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ABSTRACT 

NITROGEN DIOXIDE IN THE URBAN FOREST: EXPOSURE AND UPTAKE 
 

SEPTEMBER 2010 
 

TANNER B. HARRIS 
 

 B.A., COLLEGE OF THE ATLANTIC 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor William J. Manning 
 
 

It is accepted widely that trees are useful for improving air quality, particularly in 

polluted urban environments.  Most evidence for this apparent axiom comes from 

complex models; however, little effort has been made to validate these models using data 

collected under ambient conditions in the field.  Overall there is a need to understand 

better the urban environment in terms of meteorology and pollution and their respective 

variations over multiple spatial and temporal scales.  There is a particular need to 

document the environmental conditions of the urban forest with respect to water relations 

among soil, plant, and atmosphere and with respect to pollution levels in and around tree 

canopies.  There is also a need to develop techniques for quantifying foliar uptake of air 

pollution by trees under ambient urban conditions. 

As a step toward improving our understanding of the urban environment, nitrogen 

dioxide (NO2) levels were measured inside and adjacent to canopies of urban trees in 

Springfield, MA, over two growing seasons with the hypothesis that if trees are a useful 

sink for NO2 there should be a downward NO2 gradient moving from outside to inside of 

the tree canopy.  Nitrogen dioxide levels were consistently and significantly higher inside 

tree canopies compared to levels outside the same canopies.  During the second growing 
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season, ozone (O3), temperature, and relative humidity (RH) were also measured using 

samplers co-located with the NO2 samplers.  Ozone levels were significantly lower inside 

the canopy whereas temperatures were slightly, but significantly, higher inside the 

canopy, and RH was not significantly different between inner and outer canopy locations.  

Overall, these results appear to corroborate theoretical models predicting elevated NO2 

and depressed O3 levels inside tree canopies based on photochemistry, but put into 

question the mechanisms involved in generating these levels. 

In a separate study, the use of a common urban street tree (red maple, Acer 

rubrum) as a tool for measuring NO2 uptake under field conditions was evaluated using a 

model that has previously been applied only to potted herbaceous plants and potted 

coniferous trees.  Using potted saplings of A. rubrum located at locations with high or 

low NO2 levels in Springfield, MA, and Amherst, MA, we measured 15N stable isotope 

signatures (δ15N) and total N (%N) of leaves throughout the growing season.  Overall, 

there was not a significant difference in leaf δ15N or %N change between sites over the 

course of the season.  Changes in leaf δ15N were likely the result of input from N sources 

in the nutrient solution whereas changes in leaf %N over the course of the season 

followed a natural seasonal decline reported elsewhere in the literature.  The study 

highlights the difficulties in applying this particular model to deciduous trees and 

suggests work needed to overcome these challenges. 
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CHAPTER 1 

THE URBAN ENVIRONMENT AND THE ROLE OF THE URBAN FOREST 

1.1 Urbanization and Urban Metabolism 

The global population is currently estimated at 6.8 billion people (U.S. Census 

Bureau 2010) with more than half of them living in urban areas
1
 (Bettencourt et al. 

2007; Crane and Kinzig 2005; Parrish and Zhu 2009).  The trend of global urbanization 

will continue; it is expected that future population growth will occur in cities with 

estimates of urban population growth ranging from 1.75 to 4.9 billion people by 2030 

(Mcdonald et al. 2008; Patel and Burke 2009).  With half of the world’s population 

living in a combined area estimated at 0.3 to 2% of the Earth’s land surface (Bettencourt 

et al. 2007; Crane and Kinzig 2005), city life has the possibility of being highly efficient 

and sustainable (Kaye et al. 2006).  However, today’s cities are far from sustainable, 

requiring vast inputs in the form of water, food, and fuel, and producing enormous 

quantities of heat, waste, and pollution (Crane and Kinzig 2005; Decker et al. 2000).  

Although more than half of the global population live in cities, we are only just 

beginning to understand the complex dynamics of the urban ecosystem (Decker et al. 

2000; Kaye et al. 2006).   

It has been suggested that urban ecosystems have a biogeochemistry distinct 

from that of agricultural or unmanaged ecosystems (Kaye et al. 2006).  In response to 

increasing urbanization, Wolman (1965) was the first to apply an ecosystem framework 

to cities, drawing upon the traditional ecological concept of metabolism (i.e. Odum 

                                                 
1 For purposes herein, urban areas are defined as built environments with high population densities, 
generally removed from the source of production of raw materials necessary to sustain such population 
densities (i.e. cities). 
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1971).  Urban metabolism has been variously defined as the flow of energy and 

materials through the urban ecosystem (Kennedy et al. 2007; Wolman 1965).  Although 

Wolman first described urban metabolism and its usefulness in understanding the urban 

ecosystem and creating sustainable cities 65 years ago, few comprehensive efforts have 

been made to quantify the metabolism of urban cities (Decker et al. 2000; Kennedy et 

al. 2007).  Fewer efforts have been made to apply this concept in sustainable urban 

design.   

Using this framework, Decker et al. (2000) divided the flow of energy and 

material through the urban ecosystem into inputs and outputs, with energy and material 

being stored or transformed, or both, in between.  The flow of energy and materials 

through the urban ecosystem increases as cities grow, and the transformation of food, 

fuel, and water results in waste products of heat, landfill, sewage, and air pollution 

(Decker et al. 2000; Kaye et al. 2006; Kennedy et al. 2007; Mayer 1999).  The 

particular concern here will be on the emissions of air pollution. 

1.2 Urban Forest: Definition and Role in Urban Metabolism 

The urban forest is defined as all trees within and associated with an urban area, 

including the planted landscape, remnants of original forest, and new introductions of 

invasive or otherwise opportunistic tree species (Gerhold 2007; McPherson 2006; 

Nowak et al. 2005).  Components of the urban forest include parks and greenways (both 

planted and residual forest), trees planted in parking lots and along streets and 

sidewalks, and so called “weed-trees” that often sprout in derelict lots and other 

unmaintained areas.  With over half of the world’s population living in cities and this 
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number projected to increase rapidly, urban forests may be the primary means by which 

people experience nature. 

It has been suggested that the urban forest plays an essential role in urban 

metabolism, particularly with respect to creating sustainable cities (Manning 2008).  

Much work has been done to describe and quantify the role trees play in urban 

ecosystems—a body of work based largely in models (Dwyer et al. 1992; McPherson 

and Simpson 2002; Nowak et al. 2002a).  The benefits attributed to urban forests are 

wide ranging and include climate moderation, reductions in energy use (and associated 

CO2 production), improved air quality, reduced water runoff and flooding (and 

associated discharge of untreated wastewater), noise reduction, increased wildlife 

habitat, improvements in human health and general sense of well being, reductions in 

crime, and increased property values (Nowak and Dwyer 2007).  Some of these benefits 

are based on actual measurements and observations (e.g. Freer-Smith et al. 2005; 

Streiling and Matzarakis 2003), but most are based on large-scale modeling (e.g. 

McPherson and Simpson 2003; Nowak et al. 2000), and thus many of these benefits are 

theoretical (Manning 2008).  While the theoretical data provided by such models may 

ultimately be correct, such information may be unintentionally misleading if the process 

by which trees provide such services is not understood. 

1.3 Air Pollution Removal by the Urban Forest 

In terms of urban metabolism, the transformation of fuel into energy and by-

products of heat and air pollution in the form of particulates, aerosols, and oxidized 

gases is a major component of the urban ecosystem (Decker et al. 2000).  It is accepted 

widely that trees clean the air and that the urban forests can have a significant impact on 
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urban air quality (Manning 2008).  A number of complex models have been employed 

to estimate the magnitude of this impact (e.g. McPherson and Simpson 2002; Shan et al. 

2007).  The most notable of these models is the Urban Forest Effects (UFORE) model 

created by the U.S. Forest Service (Nowak and Crane 2000).  The UFORE model has 

been applied to a number of cities with great success, suggesting that trees in these 

cities remove significant quantities of air pollutants (Escobedo and Chacalo 2008; 

Nowak et al. 1999, 2002b).  Results from such studies have led the U.S. EPA to grant 

State Implementation Plan credits for tree planting as pollution reduction strategy for 

attainment of National Ambient Air Quality Standards under the Clean Air Act (Nowak 

2005).   

The UFORE model for dry deposition of air pollution, termed pollutant flux (F), 

is a function of the deposition velocity (Vd) of the pollutant and its concentration (C): 

F (g m-2 s-1) = Vd (m s-1) × C (g m-3) 

where Vd is the inverse of the sum of the aerodynamic (Ra), quasi-laminar boundary 

layer (Rb), and canopy (Rc) resistances: 

Vd = (Ra + Rb + Rc)
-1 

The model is based in large part on the model created by Baldocchi et al. (1987).  Ra 

and Rb are well rooted in physics; they are based on physical and chemical properties of 

the gas in question and its interaction with the physical environment. Inputs for Ra and 

Rb are well established in the literature.  Rc is based on plant biology; its inputs vary by 

species and environment in complex ways and are not well established.  Baldocchi et al. 

(1987) define Rc as an inverse function of canopy stomatal resistance (Rs), canopy 

mesophyll resistance (Rm), soil resistance (Rsoil) and cuticle resistance (Rcuticle): 
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1/Rc = [1/(Rs + Rm) + 1/Rsoil + 1/Rcuticle] 

Rs is based largely on the model created by Jarvis (1976), with the assumption that 

temperature, vapor pressure deficit, and leaf water potential are constant with height in 

the canopy (Baldocchi et al. 1987).  Rm is based on several studies that suggest 

mesophyll resistance is determined by the surface area of the mesophyll and the 

solubility of the gas (Hill 1971; Hosker and Lindberg 1981; O’Dell et al. 1977)
2
.  At the 

time of publication, Rcuticle and Rsoil were based solely on published values.  Inputs for 

Rc in UFORE include photosynthetically active radiation (PAR), air temperature, wind 

speed, carbon dioxide concentration (generally set at 360 ppm), and absolute humidity 

(Nowak and Crane 2000).  These inputs primarily concern Rs, and it is not clear how 

Rm, Rsoil, or Rcuticle are accounted for in the model. 

Implicit in modeling of gas uptake by UFORE is that stomates are open and 

leaves are actively taking up gases during daylight hours throughout the leaf-on period; 

little attention is paid to the multitude of environmental and physiological factors 

affecting stomatal conductance, carbon-fixation, or the metabolism of nitrogen and 

other nutrients that plants may acquire from air pollution (e.g. sulfur from SO2).  As 

such, predictions of pollutant uptake based on this and other models may have a large 

error component, particularly when modeling the uptake of gaseous pollutants which is 

largely under stomatal control (Fowler 2002).  Sources of error for gas uptake include 

(1) elements of tree exposure such as spatial and temporal heterogeneity of air 

pollutants, canopy structure, and variations in boundary layer resistance, and (2) 

elements of tree uptake such as vapor pressure deficit, soil moisture status, leaf 

                                                 
2 It has since been established that mesophyll resistance is significantly more complicated than presented 
in the UFORE model.  See discussion in section 2.3. 
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nutritional status, endogenously controlled seasonal changes in stomatal conductance 

during the leaf-on period, vertical changes in stomatal conductance within the tree 

canopy, PAR levels, and variations in air temperature, wind speed and wind direction, 

and humidity (Escobedo and Nowak 2009; Eller and Sparks 2006; Fowler 2002; 

Hanson and Lindberg 1991; Parkhurst 1994; Scott et al. 1998; Ramge et al. 1993).  

Only PAR, temperature, wind speed, and humidity are included in UFORE calculations 

of Rc (Nowak and Crane 2000). 

Urban environments are a complex composite of street canyons, pockets of open 

areas such as parking lots or green spaces, and residential areas, all with varied 

topography and vegetation.  Associated with this complex structural environment are 

large variations in usage, traffic, and microclimate at both temporal and spatial scales.  

As such, the modeling of urban environments in terms of meteorology and pollution 

levels is a formidable task. Canopy resistances (Rc) used in UFORE are based on 

models derived from relatively uniform forest settings (Baldocchi et al. 1987; Baldocchi 

1988) and may not accurately describe Rc for trees growing in complex urban 

environments.  Furthermore, calculations of Rc are based on meteorological data taken 

from a limited number of sites within a city, in some cases from a single meteorological 

station, and may not accurately represent the wide variation of microclimates found 

within a city.   

Air pollution monitoring relies on a variety of expensive instruments that require 

regular maintenance by qualified technicians, making it a very costly endeavor.  As 

such, few urban areas have more than one or two air pollution monitoring stations 

(Wallace et al. 2009).  In order to measure ambient conditions, such monitoring stations 
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are often placed in open lots, away from the immediate influence of emission sources 

such as automobiles.  Measurements from such sites are not biologically relevant in that 

human exposure largely occurs on sidewalks, often within a meter or less of the source 

of pollution (i.e. automobile exhaust).  Likewise, such measurements may not 

accurately represent pollution levels experienced by trees throughout the city (i.e. C in 

the UFORE model).  Little is known about the microclimate or pollution levels at street 

level where urban trees experience air pollution.  Such information is critical to the 

success of uptake models such as UFORE.  Recent work examining pollution dynamics 

at this scale suggests that trees may potentially exacerbate air pollution levels at street 

level by limiting airflow and trapping pollutants within the street canyon (Gormke and 

Ruck 2009), highlighting the need to better understand the environment, in particular 

the atmospheric environment, immediately in and around urban tree canopies. 

 



 

 
 
9 

CHAPTER 2 

URBAN AIR POLLUTION, NITROGEN DIOXIDE, AND PLANT UPTAKE 

2.1 Urban Air Pollutants: Overview 

 Urban areas are major sources of air pollution. Poor air quality has been linked 

to short- and long-term human health problems including increased rates of premature 

mortality as well as cardiovascular and respiratory illnesses (Chen et al. 2008). These 

problems are more severe for certain subpopulations including infants and young 

children, the elderly, and socioeconomically disadvantaged groups. Many urban air 

pollutants, such as carbon dioxide (CO2) and ozone (O3), are potent greenhouse gasses. 

A number of these air pollutants, such as O3, are created in urban centers but are carried 

downwind where they can have negative impacts on rural communities and natural 

areas (Gregg et al. 2003).   

The U.S. EPA currently regulates six major, or criteria, air pollutants of concern 

in urban areas: carbon monoxide (CO), lead (Pb), oxides of nitrogen (NOx), 

tropospheric (or ground-level) O3, particulate matter (PM10, PM2.5), and sulfur dioxide 

(SO2) (U.S. EPA 2009).  These six pollutants are in all urban areas and have been 

demonstrated to affect human and environmental health detrimentally.  Of these 

pollutants, O3, PM10, and PM2.5 are considered to pose the most significant threats to 

human health.  Of the six criteria pollutants, O3 is the only one not directly emitted; 

rather O3 is produced from the interaction of volatile organic compounds (VOCs), NOx, 

and sunlight in the photochemical oxidant cycle (Anderson 1983).   

Emission sources of the remaining five criteria pollutants can be categorized 

broadly into automobile traffic, industry, energy production, and domestic fuel (Mayer 
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1999).  Most studies point to automobile traffic as the most significant emission source 

in major urban areas of the world, with overall emissions predicted to increase 

dramatically as the global vehicle fleet increases in response to increasing urbanization 

(Mage et al. 1996; Mayer 1999; Parrish and Zhu 2009).  Combustion processes, 

particularly those from automobile traffic, are the major anthropogenic emission source 

for NOx and other precursors of O3 formation (Anderson 1983; Fowler et al. 1998; 

Parrish and Zhu 2009).   

Because of the close tie between automobile traffic and air pollution emissions 

in urban areas, the distribution of NOx and other air pollutants varies greatly over space 

and time and is dependent on factors such as traffic density and patterns, individual 

driving habits, and the ratio of passenger vehicles to trucks and other heavy vehicles 

(Mayer 1999).  The dispersion of air pollutants within the urban environment is 

dependent upon regional, local, and micro-scale meteorological and ambient weather 

conditions, particularly wind speed, wind direction, and turbulence (Mayer 1999).  

These conditions, in turn, are affected greatly by topography and urban structures.  A 

number of authors have modeled and/or measured air pollutant dispersal in relation to 

emission sources and climatic factors within the urban environment (Costabile et al. 

2006; Gilbert et al. 2003; Gormke and Ruck 2009; Grawe et al. 2007; Tsai and Chen 

2004; Xie et al. 2003; Xie et al. 2006).  These authors have found that pollutant 

dispersal in the urban environment is determined by emission sources in relation to 

diurnal, seasonal, and spatial variations in sunlight and air temperature, above-roof wind 

speed and direction, aspect ratios of street canyon height to canyon width, up-wind 

pollutant concentrations, and vertical and horizontal position within the street canyon, 
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and relation to street intersections, alleyways, etc, and obstacles within the street 

canyon.    

2.2 Nitrogen Dioxide: Chemical Nature, Production, Importance in Urban 

Atmospheric Chemistry 

Oxides of nitrogen (NOx) include nitric oxide (NO) and nitrogen dioxide (NO2).  

They are sometimes referred to as a larger group of nitrogen oxides known as total 

reactive nitrogen oxides (NOy), which includes NO, NO2, nitrous oxide (N2O), nitric 

acid (HNO3), nitrous acid (HNO2), peroxyacetyl nitrate (PAN), organic nitrates, and 

other forms of oxidized nitrogen (Weller et al. 2002).  Nitric oxide is a very unstable 

free radical that is not thought to deposit readily to surfaces in significant amounts 

(Horii et al. 2004); thus, of the two NOx species, NO2 is of primary concern in 

deposition studies.  Nitrogen dioxide (NO2) is a free radical, a potent oxidant, and a 

principal component of urban air pollution (Jacobson 2002).  It is produced by the 

oxidation of nitric oxide (NO)—formed by the oxidation of atmospheric N2 at high 

temperatures in combustion processes in energy production and the burning of fossil 

fuels in automobiles—by tropospheric ozone (O3).  The oxidation of NO to NO2 by O3 

occurs rapidly and with near completeness
3
.  As such the U.S. EPA uses NO2 levels as 

an overall indicator of the atmospheric NOx status (U.S. EPA 2010).  

Although NO2 at high concentrations can be toxic to humans, at ambient levels 

it is thought to pose little risk; rather, it is the role of NO2 in the photochemical oxidant 

cycle which is of most concern to human health (Jacobson 2002).  In the presence of 

strong sunlight, NO2 is photolyzed into NO and a ground state oxygen atom O(3
P) 
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which reacts with atmospheric oxygen (O2) to create O3 (Anderson 1983; Fowler et al. 

1998).  The cycle, starting from emission of NO, occurs as the following set of 

reactions: 

NO + O3 → NO2 + O2 

NO2 + hv (λ < 410 nm) → NO + O(3
P) 

O(3
P) + O2 → O3 

Under natural conditions (i.e. in a forest setting with ambient O3 and low-level emission 

of NO from soil), a quasi-equilibrium is established and there is no net increase in O3.  

However, with increased emission of NO from the burning of fossil fuels by 

automobiles, NO2 is allowed to build up at night when photolysis does not occur
4
.  This 

excess NO2 is photolyzed the following morning, leading to an overall increase in O3. 

The cycle is further complicated by the addition of peroxy radicals (RO2; formed by the 

oxidation of small hydrocarbons by hydroxyl radicals) which can react with NO to form 

NO2 without consuming O3, thus resulting in a further buildup of O3 (Fowler et al. 

1998).  In this respect, NO2 also plays an important role in the regulation of atmospheric 

hydroxyl radicals and other HOx species, important acid rain precursors.  It is thought 

that reductions of NO2 are likely to result in reductions of O3 under certain conditions 

(Steadman 2004; Wellburn 1998).  In reality the interconversions between oxidized 

forms of nitrogen in the atmosphere are more complex than presented here, particularly 

for polluted environments (Figure 2.1). 

In addition to its importance for atmospheric chemistry, NO2 has been shown to 

have  detrimental effects on plant growth.  Because of its reactivity with other 

                                                 
3 Sparks (2009) reports an atmospheric lifetime for NO of 57-600 seconds. 
4 Sparks (2009) reports an atmospheric lifetime for NO2 of 143 seconds during daylight hours and 7 hours 
during the night. 
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components of the troposphere, NO2 is a pollutant of primary importance near its source 

of production (Gilbert et al. 2003) such as urban areas with high automobile traffic.  As 

such, it has great importance for the health and longevity of urban plantings exposed to 

high concentrations of automobile exhaust.  Despite its generally accepted 

phytotoxicity, a number of authors have demonstrated the ability of plants to take up 

atmospheric NO2 and incorporate it into different nitrogen pools within the plant (e.g. 

Segschneider et al. 1995; Takahashi et al. 2003; Vallano and Sparks 2007). 

Demonstrated NO2 uptake suggests the possibility for the use of NO2 as an alternative 

fertilizer and in turn the use of plants, particularly trees, for air pollution control 

(Wellburn 1998). 
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Figure 2.1  Interconversions of oxidized nitrogen during the day (A) and at night 

(B).  Reproduced from Jenkin and Clemitshaw (2000). 
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2.3 Plant Uptake and Metabolism of Nitrogen Dioxide 

Dry deposition of NO2 to plants occurs by adsorption to leaf surfaces, absorption 

by root surfaces via the air-soil-root pathway, and stomatal uptake to the apoplast—the 

latter being the primary means of deposition (Wellburn 1990).  As the interface between 

the leaf interior and the atmospheric environment (Parkhurst 1994), the apoplast is of 

great importance in plant metabolism (Sattelmacher 2001), and thus uptake via the 

stomata is not only the primary means of NO2 deposition but also the most 

physiologically important exposure route.  Although some authors have noted large 

deposition rates to leaf surfaces (Geβler et al. 2002; Theone et al. 1991), which has been 

attributed to the presence of chemolithoautotrophic bacteria on leaf surfaces (Papen et 

al. 2002), the focus remains on stomatal uptake as the uptake route of primary 

importance.    

A great variety of factors have been shown to affect stomatal uptake of NO2, 

particularly those that affect stomatal aperture and conductance such as quality and 

intensity of light, temperature, relative humidity, soil water-status, transpiration rate, 

canopy height and vertical position within the canopy, whole-plant N-status, and 

pollutant concentrations (Geβler et al. 2002; Theone et al. 1991; Wellburn 1990).  In 

addition to stomatal aperture, basic leaf morphological considerations such as stomatal 

frequency and distribution and total leaf surface area also will affect uptake (Wellburn 

1990).  Furthermore, before a gas reaches the stomata, it must pass through a laminar 

boundary layer at the leaf surface, and the thickness and relative turbulence of this layer 

likely plays an important role in determining deposition rates (Parkhurst 1994). 
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In his seminal review of atmospheric NOx and plant growth, Wellburn (1990) 

uses the term mesophyll resistance to encapsulate the factors influencing NO2 uptake 

between the stomates and the final sites of reaction within the symplast.  Influences of 

mesophyll resistance include the apoplast-atmosphere NO2 gradient, the presence and 

concentration of chemolithoautotrophic bacteria within the apoplast, the solubility and 

disproportionation rate of NO2 in the aqueous phase of the apoplast (as determined by 

temperature, pH, and NO2
-, NO3

-, and other solute concentrations in the apoplastic 

water), antioxidant and radical-scavenging enzyme activity, nitrate and nitrite reductase 

activities, solubility of NO2 through the plasma membrane, rate of assimilation into 

amino and nucleic acids, N2O and NO2 emission rates, and total leaf N (Geβler et al. 

2000, 2002; Hereid and Monson 2001; Sparks 2009; Sparks et al. 2001; Weber and 

Rennenberg 1996; Wellburn 1990)
5 

.  

Upon entry into the leaf NO2 first dissolves into the aqueous phase of the 

apoplast (Wellburn 1990).  Here two reactions may occur: reduction by antioxidants 

such as ascorbic acid to produce nitrous acid (HNO2) and dehydroascorbate (Ramge et 

al. 1993) or dissociation to produce nitrate (NO3
-) and nitrite (NO2

-) and protons (H+; 

Stulen et al. 1998; Wellburn 1990).  The latter reaction is irreversible and dependent 

upon the concentration of NO2
- and NO3

- in the apoplastic water (Sparks 2009).  

Unreacted NO2 or NO2
-, both powerful oxidants, may initiate hydrogen abstraction with 

components of the mesophyll and thereby initiate the production of free radicals and 

free radical chain reactions (Ramge 1993; Sparks et al. 2001).  Although it is not clear 

from the literature, it appears that under all but extremely high concentrations, NO2 is 

                                                 
5 It should be noted that Wellburn’s mesophyll resistance is much more comprehensive than the 
mesophyll resistance (Rm) employed by Baldocchi (1987), which is even further simplified by the 
UFORE model (Nowak and Crane 2000). 
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fully reacted upon by antioxidants or is fully dissociated, leaving only its reaction 

products, NO3
-, NO2

-, and H+ to cross the plasma membrane.  After entering the cytosol, 

NO3
-  is reduced to NO2

- by nitrate reductase (Stulen et al. 1998; Wellburn 1990).  

Nitrite produced in this reaction and from the original dissociation then moves to the 

plastids where it is reduced to ammonium (NH4
+) by nitrite reductase and is assimilated 

into amino acids (Stulen et al. 1998).  Figure 2.2 illustrates the chain of events involved 

in the uptake and assimilation of NO, NO2, and NH3.  Morikawa et al. (1998, 2003, 

2004) and Takahashi et al. (2001, 2003, 2005a) recently have done much work on NO2 

metabolism and on the genetic control of NO2 uptake.  They have reported growth 

stimulation from NO2 fumigation separate from the fertilizer effects described by most 

authors (Adam et al. 2008, Takahashi et al. 2005b) as well as the formation of an 

unidentified form of nitrogen following fumigation, suggesting a novel pathway for 

NO2 metabolism (Kawamura et al. 2002; Morikawa et al. 2004, 2005).   
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Figure 2.2 Schematic depicting the biochemical processes involved in the uptake 

and assimilation of NO, NO2, and NH3.  Reproduced from Sparks (2009). 

 

2.4 Laboratory and Field Methods for Measuring Nitrogen Dioxide Uptake  

While it has been clearly demonstrated that plants are able to assimilate N 

derived from atmospheric NO2, the quantification of this process, particularly under 

field conditions, remains challenging (Sparks 2009).  Such quantification is necessary to 

validate models such as UFORE (Nowak and Crane 2000) which suggest that plants, 

particularly trees, are a substantial sink for gases in the urban environment such as NO2.  

From an ecological standpoint, it is also important to differentiate between direct foliar 

uptake and deposition to leaf surfaces, bark, or soil (Sparks 2009). Foliar uptake 

represents a direct addition to plant N metabolism and thus may have short and long 

term consequences for plant growth quite separate from those of N deposition to leaf 

surfaces, bark, or soil.  Deposition to the latter surfaces is subject to ecological 

processing and may return to the atmosphere as a gas via microbial processes or 
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volatilization or be leached from the system and transported to other areas (Sparks 

2009; Vallano and Sparks 2007).  The affects of chronic N addition to ecosystems are 

well documented (e.g. Galloway et al. 1995; Vitousek et al. 1997); however, most 

studies consider only total N deposition and do not separate effects between foliar and 

other deposition routes.  Little is known about the long term effects of N deposition via 

foliar uptake of NO2 and other reactive N gases (Sparks 2009).   

A number of laboratory and field studies have been undertaken in an attempt to 

quantify foliar uptake of NO2; most can be lumped into either micrometeorological or 

dynamic chamber studies, or some combination of the two (Fowler et al. 1989; Sparks 

2009).  Micrometeorological methods rely largely on the physical and chemical 

properties of the gas in question and its interaction with the environment (i.e. Ra and Rb 

in the UFORE model; Nowak and Crane 2000) and the assumption that uptake responds 

linearly to stomatal conductance with minimal internal resistance (Rc in the UFORE 

model; Nowak and Crane 2000).  Micrometeorological models have been tested against 

flux measurements in the field with some success; however, such measurements do not 

differentiate between deposition to surfaces (e.g. leaves, bark, soil, etc.), stomatal 

uptake, and chemical destruction, and are influenced greatly by local meteorological 

conditions (Sparks 2009).  Further, such methods are of limited usefulness over varied 

terrain (e.g. in the urban environment) (Rondón and Granat 1994).  Most 

micrometeorological field studies rely on flux measurements of pollutants solely over 

forest and crop canopies (e.g. Duyzer et al. 1995; Hargreaves et al. 1992).  Few studies 

have actually taken measurements of NOx flux from within the canopy (e.g. Joss and 

Graber 1996).  No studies have taken measurements from within urban tree canopies.  
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Unfortunately, many authors confuse micrometeorological estimates of pollutant flux 

with actual measurements of stomatal uptake (e.g. Rondón and Granat 1994).   

Dynamic chamber studies have been employed in the laboratory and in the field 

using whole plant (enclosed and open-top), branch/twig, and leaf chambers (Hanson 

and Lindberg 1991).  Early chamber studies employed a mass balance technique in 

which pollutant concentrations measured at the chamber inlet are compared to those at 

the chamber outlet (e.g. Rogers et al. 1977).  Coupled with foliar extraction techniques 

to determine the fraction of reactive N deposited to the leaf surface, the mass balance 

technique provided a reasonable estimate of plant uptake.  However, this method was 

limited by the precision of available monitoring equipment at the time and can be 

complicated by pollutant deposition to and subsequent volatilization from the chamber 

walls and other non-plant surfaces within the chamber (Rondón and Granat 1994).  In 

mass-balance studies employing chambers exposed to ultraviolet light, the photolysis of 

NO2 can cause further discrepancies between concentrations measured at the intake and 

concentrations measured at the outlet (Segschneider et al. 1995).  Other chamber studies 

employed micrometeorological methods (see Hanson and Lindberg 1991), which serve 

only as rough estimates of pollutant uptake for the reasons described above.  

The best available data for the quantification of NO2 uptake comes from 

chamber fumigation studies using 15N labeled NO2 (e.g. Vallano and Sparks 2008).  

Such studies offer the most direct means of measuring NO2 uptake and assimilation into 

plant tissues.  Some studies employ a dilution method in which 15N is supplied to the 

roots in the form of N fertilizer at relatively high enrichment rates (> 95%) after which 

plants are fumigated with 15N-free NO2, and the dilution of initial 15N concentrations is 
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presumed to represent NO2 uptake (e.g. Okano et al. 1986, 1988).  Most studies, 

however, employ a direct fumigation technique in which plants are fumigated with 

varying concentrations of 15N-enriched NO2 and the increase in 15N from initial levels is 

presumed to be due to NO2 uptake (e.g. Latus et al. 1990).  Early studies employed 

unrealistically high concentrations of NO2, on the order of parts per million (Hanson 

and Lindberg 1991).  It is from these studies that reports of phytotoxicity occur 

(Wellburn 1990).  Ambient levels of NO2 range from about 4 ppb in rural areas to 40 

ppb in heavily polluted urban areas (Segschneider et al. 1995).  Fumigations studies at 

these levels generally report a fertilizer effect for NO2 uptake (Wellburn 1990).   

At either high (ppm) or low (ppb) levels, 15N fumigation studies offer a powerful 

tool for determining the mechanisms involved in NO2 uptake and metabolism and 

identifying the eventual fate of NO2 derived N in the overall plant N pool.  In addition 

to confirming plant uptake of NO2, such studies have shown that NO2 derived N is 

rapidly (within minutes) assimilated into the plant N pool (Wellburn 1990), with highest 

concentrations found in the soluble protein fraction within 24 hours after fumigation 

(Möcker et al. 1998; Segschneider et al. 1995).  Studies also have shown that while 

NO2-derived N is transported to all portions of the plant and that there is little change in 

overall N distribution within the plant, the majority of NO2-derived N remains in the 

leaves (Möcker et al. 1998; Segschneider et al. 1995; Vallano and Sparks 2007). 

Most 15N fumigation studies have been conducted on herbaceous species 

(Hanson and Lindberg 1991; Wellburn 1990), likely due to their ease of use in chamber 

systems.  However, some studies have been conducted using woody plants.  The work 

by Morikawa et al. (1998) and Takahashi et al. (2003, 2005a) is perhaps the most 
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extensive in terms of the number of woody plant taxa assessed.  Using a NO2 at 100 ppb 

(highly polluted urban centers may range from 40-60 ppb) they determined NO2 uptake 

ability in 70 woody plant taxa (Takahashi et al. 2005a).  They found a more than 120-

fold difference in NO2-derived N assimilation among the woody taxa that they studied.  

Comparing NO2-derived N assimilation at 100 ppb to assimilation at 4000 ppb 

(Morikawa et al. 1998), they divided species into four groups based on assimilation 

capability of and resistance to NO2 at high and low concentrations: (1) species with high 

assimilation capability and high resistance to NO2 phytotoxicity, (2) species with high 

assimilation capability but low resistance to phytotoxicity, (3) species with low 

assimilation capability but high resistance to phytotoxicity, and (4) species with low 

assimilation capability and low resistance to phytotoxicity.  Overall, they found that 

NO2-derived nitrogen assimilation was higher in deciduous trees than in evergreens.  

Among deciduous species, broadleaved trees overall had higher NO2 assimilation 

capability compared to deciduous conifers.  They attributed this difference to general 

patterns reported by other authors for deciduous broadleaved trees including higher total 

leaf nitrogen content, higher net photosynthesis, larger specific leaf area, and higher 

relative growth rates (Takahashi et al. 2005). 

Although chamber studies have proven useful for elucidating the mechanisms 

involved in NO2 uptake and for quantifying NO2 uptake, such enclosures invariably 

differ from the natural environment (Sparks 2009).  As such, results from chamber 

studies may not be applicable to plants growing under ambient conditions in the natural 

environment.  This problem necessitates other means of measuring NO2 uptake under 

ambient conditions. The majority of field studies documenting NO2 deposition to forest 
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and crop canopies rely on micrometeorological methods (Duyzer et al. 1995; Hesterberg 

et al. 1996; Horri et al. 2004, 2006; Joss and Graber 1996; Munger et al. 1996; Walton 

et al. 1997), which are only rough estimates of uptake and have significant sources of 

error for the reasons outlined above.  Through-fall measurements are another way 

researchers have attempted to quantify atmospheric N deposition to tree canopies under 

ambient conditions (e.g. Lovett and Lindberg 1993).  However, most such studies do 

not differentiate between wet and dry deposition or between atmospheric reactive N 

sources and ultimately only provide an estimate of canopy retention, not necessarily 

canopy uptake (Sparks 2009).  Such studies also do not account for gaseous losses from 

the canopy.   

The use of stable isotopes, particularly 13C, 15N, and 18O, in ecological and 

ecophysiological studies has increased over the last several decades (Dawson and 

Siegwolf 2007).  Recently there have been a number of studies employing 15N 

signatures either alone or in combination with measurements of leaf nitrate reductase 

activity (NRA) and measurements of total leaf N to document NO2 uptake under 

ambient conditions in the field (e.g. Ammann et al. 1999; Marsh et al. 2004).  Stable 

isotopes are subject to fractionation processes associated with biological (e.g. chemical 

reactions involved in metabolism) and physical processes (e.g. diffusion).  It has been 

shown that N sources can significantly vary in isotopic composition.  With an 

understanding of the fractionation processes involved in N metabolism and the isotopic 

composition of N sources, it may be possible to determine the contribution of various N 

sources to the N metabolism of plants, particularly if there is a large difference in 

isotopic composition among N sources (Vallano and Sparks 2007).   
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Field studies assessing NO2 uptake using 15N stable isotopes rely on the 

generally enriched 15N signature of NO2 from car exhaust (Ammann et al. 1999).  

Because it is difficult to assess fully the range of N inputs to any given ecosystem, such 

studies often make use of transects along NO2 gradients from sources such as major 

roads or highways.  It has been shown that NO2 levels drop rapidly with increasing 

distance from major sources of traffic, reaching near background levels within 200 m 

downwind (Gilbert et al. 2003).  Plants growing along such a gradient are likely to have 

significantly different NO2 exposures, but few other differences in environmental 

conditions.  A number of studies have relied on such gradients and the enriched 15N 

signature of automobile exhaust to demonstrate NO2 uptake based on increased 15N 

levels in tissues from plants growing nearer to the freeway.  Such studies have been 

conducted using natural vegetation (Marsh et al. 2004; Pearson et al. 2000) as well as 

potted plants (Laffray et al. 2010) or both (Ammann et al. 1999).  Several studies have 

also used 15N stable isotope evidence from tree rings to demonstrate long-term trends in 

NOx deposition in relation to anthropogenic emission sources (Saurer et al. 2004; 

Savard et al. 2009).  Ammann et al. (1999) used 15N data from needles of potted and 

naturally grown Picea abies (Norway spruce) along a gradient from a major highway to 

quantify NO2 uptake and used this data to verify estimates of uptake from a 

micrometeorological based model.  Despite the robustness of this tool for determining 

the validity of uptake models under field conditions, the study by Ammann et al. (1999) 

appears to be the only one of its kind. 
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CHAPTER 3 

SUMMARY AND PROPOSED RESEARCH 

3.1 Summary 

There is a growing trend of urbanization among the global population, a trend 

that is predicted to continue indefinitely.  Despite being home to such a large portion of 

the human population, we know comparatively little about the urban ecosystem.  

Understanding how urban centers function, particularly in terms of material flow and 

transformation, is vital to the long term sustainability of cities.  It has been suggested 

that trees play an important role in the urban ecosystem; however, most of the benefits 

assigned to the urban forest remain theoretical.  Little data are available to validate such 

claims, particularly the claim that trees improve urban air quality.   

A number of complex models have been created to estimate the magnitude of air 

pollution removal by urban forests.  These models rely largely on the physical 

properties of air pollutants.  Biological inputs for such models are limited in scope and 

are based on models created largely from laboratory experiments and limited field 

measurements.  Models based on models give rise to greatly compounded error, yet 

such models have been widely accepted among the scientific community.  Results from 

such models has led government entities such as the EPA to sanction wide-scale tree 

planting as an air pollution reduction strategy.  However, little effort has been made to 

validate these models using data collected under ambient conditions in the field.  There 

is a real need to validate these models. 

Nitrogen dioxide is a signature urban pollutant and is involved in the 

photochemical oxidation cycle that produces ozone.  Ozone can accumulate above 
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background levels and adversely affect human and plant health.  It has been suggested 

that reducing NO2 will lead to reductions in O3.  Nitrogen dioxide is also an important 

source of added N to many ecosystems with both beneficial and detrimental effects on 

ecosystem function.  It has been suggested that trees are an important sink for NO2 in 

urban environments.  Laboratory experiments using 15N labeled NO2 have shown that 

plants are capable of incorporating NO2-derived N into their overall N pool and that 

uptake of NO2 is primarily under stomatal control.  Despite the robust potential of 15N 

stable isotope techniques for quantifying NO2 uptake under ambient field conditions, 

most studies documenting NO2 deposition to urban forests rely on micrometeorological 

methods, which are only estimates of deposition.  Further, these methods do not 

distinguish between actual uptake at the leaf level and deposition to plant surfaces and 

soil.  Leaf uptake and deposition to other plant surfaces and soil have very different 

ecological implications, and it is important to be able to distinguish between them.  A 

number of studies have demonstrated the usefulness of the 15N stable isotope in plant 

biomonitoring studies; however, few studies have attempted to actually quantify plant 

uptake of NO2 using the 15N stable isotope under ambient field conditions.   

Overall there is a need to understand better the urban environment in terms of 

micrometeorology and pollution and their respective variations over multiple spatial and 

temporal scales.  We have good information for these factors at large spatial scales and 

over long time periods; however, these scales are not necessarily relevant to human 

health or the question of tree uptake of gaseous pollutants.  There is a particular need to 

document better the environmental conditions of the urban forest with respect to water 

relations among soil, plant, and atmosphere and with respect to pollution levels in and 
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around tree canopies.  Finally, there is a need to improve techniques for quantifying 

foliar uptake of air pollution by trees under ambient urban conditions. 

3.2 Proposed Research 

3.2.1 Characterization of Nitrogen Dioxide Levels Inside Urban Tree Canopies 

It is accepted widely that NO2 uptake is largely under stomatal control and that 

uptake rates are a function of external NO2 concentration and stomatal aperture.  

However, plant uptake models rely on measurements of NO2 concentration from 

municipal air pollution monitoring stations, of which there are generally only one or 

two per city located well removed from immediate sources of pollution.  Instead, it 

seems measurements are best if made from directly adjacent to or even within the plant 

canopy where leaf exposure and uptake actually occur.  A number of studies have 

measured NO2 levels above forest canopies, but only one study has measured levels 

from within the canopy.  No studies have measured NO2 levels from inside isolated 

urban trees, which make up a large portion of the urban forest.  Understanding the 

canopy dynamics of isolated urban trees is an important, but missing, component of the 

modeling of air pollution removal by urban trees.  As an attempt to address this 

oversight, I proposed to measure NO2 levels inside and directly adjacent to isolated 

urban trees in Springfield, MA.  I hypothesized that if trees are indeed useful for 

removing NO2 from the atmosphere and thus acting as an NO2 sink, there should be a 

diffusion gradient between the external atmosphere and the internal tree canopy with 

greater concentrations in the atmosphere relative to the canopy.  In other words,  NO2 
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levels should be lower inside the tree canopy compared to levels directly outside of the 

tree canopy. 

3.2.2 Use of Potted Trees as a Model for Nitrogen Dioxide Uptake 

The use of the 15N stable isotope in biomonitoring studies promises to be a 

robust tool for quantifying NO2 uptake in the field.  Several recent studies have used the 

15N stable isotope and potted herbaceous plants to demonstrate NO2 uptake in the field 

(e.g. Laffray et al. 2010).  If this model can be applied successfully to potted trees, it 

would offer one of the best means available for validating uptake models under ambient 

urban conditions.  Ammann et al. (1999) successfully employed this model using potted 

specimens of Norway spruce (Picea abies (L.) Karst.).  However, Norway spruce is not 

a species widely used in urban plantings.  I proposed to test this model using a common 

street tree, red maple (Acer rubrum L. (Aceraceae)), under field conditions in 

Springfield, MA.  No one has reported results from such a study, and the question here 

is largely one of feasibility.
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CHAPTER 4  

NITROGEN DIOXIDE LEVELS INSIDE URBAN TREE CANOPIES  

4.1 Materials and Methods 

4.1.1 Study Sites 

Springfield is the third largest city in Massachusetts with a population of 

approximately 150,000 and a population density of approximately 1828 km-2.  The city 

is bounded by the Connecticut River and Interstate 91 (I-91) on the west and by 

suburban and rural areas to the north, east, and south.  The prevalent wind direction is 

from the southwest (A. Sorensen, Massachusetts Department of Environmental 

Protection, Lawrence, MA, pers. comm.), resulting in the transport of vehicular 

emissions from I-91 directly into the downtown area.  Study sites within Springfield 

were chosen based on (1) proximity to I-91 and other sources of automobile traffic, (2) 

occurrence of similarly sized study specimens, and (3) accessibility and security.  After 

an extensive survey of the city for suitable areas, the following study sites were chosen. 

Picknelly Field (PF). Picknelly Field is a small baseball diamond located on the 

western edge of Forest Park, upslope from State Route 5 (Columbus Avenue) and 

approximately 0.5 km northeast of I-91.  Traffic is high and often becomes backed up 

near this site during commuting hours.  At Picknelly Field is a row of seven equally 

sized (approximately 8-m tall) Platanus hybrida Brot. (Platanaceae) (London planetree) 

running west to east.  The trees are located in a large patch of grass between a paved 

parking lot and the western entrance to the Park. 
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Visitor Center (VC). The Springfield Visitor Center is located at the 

southwestern edge of the business district in Springfield, approximately 0.1 km 

southwest of I-91.  The site is on the northeastern side of the Amtrak lines and the 

southwestern side of I-91 between an on-ramp and off-ramp on West Columbus 

Avenue.  At this site are 15 equally sized (approximately 8-m tall) specimens of P. 

hybrida located in a large grass-covered area between the parking lot and West 

Columbus Avenue.  There are also 12 equally sized (approximately 8-m tall) specimens 

of Acer rubrum located in a narrow planting strip between the parking lot and the 

Amtrak lines. 

Springfield College (SC). Springfield College is located approximately 3 km 

northeast of I-91 in a relatively quiet residential area of Springfield.  Six equally sized 

(approximately 8-m tall) specimens of A. rubrum occur in a small lawn area between 

the northeast side of a dormitory building and a parking lot.  In addition to being the 

farthest site downwind of I-91, the planting is protected from the prevailing wind by the 

dormitory building. 

Springfield Museums (SM). The Springfield Museums is a grouping of 

buildings located at a slightly elevated site approximately 0.5 km northeast of I-91 in 

the middle of the downtown area.  Three equally sized (approximately 8-m tall) 

specimens of A. rubrum are located within the grounds of the Museums: one next to 

Chestnut Street, a busy street running north-south, one adjacent to the Museums parking 

lot, and one adjacent to Edwards Street, a side street running along the northern edge of 

the Museums. 
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4.1.2 Experimental Setup 

 In 2008, NO2 levels were measured inside and outside the canopy of three 

individuals of A. rubrum (one tree each at SC, VC, and SM) and two individuals of P. 

hybrida (one at PF and one at VC).  Sampling was conducted using Ogawa passive 

samplers (Ogawa and Company USA, Inc., Pompano Beach, Florida).  One passive 

sampler was placed 3 m from the ground on a pole 30 to 45 cm from the edge of the tree 

canopy, and another sampler was attached to the leading shoot inside the canopy at the 

same height—in all cases the sampler was near the base of the canopy (Figure 4.1). 

Samplers were placed inside opaque rain shelters (Ogawa and Company), which serve 

primarily to keep the sampler dry but also to reduce the influence of light and wind on 

the samplers (Krupa and Legge 2000).  

 Based on the results from 2008, measurements were expanded in 2009 to 

include O3 (also using Ogawa passive samplers with rain shelters), temperature, and 

relative humidity (RH).  The latter two variables were measured using temperature-RH 

data loggers inside solar-radiation shields (Hobo Pro v2, Onset Computer Corporation, 

Bourne, Massachusetts) co-located with the passive samplers inside and outside of each 

tree canopy (Figure 4.2). Temperature and RH were recorded at five minute intervals 

and averaged over the length of the passive sampler exposure periods. Because of the 

increased value of the sampling setup in 2009, a site with good security was needed.  

The Springfield Museums provided the best security and the added benefit of being 

located in the heart of the downtown area.  As such, measurements in 2009 were taken 

from the three specimens of A. rubrum located at the Springfield Museums, one of 

which was also used in 2008 for NO2 sampling. 
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 Passive samplers were replaced approximately every two weeks during the 

summer, from 10 June through 19 August 2008 (NO2 only) and from 10 June through 

23 August 2009 (NO2 and O3), for a total of five sets of samples per tree, per season. 

Samples were analyzed at the Research Triangle Institute (Research Triangle Park, NC) 

using standard colorimetric methods (Ogawa, 2001, 2006). 

4.1.3 Statistical Analysis 

Because of complex nesting created by the experimental setup, only data from 

A. rubrum were subjected to statistical analysis.  Data were analyzed as five biweekly 

averages for each tree within the two study years by analysis of variance (ANOVA) 

using a mixed linear model (PROC MIXED procedure) in SAS 9.1 (SAS Institute, 

Cary, North Carolina).  For analysis of differences in NO2 levels, independent variables 

were year, tree (nested within year), sample period (1-5, corresponding to the five 

sequential two-week sample periods used in both years), and sampler location (inner, 

outer). Tree was treated as a random variable, and year, sample period, and sampler 

location as fixed variables. A similar model was used for analysis of differences in O3, 

temperature, and RH values with the omission of year as an independent variable.  

Correlations between the average differences between inner and outer values for NO2, 

O3, temperature, and RH were performed using linear regression (PROC REG 

procedure) in SAS 9.1. 
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Figure 4.1  Locations of inner and outer NO2 samplers at a typical site in 2008. 

 

 

 

Figure 4.2. Setup of O3 and NO2 passive samplers inside rain shelters and 

temperature/RH logger inside solar radiation shield (left to right, respectively 

within each image) for inner (A) and outer (B) canopy locations. 
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4.2 Results 

Measured NO2 levels were higher inside the canopy of each tree for all sample 

periods in both years (Figure 4.3).  Results from the ANOVA are presented in Table 

4.1.  The ANOVA indicated a highly significant effect (P≤0.0001) for sampler location 

(inner vs. outer) on NO2 levels.  Average seasonal inner canopy NO2 levels by tree 

ranged from 6 to 84% (0.30-3.90 ppb) greater than outer levels, with an average of 35% 

greater.  There was not a significant effect for year (P=0.40) or sample period (P=0.72) 

or their interaction (P=0.32).  The interaction between year and sampler location was 

highly significant (P=0.006), with a smaller average difference in 2009 (1.48 ppb) than 

in 2008 (2.97 ppb) (Figure 4.4).  A partition of the interaction revealed a significant 

effect for sampler location on NO2 levels in either year, indicating that difference 

between inner and outer canopy levels was significant in both years. 

Measured O3 levels were lower inside the canopy of all three trees over each 

sampling period in 2009 (Figure 4.5).  The ANOVA indicated an overall significant 

effect (P=0.02) for sampler location (inner vs. outer) on O3 levels (Table 4.2).  Average 

seasonal inner canopy O3 levels by tree ranged from 6 to 46% (1.01-10.60 ppb) lower 

than outer levels, with an average of 20% lower (Figure 4.6).  There was a highly 

significant effect for sample period on ozone levels (P≤0.001) and a significant effect 

for the interaction between sample period and sampler location (P=0.01).  A partition of 

the interaction by date indicated that the difference between inner and outer O3 levels 

was highly significant (P≤0.001) for all sample periods except the first (P=0.11) in 

which the average difference between inner and outer O3 levels was only 1.34 ppb 

(Figure 4.5). 
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Results from the ANOVA of RH and temperature are presented in Tables 4.3 

and 4.4, respectively.  There was a highly significant (P≤0.001) effect for sample period 

for RH and temperature.  There was not a significant effect for sampler location or the 

interaction between sampler location and sample period on RH suggesting that 

differences in RH between inner and outer canopy locations were negligible.  There was 

a significant effect (P=0.035) for sampler location on temperature, but not for the 

interaction of sample period and sampler location.  On average, temperatures inside the 

canopy were 0.07˚C higher than temperatures outside the canopy (Figure 4.7).  

Regression analyses at linear, quadratic, and cubic levels revealed no significant 

correlations between average NO2 differences and average O3 differences or between 

average NO2 or O3 differences and average temperature or RH differences (data not 

presented). 
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Figure 4.3  Seasonal trends in NO2 concentrations at inner (solid line) and outer 

(dashed line) canopy locations for each study tree in 2008 (PF = Picknelly Field, P. 

hybrida; SC = Springfield College, A. rubrum; SM1 = Springfield Museums, A. 

rubrum;  VCLP = Visitor Center, P. hybrida; VCRM = Visitor Center, A. rubrum) 

and 2009 (SM 1-3 = Springfield Museums,  

A. rubrum numbers 1-3). 
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Figure 4.4  Average inner and outer NO2 concentrations in 2008 and 2009 (Acer 

rubrum only).  Differences between inner and outer concentrations were highly 

significant (P≤0.001) in either year.  Error bars indicate standard deviation. 

 
 
 

Table 4.1  Results of ANOVA for data presented in Figures 4.3 and 4.4 

determining the significance of effects of year (Y), sample period (P), sampler 

location (L), tree (T), and their interactions on NO2 concentrations.  NT indicates 

no appropriate test for F value. 

 
 

 
 

 

Source df SS MS F P

Y 1 9.04 9.04 0.86 0.406

P 4 7.93 1.98 0.51 0.726

L 1 74.14 74.14 245.80 <0.001

T(Y) 4 42.04 10.51 NT

4 19.44 4.86 1.26 0.326

1 8.28 8.28 27.47 0.006

  Y1 1 66.00 66.00 218.81 <0.001

  Y2 1 16.42 16.42 54.46 0.001

4 1.10 0.28 1.81 0.176

16 61.77 3.86 NT

L x T(Y) 4 1.20 0.30 NT

4 0.33 0.08 0.56 0.698

16 2.43 0.15 NT
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Figure 4.5  Seasonal trends in O3 concentrations at inner (solid line) and outer 

canopy (dashed line) locations for each study tree in 2009 (SM 1-3 = Springfield 

Museums, A. rubrum numbers 1-3). 

 

 

 

  
Figure 4.6  Average inner and outer O3 concentrations in 2009.  Differences 

between inner and outer concentrations were significant (P=0.027).  Error bars 

indicate standard deviation. 
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Table 4.2  Results of ANOVA for data presented in Figures 4.5 and 4.6 

determining the significance of effects of sample period (P), sampler location (L), 

tree (T), and their interactions on O3 concentrations.  NT indicates no appropriate 

test for F values. 

 

 

Table 4.3  Results of ANOVA determining the significance of effects of sampler 

location (L), sample period (P), and their interaction on relative humidity (data not 

presented).  NT indicates no appropriate test for F value. 

 
 
 
 
 
 
 

 

 

 

 

Table 4.4  Results of ANOVA for data presented in Figure 4.7 determining the 

significance of effects of sampler location (L), sample period (P), and their 

interaction on temperature.  NT indicates no appropriate test for F value. 

 
 
 
 
 

 

 
 

Source df SS MS F P

P 4 88.379 22.094 1256.65 <0.001

L 1 0.038 0.038 26.45 0.035

T 2 0.290 0.145 NT

4 0.019 0.004 1.10 0.418

8 0.140 0.017 NT

2 0.002 0.001 NT

8 0.035 0.004 NT

Source df SS MS F P

P 4 634.34 158.58 613.92 <0.001

L 1 2.25 2.25 2.00 0.292

T 2 34.05 17.02 NT

4 0.22 0.05 0.56 0.698

8 2.06 0.25 NT

2 2.25 1.12 NT

8 0.80 0.10 NT

Source df SS MS F P

P 4 324.18 81.05 90.55 <0.001

L 1 150.08 150.08 35.07 0.027

T 2 11.27 5.64 NT

4 24.38 6.10 7.00 0.010

  P1 1 2.66 2.66 3.06 0.118

  P2 1 26.46 26.46 30.34 <0.001

  P3 1 31.28 31.28 35.87 <0.001

  P4 1 68.68 68.68 78.75 <0.001

  P5 1 45.37 45.37 52.03 <0.001

8 7.16 0.90 NT

2 8.56 4.28 NT

8 6.97 0.87 NT
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Figure 4.7  Average temperature at inner and outer canopy locations in 2009.  

Error bars indicate standard deviation. 

 

4.3 Discussion 

Although there are some limitations involved in the use of passive samplers, 

numerous studies have shown strong agreement between passive samplers and 

continuous monitoring (e.g. Sather et al. 2007).  Temperature and RH affect reaction 

rates for the types of passive samplers used in our study and are taken into consideration 

in the calculations involved in the passive sampler analysis (Ogawa 2001, 2006). Thus, 

the significant differences in temperature in 2009 between inner and outer canopy 

locations should not have affected the results of the passive sampling.  Consistently 

higher NO2 levels inside tree canopies in 2009 (Figure 4.4) despite negligible 

differences in RH between inner and outer canopy locations suggests that RH had little 

to no effect on NO2 levels.  Although there was a small but significant difference in 
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temperature between inner and outer canopy locations, the lack of any significant 

correlation between the difference in temperature and the differences in NO2 or O3 

suggests that temperature had little to do with differences in NO2 or O3. 

Although inner canopy NO2 and O3 values have not been reported previously, 

Fowler (2002) predicted that NO2 levels inside canopies would be higher than levels 

outside canopies, and vice versa for O3 levels, based on NOx-O3 chemistry (Figure 2.1). 

He suggested that NO released from soils would be rapidly oxidized by O3 inside the 

canopy to form NO2. The difference between the rate of NO emission and subsequent 

oxidation to NO2 and the rate of leaf uptake of NO2 resulting in an “effective” canopy 

compensation point. Under this model, when ambient NO2 levels are high, canopies will 

act as NO2 sinks; when ambient levels are low, canopies will act as indirect sources of 

NO2. Taken alone, consistently elevated NO2 levels inside the canopy suggest the 

possibility of a longer residence time inside the canopy due to decreased airflow.  

However, consistently elevated NO2 levels combined with consistently depressed O3 

levels inside the canopy suggest a role for the photochemical oxidant cycle.  Yet there 

was not a significant correlation between average NO2 differences and average O3 

differences, suggesting that the differences in concentrations may have been established 

independently.  The data presented here appear to support Fowler’s general predictions, 

but do not provide any insight into the mechanisms behind the differences found 

between inner and outer canopy levels.  

Fowler’s (2002) canopy-level compensation point model is based on studies 

using flux measurements above agricultural crops and forest canopies (e.g. Duyzer et al. 

1995; Hargreaves et al. 1992). Nitric oxide production from agricultural and forest soils 
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is well documented; however, emissions from urban soils are less well documented. 

Soils around urban trees, particularly street trees, are not intensively managed; most 

urban trees never receive additional water or nutrients after establishment. It is likely 

that the lack of soil disturbance and low water and nutrient status of soils in urban tree 

plantings results in lower NO emission compared to emissions from agricultural or 

forest soils. Further, urban trees often do not form closed canopies with neighboring 

trees, allowing NO emitted from soils under the tree canopy to rise into the atmosphere 

without necessarily being processed by the canopy.   

Given my initial results, it seems likely that factors in addition to temperature, 

RH, and soil NO emission may play a role in creating higher levels of NO2 inside urban 

tree canopies. The role of sunlight in the photochemical oxidant cycle may be one 

possible factor (Anderson 1983). Decreased airflow inside the canopy may also play a 

role. These findings suggest additional complications in the modeling of NO2 and O3 

uptake by trees. Further, they suggest that current models may be insufficient for 

describing exposure to and uptake of NO2 and O3 by urban trees, particularly those not 

forming a closed canopy with neighboring trees. More work is needed to document 

environmental factors affecting urban trees in order to make more accurate predictions 

of their ability to remove pollutants such as NO2 and O3 from the urban atmosphere. 
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CHAPTER 5  

POTTED TREES AS A MODEL FOR NITROGEN DIOXIDE UPTAKE  

5.1 Materials and Methods 

5.1.1 Study Sites 

Sites for this study were chosen based on predicted NO2 levels (high vs. low), 

accessibility, and security, the latter being the primary factor due to the value of 

equipment and trees being left in the field.  Four sites were chosen, two in high traffic 

areas of Springfield (Springfield Visitor Center, Liberty Street DEP site), one in a large 

urban park in Springfield (Forest Park Tree Nursery), and one in a rural setting in 

Amherst, Massachusetts. 

Springfield Visitor Center (VC). See description above, section 4.1.1.  The 

proximity of this site to I-91 and other sources of automobile traffic make it a high 

pollution site. 

Liberty Street DEP Site (LIB).  The Massachusetts Department of 

Environmental Protection (DEP) maintains an air pollution monitoring site in a large 

paved lot adjacent to the Registry of Motor Vehicles on Liberty Street in Springfield. 

The DEP actively monitors levels for a variety of air pollutants at this site, including 

NO2 and O3.  The site has full sun exposure and little nearby vegetation.  High 

automobile traffic adjacent to the site makes it a high-pollution site.   

Forest Park Tree Nursery (FP).  Forest Park is a large urban park located on 

237 hectares at the southern edge of Springfield.  The City of Springfield formerly 

maintained a large tree nursery at the edge of the park.  Currently the tree nursery is 
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used only as a dump site for wood chips and other plant debris.  Other than the 

occasional service vehicle or pedestrian, the site receives little traffic.  The site is 

surrounded by mature trees, which serve to block wind from most directions.  

Combined with little nearby vehicular traffic, this site has relatively low air pollution 

levels. 

Amherst (AMH).  This site is located at Montague Field, in a rural setting at the 

northern edge of the Amherst campus of the University of Massachusetts.  The site is 

used as an environmental monitoring facility for the Air Pollution Research Group in 

the Department of Plant, Soil, and Insect Sciences.  The site also is used as an active 

ozone monitoring station for the DEP.  The site is in an open field setting, surrounded 

by trees on three sides and a large hay field on the fourth side.  The site is well removed 

from any sources of automobile traffic making it a low pollution site.   

5.1.2 Experimental Setup 

Thirty-six specimens of Acer rubrum L. (Aceraceae) (red maple) in 3-gallon 

pots (average height 1.4 m) were purchased from Bigelow Nurseries (Northborough, 

MA) in March, 2009.  The potted trees were maintained outdoors in a holding area until 

April, at which time the trees were removed from their pots, the soil was washed from 

the roots to remove any residual slow-release fertilizer, and the trees were repotted in 

larger pots (5-gallon) using a soilless potting media (Metro-Mix 300, Sun Gro 

Horticulture Canada Ltd., Bellevue, WA).  The repotted trees were then returned to the 

holding area until just after bud break in mid-May at which time they were taken to one 

of the four study sites where they remained until the end of the study in September.  

Nine individuals of A. rubrum were located at each of the four study sites.  Trees were 
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watered to saturation with tap water one to two times weekly, depending on weather 

conditions, and were fertilized monthly with equal amounts of a modified Hoagland 

solution (see Appendix).   

Average NO2 levels were measured at each site using Ogawa passive samplers 

(Ogawa and Company USA, Inc., Pompano Beach, FL).  Samplers were replaced 

approximately every two weeks during the study period, for a total of seven two-week 

sample periods.  Samples were analyzed at the Research Triangle Institute (Research 

Triangle Park, NC) using standard colorimetric methods (Ogawa, 2001, 2006).  

Measurements of temperature, photosynthetically active radiation (PAR), and relative 

humidity (RH) were made at each site using data loggers in solar radiation shelters 

(temperature and RH only) (HOBO, Onset Computer Corporation, Bourne, MA).  

Temperature, PAR, and RH were recorded at 20 minute intervals.  Vapor pressure 

deficit (VPD) was calculated following Method 1 in Howell and Dusek (1995).  

Because of the strong correlation between NO2 uptake and stomatal conductance 

(Wellburn 1990), only meteorological data from daylight hours (approximately 05:00-

18:00), when plants are actively transpiring, were used for analysis.  Daytime 

meteorological data and NO2 concentrations were averaged over the periods 

corresponding to leaf sampling dates for statistical analysis.  

Leaf samples consisting of 15 to 20 fully expanded leaves were collected from 

each tree at the beginning of the study and at (approximately) monthly intervals 

thereafter, for a total of four sets of samples from each tree over the study period.  

Leaves were dried in a forced-draft oven at 75˚C for 72 hours after which they were 

crushed by hand and sent to the Stable Isotope Laboratory at Cornell University (Ithaca, 
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NY) for analysis of total N (%N) and 15N enrichment (δ15N).  Analyses were performed 

on a Thermo Delta V isotope ratio mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA) connected to a NC2500 elemental analyzer (CE Instruments, Wigan, 

UK).  In-house standards, verified against international reference material from the 

International Atomic Energy Association, were run after every tenth sample, and values 

were corrected using a two-point normalization based on in-house standards.  δ15N is 

generally expressed as the ratio of 15N/14N in the sample normalized by the 15N/14N ratio 

of the standard (atmospheric N2) using the following equation: 

δ
15N = (R15/14 sample/R15/14 standard) × 1000 (‰) 

where R15/14 is the atomic ratio of 15N to 14N and units are expressed as per mil (‰) 

(Vallano and Sparks 2007). 

To determine the effect of washing leaves to rid them of surface contaminates 

on leaf %N and δ15N values, fully expanded leaf samples were collected from five 

specimens of A. rubrum growing in tree pits in a sidewalk along a busy street in 

Springfield.  Leaves were collected in August, after a full season of exposure to dust 

and other airborne contaminants.  Five to ten leaves were collected from limbs on each 

of the north, south, east, and west sides and from the middle of each tree canopy.  

Leaves were transported to the laboratory where half of the leaves in each sample were 

rinsed for thirty seconds with running tap water and for another thirty seconds with 

running distilled water.  Samples were then dried in a forced-draft oven at 75˚C for 72 

hours after which they were hand crushed and sent to the Cornell Stable Isotope 

Laboratory for determination of %N and δ15N as outlined above. 



 

48 

5.1.3 Statistical Analysis 

To determine the significance of differences in leaf %N and δ15N between sites, 

data were analyzed by analysis of variance (ANOVA).  Dependent variables were leaf 

%N and δ15N; independent variables were site, tree (nested within site), and sample 

period.  Tree was treated as a random variable; site and sample period were treated as 

fixed variables.  A similar model was used to determine the significance of differences 

in meteorological measurements and NO2 concentrations between sites. Meteorological 

and gas data were treated as dependent variables, and independent variables were site 

and sample period.  Site was treated as a fixed variable and sample period as a random 

variable.  Range tests were performed using Tukey’s HSD.  Data for the washing 

experiment were also analyzed by ANOVA.  Dependent variables were leaf %N and 

δ
15N, and independent variables were tree and washing treatment.  Tree was treated as a 

random variable; washing treatment was fixed.  Correlations of meteorological data and 

NO2 concentrations with changes in leaf %N and δ15N were determined using 

regression analysis. All analyses were performed in SAS 9.1 (SAS Institute, Cary, NC) 

using the general linear model (PROC GLM) with appropriate test statements for 

ANOVA and a general regression model (PROC REG) for correlation analyses.  

 

5.2  Results  

5.2.1  Leaf 
15

N Enrichment 

Results for the ANOVA testing the significance of differences in leaf δ15N 

between the four sites are presented Table 5.1.  Differences between sites (P=0.63; 

Figure 5.1) and individual site by date interactions (P=0.27; Figure 5.2) were not 
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significant, whereas differences between dates were significant (P=0.004; Figure 5.3). 

An ANOVA of initial leaf δ15N revealed no significant differences between sites 

(P=0.75; data not presented).  Analysis of variance of overall change in δ15N showed no 

significant differences between sites (Table 5.2; P=0.83) including when lumped by city 

(Table 5.3; Springfield/Amherst; P=0.39) or NO2 level (Table 5.4; High = Liberty St. 

and Visitor Center; Low = Forest Park and Amherst; P=0.88).  Overall, δ15N became 

enriched at all sites (Figure 5.1), with the lowest mean increase at the Amherst site (0.11 

± 0.16 ‰) and the highest mean increase at the Forest Park site (0.23 ± 0.39 ‰).  Figure 

5.3 shows the average change in δ15N within each site for the four sample dates.  

Overall there appears to be little consistency in trends within or among sites.  An 

ANOVA of initial δ15N values among sites indicated no significant differences between 

sites (Table 5.5).  Regression analyses through the quadratic level revealed no 

significant correlations between average change in leaf δ15N and average meteorological 

values or NO2 levels at each site (Table 5.6). 

 

Table 5.1  Results of ANOVA for data presented in Figure 5.2 determining the 

significance of differences in δ
15

N based on the independent variables sample date 

(D), site (S), tree (T), and their interactions.  NT indicates no appropriate test for F 

value. 

 
 
 

 

 

 

 

Source df SS MS F P

D 3 0.58 0.19 4.71 0.004

S 3 1.37 0.45 0.58 0.630

T(S) 32 25.17 0.78 NT

9 0.46 0.05 1.25 0.277

93 3.87 0.41 NT



 

50 

Table 5.2  Results of ANOVA for data presented in Figure 5.1 testing significance 

of change in δ
15

N from the beginning to the end of the study period based on the 

independent variables site (S) and tree (T).  NT indicates no appropriate test for F 

value. 

 

 

 

 

Table 5.3  Results of ANOVA testing significance of change in δ
15

N from the 

beginning to the end of the study period when grouped by city (C) and tree nested 

within city [T(C)].  NT indicates no appropriate test for F value. 

 

 

 

Table 5.4 Results of ANOVA testing significance of change in δ
15

N from the 

beginning to the end of the study period when grouped by NO2 level (N) and tree 

nested within NO2 level [T(N)].  NT indicates no appropriate test for F value. 

 

  

 

 

 

 

 

 

 

 

 

Source df SS MS F P

C 1 0.051 0.051 0.73 0.399

T(C) 34 2.385 0.070 NT

Source df SS MS F P

S 3 0.063 0.021 0.29 0.834

T(S) 32 2.373 0.074 NT

Source df SS MS F P

N 1 0.001 0.001 0.02 0.884

T(N) 34 2.435 0.071 NT
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Figure 5.1  Change in δ
15

N from the beginning to the end of the study for each site.  

Differences among sites were not significant.  Error bars indicate standard 

deviation. 
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Figure 5.2  Average δ
15

N at each sample date within the four sites. Amherst = 

AMH, Forest Park = FP, Liberty St. = LIB, Visitor Center = VC.  The site × date 

interaction was not significant nor were the individual site or date treatments 

significant.  Error bars indicate standard deviation. 
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Figure 5.3  Average δ
15

N among all sites by date.  Dates with different letters are 

significantly different (P=0.05) based on Tukey’s HSD.  Error bars indicate 

standard deviation.  

 

Table 5.5  Results of ANOVA testing the significance of initial differences in δ
15

N 

among sites based on the variables site (S) and tree within site [T(S)].  NT indicates 

no appropriate test for F value. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Source df SS MS F P

S 3 0.222 0.074 0.40 0.754

T(S) 32 5.931 0.185 NT
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Table 5.6  Results of regression analysis determining the significance of 

correlations between average change in δ
15

N and average meteorological values 

(temperature, RH, VPD, PAR) and NO2 levels among sites. 

 

Variable: Temperature

Order Source df SS MS F P R2

Linear Model 1 0.0000 0.0000 0.00 1.000 0.00

Error 2 0.0070 0.0035

Total 3 0.0070

Quadratic Model 2 0.0003 0.0001 0.03 0.974 0.05

Error 1 0.0067 0.0067

Total 3 0.0070

Variable: RH

Order Source df SS MS F P R2

Linear Model 1 0.0000 0.0000 0.00 1.000 0.00

Error 2 0.0070 0.0035

Total 3 0.0070

Quadratic Model 2 0.0056 0.0028 1.95 0.451 0.80

Error 1 0.0014 0.0014

Total 3 0.0070

Order Source df SS MS F P R2

Linear Model 1 0.0000 0.0000 0.00 1.000 0.00

Error 2 0.0070 0.0035

Total 3 0.0070

Quadratic Model 2 0.0022 0.0011 0.23 0.828 0.31

Error 1 0.0048 0.0048

Total 3 0.0070

Variable: PAR

Order Source df SS MS F P R2

Linear Model 1 0.0056 0.0056 7.85 0.107 0.79

Error 2 0.0014 0.0007

Total 3 0.0070

Quadratic Model 2 0.0065 0.0032 5.94 0.278 0.92

Error 1 0.0005 0.0005

Total 3 0.0070

Variable: NO2

Order Source df SS MS F P R2

Linear Model 1 0.0009 0.0009 0.31 0.634 0.13

Error 2 0.0061 0.0030

Total 3 0.0070

Quadratic Model 2 0.0062 0.0031 3.98 0.334 0.88

Error 1 0.0007 0.0007

Total 3 0.0070

Variable: VPD
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5.2.2 Total Leaf Nitrogen 

Results for the ANOVA of differences in leaf %N are presented in Table 5.7.  

Overall, results for leaf %N were similar to those of δ15N, with significant differences 

among dates (P<0.001; Figure 5.4), but not among sites (P=0.51; Figure 5.5) or the 

interaction between sites and dates (P=0.99; Figure 5.6).  An ANOVA of initial leaf 

%N revealed no significant differences among sites (P=0.91).  An ANOVA of change 

in %N showed no significant differences among sites (P=0.88; Table 5.8) including 

when grouped by city (P=0.88; Table 5.9) or NO2 levels (P=0.59; Table 5.10).  Figure 

5.5 shows the average decrease in leaf %N for each site and Figure 5.6 shows the 

average decrease in total leaf %N for the four sample dates within each site.  Overall the 

decline in leaf %N throughout the study period was very even among sites.  An 

ANOVA of initial %N values among sites indicated no significant differences between 

sites (P=0.91; Table 5.11).  Regression analysis revealed no significant correlations 

between average change in leaf %N and average meteorological values or NO2 levels at 

each site (Table 5.12). 
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Table 5.7 Results of ANOVA for data presented in Figures 5.4, 5.5, and 5.6 testing 

the significance of differences in total leaf nitrogen based on the independent 

variables sample date [D], site [S], tree nested within site [T(S)], and their 

individual interactions.  NT indicates no appropriate test for F value. 

 
 

 

 

 

 

Table 5.8  Results of ANOVA testing significance of change in total leaf nitrogen 

from the beginning to the end of the study period based on the independent 

variables site (S) and tree within site [T(S)].  NT indicates no appropriate test for F 

value. 

 

 

 

Table 5.9  Results of ANOVA testing significance of change in total leaf nitrogen 

from the beginning to the end of the study period when grouped by city (C).  NT 

indicates no appropriate test for F value. 

 
 

 
 

 

Table 5.10  Results of ANOVA testing significance of change in total leaf nitrogen 

from the beginning to the end of the study period when grouped by NO2 levels (N).  

NT indicates no appropriate test for F value. 

 

 

 

 

 

Source df SS MS F P

D 3 54.04 18.01 286.99 <0.001

S 3 0.64 0.21 0.77 0.518

T(S) 32 8.84 0.27 NT

9 0.12 0.01 0.23 0.990

93 5.83 0.06 NT

Source df SS MS F P

C 1 0.003 0.003 0.02 0.884

T(C) 34 5.640 0.165 NT

Source df SS MS F P

N 1 0.048 0.048 0.29 0.591

T(N) 34 5.595 0.160 NT

Source df SS MS F P

S 3 0.109 0.036 0.21 0.887

T(S) 32 5.534 0.172 NT
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Figure 5.4  Average total leaf nitrogen among sites by date.  Dates with different 

letters are significantly different (P=0.05) based on Tukey’s HSD.  Error bars 

indicate standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  Average change in total leaf nitrogen for each site.  Differences between 

sites were not significant.  Error bars indicate standard deviation. 
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Figure 5.6  Average total leaf nitrogen at each sample date within the four sites.  

Differences between sites and interaction between site and date were not 

significant. Error bars indicate standard deviation. 

 

Table 5.11  Results of ANOVA testing the significance of initial differences in total 

leaf N among sites.  NT indicates no appropriate test for F value. 

 

 

Source df SS MS F P

S 3 0.088 0.029 0.16 0.919

T(S) 32 5.765 0.180 NT
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Table 5.12  Results of regression analysis determining the significance of 

correlations between average change in total leaf nitrogen and average 

meteorological values (temperature, RH, VPD, PAR) or NO2 levels among sites. 

 

Variable: Temperature

Order Source df SS MS F P R2

Linear Model 1 0.0094 0.0094 6.21 0.130 0.75

Error 2 0.0030 0.0015

Total 3 0.0124

Quadratic Model 2 0.0112 0.0056 4.62 0.312 0.90

Error 1 0.0012 0.0012

Total 3 0.0124

Variable: RH

Order Source df SS MS F P R2

Linear Model 1 0.0068 0.0068 2.46 0.257 0.55

Error 2 0.0056 0.0028

Total 3 0.1240

Quadratic Model 2 0.0071 0.0035 0.66 0.655 0.57

Error 1 0.0053 0.0053

Total 3 0.0124

Variable: VPD

Order Source df SS MS F P R2

Linear Model 1 0.0081 0.0081 3.75 0.192 0.65

Error 2 0.0043 0.0021

Total 3 0.0124

Quadratic Model 2 0.0097 0.0048 1.80 0.465 0.78

Error 1 0.0027 0.0027

Total 3 0.0124

Variable: PAR

Order Source df SS MS F P R2

Linear Model 1 0.0038 0.0038 0.89 0.445 0.30

Error 2 0.0086 0.0043

Total 3 0.0124

Quadratic Model 2 0.0052 0.0026 0.36 0.760 0.42

Error 1 0.0072 0.0072

Total 3 0.0124

Variable NO2

Order Source df SS MS F P R2

Linear Model 1 0.0037 0.0037 0.85 0.453 0.29

Error 2 0.0087 0.0043

Total 3 0.0124

Quadratic Model 2 0.0038 0.0019 0.22 0.831 0.30

Error 1 0.0086 0.0086

Total 3 0.0124
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5.2.3 Meteorological Data and NO2 Concentrations 

Results for the ANOVA testing the significance of differences in meteorological 

data and in NO2 concentrations among sites are presented in Table 5.13.  Figure 5.7 

shows the mean values for meteorological data and NO2 concentrations by site.  There 

were significant differences among sites in temperature (P=0.003), RH (P<0.001), VPD 

(P<0.001), and NO2 (P<0.001).  Differences in PAR were not significant.  Differences 

determined by Tukey’s HSD showed that the two high NO2 sites (LIB, VC) and the two 

low NO2 sites (AMH, FP) tended to group together in terms of meteorological values, 

particularly in terms of RH and VPD, and to a lesser extent temperature.  Relative 

humidity was significantly higher and VPD significantly lower at AMH and FP.  

Temperature was lowest at AMH and highest at LIB with intermediate levels at FP and 

VC.  Nitrogen dioxide levels were similar between LIB and VC but not between AMH 

and FP, with NO2 levels at FP were intermediate between those at LIB/VC and AMH.  

Although regression analysis did not reveal a significant correlation between average 

NO2 levels determined by passive sampling at LIB and NO2 levels monitored by the 

DEP at the same site over the same time periods, an ANOVA indicated that the values 

were not significantly different (P=0.86).   
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Table 5.13  Results of ANOVA for data presented in Figure 5.7 determining the 

significance of differences among sites in temperature, relative humidity (RH), 

vapor pressure deficit (VPD), photosynthetically active radiation (PAR), and NO2 

based on site (S), sample period (P) and the interaction between the two.  NT 

indicates no appropriate test for F value. 

 

 

 

 

 

 

Temperature

Source df SS MS F P

S 3 4.78 1.59 14.30 0.003

P 2 51.00 25.50 NT

6 0.66 0.11 NT

RH

Source df SS MS F P

S 3 377.82 125.94 27.55 <0.001

P 2 53.79 26.89 NT

6 27.42 4.57 NT

VPD

Source df SS MS F P

S 3 0.24 0.08 21.32 0.001

P 2 0.00 0.00 NT

6 0.02 0.00 NT

PAR

Source df SS MS F P

S 3 65355.94 21785.31 2.11 0.200

P 2 42582.18 21291.09 NT

6 61955.58 10325.93 NT

NO2

Source df SS MS F P

S 3 171.11 57.03 101.65 <0.001

P 2 4.80 2.40 NT

6 3.36 0.56 NT
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Figure 5.7  Mean values for meteorological data and NO2 concentrations at each 

site.  Means with different letters are significantly different (P=0.05) by Tukey’s 

HSD.  Error bars indicate standard deviation. 

 

5.2.4 Leaf Washing Experiment 

Results for the ANOVA determining the significance of the effect of washing 

leaves on δ15N and %N are presented in Tables 5.14 and 5.15, respectively.  Washing 

leaves had a small but significant effect (P=0.01) on δ15N, with an average decrease in 

δ
15N of 0.06‰ (Figure 5.8).  Washing did not significantly alter leaf %N (Figure 5.9). 
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Table 5.14 Results of ANOVA for data presented in Figure 5.8 determining the 

significance of differences in δ
15

N based on independent variables washing 

treatment (W), tree (T), and the interaction between the two.  NT indicates no 

appropriate test for F value. 

 
 
 
 
 
 

 

 

Table 5.15  Results of ANOVA for data presented in Figure 5.9 determining the 

significance of differences in total leaf nitrogen based on independent variables 

washing treatment (W), tree (T), and the interaction between the two.  NT 

indicates no appropriate test for F value. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5.8 Average δ
15

N values for washed (W) and unwashed (UW) leaf samples.  

Differences between washed and unwashed samples were significantly different 

(P=0.01).  Error bars indicate standard deviation. 

 
 

Source df SS MS F P

W 1 0.008 0.008 0.28 0.626

T 4 0.971 0.242 NT

4 0.129 0.032 NT

Source df SS MS F P

W 1 0.055 0.055 20.36 0.010

T 4 19.320 4.831 NT

4 0.010 0.002 NT
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Figure 5.9 Average total leaf nitrogen values for washed (W) and unwashed (UW) 

leaf samples.  Differences between washed and unwashed samples were not 

significantly different (P=0.62).  Error bars indicate standard error. 

 

5.3 Discussion 

A number of studies using either natural vegetation or potted plants have 

demonstrated NO2 uptake using a combination of measurements of leaf %N, δ15N, and 

nitrate reductase activity (NRA) from mosses, herbaceous plants, and trees growing 

along a NO2 gradient (Ammann et al. 1999; Laffray et al. 2010; Marsh et al. 2004; 

Pearson et al. 2000).  Similar results have also been achieved using δ15N in tree rings 

from trees growing along pollution gradients (Saurer et al. 2004; Savard et al. 2009).  

Using potted purple moorgrass (Molinia caerulea Moench.) along a NO2 gradient from 

a major freeway in France, Laffray et al. (2010) found a highly significant negative 

correlation between both leaf %N and δ15N and distance from the freeway.  Nitrogen 

dioxide levels in their study ranged from 19 ppb near the freeway (6-20 m from the 

freeway) to 3 ppb at their most distant sites (400-500 m from the freeway).  Using 

potted Picea abies along a NO2 gradient from a major freeway in Switzerland, Ammann 
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et al. (1999) estimated a 25% contribution of NO2-derived N to overall N metabolism 

based on an average enrichment in δ15N of 2‰ after a single season of growth in trees 

closest to the freeway.  Nitrogen dioxide levels ranged from 20 ppb near the freeway (5 

m away from the freeway) to 5 ppb at the site furthest from the freeway (980 m away 

from the freeway).  Using natural vegetation along a NO2 gradient from a major 

freeway in the UK, Marsh et al. (2004) found significant increases in leaf δ15N and 

NRA in several tree species (Acer pseudoplatanus, Betula pendula, Crataegus 

monogyna, Quercus spp.), growing near the freeway compared to the same species 

growing further away.  Although they did not present values for other species, they 

found δ15N enrichment of approximately 3‰ for C. monogyna.  Marsh et al. (2004) 

suggested that leaf NRA might be a reliable indicator of NO2 uptake because NRA is 

substrate inducible.  They noted that this phenomenon may be especially true for fast-

growing “pioneer” species because of their generally higher NRA and preference for 

shoot assimilation of N over root assimilation.   

Overall, differences in NO2 levels among sites in the current study (Figure 5.7) 

were not evident in measurements of leaf δ15N or %N (Figures 5.1, 5.5), suggesting that 

either 1) the trees used in this study were not incorporating NO2-derived nitrogen into 

leaves or 2) the experimental system was not effective in demonstrating NO2 uptake.  It 

is not possible to empirically determine which is the case, and it is possible to pose a 

strong argument for either.   

The overall significant decline in leaf %N over the course of the season (Figure 

5.4) is consistent with previous work showing a seasonal decline in leaf %N for A. 

rubrum grown under natural forested conditions (Reich et al. 1991).  Trends in leaf %N 
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in previous studies of NO2 uptake are inconsistent.  Marsh et al. (2004) evaluated the 

use of leaf %N as a tree leaf biomarker for NO2 uptake along a downwind gradient from 

a highway and found no correlation between %N in tree leaves and NO2 exposure 

whereas Laffray et al. (2010) found a highly significant negative correlation between 

leaf %N and distance from the freeway (used as a proxy for NO2 levels).  This 

discrepancy may be due to the difference in study species and experimental setup (i.e. 

natural woody vegetation vs. potted herbaceous plants).  The results presented here for 

%N corroborate the results of Marsh et al. (2004), showing little difference between 

sites in overall change in leaf %N.  Furthermore, the consistent trends in leaf %N 

among sites (Figure 5.6) suggest little variation in overall N uptake among sites whereas 

the inconsistent trends in δ15N among sites suggest large variation in 15N discrimination. 

The overall significant increase in leaf δ15N (Figure 5.3) is likely the result of 

enrichment from the KNO3 used in the nutrient solution.  Isotopic analysis of the N 

sources used in the nutrient solution indicated a δ15N of 12.93‰ for KNO3 and -

0.736‰ for CaNO3.  Ideally the δ15N of the nutrient solution would have been as close 

to zero as possible; however, it is difficult to find commercially available 15N-depleted 

N sources suitable for use in nutrient solutions.  Due to a delay in receiving the initial 

isotopic analysis results from the Cornell Stable Isotope Lab, it was not possible to 

adjust the N sources in the nutrient solution prior to the first fertilizing date, and for 

consistency the same nutrient solution throughout the experiment.  It is possible that the 

high 15N enrichment of the nutrient solution combined with the inherent variability of 

15N fractionation events masked any differences between sites that could have been 

attributed to NO2 uptake.  Ammann et al. (1999) appears to be the only other similar 
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NO2 uptake study in which potted trees were used; however, there is no mention of 

fertilizing having taken place during the study.  Given the inherently slow growth of 

conifers and the perennial nature of their needles it may be possible to conduct such a 

study without the complication of additional fertilizing.  This is likely also true for 

studies such as that of Laffray et al. (2010) in which quick-growing herbaceous plants 

are used over a single season.  However, this is not possible with fast growing, woody 

species such as A. rubrum.  Because of some evidence suggesting NO2 uptake is 

reduced in plants supplied with high NO3
- to the roots (Vallano and Sparks 2007) and 

the fact that urban trees generally are not fertilized after establishment, trees in this 

study were purposefully minimally fertilized.  As a result, the trees began to show signs 

of nutrient deficiency (in the form of chlorosis) toward the end of the study period.  Had 

the trees received no additional fertilizer as in the case of Ammann et al. (1999), they 

surely would have suffered severe nutrient deficiency.   

In theory, if the contribution of 15N enriched NO2 to leaf N metabolism was 

greater than the inherent variation in fractionation events associated with the uptake of 

N from the soil, this would appear as a greater relative increase in δ15N among sites 

with greater NO2 exposure and uptake.  It has been shown that NO2 uptake is largely 

under the control of stomatal conductance (gs) with minimal internal resistance 

(Wellburn 1990).  Thus sites with higher NO2 concentrations and higher rates of gs 

should have relatively higher NO2 uptake rates and subsequently greater increases in 

δ
15N.  A number of studies have shown strong positive correlations between 

environmental factors such as photosynthetic photon flux denisty (PPFD; measured as 

PAR in this study), air temperature, RH, or VPD and gs in trees, including A. rubrum 
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grown under field conditions or in containers (Augé et al. 2000; Bovard et al. 2005; 

Johnson et al. 2001; Short et al. 1999).  Of these variables, PPFD (PAR) and VPD have 

shown the strongest correlations with gs, leading to their use as a proxy for gs.  In the 

current study, there were no significant differences in PAR among sites; however, there 

was a clear separation in VPD between sites, with significantly higher VPD at LIB and 

VC compared to AMH and FP (Figure 5.7).  Likewise, NO2 concentrations were highest 

at LIB and VC.  Using VPD as a proxy for gs, LIB and VC presumably had both the 

highest exposure to (as determined by significantly higher NO2 levels) and uptake of (as 

determined by significantly higher VPD) NO2 yet did not have the greatest increases in 

δ
15N (Figure 5.1).  Bovard et al. (2005) noted that of a number northern hardwood trees 

examined, A. rubrum showed a relatively high degree of stomatal closure in response to 

decreasing soil water availability.  Although soil moisture availability was not measured 

during the current study, it was observed that pots at LIB and VC tended to dry out 

quicker than pots at FP or AMH, which may have limited NO2 uptake due to earlier 

onset of reduced gs at LIB and VC.   

The lack of any significant differences in leaf δ15N change between sites and the 

lack of any significant correlation between changes in δ15N and environmental variables 

makes it difficult to support any conclusions regarding trends in 15N enrichment.  It is 

likely that the variation seen in δ15N among sites is due to inherent variation in 15N 

discrimination in the uptake and assimilation of NO3
- from the nutrient solution.  This 

conclusion is supported by the consistent trends in leaf %N among sites (Figures 5.5, 

5.6) which suggest little variation in overall N supplied to the trees.  The significant 

difference in δ15N between washed and unwashed leaf samples (P=0.01; Figure 5.8) is 
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likely an additional source of variation; however, considering the large initial 

differences in leaf δ15N, it seems unlikely that the average 0.06‰ difference between 

washed and unwashed samples would have a significant impact on overall change in 

δ
15N.  Additional sources of possible variation in 15N inputs include wet and dry 

deposition of NO2 and other forms of reactive gaseous or particulate N to the soil and 

stomatal uptake of other forms of gaseous reactive N.  Furthermore, a more complicated 

analysis may be required to determine the significance of correlations between 

interrelated variables such as temperature, PAR, RH, and VPD.  Bassow and Bazzaz 

(1998) employed path analysis for this purpose; however, this type of analysis is beyond 

the scope of the current study given its preliminary nature. 

 
As a model for determining NO2 uptake, this technique is applied easily in 

laboratory fumigation studies using 15N labeled fertilizers or fumigants (e.g. Takahashi 

et al. 2005a); however, applying this technique in the field can be difficult.  In the 

laboratory it is possible to limit N inputs and their availability to roots and shoots, as 

well as to eliminate the influence of microbial processes and other soil-related 

fractionation processes.  A variety of N inputs are available to plants grown in the field 

including reduced, oxidized, and organic forms, each with their own unique δ15N.  

These inputs are subject to a number of fractionation events as they cycle through air, 

soil, water, and the plant (Vallano and Sparks 2007).  Atmospheric N inputs can be 

taken up directly by leaves via dry deposition, in which case fractionation events are 

limited to those involved in stomatal uptake, diffusion through the apoplast, and N 

metabolism in the leaf (Dawson et al. 2002; Evans 2001).  Atmospheric N inputs can 

also be wet-deposited to soil where they may be processed by microbes before being 
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taken up by plant roots, in which case fractionation events include those from microbial 

metabolism, diffusion through soil, uptake at the root-soil interface, and N metabolism 

in the roots (Dawson et al. 2002; Evans 2001).  Without a thorough understanding of 

the fractionation processes involved in each step of the soil-microbe-root pathway, it is 

difficult to determine with any certainty the influence of atmospherically derived N in 

plant metabolism (Vallano and Sparks 2007).  Although our knowledge of stable 

isotopes and their use as indicators of ecological change is increasing, the quantification 

of fractionation processes and their overall contribution to stable isotope signatures 

remains challenging (Dawson et al. 2002; Dawson and Siegwolf 2007). 

Ammann et al. (1999) have shown that it is possible to estimate NO2 uptake 

using potted evergreen trees, getting results which suggests that this technique may be 

successfully applied to other trees.  Evergreen trees are not commonly used urban 

plantings, particularly along urban streets, and in order to estimate NO2 uptake by urban 

trees the model must be applied to more commonly used deciduous trees such as A. 

rubrum.  The current study highlights the difficulties involved in using fast-growing, 

deciduous species such as A. rubrum for this type of study, namely the issues involved 

in overcoming variability in 15N input from the fertilizer source as well as accounting 

for natural variation in 15N fractionation events involved with NO2 uptake and N 

metabolism.  The successful employment of this type of model using common urban 

trees would bring us one step closer to true field validation of current, widely employed 

uptake models.



PART III 

CONCLUSION 
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CHAPTER 6 

CONCLUDING REMARKS 

 
Given the ever-increasing proportion of the global population living urban 

environments and the rising trend in automobile use in these areas, urban centers will 

only increase in their importance for atmospheric chemistry and air quality at both local 

and global scales.  We have increasingly become reliant on models to determine the 

complex trends in atmospheric pollutants and their interactions with plants and animals.  

It is essential that such models be validated using real data given their importance in 

shaping policy decisions regarding air pollution. Validating such models is particularly 

important if we are to use trees as an effective air pollution control method.  The data 

generated from the canopy NO2 and O3 measurement study (Chapter 4) offer a useful 

contribution to our understanding of the urban environment, in particular the 

atmospheric environment experienced by urban trees.  More data like these, data based 

on actual measurements as opposed to estimates of flux, need to be generated in the 

effort to characterize the urban environment and to validate current models. 

The use of 15N stable isotope signatures offers one of the most promising tools 

for quantifying uptake of NO2 under ambient conditions.  The model employed here 

(Chapter 5) has been used successfully with potted herbaceous plants as well as potted 

conifer saplings.  Although studies of this nature offer useful information for 

understanding uptake under ambient conditions, they are not necessarily relevant to the 

question of tree uptake of NO2 in the urban environment.  For this, tree species more 

commonly used in the urban environment are necessary.  Acer rubrum is one of the 

most widely planted urban trees in North America and as such is an ideal candidate for 
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this type of work.  Although the data collected here were inconclusive, the study 

highlights some of the difficulties involved in employing this model with deciduous 

trees.  In particular it highlights the need to overcome additional 15N inputs such as 

those from N sources in the fertilizer and the need to better document the natural 

variation in 15N fractionation events involved in NO2 uptake and N metabolism.  With a 

better understanding of these events, it may eventually be possible to use 15N stable 

isotope signatures to determine NO2 uptake rates in trees grown in-situ.  Such data 

would be extremely useful in shaping policy regarding the use of trees for pollution 

control. 
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APPENDIX 

NUTRIENT SOLUTION 

 
Half-strength modified Hoagland Solution. 
 

 
 

 

Compound
Molecular 

weight
[Stock mM] [Stock g L

-1
 ]

Volume Stock 

(mL) per L

Macronutrients

KNO3 101.10 1000 101.10 3.0

Ca(NO3)2•4H2O 236.16 1000 236.16 2.0

KH2PO4 136.09 500 68.05 2.0

MgSO4•7H20 246.47 500 123.24 1.0

Micronutrients

KCl 74.55 25 1.86

H3BO3 61.83 12.5 0.77

MnCl2 125.85 14.5 1.82

ZnSO4•7H20 287.54 1.0 0.29

CuSO4•5H2O 249.68 0.25 0.06

H2MoO4 (85% MoO3) 161.97 0.25 0.04

NaFe EDDHA 16.70 0.5

2.0
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