on 
cyclical dynamics. Recent decades have seen increasing interest in dynamic models. 
Tuljapurkar (1990) examined population change in the context of variable 
environments. Bongaarts and Feeney (2002) advanced a flexible dynamic mortality-
only model. Schoen and Kim (1994) and Schoen and Jonsson (2003) developed the 
metastable (or quadratic hyperstable) model, generalizing the stable model by allowing 
fertility to change exponentially over both age and time. Schoen (2006, Chapter 7) 
discussed several other approaches to modeling changing rates, including Intrinsically 
Dynamic and "hyperstable" models. Yet despite the progress to date, there is no 
generally applicable analytical solution for the age structure produced by an arbitrarily 
changing set of vital rates. 

The present effort is not a comprehensive solution but rather a step in this 
direction. It explores dynamic populations using discrete, time-varying population 
projection (Leslie) matrices. A new approach, called Intrinsic Linkage, is advanced in 
that it is applicable to a wide range of vital rate trajectories. The approach leads to 
analytical population projections and to new, analytically tractable relationships 
between the time trajectory of Leslie matrix intrinsic growth rates and the birth 
trajectory associated with it. 

 
 

2. The basic birth-death (Leslie) model 

Consider an n-age group discrete birth-death population model, and let 𝑨𝒕 be the 
population projection (Leslie) matrix that takes the model population from time t−1 to 
time t. Models with 3-age groups are used to facilitate the presentation without loss of 
generality. To simplify the dynamic relationships, populations are assumed to have no 
mortality below the highest age at reproduction. Fertility measures are then net 
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maternity measures, however there is often little difference because now, especially in 
more developed countries, there is little mortality below age 50. The "age structures" of 
the populations examined are, strictly speaking, past birth trajectories. At a later stage, 
if appropriate to the analysis, age-time-specific mortality can be added. 

 
 

2.1 The projection relationship 

The fundamental relationships to be developed allow analytical population projection 
over time. The population involved can be an actual/observed population or a 
theoretical model. 

Over a single time interval, the basic projection relationship can be written 
 
𝒙𝒕 = 𝑨𝒕𝒙𝒕−𝟏        (1) 
 

where 𝑥𝑡 is a column vector of population by age. In the 3-age group case, its transpose 
can be written (𝑥1𝑡 , 𝑥2𝑡 , 𝑥3𝑡), with 𝑥𝑗𝑡  being the number of persons in age group j at 
time t. With 3 age groups, Leslie matrix 𝑨𝒕 can be written 

 

𝑨𝒕 = �
𝛼1𝑡 𝛼2𝑡 𝛼3𝑡
1 0 0
0 1 0

�.      (2) 

 
The first row elements of 𝑨𝒕, the 𝛼𝑗𝑡, are related to net maternity, and give the 

number of persons in the first age group at time t per person in the j-th age group at 
time t–1. The subdiagonal elements are equal to one, implementing the assumption that 
all persons in age groups 1 and 2 at time t–1 survive to be in age groups 2 and 3, 
respectively, at time t. It follows that, over t intervals of time, the projection relationship 
is 

 
𝒙𝒕 = 𝑨𝒕𝑨𝒕−𝟏𝑨𝒕−𝟐 …𝑨𝟏𝒙𝟎.      (3) 
 
 

2.2 The Leslie matrix in Sykes form 

If there are n age groups, Leslie matrix 𝑨𝒕 has n eigenvalues (or roots) and n right 
eigenvectors (Caswell 2001). Stable population theory tells us that if 𝑨𝒕 remains 
constant for a sufficiently long period of time, then the dominant eigenvalue of 𝑨𝒕, 
denoted by 𝜆𝑡, describes the long-term growth of the population, and the dominant right 
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eigenvector, 𝒖𝒕, describes the eventual relative age composition of the population (cf. 
Schoen 2006). 

Sykes (1973) presented a way to decompose a Leslie matrix into its dominant 
(stable) component and its subordinate components. To begin, consider format matrix 
𝑭𝒕 written as 

 

𝑭𝒕 = �
1 − 𝑓2𝑡 − 𝑓3𝑡 𝑓2𝑡 𝑓3𝑡

1 0 0
0 1 0

�.     (4) 

 
Eq(4) shows 𝑭𝒕 as a 3x3 matrix, but the same principles apply to any n x n matrix. Note 
that 𝑭𝒕 has the structure of a Leslie matrix, i.e. nonzero elements only in the first row 
and subdiagonal. Further, 𝑭𝒕 is a row stochastic matrix, meaning all of its rows sum to 
1. As a result, 𝑭𝒕 has a dominant root (eigenvalue) of 1 and a dominant right 
eigenvector composed entirely of ones. The elements 𝑓𝑗𝑡 represent the number of 
persons in age group 1 at time t per person in age group j at time t–1 when 𝑭𝒕 is viewed 
as a projection matrix. Alternatively, the first row elements of 𝑭𝒕 can be thought of as 
describing an age pattern of net maternity. 

Matrix 𝑭𝒕 can be turned into Leslie matrix 𝑨𝒕 with dominant root λt and dominant 
right eigenvector 𝒖𝒕 by writing the Sykes equation 

 

𝑨𝒕 = 𝝀𝒕𝑼𝒅𝒕𝑭𝒕𝑼𝒅𝒕
−𝟏 = �

(1 − 𝑓2𝑡 − 𝑓3𝑡)𝜆𝑡 𝑓2𝑡𝜆𝑡2 𝑓3𝑡𝜆𝑡3
1 0 0
0 1 0

�   (5) 

 
where 𝑼𝒅𝒕 is a diagonal matrix whose diagonal elements are the elements of dominant 
right eigenvector 𝒖𝒕. With no mortality below the highest reproductive age, the 
diagonal elements of an n x n 𝑼𝒅𝒕 are (1, 𝜆𝑡−1, 𝜆𝑡−2, ... , 𝜆𝑡

−(𝑛−1)), i.e. simple functions of 
𝜆𝑡 alone. To reverse the process, that is to go from 𝑨𝒕 to 𝑭𝒕, first find the dominant root 
and right eigenvector of 𝑨𝒕 by conventional means, and then extract them from 𝑨𝒕. The 
Sykes decomposition can be verified by noting that all rows of 𝑭𝒕 sum to 1 (cf. Schoen 
2006; p139). 

Sykes form separates the dominant, long-term component from all of the 
subordinate components of the Leslie matrix. With no mortality below the highest age 
of reproduction, this dominant component is a function of root 𝜆𝑡 alone. Matrix 𝑭𝒕, 
which embodies all of the subordinate components, does little more than influence the 
age pattern of net maternity. 
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2.3 Expressing a population in terms of changes in the number of births 

With no mortality before the end of reproduction, the population vector is a reflection 
of the trajectory of births (i.e. persons in the first age group). Let us define 𝐺𝑡, the 
proportional increase in births from time t–1 to time t, by 

 
𝐺𝑡 = 𝑥1𝑡 𝑥1,𝑡−1⁄ .       (6) 
 
In many instances, population size can be arbitrarily scaled. If the size of the 

population is scaled so that 𝑥1,𝑡−1 = 1, then 𝐺𝑡 = 𝑥1𝑡 and the time t population can be 
written 

𝒙𝒕 = 𝐺𝑡 �
1

1 𝐺𝑡−1⁄
1 (𝐺𝑡−1𝐺𝑡−2)⁄

� = 𝒈𝒕 .     (7) 

 
Using Eqs (4) and (7), the projection relationship in Eq (1) can be written in Sykes 

form as 
 
𝒈𝒕 = 𝜆𝑡𝑼𝒅𝒕𝑭𝒕𝑼𝒅𝒕

−𝟏𝒈𝒕−𝟏.      (8) 
 

Aside from the first row elements in 𝑭𝒕, Eq (8) expresses the projection relationship 
solely in terms of rates of increase, i.e. the 𝜆𝑡, and 𝐺𝑡 values. Those are the core 
functions of the Intrinsic Linkage approach to analytical population projection. 

 
 

3. The Intrinsic Linkage relationship 

In the long term, under stability, 𝐺𝑡 becomes constant and equal to 𝜆𝑡. In the short term, 
it is reasonable to assume that 𝜆𝑡 and the previous increase in births, 𝐺𝑡−1, interact to 
produce 𝐺𝑡. Let this interaction be linear. Then at time t there must be some scalar 
weight, 𝑤𝑡 , such that 

 
𝐺𝑡 = 𝜆𝑡(1 − 𝑤𝑡) + 𝐺𝑡−1𝑤𝑡.      (9) 
 

Eq(9) is the Intrinsic Linkage relationship, so named because it links the intrinsic 
growth rate of the Leslie matrix to beginning of interval (time t–1) and end of interval 
(time t) proportional increases in births. Intrinsic Linkage Eq(9) is valid because any 
number (here 𝐺𝑡) can be expressed as a linear combination of any 2 other given 
numbers (here 𝜆𝑡 and 𝐺𝑡−1). For example, let 𝜆𝑡 and 𝐺𝑡−1 be 5 and 10, respectively. 
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Eq(9) gives us the result 7 when weight 𝑤𝑡  is 0.4; 12 when the weight is 1.4; and 2 
when the weight is –0.6. Formally, one can find 𝑤𝑡  from the population and Leslie 
matrix values (i.e. from 𝐺𝑡−1, 𝜆𝑡, and 𝐺𝑡). Therefore, Eq(9) can apply to any population, 
and 𝑤𝑡  can be seen as a parameter that relates 𝜆𝑡 and 𝐺𝑡−1 to 𝐺𝑡. 

 
 

3.1 Analytical projection under Intrinsic Linkage 

The goal is to find the birth trajectory analytically, without the need to project the 
population interval by interval. Intrinsic Linkage makes an analytical population 
projection possible given the sequences of Leslie matrices (or the 𝜆𝑡) and the 𝑤𝑡 . This is 
because Eq(9) can be cumulated over time to express the 𝐺𝑡 sequence in terms of the 
past sequences of 𝜆𝑡 and 𝑤𝑡  and the time 0 (or initial) value 𝐺0. Using straightforward 
algebra in Eq(9) yields  

 
𝐺𝑡 = �𝐺0 ∏ 𝑤𝑗𝑡

𝑗=1 � + ∑ 𝜆𝑗(1 −𝑤𝑗)�∏ 𝑤𝑖𝑡
𝑖=𝑗+1 �𝑡

𝑗=1 .   (10) 
 
Eq(10) is a generally valid expression that relates the time t population's 

proportional increase in births to the 𝑤𝑡  weights, initial value 𝐺0, and the past sequence 
of Leslie matrix growth rates. Population sizes follow from Eqs (6) and (7) and the 
scaling employed. Note that the (1 −𝑤) term in Eq(10) satisfies the algebraic identity  

 
1 − 𝑤 = 1 [1 + 𝑤 + 𝑤2 + 𝑤3 + ⋯ ]⁄ .     (11) 
 
In a demographically realistic model, 𝐺𝑡 must be finite and positive, so the product 

of the 𝑤𝑡  must be bounded at all times. As is customary, assume the population 
projection matrices are non-negative and primitive. Then weak ergodicity applies 
(Schoen 2006, Chap. 2), and the initial population structure is eventually forgotten. 
Accordingly, the first (𝐺0) term on the right of Eq(10) must go to zero as t becomes 
large. As the product of the 𝑤𝑗  becomes increasingly small, the sum in the second term 
on the right of Eq(10) converges. 

Because Eq(9) can be seen as a tautology, Eq(10) applies to any population. This 
means that  if one mechanically projects a given starting population using a known 
sequence of Leslie matrices, one can always generate the 𝐺𝑡 from the projection, and 
the 𝑤𝑡  from Eq(9) or (10). Eq(9) is of analytical value only when the 𝑤𝑗  are known or 
can be assumed or estimated, as is generally the case in the rest of this paper. 
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3.2 Analytical projection with parameter w constant: Strong Intrinsic Linkage 

If parameter w is constant over time, Eq(10) simplifies. In the constant w case, which 
can be termed Strong Intrinsic Linkage, Eq(10) becomes 

 
𝐺𝑡 = [𝐺0𝑤𝑡] + (1 − 𝑤)∑ 𝜆𝑗𝑤𝑡−𝑗𝑡

𝑗=1 .     (12) 
 

Eq(12) is not based on a tautology, as specifying the 𝑤𝑡  sequence imposes a restriction 
on the 𝑭𝒕, i.e. on the subordinate components of the sequence of Leslie matrices. That is 
because the given 𝑤𝑡  require the sequence of Leslie matrices to generate the 𝐺𝑡 
sequence specified by Eq(12) [or more generally, by Eq(10]. Since the dominant 
components of the Leslie matrices are determined by the given 𝜆𝑡, the subordinate 
components, i.e. the 𝑭𝒕, must be constrained so that projection by Eq(1) yields the 𝐺𝑡 
produced by Intrinsic Linkage. The consequences of the constraints on 𝑭𝒕 for the Leslie 
matrix elements are explored in Section 6 below. 

As t becomes large, the 𝐺0 term on the right of Eq(12) disappears as the effect of 
initial conditions on the proportional increase in births is forgotten. The Strong Intrinsic 
Linkage relationship then becomes 

 

𝐺𝑡 = (1 − 𝑤)�𝜆𝑗

𝑡

𝑗=1

𝑤𝑡−𝑗 = (1 − 𝑤)[𝜆𝑡 + 𝑤𝜆𝑡−1 + 𝑤2𝜆𝑡−2 + 𝑤3𝜆𝑡−3 + ⋯+ 𝑤𝑡−1𝜆1] 

= �𝜆𝑡+𝑤𝜆𝑡−1+𝑤2𝜆𝑡−2+𝑤3𝜆𝑡−3+⋯+𝑤𝑡−1𝜆1�
[1+𝑤+𝑤2+𝑤3+⋯+𝑤𝑡−1]

     (13) 
 

where the last equality follows from Eq(11) and the assumption of large t. 
Eq (13) shows that, at large t, the proportional increase in the number of births 

between times t−1 and t (or the relative size of the number of persons in the first age 
group to that in the second at time t) is the sum of a convergent power series in 𝑤, 
where values of | 𝑤|<1 to increasingly higher powers are applied to earlier period Leslie 
matrix growth rates. Hence function 𝐺𝑗 is a weighted average of 𝜆𝑗 values, where the 
most recent 𝜆𝑗 have the greatest weight.  

Eq (13) is a new result, and is significant as it provides for the analytical projection 
of a dynamic population based on an intuitively plausible relationship between the birth 
trajectory and Leslie intrinsic growth rates. Moreover, the power series in Eq(13) 
indicates how earlier 𝜆𝑗 get increasingly smaller weights, and thus become "forgotten" 
over time. Parameter w is a measure of convergence or of forgetting the past, as the 
closer 𝑤 is to zero, the smaller the weight given to earlier 𝜆𝑗. Strong Intrinsic Linkage 
can show the implications of any sequence of 𝜆𝑗 for the associated 𝐺𝑗 sequence because 
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it constrains the subordinate components of the Leslie matrices so that past growth 
effects are always decaying exponentially over time. 

If there is a regularity in the 𝜆𝑗 sequence that allows for algebraic summation, 
Eq(13) can provide a closed form relationship between 𝜆𝑗 and 𝐺𝑗 values. Stability is a 
special case of this. If the intrinsic growth rate 𝜆 is constant, then Eq(13) yields 𝜆 = 𝐺𝑡 
and the population is stable as parameter w drops out of the equation. The following 
sections examine other regularities in 𝜆𝑡, including explicit functional forms and 
cyclicity, and consider the constraints on Leslie matrix values. 

 
 

4. Functional relationships between 𝝀𝒕 and 𝑮𝒕 under Strong Intrinsic 
Linkage 

To appreciate some implications of Eq(13), we examine several functional relationships 
between Leslie matrix roots and birth trajectories. Specifically, we consider cases where 
w is constant over time and the 𝜆𝑗 sequence is linear, quadratic, and metastable. 

 
 

4.1 The case of Leslie matrices with linearly changing roots 

Linear change in population growth is quite plausible, though not often considered. Let 
us rewrite Eq(13) as a difference in 𝜆𝑡 values. This yields 

 
𝐺𝑡 = 𝜆𝑡 + ∑ (𝜆𝑡−𝑗 − 𝜆𝑡−𝑗+1)𝑤𝑗𝑡−1

𝑗=1 .     (14) 
 

Now let the 𝜆𝑗 sequence change linearly, i.e. let 
 
𝜆𝑡 = 𝑏0 + 𝑏1𝑡       (15) 
 

for constants 𝑏0 and 𝑏1. Then, using Eq(11), Eq(14) becomes 
 
𝐺𝑡 = 𝜆𝑡 − 𝑏1𝑤 (1 − 𝑤)⁄ .      (16) 
 

Thus, when 𝑤 is constant, 𝐺𝑡 changes linearly with 𝜆𝑡, with the 2 measures separated 
by a constant amount at every time point. 

To see how the proportional increase in births, 𝐺𝑡, varies with parameter 𝑤 in the 
linear case, we can take the partial derivative of Eq(16) and write 
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𝜕 𝐺𝑡 𝜕𝑤 = −𝑏1 (1 − 𝑤)2⁄⁄ .      (17) 
 

If 𝑏1>0, i.e. when 𝐺𝑡 is increasing, then an increase in w implies a larger reduction in 
𝐺𝑡, i.e. a greater gap between 𝐺𝑡 and 𝜆𝑡. 

 
 

4.2 The case of Leslie matrices with quadratically changing roots 

Let 𝜆𝑡 change quadratically, i.e. let  
 
𝜆𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 .      (18) 
 

Then 𝐺𝑡 can be found using Eqs (11), (13), and (14) and the Maple derived summation 
relationship (cf. Char et al 1992) 

 
𝑆 = ∑ 𝑏2𝑗𝑤𝑡−𝑗 = [𝑏2𝑡(1 −𝑤) − 𝑤𝑏2] (1 − 𝑤)2⁄𝑡

𝑗=1 .   (19) 
 

The result is 
 
𝐺𝑡 = 𝜆𝑡 − 𝑤𝑏1 (1 − 𝑤) − 𝑤𝑏2[2𝑡(1 −𝑤)(1 + 𝑤)] (1 − 𝑤)2⁄⁄ .  (20) 
 

Here, the difference between 𝜆𝑡 and 𝐺𝑡 changes linearly with time. 
The 𝐺𝑡 associated with cubic and higher powers of change in 𝜆𝑡 can be found 

using the above approach, but at the price of more complex relationships. Still, at least 
in principle, Eq(13) can yield an explicit relationship for 𝐺𝑡 for any polynomial 𝜆𝑡. 

 
 

4.3 The case of Leslie matrices from a metastable population model 

The metastable model generalizes the stable model by allowing net maternity to steadily 
increase or decrease over time. The different formulation of Eq(14) leads to an explicit 
solution for 𝐺𝑡 in the metastable case, that is where 

 
𝜆𝑡 = 𝑐𝑘𝑡        (21) 
 

and c and k are constants. When 𝑘 = 1, the population is stable. It follows from Eq(13) 
that 
 

𝐺𝑡 = 𝑐𝑘𝑡[𝑘(1 −𝑤) (𝑘 − 𝑤)⁄ ]      (22) 
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or that 𝐺𝑡 is 𝑐𝑘𝑡 times a constant factor. This factor, previously denoted 𝜆𝑠 by Schoen 
(2006:134), depends on w and on the exponential growth parameter k. The constant w 
Intrinsic Linkage formulation thus accommodates metastability and provides a new, 
closed form expression for 𝜆𝑠, specifically 

 
𝜆𝑠 = 𝑘(1 −𝑤) (𝑘 − 𝑤)⁄ .      (23) 
 
In Eq(21), the change in 𝜆𝑡 can be seen as an exponentiated linear change (i.e. as 

the linear change in Eq(15) exponentiated). Both the linear and the exponentiated linear 
patterns of change are demographically plausible and deserving of analysis. 

To consider how the metastable 𝐺𝑡 varies with parameter 𝑤, we differentiate 
Eq(22) with respect to 𝑤 and find 

 
𝜕𝐺𝑡 𝜕𝑤 = −𝑐𝑘𝑡+1(𝑘 − 1) (𝑘 − 𝑤)2⁄⁄ .     (24) 
 

If 𝑘 > 1 so that 𝐺𝑡 is increasing over time, then an increase in 𝑤 implies a smaller 𝐺𝑡. 
As in the linear case with a positive slope, a change in 𝑤 moves 𝐺𝑡 in the opposite 
direction. 

 
 

5. Cyclically stable populations under Intrinsic Linkage 

Cyclically stable populations arise naturally in a number of applications, for example 
when seasonality is a factor. The analysis of cyclical stability was pioneered by Skellam 
(1967), with significant work by Namboodiri (1969) and Tuljapurkar (1985; 1990). The 
Intrinsic Linkage approach is well suited to analyzing cyclical populations, and Eqs 
(10) and (13) yield new and explicit solutions for the 𝐺𝑡 trajectory when 𝜆𝑡 varies 
cyclically. 

 
 

5.1 The general case where cycle length is 2 intervals 

Consider the simplest case under Eq(10), where 𝜆𝑡 alternates in value between 𝜆1 (when 
t is odd) and 𝜆2 (when t is even). Then, with 𝑤1 associated with 𝜆1 and 𝑤2 associated 
with 𝜆2, Intrinsic Linkage Eq(9) implies 

 
𝐺1 = 𝜆1(1 − 𝑤1) + 𝐺2𝑤1       
𝐺2 = 𝜆2(1 − 𝑤2) + 𝐺1𝑤2.      (25) 
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Using Eq(10) with t large, and summing the terms in 𝜆1 and 𝜆2 separately, yields 
the solutions 

 
𝐺1 = [𝜆1(1 − 𝑤1) + 𝜆2𝑤1(1 − 𝑤2)] [1 − 𝑤1𝑤2]⁄     
𝐺2 = [𝜆2(1 − 𝑤2) + 𝜆1𝑤2(1 − 𝑤1)] [1 − 𝑤1𝑤2]⁄ .   (26) 

 
Under Eq(13), with 𝑤 constant, the solutions in Eq(26) are reduced to 

 
𝐺1 = [𝜆1 + 𝜆2𝑤] [1 + 𝑤]⁄        
𝐺2 = [𝜆2 + 𝜆1𝑤] [1 + 𝑤]⁄       (27) 

 
with 𝐺1 + 𝐺2 = 𝜆1 + 𝜆2. 

 
 

5.2 The case where cycle length is 3 and w is constant 

When each cycle spans 3 time intervals, the 3 Strong Intrinsic Linkage specifying 
equations are  

 
𝐺1 = 𝜆1(1 − 𝑤) + 𝐺3𝑤  
𝐺2 = 𝜆2(1 − 𝑤) + 𝐺1𝑤  
𝐺3 = 𝜆3(1 − 𝑤) + 𝐺2𝑤      (28) 
 

The solutions for the proportional increases in births are then 
 
𝐺1 = (𝜆1 + 𝑤𝜆3 + 𝑤2𝜆2) (1 + 𝑤 + 𝑤2)⁄   
𝐺2 = (𝜆2 + 𝑤𝜆1 + 𝑤2𝜆3) (1 + 𝑤 + 𝑤2)⁄   
𝐺3 = (𝜆3 + 𝑤𝜆2 + 𝑤2𝜆1) (1 + 𝑤 + 𝑤2)⁄     (29) 
 

which implies 𝐺1 + 𝐺2 + 𝐺3 = 𝜆1 + 𝜆2 + 𝜆3. 
 
 

5.3 Strong Intrinsic Linkage where cycle length is m 

The approach in Section 5.2 readily generalizes to cycle lengths of m intervals, where m 
is any positive integer. With 𝑤 constant, the m specifying equations are 

 
𝐺1 = 𝜆1(1 − 𝑤) + 𝐺𝑚𝑤  
𝐺2 = 𝜆2(1 − 𝑤) + 𝐺1𝑤  
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. 

. 

. 
𝐺𝑚 = 𝜆𝑚(1 − 𝑤) + 𝐺𝑚−1𝑤.      (30) 
 
Note in the first equation that 𝐺𝑚 precedes 𝐺1. The straightforward solution can be 

written 
 
𝐺𝑗 = ∑ 𝑤𝑖−1𝜆𝑗−𝑖+1𝑚

𝑖=1 (∑ 𝑤𝑖−1𝑚
𝑖=1⁄ )     (31) 

 
where the value of 𝜆0 is taken to be 𝜆𝑚 [as in Eqs(25)-(27)]. As before, ∑𝐺𝑗 = ∑𝜆𝑗, 
with the sums over j ranging from l to m. 

Eq(31) shows the new Strong Intrinsic Linkage solutions for the birth trajectory in 
cyclically stable models of any cycle length. Under constant 𝑤, closed form solutions 
that are essentially truncated versions of Eq(13) link the proportional increase in the 
number of births to the intrinsic growth rates of each cycle's Leslie matrices. 

 
 

6. Specifying the complete population projection matrices 

The Intrinsic Linkage model is not complete until the underlying sequence of Leslie 
matrices is fully specified. With parameter 𝑤 fixed, matrix 𝑭𝒕, a constituent of Leslie 
matrix 𝑨𝒕 per Eq(4), is constrained to produce the exponential decay in the effect of 
past behavior shown in Eq(13). This constraint may preclude the existence of a 
demographically valid Leslie matrix. 

The best way to approach the specification of the 𝑨𝒕 is to begin with models that 
have only 2 reproductive age groups. 

 
 

6.1 Specifying the 2-age group Intrinsic Linkage Leslie matrix 

Using Eq(4), we can write the 2 x 2 Intrinsic Linkage Leslie matrix in the form 
 

𝐴𝑡 = �𝜆𝑡(1 − 𝑎𝑡) 𝜆𝑡2𝑎𝑡
1 0

�      (32) 

 
where 𝑎𝑡 is the contribution to the number of births at time t per person in the second 
age group at time t–1 when the dominant eigenvalue is 1. Schoen (2006: 138-39) shows 
that such a Sykes form representation is always possible, and describes how it can be 
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implemented. Since 𝑎𝑡 and 𝜆𝑡 must be greater than zero, and we need (1−𝑎𝑡) > 0, we 
must have 

 
0 < 𝑎𝑡 < 1        (33) 
 

for a demographically valid population projection matrix. 
Let us scale the model so that the population at time t−1 is described by the vector  
 

𝒙𝒕−𝟏 = � 1
1 𝐺𝑡−1⁄ �       (34) 

 
and the time t model population is given by 

 

𝒙𝒕 = 𝐺𝑡 �
1

1 𝐺𝑡⁄ �.       (35) 

 
Eqs(32) - (35) must (and do) satisfy the matrix projection relationship of Eqs(1) and (8). 

Using those equations and the Intrinsic Linkage relationship of Eq(9), we can get a 
scalar equation from the first row of matrix Eq(1) and write 

 
𝐺𝑡 = 𝜆𝑡(1 − 𝑎𝑡) + 𝑎𝑡𝜆𝑡2 𝐺𝑡−1 = 𝜆𝑡(1 −𝑤𝑡) + 𝐺𝑡−1𝑤𝑡⁄ .   (36) 
 

Eliminating 𝐺𝑡 by using the last equality, we find  
 
𝑎𝑡 = (−𝑤𝑡)𝐺𝑡−1 𝜆𝑡⁄ .       (37) 
 

Eq(37) provides the 2-age group Intrinsic Linkage solution for 𝑎𝑡, indicating that all of 
the elements of 𝑨𝒕 are fully determined. 

Because 𝑎𝑡, 𝐺𝑡−1 and 𝜆𝑡 are always positive, Eq(37) indicates that a 
demographically valid model for time t requires 𝑤𝑡  < 0. If 𝑤𝑡  is 0, then 𝑎𝑡 is 0 and 𝑨𝒕 is 
not primitive. Since we must have 𝑎𝑡 < 1, Eq(37) implies the inequality 

 
𝜆𝑡 > (−𝑤𝑡)𝐺𝑡−1       (38) 
 

for a valid Leslie matrix. The growth rate of 𝑨𝒕 is likely to be somewhat similar in 
magnitude to the proportional increase in births from time t–2 to time t–1. Since 0 < 
(−𝑤𝑡) < 1, the magnitude of 𝑤𝑡  may be constrained to satisfy the inequality in Eq(38). 
A smaller (−𝑤𝑡) implies more rapid convergence and a lesser effect of past behavior. 

Combining Eqs(37) and (38), a valid time t model must have  
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0 > 𝑤𝑡 > −𝜆𝑡 𝐺𝑡−1⁄ .       (39) 
 
For a valid 2-age model, either 𝑤𝑡  or 𝜆𝑡 is constrained by Eq(39). With a time-

varying 𝑤𝑡 , however, it is possible that at some time z, 𝑤𝑧 can be smaller than –1.  
Under Strong Intrinsic Linkage, with 𝑤 constant, −1 < 𝑤 < 0 is needed in order to 

have convergence in Eqs(12) and (13). Using Eq(13), we can write the inequality in 
Eq(38) as 

 
𝜆𝑡 > (−𝑤)(1 −𝑤)[𝜆𝑡−1 + 𝑤𝜆𝑡−2 + 𝑤2𝜆𝑡−3 + 𝑤3𝜆𝑡−4 + ⋯ ].  (40) 
 
Eq(40) provides a necessary and sufficient condition for a valid constant 𝑤, 2-age 

group Leslie matrix. From Eq(9), the Strong Intrinsic Linkage relationship implies that 
𝜆𝑡 is always between 𝐺𝑡 and 𝐺𝑡−1. 

With constant 𝑤 and a known 𝜆𝑡 sequence, closed form solutions for 𝑎𝑡 in terms of 
𝑤 and the 𝜆𝑡 may be possible. For example, consider the 2-age group metastable model 
of Eqs(21) - (23). Eq(37) leads to 

 
𝑎 = (−𝑤) (1 − 𝑤) (𝑘 − 𝑤)⁄       (41) 
 

with parameter a constant over time. Since in most cases the metastable parameter 𝑘 is 
close to 1, 𝑎 ≈ − 𝑤 and the demographic validity of the model can quickly be 
established. 

In the 2 age group, cycle length 2 case, Leslie matrix parameters 𝑎1 and 𝑎2 are 
given by 

 
𝑎1 = [−𝑤 (1 + 𝑤)⁄ ] (𝜆2 + 𝜆1𝑤) 𝜆1⁄   
𝑎2 = [−𝑤 (1 + 𝑤)⁄ ] (𝜆1 + 𝜆2𝑤) 𝜆2⁄ .     (42) 
 

A valid model thus requires 𝑎1 and 𝑎2<1, as well as (𝜆2 + 𝜆1𝑤)>0 and (𝜆1 + 𝜆2𝑤)>0. 
 
 

6.2 Specifying the 3-age group Intrinsic Linkage Leslie matrix 

Leslie matrices with three reproductive age groups can provide a reasonable 
representation of most human population dynamics. Let the first row of Sykes form 3- 
age group Leslie matrix 𝑨𝒕 be [(1 − 𝑎𝑡 − 𝑏𝑡)𝜆𝑡 , 𝑎𝑡𝜆𝑡2, 𝑏𝑡𝜆𝑡3], with the matrix having 
ones on the subdiagonal and zeros elsewhere. We must also have 0 ≤ 𝑎𝑡, 𝑏𝑡 ≤ 1 and 
(1 − 𝑎𝑡 − 𝑏𝑡) ≥ 0. The time t−1 model population can be scaled so that 
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𝒙𝒕−𝟏′ = [1, 1 𝐺𝑡−1, 1 (𝐺𝑡−1 𝐺𝑡−2)⁄⁄ ]     (43) 
 

where the prime (') indicates the transposition from a column vector to a row vector. 
Eq(9) and the first row of matrix projection Eq(1) then yield the equation 
 
(−𝑤) 𝜆𝑡 = 𝑎𝑡 𝐺𝑡−1 + 𝑏𝑡[(𝜆𝑡2 − 𝐺𝑡−1𝐺𝑡−2) (𝐺𝑡−1𝐺𝑡−2{𝜆𝑡 − 𝐺𝑡−1})⁄ ]⁄⁄ . (44) 
 
With three age groups there are 2 parameters in 𝑭𝒕, 𝑎𝑡 and 𝑏𝑡, which are 

constrained by only one equation, i.e. Eq(44). Thus a valid Leslie matrix may arise in 
many ways, and 𝑎𝑡 and 𝑏𝑡 are not fully determined by the Intrinsic Linkage constraint. 
In the general case, this flexibility makes it possible to have a value of 𝑤𝑡  that is less 
than −1 or greater than 1, as long as the sum in Eq(10) always converges. 

Three points should be made. First, if 𝑏𝑡 = 0, then we again have the case of 
Eq(37). Hence Eq(39) (or Eq(40) if w is constant) provides a sufficient condition for a 
valid model, though it is no longer a necessary condition. 

Second, if 𝑤 is constant over time, a long-term valid Intrinsic Linkage model again 
requires that −1 < 𝑤 < 0. To see why, consider the model at time t, and assume that 
𝐺𝑡−1 and 𝐺𝑡−2 are known. If 𝐺𝑡−1=𝐺𝑡−2, then the population is stable (or 𝑨𝒕−𝟏 is not 
primitive). If not, let us assume that 𝐺𝑡−2 > 𝐺𝑡−1 (with the same line of argument 
holding if 𝐺𝑡−2< 𝐺𝑡−1). From Eq(44), for 𝑤 ≥ 0, a valid model requires that the second 
term on the right be negative, hence 𝜆𝑡 must be between 𝐺𝑡−1 and 𝐺𝑡−2 and greater than 
the geometric mean of 𝐺𝑡−1 and 𝐺𝑡−2. With 𝑤 ≥0, Eq(9) implies that 𝐺𝑡 must equal 𝜆𝑡 
or be between 𝜆𝑡 and 𝐺𝑡−1. Thus at the beginning of the next interval, time t+1, we are 
back at the starting situation, but the gap between 𝐺𝑡−1 and 𝐺𝑡 is substantially smaller 
than the gap that existed between 𝐺𝑡−1 and 𝐺𝑡−2. Over time, with 𝑤 ≥ 0, the gap 
between successive 𝐺's must go to zero, and the population will either become stable or 
the population projection matrix will no longer be primitive. Since 𝑤 ≥0 does not yield 
a valid long-term model, we are left with −1 < 𝑤 < 0. 

Third, because the 3-age group model has an additional degree of freedom, we can 
introduce another constraint, say one related to the Net Reproduction Rate (NRR). 
Following Lotka, the NRR can be thought of as the growth that occurs over a 
generation, as in the stable population relationship 

 
𝑁𝑅𝑅 = exp (𝑟𝑇)       (45) 
 

where 𝑟 is Lotka's intrinsic growth rate and 𝑇 is the length of a generation (Schoen 
2006:11). A 3-age group model typically has the reproductive age groups 0-14, 15-29, 
and 30-44, and age 30 is often close to the length of a generation. In the discrete case, 
with 𝜆𝑡 representing 15 years of growth from time t−1 to time t, we can thus write 
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𝑁𝑅𝑅𝑡 = 𝜆𝑡2 = (1 − 𝑎𝑡 − 𝑏𝑡)𝜆𝑡 + 𝑎𝑡𝜆𝑡2 + 𝑏𝑡𝜆𝑡3.    (46) 
 
Using Eqs(46), (1), and (9), we find that the parameters of 𝑨𝒕 are given by 

 
𝑎𝑡 = {(−𝑤)𝐺𝑡−1𝐺𝑡−2(𝜆𝑡 + 1)[𝐺𝑡−1 − 𝜆𝑡] − 𝜆𝑡𝐺𝑡−1𝐺𝑡−2} 𝐷𝐸𝑁𝑂𝑀⁄   
 

and 
 
𝑏𝑡 = {𝐺𝑡−2[𝑤𝐺𝑡−1 + 𝜆𝑡][𝐺𝑡−1 − 𝜆𝑡]} 𝐷𝐸𝑁𝑂𝑀⁄   
 

where 
𝐷𝐸𝑁𝑂𝑀 = 𝜆𝑡2[𝐺𝑡−2(𝐺𝑡−1 − 1) − 𝜆𝑡(𝐺𝑡−2 − 1)] .   (47) 
 

An analyst can start with a fixed 𝑤 and a sequence of NRRs, and generate sequences 
of 𝜆𝑡's, 𝐺𝑡 's, and Leslie matrices. 

 
 

6.3 Specifying the Intrinsic Linkage Leslie matrix for 4 or more age groups 

Leslie matrices with four or more age groups have relationships that parallel those in 3-
age models. Eqs(39) and (40) still provide sufficient conditions for a valid Leslie matrix 
in the general and constant w cases, respectively. In equations that parallel Eq(44), there 
are additional terms on the right side, increasing the likelihood that a valid Leslie matrix 
exists. For example, in the 4-age case, there is an additional term of the form 

 
[𝜆𝑡3 − 𝐺𝑡−1𝐺𝑡−2𝐺𝑡−3] [𝐺𝑡−1𝐺𝑡−2𝐺𝑡−3(𝜆𝑡 − 𝐺𝑡−1)]⁄ .   (48) 
 
Still, in the constant w case, the same dynamic discussed in the second point after 

Eq(44) continues to operate, so in long term the value of w must satisfy −1 < 𝑤 < 0. 
 
 

7. Numerical illustrations involving Intrinsic Linkages 

Numerical values for Intrinsic Linkage models are presented for (i) a time series of 
observed data for Netherlands, Sweden, and the United States; (ii) a metastable model, 
and (iii) a 3-cycle cyclically stationary model. Models with three reproductive age 
groups are used to simplify the presentation while preserving the essential population 
dynamics. 

 



Demographic Research: Volume 28, Article 35 

http://www.demographic-research.org 1011 

7.1 Intrinsic Linkage values in data for Netherlands, Sweden, and the United 
States 

We examine the Intrinsic Linkage parameters underlying observed demographic 
behavior in three countries for which consistent data are available for a number of 
consecutive years. Keyfitz and Flieger (1968; 1990) provide such series for 
Netherlands, Sweden, and the United States. Through 1965, the data are in 5-year age 
groups through ages 80-85, as well as an 85 and over age group; after 1965, ages 0 and 
1-4 are recognized separately. Using published data for births and the intrinsic growth 
rate, values of 𝜆𝑡 and 𝐺𝑡 were calculated, and Eq(9) was then used to find the implied 
value of 𝑤𝑡 . This value of 𝑤𝑡  is quite insensitive to the number of age groups in the 
data. 

Table 1 shows the 𝜆𝑡, 𝐺𝑡, and 𝑤𝑡  values for those three countries. The data 𝐺𝑡 
series show a number of fluctuations, with values ranging from below 75% to over 
130%. The values in the 𝜆𝑡 series are smoother, varying only from 94.5% to 111%. In 
contrast, those implied in the 𝑤𝑡  series are extremely erratic. Few values are between 
zero and –1, and most are positive. There are a number of double digit 𝑤𝑡  values, 
ranging from –15 to +29. The constant w assumption is thus a strong one, in that 
parameter w appears to be far from constant in actual populations. Nonetheless, a 
constant w does characterize metastable models, which are demographically plausible. 
Empirically, the constant w assumption leads to reasonable demographic values and 
trajectories. Strong Intrinsic Linkage is thus likely to be appropriate for hypothetical 
and illustrative analyses. In addition, Intrinsic Linkage models can relax or forego the 
constant w assumption. Parameter w can be allowed to vary within each cycle of a 
cyclically stable population, change according to some functional form, or track some 
arbitrary sequence. 

The specific value of a constant parameter w seems to be of relatively little 
importance for the resultant 𝐺𝑡 sequence. The last two columns of Table 1 show that in 
all three countries there are only modest differences in the 𝐺𝑡 when w changes from  
–0.2 to –0.8. When the 𝐺𝑡 are cumulated over time (not shown), the constant w values 
are generally close to each other and to the cumulated 𝜆𝑡 values, and are quite different 
from the cumulated data 𝐺𝑡. 
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Table 1: Observed and proportional changes in births and Intrinsic Linkage 
parameter values, for Netherlands, 1908-12 to 1985; Sweden, 1783-88 
to 1985; and United States 1924-26 to 1985 

Year (t) Observed Increase 
in Births 𝑮𝒕 

Implied 𝒘𝒕 [Eq(9)] 
 

𝝀𝒕 𝑮𝒕 from Eq(9), w= 
–0.2 

𝑮𝒕 from Eq(9), w= 
–0.8 

A. Netherlands, 1908-12 to 1985 
1908-12 0.992  1.071 0.992 0.992 
1913-17 1.018 0.650 1.065 1.080 1.124 
1918-22 1.038 0.439 1.054 1.049 0.999 
1923-27 1.003 2.848 1.057 1.059 1.104 
1928-32 0.995 1.210 1.043 1.039 0.994 
1933-37 0.957 2.261 1.025 1.022 1.050 
1938-42 1.070 –0.592 1.028 1.029 1.011 
1943-47 1.300 29.363 1.062 1.069 1.103 
1948-52 0.987 –0.330 1.064 1.063 1.033 
1953-57 0.981 1.076 1.061 1.060 1.083 
1958-62 1.050 0.220 1.070 1.072 1.059 
1965 1.013 3.627 1.065 1.063 1.069 
1970 0.974 2.560 1.038 1.033 1.013 
1975 0.745 –15.155 0.960 0.946 0.918 
1980 1.019 –0.315 0.953 0.955 0.982 
1985 0.983 0.503 0.945 0.944 0.916 

B. Sweden, 1783-87 to 1985 
1783-87 0.935  1.007 0.935 0.935 
1788-92 1.071 –0.564 1.022 1.092 1.039 
1793-97 1.138 –0.958 1.039 1.122 1.059 
1798-1802 0.950 –0.614 1.022 0.942 1.014 
1803-07 1.030 0.032 1.032 1.106 1.036 
1808-12 1.013 0.366 1.004 0.922 0.997 
1813-17 1.056 –0.819 1.037 1.128 1.045 
1818-22 1.091 3.583 1.043 0.974 1.042 
1823-27 1.082 0.594 1.070 1.147 1.075 
1828-32 0.979 –1.951 1.047 0.968 1.042 
1833-37 1.048 0.178 1.063 1.139 1.067 
1838-42 0.973 26.270 1.051 0.981 1.048 
1843-47 1.062 –0.134 1.052 1.108 1.052 
1848-52 1.075 2.322 1.052 1.007 1.052 
1853-57 1.067 0.771 1.038 1.062 1.035 
1858-62 1.122 7.831 1.059 1.056 1.063 
1863-67 1.028 –0.498 1.059 1.062 1.058 
1868-72 0.905 8.739 1.044 1.029 1.041 
1873-77 1.112 –0.356 1.058 1.081 1.062 
1878-82 0.999 –1.025 1.057 1.037 1.056 
1883-87 1.021 0.652 1.061 1.080 1.062 
1888-92 0.968 2.385 1.059 1.042 1.058 
1893-97 0.997 0.690 1.059 1.074 1.060 
1898-1902 1.030 0.459 1.059 1.047 1.059 
1903-07 0.989 2.497 1.058 1.067 1.058 
1908-12 1.003 0.782 1.055 1.045 1.054 
1913-17 0.920 3.921 1.032 1.021 1.027 
1918-22 0.986 0.315 1.017 1.013 1.015 
1923-27 0.858 17.270 0.994 0.979 0.990 
1928-32 0.881 0.786 0.966 0.956 0.962 
1933-37 0.935 0.236 0.951 0.947 0.949 
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Table 1: (continued) 
Year (t) Observed Increase 

in Births 𝑮𝒕 
Implied 𝒘𝒕 [Eq(9)] 

 
𝝀𝒕 𝑮𝒕 from Eq(9), w= 

–0.2 
𝑮𝒕 from Eq(9), w= 

–0.8 
1938-42 1.150 –4.394 0.975 0.997 0.980 
1943-47 1.312 2.284 1.024 1.047 1.033 
1948-52 0.888 –0.420 1.014 0.987 1.010 
1953-57 0.921 0.731 1.010 1.029 1.010 
1958-62 0.975 0.388 1.009 0.994 1.009 
1965 1.171 –2.836 1.026 1.052 1.030 
1970 0.897 –0.477 0.986 0.932 0.977 
1975 0.941 0.402 0.970 1.001 0.969 
1980 0.937 1.203 0.962 0.930 0.960 
1985 1.014 –1.520 0.967 0.997 0.969 

C. United States 1924-26 to 1985 
1924-26 0.991  1.046 0.991 0.991 
1929-31 0.923 4.098 1.013 1.030 1.017 
1934-36 0.944 0.700 0.994 0.965 0.990 
1939-41 1.104 –1.639 1.005 1.036 1.008 
1944-46 1.235 2.907 1.035 1.034 1.040 
1949-51 1.232 0.980 1.074 1.107 1.081 
1954-56 1.125 0.165 1.105 1.103 1.109 
1959-61 1.044 –4.772 1.111 1.118 1.112 
1965 0.893 8.257 1.065 1.023 1.056 
1970 0.982 0.353 1.030 1.036 1.025 
1975 0.843 –10.716 0.970 0.917 0.959 
1980 1.149 –1.320 0.975 1.021 0.998 
1985 1.016 0.231 0.976 0.941 0.976 

 
Note: United States data, up to and including 1965, is from the "adjusted births" series. The proportional increase in births, 𝐺𝑡, is 

calculated from data on births at times t and t–1 using Eq(6). Values of 𝜆𝑡  are calculated as exp[5rt], using published values for 
female intrinsic growth rate rt.. 

Source: Keyfitz and Flieger (1968) for data through 1965; Keyfitz and Flieger (1990) for data from 1970 through 1985. 

 
We have yet to consider the implications of the choice of constant w for Leslie 

matrix elements. However, using the criterion in Eq(38) as a rule of thumb, it appears 
that for –0.8 ≤ w ≤ –0.2, demographically valid Leslie matrices can be found for every 
country and year shown but one. In Sweden 1943-47, 𝐺𝑡 was 1.312, while 𝜆𝑡 for 1938-
42 was only 0.975, less that 80% of 𝐺𝑡. For the Swedish series, a constant w would 
have to be smaller in magnitude than 0.74 in order to consistently yield valid population 
projection matrices. 

 
 

7.2 Values in a 3-age group metastable model 

The metastable model allows fertility to steadily increase or decrease, and it can provide 
an analytical bridge between stable population regimes, such as in a transition from 
stability to stationarity. Table 2 shows numerical relationships under two values of the 
constant Intrinsic Linkage parameter w, specifically −0.6 and −0.4. Values for the 
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metastable parameters are c=1.02 and k=1.005, with the Leslie matrix value b set at 
0.05. 

 
Table 2: Numerical relationships in a 3-reproductive age group birth-death 

metastable model with Intrinsic Linkage, for 2 values of constant 
parameter w 

Item w = −0.6 w = −0.4 
𝑎 0.41747 0.22790 
𝜆𝑠 1.00187 1.00142 
𝜆1 1.02510 1.02510 
𝐺1 1.02702 1.02656 
𝜆10 1.07216 1.07216 
𝐺10 1.07417 1.07369 

First row of Leslie matrix 𝑨𝟏 [.54589, .43869, .05386] [.74023, .23948, .05386] 
First row of Leslie matrix 𝑨𝟏𝟎 [.57095, .47990, .06162] [.77421, .26198, .06162] 
Time 0 model population 𝒙𝟎′  [1, .97856, .96237] [1, .97900, .96323] 
Time 10 model population 𝒙𝟏𝟎′  (1.63397) [1, .93561, .87974] (1.62672) [1, .93603, .88052] 

 
Note: The model is based on text Eqs(21)-(23) with c=1.02, k=1.005, and b=0.05. Population growth over time was accumulated 

using the relationship that the product of 𝑘𝑗, j going from 1 to n, equals 𝑘𝑛(𝑛+1) 2⁄ . The value of parameter 𝑎 in the 3-age 
metastable model is found from 𝑎 = {𝑏𝑘(𝑘 − 𝑤)3 − (1− 𝑤)2[𝑤(1 − 𝑘) + 𝑏(𝑘 − 𝑤)]} {𝑤2(1 − 𝑘) − 𝑘2(1 −𝑤) + (𝑘 − 𝑤)}⁄ . 

 
Because the metastable population is growing, fertility values in the first row of 

the Leslie matrix increase over time, while the relative size of the population in the 
older age groups decreases. Leslie growth rate 𝜆𝑡 increases over time, as does 𝐺𝑡=𝜆𝑡𝜆𝑠. 
When w increases from −0.6 to −0.4, there is a slight decrease in metastable growth 
factor 𝜆𝑠, but over a ten-interval period the resultant difference in births is only that 
between 1.634 and 1.627, a mere 0.4%. However, the change in w does have a 
considerable effect on age-specific fertility values, with the larger w associated with an 
earlier fertility schedule. Because the value of b was fixed, the first rows of both Leslie 
matrices have identical third elements at the same time point. 

 
 

7.3 Values in a 3-age group, 3-cycle cyclically stationary model 

A cyclically stationary population provides analysts with a flexible model for studying 
fluctuations in the absence of long-term growth. The Intrinsic Linkage approach 
provides explicit relationships that facilitate the construction of such models. 

Table 3 shows values for a 3-cycle, cyclically stationary, Intrinsic Linkage model 
with three age groups. For stationarity, we must have 𝐺1 𝐺2 𝐺3 = 1, i.e. no growth over 
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each cycle. Combined with Eqs(29), the stationarity constraint enables the model to be 
solved directly for the 𝐺𝑡 and constant w, though the 𝜆𝑡 must be chosen carefully to 
produce a valid model. An easier approach is to choose a value of w in the broad range 
that satisfies the sufficiency condition in Eqs(39) or (40), choose two of the three 𝜆's, 
and solve for the 𝐺𝑡 and the last 𝜆. Table 3 does the latter, with 𝜆1 = 0.9, 𝜆2= 1.1, and w 
set at either −0.8 or −0.4. In the Leslie matrix, there is only one constraint on each pair 
of aj and 𝑏𝑗. To simplify matters while insuring a valid model, 𝑏𝑗 is always set at 0.02. 

 
Table 3: Numerical relationships in a Cyclically Stationary 3-reproductive age 

group, 3-cycle birth-death model with Intrinsic Linkage, for 2 values 
of constant parameter w 

Item w = −0.8 w = −0.4 
𝜆3 1.03749 1.02517 
𝐺1 0.92144 0.87623 
𝐺2 1.24285 1.18951 
𝐺3 0.87320 0.95944 
𝑎1 .94148 0.33271 
𝑎2 .61814 0.28422 
𝑎3 .95108 0.46533 
𝑏1 .02 .02 
𝑏2 .02 .02 
𝑏3 .02 .02 

First row of Leslie matrix 𝑨𝟏 [.03467, .76260, .01458] [.58256, .26949, .01458] 
First row of Leslie matrix 𝑨𝟐 [.39805, .74794, .02662] [.76535, .34391, .02662] 
First row of Leslie matrix 𝑨𝟑 [.03001, 1.02373, .02233] [.52763, .48905, .02155] 
Time 0 model population 𝒙𝟎′  [1, 1.14521, .92144] [1, 1.04228, .87623] 
Time 1 model population 𝒙𝟏′  (.92144)[1, 1.08526, 1.24285] (.87623 ) [1, 1.14126, 1.18951] 
Time 2 model population 𝒙𝟐′  (1.14521)[1, .80460, .87320] (1.04228) [1, .84068, .95944] 

 
Note: The model is based on text Eqs(28)-(29) with 𝜆1=0.9 and 𝜆2=1.1. Since 𝐺1 𝐺2 𝐺3=1, there is no population growth over each 3-

interval cycle. 

 
Table 3 indicates that the choice of w has a small effect on the calculated value of 

𝜆3, but a clear impact on the values of the 𝐺𝑡. The more negative value of w leads to 
large values for the 𝑎𝑗, with a resultant concentration of fertility in the second age 
group. The less negative value of w is associated with a marked shift in fertility to the 
first age group. Because the cycle length is the same as the number of age groups, total 
population size is constant over time, and equals 3.0666 when w=−0.8, and it is 2.9185 
when w=−0.4. Population vector 𝒙𝟑 is identical to 𝒙𝟎, and Leslie matrix 𝑨𝟒 is the same 
as 𝑨𝟏. Within a cycle, however, cohort size varies by up to 24% when w=−0.8 and up to 
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19% when w=−0.4. For both choices of w, the sum of the three 𝐺𝑡 equals the sum of the 
three 𝜆𝑡. 

 
 

8. Summary and Conclusions 

The Intrinsic Linkage approach of Eq(9) is based on the idea that it is plausible to 
represent proportional increase in births 𝐺𝑡 as a linear combination of 𝜆𝑡 and 𝐺𝑡−1. That 
allows each 𝐺𝑡 to be expressed by a convergent power series in 𝜆𝑡 and linear weight 
parameter, 𝑤𝑡 . 

Intrinsic Linkage emphasizes the dominant, stable component of Leslie matrices. 
Much of the demographic content of Leslie matrix 𝑨𝒕, of whatever size, is embodied in 
a single number: dominant eigenvalue 𝜆𝑡. The dominant root of 𝑨𝒕 reflects not only 
intrinsic growth but, in the assumed absence of mortality before the end of childbearing, 
the long-term age composition as well. The contribution of the subordinate components 
of 𝑨𝒕 is captured by Intrinsic Linkage parameter w. The analytical advantage of the 
Intrinsic Linkage approach flows from its ability to focus on just 𝜆 and 𝑤. As presented 
here, Intrinsic Linkage yields the birth trajectory, but mortality assumptions (or data) 
can be added to provide the complete population age structure. 

When 𝜆𝑡 has a polynomial, exponential, or cyclical trajectory and w is constant 
over time, new closed form relationships between 𝜆𝑡 and 𝐺𝑡 emerge. Over the long 
term, Eq(13) shows that 𝐺𝑡 is a weighted average of present and past 𝜆𝑡 values, with 
past effects decaying exponentially over time. The essence of the constant w or 
"Strong" Intrinsic Linkage approach is that it imposes a strict regularity on how past 
behavior is forgotten. By doing so, it extends the concept of a force of convergence 
(Schoen 2006; Chap. 3) 

The construction of Intrinsically Linked models is straightforward. Several 
illustrative numerical examples of cyclical and metastable models are given, and these 
demonstrate the validity of the new theoretical relationships derived here. The constant 
w assumption, when applied to data, produces a birth trajectory that, while quite 
reasonable, resembles the 𝜆𝑡 sequence more than the actual birth sequence. While the 
value of w has only a modest influence on the birth sequence, it substantially affects the 
age pattern of net maternity. 

In observed populations, however, the weight parameter is generally not constant 
over time. The time series data suggest that past effects are typically forgotten in a 
complex, irregular fashion. Still, stable populations have great analytical and applied 
value even though most actual populations are not stable in their age composition nor 
are they consistent in their underlying intrinsic growth rates. The Intrinsic Linkage 
approach is rooted in population dynamics, and addresses the crucial relationship 
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between the implicit level of stable growth and the explicit nature of year-to-year 
growth by formalizing the manner in which past experiences are forgotten. 

In sum, the Intrinsic Linkage approach provides a new and flexible way to 
analytically project a birth trajectory. Intrinsic Linkage extends current methods for the 
dynamic modeling of birth-death models, including cyclically stable and cyclically 
stationary models, and affords new options for analyzing populations with changing 
vital rates. 
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