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Research Article

Point process models for household distributions
within small areal units

Zack W. Almquist 1

Carter T. Butts 1,2

Abstract

Spatio-demographic data sets are increasingly available worldwide, permitting ever more
realistic modeling and analysis of social processes ranging from mobility to disease trans-
mission. The information provided by these data sets is typically aggregated by areal unit,
for reasons of both privacy and administrative cost. Unfortunately, such aggregation does
not permit fine-grained assessment of geography at the level of individual households. In
this paper, we propose to partially address this problem via the development of point pro-
cess models that can be used to effectively simulate the location of individual households
within small areal units.

1 Corresponding author. Department of Sociology; University of California, Irvine. Email: almquist@uci.edu.
2 Department of Statistics and Institute for Mathematical Behavioral Sciences; University of California, Irvine.

http://www.demographic-research.org 593



Almquist & Butts: Point process models for household distributions within small areal units

1. Introduction

Spatio-demographic data sets are increasingly available worldwide, permitting ever more
realistic modeling and analysis of social processes ranging from mobility to disease trans-
mission. The information provided by these data sets is typically aggregated by areal unit
(e.g., the state, county, tract, block group, and block hierarchy of the U.S. Census), for
reasons of both privacy and administrative cost. Unfortunately, such aggregation does
not permit fine-grained assessment of geography at the level of individual households, a
scale that is potentially important for accurate modeling of micro-social processes such as
transmission of disease between households, daily mobility patterns, or patterns of inter-
personal contact. While the potential to model such phenomena across large geographical
areas thus exists, efforts are hampered by a lack of data on household location.

In this paper, we propose to partially address this problem via the development of
point process models that can be used to effectively simulate the location of individual
households within small areal units. Given basic information such as number of house-
holds, general pattern of land use, and/or population of neighboring units, our objective
is to identify a probability distribution over household locations within a polygonal re-
gion whose average spatial properties reflect the corresponding properties of the unob-
served true household distribution in that region. Examples of targeted properties include
standard point process descriptives (Ripley 1988; Diggle 2003), such the mean nearest
neighbor distance, measures of spatial clustering (e.g. the F and G functions), mean K
function value, et cetera. While the resulting distributions will not reproduce household
locations with perfect fidelity, the approximations may nevertheless prove adequate for
modeling of basic social processes. The models and test procedures proposed in this re-
search also provide relatively generic techniques for statistical treatment of other forms of
geocoded point data localized only to an areal unit (e.g., locations of individuals, events,
or landmarks).

While the problem of imputing household locations can be approached in many ways,
our focus within this paper is on the application of simple, scalable models that require no
extra information (beyond areal unit and household count) from the analyst. Such models
can be employed in virtually any setting, and are a natural starting point for any more
complex modeling effort. To that end, we begin with two baseline models—a constant-
intensity N -conditioned Poisson process, and a low-discrepancy sequence model—that
incorporate only population density within the areal unit. We then extend the density-
based models by incorporating additional information from the areal units themselves,
using an inhomogeneous Poisson framework in which households are more likely to be
found near polygonal borders (a common phenomenon in the observed data). To evaluate
these simple point process models, we compare their behavior with observed household
location distributions from three different communities. Test samples consist of house-
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hold location data from Portland, OR, Deschutes County, OR, and Irvine, CA2, with areal
units given by the 2000 U.S. Census. All modeling is performed in R (R Development
Core Team 2010). Our test cases include examples of urban, suburban, and rural settings,
with varying spatial scale and levels of population density.

Evaluation of the suggested point processes on our three communities suggest that
simple models can provide quite reasonable approximations of household location distri-
butions for small areal units. Performance degrades substantially for larger units, although
the inhomogeneous model shows some potential within more urbanized regions. Practical
suggestions are given for the use of these and related point processes within large-scale
simulations, and for applications of this technique to settings beyond the U.S. (and the
developed world more generally).

The remainder of the paper is organized as follows: (1) a general discussion of human
settlement patterns; (2) background on spatial data and household distribution; (3) an
introduction to the proposed point process models; (4) standard statistical measures for
point processes to be used for evaluative purposes; (5) comparison data and U.S. Census
geography to be used for our evaluation study; (6) the comparison measures used for
our evaluation study; (7) evaluation study analysis and results; (8) a spatially informed
network diffusion example; and, finally, (9) conclusion and discussion.

2. Human settlement patterns

Settlement patterns play an important role in shaping human interaction and the demo-
graphic processes which result. A classic example is that of marriage in modern Western
societies: couples in such societies rarely marry without prior meeting and extensive face-
to-face interaction, and marriage is thus disproportionately propinquitous (Bossard 1932).
Many demographic processes, such as mortality, fertility, and mobility, are also influenced
by human settlement patterns (see, e.g. Freeman and Sunshine 1976; Guilmoto and Ra-
jan 2001; Binka, Indome, and Smith 1998); however, making use of such geographical
information is frequently difficult due to limitations on data availability. For example, in
the United States information on population within aggregate areal units is readily avail-
able (e.g., via the U.S. Census), but the coordinates of individuals and households are
undisclosed due to privacy concerns. There is thus a distinct need for a methodology to
generate household (or individual) distributions over small scale areal units such as census
geography, so as to inform statistical models, agent-based simulations, and the like.

Adding to the difficulty of this problem is the need for plausible models to be easily
computable. For instance, the year 2000 U.S. census reports population in over 8 million

2 Data from Deschutes County Geographic Information Systems (GIS) office; City of Portland, OR GIS office,
and Irvine, CA GIS Office.
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areal units known as blocks, themselves organized into well over 50,000 tracts (US Cen-
sus Bureau 2001). Applying household location models at national or regional scales thus
requires simulation of location distributions for large numbers areal units, making effi-
ciency an important concern. In addition to computability, models to be used in a range
of settings should be simple, robust, and require minimal information input on the part
of the analyst. (For instance, a household location model requiring detailed street maps
may be of limited use in historical applications, or in countries for which such maps are
not readily available.) Such concerns motivate the initial consideration of highly mini-
mal models that employ as little information as possible and that can be easily simulated
for large numbers of areal units. Following Mayhew (1984a), we regard baseline models
(and minor extensions thereof) as a natural starting point. By beginning with basic, read-
ily available information such as counts of households and areal unit boundaries, we first
construct models that treat household placement as conditionally uniform, subsequently
modifying this assumption by introducing higher “evenness” in placement, and then by
allowing household location probability to be affected by the geometry of the areal unit in
which it resides. To the extent that the resulting models produce household distributions
whose properties approximate those observed in real settings, we regard them as adequate
proxies with respect to those properties. Where these simple models fail, they may nev-
ertheless be used as a starting point for building more complex models (e.g., models with
inter-point interaction, or additional covariates) for particular applications.

3. Background on spatial data and household distributions

Increasingly, large scale archival data sets containing administrative borders and popu-
lation or household counts are available to demographic researchers (e.g., IPUMS: Min-
nesota Population Center 2011; US Census Bureau 2001). The study of such data is often
known as spatial demography or the formal demographic study of areal aggregates (Voss
2007). Demographic data sets, however, rarely contain point locations of households
or individuals because of privacy and safety concerns. This is not a problem for many
macro-level analyses such as classic demographic projection; however, to study more
micro-social processes such as transmission of disease between households, daily mobil-
ity patterns, or patterns of interpersonal contact, one requires more detailed knowledge of
household placement. Given that it is often difficult or even impossible to obtain exact
household locations, an alternative approach is necessary. One solution is to develop a se-
ries of point process models that simulate the individual household distribution for these
small areal units with known statistical properties. Given basic information such as num-
ber of households, general pattern of land use, and/or population of neighboring units, the
general objective is to identify a probability distribution over household locations within
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a polygonal region (including artificial elevation) whose average spatial properties reflect
the corresponding properties of the unobserved true household distribution in that region.

3.1 Spatial data

Spatial information associated with spatio-demographic data includes, but is not limited
to, points (single locations, e.g., a house), lines (e.g., a road), and polygons or areal units
(e.g., a Census block). Typically, Geographic Information Systems (GIS) are employed
for handling and performing analysis on a myriad of spatial data (Reibel 2007); in par-
ticular, this includes linking spatial coordinates to socio-economic and demographic data.
For the present problem, the two most important spatial units are those of the point and the
polygon. A point consists of X and Y coordinates (e.g., longitude and latitude, or a pro-
jection thereof into the plane) and a polygon represents a series of line segments (again in
either latitude/longitude or planar coordinates) identifying a closed region on the Earth’s
surface. Because of the curvature of the Earth’s surface, most map-based and related cal-
culations are based on points and polygons that have been projected onto a plane; the
choice of map projection can have non-trivial effects for such important measures as in-
terpoint distances and polygonal areas, and thus must be chosen carefully. Fortunately,
when working with small areal units such as those employed in this paper, distortions
due to projection are easily overcome (e.g., by using orthonormal projections about the
centroid of the areal unit). More details on choice of projection and coordinate system
can be found in Snyder (1987).

The process of attaching or associating geographic coordinates to attributes (e.g., lo-
cations of houses, cars, or individuals) is known as geocoding. New developments in
online data processing and management have allowed for larger-scale and higher quality
geographic data collection by both professionals and nonprofessionals than was possible
in previous decades. The geographic literature refers to nonprofessional geocoding as
volunteered geographic information (VGI) (Goodchild 2007). The availability of VGI
has grown rapidly due to the widespread diffusion of modern Geographic Information
Software (GIS) and systems (e.g., google maps) among the general public. While often
detailed (e.g., consisting of latitude/longitude coordinates), VGI may in some cases be
obfuscated to the level of areal units; in other cases, concerns regarding the accuracy of
VGI may also motivate researchers to treat such data as localized only to within well-
defined boundaries (e.g., cities or counties). The household distributions employed in this
research were created by state and local governments for tax purposes; however, similar
data for other demographically important units may arise from both administrative and
VGI sources.

http://www.demographic-research.org 597
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3.2 Household distributions

There exists a plethora of reasons to be interested in the distribution of human popula-
tions over space, and particularly the location distribution of human households. Humans
have since prehistory gathered together in small groups (often kin groups) to manage their
livelihoods (McC. Netting, Wilk, and Arnould 1984), and we loosely refer to a group of
persons residing at the same location and sharing resources as a household. In the mod-
ern context, households are often studied as units of decision making (e.g., Davis 1976),
criminological and neighborhood processes (e.g., Hipp, Faris, and Boessen 2012; Short
et al. 2010), disease and information spread (Salathé and Jones 2010), et cetera. Here,
we focus on the household as our basic unit of interest. The study of household activities
over spatially diverse contexts has been performed primarily through the concatenation of
administrative data (e.g., censuses) and spatial data (e.g., surveys or sensors) to make var-
ious predictions, forecasts and simulations for scientific and public policy reasons (Fox
et al. 2003). It is common to use spatial data at a largely aggregate level (e.g., a U.S.
census tract), and this has allowed for much scientific progress; however, reliance on ag-
gregate data raises concerns regarding the risks of fallacious ecological inference (Gibson,
Ostrom, and Ahn 2000) and the modifiable areal unit problem (Openshaw 1984; Tobler
1979; Martin and Bracken 1991). Another issue with aggregate data is that it does not
allow for certain types of analysis necessary for social science, public health, or demo-
graphic research. Here, we are particularly concerned with the situations in which one
cannot conduct one’s analysis without household-level spatial information, such as mod-
eling of transmission of disease between households, daily mobility patterns, or patterns
of interpersonal contact. Because administrative and archival data often lacks individual
or household locations, we propose in this research to use point process probability mod-
els to simulate household distributions over administrative polygons which maintain key
statistical properties of interest.

4. Point process models and simulation

A point process is defined mathematically as a random element whose support consists
of point patterns on a point set S. Technical considerations are needed to ensure that the
resulting process is well-defined (see, e.g. Stoyan, Kendall, and Mecke 1987), but for our
purposes it is sufficient to think of a point pattern as a countable subset of S.

The most important and basic point process model for our purposes is the spatial Pois-
son process. The following development follows that outlined in Diggle (2003) and is one
of the standard descriptions of Poisson or planar Poisson processes. A spatial Poisson
process is analogous to a standard (or temporal) Poisson process with some known rate
function, where one associates with each event a random point (x, y) ∈ S sampled from

598 http://www.demographic-research.org
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some fixed probability density function. More formally, a homogeneous planar Poisson
process may be characterized by the following two conditions:

i) For some λ ≥ 0, and any finite planar region S, N(S) (the number of events with
corresponding points in S) follows a Poisson distribution with mean λ|S|, where |S|
is the area of S. (Note that, here, λ is called the intensity of the process.)

ii) Given N(S) = n, the n events in S form an independent random sample from the
uniform distribution on S.

It is worth noting that λ|S| is the integral of λ over S, and thus to specify an inho-
mogeneous planar Poisson process, one need only replace the constant λ by a spatially
dependent intensity λ(x, y)—replacing condition (i) with “for some λ(x, y) ≥ 0, and any
finite planar region S, N(S) follows a Poisson distribution with mean

∫
S
λ(x, y)dxdy”

and modifying condition (ii) to specify that events are drawn independently proportional
to λ(x, y) (rather then uniformly). Apart from certain basic regularity conditions (in par-
ticular, λ(x, y) must have a finite integral over all subsets of S), there are few restrictions
regarding the intensity function; the inhomogeneous spatial Poisson process is thus a
fairly flexible tool for representing location distributions.

The Poisson processes form only one of a wide range of point process classes that
may be employed to simulate household location distributions. Here, we employ three
variant processes, the first of which is an application of the uniform or homogeneous
process (conditioned on region boundaries and observed population), the second of which
is a deterministic low-discrepancy process that behaves much like a uniform distribution
(but tends to place households away from one another), and the third of which is an
inhomogeneous Poisson process whose intensity function (λ) depends on proximity to
unit boundaries. We now consider each of these processes in turn.

4.1 Constant-intensity N -conditioned Poisson process model (uniform)

The constant-intensity N -conditioned Poisson process model (from here on referred to as
the Uniform model) is a maximum entropy distribution in which households (or individu-
als) are placed uniformly at random subject to known geographical constraints (e.g., tract
borders). This is commonly known as Complete Spatial Randomness (CSR), correspond-
ing to the homogeneous Spatial Poisson process, and is the most basic point process model
considered here (a sample realization from such a process may be seen in Figure 6(c)).

http://www.demographic-research.org 599
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4.2 Low-discrepancy sequence model (quasi-random)

The low-discrepancy sequence model (henceforth referred to as the Quasi-random model)
is a near-minimal entropy distribution in which households are placed in an extremely
even, “grid-like" manner using a two-dimensional Halton sequence. A Halton sequence is
a deterministic sequence of points that “fills” space in a uniform manner, while also main-
taining a high nearest-neighbor distance. The result (sometimes called a “quasi-random”
distribution) is similar to a set of draws from the uniform distribution, but substantially
more evenly placed (see Gentle 1998, for algorithmic details). A sample realization of
such a process may be seen in Figure 6(d).

4.3 Inhomogeneous Poisson process model (attraction)

The above homogeneous models treat households as equally likely to lie in any constant-
area region within the target polygon; in fact, however, we have reason to suspect that
households will often concentrate around certain features, a fact that may be exploited
to better-approximate their distribution. The edge-attractive inhomogeneous Poisson pro-
cess model (henceforth referred to as the Attraction model) is one in which we assume
that points are distributed such that they cluster around polygon boundaries. This is con-
trolled by a given point potential function defining the intensity λ(x, y). We consider two
forms for the potential function, which are defined as follows. Let Z be a collection of line
segments (indicating boundaries of the areal unit, internal polygons (such as subsidiary
unit boundaries), or elements such as roads), and let d((x, y), z) for z ∈ Z be the mini-
mum distance between the point (x, y) and the line segment z. We then set the intensity
to be

λ(x, y) = max
z∈Z

(
1 +

∣∣∣∣d ((x, y), z)− o

s

∣∣∣∣e) , (1)

where s is a scale factor, o is an “optimum” distance, and e is an exponent. For most
applications, it is reasonable to select the parameters s, o, and e such that s > 0, o ≥ 0,
and e < 0. Intuitively, the resulting point potential attracts points to polygon boundaries
(or, more generally, the elements of Z), with maximum intensity occurring when one is at
distance o from a line segment. This definition is motivated by the frequent use of roads,
waterways, or other similar physical elements as boundaries of areal units: housing units
are often located along such features, but are frequently offset by some amount. For a
sample realization of this process see Figure 6(b).

Although the parameters of λ may potentially be inferred from data via likelihood-
based methods, we are interested here in the heuristic setting in which the potential must
be employed with limited fine-tuning. Given this, we set o = 0 and used a crude grid
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search to find values of s and e that produced highest average p-values over all aggregated
cases in the test data (described below). This resulted in parameter values of s = 0.00015
and e = −1.5 (with the former in angular units). Experimentation suggested that the
results reported here are reasonably robust to these settings, and minor changes do not
greatly change the resulting point patterns.

4.4 Point stacking and building heights

For all of the point process models used here, we also avoid unrealistic ground-level
congestion by means of a simple artificial elevation model, which simulates the effects
of multi-story residential structures in densely populated blocks. Specifically, households
whose ground position would place them within a 10m radius of k previously placed
households are given a vertical elevation of 4k meters; thus, intuitively, artificial elevation
arises as population density grows, with new households “stacking” on old ones. (Arrival
order is treated as random.) Building heights produced by this method appear generally
consistent with the ranges of residential building heights typically reported in the literature
(e.g., Burian, Brown, and Velugubantla, 2002). Finally, within-household proximity is
maintained by requiring household size to satisfy the known marginals within each areal
unit, and then placing individuals at their household locations (jittering randomly within
a 5m radius to avoid exact overlap).

5. Standard statistical measures for point processes

In order to compare the distribution of household locations arising under our models to
those empirically observed, we require appropriate descriptive statistics. Here, we de-
scribe several standard descriptives from the point process literature, that may be em-
ployed to assess the extent to which simulated household distributions do or do not deviate
from their empirical counterparts.

5.1 Ripley’s K function

Ripley’s K(s) function (sometimes called the reduced second moment measure) is a tool
for analyzing completely mapped spatial point process data (Diggle 2003). These are
usually events recorded in two dimensions, but they may be locations along a line or in
multidimensional space (e.g., households within a city block). Intuitively, the K function
expresses the degree of spatial clustering among points at multiple scales—more specif-
ically, the tendency for other points to appear within distance s of an arbitrary realized
point.
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5.1.1 Theoretical K

The K function is defined as:

K(s) =
1

λ
E [number of other events within distance s of a randomly chosen event] , (2)

where λ is the density (number per unit area) of events; thus, K describes characteristics
of a point process at different distance scales. Note that many alternative standard mea-
sures such as the nearest neighbor methods (see Section 5.2) do not have this property. K
is generally the preferred characterization of spatial point process by statisticians and ge-
ographers (see, e.g. Diggle 2003), and we use it as the basis of our empirical investigation
in Section 8.

5.2 Nearest neighbor measures

In addition to the variation in conditional density through space, one can also consider
point processes in terms of their nearest-neighbor properties. Here, we comment on two
functions of this sort that are of potential utility in assessing point pattern adequacy.

5.2.1 G Function

The G function measures the distribution of the distances from an arbitrary event to
the nearest other event (see, Diggle 2003). Usually these distances are denoted di =
minj{dij ∀j ̸= i}, i = 1, . . . , n, so that the G function is

G(r) = #{di : di ≤ ri, ∀ i}
n

, (3)

where the numerator is the number of elements in the set of distances that are lower than
or equal to d, and n is the total number of points.

5.2.2 F Function

The F function measures the distribution of all distances from an arbitrary point of the
plane to the nearest realized event (see, Diggle 2003). Bivand, Pebesma, and Gómez-
Rubio (2008) notes that this function is often called the empty space function because it
is a measure of the average space left between events. (Note the contrast with G, in which
the focal point is itself a realized event.) The F function of a stationary point process X
is the cumulative distribution function F of the distance from a fixed point in space to the
nearest point of X . Under CSR, F is:

F(r) = 1− exp
(
−λ · π · r2

)
. (4)
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5.3 Scan statistics and baseline models

Historically, much of the statistical literature on point process models has been concerned
with locating clusters of interest (often the relevant descriptives are known as scan statis-
tics or Kulldorff scan statistics). Sample applications include identification of clusters of
trees, ant nests, diseases, or post offices (Costa and Kulldorff 2009). Classically, the aim
of the spatial scan statistic is to detect and evaluate the statistical significance of a spa-
tial cluster of events (broadly defined) that cannot be explained by Bernoulli or Poisson
processes. Note that these models are often focused on an attribute associated with the
points and not with the point distribution itself (unlike the present case). Models for scan
statistics were originally proposed by Naus (1965) and have recently been extended by
Kulldorff (1997) and others (Glaz, Pozdnyakov, and Wallenstein 2009). Although broadly
related, it is worth pointing out that the goal of most research using scan statistics is very
different from the goal of this research. We are interested in characterizing a set of points
within a areal unit and demonstrating which distributions provide the best baseline model
for simulation purposes. Note that one could use these same models and statistical tests
for novel baseline models (as described in Mayhew 1984a) for explaining/exploring the
processes behind geocoded data. Extension of the present problem into this arena would
seem to be a promising avenue for further research.

6. Comparison data: U.S. Census geography and household parcel
lots

To evaluate the above models, we seek to compare their resulting simulated household
distributions with those encountered in realistic settings. Although household location
data is difficult to obtain, we are able to employ parcel data from three U.S. communities
for testing purposes. While not representative of all communities worldwide, we view
these three cases as a “proof of concept” for the wider use of settlement pattern imputation
from simulation models like those employed here.

6.1 U.S. Census geography

Our basic source of geographical information is the year 2000 U.S. census. “The United
States Census is a decennial census mandated by the United States Constitution. The pop-
ulation is enumerated every 10 years and the results are used to allocate Congressional
seats (congressional apportionment), electoral votes, and government program funding"
(US Census Bureau 2001). The data collected in the decennial census has since 2000
been made available to the public as spatial polygon data broken down into three key
designations: tract, block group, and block, each representing different levels of human
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population aggregation. The block represents household or individuals aggregated at the
level of city block (if the population density is sufficient not to jeopardize an individu-
als privacy) or larger unit; block groups represent an aggregation of blocks, and tracts
represent an aggregation of block groups (US Census Bureau 2001). This data is made
available through the U.S. Census website3, and through statistical software such as the
UScensus2000 R-package (Almquist 2010).

6.2 Household distribution data in the US

There is limited access to household data in the United States, and this can be even more
difficult in other countries. In some cases, however, household-level geospatial data may
be acquired from cities and counties across the U.S. that is collected for purposes of
local or state property tax administration. This household data available is known as
parcel data, and is either maintained as shapefiles or simple longitude/latitude point files;
typically this data is difficult and time consuming to acquire when available.4 To provide
an empirical comparison set for our point process models, we have acquired three different
sets of parcel data within the US: an urban setting (Portland, OR), a suburban setting
(Irvine, CA), and a rural setting (Deschutes County, OR). For an example see Figure 6(a).
Although a more general, representative sample of parcel data is not available at this
time, the range of urbanization in our three cases provides some suggestion of how model
performance might vary across similar communities in the United States or other countries
with comparable settlement patterns.

6.3 Urban, suburban, and rural classification

The U.S. Census classifies areas as either urban or rural. Urban areas are broken into
two classifications: Urbanized Areas (UA), continuously built-up areas with populations
of 50,000 or more; and, Urban Places Outside of UAs, any incorporated places or census
designated places (CDPs) with at least 25,000 inhabitants. The rural designation is defined
residually, i.e. territory, population, and housing units that the Census Bureau does not
classify as urban are classified as rural (US Census Bureau 2001).

We extend the U.S. Census Urban/Rural classification to include a notion of suburban.
“Suburban areas are typically considered to be regions of lower density residential land
use at the urban fringe, and are often thought to be synonymous with sprawl, but there is
no standard quantitative definition" (Theobald 2004). The notion of Suburbia is old, being
found in the sociological literature as far back as 1943 (Harris 1943). In this case we use

3 http://www.uscensus.gov
4 This data may also be expensive, because it is created by local area governments and then sold to local area

development firms.

604 http://www.demographic-research.org



Demographic Research: Volume 26, Article 22

the concept of suburb to represent a city which is less dense than an urban center, resides
in or near a large metropolitan area, and that is not the focal city within the Metropolitan
Statistical Area (MSA) itself (i.e., the largest city within the MSA, e.g., Los Angeles
MSA; US Census Bureau 2001). Of our three cases, we treat Irvine, CA as suburban
because it belongs to an MSA (but is not focal), is less dense than an urban center, and is
distinctive for both historical and geographical reasons (i.e., it is a planned suburban city
residing near the more clearly urban environments of Los Angeles and Santa Ana).

An alternative way to conceptualize this distinction is via housing density (or popu-
lation density).5 The urban, suburban, rural classification here can be thought of as an
average housing density scale with urban being high density, suburban being middle den-
sity, and rural being low density (see Table 1). A quick inspection shows that the mean
housing density is approximately double from the rural to suburban setting and also ap-
proximately double from suburban to urban setting. And thus we may also think of these
three examples as sitting on density continuum which we are labeling with discrete names.

Table 1: Table of mean housing densities per census areal unit for Portland,
OR, Irvine, CA, and Deschutes County, OR

Area Mean density

Urban Portland block 1.4195 #houses
km2

Portland block group 1.1906 #houses
km2

Portland tract 1.0641 #houses
km2

Suburban Irvine block 0.7139 #houses
km2

Irvine block group 0.5707 #houses
km2

Irvine tract 0.3597 #houses
km2

Rural Deschutes block 0.3615 #houses
km2

Deschutes block group 0.2313 #houses
km2

Deschutes tract 0.1599 #houses
km2

With this classification in mind, we briefly consider our three cases in turn.

6.3.1 Urban: Portland, OR

Portland, Oregon is a city with an estimated population of 529,121 people and estimated
household population of 223,737 (US Census Bureau 2001). The local city government

5 We use housing density here because that is the unit of analysis in this article, but population density will
yield similar results.
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of Portland has parcel data for 248,325 households6. Portland is the largest city in Oregon
and represents the economic center of the state. The city also contains the largest univer-
sity in Oregon, and its suburbs include the large businesses such as Nike and Intel. The
U.S. Census classifies Portland as urban (see Table 2: US Census Bureau 2001). A visual
portrayal of the household distribution of Portland overlaid on U.S. Census blocks, block
groups and tracts may be seen in Figure 1.

Table 2: Portland, Oregon Urban/Rural classification by the U.S. Census
in 2000

Portland
Oregon

Urban: 527, 255
Rural: 1, 866
Total: 529, 121

6.3.2 Suburban: Irvine, CA

Irvine, California is a city with an estimated population of 143,072 people and estimated
household population of 51,199 (US Census Bureau 2001). The local city government of
Irvine has parcel data for 49,002 households7. The U.S. Census classifies Irvine as urban
(see Table 3: US Census Bureau 2001). For the purposes of this research we classify
Irvine as a suburban city, as it is less dense than Portland, does not represent an MSA and
is close in proximity to the significant MSA of Los Angeles. A visual portrayal of the
household distribution of Irvine overlaid on U.S. Census blocks, block groups and tracts
may be seen in Figure 2.

6 Note this is the population we employ here; due to demographic changes, the parcel data contains more
households than were present in the 2000 census.
7 Note this is the population employed here, and is slightly smaller than the household count in the 2000 census.
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Figure 1: Portland, Oregon households and polygons
(blocks, block groups, and tracts)

(a) Parcel data & U.S. Census 2000 blocks of
Portland, OR

(b) Parcel data & U.S. Census 2000 block
groups of Portland, OR

(c) Parcel data & U.S. Census 2000 tracts of
Portland, OR

Notes: All maps in these figures are orthographic projections about a central point in the city, with distances in
meters.
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Figure 2: Irvine, California households and polygons
(blocks, block groups, and tracts)

(a) Parcel data & U.S. Census 2000 blocks of
Irvine, CA

(b) Parcel data & U.S. Census 2000 block
groups of Irvine, CA

(c) Parcel data & U.S. Census 2000 tracts of
Irvine, CA

Notes: All maps in these figures are orthographic projections about a central point in the city, with distances in
meters.
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Table 3: Irvine, California urban/rural classification by the U.S. Census
in 2000

Irvine
California

Urban: 143, 011
Rural: 61
Total: 143, 072

6.3.3 Rural: Deschutes County, OR

Deschutes County, Oregon is a county with an estimated population of 115,367 people and
estimated household population of 45,595 (US Census Bureau 2001). The local county
government of Deschutes has parcel data for 70,293 households8. The U.S. Census clas-
sifies Deschutes County as mix of rural and urban (see Table 4 US Census Bureau 2001).
The urban portion of the county is Bend, OR (and few outlying areas around Bend) a
city of 52,029 in 2000 (see Table 4: US Census Bureau 2001). Deschutes County is used
primarily for it rural nature. A visual portrayal of the household distribution of Portland
overlaid on U.S. Census blocks, block groups and tracts may be seen in Figure 3.

Table 4: Deschutes County, Oregon urban/rural classification by the U.S.
Census in 2000

Deschutes County
Oregon

Urban: 72, 554
Rural: 42, 812
Total: 115, 367

8 This population substantially larger than the 2000 count, likely due to considerable growth in Bend, OR (the
largest city in the county) between 2000 and 2010.
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Figure 3: Deschutes County, Oregon households and polygons
(blocks, block groups, and tracts)

(a) Parcel data & U.S. Census 2000 blocks of
Deschutes County, OR

(b) Parcel data & U.S. Census 2000 block
groups of Deschutes County, OR

(c) Parcel data & U.S. Census 2000 tracts of
Deschutes County, OR

Notes: All maps in these figures are orthographic projections about a central point in the city, with distances in
meters.
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7. Comparison measure

The evaluation of our proposed household location models involves the comparison of
two point distributions: that of the observed household distribution and that of the simu-
lated household distribution. The literature in applied spatial analysis has tended to focus
on the comparison of point distributions over two (or more) time points rather than the
comparison of two different point processes. The most common examples are in the eco-
logical literature, especially dealing with trees (for a good review see, Perry, Miller, and
Enright 2006). However, as we are comparing two different point distributions (i.e., not
emanating from a temporal process) we apply Diggle and Chetwynd’s (1991) recommen-
dation of using the sum of normalized difference of Ripley’s K statistic at m breaks.

D(s) = K1(s)−K2(s)

D =

m∑
k=1

D(sk)

var(D(sk))
(5)

The numerator is sometimes known as Diggle’s D. To test whether the two distributions
are different we apply Monte Carlo (MC) tests for spatial patterns (Besag and Diggle
1977).

The MC test employed here consists of ranking the value of a statistic computed on
observed data amongst a corresponding set of statistic values generated by random sam-
pling from a null distribution. In this case the null distributions are our three proposed
models (Uniform, Quasi-random, and Attraction), with our aim being to assess the extent
to which the distributions of D under these models cover the D values of the observed
data.

Note that under mild conditions this test determines an exact significance level and
that the number of simulations, k, can be quite small.9 We call the resulting p-value
an MC-pvalue. In this research we will not be interested in the MC-pvalue to identify
potentially interesting features of data, but to assess the adequacy of the null model to
serve as a proxy for the observed distribution. In other words, we are interested in the
case when the two distributions are not strongly distinguishable. We will therefore use
a standard α level of 0.05 (or 0.025 for a two-tailed test) to determine whether the two
point processes are sufficiently different to be considered effectively distinct.

9 Due to computational complexity of this problem k = 40 for this research.
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8. Analysis and results

To evaluate our proposed models, we simulate distributions for samples of polygons from
each of our three cases, comparing those distributions against the observed data via the
MC test of the D statistic (as shown above). Here, we briefly describe software and
procedural issues, before turning to our findings.

8.1 Software

All code for this paper was written in the R statistical programming language (R Devel-
opment Core Team 2010). R is, among other things, a powerful GIS tool (see, Bivand,
Pebesma, and Gómez-Rubio 2008). To perform the analysis, functions from spatstat
(Baddeley and Turner 2005), networkSpatial (Butts and Almquist 2011), splancs
(Rowlingson and Diggle 1993), rgdal (Keitt et al. 2009) and UScensus2000-suite of
packages (Almquist 2010) were employed.

8.2 Comparison of point distributions

For each polygon, we perform a MC D test for each of the three proposed models.10 For
each such test, we regard the observed data as adequately covered by the model if the D
statistic lies within the central 95% simulation interval produced by the model in ques-
tion.11 To assess overall adequacy, we then examine the fraction of areal units for which
coverage is adequate. We note that this is a fairly demanding standard of “adequacy,” in
that a simulated distribution may prove to be a reasonable approximation of the observed
data, while still being statistically distinguishable from it. (We return to this issue below.)

8.2.1 Model adequacy for the test data

Tables 5, 6, and 7 provide the fraction of areal units in each test region for which D
does not differ significantly from each of the three proposed models. Looking across
the three regions, we observe immediately that model performance is substantially better
for block-level data than for block groups or tracts. This appears to result from the fact
that block groups and tracts are not only much larger than blocks, but also substantially

10 For computational reasons, we chose to perform our Monte Carlo D test on a population-weighted subsample
of areal units from each level for each test case. The sample size for each level/case combination was 100, if
100 units were available; otherwise, all units in the specified level/case combination were used. We did this
subsampling routine because each draw of the MC test required considerable computational power and time.
Note that standard statistical asymptotics (i.e., central limit theorem) apply here, as the areal units are randomly
selected from a well-defined population of such units, and our generalization is to this population.
11 Note that cases containing fewer than two points were removed from consideration.
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more heterogeneous; to reproduce D within a block group or tract requires the model to
correctly reproduce the very considerable variation in population densities observed at
the block scale, a feat for which none of the three models are well-prepared. On the other
hand, we also see that, of the three models, the Attraction model substantially outperforms
its peers on larger areal units. This is because the Attraction model can use boundary
information as “clues” about where dense clusters of points might reside, thus recovering
some of the underlying heterogeneity. Nevertheless, none of models approach perfect
performance for larger areal units.

Table 5: Portland, Oregon: Proportion of blocks nonsignificant under the
MC test performed on the D statistic

Quasi-random Uniform Attraction

Tract 0.00 0.02 0.13
Block Group 0.00 0.14 0.19
Block 0.38 0.56 0.58

Table 6: Irvine, California: Proportion of blocks non-significant under the
MC test performed on the D statistic

Quasi-random Uniform Attraction

Tract 0.04 0.06 0.22
Block Group 0.13 0.22 0.25
Block 0.73 0.86 0.87

Table 7: Deschutes County, Oregon: Proportion of blocks non-significant
under the MC test performed on the D statistic

Quasi-random Uniform Attraction

Tract 0.00 0.00 0.00
Block Group 0.01 0.04 0.07
Block 0.87 0.86 0.87
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For small areal units, on the other hand, performance is quite good: in both Irvine
and Deschutes County, approximately 87% of sampled blocks did not differ significantly
from the simulated data. Even in Portland, where performance was lowest, the majority of
blocks were not statistically distinct from the Attraction model. This suggests that, where
one needs a proxy for household location data at the block level, even a very simple model
may prove adequate for many applications.

8.2.2 Qualitative comparison

While the Monte Carlo test provides a strict criterion for model adequacy, it is also useful
to consider the extent to which the K distributions produced by the three proposed mod-
els qualitatively approach the observed data. As a basic point of comparison, we consider
the average squared correlation (R2) between the distribution of K functions for the sim-
ulated household distributions and the observed K function. Given the monotone nature
of the K function, all R2 values tend to be high (mean apx 0.98 for tract and block group
units, and 0.5 for blocks), but we may directly inspect “typical” cases by selecting the
areal unit in each location and scale class for which the R2 is at or closest to the median.
The resulting curves are shown in Figure 4.

As the figure shows, the qualitative fit of the median case to the data is excellent in
Portland, at all scales. Although this may seem surprising in light of the findings of Ta-
ble 5, we note that the two procedures involved answer distinct questions: the MC test
tells us that deviations from the model are detectable in the Portland case, but the quali-
tative examination shows that the behavior of the curves in question are otherwise quite
close. By contrast, the fit to the other two cases is not as good; while the overall shape
of each curve tracks the data, the magnitudes are plainly off for larger areal units. At
the block level, the figure underscores the point that there is considerable variability in
the associated distributions, thus contributing to the lack of significant deviations. Taken
together with the adequacy results, these results seem to suggest that the proposed models
may be good proxies for large-unit behavior in urban areas (even where they are statis-
tically distinguishable), and block-level behavior in most areas for use within simulation
analysis.

8.2.3 Case study

Finally, to get additional insight into the simulation processes under study we provide a
closer examination of simulated and observed data for a tract in Portland, Oregon. We
begin by considering the point plot of the observed data and the simulated pattern of each
of the three baseline models: Uniform, Quasi-random, and Attraction Models (Figure 5).
We then proceed to visually compare the K, G, and F functions.
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Figure 4: K function for the median tract/block group/block geography for
Portland, OR (a); Irvine, CA (b); and Deschutes County, OR (c)
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Figure 5: Observed household distribution and a single simulation draw of
points over tract “009701" in Portland, Oregon for the three base-
line models considered in this paper

(a) Parcel Data. (b) Attraction Model

(c) Uniform Model (d) Quasi-random Model.

Notes: All maps in these figures are orthographic projections about a central point in the tract, with distances in
meters.
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Figure 6 makes it visually apparent that in the chosen tract the Attraction model per-
forms significantly better than the other two baseline models. In Figure 7 we see that
none of the models capture the fine details of the observed data, although the Attraction
model does capture the basic pattern of inhomogeneity in population density throughout
the tract. Lastly, we see that in Figure 8 that the Attraction model performs the best on
the F statistic.

9. Example: Network diffusion over a spatially embedded network

In this paper we have explored the practicality of using spatial point processes as proxies
for human settlement patterns for small areal units. While we anticipate many practical
uses for this procedure one particularly salient example comes from the social network
literature. A network (or graph) in mathematical language is a relational structure con-
sisting of two elements: a set of vertices or nodes (here used interchangeably), and set of
vertex pairs representing ties or edges (i.e., a “relationship" between two vertices). For-
mally, this is often represented as G = (V,E), where V is the vertex set and E is the edge
set. If G is undirected, then edges consist of unordered vertex pairs, with edges consisting
of ordered pairs in the directed case. If G is directed then the network consists of ordered
pairs (i, j).12

Butts (2003) introduced a model for simulating large scale geographically embed-
ded networks, the spatial Bernoulli graphs. These models require a rather high level of
precision for both simulation and estimation (i.e., they require the researcher to assign a
location to every individual in the network of interest, which is not possible when using
aggregated spatial data such as that provided by the U.S. Census). When exact measure-
ment of individual positions is not practical, point process models like those introduced
here may be employed to approximate locations based on spatial aggregates. Given a
realization from such a point process, we can in turn simulate the associated network (if
necessary, repeating the process multiple times to average over spatial uncertainty). From
simulated population networks we can predict a range of structural properties (e.g., clus-
tering, degree, etc.) and correlate these attributes with observed demographic and social
effects (e.g., income or crime) for predictive or exploratory purposes. These large-scale
networks also allow a researcher to study the behavior of population processes that might
occur via non-random mixing, for example the diffusion of sexually transmitted infec-
tions, disease epidemics, information transmission, or ideas.

12 For a thorough review see Wasserman and Faust (1994).
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Figure 6: Comparison of K function: Comparison of the three baseline
models and the observed distribution of K
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Figure 7: Comparison of G function: Comparison of the three baseline
models and the observed distribution of G
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Ĝbord(r)
Gpois(r)

0.00000 0.00010 0.00020
0.

0
0.

2
0.

4
0.

6
0.

8

Attraction Model

r

G
(r)
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Figure 8: Comparison of F function: Comparison of the three baseline
models and the observed distribution of F
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This section will be broken down in two parts: introduction to and simulation of
spatial Bernoulli graphs; followed by a simulated diffusion process over the spatially
informed network.
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9.1 Spatial Bernoulli Graphs and Simulation

It is well-known that the marginal probability of a tie between two persons declines with
geographical distance for a broad range of relationships (e.g., Bossard 1932; Festinger,
Schachter, and Back 1950; Hägerstrand 1966; Freeman, Freeman, and Michaelson 1988;
Latané, Nowak, and Liu 1994; McPherson, Smith-Lovin, and Cook 2001). Given the
highly structured nature of human settlement patterns, this relationship is a powerful de-
terminant of social structure (Mayhew 1984b); indeed, at large geographical scales, much
of the information content in network structure must be predictable by spatial factors un-
der fairly weak conditions (Butts 2003). Since much is known regarding the distributions
of populations in space, geography is thus a highly effective starting point for the model-
ing of large-scale social networks.

The most basic family of spatial network models is that of the spatial Bernoulli
graphs. Here, we define the spatial Bernoulli graphs in the manner of Butts and Ac-
ton (2011). Consider a set of vertices, V , which are spatially embedded with a distance
matrix D ∈ [0, 1)N×N . Let G be a random graph on V , with stochastic adjacency matrix
Y ∈ {0, 1}N×N . Then the probability mass function (pmf) of G given D is:

Pr (Y = y |D,Fd) =
∏
{i,j}

B (yij | Fd(dij)) (6)

where B is the Bernoulli pmf, and Fd : [0,∞) → [0, 1] is the spatial interaction function,
or SIF. The SIF controls the underlying structure of the network and is thus a key com-
ponent within this family of models. Specifically, the SIF relates distance to the marginal
tie probability. Empirically it appears that many real-world social networks have an SIF
where the marginal tie probability decays monotonically with distance, declining quickly
for short distances but exhibiting an extremely long tail (see, Butts 2003). One plausible
functional form for a social network SIF having these properties is the power law, i.e.

Fd(x) =
pd

(1 + αx)γ
(7)

where pd is the baseline tie probability at distance 0, γ is a shape parameter governing the
distance effect, and α is a scaling term. It is worth pointing out that the spatial Bernoulli
graphs are related to the gravity models (Haynes and Fortheringham 1984), which model
interaction between elements as a combination of marginal rates and an attenuation func-
tion dependent upon the distance between them. In these models, the expectation is given
as
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E[Yij ] ∝ P (i)P (j)Fd(d(i, j)), (8)

where P (x) is the interaction potential of element x, and Fd is the SIF.

9.1.1 Simulation procedure

Here we will follow the simulation procedure of Butts et al. (2012), noting that to simulate
a spatial Bernoulli graph we must have a point location for each node in the graph. We
begin with GIS-based population data for a given spatial area, using polygons and block-
level demographics from the U.S. Census. Next, we place individuals in their respective
blocks using an inhomogenous Poisson point process model as discussed in Section 4.3.
We then overlay a network on the individuals, employing the spatial Bernoulli models
(discussed in Section 9.1) and informed by a historical social friendship network (param-
eter estimation comes from Butts 2003). This “social friendship" relation, and can be
thought of as a locally sparse relation with a fairly long tail (declining as approximately
d−2.8 for large distances). The parametric form is a power law, with parameters (0.533,
.032, 2.788). (For a visualization of this SIF see Figure 9).

9.2 Network diffusion

To demonstrate one illustrative application of our model, we simulate a network diffusion
process over spatially simulated network and observe the rate of transmission. We will
begin with a single event (e.g., the introduction of a rumor to be spread, an emergency
event about which individuals may disseminate information, or the appearance of a highly
communicable disease within a population). The initial signal (or seed) will be provided
to all individuals within X distance of the primary event. In this simulation study we will
employ a standard network diffusion model (Frambach 1993).13 The Poisson diffusion
model operates in the following way: At arbitrary time t, every vertex is either “infected”
(i.e., has been reached by the diffusion process), or “uninfected” (i.e., has not yet been
reached). Once infected, a vertex (v) initiates an infection event for each of his or her out-
neighbors (vn) which occurs at time t + X (where X ∼ eλvvn )). An uninfected vertex
becomes infected at the time of its first infection event; subsequent infection events have
no effect. The simulation terminates when all reachable vertices have been infected (all
times are given relative to the initiation of the diffusion process.) As the above suggests,
the speed of the diffusion process is governed by the edge-specific rates, λ. For illustrative
purposes we treat λ as equal for all edges, although this assumption can easily be relaxed
in substantive applications.
13 The simulation software employed is from the diffusion package in R (Butts 2008).
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Figure 9: SIF for Festinger’s (1954) social friendship data
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9.3 Simulated diffusion over Portland, OR

We follow the procedures discussed in the earlier sections for the specific case of Portland,
OR. We employ a inhomogenous point process model for the household distribution with
spatially embedded social network (for the SIF details see Section 9.1.1). For the diffusion
processes we employ a Poisson diffusion process with homogenous rate of 1 and start
with all households within 500 meters from center of the city as “infected.” This might
represent diffusion of eyewitness information from a disaster such as bomb in subway,
or a fire; this could also represent information transmission from an a locally occurring
event (e.g., a sports game) the spread of a communicable disease from a local outbreak.
To visualize the timing of this diffusion see Figure 10. Notice that the process is largely
spatial with individuals nearest the start point being infected first, and individuals at the
periphery being infected last; however there is some spatial decoherence (i.e., groups
of individuals who receive the infection either earlier or later than their spatial location
would suggest). Boundaries between areas with relatively long gaps in diffusion time
may suggest promising points for interventions to slow the diffusion process (e.g., in an
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epidemiological context), and/or may identify relatively isolated subpopulations in need
of additional connectivity (e.g., in the context of warnings and alerts).

The case illustrated here is a very simple one, and highly abstract; nonetheless, it
demonstrates the manner in which a point process model like those described here can
facilitate large-scale modeling and analysis from spatially aggregated demographic data.
Spatial network models, like other models that require point locations for simulation or
estimation procedures, could greatly benefit from the methodology discussed in this paper.
As the capability and need for micro-level simulation of population processes continue to
grow, we expect a corresponding growth in the need for effective and efficient methods
for imputing point locations of households, individuals, or other social units.

Figure 10: Network diffusion process over a spatial Bernoulli graph
simulated for Portland, OR

Notes: Figure is plotted in an orthographic projections about a central point in the city, with distances in meters
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10. Conclusion and discussion

In this paper we have set forth a basic problem that exists because of the spatial aggrega-
tion of large scale administrative data such as the U.S. Census: the simulation of house-
hold locations within small areal units. The placement of households (or individuals) is
important for many social and demographic processes and the ability to map households
within a given polygonal boundary is potentially important for micro-social processes
such as transmission of disease between households, daily mobility patterns, or patterns
of interpersonal contact. When dealing with processes that require modeling interaction
directly (e.g., social networks) one often has need of a specific location for individuals
or households. One illustrative example of such a process was shown in Section 9, and
myriad generalizations are possible.

As a starting point for dealing with the household distribution problem, we proposed
three simple, scalable point process models that can be used with little input by the ana-
lyst. Testing against parcel data showed that at the block level all three models perform
reasonably well, but the Attraction model typically outperforms the Quasi-random and
the Uniform model in tract and block group levels (sometimes by as much as 16 percent).
Since the Attraction model performs as well or better than the other two models, we ad-
vocate that for household simulation one should in general use the Attraction model. The
Attraction model also has the advantage of being able to take into account macro-level
patterns such as roads or waterways, unlike the Uniform and Quasi-random models (Fig-
ure 6(b)).

We note that the statistical test employed to assess model adequacy is a quite stringent
one, and thus the simulated distributions may be sufficiently good approximations to meet
research needs even where distinguishable in terms of the D statistic from the empirical
household distribution. Take, for example, a median areal unit from any of the three test
cases (Figure 4) where we can see that the simulated point processes appear to capture the
general trend of the observed K function. Nonetheless, further improvements are certainly
possible. Models making use of additional geographical information (e.g., road networks,
hydrological features, etc.) where available would seem to be of considerable promise,
as might models incorporating conditional dependence between households (e.g., Gibbs
point processes (Stoyan, Kendall, and Mecke 1987)). As parcel-level data becomes more
widely available, the relative merits of such extensions to the simple baseline processes
treated here will become easier to assess.
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