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ABSTRACT

CAPILLARY INTERACTIONS
AMONG MICROPARTICLES AND NANOPARTICLES

AT FLUID INTERFACES

SEPTEMBER 2011

CHUAN ZENG

B.Sc., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Anthony D. Dinsmore

Particles can be adsorbed to liquid-fluid interface to minimize interfacial energy.

The adsorbed particles interact in many ways. There has been a lot of theoretical

predictions as well as experimental measurements of the interaction potential be-

tween particles confined at interfaces. Experimentally, we track multiple particles

using optical microscope image processing of isolated pairs of particles and of more

concentrated systems. Statistical methods were implemented to compute micropar-

ticle interaction forces from tracking data. The accuracy of different methods were

tested with Monte Carlo simulation, which showed that care is needed to avoid arti-

facts. Our measurements confirmed the absence of significant pair-interactions among

charged microparticles and liquid droplets at flat air-water interfaces. At the inter-

face between water and a fluorocarbon, however, we observed strong interactions that

cannot be explained by capillary interactions among neutral particles. Theoretically,

vi



we focused on the capillary interaction mediated by the curvature of interface. The

perturbation to a cylindrical interface upon adsorption of a single spherical particle

is studied first. We present an analytical model of the interfacial shape and energy

upon adsorption of a single particle, and then calculate the interaction between two

particles. Based on our result for a cylindrical interface, we propose a general formula

for the force on a particle on a curved interface having constant mean curvature (i.e.,

not subject to an external forces). This study provides an important step toward

understanding the interactions among interfacial particles.
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CHAPTER 1

INTRODUCTION

Since the beginning of last century [1], particles at liquid interface have been of

great interest from fundamental science to engineering application [2, 3]. Particles

confined at two-dimensional interface provide a ideal analogous system to study crys-

tallization in two dimensions [4, 5], while particles packed around liquid droplets can

act as emulsifier to stabilize droplets from coalescing [1, 6].

1.1 Surface tension and surface energy

The interface between two immiscible fluids is subjected to a positive tension

[7]. The tension arises from the cohesive forces among the liquid molecules. In the

bulk of one liquid phase, each molecule is attracted equally in every direction by

neighboring liquid molecules. The molecules at the interface do not have the same

type of molecules on all sides of them. Therefore, molecules at the interface are

pulled inwards to its bulk phase, which creates a tension on the interface and forces

the interface to contract to the minimal area. In terms of energy, interfacial tension

is the energy cost of creating unit area of interface, i.e., there is a positive interfacial

energy proportional to the total area of interface.

1.2 Adsorption of microparticles at interfaces

To minimize surface energy, particles can be adsorbed to liquid-fluid interface. As

illustrated in Figure 1.1, consider a spherical particle with radius R initially in phase

I without loss of generality. The surface tension between the particle and phase I is
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Figure 1.1: Adsorption of particle at interface.

γI, and the surface tension between the particle and phase II is γII. The interfacial

tension between phase I and phase II is γI/II. The particle sits at the interface in

the final state. Force balance at contact line along tangential direction gives the

Young-Dupre equation [8]

γI/II cosα + γI = γII, (1.1)

which requires | cosα| ≤ 1, i.e. |γI − γII| ≤ γI/II. In this case, the interfacial area was

reduced by a disk with radius R sinα, and the area on the particle transferred from

phase I to phase II was 2πR2(1 − cosα). Thus we have ∆E = −γI/IIπR
2 sin2 α +

(γII − γI) 2πR2(1− cosα). Recalling γII − γI = γI/II cosα, we get

∆E = −γI/IIπR
2(1− cosα)2 ≤ 0. (1.2)

Thus the energy minimum is always achieved when particle sits at interface. Take

water-air interface for example, γI/II = .07 kg · s−2, and R = 1 µm, then ∆E ∼

10−13(1− cosα)2 J. Correspondingly, ∆E ∼ 10−19(1− cosα)2 J for nanoparticles. At
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room temperature, kBT ∼ 10−21 J. Therefore, microparticles can usually be stably

bounded at interfaces, while nanoparticles can escape from the interface owing to

thermal fluctuations [9]. Particularly for horizontal interfaces, it is also important to

notice that the force of gravity is negligible, since the change of energy is ρV gh ∼

ρgR4 ∼ 10−20 J for a microparticle to fall 1 µm.

Generally speaking, the experimentally observed contact angle depends on history.

It exhibits hysteresis in a range between receding angle and advancing angle [8].

The surface inhomogeneity, either chemical (stains, blotches, blemishes) or physical

(surface irregularities), also leads to nonuniformity in contact angle. For now, we

assume no hysteresis and uniform contact angle. This is an important assumption,

the experimental evidence to which will be shown for microparticles both indirectly

and directly.

1.3 Interactions between particles

Microparticles at the interface interact with each other in various ways, which fall

into three categories: electrostatic, capillary and Casimir. Furthermore, electrostatic

and capillary effects usually couple together through the deformability of the fluid

interface. The early study of this interaction was pioneered by Levine et al. [10,

11, 12], both theoretical and experimentally. As we will see, there has been quite a

controversy over recent years about the overall interaction of microparticles at fluid

interface.

1.3.1 Electrostatics

Charged particles in polar solvent are surrounded by a cloud of their counterions,

which can be modeled to be distributed on a thin layer with a finite length lD from the

particle surface. This length lD is called Debye screening length. The surface charge

and the layer of counterion are usually combined as Debye double-layer. When a
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particle is sitting at an interface of a polar solvent and a non-polar solvent, the

double layer on the polar side forms an electric dipole [13, 14, 15]. Particles can thus

repel each other in this way with energy proportional to 1/r3.

On the non-polar liquid side, surface charge is screened over a distance of several

microns and the interaction reduces to Coulombic repulsive [16]. Although the mech-

anism of charge at the interface of particle and non-polar solvent is not yet clear,

there are experimental evidences as well as proposed explanation [17, 18].

The experiments and theory on charged particles and electric-field-induced defor-

mation will be reviewed in more detail in Chapter 2.

1.3.2 Capillary

Capillary plays an important role in particle interactions. Two different mecha-

nisms have been identified in the literature and are summarized here: the deformation

of interface by an externally applied force and the undulation of contact line arising

from particle roughness and contact line pinning.

1.3.2.1 Deformation of interface

The shape of the interface is determined by Young-Laplace equation:

∆p = 2Hγ. (1.3)

Here ∆p is the pressure difference across the interface, H is the mean curvature of

the interface and γ is the interfacial tension. For an interface with height z written

as a function of x and y in a flat reference plane with Cartesian coordinates, 2H =

∇ · ∇z(x, y)√
1 + |∇z(x, y)|2

. For quasi-flat interface,

|∇z(x, y)| � 1, (1.4)
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Figure 1.2: Curved interface: an example.

2H = ∇2z(x, y). Now the Young-Laplace equation is reduced to Laplace’s equation

∇2z(x, y) =
∆p

γ
. (1.5)

As an entry into capillary interactions, we consider the case when a normal force f

acts on an azimuthally symmetric particle at the interface (Figure 1.3). The shape of

interface is described as z(r), because of the azimuthal symmetry about the vertical

axis. rc is the radius of contact line; γ is the interfacial tension. We assume that

the interface is initially flat and ignore the force of gravity on the two fluids. Hence

∆p = 0. Laplace’s equation in cylindrical coordinate with azimuthal symmetry is

1

r
∂rr∂rz = 0. (1.6)
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Figure 1.3: Interface deformed by normal force acting on particle. ∆p = 0.

The force balance along the contact line gives the boundary condition

f = 2πrcγ sinα. (1.7)

With the assumption of Equation 1.4, Equation 1.7 reduces to

f = 2πrcγ ∂rz|r=rc . (1.8)

Solving Equation 1.6 with Equation 1.8 yields

z =
f

2πγ
ln
r

rc
. (1.9)

This deformation causes an interaction between particles [19]. The interaction energy

is a combination of work done by the vertical forces on each particle plus the change

of interfacial energy. It can be shown that the interfacial energy cancels the work

done by one of the vertical forces. Thus the interaction between two particles is

approximately the work done by one force f along z direction:

U =
f 2

2πγ
ln

r

2R
(1.10)

where R is the radius of particle. This interaction potential is analogous to elec-

trostatics in two-dimension [20, 21]. The force f acts as line charge density λ, and
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Figure 1.4: Interface deformed by normal force acting on particle. ∆p 6= 0.

Table 1.1: Analogy between capillary interaction and two-dimensional electrostatics.

Capillary Electrostatic (2D)

f λ
γ ε

1
2πγ

f1f2 ln d − 1
2πε
λ1λ2 ln d

the interfacial tension γ acts as permittivity ε. However, the sign of interaction is

opposite to that of electrostatics. The “capillary charges” of the same sign attract

each other, while opposite capillary charges repulse.

The result of Equation 1.9 can be generalized to the case with gravity. The density

mismatch of two fluids gives rise to a pressure difference across the interface

∆p = ∆ρg (z − z∞) (1.11)

where ∆ρ = ρ2−ρ1. For the stable case, the low-density fluid is on top, corresponding

to positive ∆p. Note that z (rc) is defined to be zero and z∞ is unknown. ∆p is

negative since the pressure decreases along z direction. Holding the assumption of

Equation 1.4, we have the Young-Laplace equation in cylindrical coordinates:

1

r
∂rr∂rz =

∆ρg (z − z∞)

γ
. (1.12)
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Substituting z−z∞ with ζ, and defining capillary length lC =
√

γ
∆ρg

, we get a modified

Bessel’s equation:

1

r
∂rr∂rζ =

ζ

l2C
. (1.13)

With boundary conditions

ζ(∞) = 0, (1.14)

f = 2πrcγ ∂rζ|r=rc , (1.15)

the solution to Equation 1.13 is ζ(r) = −
flCK0

(
r

lC

)
2πrcγK1

(
rc
lC

) , where Kn(x) is the modified

Bessel function of the second kind. Our definition of coordinate requires z (rc) = 0,

thus z∞ = −ζ (rc). Finally we get

z(r) =

flC

[
K0

(
rc
lC

)
−K0

(
r

lC

)]
2πrcγK1

(
rc
lC

) . (1.16)

For the limiting case of r � lC, Equation 1.16 reduces to Equation 1.91. To satisfy

Equation 1.4, we require ∂rz ≤ ∂rz|r=rc � 1, i.e., f � 2πrcγ. For water-air interface,

lC=2.7 mm. For microparticles, 2πrcγ ∼ 10−7 N, so the preceding assumptions apply

if f ∼ 10−7 N. The gravitational force on a particle is ρgV ∼ 103 × 10 × 10−18 N =

10−14 N� 10−7 N.

In a macroscopic system, the normal force f could be provided by gravity, with

a well-know demonstration being the Cheerios effect [22]. While a more general and

elaborate calculation of interface shape was provided by Huh et al. [23], the linear

superposition approximation of gravity-induced capillary interaction was proved to

1For 0 < x � 1, K0(x) → ln 2
x − γE , where γE is Euler-Mascheroni constant (0.5772...). For

0 < x�
√

2, K1(x)→ 1
x .
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be good for sub-millimeter scale particles [24]. An interesting demonstration of this

interaction was found in meniscus-climbing insects [25]. For charged particles, the

effective normal force could be provided by electrostatics of the system, which was

referred to as electrodipping force [18]. However, the superposition assumption is

questioned when computing capillary forces between charged particles at an interface

[26]. It was claimed that the two-particle term dominates and many-body interaction

would emerge.

A bigger concern is whether the electric-induced capillary attraction can overcome

the direct-electrostatic repulsion, which triggered quite a lot of theoretical debate

[27, 28, 29, 30, 31, 32, 15]. In part this problem is complicated by the fact that the

distribution of charge is typically unknown.

1.3.2.2 Undulation of contact line

In the previous derivation, we assumed that the contact angle is constant so that

the contact line is a perfect circle. However, the contact line could be undulated, or

irregular, in the presence of surface roughness and/or chemical inhomogeneity. The

irregular wetting perimeter on the particle surface could also result in a significant

long-range attraction [33]. In the calculation of this interaction, the geometry of the

contact line is expressed in a multipole expansion, which leads to an elegant analogy

to multipole expansions in electrostatics [34, 35, 36, 20]. Depending on the angle

of mutual orientation, the interaction energy could exhibit a minimum, or it could

represent a monotonic attraction [20]. Quantitatively [37, 36, 20], the interaction

energy is much larger than kBT for undulation amplitudes larger than 5 nm; for

deviation of about 50 nm, the interaction energy is in the order of 104kBT .

Experimentally the irregular wetting behavior has been tested [38] and applied to

create a variety of structures [39, 40, 41, 42]. Surface roughness of microparticle could

be anisotropic, and it also makes particle different from each other. Unfortunately, we
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Figure 1.5: Adsorption of an oil droplet at water-air interface.

do not have good way to control or characterize surface roughness of microparticle. A

good way to circumvent this complexity is investigating microdroplet instead of solid

particle, since liquid does not support surface roughness (Figure 1.5). In Chapter 2

we present some results on microdroplets.

1.3.3 Casimir

Like the fluctuation of vacuum energy, the thermal-fluctuation of contact line and

interface could also induce attractive interaction between microparticles [43, 44]. This

interaction was shown to be very sensitive to the boundary conditions imposed at the

contact line [45]. However, the resulting forces are too small to cause a significant

attraction for colloid particles.

1.3.4 Anisotropic particles

When adsorbed to an otherwise flat interface, particles with anisotropic shape

may cause deformation of the interface even without external forces. This is because

the contact angle condition can not be satisfied without deforming the interface. The

deformation of interface will further induce interaction among particles in absence

of external normal force. Several groups [42, 46, 47, 48, 49] investigated anisotropic

particles adsorbed to interface and showed the anisotropic interaction when gravity

is insignificant. These study provide indirect evidence for the condition of constant

constant angle.
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1.4 The effect of interfacial curvature

Instead of being flat, the fluid interface may be curved before any particle is

adsorbed. We are interested in the adsorption of particles to curved interfaces, as

well as the interaction due to the curvature of the interface. To investigate the

most elementary aspects of this problem, we focus on spherical particles. We aim at

addressing the following questions: 1) Due to the curvature of interface, how does the

adsorption energy change with respect to Equation 1.2? 2) Where does a particle go

when adsorbed to an interface with nonuniform curvature? 3) Do particles interact

with each other without external forces? If so, what are the implications for self-

assembly of particles or stabilization of droplets using solid particles?

1.4.1 Curvature of surfaces

The mathematical characterization of surface curvatures is reviewed in this sub-

section.

At any given point of a surface, there is an infinite number of normal planes

passing the normal direction of the surface (Figure 1.6). The intersection of the

surface with any of those planes gives a curve, the curvature k of which can be

found at the given point. The maximal and minimal values of k are defined as

principal curvatures k1 and k2, with the corresponding planes called planes of principal

curvatures. In differential geometry, this is essentially an eigenvalue problem about

the shape operator2 [50, 51, 52, 53]. The two principal curvatures are the eigenvalues

of the shape operator at the point. For the special case of a sphere, the principal

2The shape operator is given in terms of the components of the first and second fundamental
forms by the Weingarten equations:

S = (EG− F 2)−1

(
eG− fF fG− gF
fE − eF gE − fF

)
.
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Figure 1.6: Saddle surface with normal planes in directions of principal curvatures.
(Figure from Wikipedia.)
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Figure 1.7: Surfaces with constant negative, zero and positive Gaussian curvature.
From left to right: a surface of negative Gaussian curvature (hyperboloid), a surface
of zero Gaussian curvature (cylinder), and a surface of positive Gaussian curvature
(sphere). (Figure from Wikipedia.)

curvatures are degenerate. In this case all the normal planes give the same value of

k, which equals the inverse of the sphere radius.

The mean curvature, as introduced in Section 1.3.2.1, is the average of principal

curvatures [54]:

H :=
1

2
(k1 + k2) . (1.17)

We also define Gaussian curvature K as

K := k1k2. (1.18)

For example, Figure 1.7 shows surfaces with constant negative, zero and positive

Gaussian curvature.
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Figure 1.8: A spherical solid particle adsorbed to a spherical liquid drop or gas bubble.

1.4.2 Spherical interface

Consider a spherical solid particle with radius a adsorbed to a spherical liquid drop

or gas bubble with radius R (Figure 1.8). Like the case of flat interface, the contact

angle condition can be trivially satisfied all around the contact line by adjusting the

relative distance of the particle center and drop/bubble. This is in principle due to

the axisymmetry around the line connecting the center of particle and interface. The

interface remains perfectly spherical. By calculating the interfacial energy before and

after the adsorption while holding the radius or volume of drop fixed, the adsorption

energy can be shown as [55, 56]

∆E =∆Eflat

[
1 +O

(
a2

R2

)]
, (1.19)

=∆Eflat

[
1 +O

(
a2H2

)]
, (1.20)

where ∆Eflat is the adsorption energy for flat interface (Equation 1.2).

Because of symmetry, the first particle adsorbed to spherical interface does not

have any preference on the angular position with respect to the center of interface.

Even if more than one particle is adsorbed, the interface will still remain spherical. As

a result, the contact line for each particle remains perfectly circular, and the capillary
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Figure 1.9: A spherical solid particle adsorbed to a cylindrical interface.

force on each particle has zero lateral component. The curvature of spherical interface

does not lead to any interaction among adsorbed particles.

1.4.3 Cylindrical interface

The cylindrical interface stands out as we look for the simplest shape of an inter-

face that can break the axisymmetry around the contact line (Figure 1.9). However

the relative height of the solid particle is adjusted, the contact angle condition can

not be satisfied at all points around the contact line simultaneously. As a result,

the cylindrical interface has to be deformed around the particle. We solve for the

perturbed shape of interface in Chapter 3 and then show that the deformation leads

to interaction among adsorbed particles.
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Anisotropic particle and cylindrical interface both cause interfacial deformation

by introducing geometric frustration to the condition of contact angle. It is not a

surprise that anisotropic particles interact with each other at a cylindrical interface.

Lewandowski et al. [57, 58, 59] conducted experiments with anisotropic particles at

nonplanar interfaces, in which shape-induced oriented assembly was observed. Also

a agreement with theoretical model was shown. These work provides another set of

indirect evidence to the condition of constant contact angle.

1.4.4 Catenoid interface

As a pioneering work on particles at curved interface, Wurger studied the spe-

cial case of a catenoid-shaped interface theoretically [60]. The catenoid is a three-

dimensional shape with a mean curvature of zero (Figure 1.10). The Gaussian curva-

ture of a catenoid, however, is nonzero and nonuniform over the surface. In [60], the

author predicted the motion of adsorbed particle at the catenoid interface as well as

the possible pattern which could be formed by the particles.

By contrast, cylindrical interface has zero Gaussian curvature and nonzero mean

curvature, and the curvatures of an unperturbed cylinder are uniform everywhere on

the surface. Our modeling on cylindrical interface and Wurger’s result on catenoid

interface would perfectly complement each other in the efforts toward arbitrarily

curved interfaces, as we summarized in Chapter 5.
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Figure 1.10: A spherical solid particle adsorbed to a catenoid interface.
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CHAPTER 2

PAIR INTERACTION MEASUREMENT

2.1 Introduction

There has been substantial effort in the past decade to measure the pair interaction

of particles at interface. In this section, I provide a summary of recent experimental

results as well as what needs to be done in the future. In the following sections, I

describe original experiments on the interactions involving not only particle monomers

but also clusters of particles.

Nikolaides et al. [61, 62, 63] studied the dynamics of particles trapped in a

secondary minimum at a separation of approximately four particle diameters and

measured the potential energy curve near that minimum (Figure 2.1). Poly(methyl

methacrylate) (PMMA) particles stabilized with poly(hydroxystearic acid) were ad-

sorbed on water droplets in decahydronaphthalene (decalin). A seven-particle hexag-

onal crystallite was investigated with the center-to-center distance r measured over

time. The potential was obtained from inverting the Boltzmann distribution of

P (r). It was demonstrated that there was a long-range attractive interaction be-

tween charged particles. The particles have a long-range repulsive interaction owing

to their charges. The authors proposed that the long-range attraction arose from

distortion of the interface by an electric field caused by the charge on the particles.

Aveyard et al. [64] determined long-range repulsive force as a function of sepa-

ration between two charged, spherical polystyrene particles (2.7 µm diameter) at a

interface between water and a mixture of decane and undecane using laser tweezers.

The interaction forces as large as piconewtons were reported.
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Figure 2.1: Measured secondary potential minimum (from [61]).

Figure 2.2: Measured pair potential interaction (from [65]).
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Figure 2.3: Repulsive potential extracted from g(r) (from [66]).

Other groups investigated the spatial distribution of particles at flat interface (e.g.

[65, 66]) and calculated the interacting energy from radial distribution function g(r).

Gomez-Guzman et al. measured the attractive interactions of colloidal particles at

water-air interface using inverse Ornstein-Zernike convolution method (Figure 2.2).

The particles reported in the article were non-fluorescent polystyrene sulfate particles,

but the same behavior was also observed with fluorescent particles [67]. Chen et al.

[66] spread anionic carboxyl polystyrene latex spheres at a water-air interface and

inverted the Boltzmann distribution of g(r) (Figure 2.3). Since in those experiments

an ensemble of many particles was examined, the conclusions regarding the 2-body

potential are valid only with the assumption that the pair interaction is additive.

It is worth noting that the previous measurements do not match each other.

The secondary minimum observed in [61] did not appear in either [65] or [66]. And

in [66] there is no attraction, while [65] showed attraction over shorter range than

repulsion. As suggested in [61], the interaction is highly sensitive to surface properties,
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charge and pH, as well as salt concentration. The interaction may also depend on

the type of oil used (as we report in this thesis). The different charge of particles

may affect the mechanism of adsorption in the first place [68, 69, 70]. Moreover, the

interactions might not be pair-wise additive. Therefore, to precisely and convincingly

measure the interaction potential, a single pair should be isolated from other particles

and long time dynamics would be necessary to quantify the weak interaction on

the order of kBT . The effect of salt concentration etc. could be addressed after

then. Hence we performed experiments on highly diluted colloid system and measured

the pair interaction. We focus on the air-water interface for comparison the results

of [61, 62, 63, 65, 66]. We also show data for the interface between water and a

fluorocarbon oil, which gives quite different results.

2.2 Sample preparation

Carboxyl-modified polystyrene bead suspensions in water were purchased from

Interfacial Dynamics Corporation. We use two types of particles with diameters of

1.7 µm (Surfactant-Free Carboxyl White Polystyrene Latex, Product Number: 7-

1800, Batch Number: 739,1, SKU: C37277) and 2.0 µm (Surfactant-Free Fluorescent

Yellow Green CML Polystyrene Latex, Batch Number: 2-FLY-2K.3). Because of the

carboxyl surface group, these particles are negatively charged in polar solvent. As

mentioned above (Section 1.3.1), 0.01 M NaCl are usually added to the suspension to

reduce the Debye length of charged particles. We are investigating both the water-air

and water-oil interfaces. Oils used to create interface include silicone oil, hexamethyl-

disiloxane, and 1,1,1-trifluoroheptan-2-ol, which provide a variety of density, viscosity

and hydrophobicity.

Due to the sensitivity of interfacial experiments, it is essential to clean all chambers

and glassware thoroughly and carefully [71, 72]. With contaminated interface, the

particles will form various immobile mesostructures. In our experiment, we soaked
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Figure 2.4: Microscopy cell.

glassware in sulfuric acid (NOCHROMIX, with oxidizer) for 12∼24 hours. Brass

tubes (if applied) are washed with detergent (Sparkleen) in hot water. All parts of

chamber are successively rinsed with toluene, methanol, deionized water (Millipore

Direct-Q System) and air dried for 12∼24 hours.

A quasi-horizontal interface was created by adding the aqueous phase and oil

phase into a cylindrical chamber (Figure 2.4). We use brass tube as the wall of

chamber to reduce the thermal-induced flow in the system. By use of the brass tube,

flow was suppressed from about 1 µm/s to .01 µm/s. The sedimentation of bulk

particles toward the bottom glass could also cause convective flow, thus a waiting

time of about 6 hr is usually necessary for the sedimentation to complete before

pair-interaction measurements were done.

For water-air interface experiments, water without particles was added into the

chamber, Afterward, about 10 µL methanol suspension of particles was added on top

using a pipette, as a standard technique to spread particles onto water-air interface.

Very diluted suspension of particles was prepared for the experiments of isolated pair

measurements. Particles usually aggregate in methanol suspension since they are not
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charge-stabilized. Thus our methanol suspension was typically sonicated for about 5

minutes before use. For water-oil interface experiments, water suspension of particles

and oil was added into the chamber successively. The phase with higher density was

added first and the other phase was added on top.

To circumvent irregular wetting (Section 1.3.2.2), microdroplets of oil were made

by shaking a mixture of oil and water (volume fraction 1/1000). Microdroplets of oil

at the water-air interface could be found under optical microscope.

2.3 Imaging and processing

An inverted optical microscope (Zeiss Axiovert 200) was used to image particles at

flat interfaces, while confocal microscopy was necessary for experiments with curved

interfaces. Objectives of 20×, 40×, and 63× were used for different magnification

needs. Images were recorded with a charge-coupled device (CCD) camera and digi-

tized with a frame grabber (Imagination PXC200A, controlled by OpenBOX).

The digital images obtained through microscopy were analyzed with Interactive

Data Language (IDL, ITT Visual Information Solutions). The centroids of particles

were located and tracked over a time period. The IDL code distributed by Crocker

and Grier was used [73]. Because we are particularly interested in tracking pairs of

particles over a long period of time, in-house code was also developed to track a small

number of particles efficiently1. We avoided simultaneously loading a full stack of

TIFF images to memory. Instead, only a few subsections of each frame was loaded

based on the position of target particles in the previous frame and the knowledge

on the diffusivity of the particles. When tracking isolated pairs, two subsections was

loaded from each frame, corresponding to the pair of particles being tracked.

1IDL scripts available on servers Narmada2 and Walnut: cfeature.pro, ctrack.pro.
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2.4 Measurement of diffusion coefficient

Bounded particles undergo Brownian motion in two dimensions. We can estimate

the diffusion coefficient as D =
kBT

6πηR
. To be specific, D ∼ 10−13 m2/s for a mi-

croparticle immersed in bulk water. In the time scale we are interested in (∼1 s), the

mean square displacement of microparticles at the interface would be in the range of

microns, which can be resolved with our optical microscope apparatus.

In the case of quasi-flat interface, the diffusion coefficient can be measured by

fitting the plot of 〈r2〉 as a function of t. In the presence of measurement error σ and

a constant flow v, the mean squared displacement is a quadratic function of time t:

〈
r2
〉

= σ2 + 4Dt+ v2t2. (2.1)

If the diffusion is isotropic, Equation 2.1 can be decomposed onto Cartesian coordi-

nates as

〈
x2
〉

= σ2
x + 2Dt+ v2

xt
2, (2.2)〈

y2
〉

= σ2
y + 2Dt+ v2

yt
2. (2.3)

As a result, we can estimate σ, D, and v simultaneously through a 2nd order polyno-

mial fit. The measurement error of 〈r2〉 is taken into account in the polynomial fit.

Representing the precision of particle tracking, σ turned out to be on the order of .1

pixel.

Figure 2.5 shows the mean square displacement 〈r2〉 of one particle as a function

of time, with magnification of 8.1 pixel per micron. The particle is at the interface

of water and silicone oil and is separated from other particles (>∼ 100 micron). The

solid curve is a parabola fit. Using Equations 2.1, 2.2, 2.3, we obtained σ = .21 pixel

(.026 µm) indicating subpixel resolution. The fitted value of the diffusion coefficient

D = .0072 µm2/s. Compared with D = .29 µm2/s for particle immersed in water
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Figure 2.5: Mean-square displacement vs. time.
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and D = .0054 µm2/s in silicone oil, we can determine that the particle was located

at the interface. The fitted value for v is .038µm/s. Then it takes about 45 min for a

particle to drift over a distance of 100 µm, which would provide enough statistics for

our measurement. The diffusion coefficient varies for different particles in the same

system but is of the same order of magnitude (∼ .01 µm2/s). The variation in values

of D suggests that particles might differ with respect to surface roughness or depth

of immersion.

2.5 Measuring interaction between particles

In our system, the pair interaction potential between particles is typically weak,

in some cases changing by much less than kBT per micron. As a result, thermal

fluctuations are significant and the particles undergo diffusive motion rather than

deterministic motion. To measure this ∼ kBT potential through particle tracking,

several statistical methods were investigated. The efficacy of each method was tested

with simulated two-dimensional diffusion data.

Since we measured the pair separation as a function of time, it is straightforward

to approximate the probability distribution p as a function of separation r over time as

the equilibrium probability distribution. The potential of weakly interacting systems

can be extracted by inverting the Boltzmann equation U(r)/kBT = − ln p(r). This

approach discards the dynamical information of the system, i.e., the time-dependence

of pair separation is not appreciated. As we show below, this method is subject to

erroneous results when there is a strong adhesion at contact because the initially

random distribution of particles is not in equilibrium.

For pairs out of equilibrium, Crocker and Grier [73] introduced the Markovian

Dynamics Extrapolation (MDE) method. At first, the separation r between two

particles is measured over a time period. By discretizing separation into small but

finite bins, each measured r can be mapped into a particular bin (as illustrated in
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(a)

(b)

Figure 2.6: Discretized separation. The resolution within each bin is lost during
the discretization. As a result, cases (a) and (b) are not distinguished after the
discretization.

Figure 2.6a). Here we generally chose the bin size as the measurement error σ obtained

in Section 2.4. After each time interval, r will jump from the jth bin to the ith bin

(while it may also stay in the same bin, in which case i = j). Due to the nature

of diffusion, the jump of observable r in a number of bins is a Markovian Process,

which can be characterized by a transition probability matrix P. For a measurement

of r(t) in a finite range of time, we can count the number of times nij when r jumped

from the jth bin to the ith bin, divide it by the total number of times nj when r

jumped out from the jth bin, and obtain the element pij of P. With appropriate

normalization condition, we can solve for equilibrium probability density ρ for each

bin. The equilibrium distribution is just the eigenvector of P corresponding the

eigenvalue 1.

In our implementation of Markovian Dynamics Extrapolation, we developed a

Monte Carlo scheme to estimate the error of calculated U(r)2. Statistically, pij mea-

sured in this way obeys the binomial distribution. In order to estimate the error in

2IDL scripts available on servers Narmada2 and Walnut: cpotential.pro.
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the measurement of pij, we can replace each nij with a random number n′ij from a

binomial distribution with probability pij and nj trials. Using this randomized nij,

perturbed matrix elements p′ij are generated. Note that the expectation of p′ij is ex-

actly pij. However, the sum
∑

i n
′
ij is not guaranteed to be nj. Renormalization would

be necessary. Then a new result U ′(r) can be calculated from each randomized tran-

sition probability matrix P′. By repeating this randomization N times, we have N

perturbed potential measurement U ′(r). The measurement error of U(r) is obtained

as
σU ′(r)√
N

, where σU ′(r) is the standard deviation of U ′(r) over different randomization.

Discretizing the continuous separation r into finite bins is required in both the

direct Boltzmann inversion and Markovian Dynamics Extrapolation. The error intro-

duced by the discretization increases with the size of bin. When the pair interaction

is weak compared with kBT , the potential calculated in these ways is dominated by

error. We confirmed this error with Monte Carlo simulation of free diffusion in two

dimensions. The position of two particles as a function of time was generated from

a simulation of free diffusion. The separation between two particles was extracted as

a function of time, from which we applied the Markovian Dynamics Extrapolation

to calculate the interaction potential. Even though the particles are diffusing inde-

pendently in the simulation, the calculated potential shows complex features of order

kBT . Figure 2.7 shows the calculated potential from a simulation of random walk

with parameters of a typical experiment, in which we observe the motion of particles

over a period of 30 min. The error estimation obtained by our Monte Carlo scheme

turned out to be much smaller than the discrepancy of the potential estimation, be-

cause in our error analysis we did not take into consideration the error introduced by

the discretization (Figure 2.6). We also ran the simulation as a virtually extended

experiment, corresponding to 12 hr of observation. As shown in Figure 2.8, the error

bars became narrower, however, the calculated potential is still far from being flat.
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Figure 2.7: Interaction potential calculated using MDE from a simulation of random
walk with parameters of a typical experiment. The diffusion coefficient was .03 px2/fr.
The position of particles was simulated for 54000 fr, corresponding to 30 min of
experiment observation with video rate 30 fr/s.
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Figure 2.8: Interaction potential calculated using MDE from a simulation of random
walk for a virtually extended experiment. The diffusion coefficient was .03 px2/fr.
The position of particles was simulated for 1296000 fr, corresponding to 12 hr of
experiment observation with video rate 30 fr/s.
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In order to avoid any artificial potential due to systematic error, an alternative

method introduced by Sainis et al. [74] was modified and applied to our analysis. This

method involves computing the drift velocity of one particle v with respect to another.

This velocity was then converted to the interaction force through the Stokes-Einstein

relation

f =
kBTv

Deff

. (2.4)

The effective diffusion coefficient Deff was also computed from the statistics of particle

motion, as described below.

In order to measure the interparticle force at a particular separation r, the two

particles were initially held with two optical tweezers at distance r in [74]. The

particles were then released for a short time interval ∆t, after which the distance

between them were measured as r′. One such cycle generates a measurement of drift

velocity

v(r) =
r′ − r

∆t
. (2.5)

Statistics of v(r) was obtained by repeating the same cycle for many times. The mean

〈v(r)〉 and the effective diffusion coefficient Deff(r) were obtained from the distribution

of r′ − r, which was fitted to the Gaussian form

p (r′ − r) =
1√

2πσ2
exp

[
−(r′ − r − 〈v〉∆t)2

2σ2

]
, (2.6)

where σ2 = 2Deff∆t. Deff obtained this way is the effective diffusion coefficient of one

particle with respect to the other. For non-interacting particles, it is the sum of the

diffusion coefficients of both particles in the lab frame.

Optical tweezers was not applied in our experiment. In our analysis, the statis-

tics of v(r) was accumulated each time the pair separation r(t) is in the range of(
r − 1

2
∆r, r + 1

2
∆r
)
. Then

v(r) =
r(t+ ∆t)− r(t)

∆t
. (2.7)
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Although the discretization with bin size ∆r is still needed, v(r) is calculated exactly

in the equation above.

We usually chose the bin size ∆r to be one pixel and ∆t = 1 fr. Because in each of

our experiment data set, the separation r ranges over the order of 100 px, this would

generate about 100 data points for a typical v− r or F − r curve. Choosing a smaller

∆r results in less statistics in each bin and thus wider error bars, while a larger ∆r

would reduce the total number of data points in the v − r curve.

Figure 2.9 shows the calculated drift velocity from a simulation of random walk

with parameters of a typical experiment. In the simulation, we observe the motion

of particles over a period of ∼45 min, which is comparable to our experimental data

sets. The standard deviation for all measured v is σv =.14 px/fr, which is comparable

of the width of error bars. In a typical experimental setup, the particle diameter

is 1.7 µm. The 20× objective corresponds to a magnification of 1.49 px/µm3. For

Deff = .18 px2/fr, the conversion factor from drift velocity to interaction force is 35

fN·fr/px. Then σv corresponds to σF = 5 fN.

Due to lack of statistics on both ends of the v− r curve, the first few data points

(corresponding to shortest range) always show repulsion, while the last few points

usually show attraction. As a result, we only trust the points in the midrange of each

v − r curve, although we chose to show all data points in the plots of result. The

number of points to be discarded is roughly determined by the ratio of root mean

square displacement
√

2Deff∆t to bin size ∆r, where ∆t is the time interval. Since

(−3σ, 3σ) covers more than 99% of a normal distribution4, we chose 3

√
2Deff∆t

∆r
. For

∆t = 1 fr, ∆r = 1 px, Deff = .18 px2/fr, we have 3

√
2Deff∆t

∆r
≈ 2.

3The magnification is the same for all data reported here unless otherwise stated.

4
∫ 3σ

−3σ

1√
2πσ

exp

(
− x2

2σ2

)
dx = .9973.
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Figure 2.9: Calculated drift velocity from a simulation of random walk with param-
eters of a typical experiment. The gray curve is the pair separation r as a function
of time t. The black points are measured drift velocity v at different separation r.
The diffusion coefficient was Deff =.18 px2/fr. The position of particles was simulated
for 80000 fr, corresponding to ∼45 min of experiment observation with video rate 30
fr/s.
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Figure 2.10: Optical microscope image of two polystyrene particles at a water-air
interface. The particle diameter is 1.7 µm. The objective used was 20×, corresponding
a magnification of 1.49 px/µm. Data label: 0928075.

2.6 Result for two isolated particles

It turned out that isolated pairs of particles do not show any measurable long-range

interaction. Figure 2.10 shows an image of two polystyrene particles at a water-air

interface. Figure 2.11 shows a typical distribution of v(r) for a particular separation r.

The black curve is the measured distribution with kernel smoothing [75], which shows

an agreement with Gaussian distribution (blue curve). The measured interaction for

this pair is shown in Figure 2.12. The measured effective diffusion coefficient is

shown in Figure 2.13, which has no significant dependence on pair separation r. The

interaction force f(r) is converted from the relative drift velocity v(r) according to

f(r) =
kBT

Deff

v(r). We use the measured effective diffusion coefficient Deff (Figure 2.13)

and T = 298 K to convert v to f . The measured force between particles is fluctuating

around zero within our resolution, which is usually a few femtonewton’s.

5A folder named as the data label can be found in the author’s directory on servers Narmada2
and Walnut.
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Figure 2.11: Probability density function of v(r) at r = 26 px for particles in Fig-
ure 2.10. The black curve is the kernel smoothing density estimation. The blue
curve is the probability density function for Gaussian distribution with mean 〈v〉 and
standard deviation σv. Data label: 092807.

35



Figure 2.12: Interaction between two particles at a water-air interface. The frame rate
is 30 fr/s. The gray curve is the pair separation r as a function of time t. The black
points are measured drift velocity v at different separation r. The particle diameter
is 1.7 µm. The objective used was 20×, corresponding to a magnification of 1.49
px/µm. Deff = .18 px2/fr. The conversion factor from drift velocity to interaction
force is 35 fN·fr/px. Data label: 092807.
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Figure 2.13: Measured effective diffusion coefficient. The frame rate is 30 fr/s. The
particle diameter is 1.7 µm. The objective used was 20×, corresponding to a magni-
fication of 1.49 px/µm. Data label: 092807.
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Figure 2.14-2.21 shows measured pair interaction between polystyrene particles

(diameter 1.7 µm) at interfaces of water and silicone oil from 5 different samples.

.01 M NaCl was added in some samples in order to reduce the screening length and

thus the electrostatic repulsion between particles. In some cases, the force is not zero

within the error bars, but the deviation from zero is not systematic. Moreover, we

note that the estimated error bars should correspond to the one-sigma error, and that

approximately 1/3 of the data should lie more than 1 sigma from the true result. The

result shows no measurable interaction force given the error bars.

We also added nanoparticles in some samples to see if the nanoparticles affect

the interaction among micron-sized PS beads (Figure 2.22). We used 3-nm-diameter

gold nanoparticles stabilized with (1-mercaptoundec-11-yl)tetra(ethylene glycol) (Au-

TEG), which are known to adsorb at a water-oil interface [70]. The relative drift

velocity data do not show significant interaction among PS beads.

We also measured the interactions between nearly isolated pairs, i.e., when other

particles were further away than the pair separation. Figure 2.23-2.28 shows more

data on polystyrene beads at water-air interfaces. Particularly for the experiment of

Figure 2.23, the pair of particles being examined was not perfectly isolated. There

were other monomers and clusters of particles at about 160 px away. Therefore, the

measured interaction between this pair may be affected at the range of 160 px. We

stopped the data acquisition when the separation of the pair approaches 160 px. The

drift velocity data do not show any significant interaction. The measured interaction

in the shorter range was not affected by other particles within our resolution.

To test whether the contact-line pinning affects the interaction, Figure 2.29 shows

an image of two microdroplets of 2,2,3,3,4,4,5,5-octafluoropentyl acrylate at a water-

air interface. No surfactant was added. Because the “particles” in this experiment

are liquid, the three-phase contact line cannot be pinned. The size of oil droplets

was not well controlled. We determine from the image that the diameter of droplets
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Figure 2.14: PS beads at an interface of water and silicone oil. The frame rate
is 30 fr/s. The gray curve is the pair separation r as a function of time t. The
black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63× with an additional magnification of
1.6, corresponding 8.1 px/µm. Deff = .92 px2/fr. The conversion factor from drift
velocity to interaction force is 36 fN·fr/px. Data label: 120106.

39



Figure 2.15: PS beads at an interface of water and silicone oil. The frame rate
is 30 fr/s. The gray curve is the pair separation r as a function of time t. The
black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63× with an additional magnification of
1.6, corresponding 8.1 px/µm. Deff = .22 px2/fr. The conversion factor from drift
velocity to interaction force is 151 fN·fr/px. Data label: 012207.
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Figure 2.16: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63×, corresponding to a magnification of
5.2 px/µm. Deff = .22 px2/fr. The conversion factor from drift velocity to interaction
force is 97 fN·fr/px. Data label: 020707.
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Figure 2.17: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63×, corresponding to a magnification of
5.2 px/µm. Deff = .16 px2/fr. The conversion factor from drift velocity to interaction
force is 134 fN·fr/px. Data label: 020807 3.
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Figure 2.18: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63×, corresponding to a magnification of
5.2 px/µm. Deff = .17 px2/fr. The conversion factor from drift velocity to interaction
force is 126 fN·fr/px. Data label: 020807 4.
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Figure 2.19: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63× with an additional magnification of
1.6, corresponding 8.1 px/µm. Deff = .33 px2/fr. The conversion factor from drift
velocity to interaction force is 101 fN·fr/px. Data label: 021107/pair1.
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Figure 2.20: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63×, corresponding to a magnification of
5.2 px/µm. Deff = .24 px2/fr. The conversion factor from drift velocity to interaction
force is 89 fN·fr/px. Data label: 021107/pair2.
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Figure 2.21: PS beads at an interface of water (.01 M NaCl) and silicone oil. The
frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time t.
The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63×, corresponding to a magnification of
5.2 px/µm. Deff = .30 px2/fr. The conversion factor from drift velocity to interaction
force is 71 fN·fr/px. Data label: 021107/pair3.
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Figure 2.22: PS beads at an interface of water (.01 M NaCl, Au-TEG) and silicone oil.
The frame rate is 30 fr/s. The gray curve is the pair separation r as a function of time
t. The black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 63× with an additional magnification of
1.6, corresponding to 8.1 px/µm. Deff = .19 px2/fr. The conversion factor from drift
velocity to interaction force is 167 fN·fr/px. Data label: 032607/pair3.
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Figure 2.23: PS beads at a water-air interface with other beads approximately 160 px
away. The frame rate is 30 fr/s. The gray curve is the pair separation r as a function
of time t. The black points are measured drift velocity v at different separation r.
The particle diameter is 1.7 µm. The objective used was 20× with an additional
magnification of 1.6, corresponding to 2.35 px/µm. The conversion factor from drift
velocity to interaction force is 33 fN·fr/px. Data label: 091507/pair1.
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Figure 2.24: PS beads at a water-air interface. The frame rate is 30 fr/s. The gray
curve is the pair separation r as a function of time t. The black points are measured
drift velocity v at different separation r. The particle diameter is 1.7 µm. The
objective used was 20× with an additional magnification of 1.6, corresponding to 2.35
px/µm. Deff = .29 px2/fr. The conversion factor from drift velocity to interaction
force is 33 fN·fr/px. Data label: 091507/pair2.
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Figure 2.25: PS beads at a water-air interface. The frame rate is 30 fr/s. The gray
curve is the pair separation r as a function of time t. The black points are measured
drift velocity v at different separation r. The particle diameter is 1.7 µm. The
objective used was 20× with an additional magnification of 1.6, corresponding to 2.35
px/µm. Deff = .28 px2/fr. The conversion factor from drift velocity to interaction
force is 35 fN·fr/px. Data label: 091507/pair3.
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Figure 2.26: PS beads at a water-air interface. The frame rate is 30 fr/s. The gray
curve is the pair separation r as a function of time t. The black points are measured
drift velocity v at different separation r. The particle diameter is 1.7 µm. The
objective used was 20× with an additional magnification of .63, corresponding to .96
px/µm. Deff = .25 px2/fr. The conversion factor from drift velocity to interaction
force is 16 fN·fr/px. Data label: 091707.
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Figure 2.27: PS beads at a water-air interface. The frame rate is 30 fr/s. The
gray curve is the pair separation r as a function of time t. The black points are
measured drift velocity v at different separation r. The particle diameter is 1.7
µm. The objective used was 20×, corresponding to a magnification of 1.49 px/µm.
Deff = .21 px2/fr. The conversion factor from drift velocity to interaction force is 29
fN·fr/px. Data label: 092507/pair1.
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Figure 2.28: PS beads at a water-air interface. The frame rate is 30 fr/s. The
gray curve is the pair separation r as a function of time t. The black points are
measured drift velocity v at different separation r. The particle diameter is 1.7
µm. The objective used was 20×, corresponding to a magnification of 1.49 px/µm.
Deff = .20 px2/fr. The conversion factor from drift velocity to interaction force is 31
fN·fr/px. Data label: 092507/pair2.
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Figure 2.29: Optical microscope image of two microdroplets of 2,2,3,3,4,4,5,5-
octafluoropentyl acrylate at a water-air interface. The objective used was 20×, cor-
responding to a magnification of 1.49 px/µm. The size of droplets indicated in the
image is about 2 µm. Data label: 110607.

is about 2 µm. The measured interaction for this pair is shown in Figure 2.30.

Figure 2.31-2.34 shows more measured interaction between microdroplets of different

oils at water-air interfaces. The imaging of microdroplets are more unstable compared

to solid particles. The data corresponding to separation r > 150 px in Figure 2.32

and r > 60 px in Figure 2.33 were due to artifacts of imaging and droplet tracking.

In some experiments, a third droplet could diffuse close to the pair being observed.

For example in Figure 2.34, about 30000 consecutive frames were skipped because of

a third droplet, after which the third droplet diffused further away from the pair.
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Figure 2.30: Interaction between two microdroplets of 2,2,3,3,4,4,5,5-octafluoropentyl
acrylate at a water-air interface. The frame rate is 30 fr/s. The gray curve is the pair
separation r as a function of time t. The black points are measured drift velocity v
at different separation r. The objective used was 20×, corresponding to a magnifica-
tion of 1.49 px/µm. Deff = .31 px2/fr. The conversion factor from drift velocity to
interaction force is 20 fN·fr/px. Data label: 110607.

To summarize, we measured the relative drift velocity and thus the interaction

force between two solid particles or two microdroplets at various fluid interfaces.

Isolated pairs do not show significant interaction in any of the systems investigated.

The formation of a dimer from an isolated pair was never observed in our experiments.

2.7 Result for two particles with other particles nearby

When a pair was investigated with one or more particles nearby, the measurement

showed effective interaction which could be either attractive or repulsive and which

55



Figure 2.31: Interaction between two microdroplets of 1,1,1-trifluoroheptan-2-ol at a
water-air interface. The frame rate is 30 fr/s. The gray curve is the pair separation
r as a function of time t. The black points are measured drift velocity v at different
separation r. The objective used was 20×, corresponding to a magnification of 1.49
px/µm. Deff = .11 px2/fr. The conversion factor from drift velocity to interaction
force is 56 fN·fr/px. Data label: 121107/pair1.
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Figure 2.32: Interaction between two microdroplets of 1,1,1-trifluoroheptan-2-ol at a
water-air interface. The frame rate is 30 fr/s. The gray curve is the pair separation
r as a function of time t. The black points are measured drift velocity v at different
separation r. The objective used was 20×, corresponding to a magnification of 1.49
px/µm. Deff = .125 px2/fr. The conversion factor from drift velocity to interaction
force is 49 fN·fr/px. The data corresponding to separation r > 150 px is due to
artifacts of imaging and droplet tracking. Data label: 121107/pair2.
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Figure 2.33: Interaction between two microdroplets of decalin at a water-air interface.
The frame rate is 30 fr/s. The gray curve is the pair separation r as a function of
time t. The black points are measured drift velocity v at different separation r. The
objective used was 20×, corresponding a magnification of 1.49 px/µm. The conversion
factor from drift velocity to interaction force is 15 fN·fr/px. The data corresponding
to r > 60 px is due to artifacts of imaging and droplet tracking. Data label: 033108.
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Figure 2.34: Interaction between two microdroplets of decalin at a water-air interface.
The frame rate is 30 fr/s. The gray curve is the pair separation r as a function of
time t. The black points are measured drift velocity v at different separation r.
The objective used was 20×, corresponding a magnification of 1.49 px/µm. Deff =
.40 px2/fr. The conversion factor from drift velocity to interaction force is 15 fN·fr/px.
About 30000 consecutive frames were skipped because of a third droplet nearby (see
text). Data label: 042108.
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Figure 2.35: Optical microscope image of three polystyrene particles at a water-air
interface. The particle diameter is 1.7 µm. The objective used was 20×, corresponding
a magnification of 1.49 px/µm. The particles were labeled as 0, 1, and 2. Data label:
092807/three-body.

might be different from the sum of the force between isolated pairs (i.e., might not

be pair-wise additive).

Figure 2.35 shows an image with three particles at a water-air interface. The

particles were labeled as 0, 1, and 26. We measured the interaction between two of

them as shown in Figure 2.36, 2.37, 2.38. In order to compare the interaction between

particle 1 and particle 2, and the interaction between particle 0 and particle 2, the

data in Figure 2.36 and 2.38 are plotted together in Figure 2.39. The effective forces

between those particles are still not measurable.

6Figure 2.35 and Figure 2.10 were from the same sample. Particle 0 and particle 1 are the isolated
pair shown in Figure 2.10. They were isolated from particle 2 by Brownian motion.
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Figure 2.36: Interaction between particle 1 and particle 2 in Figure 2.35. The frame
rate is 30 fr/s. The gray curve is the pair separation r as a function of time t. The
black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 20×, corresponding a magnification
of 1.49 px/µm. The conversion factor from drift velocity to interaction force is 20
fN·fr/px (see Figure 2.37). Data label: 092807.
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Figure 2.37: Interaction force between particle 1 and particle 2 in Figure 2.35.
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Figure 2.38: Interaction between particle 0 and particle 2 in Figure 2.35. The frame
rate is 30 fr/s. The gray curve is the pair separation r as a function of time t. The
black points are measured drift velocity v at different separation r. The particle
diameter is 1.7 µm. The objective used was 20×, corresponding a magnification
of 1.49 px/µm. The conversion factor from drift velocity to interaction force is 20
fN·fr/px. Data label: 092807.
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Figure 2.39: Interaction between particles in Figure 2.35. The red points are drift
velocity in Figure 2.36 (particle 1 and particle 2). The green points are drift velocity
in Figure 2.38 (particle 0 and particle 2). The frame rate is 30 fr/s. The particle
diameter is 1.7 µm. The objective used was 20×, corresponding a magnification
of 1.49 px/µm. The conversion factor from drift velocity to interaction force is 20
fN·fr/px. Data label: 092807.

64



Figure 2.40: Polystyrene particles (diameter 1.7 µm) at a water-air interface. 63×
objective was used, corresponding to magnification of 5.2 px/micron. Some of the
monomers were circled with colors. The two monomers labeled with green circles
bound and formed a dimer after a about 4 min. Data label: 101008.

As the number of particles increases at the interface, particles tend to form many

clusters because of the short-range van der Waals attraction (Figure 2.40). However,

there are still many monomers moving in the sample without binding others. To the

eye, there appears to be a repulsion preventing those monomers forming clusters. We

can pick any two of those monomers and measure the apparent interaction between

them. As shown in Figure 2.41, the apparent interaction between the particles shown

with red rings is slightly repulsive in the range of 40-60 px. There is a very small

chance for two monomers to form a dimer (Figure 2.42, 2.43). In the analysis of inter-

action between the green-circled particles, however, there is no evidence of repulsion

(Figure 2.42). The particles labeled with green rings formed a dimer, but relative

drift velocity (Figure 2.42) do not show significant interaction before they formed a

dimer.

For a more comprehensive study of the interactions at a crowded interface, we

tracked 53 particles in the same sample as that of Figure 2.40 for a period of over 4

min. Figure 2.44 shows one frame of the tracking data with particle labels. Some of

the tracked particles are within oligomers (e.g. particle 21) or large aggregates (e.g.
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Figure 2.41: Interaction between the two particles labeled with red rings in Fig-
ure 2.40. The frame rate is 30 fr/s. The gray curve is the pair separation r as a
function of time t. The black points are measured drift velocity v at different separa-
tion r. The particle diameter is 1.7 µm. The objective used was 63×, corresponding
a magnification of 5.2 px/µm. The conversion factor from drift velocity to interaction
force is 53 fN·fr/px. Data label: 101008.
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Figure 2.42: Formation of dimer interfered by many particles at a water-air interface
(see monomers labeled with green circles in Figure 2.40). The frame rate is 30 fr/s.
The objective used was 63×, corresponding a magnification of 5.2 px/µm. The parti-
cle diameter is 1.7 µm = 8.8 px. The gray curve is the pair separation r as a function
of time t. The black points are measured drift velocity v at different separation r.
Because of the size of solid particles, data points corresponding to r ≤ 8.8 px come
from the artifacts of image processing. The conversion factor from drift velocity to
interaction force is 45 fN·fr/px. Data label: 101008.
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Figure 2.43: Interaction force between two particles which eventually formed a dimer
(see monomers labeled with green circles in Figure 2.40). Data label: 101008.

particle 0). Some of them bound with other particles within the period of tracking

(e.g. particle 18). Among the 53 tracked particles, 20 remained monomers throughout

the period of tracking, with labels being 8, 10, 14, 15, 16, 17, 19, 20, 23, 24, 31, 32, 36,

39, 42, 43, 48, 50, 52, 53. From the 20 monomers, there are
(

20
2

)
= 190 combinations

of pairs. The interaction of all the pairs were calculated. Most of these pairs do

not show significant interaction, with examples shown in Figure 2.45, 2.46. For the

particular case of particle 42 and 43, however, the separation stayed around 20 px for

over 4000 fr (Figure 2.47). As a result, it appears to be a potential well. However, it

is the only example that shows a possible attractive well, and the calculated relative

drift velocity is still comparable to the error, and the corresponding interaction force

is only about 1 fN. We thus conclude that there is no measurable force between those

particles. And no evidence of a strong attraction of monomers to large aggregates

(such as the one shown at the upper edge of Figure 2.40) was found.
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Figure 2.44: Polystyrene particles (diameter 1.7 µm) at a water-air interface. 63×
objective was used, corresponding to magnification of 5.2 px/micron. Data label:
101008.
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Figure 2.45: Interaction between the particle 10 and particle 15 as labeled in Fig-
ure 2.44. The frame rate is 30 fr/s. The gray curve is the pair separation r as a
function of time t. The black points are measured drift velocity v at different separa-
tion r. The particle diameter is 1.7 µm. The objective used was 63×, corresponding
a magnification of 5.2 px/µm. The conversion factor from drift velocity to interaction
force is 53 fN·fr/px. Data label: 101008.
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Figure 2.46: Interaction between the particle 48 and particle 53 as labeled in Fig-
ure 2.44. The frame rate is 30 fr/s. The gray curve is the pair separation r as a
function of time t. The black points are measured drift velocity v at different separa-
tion r. The particle diameter is 1.7 µm. The objective used was 63×, corresponding
a magnification of 5.2 px/µm. The conversion factor from drift velocity to interaction
force is 53 fN·fr/px. Data label: 101008.
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Figure 2.47: Interaction between the particle 42 and particle 43 as labeled in Fig-
ure 2.44. The frame rate is 30 fr/s. The gray curve is the pair separation r as a
function of time t. The black points are measured drift velocity v at different separa-
tion r. The particle diameter is 1.7 µm. The objective used was 63×, corresponding
a magnification of 5.2 px/µm. The conversion factor from drift velocity to interaction
force is 53 fN·fr/px. Data label: 101008.
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Figure 2.48: Clusters formed by 2 micron carboxyl-modified latex beads at an inter-
face of water and 1,1,1-trifluoroheptan-2-ol.

2.8 Interactions involving clusters

To probe the effect of the type of oil, we measured interactions among particles

at an interface of water and trifluoroheptan-2-ol. In this case, we observed clusters

that formed throughout the sample. Figure 2.48 shows some examples of clusters.

The deterministic monomer-cluster attraction and the attraction between clusters

were observed and measured. The interactions involving clusters are quite strong and

give rise to mostly deterministic motion. We have watched the process of monomer

approaching and then joining cluster, and also clusters attracting each other. Ori-

entation is important in both cases due to the asymmetry of cluster shape. Strong

orientational preference was observed, indicating the complex anisotropy of interface

deformation.

We measured the separation between clusters (or monomer and cluster). As long

as the cluster does not rearrange, we can take position of one monomer in the cluster

to represent the position of the whole cluster. Velocity was obtained by differentiating

the separation between clusters (or monomer and cluster) with respect to time. We

observed distinct acceleration just before particles touching each other (Figure 2.50a).

Because these particles are over-damped at the timescale of the frame interval, we can
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relate the measured velocity to the force. The magnitude of force can be estimated

as 6πηrv, where η is the viscosity of surrounding fluid. Here, we have assumed that

the friction constant of the bead is the same as for an isolated bead immersed in

water. For a particle at a liquid interface, the friction constant will differ, but since

the viscosities of the water and oil are comparable the error should be small. The

peak speed in Figure 2.50a is about 1 pixel/frame = 3.7 µm/s. Taking the viscosity

of water η = 1 mPa·s, we find force f = 7× 10−14 N. We also analyzed 3 instances of

cluster-cluster attraction and the results of peak velocity were with the same order

of magnitude.

For comparison, we can estimate the contribution of gravity to this attractive

force. From Equation 1.10 for the “Cheerios” interaction, f = ∂U
∂r

=
(∆ρV g)2

2πγr
.

Here ∆ρ ∼ 50 kg/m3. Taking the surface tension of water γ = 73 mN/m, we get

the contribution of gravity in the order of 10−23 N, which is absolutely negligible

compared to the measured value.

2.9 Summary

To summarize, in Figure 2.52 we replotted data the air-water experiments de-

scribed in the previous sections. The black points are from isolated pair (Figure 2.12).

The red and green points represent pair interaction affected by another monomer

(Figure 2.36 and Figure 2.38, respectively). The blue points represent interfered pair

interaction with many other particles around (Figure 2.45). After accounting for the

erroneous apparent repulsion that appears in the first few data points, we find that

the isolated pair interaction is close to zero. The pair interaction affected by one

monomer is also insignificant.

The absence of significant interaction betwen monomers and clusters at an air-

water interface is in contradiction with previous measurements in [65] and [66]. To

investigate whether the method of inverting g(r) might be at fault, we calculated the
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(a) Particle 8 combined particle 2

(b) Particle 0 combined particle 4

Figure 2.49: Cluster growth. PS beads (diameter: 2.0 µm) at an interface of water
and 1,1,1-trifluoroheptan-2-ol. Original magnification: 8.1 pixel/µm; frame rate: 30
s−1. Images enlarged to help labeling particles. Clusters formed by 2 micron carboxyl-
modified latex beads at water-oil interface.
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(a) Distance between particle 8 and particle 2. Relative velocity given by time
derivative of distance.

(b) Angle 823 compared with the time-evolution of monomer-cluster distance.

Figure 2.50: Analysis of cluster growth in Figure 2.49a.
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(a) Distance between particle 0 and particle 4. Relative velocity given by time
derivative of distance.

(b) Angle 041 compared with the time-evolution of monomer-cluster distance

Figure 2.51: Analysis of cluster growth in Figure 2.49b.
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Figure 2.52: Interaction force between different pairs. Data replotted from previous
sections. Black: an isolated pair (Figure 2.12). Red: a pair affected by a third
particle nearby (Figure 2.36). Green: another pair affected by a third particle nearby
(Figure 2.38). Blue: a pair interfered by many other particles (Figure 2.45). See text.
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radial distribution function g(r) in the sample of Figure 2.44. Figure 2.53 shows the

g(r) averaged over 3000 frames. The interframe deviations are very small, resulting

in error bars much smaller than the plot symbols. The peak at about 2.5d (where

d is the particle diameter) also implies repulsive interaction, similar to Figure 3 in

[65]. Since our direct measurement of pair interaction confirms the insignificance of

this interaction, we suspect the method involving g(r) from an ensemble of particles

cannot reflect the true interaction potential between pairs of particles. The reason

could be related to the fact that the system is not at equilibrium: the relative scarcity

of particles that are within 2.5 diameters of one another is not from repulsion, but

instead is because some of these particles become irreversibly bound by van der Waals

interaction. The method of obtaining interactions by inverting g(r) should be used

with great care. The distinction from the results of Chen et al. [66] could arise from

using different particles (though nominally the same, the charge state on the air side

might differ). It is also possible that the difference arises from the fact that the other

authors constructed their sample cell from teflon, which has a tendency to develop

static voltages on the order of −1 kV when rubbed [76]. The present experiments were

done with a metal (brass) cell, so that electrostatic charge is less likely to accumulate.

The role of static charge buildup is a topic that should be investigated further.

The interaction between a monomer and a cluster at the fluorocarbon-water inter-

face (Section 2.8) is much stronger than at the air-water interface. We ruled out the

contribution of Cheerios effect due to gravity in Section 2.8. For polystyrene particles

at water-air interface, ∆ρ can be as large as 103 kg/m3. Then f =
(∆ρV g)2

2πγr
∼ 10−21

N, which is still undetectable. In the following chapters, we propose a correction

to the standard Cheerios model arising from the anisotropic shape of the interface

around each particle. Specifically in Section 6.3, we show that this correction is still

insufficient to explain the measured strong interaction between particles and clusters
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Figure 2.53: Radial distribution function g(r) of colloidal particles at an air-water
interface averaged over 3000 consecutive frames. The separation r is rescaled by the
particle diameter d. The corresponding error bars are much smaller than the plot
symbols.
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in Section 2.8. Although the curvature effect may enhance the attraction, the size of

a cluster determines the minimum separation it can make with a monomer.

In summary, our measurements show negligible interactions (other than van der

Waals attraction) among particles at the air-water interface at low and high concen-

trations. This result is consistent with predictions of the capillary interactions among

neutral particles. Our result differs from previous reports for a similar system, and we

offered possible explanations. Among particles at a fluorocarbon oil-water interface,

however, we find interactions that are far stronger than can be predicted for neutral

particles. In this case, we propose that charge dissociation at the particle-oil interface

might explain the results. This remains an area for future investigations.
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CHAPTER 3

MATHEMATICAL MODELING OF INTERFACIAL
DEFORMATION

As introduced in Section 1.3, particles on interfaces are subject to many types of

forces. Our purpose here is to focus on the most elementary aspect of this diverse

subject: interfacial energy with a given contact angle 0 < θc < π between the solid

particles and the fluid interface. We investigate how a non-planar interface is deformed

when a spherical particle adsorbs.

We will follow the assumption that the particle’s surface is smooth and homoge-

neous (Section 1.3.2.1) so that the contact angle maintains a constant value along the

contact line. When a spherical particle meets an interface without azimuthal sym-

metry around the normal direction, the interface will be deformed upon adsorption

of particle to satisfy the condition of contact angle. The purpose of this chapter is to

present analytical solutions to the deformation of interfaces when a spherical particle

adsorbs. In Chapter 4, we study the adsorption energy of a spherical particle to a

non-planar interface.

3.1 Parabolic interface

We begin with a mathematically straightforward problem of a parabolic interface.

These results will provide a useful comparison to the more realistic problem of the

cylinder described in Section 3.2.

0Contributions: Anthony D. Dinsmore initiated and conducted the study. Benny Davidovitch
proposed the Helmholtz equation. Fabian Brau and Chuan Zeng formulated and solved the boundary
value problem. Chuan Zeng performed numerical computation.
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a
r

γ

−h(r, θ)

−h∞

Figure 3.1: Particle adsorbed to parabolic interface. The x axis points to the right
and coincides with the polar axis. y axis goes into the paper plane. (x ≡ r cos θ, y ≡
r sin θ.)

Consider an interface initially with shape described as

h(x, y) = − y
2

2R
. (3.1)

We will describe the shape in the Monge representation and assume ∇h � 1 so

that we can approximate H as 1
2
∇2h (Equation 1.4). The condition for Equation 1.4

requires (y/R)2 � 1. The parabola is parametrized this way to emphasize its total

curvature 1/R. A particle with radius a is brought into contact with the interface

along x-axis (Figure 3.1). The particle is expected to be pushed up by the Laplace

pressure. If the center of the particle is defined as origin, the equation describing the

unperturbed interface would be shifted down by −h∞.

3.1.1 Poisson’s equation

We look for solution to the Poisson’s equation in polar coordinates:

∇2h =
1

r
∂rr∂rh+

1

r2
∂2
θ,θh = − 1

R
. (3.2)

83



The rotational and mirror symmetries of the system restrict the form of solution to

h = a0 +
∞∑
n=1

(
anr

2n +
bn
r2n

)
cos 2nθ − r2

4R
, (3.3)

with a0, an, and bn to be determined.

3.1.2 Boundary condition on particle surface

The contact angle is defined as the angle made by the normal of particle surface

and the normal of interface. The condition for 90◦ contact angle turned out to be

straightforward by taking the 1st order approximation on ∂rh and ∂θh/r:

∂rh|r=a =
h(a, θ)

a
. (3.4)

3.1.3 Solution

The shape of interface deformed by one particle was solved from Equations. 3.2

and 3.4. By imposing the asymptotic condition that the interfacial shape be parabolic

far away, we obtain

h = − a
2

4R
− r2 sin2 θ

2R
+

a4

12Rr2
cos 2θ. (3.5)

The first term in the solution corresponds to vertical shift h∞ in Figure 3.1. The

second term is the undisturbed interfacial shape The third term is the deformation

caused by the adsorbed particle. It is a field of quadrupolar symmetry in xy-plane.

For arbitrary contact angle θc, it was shown that the solution can be obtained by

replacing a with a sin θc.

Result shows that there is a deformation that decays as a power law. However,

the parabola is not a satisfactory example because it does not have constant mean

curvature.
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Figure 3.2: Particle at cylindrical interface, with coordinate frames redefined. Polar
axis coincides with x axis.

3.2 Cylindrical interface

In this section we focus on the simplest, yet nontrivial constant mean curvature

(CMC) surface: an infinitely long cylinder1 of radius R � a. The interface will be

described as

r(θ, z) = R + f(θ, z)
a2

R
, (3.6)

with x = r cos θ, y = r sin θ (Figure 3.2). Note that (x, y, z) and (r, θ) are defined

differently from the previous section. Here
a2f

R
is the deformation of the interface

perpendicular to the initial cylinder. Dimensional analysis suggests that the order of

dimensionless factor f should not exceed O(1), which will also be supported by the

calculation described here.

3.2.1 Generalization of parabolic interface

In this section we attempt to approximately find an analytical solution to the

cylindrical interface using the result from the previous section.

As the 2nd order approximation of cylinder, the result from the parabola in the

previous section can be extrapolated to cylindrical coordinates (x → z, y → Rθ).

1The stability of CMC surface is not discussed in the present study.
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Figure 3.3: Method of images.

The quadrupole deformation in Equation 3.5 is mapped as

r =R +
a4 sin4 θc

12R

z2 −R2θ2

(z2 +R2θ2)2 , (3.7)

f =
a2 sin4 θc

12

z2 −R2θ2

(z2 +R2θ2)2 . (3.8)

f is now of O(1) near contact (z2 +R2θ2 ∼ a2) and f ∼ O (δ2) when z2 +R2θ2 ∼ R2,

with the ratio δ = a
R

.

However, the quadrupole solution does not satisfy the periodicity condition for

the cylindrical interface, which requires

f(θ + 2π, z) = f(θ, z) ∀θ. (3.9)
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To better approximate the cylindrical interface perturbed upon adsorption of parti-

cle, image quadrupoles were introduced and summed up to meet the conditions of

continuity and periodicity (Figure 3.3). The resulted deformation f is

f =
a2 sin4 θc

12

∞∑
n=−∞

z2 −R2(θ + 2nπ)2

[z2 +R2(θ + 2nπ)2]2
(3.10)

=
a2 sin4 θc

24R2

cosh
z

R
cos θ − 1(

cosh
z

R
− cos θ

)2 . (3.11)

Near contact, z
R
∼ θ ∼ δ,

cosh
z

R
cos θ − 1(

cosh
z

R
− cos θ

)2 = 2

z2

R2
− θ2(

z2

R2
+ θ2

)2

[
1 +O

(
δ2
)]
. (3.12)

The leading term of Equation 3.11 is exactly the same as Equation 3.8, i.e., the

image quadrupoles act as high order corrections and would not disturb the condition

of contact angle significantly.

3.2.2 Helmholtz equation

The surface described by Equation 3.6 maintains mean curvature of 1
2R

. With δ �

1, one can show that the leading term of the perturbation f satisfies the Helmholtz

equation [77]:

∇2f +
f

R2
= 0, (3.13)

where ∇2 =
1

R2
∂2
θ,θ + ∂2

z,z.

3.2.3 Boundary condition

3.2.3.1 Equation of contact line

Similar to z∞ in Figure 1.4, the balanced distance between center of particle and

axis of cylinder is unknown. However, it is obvious that the leading order of this
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θc
II
Ib

Figure 3.4: Definition of contact angle θc.

separation is R + b with b defined as b = −a cos θc (Figure 3.4). We fix the center of

the particle at R + b and allow the interface to shift along x-direction and minimize

interfacial energy. We write the equation of particle surface as

(r cos θ −R− b)2 + r2 sin2 θ + z2 = a2. (3.14)

The equation of contact line can be solved from Equation 3.6 and 3.14. Assuming

a ∼ b ∼ Rθ, the contact line is a circle with radius
√
a2 − b2 in θz-plane:

[(
R +

a2

R
f

)(
1− θ2

2

)
−R− b

]2

+

(
R +

a2

R
f

)2

θ2 + z2 =a2

[(
1 + δ2f

)(
1− θ2

2

)
− 1− b̃

]2

+
(
1 + δ2f

)2
θ2 + z̃2 =δ2

(
1 + fδ2 − θ2

2
− 1− b̃

)2

+ θ2 + z̃2 +O
(
δ3
)

=(
fδ2 − θ2

2
− b̃
)2

+ θ2 + z̃2 +O
(
δ3
)

=

b̃2 + θ2 + z̃2 +O
(
δ3
)

=

R2θ2 + z2 =a2 − b2 +R2O
(
δ3
)
.

(3.15)

Dimensionless b̃, z̃ were rescaled with R. b̃ is of the same order as δ, while z̃ can be

large.
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3.2.3.2 Normal to particle surface at contact

an̂p =(r cos θ −R− b, r sin θ, z)

n̂p =


(
R +

a2

R
f

)
cos θ −R− b

a
,

(
R +

a2

R
f

)
sin θ

a
,
z

a


=

[(
R

a
+
a

R
f

)(
1− θ2

2

)
− R

a
− b

a
+O

(
δ3
)
,
Rθ

a
+
a

R
fθ +O

(
δ2
)
,
z

a

]
=

[
−Rθ

2

2a
+
a

R
f − b

a
+O

(
δ3
)
,
Rθ

a
+
a

R
fθ +O

(
δ2
)
,
z

a

]
=
[
O(1) +O(δ), O(1) +O

(
δ2
)
, O(1)

]
.

3.2.3.3 Perturbed cylindrical interface

x =

(
R +

a2

R
f

)
cos θ,

y =

(
R +

a2

R
f

)
sin θ,

z =z.

We represent the height of the interface x as a function of y and z. Then the vector

normal to the interface is n̂i ∝ (1,−∂yx,−∂zx). Assuming ∂θf ∼ 1
δ
, ∂zf ∼ 1

a
at

contact (which will be verified later), we derive ∂yx, ∂zx up to O (δ2):

x =

{
R +

a2

R
f [θ(y, z), z]

}
cos θ(y, z), (3.16)

y =

{
R +

a2

R
f [θ(y, z), z]

}
sin θ(y, z). (3.17)
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Taking the derivative of both sides of Equation 3.17 with respect to y, we obtain:

1 =

(
R +

a2

R
f

)
cos θ∂yθ +

a2

R
∂θf∂yθ sin θ

∂yθ =
1(

R +
a2

R
f

)
cos θ +

a2

R
∂θf sin θ

. (3.18)

The derivative with respect to z may be written as

0 =

(
R +

a2

R
f

)
cos θ∂zθ +

a2

R
∂zf sin θ,

∂zθ = − a2∂zf sin θ

(R2 + a2f) cos θ + a2∂θf sin θ
. (3.19)

Find ∂yx and ∂zx from Equation 3.16 using Equations 3.18 and 3.19:

∂yx = −
(
R +

a2

R
f

)
sin θ∂yθ +

a2

R
∂θf∂yθ cos θ,

=

−
(
R +

a2

R
f

)
sin θ +

a2

R
∂θf cos θ(

R +
a2

R
f

)
cos θ +

a2

R
∂θf sin θ

,

=
−θ + δ2∂θf

1− θ2

2
+ fδ2 + δ2θ∂θf

,

= −θ + δ2∂θf +O
(
δ3
)
.

∂zx = −
(
R +

a2

R
f

)
sin θ∂zθ +

a2

R
(∂zf + ∂θf∂zθ) cos θ,

=
a2

R
∂zf cos θ +

(
a2

R
∂θf cos θ −R sin θ − a2

R
f sin θ

)
∂zθ,

=
a2

R
∂zf +O

(
δ3
)
.
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n̂i =
(1,−∂yx,−∂zx)√
1 + (∂yx)2 + (∂zx)2

=

[
1− 1

2
(∂yx)2 − 1

2
(∂zx)2 +O

(
δ4
)
,−∂yx+O

(
δ3
)
,−∂zx+O

(
δ3
)]
.

3.2.3.4 Contact angle constraint

The constraint of constant contact angle reads

n̂p · n̂i = cos θc ≡ −
b

a
. (3.20)

To the order of O(1), Equation 3.20 is always satisfied by definition. To order O(δ):

n̂p · n̂i =− Rθ2

2a
+
a

R
f − Rθ

a

(
−θ + δ2∂θf

)
− δ∂zfz

=
Rθ2

2a
+ δf − δθ∂θf − δ∂zfz.

The contact angle boundary condition is

R2θ2

2a2
+ f +

√
a2 − b2n̂ · ∇f +O(δ) = 0, (3.21)

with the outward normal defined as n̂ = −Rθθ̂ + zẑ√
a2 − b2

and ∇ ≡ θ̂

R
∂θ + ẑ∂z.

3.3 Numerical solution of cylindrical interface

The Helmholtz equation 3.13 can be solved numerically with contact angle bound-

ary condition 3.21. The MATLAB Partial Differential Equation (PDE) Toolbox

(MathWorks Inc.) is used for a finite element approach. The cylinder was set with

finite length L and radius R = 1, a quarter of which (θ ∈ [0, π], z ∈
[
0, L

2

]
) was
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Figure 3.5: Numerical solution to Helmholtz equation.

unfolded and studied. The boundary conditions were all set as reflecting n̂ · ∇f = 0

except at contact where Equation 3.21 was applied. In the following plots, the pa-

rameters were set as a = .2, L = 2.25 and θc = 2π
3

. The generated triangular mesh

consists over 1000 grid points and the shading was interpolated to desired resolution.

Further refinement of meshes did not produce a much different color map.

At first we need to verify the assumption on the order of ∇f in the derivation

of contact angle boundary condition 3.21. It is shown in Figure 3.5 and 3.6 that

f ∼ a∇f ∼ O(1) at contact. The leading terms in Equation 3.21 are also O(1) at

contact.
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(a) (b)

Figure 3.6: Rescaled gradient of numerical solution f(θ, z). The two components of
∇f were shown in (a) and (b) respectively.
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Figure 3.7: Quadrupole field summed with images (Equation 3.11).
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Figure 3.8: Cross-section of shifted cylinder.

The summed quadrupole field (Equation 3.11), which was obtained from the

solution of the Poissons equation (Section 3.1), is plotted for comparison in Fig-

ure 3.7. This is obviously not the same as the solution in Figure 3.5. The dif-

ference comes from the shift term in Equation 3.5 and the subtlety of fixing the

particle at x = R + b (Equation 3.14). The problem with solution f in Figure 3.5

is that it does not vanish far away from contact. Instead, we find a leading term of

− cos θ, implying a translation along −x̂ direction (Figure 3.8). The quadrupole field

was actually obtained in another coordinate (θ′, z) (Figure 3.8), with the origin at(
x = −a

2 sin2 θc
4R

, y = 0, z = 0

)
:

r′ = R +
a4 sin4 θc

24R3

cosh
z

R
cos θ′ − 1(

cosh
z

R
− cos θ′

)2 . (3.22)

With the shift defined, the relationship between r′, θ′ and r, θ is
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r′ cos θ′ = r cos θ +
a2 sin2 θc

4R
, (3.23)

r′ sin θ′ = r sin θ, (3.24)

while z is unchanged.

Far from contact (θ, z
R
∼ O(1)), the order of quadrupole perturbation in Equa-

tion 3.22 is negligible (f ∼ O (δ2)). In this case one can solve Equations 3.22, 3.23,

3.24 for r(θ) and get the O(1) term of f . It is just

f = −1

4
sin2 θc cos θ, (3.25)

as one can check with Figure 3.5. It is easy to verify that this is actually an analytical

solution to the Helmholtz equation 3.13.

As shown in Figure 3.9, the solution to Helmholtz equation was transformed to

the coordinate (θ′, z) and compared with summed quadrupole field. Similar to f , f ′

is defined as

r′ = R +
a2

R
f ′. (3.26)

The difference between quadrupole field f ′Q (θ′, z) and shifted solution f ′H (θ′, z) is

shown in Figure 3.9b. The difference is much smaller than 1. But the pattern of ∆f ′

shows a trend of − cos θ′, which implies a higher order correction to the value of shift

−a
2 sin2 θc

4R
.

3.4 Analytical solution for cylindrical interface

In this section we solve the Helmholtz equation 3.13 directly for the deformation

of cylindrical interface upon adsorption of spherical particle. We have to solve it in

a strip (θ ∈ [−π, π], z̃ ∈ (−∞,∞)) with the boundary conditions summarized in

Figure 3.10. The periodic boundary condition along θ implies the reflective condition

on θ = π. We first solve this equation on an infinite domain and then we use the
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(a) (b)

Figure 3.9: Solution to Helmholtz equation shifted and compared with quadrupole
field. (∆f ′ = f ′Q − f ′H .)

97



θ

z

π

δ sin θc

δ sin θc ∂θf = 0

∂θf = 0

∂zf = 0

f − z∂zf − θ∂θf = − θ2

2δ2

Figure 3.10: Boundary conditions for the Helmholtz equation 3.13. The first quadrant
of zθ coordinate system is flattened and shown. The particle is positioned at the
origin. The contact line approximates to a ring with radius a sin θc. As described
in the text, the boundary condition at contact is obtained from the contact angle
constraint. The boundary conditions at z̃ = 0, θ = 0 and θ = π are determined by
the mirror symmetries.

images method to find a solution which satisfies the boundary condition ∂θf(z̃,±π) =

0.

3.4.1 General form of solution

We use polar coordinates:

z̃ = ρ cosφ, (3.27)

θ = ρ sinφ. (3.28)

The PDE to solve is now

(
∂2
ρ,ρ +

1

ρ
∂ρ +

1

ρ2
∂2
φ,φ

)
f(ρ, φ) = −f(ρ, φ), (3.29)

with boundary conditions

f(φ+ 2π, ρ) = f(φ, ρ), (3.30)

f(−φ, ρ) = f(φ, ρ), (3.31)

f(π − φ, ρ) = f(φ, ρ). (3.32)
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The expression of the contact line is

ρ = ρ∗ ≡ δ sin θc. (3.33)

The boundary condition along the contact line 3.33 is

f(ρ∗, φ)− ρ∗ ∂ρf(ρ, φ)|ρ=ρ∗ = −1

2

ρ∗2

δ2
sin2 φ+O(δ). (3.34)

Separate variables:

f(ρ, φ) = g(ρ)h(φ). (3.35)

The PDE becomes

ρg′(ρ)

g(ρ)
+
ρ2g′′(ρ)

g(ρ)
+ ρ2 = −h

′′(φ)

h(φ)
. (3.36)

We have

h′′(φ) = −k2h(φ) (3.37)

with separation constant k > 0. The general solution for h is a linear combination of

trigonometric functions. The symmetry condition of the problem further requires

h(φ) =
∑
k

αk cos kφ, (3.38)

with k = 0, 2, 4 . . . . The equation for g is then a Bessel differential equation

ρ2g′′ + ρg′ + (ρ2 − k2)g = 0. (3.39)

The canonical solutions of this equation are Bessel functions Jk(ρ) and Yk(ρ). The

complete solution so far is

f(ρ, φ) =
∞∑
k=0

[αkJ2k(ρ) + βkY2k(ρ)] cos 2kφ. (3.40)
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As explained in Chapter 3, there could be a vertical shift cos θ in f due to the subtlety

of fixing the particle at x = R + b (Equation 3.14). Explicitly [78],

f(ρ, φ) =α

[
J0(ρ) + 2

∞∑
k=1

J2k(ρ) cos 2kφ

]
+
∞∑
k=0

[αkJ2k(ρ) + βkY2k(ρ)] cos 2kφ,

(3.41)

=α cos(ρ sinφ) +
∞∑
k=0

[αkJ2k(ρ) + βkY2k(ρ)] cos 2kφ, (3.42)

with the term with the coefficient α is a shift. We need now to choose α such that

the energy is minimized, i.e., the interface is deformed as little as possible.

Part of the remaining coefficients are fixed by Equation 3.34. We have

α

[
J0(ρ∗) + 2

∞∑
k=1

J2k(ρ
∗) cos 2kφ

]

−αρ∗
[
J ′0(ρ∗) + 2

∞∑
k=1

J ′2k(ρ
∗) cos 2kφ

]

+
∞∑
k=0

[αkJ2k(ρ
∗) + βkY2k(ρ

∗)] cos 2kφ

−ρ∗
∞∑
k=0

[αkJ
′
2k(ρ

∗) + βkY
′

2k(ρ
∗)] cos 2kφ = −1

4
sin2 θc(1− cos 2φ). (3.43)

The coefficients for cos 2kφ should balance for all k, because of orthogonality

1

π

∫ 2π

0

cos 2mφ cos 2nφdφ = δm,n. (3.44)

So

(α0 + α) [J0(ρ∗)− ρ∗J ′0(ρ∗)] + β0 [Y0(ρ∗)− ρ∗Y ′0(ρ∗)] = −1

4
sin2 θc, (3.45)

(α1 + 2α) [J2(ρ∗)− ρ∗J ′2(ρ∗)] + β1 [Y2(ρ∗)− ρ∗Y ′2(ρ∗)] =
1

4
sin2 θc, (3.46)

(αk + 2α) [J2k(ρ
∗)− ρ∗J ′2k(ρ∗)] + βk [Y2k(ρ

∗)− ρ∗Y ′2k(ρ∗)] = 0, k ≥ 2. (3.47)
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The asymptotic behavior as ρ∗ → 0 is

α0 + α +
2β0

π
(γE − ln 2− 1 + ln ρ∗) = −1

4
sin2 θc, (3.48)

−1

8
(α1 + 2α) ρ∗2 − 12β1

πρ∗2
=

1

4
sin2 θc, (3.49)

(1− 2k) [αk + 2α] ρ∗2k

(2k)!4k
− 4k(2k + 1)Γ(2k)βk

πρ∗2k
= 0. (3.50)

Setting αk = βk = 0 (k 6= 1) to reduce deformation of the interface2, we have

α = −1

4
sin2 θc, (3.51)

πα1ρ
∗4

96
+ β1 = − π

48
δ2 sin4 θc. (3.52)

The solution so far is

f(ρ, φ) = α cos(ρ sinφ) + [α1J2(ρ) + β1Y2(ρ)] cos 2φ. (3.53)

This solution reflects the quadrupolar symmetry of the system. In fact, the short-

range (ρ → 0) asymptotics of f(ρ, φ) is proportional to the quadrupole deformation

obtained in Section 3.1. In order to satisfy the condition of periodicity and continuity

about θ, we apply method of images in the following section. The coefficients α1 and

β1 will be determined by enforcing the convergence of sum over images.

3.4.2 Method of images

Denote the quadrupolar deformation as

fQ(z̃, θ) = [α1J2(ρ) + β1Y2(ρ)] cos 2φ. (3.54)

2αk = βk (k 6= 1) is also required for the convergence of the summation over images as described
in the following sections.
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The function fstrip that satisfy the boundary conditions along the borders of the strip

(Figure 3.10) is then

fstrip(z̃, θ) =α cos θ +
∞∑

n=−∞

fQ(z̃, θ + 2nπ), (3.55)

=α cos θ + fQ(z̃, θ) +
∞∑
n=1

[fQ(z̃, θ + 2nπ) + fQ(z̃, θ − 2nπ)] . (3.56)

We need to examine the asymptotics of fQ(z̃, θ + 2nπ) + fQ(z̃, θ − 2nπ) for large n.

Define

ρn =
√

(θ + 2nπ)2 + z̃2, (3.57)

φn = arctan
θ + 2nπ

z̃
. (3.58)

Without loss of generality, look at the quadrant of θ ∈ [0, π], z̃ ∈ (0,∞). Then

ρn = 2|n|π +
|n|
n
θ +O

(
1

n2

)
, (3.59)

φn =
π

2
− z̃

2nπ
+O

(
1

n2

)
. (3.60)

Expand the Bessel functions as power series:

J2 (ρn) =
1√
|n|π

cos

(
|n|
n
θ + π +

π

4

)
+O

(
1

|n| 32

)
, (3.61)

=
1√

2|n|π

(
− cos

|n|
n
θ + sin

|n|
n
θ

)
+O

(
1

|n| 32

)
. (3.62)

Y2 (ρn) =− 1√
|n|π

sin

(
|n|
n
θ + π +

π

4

)
+O

(
1

|n| 32

)
, (3.63)

=
1√

2|n|π

(
cos
|n|
n
θ + sin

|n|
n
θ

)
+O

(
1

|n| 32

)
. (3.64)
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Then

fQ(z̃, θ + 2nπ) =
1√

2|n|π

[
(−α1 + β1) cos

|n|
n
θ + (α1 + β1) sin

|n|
n
θ

]
+O

(
1

|n| 32

)
.

(3.65)

Now for n > 0:

fQ(z̃, θ + 2nπ) + fQ(z̃, θ − 2nπ) =

√
2

π

1√
n

(β1 − α1) cos θ +O

(
1

n
3
2

)
. (3.66)

Since the sum
∑∞

n=1

1√
n

diverges, we need

α1 = β1. (3.67)

Now from Equation 3.52 and 3.67, we have

α1 = β1 = − π

48
δ2 sin4 θc. (3.68)

The final solution to the Helmholtz equation is

f = α cos θ + β
∞∑

n=−∞

[J2 (ρn) + Y2 (ρn)] cos 2φn, (3.69)

where

α = −1

4
sin2 θc, (3.70)

β = − π

48
δ2 sin4 θc. (3.71)

With the asymptotic forms of the Bessel functions for small arguments, the solution

above agrees with the quadrupole deformation obtained in Section 3.1. For z̃ and θ of

order O(1), the summation of series is approximated numerically in the next section.
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3.4.3 Summation of series

For given z̃ and θ, the sum to be approximated is:

S = s0 +
∞∑
n=1

(sn + s−n) , (3.72)

where

sn = [J2 (ρn) + Y2 (ρn)] cos 2φn. (3.73)

A numerical summation was done by computing a partial sum directly and approxi-

mating the remainder as follows.

In the limit of large n, a Taylor expansion yields

sn + s−n =
A(z̃, θ)

n
3
2

+
B(z̃, θ)

n
7
2

+O

(
1

n
9
2

)
, (3.74)

where

A(z̃, θ) =
4θ sin θ − (4z̃2 + 15) cos θ

4
√

2π2
, (3.75)

B(z̃, θ) =
1

6144
√

2π4

{[
4z̃2
(
16z̃4 + 1140z̃2 + 4275

)
− 720θ2

(
4z̃2 + 15

)
− 945

]
cos θ

−60θ
(
16z̃4 + 408z̃2 − 16θ2 + 105

)
sin θ

}
. (3.76)

The order of the leading term (n−
3
2 ) follows from Equation 3.66. For sufficiently

large n,

sn + s−n ≈
A(z̃, θ)

n
3
2

, (3.77)

which requires

n2 �
∣∣∣∣BA
∣∣∣∣ . (3.78)

Now the approximation is

S ≈ s0 +
N∑
n=1

(
sn + s−n −

A

n
3
2

)
+ Aζ

(
3

2

)
(3.79)
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Figure 3.11: Cylinder perturbed upon adsorption of solid particle, with deformation
exaggerated. To make the illustration more realistic, the actual perturbation and the
angle of distortion should be reduced by a factor of πδ4 sin4 θc/48. The particle is not
drawn.

with ζ(x) the Riemann zeta function.

The sum was computed at different points (∼ 10000) in the z̃θ-plane and the data

showed the leading modes of S correspond to a kink followed with an undulation

(Figure 3.11):

S = .6371 |z̃| cos θ − .4502 cos
(
|z̃| − π

4

)
+ ξ(z̃, θ). (3.80)

The equation above was obtained by fitting data in the quadrant of positive z̃ and θ.

The remainder ξ(z̃, θ) decays approximately as 1/z̃2. The symmetry condition was

shown by taking explicitly the absolute values of z̃ and θ. Note that the wavelength

of the undulation corresponds to the zero mode of the Rayleigh instability [8].

As a summary to this chapter, we showed that the cylindrical interface is deformed

by adsorbed spherical particle. We solved the deformation to the leading order, which

has a quadrupolar symmetry and decays 1/r2 near the three-phase contact line. The

next chapters consider energies and forces arising from the deformation, respectively.
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CHAPTER 4

ADSORPTION ENERGY FOR CYLINDRICAL
INTERFACE

With the particle partially immersed in the perturbed interface, the change of

energy corresponding to the adsorption can be evaluated and compared with the case

of a planar interface (Section 1.2). The parametrization of the interface is given by

r̃ = [r̃(z̃, θ) cos θ, r̃(z̃, θ) sin θ, z̃] (4.1)

with

r̃(z̃, θ) ≡ r(z̃, θ)

R
= 1 + δ2f(z̃, θ). (4.2)

The adsorption energy can be separated into two parts. In the short-range, the

contribution of near-field deformation is calculated analytically in Section 4.1. In the

long-range, the change of interfacial area will be estimated numerically in Section 4.2.

4.1 Near-field contribution

4.1.1 Area of fluid interface

We use polar coordinates

z̃ = ρ cosφ, (4.3)

θ = ρ sinφ. (4.4)

0Contributions: Anthony D. Dinsmore and Benny Davidovitch conducted the study. Chuan Zeng
calculated the interfacial energies.
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The contact line can be characterized as ρc(φ) with leading term δ sin θc. The area of

the perturbed cylinder is given by

Ã ≡ A

R2
=

∫
dφ

∫
dρ |∂ρr× ∂φr| . (4.5)

From the solution 3.69, the interface close to contact line can be well approximated

in Cartesian coordinates as the near-field deformation:

x̃ =1− 1

2
ỹ2 − 1

4
ρ∗2 − π

48
ρ∗4 [J2(ρ) + Y2(ρ)]

z̃2 − ỹ2

z̃2 + ỹ2
, (4.6)

=1− 1

2
ỹ2 − 1

4
ρ∗2 +

ρ∗4 (z̃2 − ỹ2)

12 (z̃2 + ỹ2)2 +O
(
δ4
)
, (4.7)

where ρ =
√
ỹ2 + z̃2, ρ∗ = δ sin θc and z̃, ỹ ∼ O(δ). The origin is defined such that

the center of particle is at (x̃, ỹ, z̃) = (1− δ cos θc, 0, 0) (Figure 3.2). We parameterize

the interface as (x̃, ỹ, z̃) = [x̃(ρ, φ), ρ sinφ, ρ cosφ]. We have coefficients of the first

fundamental form [79]

E ≡ (∂ρx̃)2 + (∂ρỹ)2 + (∂ρz̃)2 = (∂ρx̃)2 + sin2 φ+ cos2 φ = 1 + (∂ρx̃)2 , (4.8)

F ≡ ∂ρx̃∂φx̃+ ∂ρỹ∂φỹ + ∂ρz̃∂φz̃ = (∂ρx̃, sinφ, cosφ)


∂φx̃

ρ cosφ

−ρ sinφ

 = ∂ρx̃∂φx̃, (4.9)

G ≡ (∂φx̃)2 + (∂φỹ)2 + (∂φz̃)2 = ρ2 + (∂φx̃)2 . (4.10)

Then

|∂ρr× ∂φr| =
√
EG− F 2 =

√
ρ2 + ρ2 (∂ρx̃)2 + (∂φx̃)2.

We now compute the partial derivatives
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θc

II
I

ρc

λc

Figure 4.1: Parameterizations of the contact line. Phase I is outside the cylinder and
phase II is inside. ρ is the radial coordinate

√
z̃2 + ỹ2. λ is the inclination angle

measured from the zenith. To the lowest order (flat interface), ρc = ρ∗, λc = θc.

∂ρx̃ = −1

2
ρ− 1

2

(
δ4 sin4 θc

3ρ3
− ρ
)

cos 2φ,

∂φx̃ = −1

2

(
δ4 sin4 θc

3ρ2
+ ρ2

)
sin 2φ.

Now we obtain

EG− F 2 =ρ2 +
1

4
ρ4 +

1

2
ρ2

(
ρ∗4

3ρ2
− ρ2

)
cos 2φ+

1

4

(
ρ∗8

9ρ4
+ ρ4

)
− 1

6
ρ∗4 cos 4φ

1

ρ

√
EG− F 2 =1 +

1

8
ρ2 +

1

4

(
ρ∗4

3ρ2
− ρ2

)
cos 2φ+

1

8

(
ρ∗8

9ρ6
+ ρ2

)
− ρ∗4 cos 4φ

12ρ2

+O
(
δ4
)

=1 +
1

2
ρ2 sin2 φ+

ρ∗4 cos 2φ

12ρ2
+

ρ∗8

72ρ6
− ρ∗4 cos 4φ

12ρ2
+O

(
δ4
)
.

For the unperturbed interface x̃ = −1
2
ρ2 sin2 φ− 1

4
ρ∗2,

√
EG− F 2 =ρ

√
1 + ρ2 sin2 φ

1

ρ

√
EG− F 2 =1 +

1

2
ρ2 sin2 φ+O

(
δ4
)
.

The contact line can be projected onto the ρφ-plane and thus expressed as ρc = ρc(φ)

(Figure 4.1). The change of interfacial area is
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∆ÃI/II =

∫ 2π

0

dφ

∫ ρm

ρc

dρρ

(
ρ∗4 cos 2φ

12ρ2
+

ρ∗8

72ρ6
− ρ∗4 cos 4φ

12ρ2

)
−
∫ 2π

0

dφ

∫ ρc

0

dρρ

(
1 +

1

2
ρ2 sin2 φ

)
. (4.11)

We define ρm as the boundary between near and far field. We choose ρm so that

δ � ρm � 1. The integrand of the first integral is of order O (δ2), the integral of

which would give O (δ4). Plugging in the leading term of ρc:

∫ 2π

0

dφ

∫ ρm

ρc

dρρ

(
ρ∗4 cos 2φ

12ρ2
+

ρ∗8

72ρ6
− ρ∗4 cos 4φ

12ρ2

)
(4.12)

=

∫ 2π

0

dφ

∫ ρm

δc

dρρ

(
ρ∗4 cos 2φ

12ρ2
+

ρ∗8

72ρ6
− ρ∗4 cos 4φ

12ρ2

)
(4.13)

=

∫ ρm

δc

ρdρ

∫ 2π

0

dφ

(
ρ∗4 cos 2φ

12ρ2
+

ρ∗8

72ρ6
− ρ∗4 cos 4φ

12ρ2

)
(4.14)

=

∫ ρm

δc

ρdρ

∫ 2π

0

dφ
ρ∗8

72ρ6
(4.15)

=
πρ∗4

144
− πρ∗8

144ρ4
m

(4.16)

=
πρ∗4

144
+O

(
δ8

ρ4
m

)
. (4.17)

Similarly, the other integral

−
∫ 2π

0

dφ

∫ ρc

0

dρρ

(
1 +

1

2
ρ2 sin2 φ

)
(4.18)

=− 1

2

∫ 2π

0

dφ

(
ρ2
c +

1

4
ρ4
c sin2 φ

)
, (4.19)

=− 1

8
πρ∗4 − 1

2

∫ 2π

0

dφρ2
c . (4.20)

Now

∆ÃI/II =
πρ∗4

144
− 1

8
πρ∗4 − 1

2

∫ 2π

0

dφρ2
c . (4.21)

We need to solve the following equation for ρc(φ):
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(x̃− 1 + δ cos θc)
2 + ρ2

c =δ2(
−1

2
ρ2
c sin2 φ− 1

4
ρ∗2 +

ρ∗4 cos 2φ

12ρ2
c

+ δ cos θc

)2

+ ρ2
c =δ2. (4.22)

Rearranging, we obtain ρ2
c up to O (δ4):

ρ2
c =δ2

c + δ cos θc

(
ρ∗2 sin2 φ+

1

2
ρ∗2 − 1

6
ρ∗2 cos 2φ

)
+O

(
δ4
)

(4.23)

=ρ∗2 + δρ∗2
(

1− 2

3
cos 2φ

)
cos θc +O

(
δ4
)
. (4.24)

ρ2
c =δ2 −

[
1

4
(1− cos 2φ) ρ2

c +
1

4
ρ∗2 − δ cos θc −

ρ∗4 cos 2φ

12ρ2
c

]
=δ2 − ρ∗4

[
−δ cos θc

ρ∗2
+

1

2
− cos 2φ

3
+

1

4

(
1− 2

3
cos 2φ

)2

δ cos θc

]2

+O
(
δ5
)
(4.25)

=ρ∗2 + δρ∗2
(

1− 2

3
cos 2φ

)
cos θc −

1

4
ρ∗4
(

1− 2

3
cos 2φ

)2

+
1

2
ρ∗2δ2 cos2 θc

(
1− 2

3
cos 2φ

)2

+O
(
δ5
)

(4.26)

=ρ∗2 + δρ∗2
(

1− 2

3
cos 2φ

)
cos θc +

1

4
ρ∗2
(
2δ2 cos2 θc − ρ∗2

)(
1− 2

3
cos 2φ

)2

+O
(
δ5
)
. (4.27)

Following Equation 4.21, the change of interfacial area is

∆ÃI/II =
πρ∗4

144
− 1

8
πρ∗4 − πρ∗2 − πρ∗2δ cos θc −

1

4
πρ∗2

(
2δ2 cos2 θc − ρ∗2

)
− 1

18
πρ∗2

(
2δ2 cos2 θc − ρ∗2

)
+O

(
δ5
)

(4.28)

=− πρ∗2 − πρ∗2δ cos θc +
3

16
πρ∗4 − 11

18
πρ∗2δ2 cos2 θc +O

(
δ5
)
. (4.29)
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4.1.2 Area of particle surface outside the cylinder

On the surface of particle, the inclination angle of contact line λc is a function

of φ (Figure 4.1). We have (x̃, ỹ, z̃) = (1− δ cos θc + δ cosλ, δ sinλ sinφ, δ sinλ cosφ).

From Equation 4.7, solve for cosλc(φ) up to O (δ2):

δ cosλc =− 1

2
δ2 sin2 λc sin2 φ− 1

4
ρ∗2 + δ cos θc +

ρ∗4 cos 2φ

12δ2 sin2 λc
(4.30)

cosλc =− 1

4
δ sin2 λc +

1

4
δ sin2 λc cos 2φ− ρ∗2

4δ
+ cos θc +

ρ∗4 cos 2φ

12δ3 sin2 λc
(4.31)

=− 1

4
δ(1− cos 2φ)

(
1− cos2 λc

)
− ρ∗2

4δ
+ cos θc +

ρ∗4 cos 2φ

12δ3 (1− cos2 λc)
(4.32)

=− ρ∗2

4δ
(1− cos 2φ)− ρ∗2

4δ
+ cos θc +

ρ∗2 cos 2φ

12δ
+O

(
δ2
)
. (4.33)

Then

cos2 λc = cos2 θc −
[
ρ∗2

2δ
(1− cos 2φ) +

ρ∗2

2δ
− ρ∗2 cos 2φ

6δ

]
cos θc +O

(
δ2
)

(4.34)

= cos2 θc −
ρ∗2 cos θc

δ

(
1− 2

3
cos 2φ

)
+O

(
δ2
)
. (4.35)

Plug Equation 4.35 into Equation 4.32:

cosλc =− 1

4
δ sin2 θc +

1

4
δ sin2 θc cos 2φ− ρ∗2

4δ
+ cos θc

+
ρ∗4 cos 2φ

12δ3

[
1− cos2 θc +

ρ∗2 cos θc
δ

(
1− 2

3
cos 2φ

)]
− 1

4
(1− cos 2φ)

(
1− 2

3
cos 2φ

)
ρ∗2 cos θc +O

(
δ3
)

(4.36)

=− 1

4
(2− cos 2φ) δ sin2 θc + cos θc +

ρ∗2 cos 2φ

12δ

[
1−

(
1− 2

3
cos 2φ

)
δ cos θc

]
− 1

4
(1− cos 2φ)

(
1− 2

3
cos 2φ

)
ρ∗2 cos θc +O

(
δ3
)

(4.37)

= cos θc −
1

2

(
1− 2

3
cos 2φ

)
δ sin2 θc −

1

4

(
1− 2

3
cos 2φ

)2

ρ∗2 cos θc +O
(
δ3
)
.

(4.38)
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Now the area of particle surface outside the cylinder is (Figure 4.1)

ÃI =δ2

∫ 2π

0

dφ

∫ λc

0

sinλdλ (4.39)

ÃI

δ2
=

∫ 2π

0

dφ (1− cosλc) (4.40)

=2π −
∫ 2π

0

dφ cosλc (4.41)

=2π − 2π cos θc + πδ sin2 θc +
11

18
πρ∗2 cos θc +O

(
δ3
)
. (4.42)

4.1.3 Adsorption energy

Consider the case when a particle is adsorbed to the cylinder from phase I (outside

cylinder). Combining Equations 4.29 and 4.42, as well as γI − γII = γ cos θc:

∆E =
(

4πδ2 − ÃI

)
(γII − γI)R

2 + γR2∆ÃI/II (4.43)

=− 2πγR2δ2 (1 + cos θc) cos θc − πγR2δ2 sin2 θc +
3

16
πγR2δ4 sin4 θc (4.44)

=∆Eflat +
3

16
πγR2δ4 sin4 θc. (4.45)

∆Eflat is negative for any well-defined contact angle. Therefore, if we look at the

near vicinity of the particle, the binding is weakened by the curvature of the interface.

Compared with ∆Eflat ∼ γR2O (δ2), the weakening effect is two orders of magnitude

smaller.

4.2 Long-range contribution

With the long-range deformation, the area of interface is

∫∫
R2dz̃dθ |∂z̃r× ∂θr| =

∫∫
R2dz̃dθ

[
1 + δ2f +O

(
δ4
)]
, (4.46)
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where the integral covers the region ρ =
√
z̃2 + ỹ2 ≥ ρm. The first term 1 in the

integrand corresponds to unperturbed cylinder. The leading contribution from the

long-range deformation is then

∆E =γR2δ2

∫∫
dz̃dθf (4.47)

=− π

48
γR2ρ∗4

∫∫
dz̃dθS (z̃, θ) . (4.48)

The sum S (z̃, θ) was estimated as Equation 3.80. The first two terms of Equation 3.80

do not contribute to the binding energy. The remainder is denoted as ξ(z̃, θ). Since

the short-range contribution was taken into account as a quadrupole field, it will be

subtracted out from ξ(z̃, θ). Numerical integration shows

∫ π

0

dθ

[
ξ(z̃, θ) +

4 cos 2φ

ρ2

]
≈ 4.196

10.47 + z̃2
. (4.49)

Further integration over z would converge. Therefore, the contribution of long-range

deformation to the binding energy is of order γR2O (δ4), which is the same as that

from short-range (Equation 4.45).

To summarize this chapter, we have shown that, for the special case of cylindrical

interface, the adsorption energy depends on long-range (z̃, θ ∼ O(1)) deformation as

well as short-range (z̃, θ ∼ O(δ)) deformation. Then it is not determined by the local

curvatures alone.

However, the long-range contribution to energy is linear with perturbation f

(Equation 4.48). When there is more than one particle at the interface, the long-

range deformation does not contribute to any particle-particle interaction in order

γR2O (δ4). The leading particle-particle interaction would emerge when the separa-

tion between two particles d is of some intermediate scale a� d� R. In this region,

deformation of interface can be approximated by linear combination of quadrupole

fields from the two particles. We consider this problem in the following chapter.
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CHAPTER 5

INTERACTION OF PARTICLES AT CYLINDRICAL
INTERFACE

In this chapter, we describe calculations of the interaction between 2 spherical

particles adsorbed on an initially cylindrical interface. From the case of the cylinders,

we propose a general expression for the force on a spherical particle on a constant-

mean-curvature interface. Although we found in Chapter 4 that the binding energy

cannot be written as a function of local shape, we find that the in-plane force can be

evaluated locally.

5.1 Calculation of interaction force

We choose to calculate the interaction of particles with a force approach, which

relies only on the shape of interface near contact line [80, 19]. In principle, this should

give the same answer as the energy approach, but the latter involves difficult integrals

over the entire surface. We first demonstrate the interaction of two particles aligned

along the axis of cylinder. Then we generalize the result to particles with arbitrary

alignment with respect to the cylinder.

We hold particle 1 at (z, θ) = (0, 0) and particle 2 at (z, θ) = (d, 0) (Figure 5.1)

with a� d� R. This choice of d allows us to approximate the deformation field as a

quadrupole. And since d� a, we can superpose the quadrupole fields from particles

without perturbing the contact line significantly. Thus the condition of contact angle

0Contributions: Anthony D. Dinsmore and Benny Davidovitch conducted the study. Chuan Zeng
calculated the interaction.
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Figure 5.1: Two identical particles aligned on cylindrical interface.

is maintained to the leading order. The shape of interface can be described as x̃(ρ, φ),

with polar coordinates

z̃ = ρ cosφ, (5.1)

ỹ = ρ sinφ. (5.2)

In the near vicinity of particles (ỹ � 1), the cylindrical interface is approximately

a parabola x̃ = 1 − 1
2
ρ2 sin2 φ. With superposition of one-particle deformations, the

perturbed interface is

x̃ =1− 1

2
ρ2 sin2 φ− 1

4
δ2 sin2 θc +

δ4 sin4 θc
12

z̃2 − ỹ2

(z̃2 + ỹ2)2 +
δ4 sin4 θc

12

(z̃ − d̃)2 − ỹ2[
(z̃ − d̃)2 + ỹ2

]2

(5.3)

=1− 1

2
ρ2 sin2 φ− 1

4
δ2 sin2 θc +

δ4 sin4 θc cos 2φ

12ρ2

+
δ4 sin4 θc

12

ρ2 cos 2φ− 2d̃ρ cosφ+ d̃2(
ρ2 − 2d̃ρ cosφ+ d̃2

)2 , (5.4)

where the last term corresponds to the deformation caused by particle 2. Near the

contact line of particle 1, ρ ∼ δ � d̃. x̃(ρ, φ) can be expanded as
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Figure 5.2: Forces on a particle sitting at a curved interface. γ̂ is the unit vector
along the direction of capillary force. ∆p is the Laplace pressure. The part of particle
immersed inside the cylinder is shown in blue.

x̃ =1− 1

2
ρ2 sin2 φ− 1

4
δ2 sin2 θc +

δ4 sin4 θc cos 2φ

12ρ2

+
δ4 sin4 θc

12d̃2

[
1 +

2ρ cosφ

d̃
+

3ρ2 cos 2φ

d̃2
+

4ρ3 cos 3φ

d̃3
+O

(
ρ4

d̃4

)]
. (5.5)

At any point on the contact line, the direction of capillary force γ̂ is perpendicular

to both the normal of interface n̂i and the tangent of contact line τ̂c (Figure 5.2).

The capillary force exerted on particle 1 is

F(γ) =

∫ 2π

0

γ

√
a2 sin2 θc + (∂φx)2dφγ̂. (5.6)

We are interested in the lateral component

F (γ)
z = γ

∫ 2π

0

√
a2 sin2 θc + (∂φx)2dφγ̂ · ẑ (5.7)

where ẑ = ρ̂ cosφ− φ̂ sinφ. It can be shown that [19, 80]

γ̂ · ẑ = cosψ cosφ+
∂φx̃

δ sin θc
sinψ sinφ (5.8)

where ψ = arctan ∂ρx̃ is the slope angle of interface at the contact line. Combining

Equations 5.5, 5.8, 5.7, we get

F (γ)
z =

πγRδ6 sin6 θc

6d̃3
+
πγRδ8 sin8 θc

3d̃5
. (5.9)
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Another contribution to the interaction force is the Laplace pressure
γ

R
, where

R = 1. Integrate along the contact line:

F (p)
z =− γ

∫ 2π

0

[x̃ (δ sin θc, φ)− 1]

√
a2 sin2 θc + (∂φx)2dφ cosφ, (5.10)

=− πγRδ6 sin6 θc

6d̃3
. (5.11)

The total force is then

Fz = F (γ)
z + F (p)

z =
πγRδ8 sin8 θc

3d̃5
. (5.12)

The interaction is attractive since we are calculating the force on particle 1 and

particle 2 is placed at positive z (Figure 5.1). If we take the derived perturbation for

the cylinder, there will be a correction to the force in the order of O

(
γRδ10

d̃5

)
.

For arbitrary alignment, similar calculation can be performed if particle 2 is placed

at (z, Rθ) = (d cosω, d sinω) (Figure 5.3), yielding

Fz =
πγRδ8 sin8 θc

3d̃5
cos 5ω, (5.13)

Fy =
πγRδ8 sin8 θc

3d̃5
sin 5ω. (5.14)

Defining the unit vector from particle 1 to particle 2 as d̂ = ẑ cosω + ŷ sinω, the

in-line component of the interaction force is

Fd ≡ F · d̂ =
πγRδ8 sin8 θc

3d̃3
cos 4ω. (5.15)

The interaction could be either attractive or repulsive for different angle ω.
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Figure 5.3: Superposition of two quadrupole fields. Red represents outward deforma-
tion; blue represents inward deformation.

Correspondingly the tangential direction is defined as ω̂ = −ẑ sinω+ ŷ cosω and

thus

Fω ≡ F · ω̂ =
πγRδ8 sin8 θc

3d̃5
sin 4ω. (5.16)

It can be verified that Newton’s third law holds so that the force on particle 2 is

F ′ = −F . The vector field of F ′ with respect to particle 1 is drawn in Figure 5.4. By

projecting the force onto the radial direction to the particle 2 from particle 1, one can

show that the interaction is attractive for ω within π/8 from the y, z axes. The other

component of the interparticle force is along the direction of increasing angle ω, which

determines the alignment of the pair. It turned out that the pair would always align

to the closest axes, as shown in Figure 5.4. Due to the interaction (Equations 5.13

and 5.14), particles tend to form chains along either axes.

5.2 Analogy to electrostatics

As described in Section 1.3.2.1, the Cheerios effect is analogous to Colombia inter-

action in two dimensions. The interaction of particles at cylindrical interface can also

be mapped onto two-dimensional electrostatics. In the Cheerios effect, the vertical
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Figure 5.4: Force field of particle 2 with respect to particle 1. The arrows show the
force on a spherical particle located at the center of the arrow, given there is a particle
at the origin. The magnitudes are not drawn to scale.

force acting on particles can be defined as capillary point charge, corresponding to de-

formation of interface around contact line to one direction, either up or down. A posi-

tive charge corresponds to upward or outward deformation, while negative charge cor-

responds to downward or inward deformation. For particles adsorbed to cylindrical in-

terfaces, the short-range deformation corresponds to capillary quadrupoles. Particles

interact as two-dimensional quadrupoles, while the orientations of the quadrupoles

are fixed with respect to the axis of the cylindrical interface.

5.3 Conjectured general form of the curvature effect

Our result for the interaction between two different spheres at a cylindrical inter-

face allows us to explore the more general problem of a single sphere at an interface

with constant mean curvature but non-uniform Gaussian curvature. If we place a

particle of arbitrary radius a at the origin, the Gaussian curvature of the perturbed

cylindrical interface can be calculated using [81]
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K =
∂y,yx∂z,zx−

(
∂2
y,zx
)2[

1 + (∂yx)2 + (∂zx)2]2 . (5.17)

In polar coordinates (d, ω), we obtain

K = − 1

2R2

(
a sin θc
d

)4

cos 4ω +O

(
a8

R2d8

)
. (5.18)

Remarkably, for the second particle with radius b ∼ a, the result for K completely

accounts for d, ω dependence so that we can write

F = −πγb
4 sin4 θc
6

∇K +O

(
γa4b6

R4d5

)
+O

(
γa6b4

R4d5

)
. (5.19)

Correspondingly, the potential energy regarding to the position of particle at a curved

interface may be written as

U(r) ≈ πγb4 sin4 θc
6

K(r). (5.20)

We propose that this is a general result for constant-mean-curvature surfaces.

While our result agrees with that of the pioneering work of Würger [60], the

difference in scope are summarized in Table 5.1. Würger worked on the case where

small Gaussian curvature dominates zero mean curvature. In our problem, Gaussian

curvature is much smaller than the finite mean curvature, but the gradient of Gaussian

curvature could have a wide range when compared with H3. In both works, the size

of particle should be much smaller than any characteristic scale of the constant mean

curvature surface.

5.4 Experimental measurement of interfacial topography

The topography of fluid interface can be measured directly using scanning force

microscope (SFM) by Kathleen McEnnis in Professor T. P. Russell’s group in the
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Table 5.1: Some dimensionless ratios characterizing the interfacial geometry. H and
K are the curvatures that exist before a test particle is inserted onto the interface.

Dimensionless Ratio Zeng et al. Würger

K/H2 (a/d)4 � 1 � 1(→∞)
∇K/H3 Ra4/d5 � 1(→∞)
∇K/|K|3/2 Rd/a2 � 1 � 1

Polymer Science and Engineering Department, UMass Amherst. A typical set of

data is shown in Figure 5.5. The height map z(x, y) of fluid interface and particle

surface exposed in air is scanned over an area of micron scale. In this section, I

describe numerical methods developed for the purpose of analyzing these images.

The contact line where the fluid interface meets a particle surface can be detected

using image segmentation techniques, particularly thresholding the Laplacian of the

height map. At the contact line, the gradient of height is discontinuous from fluid

interface to particle surface, resulting in a large absolute value of Laplacian. Mor-

phological operators [82] can be applied to clean up the artifacts caused by noise.

5.4.1 Mean curvature and Gaussian curvature

Once the particle surface is distinguished from the fluid interface, the mean cur-

vature and Gaussian curvature of the surface can be calculated from the height map.

We use [54, 81]

H =

[
1 + (∂xz)2] ∂2

y,yz − 2∂xz∂yz∂
2
x,yz +

[
1 + (∂yz)2] ∂2

x,xz[
1 + (∂xz)2 + (∂yz)2]3/2 , (5.21)

K =
∂x,xz∂y,yz −

(
∂2
x,yz
)2[

1 + (∂xz)2 + (∂yz)2]2 . (5.22)

Because direct numerical differentiation (finite difference) would be dominated by

measurement error, we chose to fit small patches of surface with a quadric form and

then read the first and second derivatives from the quadric form. For each point in
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Figure 5.5: Height map of a silica particle at the interface of polystyrene and air
scanned using SFM. The particle radius is 4 µm, part of which is above the interface
at the center of the height image. (Data from Kathleen McEnnis.)
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the height map, z (x0, y0), we fit the surface patch z(x, y), x ∈ [x0 − w/2, x0 + w/2],

y ∈ [y0 − w/2, y0 + w/2] to

z = A+Bx′ + Cy′ +Dx′2 + Ex′y′ + Fy′2, (5.23)

where x′ := x − x0, y
′ := y − y0. The width of window w must be chosen to be

small enough so that cubic terms about x′ and y′ are negligible compared with linear

and quadric terms. On the other hand, w has to be large enough so that the fit is

robust against measurement error at each scanning point. A typical choice for w in

our analysis is half of the particle radius.

The standard method of least squares was applied to obtain the fitting parameters

A to F . The derivatives needed for curvature calculation can be read directly as

∂xz = B, (5.24)

∂yz = C, (5.25)

∂2
x,xz = 2D, (5.26)

∂2
x,yz = E, (5.27)

∂2
y,yz = 2F. (5.28)

Notice that ∂x = ∂x′ , ∂y = ∂y′ . H and K can then calculated using Equations 5.21,

5.22.

Special care should be taken when the point (x0, y0) is close to the contact line. If

the contact line passes the patch x ∈ [x0 − w/2, x0 + w/2], y ∈ [y0 − w/2, y0 + w/2],

part of the patch is particle surface instead of fluid interface. The region of particle

surface should be excluded from the least squares fitting. This is realized by labeling

the region of particle surface with a mask.
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5.4.2 Contact angle

The contact angle can be measured at every point at the contact line. Our initial

assumption of constant contact angle can thus be tested directly.

To measure contact angle from an image, we consider one point at the contact

line (x0, y0). Again we investigate the surface patch x ∈ [x0 − w/2, x0 + w/2], y ∈

[y0 − w/2, y0 + w/2]. Since the contact line passes the center of the patch (x0, y0),

part of the patch is fluid interface and the rest is particle surface. By definition,

(x0, y0) is a common point shared by the fluid interface and particle surface. Contact

angle is defined as the angle between n̂i and n̂p, where n̂i is the unit normal vector

of fluid interface at (x0, y0), and n̂p is the unit normal vector of particle surface at

the same point. The unit normal of surface is related to the first derivatives as

n̂ =
(−∂xz,−∂xz, 1)√
1 + (∂xz)2 + (∂yz)2

. (5.29)

Therefore, we need to find the first derivatives of fluid interface at (x0, y0), as well

as that of particle surface at the same point. This can be done by fitting patches of

surface to linear forms. An alternative is to reuse the result of quadric fittings in the

previous subsection (Equations 5.24, 5.25). The contact angle θc is finally obtained

by

θc = arccos (n̂i · n̂p) . (5.30)
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Figure 5.6: Silica particle at the interface of polystyrene and air. The gray scale
shows the height map from SFM, which is the same set of data as in Figure 5.5. The
color ring shows detected contact line. The color on the contact line indicates the
contact angle at each point. The palette is hue in the HSB/HSL encodings of RGB
[83]. The contact angle is around 30◦ as shown in the figure.
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CHAPTER 6

GENERALIZED FORCE BETWEEN TWO PARTICLES
AT AN INTERFACE: A CORRECTION OF THE

CHEERIOS MODEL

With the result from previous chapters, we can revisit the Cheerios effect as in-

troduced in Section 1.3.2.1 and extend the discussion of curvature effect to the case

of non-zero normal forces. Here we show that the standard model for Cheerios effect

leaves out an important piece which can in some cases be dominant.

6.1 Gravity and curvature: monomer-quadrupole interac-

tion

Consider two particles adsorbed to an otherwise flat interface as shown in Fig-

ure 6.1. Assume there is a vertical force f on particle 1, while there is no external

force on particle 2. As predicted by the standard model of Cheerios effect, the two

particles do not interact with each other. However, particle 2 is adsorbed to a curved

interface, the curvature of which is caused by the vertical force on particle 1. Accord-

ing the curvature effect described in the previous chapter, particle 2 should experience

an in-plane force because of the curvature.

f
F ∝ −∇K

Figure 6.1: Interaction between a “heavy” particle and a “neutral” particle.
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Figure 6.2: Orientation of quadrupole induced by a monopole.

The deformation caused by f is proportional to ln r. Then, in the limit of small

deformation, the distribution of Gaussian curvature K is proportional to
1

r4
. Accord-

ing to prediction (5.20), the lateral capillary force on particle 2 is proportional to

−∇K. The corresponding interaction potential is

U(d) = −f
2b4 sin4 θc
24πγd4

, (6.1)

where a and θc are radius and contact angle of particle 2, respectively, and d is the sep-

aration between centers of the two particles. Notice the interaction is always attrac-

tive regardless of the sign of f , and it does not depend on any property of particle 1.

Compared with the Cheerios effect as originally introduced, the monopole-quadrupole

interaction is of higher-order in b/d and shorter-range (U ∼ d−4). Nonetheless, the

curvature effect can predominate, as shown by the case where the vertical force on

one of the two particles is zero, where the standard model predicts F = 0.

The predicted curvature effect can also be shown directly from calculation of inter-

facial deformation and the consequential capillary force on particles. The curvature of

interface induces quadrupolar deformation around particle 2. One can calculate the

capillary force on particle 2 by integrating the tangential force and Laplace pressure

as we did in the previous chapter. The result of force is equal to the prediction (6.1).

In analogy to electrostatics, the curvature capillary force corresponds to interac-

tion between a monopole and an induced quadrupole. The quadrupole is oriented so

that the interface deforms in the same direction as the monopole at the point clos-

est to particle 1 and the point furthest to particle 1 (Figure 6.2). Because capillary
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f2

f1

Figure 6.3: General Cheerios effect. In this example particle 1 has a net downward
force while particle 2 has a net upward force, e.g. because of buoyancy.

charges of the same sign attract each other, this alignment of induced quadrupole

with respect to monopole ensures that the interaction is always attractive.

6.2 Curvature correction to Cheerios effect

The higher-order correction can be applied to general Cheerios effect, in which dif-

ferent vertical forces are acting on particles (Figure 6.3). We show that the interaction

between two particles is

U(d) =
f1f2

2πγ
ln d− f 2

1 b
4 sin4 θc

24πγd4
− f 2

2a
4 sin4 θc

24πγd4
+ · · · (6.2)

The first term is the lowest order Cheerios interaction, i.e., monopole-monopole inter-

action which was described in Chapter 1. The second term is the interaction between

monopole f1 and the quadrupole induced by f1 around particle 2 because the defor-

mation from f1 is not axisymmetric about particle 2. The third term is the symmetric

counterpart of the second term, i.e., the interaction between monopole f2 and the

quadrupole induced by f2 around particle 1. We will show that in some relevant

cases, the second and third terms are dominant.

In the context of electrostatics, this is the finite-size extension to the original

Cheerios effect, in which particles can be treated as point charges. When the finite

sizes of particles are taken into consideration, the contact lines act as conducting

shells. The capillary charge can be freely distributed around the contact line while

maintaining the total value. As the size of one particle tends to zero, the induced
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U(d)

d

Figure 6.4: Predicted interaction potential between a “heavy” particle and a “light”
particle.

quadrupole around it vanishes. And there could be even higher-order terms beyond

monopole-quadrupole interaction, which are not addressed in the present study.

The case when f1 and f2 have opposite sign is of great interest to experimental-

ists, because monopole-monopole interaction compete with the monopole-quadrupole

interaction (Figure 6.4). The combined interaction features an unstable critical sep-

aration. Within the critical separation, the heavy particle attracts the light particle,

which is contradict with monopole-monopole Cheerios effect.

In [22], Vella et al. showed a similar short-range attraction between two plates at

a fluid interface. In the long-range, a wetting plate and a nonwetting plate repel each

other. If the plates are both wetting or both nonwetting, they attract each other.

However, there is a short-range attraction between them regardless of their wetting

properties. This is qualitatively the same as the interaction between two particles at

an interface.

6.3 Relevance to cluster-monomer interaction

As reported in Section 2.5, isolated particle pairs at an air-water interface do not

show significant interaction. In addition, there were no measurable forces between

monomers and large clusters at the air-water interface. However, attraction between

clusters and monomers were observed at the interface between air and trifluoroheptan-

2-ol. We now investigate whether the gravity-induced deformation of the interface

(i.e., the modified Cheerios effect) can explain these results.
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We assume 90◦ contact angle for simplicity (the forces would be weaker if the the

angle is not 90◦.). Consider the interaction between a monomer and a cluster with

N particles. The cluster can be approximated as a disk with radius b ≈
√
Na, where

a is the radius of a monomer. If the normal force accumulates linearly, the normal

force f2 on the cluster is proportional to f1 on a monomer:

f2 = Nf1. (6.3)

From Equation 6.2, interaction force between the cluster and a monomer is

F (d) =
f1f2

2πγd
+

f 2
1 b

4

6πγd5
+

f 2
2a

4

6πγd5
. (6.4)

The first term corresponds to monopole-monopole term, and the other terms corre-

spond to interactions involving quadrupoles. Then

Fquad

Fmono

=

f1

f2

b4 +
f2

f1

a4

3d4
, (6.5)

≈
(

1
N
N2 +N

)
a4

d4
, (6.6)

≈N
(a
d

)4

. (6.7)

If d � N
1
4a, we have Fquad � Fmono. However, the distance between the monomer

and cluster can not be less than the sum of their radius:

d ≥ a+ b ≈
√
Na. (6.8)

Therefore, according to assumption 6.3, the correction due to curvature would not

dominate over the usual Cheerios force between two monomers. We showed in Chapter

2 that this force scale is 10−21 N for the case of air-water. This magnitude of force is
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far below the detectable limit of our experiments (which is of order fN) so the model

is consistent with our results. For the interface between air and trifluoroheptan-2-ol,

the order of magnitude of the Cheerios force is smaller because of the smaller density

difference (∼10−23 N). In this case, the generalized Cheerios model cannot explain

the measured forces on the order of 70 fN. We propose that these large forces are

induced by charge dissociation on the oil side of the particle [61, 62, 63, 64, 30].

6.4 Design of experiments to demonstrate the curvature ef-

fect

If one can show experimentally the short-range attraction between heavy particle

and light particle, it will serve as direct evidence of higher-order correction to the

Cheerios effect. We are interested in the critical separation between the heavy par-

ticle and light particle, beyond which the interaction is repulsive, and within which

the interaction is attractive. This critical separation dc corresponds to the unstable

equilibrium point in Figure 6.4. From Equation 6.2 and ∂dU = 0, we have

dc = 3−
1
4

(
−f1

f2

b4 sin4 θc −
f2

f1

a4 sin4 θc

) 1
4

. (6.9)

Note that f1 and f2 are with opposite sign, and in general the two particles can have

different contact angle with the fluid interface. Considering the hard-core repulsion,

we need dc ≥ a+b. Nesrin Senbil is currently investigating this effect with millimeter-

sized spheres at an oil-water interface.

Alternatively, one can measure the force between a solid cylinder and a floating

particle. A solid cylinder vertically dipped across a fluid interface (such as a mi-

cropipette held perpendicular to the interface) can perturb the interface if it makes

a contact angle θc 6= 90◦. A cylinder with radius a generates a capillary monopole of

f1 = 2πγa cos θc, corresponding to a height profile of interface h(r) = −a cos θc ln r.
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CHAPTER 7

COLLOIDAL CLUSTERS AT LIQUID INTERFACES

7.1 Introduction

As summarized in Section 1.3, particles adsorbed at liquid interfaces attract each

other for various reasons, the consequence of which is the formation of clusters. If

the attraction is induced by a normal force f on each monomer, the deformation of

an otherwise flat interface near one particle is shown as Equation 1.16 involving the

modified Bessel function of the second kind. For the limiting case of r � lc, it reduces

to

h(r) =
f

2πγ
ln r, r � lc, f � γr, (7.1)

where γ is the interfacial tension. As a shortcut1, the attraction potential between

two monomers can be obtained by considering the work done by f on particle 2 over

a normal displacement h(r), i.e.

U(r) =fh(r), (7.2)

=
f 2

2πγ
ln r. (7.3)

The attraction between a cluster and a monomer is stronger than that between two

monomers, but whether or not it is proportional to the number of particles N in the

1The interaction energy is a combination of work done by the vertical forces on each particle plus
the change of interfacial energy. It can be shown that the interfacial energy cancels the work done
by one of the vertical forces. Thus the interaction between two particles is approximately the work
done by one force f along the vertical direction (Section 1.3.2.1).
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Figure 7.1: Height profile of liquid interface with a cluster of heavy particles, a cross-
section view. The dashed line denotes the interface occupied by the cluster. We
assume the deformation along z is very small, while in the illustration it is exagger-
ated.

cluster is a nontrivial question. Furthermore, as we shown in previous chapters, the

deformation caused by one particle has non-uniform Gaussian curvature. As a result,

particle 2 near particle 1 would also feel a curvature-driven force. We want to know

the impact of this curvature-driven force compared with the vertical-force-induced

attraction (7.3).

In the present investigation, we model the cluster as a continuous modified in-

terface with effective tension γ′ which is a function of particle number density and

adsorption energy [70]. This approximation is valid in the case when N is large.

We further assume the particles form an isotropic two-dimensional liquid. We try to

answer the above questions with this simple continuous model.

7.2 Cheerios cluster

Consider an initially flat liquid interface with heavier particles adsorbed. The

particles form a cluster due to the Cheerios effect and perhaps in combination with a

short-range van der Waals attraction. In the horizontal plane, the projection of the

cluster is a disk since we assumed that the particles act like an isotropic 2D liquid.

In the region of interface without particles, the pressure difference is approximated
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as zero. Here we neglect the possible density mismatch between the two fluids by

assuming the scale r � lc. For the region of interface occupied by the cluster (dashed

line in Figure 7.1), the vertical forces f on the particles act on the modified interface

like a downward pressure. The consequence of this pressure is a non-zero mean

curvature of the modified interface. At the boundary between the clear interface and

modified interface, the mismatch between γ and γ′ causes the cluster to be stretched.

Note that γ is always greater than γ′, otherwise the particles will not be adsorbed to

the interface.

Suppose the cluster can resist positive tension along its tangential direction, which

is the same as the direction of γ′. Then the boundary condition for the height profile

is continuity of value and first derivative, so that the force is balanced at any point

on the boundary. If the deformation is very small, the force f from the weight of

the particles is almost normal to the modified interface despite the deformation2. For

a cluster with radius R and N particles, the pressure on the modified interface is

roughly Nf/πR2. The profile z(r) satisfies

γ′∇2hN(r) =
Nf

πR2
, r ≤ R, (7.4)

where ∇2 =
1

r
∂rr∂r. The solution is

hN(r) =
Nf

4πγ′R2
r2 + const. (7.5)

The pressure on the clear interface is zero, corresponding to differential equation

γ∇2hN(r) = 0, r ≥ R. (7.6)

2For finite deformation of interface, the force f has a component tangential to the deformed
cluster, the consequence of which is a compression of the cluster.
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The solution for r ≥ R is proportional to ln r with a constant shift. Applying the

continuity of first derivative at r = R, we found the height of the clear interface is

hN(r) =
Nf

2πγ′
ln r, r ≥ R,N � 1. (7.7)

Compared with Equation 7.1, we see that the height is amplified linearly with N and

a factor of γ/γ′.

If the density mismatch between the two fluids is ∆ρ, Equation 7.4 and 7.6 become

γ′∇2hN(r) =


Nf

πR2
−∆ρghN(r), r ≤ R,

−∆ρghN(r), r ≥ R.
(7.8)

The profile hN(r) can be solved in the similar way as in Section 1.3.2.1. The solution

involves modified Bessel functions I0(x) and K0(x) for r ≤ R and r ≥ R, respectively.

It agrees with the results in [84], but is obtained from a much simpler interpretation.

7.3 Monomer-monomer interaction

As stated above, if there is no vertical force on the particle 2, the curvature of

interface caused by the particle 1 will induce quadrupole deformation around the par-

ticle 2. We assume the induced quadrupole is additive to the monopole deformation

caused by vertical force f on the particle 2. By integrating the capillary force along

the three-phase contact line, we can find the magnitude of the quadrupole and cal-

culate the force between the quadrupole around particle 2 and the monopole around

particle 1. As shown in previous chapters, the result of this calculation is consistent

with our U ∼ K relation. Particle 2 feels a curvature-induced force

Fκ =
f 2b4 sin4 θc

6πγr5
, (7.9)

135



where r is the distance between the two particles, b and θc are radius and contact angle

of particle 2, respectively. Compared with the vertical-force-induced interaction, Fκ

is smaller by a factor of
1

3

(
b sin θc
r

)4

.

7.4 Cluster-monomer interaction

From Equation 7.7, the monopole-monopole attraction force between an N -cluster

and a monomer is

Ff =
Nf 2

2πγ′r
. (7.10)

The subscript f means that the attraction is induced by the vertical force f . In this

case the curvature-induced force can be shown as

Fκ =
Nγf 2b4 sin4 θc

6πγ′2r5
. (7.11)

Then we have

Fκ
Ff

=
1

3

γ

γ′

(
b sin θc
r

)4

. (7.12)

Since γ > γ′, Fκ may dominate Ff for r ≤
(
γ

3γ′

) 1
4

b sin θc.

7.5 Line tension

Line tension arises from interface of two-dimensional fluids as an analogy of surface

tension from interface of three-dimensional fluids. But in the current problem, the

effect of line tension should be negligible as shown below.

The line tension at the boundary between cluster and clear interface is in the order

of Ucolloid/µm, where Ucolloid is the interaction among particles at interface and the

particle diameter is approximately one micron. The interfacial tension γ and γ′ are

both in the order of Umolecule/Å
2
, where Umolecule is the interaction among molecules.

The contribution of line tension δ on an element of boundary is δκ, where κ is the
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curvature of the boundary line. In order to make the contribution of line tension large

enough to be at least comparable to that from the interfacial tension, we need

κ &
Umolecule × µm

Ucolloid × Å
2 ∼

Umolecule

Ucolloid × 10 fm
. (7.13)

Then the size of cluster is roughly

1

κ
.
Ucolloid × 10 fm

Umolecule

. (7.14)

We know the size of a cluster is at least ∼ µm, then we need
Ucolloid

Umolecule

> 108, i.e.

Ucolloid > 108kBT . If this were true, the cluster will not be liquid-like.
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CHAPTER 8

CONCLUSION

The behavior of micron-sized, charged-stabilized colloidal spheres and liquid

droplets confined at fluid interfaces was studied using microscopy. We measured

the long-range interaction between carboxyl-modified polystyrene spheres (radius ∼

1 micron) at the interface using image analysis and particle tracking. At an air-

water interface, single pairs of particles isolated from others do not exhibit significant

interaction down to the scale of femtonewtons. In presence of other particles and

clusters around, the apparent pair-interaction is still insignificant within the resolution

of our measurement. This is in agreement with the predicted capillary forces among

neutral particles but contradiction with the method of extracting interaction potential

from radial distribution function g(r), because the g(r) for our data also implies

artificial repulsive interaction. In general, measurement of the interaction among

interfacial particles using g(r) might not reflect the true interaction potential between

pairs of particles.

Aggregates of colloidal particles were observed for polystyrene particles at the

interface of water and 1,1,1-trifluoroheptan-2-ol, suggesting an attractive capillary

force arising from electrostatic stress on the interface. We also measured the interac-

tion of single particles with large clusters as well as the interactions between clusters.

We found strong attractive forces with a complex angular dependence owing to the

anisotropy of the meniscus around a cluster. We have ruled out the contribution of

gravity-induced interfacial curvature to this many-body effect. This strong collec-
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tive attraction might be material-specific or dependent on the material of the sample

container or the charge properties of the interface.

Theoretically, we modeled the adsorption of solid particles to curved fluid inter-

faces. In this modeling we consider only the capillary effect while disregarding other

possible factors like gravity, electrostatics, etc. We have shown that the adsorption

of spherical particles deforms a cylindrical interface. This deformation induces in-

teraction among particles adsorbed to the interface, which was calculated through a

force approach. The deformation is analogous to induced polarization in electrostat-

ics, and the curvature-induced capillary interaction is analogous to the interaction

between electrostatic quadrupoles in two dimensions.

For particles adsorbed to an arbitrarily curved interface, we found that the in-

terface drives the particles to regions with lower Gaussian curvature. Our formalism

opens a way to study curvature effects beyond the near-Euclidean approximation.

The results may guide new methods of microparticle and nanoparticle self-assembly

[85, 86]. Specifically, we can estimate the velocity of particle driven by the curvature

effect. If the curved interface has a characteristic length ξ, we have |∇K| ≈ ξ−3.

Then the velocity of a particle with radius a is

v =
F

6πηa
, (8.1)

=
π
6
γa4|∇K|
6πηa

, (8.2)

=
1

36

γ

η

(
a

ξ

)3

. (8.3)

The combination of interfacial tension γ and viscosity η gives a characteristic velocity

v∗ := γ/η. For typical values of γ and η,

v∗ ∼ 10−2 N/m

10−3 Pa · s
= 10 m/s. (8.4)
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For a/ξ = 1/10, v ∼ 1 mm/s. Even for a/ξ = 1/100, v ∼ 1 µm/s, which is measurable

with optical microscopy, and much stronger than what we observed for particles at

flat interfaces.

Our model is based on two assumptions: constant mean curvature and constant

contact angle. However, many interesting physical systems are beyond these two

assumptions. If the fluid interface is affected by an external field, e.g. gravitational

field, the mean curvature is a function of spatial coordinates. For particles with

pinned contact line (e.g. disk-shaped particle, Janus particle), the boundary condition

is distinct from that of constant contact angle. Our model could be expanded by

consideration the external field and/or using other boundary conditions. Particularly

in biological systems, the shape of lipid membrane is governed by the tension and

pressure difference [87], which is mathematically identical to fluid interface. Our

formalism could be applied to lipid membrane with inclusions, e.g., proteins. The

boundary conditions may differ from the constant contact angle as for solid particles.

We also expect similarities between curvature-driven interactions in different di-

mension. The system of interfacial tension that we studied is about two-dimensional

surface in three-dimensional space, governed by Young-Laplace equation p = 2γH.

For one-dimensional boundary of two-dimensional fluids, the governing equation is

T = σk, where T is the stress across the 1D boundary, σ is the line tension associated

with the boundary, and k is the curvature of the boundary. Due to the simplicity of

one-dimensional boundary, there is no geometrical frustration as we found for contact

contact angle for curved interface. In higher dimension, the link to general relatively

may be explored, where the stress-curvature relation is described by Einstein field

equations [88]

Tµν =
c4

8πG
Gµν . (8.5)

We expect quantitative analogy across different dimensions and a unified framework

for all curvature-driven interactions.
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