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ABSTRACT 

THE ROLE OF STRUCTURAL STORMWATER BMPS, IMPERVIOUS SURFACES AND 

NATURAL FACTORS ON BASE FLOW IN MASSACHUSETTS 

FEBRUARY 2012 

KIMBERLY B KLOSTERMAN, B.A., KNOX COLLEGE 

M.R.P., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Elizabeth A. Brabec 

This research conducted a GIS analysis of twenty-eight sub-watersheds in Massachusetts 

and considered five factors which the literature suggested influenced base flow.  The literature 

suggested a positive relation between precipitation, forest cover and base flow and a negative 

relationship between impervious surfaces, soil drainage class, slope and base flow.  A multiple 

regression analysis of the sub-watershed information confirmed the literature for two factors (soil 

drainage class and slope) and questioned it on three factors (impervious surfaces, precipitation, 

and forest cover).  The resulting predictive equation indicated that imperviousness and 

precipitation were the most significant factors affecting base flow.  The first derivative of the 

predictive equation indicated that the interaction effects between these factors had a substantial 

impact on the base flow values. 

A number of land use impacts were also considered in this research.  Natural land use 

features such as open land, wetland, forest cover, agricultural, and recreation uses were found to 

promote the infiltration and increase base flow.  These uses promote base flow because their 

surfaces are more pervious than unnatural surfaces such as high density/multi-family residential, 

industrial and commercial areas which are mostly covered by impervious surfaces reducing base 

flow. 

 The research also used a case study of two Massachusetts sub-watersheds to consider the 

effectiveness of structural stormwater Best Management Practices for promoting base flow.  Two 
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sub-watersheds were considered: the Neponset where stormwater BMPs had been implemented 

and Quinsigamond that had not implemented them. The case study results suggested that 

structural stormwater BMPs were effective in increasing base flow.  
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GLOSSARY 

Aspect- “a position facing a particular direction: exposure” (Anonymous 2011) 

Base flow-“the sustained discharge of water to a river channel from the ground-water system 

before, during and after storms. Streams continue to flow between storms because of base flow” 

(Focazio and Cooper 1995, 25). 

BASINS-“a multi-purpose environmental analysis system that integrates a geographical 

information system (GIS), national watershed data, and state-of-the-art environmental assessment 

and modeling tools into one convenient package” (EPA). 

Cost-sharing-when the cost of a project is shared by more than the individual or group who 

embraces ownership. 

Coterminous-“having the same or coincident boundaries” (Anonymous 2011). 

Discharge-is the rate at which water is disbursed from a specific location (Brooks et al. 2003, 96) 

Eddy-“a current of water or air running contrary to the main current: especially a circular current: 

whirlpool”(Anonymous 2011). 

Evapotranspiration-“is a term describing the transport of water into the atmosphere from 

surfaces, including soil (soil evaporation), and from vegetation (transpiration)” (Burba, Hubbart, 

and Pidwirny 2010). 

Flashy behavior-“Urban streams often have higher flow rates and more rapid rises and falls in 

water level , this is defined as “flashy” behavior. Larger volumes of water lead to a greater 

frequency of flooding, and the increased velocity of water gives the stream greater erosive 

power” (Casperkill Assessment Group 2010). 

Forest cover-the percentage of the forest floor that is coverage by the foliage of trees.  

Hard impervious cover-“defined as paved surfaces such as roads, sidewalks and parking lots 

that are made of asphalt or concrete and are anthropogenic in origin. Houses or other structures 

are also considered impervious. Impervious surfaces are impenetrable by water and do not allow 

percolation into the underlying natural surface” (Cablk and Perlow 2006, 1) 

Hydraulic roughness-“Hydraulic roughness coefficients are used to analyze surface runoff on 

upland areas. Calculation of time of concentration, determination of flow velocity and simulation 

of runoff hydrographs require the use of hydraulic roughness coefficients…Frictional drag over 

the soil surface, standing vegetative material, residue cover and rocks lying on the surface, 

raindrop impact, and other factors may influence resistance to flow on upland areas” (Gilley and 

Finkner 1991, 1). 

http://water.epa.gov/scitech/datait/models/basins/index.cfm
http://www.eoearth.org/article/Transpiration
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Impervious surface-“Impervious surfaces refer to anything which prevents water from soaking 

into the ground. Common examples include roofs, driveways, sidewalks, streets and parking 

lots”(National Oceanic and Atmospheric Administration: Coastal Services Center). 

Natural impervious cover-“includes surfaces that are impervious to water but are natural in 

origin” (Cablk and Perlow 2006, 1). 

Phase I-addresses stormwater runoff from “medium” and “large” municipalities with populations 

of at least 100,000 people or construction activity disturbing five acres of land or greater and ten 

categories of industrial activity”(U.S. Environmental Protection Agency 2005).  

Phase II- “expands the Phase I program by requiring additional operators of MS4s in urbanized 

areas and operators of small construction sites, through the use of NPDES permits, to implement 

programs and practices to control polluted stormwater runoff.” (U.S. Environmental Protection 

Agency 2005). 

P-value-the probability of an event occurring, the closer to 1.0 the more likely the event is 

(Moore and McCabe 2003, 440-41)  

Rational method-a method from 1889 to estimate the amount of runoff from different sources 

varying based on the land use of such a surface(Marek 2009). 

Recharge-the flow of water from the surface to the aquifer or other groundwater below the 

surface.  “Recharge usually takes place in areas where permeable soil and rock material are 

relatively close to the land surface and where there is an excess of water from precipitation” 

(Brooks et al. 2003, 110) 

Rills-“very small brooks” (Anonymous 2011). 

Soft impervious cover-“exhibits some impervious characteristics but do allow for percolation 

and the parent material is not anthropogenic in origin…These surfaces are impervious to some 

degree but are not entirely impenetrable. Furthermore, the degree to which the surfaces are 

impervious will vary in time and with use”(Cablk and Perlow 2006, 2).  An example of soft 

impervious cover is dirt roads. 

Spline- an interpolation of precipitation values throughout an area so as to cover all of it and not 

just the areas with previously assigned values. 

Structural Stormwater BMPs-“Structural BMPs…are physical structures that collect and treat 

runoff. Treatment usually consists of filtration, detention, retention, and/or infiltration. The most 

commonly used BMPs are stormwater wetlands and ponds. Other BMPs include grassed swales, 

pervious pavements, green roofs, infiltration trenches, and sand filters, among others” (Jacob and 

Lopez 2009, 688).  

Water year- “Water year is defined as October 1st of the previous year through September 30th 

of the current year (e.g., water year 1950 = 10/1/49 – 9/30/50)” (Jennings and Taylor Jarnagin 

2002, 475). 
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CHAPTER 1 

INTRODUCTION 

Base flow is the gradual discharge of water from subsurface soils “before, during and 

after storms that allow streams to flow between storms” (Ferguson 1998, 3; Focazio and Cooper 

1995, 25). Base flow is important since its reduction can lower water quality as pollutants become 

more concentrated, degrade riparian habitats, and interfere with navigable waterways (Brun and 

Band 2000, 7).  Base flow is also important because low summer base flows can cause fish 

mortalities due to the streams reduced velocity, cross-sectional area, and water depth (Williamson 

et al, 1993 quoted in Finkenbine, Atwater, and Mavinic October 2000, 1149). 

 There is a sharp contrast between what occurs naturally in streams and what happens to 

streams in an urban context.  This is due to a number of factors which will be considered in this 

thesis, such as impervious surfaces
1
 and natural factors which affect runoff. 

Effect of Impervious Surfaces 

Several authors have used percent total impervious area (TIA) to measure the level of 

watershed development because it is closely related to the amount of rainfall that is converted to 

direct runoff and subsequently base flow (Finkenbine, Atwater, and Mavinic October 2000, 

1149). This reflects the importance of the surface upon which the water falls, be it forest duff or a 

parking lot, on stream and base flow.  

Three categories of impervious surfaces are commonly used: hard impervious cover, 

natural impervious cover and soft impervious cover (Cablk and Perlow 2006, 1).  Hard 

impervious cover was considered in this study because the MassGIS impervious data includes: 

buildings, roads, parking lots, bricks, asphalt, concrete and also anthropogenic compacted soils 

such as mined areas or unpaved parking lots without vegetation (MassGIS 2011).  From this point 

                                                           
1
 Italicized terms are defined in the Glossary before this thesis. 
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onward any mention of impervious surfaces will refer to hard impervious cover, unless otherwise 

noted. 

Historically storm water control systems have focused on the conveyance of water across 

a surface away from the area of concern rather than its infiltration below that surface. 

Conveyance directs water over the surface, sending runoff downstream that can be seen in the rise 

of streams during storms and in the sheets and rivulets of surface runoff that are the immediate 

result of rainfall which can reach a stream in minutes (Ferguson 1998, 3). Conveyance pushes the 

problem elsewhere, typically down the stream along which runoff accumulates.  

In contrast, infiltration into vegetated swales not only prevents water accumulation 

elsewhere but also helps supply the sub-surface water system. By infiltrating water into local 

aquifers, the gradual discharge of accumulated sub-surface water contributes to base flow that 

moderates floods and provides a healthy habitat for macro-invertebrates as well as the fish and 

carnivores that share the stream (Ferguson 1998, 4).  
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Figure 1. The Effects of Vegetated Soil and Impervious Cover on Rainfall 

 

Source: (Ferguson 1998, 7) 

 As can be seen in Figure 1, vegetated soils provide much more infiltration than 

impervious cover.  This is beneficial because the infiltration feeds the water table, restores base 

flow, and prevents damaging floods. 

Structural Stormwater Best Management Practices (BMPs) such as vegetated swales and 

basins are beneficial because they bring these conveyance areas “back into contact with porous 

soil” where they can be infiltrated and thus contribute to base flow (Ferguson 1998, 11).  

It may seem that stormwater BMPs are only necessary for areas where there are large 

volumes of water. However, that is not the case since infiltration of small amounts of runoff is 

also useful for multiple small storms and for the first flush of large storms because it restores a 

watershed's groundwater, base flow, and water quality (Ferguson 1998, 11). Thus it is important 

to encourage infiltration in as many areas as possible, regardless of their size, in order to reach the 

full potential of available water.  
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Measuring Stream Flow 

A particularly useful approach for describing stream flow is a hydrograph. A hydrograph 

is a graphical representation of rainfall and the accompanying stream flow versus time of travel 

down a stream. 

Figure 2. Sample Stream Flow Hydrograph 

 

Source: (School 2011) 

For example, the blue polygons in Figure 2 represent the amount of rainfall over a period 

of time with the peak rainfall at the top. The solid line records the stream flow at a given point in 

the stream such as a gauging station. The rising limb represents the increase in stream flow as the 

water runs off the catchment area and flows past the measurement point. The falling limb 

represents the associated decline as the stream flow decreases.  The hydrograph also shows the 

lag time, the time it takes for stream flow to reach its highest value after the peak rainfall.  
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As shown in Figure 3, the lag time varies with the steepness of the rising limb.  This 

figure shows typical hydrographs for urban and rural water basins.  Hydrograph A shows the 

hydrograph for an urban watershed with more impervious surface than Hydrograph B which is for 

a more rural watershed.  Although, the lag time is not represented in Figure 3, it can be seen by 

drawing vertical lines for the peak rainfall and the peak discharge.  As can be seen in the 

hydrographs, the urban watershed has a shorter lag time due to its steeper peak, causing greater 

water velocity and allowing less time for the water to infiltrate into the soil.  The higher the peak 

discharge the greater the runoff potential and thus the increased likelihood of oversaturation, 

which can lead to flooding. The peakier urban hydrograph occurs primarily because of the 

increased impervious surfaces associated with urbanization.  
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Figure 3. "Peaky" and "Flatter" Hydrographs 

 

Source: (School 2011) 

Effect of Natural Factors 

 As pointed out in the literature review section, natural features have varied effects on 

base flow.  Depending on its degree, slope can carry water over land at such a rapid velocity that 

it limits infiltration and reduces base flow (Finkenbine, Atwater, and Mavinic October 2000, 

1150).  Different soils have very different drainage potentials because the more efficiently the soil 

drains, the greater opportunity for rainfall to infiltrate into the soil, augmenting base flow (Soil 

Conservation Service 1993).  Rainfall that exceeds the soil‟s infiltration capacity can cause excess 

runoff and floods in some circumstances or drought in others.  Forest cover also can have a mixed 

effect on infiltration and base flow.  Typically, forest floors are covered with a thick layer of duff 

which encourages infiltration. However, trees can also increase the evapotranspiration component 

of the water cycle, reducing the amount of water available for other parts of the water cycle, 
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reducing runoff and base flow (Booth et al 2002; Booth and Jackson 1997, quoted in de la Cretaz 

and Barten 2007, 217; McCulloch and Robinson 1993, 209). 

Precipitation also can have beneficial or detrimental effects on base flow, depending on 

its volume and duration. If the precipitation occurs over an extended time there is a greater 

chance that it will filter into the ground and increase base flow.  A sudden deluge of precipitation 

typically runs off surfaces quickly, reducing base flow and creating erosion and other severe 

problems downstream.  The literature also suggests that aspect can have an effect on the base 

flow.  If the slope faces the north in middle latitudes there will be a large snowmelt which creates 

more groundwater downstream (Murray and Buttle 2003, 205).  All of these factors will be 

looked at in greater detail in this research.  

Structural Stormwater Best Management Practices 

The use of structural stormwater Best Management Practices (BMPs) is crucial in 

dealing with stormwater, particularly for increasing base flow.  The BMPs that will be examined 

in this research are designed to encourage infiltration.  By so doing, these structures recharge both 

the aquifer and ground water, increasing base flow.  By promoting the use of structural 

stormwater BMPs in the towns of Massachusetts, the Commonwealth‟s Department of 

Environmental Protection (MA DEP) is encouraging long-term thinking about water as a limited 

resource.  However, not all towns are implementing these BMPs, even though it has been 

required for all Phase II municipalities, since 2003  (U.S. Environmental Protection Agency 

2003).  The installation of these BMPs has increased since 2003.  A case study of BMP 

implementation in the town of Walpole is an important component of this research. 

This research will also examine the effect that six factors (impervious surface, forest 

cover, soil drainage class, precipitation, slope and aspect) have on base flow. As shown in Table 

1, one of these factors, impervious surface, is related directly due to human interaction, thus these 

surfaces can be called anthropogenic. The others are related to natural features. By looking at the 
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relationship between these factors and base flow, a relationship will be identified that can be used 

in future studies. Multiple regression analysis will also be used to derive a predictive equation 

relating base flow to these factors.  

Table 1. Factors Considered in this Research 

Factor Anthropogenic Natural 

Impervious Surface 

(%) 
* 

 Forest Cover (%) 

 

* 

Soil Drainage Class 

 

* 

Slope 

 

* 

Precipitation 

 

* 

Aspect 

 

* 

MA DEP permit information was used to analyze sub-watersheds throughout the 

Commonwealth of Massachusetts. The watersheds were selected on the basis of their upstream 

relation to stream gauging stations. GIS was used to relate these factors to the base flow in these 

sub-watersheds to produce the data used in the multiple linear regressions.  
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CHAPTER 2 

LITERATURE REVIEW 

Several factors have been identified in the literature as affecting base flow: impervious 

surfaces, forest cover, soil drainage, precipitation, slope, and aspect. The following sections 

review the literature that considers the effect that each factor is assumed to have on base flow.  

The concluding section of the literature review considers the literature on structural stormwater 

BMPS and their impact on base flow.  

Factors Affecting Base Flow  

Impervious Surfaces 

Many authors have noted that an increase in impervious surface reduces base flow (e.g.;  

Harbor 1994, 1; Pappas et al. 2008, 146; Schueler, Fraley-McNeal, and Cappiela 2009, 312). This 

is because impervious surfaces prevent infiltration, thereby reducing groundwater recharge and 

base flow (Klein 1979).  

There are two major benefits of studying the relationship between impervious surfaces 

and base flow.  The first benefit is the integrative nature of impervious surfaces.  That is, 

impervious surfaces can be used as a proxy measure for the cumulative impact of urbanization on 

water resources without having to consider specific factors (Arnold and Gibbons 1996, 242).  The 

other benefit is that it can be measured by a variety of procedures (Arnold and Gibbons 1996, 

242).  

Some authors have questioned the accuracy of impervious surface measures with regard 

to their impact on water quality and quantity (Brabec 2011). For example, Total Impervious Area 

(TIA) includes all of the impervious surfaces in a watershed, regardless of what kind of 

connection exists between the impervious surfaces and the basin‟s water bodies.  Effective 

Impervious Area (EIA) includes only the portion of a watershed that allows water to cross only an 

impervious pathway to reach the water body (Han and Burian 2009, 111).  Non-effective 
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impervious area includes all of the land that the water crosses in order to reach the water body 

(Han and Burian 2009).  Including the non-effective impervious area may introduce errors in 

estimating the effect of impervious surfaces that can cause runoff volumes, peak flows and 

infiltration rates to be overestimated (Alley and Veenhuis 1983, 313-19).  This can have a 

dramatic effect on ground water and recharge rates and, therefore, base flow. 

Imperviousness has become the predictor of choice for assessing the impacts of 

urbanization on water resources (Brabec et al 2002; Shuster et al, 2005, quoted in Jacob and 

Lopez 2009, 688).  Urbanization increases the built environment, particularly infrastructure and 

buildings, which increases impervious surfaces. In fact, urbanization has been found to produce 

impervious cover at an equal magnitude to the density of land being developed (Brabec 2009, 

425).  Thus the proportion of an area with impervious surfaces provides a good proxy for the 

level of urban development. 

The literature also suggests that urbanization affects runoff and base flow. For example, 

the Kankakee River in Illinois experienced increased mean annual flows during the twentieth 

century with no corresponding increase in precipitation, suggesting that land clearing and 

urbanization caused the greater runoff (Peterson and Kwak 1999, 1391-404). This result can be 

explained by the fact that increased urbanization decreases the perviousness of the catchment 

area, reducing infiltration and increasing surface runoff (Dunne and Leopald 1978, 257-84).  

The Center for Watershed Protection (CWP) imperviousness model is based on the 

imperviousness of a watershed, even though, ordinance and water policy measures derived from 

it generally focus on site- or project-level imperviousness (Jacob and Lopez 2009, 688). 

Considering site-level factors may overlook denser, more clustered urbanization patterns that 

often generate better water quality for the receiving streams and watershed than more disperse 

urban patterns that minimize site perviousness (Jacob and Lopez 2009, 688). Looking at the 
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watershed level also allows this research to consider a greater variety of land uses and, thus, 

consider more variables in the process.  

The runoff associated with impervious surface is “flashy” because the surface is not 

porous which means that rainfall does not infiltrate reducing groundwater levels (Kalin and 

Hantush 2009, 1). Increases in impervious surfaces reduce infiltration because the ground surface 

has less “roughness“ than natural surfaces (Kalin and Hantush 2009, 1). 

Forest Cover 

The literature recognizes that changes in land use are most frequently seen at the edge of 

cities and in currently forested areas (Wear, Turner, and Naiman 1998, 619-30). It also suggests a 

mixed effect on base flow because the removal of forest cover reduces evapotranspiration, 

increases the amount of overland flow, and reduces water storage in the soil. 

 The literature suggest that the conversion of forest land to suburban lawns or urban 

parkland increases base flow because it reduces the soils‟ organic matter and increases soil 

compaction which substantially reduces the land‟s infiltration capacity (Booth et al 2002; Booth 

and Jackson 1997, quoted in de la Cretaz and Barten 2007, 217). Forest harvesting also increases 

stream discharge and base flow by reducing the amounts of evapotranspiration (Bosch and 

Hewlett 1982; Brown 1988 quoted in de la Cretaz and Barten 2007).  The rooting depths of trees 

are generally greater than those other ground covers which increases base flow because greater 

dry season root abstraction may outweigh the benefits of higher infiltration rates (McCulloch and 

Robinson 1993, 209).  In addition, the practices which accompany forest harvesting, such as the 

construction of forest roads and skid trails, may also cause substantial soil disturbance that 

reduces infiltration rates and accelerates surface erosion (Malmer and Grip, 1990; Aust and Lea, 

1992; Ziegler et al, 2006; Francis and Taylor, 1989; Edeso et al, 1999; Wallbrink et al, 2002 

quoted in Hotta et al. 2010, 121).  
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Streams that drain forests also tend to have lower concentrations of nutrients and 

contaminants, and higher interactions between a stream and the shore where the water floods 

during high-water events (Neary, Ice, and Jackson 2009, 2270). 

Soil Drainage Class 

The literature recognizes that soils can have a very large effect on base flow. The 

recognition of the importance of macro-pores on infiltration and, therefore, base flow dates back 

more than 145 years to Schumacher (1864), who stated that „„the permeability of a soil during 

infiltration is mainly controlled by big pores, in which the water is not held under the influence of 

capillary forces” (Neary, Ice, and Jackson 2009, 2274).  Macropores develop from tree root 

growth and decay and burrowing by soil animals of various sizes. They provide important 

linkages for water flow in forest soils because they provide routes for rapid subsurface water 

movement to surficial aquifers and stream channels (Neary, Ice, and Jackson 2009, 2275). 

The characteristics and condition of a soil are a primary determinant of the rate of water 

movement (de la Cretaz and Barten 2007, 23). Different soil types act very differently. For 

example “sands and gravels have a high infiltration rate and low runoff potential, while clays 

have a low infiltration rate, and a correspondingly high runoff potential” (SCS 1975, quoted in 

Finkenbine, Atwater, and Mavinic October 2000, 1153). 

A soil drainage class “refers to the frequency and duration of wet periods under 

conditions similar to those under which the soil developed” (Soil Conservation Service 1993).  

Anthropogenic alterations to the soil are not considered in defining the soil classes unless they 

have significantly changed the morphology of the soil.  These classes were defined and explained 

in the Soil Survey Manual reproduced in Appendix A. 

The literature considers only two extreme values for stream drainage classes: (1) poorly 

drained soils which are associated with high ground-water discharge areas and substantial surface 

runoff; and (2) well drained soils which allow water to infiltrate more readily and that may lead to 
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less runoff (Pettyjohn and Henning 1979, 87).  Seven soil drainage classes (excessively drained, 

somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, 

poorly drained, and very poorly drained), as defined in Appendix A, were considered in this 

research.   

Slope 

The literature suggests that slope can have a dramatic effect on base flow. High slopes 

cause rainfall to run off surfaces more rapidly, giving it less time to infiltrate below the surface.  

High water velocities from high slope areas can also cause more damage when there is a lack of 

stream roughness from large woody debris and boulders, where eddies are found that to give fish 

an opportunity to rest (Finkenbine, Atwater, and Mavinic October 2000, 1150).  This relates to 

slope because steeper slopes cause narrower and deeper stream basins with near-parallel rills 

while flatter surfaces produce wider basins (Castelltort, Simpson, and Darrioulat 2009, 265).  

Generally, the more narrow the basin the greater the velocity of water which reduces the 

opportunity for infiltration, causing smaller amounts of base flow.  

Precipitation 

The literature does not directly consider the effect that precipitation has on base flow.  

However, Groisman et al (2001) does consider the effect of precipitation on streamflow.  This 

research notes “a prominent correlation between annual frequencies of heavy precipitation and 

high streamflow at the collocated gauges” (Groisman, Knight, and Karl 2001, 237).  From this it 

follows that base flow is also positively related to precipitation, since base flow is a component of 

stream flow. 

Aspect 

Aspect affects base flow levels by its effect on stream runoff.  The effect of aspect on 

stream flow was recognized by Zernitz in 1932 (Zernitz 1932, 498-521).  Aspect affects the 

amount of solar energy that a hillside receives.  This is especially true in locations such as 
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Massachusetts where the sun is lower on the horizon, which causes a greater contrast between the 

energy inputs for north and south facing slopes (Broxton, Troch, and Lyon 2009, 2).  The 

intensity of incoming solar radiation affects snow accumulation, the timing and intensity of 

snowmelt, and the character of the snowpack.  This can be important because snowmelt can 

account for a large percentage of the recharge waters in snow dominated systems (Broxton, 

Troch, and Lyon 2009, 2).  While the Commonwealth is not snow dominated, it does have a 

significant snow season so this factor must be considered. 

Although south-facing slopes receive significantly more incoming solar radiation than the 

north-facing slope between the middle of March to the middle of April, energy inputs to the 

north-facing slope are generally sufficient to induce melting. This suggests that aspect exerts a 

larger control on spatial variations in snowmelt than clear-cutting (Murray and Buttle 2003, 205).  

However, Mitchell and DeWalle found little consistent difference in snow cover for 

different slope-aspect zones. They concluded that elevation and land use were more important 

factors in the Towanda Creek Basin in central Pennsylvania that they studied (Mitchell and 

DeWalle 1998, 339). This is the only source that suggested that slope aspect has no effect on base 

flow.  

The assumed causal relationship between each factor and base flow as suggested in the 

literature is shown in Table 2. 

Table 2. Assumed Relationship between Factors and Base Flow 

Factor Causes Effect 

% Impervious 

Surface 

Reduces infiltration Reduces base flow 

% Forest Coverage Increases forest floor duff and infiltration Increases base flow 

Soil Drainage Class 

Higher drainage classes increase runoff and 

reduce infiltration 

Reduces base flow 

% Slope Steeper slopes reduce infiltration Reduces base flow 

Precipitation 

Greater precipitation increases stream flow and 

infiltration Increases base flow 

Aspect 

North facing slopes increase snow melt and 

runoff Increases base flow 
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Best Management Practices 

The literature recognizes the value of structural stormwater BMPs for increasing base 

flow (Emerson, Wadzuk, and Traver 2010, 1010).  In addition, by reducing overland flow and 

increasing infiltration BMPs are important because they help to maintain the stability of stream 

channels and reduce the transport of pollutants from urban and suburban buildings and streets (de 

la Cretaz and Barten 2007, 240).  

Detention ponds provide temporary storage facilities that reduce the impact of storm flow 

events with the goal of returning post-development discharges to pre-development levels (de la 

Cretaz and Barten 2007, 240).  Klein (1979) found that stormwater detention ponds “can partially 

mask reductions in natural baseflow” (Brun and Band 2000, 7).  This matches the objectives of 

Massachusetts Stormwater Redevelopment regulations-which attempt to improve water quality 

and comply with the U.S. Clean Water Act and the Massachusetts Water Quality Standards (U.S. 

Environmental Protection Agency 2003, 9).  This legislation requires the installation of structural 

stormwater BMPs in newly developed or redeveloped facilities, typically residential areas, that 

are greater than one acre in size (U.S. Environmental Protection Agency 2003).  These measures, 

recorded in the MA DEP permits, help to mitigate stormwater runoff, increasing infiltration and 

base flow.  

Rain gardens and leaching catch basins are other examples of structural stormwater 

BMPs. Rain gardens, also called bioretention basins, use soils, plants and microbes to treat 

stormwater before it is infiltrated into the ground and/or discharged into a stream (Massachusetts 

Department of Environmental Protection 2008, 23).  When properly designed rain gardens “can 

infiltrate an inch or more of rainfall [and] reduce the size of storm drain pipes, a major component 

of stormwater treatment costs” (Massachusetts Department of Environmental Protection 2008, 

25).  They can easily incorporate 5% to 7% of an area that drains into parking lot islands, medians 

and traffic islands (Massachusetts Department of Environmental Protection 2008, 25-7).   
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Gehring, Gerken and Shuster conclude that parcels with rain gardens should have at least 

one third less runoff, depending on the soil that is present (2007, 131).  Soil is critical for 

structural stormwater BMPs because their potential infiltration varies from one third to double the 

average value (Gehring, Gerken, and Shuster 2007).  In addition, specific plants should be used to 

create rain gardens.  These plants are selected to naturally absorb excess water, preventing 

flooding and the long-term standing water that can lead to a mosquito infestation (van Mullekom 

2007). 

Another less commonly found BMP in the Commonwealth is a leaching manhole.  A 

leaching manhole is a traditional manhole with perforation holes on the side as well as an 

overflow pipe as can be seen in Figure Four below (Walker 2011).  These perforations allow 

infiltration. This BMP is similar to a leaching catch basin in which the barrel is perforated and 

there is no bottom to the basin, so that water entering the manhole can enter the surrounding stone 

fill and infiltrate into the ground, increasing base flow (Massachusetts Department of 

Environmental Protection 2008, 102).  Both of these approaches introduce runoff into the 

groundwater which may not be advisable in areas where there is pollution, such as at a gas station 

(Massachusetts Department of Environmental Protection 2008, 102). 
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Figure 4. As-built of Leaching Manhole 

 

(Walker 2011) 

One of the challenges associated with BMPs is maintaining them. How well a BMP 

works depends on various features, including its design, size compared to the treatment area, and 

its soil or substrate (Muthukrishnan et al, 2004, quoted in Jacob and Lopez 2009, 688). In 

addition, “The continual build up of captured solids in an underground, enclosed and generally 

inaccessible location, raises concerns about the potential for soil pore clogging and the long-term 

functionality of the BMP” (Schueler, 1994, quoted in Emerson, Wadzuk, and Traver 2010, 1008). 
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CHAPTER 3 

METHODS 

 This research examines the effect of structural stormwater BMPs, impervious surfaces, 

and natural factors on base flow.  It attempts to increase the understanding of how these factors 

relate to base flow.  In addition, it uses a case study of structural storm water BMPs to consider 

how planning and watershed management can increase base flow. 

Four major components made up the research in this thesis: (1) data collection, (2) base 

flow analysis, (3) GIS mapping, and (4) regression analysis.  These components are described 

below.  

Data Collection 

 The data collected for this research were used to study the relationship between 

anthropogenic and natural factors and base flow in Massachusetts sub-watersheds.  The research 

began by collecting stream flow data from the United States Geological System (USGS) National 

Water Information System (NWIS) (http://waterdata.usgs.gov/ma/nwis/) on all gauging stations 

in Massachusetts.  Gauging stations were eliminated that were: (1) located on large river main-

stems to limit the diversity of factors that were included in each sub-watershed, (2) crossed the 

Commonwealth‟s borders to avoid nested watersheds and data loss from different data collection 

procedures in other states, (3) associated with estuaries since these areas have tidal flows which 

would skew their gauging station results (4) within Franklin County since the necessary soils and 

slope information was not available for that county, (5) located on man-made sub-watersheds 

which may not be representative of naturally occurring watersheds, and (6) when invalid values 

were found in the gauging stations data. 

The final sample consisted of twenty-eight gauging stations located throughout the 

Commonwealth of Massachusetts.  Each gauging station was associated with a sub-watershed 

created using sub-basins polygon layers downloaded from MassGIS. The boundaries for each 

http://waterdata.usgs.gov/ma/nwis/
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sub-watershed were defined by their relationship to stream map layers that was obtained from the 

Environmental Science Research Institute (esri) (http://www.esri.com/data/free-data/index.html) 

and from MassGIS (http://www.mass.gov/mgis/laylist.htm). The portions of the streams that were 

upstream of the gauging stations were used to select the sub-basins that composed each sub-

watershed. Maps showing the location of the twenty-eight sub-watersheds are included in 

Appendix C. 

The stream flow data for 2005 through 2007 were averaged to reduce the effect of yearly 

flow variability. Data that were recorded for water year were converted to calendar year for 

consistency.  

GIS Data 

GIS data layers were obtained from the Mass GIS, esri, BASINS and NRCS websites as 

well as other sources for each of the factors identified in the literature as affecting base flow.  The 

following GIS layers were obtained from the MassGIS website : (1) 2007 impervious surface 

layer, (2) 2005 land use layer that was used to derive the forest cover layer, and (3) the 2010 

NRCS_SSURGO-Certified Soils layer that was used to prepare the slope layer(MassGIS 2011).  

The soil layer was obtained from NRCS Soil Data Mart (Natural Resource Conservation 

Service-U.S. Department of Agriculture 2011).  The precipitation values for weather stations 

were downloaded from the BASINS website (U.S. Environmental Protection Agency 2011).  The 

aspect layer was computed from a Digital Elevation Model (DEM) for 2005 obtained from the 

University of Massachusetts, Amherst, Department of Geology.  The procedures used to analyze 

these data will be described in the GIS Analysis section.  

Base Flow Analysis 

The base flow analysis used the Hydrograph Separation (HYSEP) local-minimum 

method to estimate the average annual base flow in each sub-watershed.  HYSEP is a computer 

program that separates the base flow and surface runoff components of stream flow (Sloto and 

http://www.esri.com/data/free-data/index.html
http://www.mass.gov/mgis/laylist.htm
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Crouse 1996) which was used for guidance when executing base flow separation.  The HYSEP 

model was selected because it provided a consistent method for separating base flow from storm 

flow.  Three versions of HYSEP developed by Pettyjohn and Henning in 1979 are readily 

available from the USGS webpage (U.S. Geological Survey 1997; Pettyjohn and Henning 1979).  

The local minimum method was selected because it represented the overall trend of the base flow 

more precisely than the other methods (Sloto and Crouse 1996, 5) 

 The HYSEP local-minimum method required the gauging stations to be classified 

according to their observation period or n interval. The n value is based on the area of the sub-

watershed associated with each gauging station. The area is taken to the two-tenths power, that is: 

n=A
0.2 

The n interval was then determined by doubling the resulting number. The product was then 

given an integer value which corresponded to the closest odd interval value. For example, if the 

watershed had a small area, the interval would be three and thus only the stream flow for the day 

before and after the day in question would be examined.  
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Figure 5. Discharge and Observed Base Flow Hydrograph 

 

 Figure 5 shows the observed stream discharge and estimated base flow hydrographs for 

the Hudson-Hoosic guaging station in January 2005.  The observed daily stream discharge is 

shown in blue and the estimated base flow is shown in red.  The area under the red base flow line 

was used to calculate the total base flow by year.  The estimated base flow values were found 

using the local minimimum method which compared the mean daily flow of the previous two 

days and the subsequent two days to the stream flow for the day in question.  

An example from Figure 5 is January fifth. The previous two days have greater or equal 

mean daily flows, 140 and 141 respectively. Similarly, the two subsequent days (January sixth 

and seventh) also have greater or equal daily flows. As a result, the value for January fifth, 122, is 

assumed to be the base flow. The other base flow values indicated by red squares were identified 

by following the same procedure. 
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GIS Analysis 

GIS analysis was used to combine information on the various factors identified in the 

literature for each sub-watershed. This information made it possible to compare sub-watersheds 

with respect to the same factors and create a predictive equation that summarized the overall 

trends of the data. 

The GIS layers for the impervious surface and the environmental factors were analyzed 

using ArcGIS 10.  Initially the research hoped to include a time series analysis on the sub-

watersheds from 2001 to 2005 but GIS data on the factors was only available for 2003. In 

addition, an analysis of orthophotos for these years showed that there was less than 10% change 

in impervious surfaces and thus population density in the case study towns during that period  

Percent Impervious Surface.  The impervious surface layer contains one and zero 

values for each one-meter square cell for the commonwealth of Massachusetts.  The ones 

indentified impervious surfaces, such as roads or houses, while the zeroes identified pervious 

surfaces such as golf courses or residential lawns.  ArcGIS was used to convert the layer from a 

raster to a vector format and select the values for the sub-watershed boundaries that were used to 

determine the pervious and impervious surface for each sub-watershed. The percentage 

imperviousness value for each sub-watershed was calculated by dividing the impervious area for 

each sub-watershed by the total area.  

Percent Forest Coverage. The forest layer was created from the 2005 land use layer for 

Massachusetts and selecting only the locations with forested land use.  Orchards and wetland 

forests uses were excluded because orchards are commercial locations with unusual 

characteristics and wetland forests have traits found only in wetlands.  The percent forested was 

calculated by dividing the forest area by the total area in each sub-watershed.  

Slope. The slope layer was taken from the Natural Resource Conservation Service 

(NRCS) SSURGO-Certified Soils, a MassGIS layer.  The slope values were aggregated into five 
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slope categories with the following midpoints: 1.5 %, 5.5%, 11.5%, 20% and 30%.  The polygons 

for each slope value were then clipped by the sub-watershed boundaries and joined to their 

attributes using a spatial join.  The area in each slope category was multiplied by the amount of 

land it contained and the sum of the products was divided by the total area to yield an area-

weighted average slope value.  

Precipitation. The BASINS (Better Assessment Science Integrating point and Non-point 

Sources) 4 program was used to obtain the precipitation data from the National Oceanographic 

and Atmospheric Administration (NOAA) for thirteen precipitation monitoring sites in 

Massachusetts.  The rainfall values for these thirteen sites were reclassified into nine values for 

the annual rainfall: (29, 31, 33, 36, 38, 40, 42, 45 and 48 inches).  GIS was used to create a 

rainfall surface or spline.  The rainfall surface was converted to a polygon layer which was 

clipped by the sub-watershed boundaries.  Some of the sub-watersheds were located in more than 

one precipitation polygon so the portions in each polygon were combined and then area weighted 

following the same approach used for the forest cover and slope layers. 

Soil Drainage Class. 2010 soils data from the Natural Resource Conservation Service 

(NRCS) were used to derive the soil drainage class for each watershed.  The research looked at 

seven different drainage classes, defined by the NRCS GIS Soil Data Viewer extension: (1) 

excessively drained, (2) somewhat excessively drained, (3) well drained, (4) moderately well 

drained, (5) somewhat poorly drained, (6) poorly drained, and (7) very poorly drained, as 

described in Appendix A.  The drainage classes were assigned integer values from 1, very poorly 

drained to 7, excessively drained.  The NRCS Soil Data Viewer 5.2.0016 was used to determine 

the soil drainage classes for each soil region which were then clipped by the sub-watershed 

boundaries.  Several sub-watersheds contained more than one drainage class so the area in each 

class was multiplied by the soil class value and divided by the total watershed area to compute the 

area weighted soil drainage class value.  
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Aspect. The aspect layer was created from a digital elevation model (DEM) layer 

obtained from the Department of Geology at the University of Amherst, MA.  The DEM was 

converted to a slope layer which included an aspect compass for each location.  Areas that faced 

north, northwest, and northeast were assumed to be north facing.  The portion facing north was 

used to compute the aspect value for each sub-watershed which was then area weighted.  The 

aspect value was not found to be statistically significant and was not included in later analysis.  

Regression Analysis 

Multiple regression analysis was used to determine the effect that the various factors 

identified in the literature had on base flow in Massachusetts sub-watersheds.  The regression 

analysis was also used to develop a predictive equation that predicts the change in base flow that 

can be expected for changes in each of the factors.  

The daily base flow values were aggregated into annual average base flow values for 

2005, 2006 and 2007.  The average annual base flow values were then used as the dependent 

variable for a multiple regression analyses that included the following independent variables: (1) 

percent impervious surface, (2) percent forest cover, (3) soil drainage class, (4) slope, and (5) 

precipitation. The regression analysis was done for the twenty-eight sub-watersheds in the 

research. 

The regression equation included: one term for each independent variable, and five 

interaction terms for the interaction between each pair of independent variables. The regression 

analysis yielded the following nonlinear regression equation: 

Y = -.785 + .941X1 + -.056X2 – 8.392X3 - .077X4 + 2.993X5 

+ .001(X1)(X2) + -.031(X2)(X3) + .003(X2)(X4) + .003(X2)(X5)  

- .045(X1)(X3) + .249(X3)(X4) - .014(X3)(X5)  

- .019(X1)(X4) - .074(X4)(X5) - .003(X1)(X5) 
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 Where: Y = average annual base flow; X1=percent impervious surface, X2=percent forest cover, 

X3= soil drainage class, X4=precipitation and X5=slope.  The equation includes all five of the 

regression terms (shown on the first row) and their interaction terms (shown on the last three 

rows). 
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CHAPTER 4 

STATISTICAL ANALYSIS RESULTS 

Multiple Regression Analysis 

 The impervious surface and natural factor values were graphed against the annual 

average base flows for each sub-watershed. Scatter plots were used to look for outliers and to 

observe the overall data trend. No serious outliers were observed and the trend was determined to 

be nonlinear. As a result, the regression equation included interaction terms. Squared terms for 

the factors were not considered because they were not significant in improving the model.  

 The regressions values were calculated using Systat 13. The regression results are shown 

in Table 3 below. The regression coefficients for variables which are significant at the 1% level 

are identified with three asterisks; coefficients which are significant to the 5% level are identified 

with two asterisks; coefficients that were significant at the 10% level are identified with one 

asterisk. 

The adjusted R
2 
value for this equation were 0.62, indicating that 62% of the variation in 

the average annual base flow is explained by the model. The percent impervious surface and the 

imperviousness and precipitation interaction term were found to be statistically significant at a 

1% significance level.  The slope coefficient of the watershed was statistically significant at the 

5% significance level.  Three interaction terms were also found to be significant at the 10% level: 

(1) forest coverage and soils, (2) soil and precipitation, and (3) precipitation and slope.  
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Table 3. Regression Coefficients 

Effect Coefficient 

Intercept -0.785 

Impervious Surface 

(%) 
0.941 *** 

Forest Cover (%) -0.056 

Soil Drainage Class -8.392 

Precipitation -0.077 

Slope 2.994 ** 

Impervious_Forest 0.001 

Forest_Soil -0.031 * 

Forest_Precip 0.003 

Forest_Slope 0.003 

Impervious_Soil -0.045 

Soil_Precip 0.250 * 

Soil_Slope 0.014 

Impervious_Precip -0.019 *** 

Precip_Slope -0.075 ** 

Impervious_Slope -0.003 
 

Analysis of Variance 

 The small F-statistic in the ANOVA analysis reported in Table 4 suggests a 1% level of 

significance of the model.  This small F-statistic confirms that at least one of the independent 

variables is statistically significant as was reported in Table 3. (Meier, Brudney, and Bohte 2009, 

444).  

Table 4. Analysis of Variation Results 

ANOVA 

Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F 

Statistic 

F 

Significance 

Regression 15 5.606 0.374 3.961 0.011 

Residual 12 1.132 0.094     

Total 27 6.738       

Evaluation of the Predictive Equation 

Table 5 below compares the observed and predicted values for the twenty-eight sub-

watersheds.  The percent difference column indicates that there were rather large differences 
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between the observed and estimated values.  The Neponset and Shawsheen sub-watersheds are 

highlighted because they will be analyzed as part of the case study analysis  

Table 5. Observed and Predicted Base Flow Values 

Sub-Watershed Observed Base Flow Predicted Base Flow Error Percent 

Error Aberjona 2.01 2.08 -0.07 -3.48 

Assabet 1.49 1.26 0.23 15.44 

E Housatonic 1.52 1.7 -0.18 -11.84 

E Neponset 1.75 1.73 0.02 1.14 

E Swift 1.35 1.37 -0.02 -1.48 

Indian Head 2.21 1.88 0.33 14.93 

Jones 3.08 3.15 -0.06 -1.95 

Mine Brook 0.49 0.63 -0.13 -26.53 

Miscoe 0.72 0.96 -0.24 -33.33 

Nashoba 0.83 1.13 -0.3 -36.14 

Neponset 1.66 1.59 0.07 4.22 

Old Swamp 1.26 1.17 0.08 6.35 

Parker 1.75 1.31 0.44 25.14 

Quaboag 1.68 1.48 0.2 11.90 

Quinsigamond 1.53 1.57 -0.04 -2.61 

Segreganset 1.33 1.45 -0.12 -9.02 

Still Water 1.68 1.29 0.39 23.21 

Tauton 1.53 1.59 -0.06 -3.92 

W Farmington 1.54 1.49 0.05 3.25 

Ware 1.4 1.55 -0.15 -10.71 

Ipswich 1.2 1.39 -0.18 -15.00 

Wading 2.08 2.2 -0.12 -5.77 

Three Mile 1.37 1.32 0.05 3.65 

Ipswich Two 1.45 1.35 0.11 7.59 

Seven Mile 2.3 2.04 0.26 11.30 

Shawsheen 1.52 1.52 0 0.00 

Sudbury 1.35 1.53 -0.18 -13.33 

Ware Two 1.38 1.77 -0.39 -28.26 

  

Average Percent Error -2.69 
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 Figure 6 below shows the distribution of observed and predicted values.  It suggests that, 

on average, the predictive equation overestimates the base flow for the twenty-eight sub-

watersheds.  Table 5 indicates that the predictive equation has an average percent error of 

negative 2.69%.  This indicates that on average the predicted values are larger than the observed 

values, as shown in Table 5 above.  

Figure 6. Observed and Predicted Base Flow Values 

 

First Derivative Regression Results 

The first derivative of the regression equation was computed to account for interaction 

effects between the factors in the base flow model.  The first derivative equations show the 

change in the average base flow (∆Y) for a unit change in each of the independent variables. The 

first derivative regression coefficients for each factor are as follows: 
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Table 6. Derivative Equation Coefficients 

First Derivative Regression Coefficients 

Factor Constant 

Impervious 

Surface 

Forest 

Cover 

Soil 

Drainage 

Class Precipitation Slope 

Impervious 

Surface 0.941   0.001 -0.045 -0.019 -0.003 

Forest Cover -0.056 0.001   -0.031 0.003 0.003 

Soil Drainage 

Class -8.392 -0.045 -0.031   0.249 -0.014 

Precipitation -0.077 -0.019 0.003 0.249   -0.074 

Slope 2.993 -0.003 0.003 -0.014 -0.074   

 The average value of each factor for all twenty-eight watersheds was then plugged into 

the derivative equations.  The computed values show the change in the average annual base flow 

that can be assumed to be caused by a unit change in each factor, including the impact of 

interaction effects. 

As shown in Table 7 below, the impervious surface value is negative 0.011 which 

indicates that a one percentage increase in impervious surface causes a corresponding one-

hundredth of a cubic foot per second (cfs) decline in base flow.  The negative forest cover value 

shows that with an increase of one percentage in forest cover causes a 0.001 cfs decrease in base 

flow. The soil drainage class is the only factor which has a positive impact on base flow.  With 

each increase in the soil drainage class there is a 0.441 cfs increase in the average base flow.  This 

not only is the only positive coefficient but also the largest value, indicating that it has the 

greatest impact on the average annual base flow.  An increase of one percentage in the 

precipitation value leads to a decrease in base flow by .024 cfs.  And an increase of one percent 

for the slope leads to a corresponding decrease of 0.061 cfs in the average annual base flow.  
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Table 7. Estimated Base Flow Changes 

 

Factor 
Average Base Flow Change Assumed 

Relationship Impervious Surface (%) -0.011 Negative 

Forest Cover (%) -0.001 Positive 

Soil Drainage Class 0.441 Positive 

Precipitation -0.024 Positive 

Slope -0.061 Negative 

As shown in Table 7, the estimated average change values generally support the 

previously cited literature.  The negative value for the impervious surface confirms the literature 

which suggests that increases in impervious surfaces reduce infiltration and base flow (e.g., 

Harbor 1994, 1).  The small negative relation between forest cover and base flow is surprising 

because the literature suggests a positive relationship between forest cover and base flow.  The 

positive value for the soil drainage class agrees with the literature (e.g., Soil Conservation Service 

1993). The negative value for precipitation is contrary to the literature (Groisman, Knight, and 

Karl 2001). The small negative value for slope supports the literature which suggests that 

increased slope decreases base flow because steeper slopes increase velocity, decreasing 

infiltration and base flow (Castelltort, Simpson, and Darrioulat 2009). 
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CHAPTER 5 

CASE STUDY 

A case study of two sub-watersheds in Massachusetts was conducted to examine the 

effect that the construction of structural stormwater BMPs has on base flow.  The case study 

compared two sub-watersheds, one with structural stormwater BMPs and one without structural 

stormwater BMPs.  

Towns in Massachusetts have been required to submit their National Pollution Discharge 

Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) applications to the 

Department of Environmental Protection (DEP) and the United States Environmental Protection 

Agency (EPA) annually since Phase II in 2003 (Massachusetts Department of Environmental 

Protection 2003, 13).  The permit applications require towns to adopt a bylaw or ordinance 

regulating stormwater discharges for construction sites with at least one acre of runoff in 

urbanized settings (Civian and Maguire 2011). 

The DEP permits for 2004 and 2005 were reviewed to identify structural stormwater 

BMPs that had been constructed between 2003 and 2005. This period was chosen so that the 

preceding base flow analysis could be related to the BMP experience.   

Only four towns were found to have constructed structural stormwater BMPs during this 

period: Hopkinton, Reading, Stow, and Walpole. Hopkinton, Stow, and Reading covered only a 

small portion of their sub-watersheds (27%, 15% and 37% respectively). This meant that the 

actions taken by each town had a limited impact on their sub-watersheds‟ base flow so these 

towns were not considered further. The town of Walpole that comprises 64% of the Neponset 

sub-watershed was selected as the case study because it was highly representative of its sub-

watershed.  Orthophotos for 2001 and 2005 were used to determine the amount of developmental 

change that occurred in Walpole during that four year period.  However, due partially to the 
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beginning of the housing bubble, a very small (less than 10 percent) change was detected with the 

orthophotos. 

Best Management Practices in Walpole 

 Walpole was issued a permit from the MA DEP in 2005 for the installation of a rain 

garden at the Fisher School and an infiltrating catch basin placed near Cobbs Pond on Woodard 

Road (Stormwater Management Policy  1996, 1). 

As noted in the literature review, rain gardens are good for infiltrating runoff, thereby 

increasing base flows (Massachusetts Department of Environmental Protection 2008, 25-7).  The 

BMP on Woodard Road is a leaching manhole which serves dual purposes.  As a manhole, it 

takes runoff from impervious surfaces and transmits it to the wastewater treatment plant.  As a 

structural stormwater BMP, it allows rainwater to leach through the holes in its sides into the 

surrounding soil from which the water then joins the base flow (Massachusetts Department of 

Environmental Protection 2008, 100-2).  

Case Study Comparison 

A comparison sub-watershed, Quinsigamond that had not installed structural stormwater 

BMPs was also selected. This sub-watershed is the most appropriate comparison area because the 

sub-watershed had not implemented structural stormwater BMPs in either 2004 or 2005 and had 

comparable characteristics as shown in Table 8. The location of these two sub-watersheds is 

shown in Appendix C.  
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Table 8. Comparison of Neponset and Quinsigamond Sub-watersheds 

Factor Sub-Watershed 

  Neponset Quinsigamond 

Area (miles
2
) 32.77 25.63 

Impervious Surface (%) 23.93 20.39 

Forest Cover (%) 40.93 34.86 

Soil Drainage Class 3.23 3.15 

Precipitation (inches) 39.96 40.67 

Slope (%)  6.2 7.43 

Table 9 reports that the base flow in the Neponset sub-watershed (1.66 cfs) is larger than 

the base flow in the Quinsigamond sub-watershed (1.53 cfs). Table 10 records the land use 

breakdown for the two sub-watersheds. 

Table 9. Base Flow for Neponset and Quinsigamond Sub-watersheds 

Sub-Watershed 
Base Flow 

(cfs) Neponset 1.66 

Quinsigamond 1.53 

 

Table 10. Land Use of Sub-watersheds 

 Land Use Sub-Watershed 

  Neponset Quinsigamond 

Agriculture Land (%) 2.63 2.32 

Commercial Land (%) 1.26 4.21 

Forest Land (%)  40.93 34.86 

Industrial Land (%) 6.25 9.75 

Open Land (%) 2.12 3.75 

Recreation Land (%) 2.28 1.83 

Very Low Density / Low Density Residential Land 

(%) 

13.25 6.29 

Medium Density Residential Land (%) 12.10 8.09 

High Density / Multi-Family Residential Land (%) 4.01 18.72 

Water (%) 2.22 6.00 

Wetland (%) 13.05 5.09 

The higher base flow values for the Neponset sub-watershed reported in Table 9 is what 

can be expected for seven of the land uses reported in Table 10.  The larger industrial and 

commercial land uses in Quinsigamond increase the impervious surfaces in that sub-watershed, 

reducing its base flow, which is the case.  Five land uses (agriculture, forest, recreation, very 
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low/low density residential and wetlands) that promote infiltration and base flow are more 

prevalent in the Neponset sub-watershed, suggesting that the base flow should be higher in that 

sub-watershed, which it is.  

The relationship between three land uses (open land, medium density residential and 

multi-family/high density residential) and the sub-watershed base flows are contradictory to what 

is expected.  The first contradictory land use is open land which is larger in the Quinsigamond 

sub-watershed, implying an increased ability to infiltrate high volumes of water that should 

increase base flow, which is not the case.  High density residential areas tend to have higher 

levels of imperviousness and thus less infiltration and base flow. This is not the case with the 

multi-family/high density residential land use in the Quinsigamond sub-watershed.  Similarly, the 

Neponset sub-watershed has a higher percentage of medium density residential land which should 

result in more impervious surfaces and less base flow, which is not the case. 

Table 11. Base Flow and Factor Values for Neponset and Quinsigamond Sub-watersheds 

Factor 

Sub-Watershed 

Literature Neponset Quinsigamond 

Base Flow 1.66 1.53 

 Impervious Surface 

(%) 
23.93 20.39 Questioned 

Forest Cover (%) 40.93 34.86 Supported 

Soil Drainage Class 3.23 3.15 Supported 

Precipitation 39.96 40.67 Questioned 

Slope (%) 6.20 7.43 Supported 

Table 11 relates the observed base flow in the two sub-watersheds to the expected effect 

of the factors considered in the literature.  The finding for three of the factors confirms the 

literature.  The larger percent forest cover, the larger soil drainage class and the  lower average 

slope in the Neponset sub-watershed suggest that its base flow should be higher, which it is.  

However, the other results are counter to what was anticipated from the literature.  The larger 

impervious surface and lower precipitation values for Neponset suggest that it should have less in 

runoff than the Quinsigamond sub-watershed, which is not the case.  The fact that Neponset has a 
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larger runoff than is expected from the literature suggests that the structural stormwater BMPs 

installed by Walpole have been effective in increasing base flow.  The town of Walpole had 

budget cuts which included the Engineering Inspector. Due to this setback the monitoring and 

evaluation of the structural stormwater BMPs were not analyzed after their installation (Town of 

Walpole 2005, 11). 

Table 12 below reports the observed and predicted values from the regression equation 

for these two sub-watersheds.  The table indicates that the base flow for the Neponset sub-

watershed is larger than was predicted and the base flow for the Quinsigamond sub-watershed is 

smaller than the predicted value.  This provides further evidence that the structural stormwater 

BMPs in Walpole have been effective in increasing base flow in the Neponset sub-watershed.  

Table 12. Observed and Predicted Base Flow for Neponset  

and Quinsigamond Sub-watersheds 

Sub-Watershed Observed Base 

Flow 
Predicted Base Flow 

Neponset 1.66 1.59 

Quinsigamond 1.53 1.57 
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CHAPTER 6 

CONCLUSIONS 

 This research conducted a GIS analysis of twenty-eight sub-watersheds in the 

Commonwealth of Massachusetts to consider six factors which the literature suggested should 

influence base flow.  A multiple regression analysis confirmed the literature on two factors (soil 

drainage class and slope) and questioned it on three factors (percent impervious surfaces, 

precipitation, and forest cover).  The resulting predictive equation indicated that percent 

imperviousness and precipitation were the most significant factors affecting base flow.  The first 

derivative of the predictive equation indicated that the interaction effects between these factors 

had a substantial impact on the base flow values. 

A number of land use impacts on base flow were also identified in this research.  Natural 

land use features such as open land, wetland, forests, agriculture, and recreation uses were found 

to promote the infiltration of water and increase base flow.  These uses are more conducive to 

infiltration because their surfaces are more pervious than unnatural surfaces.  Unnatural areas 

such as high density/multi-family residential, industrial and commercial areas are mostly covered 

by concrete, buildings or other impervious surfaces, making infiltration very difficult and 

reducing base flow. 

 A case study was also conducted to determine the effect that public policies of 

constructing structural stormwater BMPs had on base flow.  The case study examined two sub-

watersheds, one where structural stormwater BMPs had been constructed and one where they had 

not been constructed.  Due to limited information from the time period in question, 2003-2005, 

only two structural stormwater BMPs were identified in the case study area.  Comparing the two 

sub-watersheds to the literature and the predictive equation suggested that the construction of 

structural stormwater BMPs is an effective policy for increasing base flow. 
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Further Research Directions 

 A possible future research effort would focus on the effect of structural stormwater BMPs 

on different branches of a river.  A paired watershed study could compare the base flow in 

streams that did and did not have structural stormwater BMPs.  Another approach would expand 

on the MassGIS impervious surface data to look at the effect of natural and soft types of 

imperviousness on base flow.  A third research area could take advantage of the increased 

experience with structural stormwater BMPs since 2005 to conduct detailed case studies of the 

experience in using these practices to increase base flow.  A fourth effort could examine the 

effectiveness of non-structural BMPs such as street sweeping or developing stormwater 

management and erosion control bylaw on promoting base flow.  

Planning Implications 

 This study suggests that structural stormwater BMPs increase base flow.  The benefits of 

rain gardens for increasing base flow are becoming more widely recognized over time.  Public 

education efforts could also be used for leaching manholes and other effective approaches which 

are being implemented today.  Educating the public on the benefits these techniques provide 

would increase their acceptance by the government and the public, particularly in areas prone to 

floods. 

Part of the public education effort should educate the public about the importance of 

monitoring practices which need to be implemented after a BMP has been installed.  Monitoring 

is crucial since without it a BMP may become ineffective in the long-run.  Changes that can take 

place over the long term include increased sedimentation in the basin of a rain garden.  This is 

one reason why access to the BMP should be provided so that a dredger or other heavy equipment 

can remove the excess sediment allowing the rain garden to retain its effectiveness.  

 Over time invasive plants, such as garlic mustard or reed canary grass, can also encroach 

upon a rain garden‟s planted species, decreasing their nutrients and their water absorption.  
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Invasive species could also take over the available soil, encroaching upon the planted species.  In 

addition, the soil substrate may change over time with the decomposition of installed material.  

The increased presence of BMPs there may also cause a gradual increase in the height of the 

water table. 

 BMP monitoring can be executed in a variety of ways.  For a time period of three years 

with unlimited funds, rainfall could be monitored using a tipping bucket rain gauge and peak flow 

could also be monitored at an installed stream gauging station to calculate base flows.  Time to 

peak could also be computed to determine the peak flow‟s role on infiltration in the watershed 

(Martin and Schlea, 10).  As mentioned previously, the rain garden water table may also rise as 

measured with a piezometer (Anonymous 2005).   

 Although structural stormwater BMPs may be effective in increasing base flow not all of 

their effects may be positive.  Consider a scenario in which a family, the Smiths, installs a rain 

garden on their property which effectively infiltrates water below the surface.  The BMP would 

be considered a success, except that it causes their neighbors‟, the Browns‟, basement to leak.  

This occurs because the water infiltrating in the rain garden zone is discharged into the ground 

around the Brown‟s basement.  A possible solution would be local cost-sharing in which the 

Smiths would provide the Brown family with the funds required to return their basement to pre-

flood conditions.  

One finding from this research is that land use practices clearly have a substantial impact 

on base flow.  Land use decisions made by private individuals who are often unable to see the 

positive and negative effects elsewhere in the watershed.  The government or other water quantity 

authorities have information that would help reduce negative repercussions from occurring while 

encouraging positive efforts such as the construction of structural stormwater BMPs to occur. 

As this research has demonstrated, impervious surfaces have a dramatic effect on base 

flow and thus locations with more of these surfaces could be required to pay more taxes.  Local 
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governments can play a role here by considering the private landowner‟s behavior with respect to 

its impact on the entire watershed.  When the increase in imperviousness of a parcel crosses a pre-

established threshold property taxes will be increased.  Practices such as this are being applied in 

New Hampshire. 

In addition, public education can be useful in encouraging landowners to not only change 

their practices to not only save money but also to benefit their watershed.  If everyone looks 

beyond their front step to the watershed as a whole there is amazing potential for creating 

healthier and more productive watersheds. 
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APPENDIX A 

EXPLANATION OF SOIL DRAINAGE CLASSES 

“Excessively drained. Water is removed very rapidly. The occurrence of internal free water commonly is very rare or very deep. The 

soils are commonly coarse-textured and have very high hydraulic conductivity or are very shallow.  

Somewhat excessively drained. Water is removed from the soil rapidly. Internal free water occurrence commonly is very rare or very 

deep. The soils are commonly coarse-textured and have high saturated hydraulic conductivity or are very shallow. 

Well drained. Water is removed from the soil readily but not rapidly. Internal free water occurrence commonly is deep or very deep; 

annual duration is not specified. Water is available to plants throughout most of the growing season in humid regions. Wetness does not 

inhibit growth of roots for significant periods during most growing seasons. The soils are mainly free of the deep to redoximorphic 

features that are related to wetness. 

Moderately well drained. Water is removed from the soil somewhat slowly during some periods of the year. Internal free water 

occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting 

depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a moderately low or 

lower saturated hydraulic conductivity in a layer within the upper 1 m, periodically receive high rainfall, or both. 

Somewhat poorly drained. Water is removed slowly so that the soil is wet at a shallow depth for significant periods during the growing 

season. The occurrence of internal free water commonly is shallow to moderately deep and transitory to permanent. Wetness markedly 

restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following 

characteristics: low or very low saturated hydraulic conductivity, a high water table, additional water from seepage, or nearly continuous 

rainfall.  

Poorly drained. Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet 

for long periods. The occurrence of internal free water is shallow or very shallow and common or persistent. Free water is commonly at or 

near the surface long enough during the growing season so that most mesophytic crops cannot be grown, unless the soil is artificially 

drained. The soil, however, is not continuously wet directly below plow-depth. Free water at shallow depth is usually present. This water 

table is commonly the result of low or very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of 

these. 

Very poorly drained. Water is removed from the soil so slowly that free water remains at or very near the ground surface during much of 

the growing season. The occurrence of internal free water is very shallow and persistent or permanent. Unless the soil is artificially 
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drained, most mesophytic crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If rainfall is high or 

nearly continuous, slope gradients may be greater” (Soil Conservation Service 1993). 
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APPENDIX B 

MAPS OF SUB-WATERSHEDS 
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APPENDIX C 

MAP OF CASE STUDY SUB-WATERSHEDS 
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