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ABSTRACT 

 

ZONAL AND REGIONAL LOAD FORECASTING IN THE NEW ENGLAND 

WHOLESALE ELECTRICITY MARKET: A SEMIPARAMETRIC REGRESSION 

APPROACH. 

 

SEPTEMBER 2013 

 

JONATHAN T. FARLAND 

M.S., University of Massachusetts Amherst 

Directed by: Professor Bernard Morzuch 

 

 Power system planning, reliability analysis and economically efficient 

capacity scheduling all rely heavily on electricity demand forecasting models.  In the 

context of a deregulated wholesale electricity market, using scheduling a region’s bulk 

electricity generation is inherently linked to future values of demand. Predictive models are 

used by municipalities and suppliers to bid into the day-ahead market and by utilities in 

order to arrange contractual interchanges among neighboring utilities.  These numerical 

predictions are therefore pervasive in the energy industry.  

This research seeks to develop a regression-based forecasting model. Specifically, 

electricity demand is modeled as a function of calendar effects, lagged demand effects, 

weather effects, and a stochastic disturbance. Variables such as temperature, wind speed, 

cloud cover and humidity are known to be among the strongest predictors of electricity 
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demand and as such are used as model inputs. It is well known, however, that the 

relationship between demand and weather can be highly nonlinear. Rather than assuming 

a linear functional form, the structural change in these relationships is explored. Those 

variables that indicate a nonlinear relationship with demand are accommodated with 

penalized splines in a semiparametric regression framework. The equivalence between 

penalized splines and the special case of a mixed model formulation allows for model 

estimation with currently available statistical packages such as R, STATA and SAS. 

Historical data are available for the entire New England region as well as for the 

smaller zones that collectively make up the regional grid. As such, a secondary research 

objective of this thesis is to explore whether or not an aggregation of zonal forecasts might 

perform better than those produced from a single regional model. Prior to this research, 

neither the applicability of a semiparametric regression-based approach towards load 

forecasting nor the potential improvement in forecasting performance resulting from zonal 

load forecasting has been investigated for the New England wholesale electricity market. 

Keywords: Semiparametric Regression, Load Forecasting, Penalized Splines, Mixed Models 
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CHAPTER 1 INTRODUCTION 

In a simple electrical circuit, at least one source of power is connected to one or 

more sources of resistance (Soliman and Al-Kandari, 2010, Benjamin, 2013). The electrical 

load of the resistors on the circuit is defined as the amount of power, measured in watts, 

being drawn from that circuit or system at a given point in time. This term is synonymous 

with demand and is often used interchangeably. For example, a small LED light bulb 

connected to a battery represents a simple circuit. A windmill providing electricity to a 

remote household not connected to the local transmission infrastructure represents a 

larger-scale example. In fact, if that household were connected to a regional or local 

transmission grid, it would simply become a resistor itself in a much larger electrical 

system.  

The United States electricity grid is an extremely complicated system involving 

interactions of economic agents, regulatory oversight, and physical and engineering 

constraints. Generating plants are the system’s source of power and consumers represent 

the load(s). The infrastructure was originally designed and constructed entirely by 

individual monopolistic utility companies. Under this scheme, each vertically integrated 

utility was separately responsible for generating, transmitting and distributing electricity 

to its respective residential, commercial and industrial customers. Similar to the effect that 

sometimes results from having multiple authors compose a single paper, each with their 

own point of view, the U.S. electricity grid was composed of many different types of 

electricity networks.  
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 The utility-specific segmentation of the electricity grid resulted in a system where 

fuel, resources and, most importantly, power were difficult to share among utilities. The 

systemic vulnerability of this design was made fully apparent during the Great Northeast 

Blackout of 1965.  Since then, utilities have formed “power pools” to ensure regional 

system reliability. In the Northeast, the New England Power Pool (NEPOOL) was 

established in 1971 to facilitate collaboration among the utilities in Massachusetts, New 

Hampshire, Vermont, Rhode Island, Connecticut, and Maine. After three decades of 

development and operation, NEPOOL finally produced an electricity grid with its own 

system operator and sufficient generations to ensure that the New England region of the 

United States never again experiences a full system failure. 

In addition to system reliability, economic factors prompted regulators to consider a 

competitive market design for the industry in view of the monopolistic alternative. Events 

such as the Oil Embargo by Saudi Arabia in 1973 and Three Mile Island in 1979 as well a 

general increase in inflation created a substantial surge in electricity prices. The formerly-

adopted vertically integrated business model of supplying electricity provided little 

incentive to reduce prices, and as such Congress passed legislation to create an industry 

where suppliers must compete for customers. 

 In conjunction with governmental policy, the Federal Energy Regulatory 

Commission (FERC) was called upon to oversee the national electricity industry, and it 

began by restructuring the wholesale side of the industry. It encouraged states to mandate 

their utilities to sell generational capacity as a means to abolish regulator-enforced rates 

that had once been required in a monopolistic market and ideally to replace it with a purely 
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market driven price. FERC established several regional markets, each with its own portfolio 

of generation and equal access to transmission. In these areas of the country, the electricity 

grid is directly overseen and operated by an Independent System Operator (ISO). 

 ISO New England (ISONE) is an independent, not-for-profit corporation created in 

1997 to accomplish three primary objectives: (1) manage the daily operation of the 

regional power grid, (2) develop and oversee a market for wholesale electricity generation, 

and (3) ensure a reliable source of electricity to the New England region through system 

and market planning2. It serves as a special type of ISO referred to as a Regional 

Transmission Operator (RTO). In this role, it is the system operator for the six-state region 

of New England. In the subsequent two years of its founding, ISONE completed the design 

and implementation of the region’s first wholesale electricity market.  Since its inception, 

renewed investments have allowed more than 1.3 GW of new generational capacity to be 

installed in the region, as well as a 2% increase in generator reliability. This market design 

allows generators to respond to economic incentives when demand is highest , e.g., during 

hot summer days. A centralized approach to managing power flow allows for scheduling 

required plant maintenance without concern of insufficient peak period generation. To 

improve system reliability and to mitigate price-volatility, ISONE administers Day-Ahead 

(DA) and Forward Capacity markets (FCM) as a means to efficiently schedule future supply 

and demand requirements. On the supply side, ISONE can call upon generating units that 

range from small ‘peak-load’ units, to medium-sized units used in the presence of a quick 

increase in demand, to large base-load units that are online nearly continuously. In total, 

                                                             
2 http://www.iso-ne.com/aboutiso/co_profile/overview/index.html 
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ISONE has jurisdiction over 300 electricity generators within the region as well as ties 

among neighboring regional grids in New York and Canada. 

The complexity of the regional grid has grown into a large, sophisticated and perhaps 

overly complicated electrical system. With the onset of competition in the market for 

electricity, generators and utilities are driven to decrease their costs and to streamline 

operational efficiencies.   The reliable daily operation of the grid, as well as the financial 

and economic performance of suppliers (e.g., power plants) and demanders (e.g., utility 

companies) depend on understanding what future demand will be. As such, forecasts of 

electricity load are used by suppliers, municipalities, utilities and others within the 

electricity industry. Where short and medium term forecasts allow for the scheduling of 

sufficient generation, long term forecasts are used to predict demand in the face of changes 

in the economic, demographic or political landscape of the region. Everything from 

scheduling maintenance, making investment decisions, and establishing contractual fuel 

purchasing obligations is critically dependent on accurate demand forecasts.  As such, load 

forecasting holds a central role in the operation of a regional power grid and is a well-

researched topic in electrical engineering, mathematics and economics.
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CHAPTER 2 LOAD FORECASTING 

The act of generating predictions for future demand or energy usage of an electrical 

grid is referred to as load forecasting (Bunn and Farmer, 1985). Electric power system 

operators make use of these forecasts for the daily operation of a system, structural 

planning for the system (e.g., construction of new power plants), or to meet long term 

trends of demand requirements. Subsequently, load forecasting can be categorized by three 

different horizons: 

1) Long-Term Load Forecasts – These predictions are made with lead times of a 

year or more. Their primary purpose is to accommodate the changes in 

economic and demographic environments that occur over long periods of time. 

2) Medium-Term Load Forecasts – Power plant maintenance and fuel supply 

requires estimation of future load and energy usage between a week and a year 

out. 

3) Short-Term Load Forecasts – Electrical system operations are critically 

dependent on predicting what the load on the system will be over the course of 

the next week with an immediate precedence for the next operating day. 

We focus solely on the last of these: Short-Term Load Forecasting (STLF). The rest of 

this chapter describes the role of forecasting load in the modern energy industry. In 

sections 2.1 and 2.2, we discuss the role that short-term forecasts have in the operational 

and economic contexts of operating a regional power system. A review of load forecasting 
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models is given in section 2.3 and the specific procedures used in making day-ahead load 

forecasts at ISONE are discussed in section 2.4. 

2.1  Resource Scheduling, Economic Dispatch, and System Security 

As presented in Chapter 1, one of the principal responsibilities of ISONE is scheduling 

the mix of generators used to meet short-term demand. The term Unit Commitment often 

refers to the process of scheduling available capacity in advance to meet total system load 

at every moment of the day. This can become extremely complicated as start-up times, fuel 

availability, and operational and staffing constraints vary from power plant to power plant. 

For example, a large nuclear power plant takes a significant amount of time to begin 

generating electricity, while a small natural gas-fired turbine can start providing electricity 

almost immediately. For most plants, there are also additional fixed or “no-load” costs just 

to remain available should its capacity be required. Predictions of system load are required 

in order to (1) meet variable demand and (2) satisfy the operational constraints associated 

with scheduling a particular generating unit. 

There are additional economic costs associated with scheduling power plants. The mix 

of generator type in a power system determines the economic sensitivity to prediction 

error in load forecasts. For systems primarily dependent on fossil-fueled thermal 

generation, expensive gas turbines would be required to satiate peak demand if the 

forecasted value of load ended up being far less than the actual value. Therefore, the 

economic costs associated with quick-firing peak units and the fixed costs of large steam or 

coal-firing units are directly proportional to prediction error. However, the presence of 

renewable, hydroelectric or pumped storage resources can alleviate the economic loss 
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resulting from errors in load forecasts. In particular, pumped storage is a technology that 

allows for extra capacity to be called on at times of peak demand rather than expensive gas 

turbines. Specifically, by pumping water into a reservoir during off peak hours when the 

price of electricity is low, this technology actually demands electricity from the grid before 

supplying it. The reservoir is typically on top of a mountain or hill where the water can be 

stored and then released through openings in the bottom of the reservoir. The water can 

fall unaided to pass through hydroelectric turbines in order to generate power in times of 

need.   In the context of a mixed thermal and hydro system, the economic dispatch is 

determined by the costs associated the last thermal generator to be dispatched (Bunn and 

Farmer, 1985). 

Load dispatch and economic dispatch are terms used to denote the process of 

minimizing the total cost of meeting the demand while maintaining the security of the 

system.  These terms can be used interchangeably. While scheduling the operation of 

power plants can be done for the next day and up to a week out, dispatch is done on a 

minute-to-minute basis in order to satisfy demand. This near real-time activity is often 

referred to as “online” while longer term scheduling can be done “offline”.  Subsequently, 

economic dispatch requires comparable “online” forecasting methods. These have typically 

been limited to time-series or adaptive methods that use the most recent observations of 

demand in order to track the variation in demand. While the errors in offline plant 

scheduling often result in significant economic losses, dispatch errors typically only disrupt 

control of system frequencies and can cause excessive stress on system infrastructure from 

the rapid changes in which generators are dispatched to serve load.   
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Short term forecasts of load are also required to supply reliable electrical power by 

ensuring system security and infrastructure maintenance. In a regional electrical grid, 

overloading transmission lines with more electricity than they are rated for can cause 

system imbalances and eventually system failure. Forecasting load at the geographical 

supply points, where electricity is physically generated, allows for scheduling plants so as 

not to overload the local high-powered transmission lines. 

In addition to the physical limitations of an electrical system, allocation of a reserve 

capacity is also necessary to guarantee reliable electricity generation and distribution. 

Supply interruptions, or loss-of-load events, can cause serious harm to the infrastructure of 

a large scale electricity system;  the reserve capacity provides for a continual buffer against 

such events. However, determining the appropriate amount of available generation to 

allocate for reserve capacity requires knowledge of what system load will be like in the 

short term. Continual overestimation of required reserve capacity can lead to economic 

losses that stem from scheduling unnecessary plant availability. 

Clearly, accurate short term load forecasts are essential for maintaining the day-to-day 

operation of an electricity grid. They are required to mitigate potential financial and 

economic losses in a competitive wholesale electricity market as well as to ensure 

reliability.  

2.2  Review of Short Term Load Forecasting Models 

There have been many approaches toward developing highly accurate load forecasting 

models. Surveys and reviews of this expansive literature can be found in Matthewman and 
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Nicholson (1968), Bunn and Farmer (1985), Gross and Galiana (1987), Alfares and 

Nazeeruddin (2002) and more recently by Soliman and Al-Kandari (2010).  Even when 

restricted to short-term applications, the variety of methodologies applied to forecasting 

electricity load is exhaustive.  

For simplicity, we classify these approaches into two major categories: conventional 

and artificial intelligence (AI). Load forecasting is a required task for the operation of any 

electrical grid and has been for many years. However, there has been a recent surge of 

applications that use artificial neural networks and other AI-based methods applied to load 

forecasting. For AI-based and conventional methods, a list of major approaches is provided 

below, and each is described. 

2.2.1 Conventional Methods 

2.2.1.1 Multiple Regression 

Regression is a statistical and econometric technique used to explain relationships 

between independent and dependent variables as well as make predictions of the latter. Its 

adoption to forecasting load is among the earliest of any method. Regression-based load 

forecasting models analyze the statistical relationship between total load and weather 

conditions as well as time-of-year effects (Alfares et al., 2002). As such, multiple regression 

models benefit from incorporating additional predictor variables as opposed to the 

univariate methods described in sections 2.2.1.2 and 2.2.1.3.  Section 3.2 goes into detail 

regarding regression methodology; as such, its discussion is limited here. 
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Many studies have successfully used regression to produce forecasts of electricity 

demand. In addition to the current context of day-ahead forecasting, regression models 

have been used to predict peak-period electricity demand, probability density functions of 

load, and medium- to long-term forecasts of energy consumption. Adams et al., (1991) 

provide forecast distributions of weekly peak load using nonparametric simulation and 

three separate regression models. These regressions involve forecasting weekly peak load 

based on trend, socioeconomic and weather indicators. A daily peak load model is also used 

in conjunction with weekly models. Engle et al., (1986) use smoothing splines within a 

regression model to estimate the functional relationship between weather and load. This 

semiparametric approach revealed features and relationships that were not clear in other 

parametric approaches. Fan and Hyndman (2011) use a similar semiparametric approach 

but focus on providing forecasts rather than simply estimating the functional relationships. 

Other well-known applications include Bernard and Veal (1987), Heineman et al., (1966), 

Corpening (1973), and more recently, Hippert et al., (2001). A thorough set of references 

regarding regression-based load forecasting is contained in Soliman and Al-Kandari 

(2010). 

2.2.1.2 Exponential Smoothing 

While regression can be used to explain relationships between different variables, 

univariate methods focus on the relationship among the observations within the series 

itself. Time series can have four components: level, trend, seasonal and cyclical.  An 

example of a widely used univariate approach to load forecasting is exponential smoothing.  

Using one or more smoothing equations, this method fits past observations of itself in 
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order to predict future values. As there may be several possible components in a time 

series (e.g., seasonal, trend, and cyclical) there are several corresponding exponential 

smoothing methods. For instance, simple exponential smoothing addresses only changes in 

level while Holt’s method can be used to accommodate changes in level and trend. The 

Holt-Winters (HW) method accomplishes the same as the Holt method, but is also 

applicable when seasonal patterns are present as well. (Alfares et al., 2002; Gelper, et al., 

2010). The HW method, also referred to as double-exponential smoothing, is a simple and 

recursive method originally introduced in Holt (1959) and Winters (1960). While this 

methodology is used in load forecasting, it has the disadvantage of neglecting the 

relationship between load and weather. Because patterns of load, weather and the load-

weather relationship are constantly changing, the HW method is often characterized by 

poor forecasting performance at longer lead times. However, this approach can incorporate 

the most recent observations of load and therefore performs well for online forecasting but 

not for day-ahead forecasting (Soliman and Al-Kandari, 2010). Recently, Hyndman et al. 

(2005) have explored the statistical properties of the Holt-Winters methodology as applied 

to load forecasting while El-keib et al. (1995) and Infield et al. (1998) have successfully 

developed hybrid models which incorporate adaptive and time series methods in 

conjunction with exponential smoothing. 

2.2.1.3 Stochastic Time Series 

 

Another approach in univariate load forecasting treats the load series as a purely 

stochastic variable. Time series approaches are a broad category of forecasting methods 

where some internal structure, which may incorporate seasonality or trend, is assumed 
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and requires estimation.  The Box and Jenkins approach (BJ) has been widely used and 

involves first identifying the internal structure and then the estimation of the structural 

components. For instance, the autoregressive (AR) model assumes that electricity load can 

be expressed solely as a linear combination of previous loads. The autoregressive moving-

average (ARMA) model extends the AR model to include the disturbances from previous 

periods into the model as well. Both the AR and ARMA approaches have been successfully 

applied to load forecasting, but they require the condition of stationarity in the load series 

in order to assure validity of the forecasts. A stationary process is one where its first and 

second moments (e.g., mean and variance) and covariances (i.e., time displacements) 

remain constant over time. In the presence of nonstationarity, a transformation (e.g., first-

differencing or logarithmic) is required. The transformation is referred to as “integrating” 

the series. In turn, the autoregressive integrated moving-average (ARIMA) model can be 

employed for forecasting.  

Barakat et al. (1992) used an ARIMA model to identify the stochastic components of 

monthly peak demand and then, with additional deterministic components, produce 

forecasts. Jubieras et al. (1999) was able to demonstrate the union of ARIMA models and 

weather predictions to produce an online load forecasting model. Time series models such 

as this are referred to as autoregressive moving-average models with exogenous variable 

(ARMAX). Where other time series models are limited by the availability of past 

observations, ARMAX models have had success in load forecasting applications given the 

clear presence of load weather relationships. In other words, ARMAX represents a possible 

means of addressing the presence of load-weather relationships because it can include an 
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exogenous covariate such as weather. Other examples of load forecasting using time-series 

models include Liu (1996), Zhao et al. (1997), and Huang (1997). 

2.2.1.4 Similar Day 

Rather than a purely mathematical model, the similar day approach matches the 

currently forecasted conditions with observed historical data. This forecasting method is 

simple, intuitive and is often used for benchmarking and model forecast comparison (Chen 

et al., 2010). It also allows forecasters to make manual adjustments based on experience 

and intuition. ISONE currently employs a similar day approach as one of its short term load 

forecasting models. This is described in detail in Section 2.3. 

Recently, Chen et al., (2010) have combined a similar day approach with wavelet 

decomposition and neural networks using data from ISONE. Where the similar day 

methodology by itself may be too simple to capture the complex load relationships, Chen et 

al. (2010) use similar day load as inputs for a hybrid forecasting model . This approach 

provided accurate forecasts across different forecasting periods and using a variety of 

weather inputs.  Mu et al. (2010) demonstrate further forecasting improvement by 

weighting the most similar days more than others.  

2.2.2 Artificial Intelligence 

2.2.2.1 Neural Networks 

Artificial neural networks (ANNs) have received a great deal of attention in load 

forecasting studies conducted over the last decade. These complicated models are designed 

to simulate the mechanics of the human brain and are characterized by their ability to learn 



 

14 

 

the load-weather relationships as well as the relationships within the load series itself. 

ANNs can be trained using historical data and can be employed even in the presence of 

nonlinearity. This characteristic has made ANNs a popular choice for short-term load 

forecasting.  

The structure of neural networks can vary greatly and depends on architectural choices 

such as the number of neurons, the training approach and the function used for each 

neuron. For instance, Fan and Hyndman (2010) use a three-layer feed-forward network 

and use the Levenburg-Marquardt approach to train the network as a benchmark to their 

semiparametric regression approach. There have been a great deal of ANN-based 

approaches used in load forecasting with accurate predictions reported (Ferreira and Alves 

da Silva, 2007; Yun et al., 2008; Amjady, 2006). A typical neural network approach to load 

forecasting uses predicted weather, the most recent observations of load, and a weekday 

indicator variable to make day-ahead predictions of load (Chen et al., 2010).  Hippert et 

al.(2001) note that, while ANNs may have many advantages to forecasting hourly load, the 

ANN models in the load forecasting literature are generally poorly validated. Hippert and 

Pedreira (2004) also state that ANNs have the potential to become heavily over-fitted and 

their performance is not universally accepted. 

2.2.2.2 Fuzzy Logic 

The term “fuzzy logic” is used to denote a logical system where conditional statements 

(such as IF-THEN clauses) are allowed to be approximate rather than exact. For example, 

rather than using binary indicator variables to indicate TRUE or FALSE, fuzzy logic 

variables can have a ‘truth value’ ranging between 0 and 1. In this way, the degree of ‘truth’ 
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is enumerated. It has been shown that this flexibility allows artificial intelligence based 

fuzzy logic systems to approximate any dynamic system of (statistical) relationships (Liu et 

al., 1996). 

Given that the relationships between load and its predictors are changing over time, 

fuzzy logic has been applied to load forecasting by treating electricity demand as a dynamic 

system. This is not a statistical approach. Rather, it is widely used in solving robust linear 

programming or comparable optimization problems. However, fuzzy logic has been 

successfully used in conjunction with purely statistical (regression) models as well as 

neural networks in numerous load forecasting applications (Srinivasan et al., 1992; Dash et 

al., 1995; Chow et al., 1998). Notably, Srinivasan et al. (1999) created an autonomous 

approach toward short term load forecasting using a combination of fuzzy logic, neural 

networks and expert systems (Alfares et al., 2002). 

2.2.2.3 Expert Systems 

Knowledge-based expert systems (ES) are among the most recent applications of 

artificial intelligence to forecast electricity demand. The idea behind ES is to capture the 

task-specific expertise of a human and transfer it to a computer. As such, an “expert 

system” is a computer with the ability to learn, reason and give advice (Liao, 2004). An 

expert system is designed by a “knowledge engineer” who extracts knowledge from load 

forecasting experts to build a central knowledge component of the system. Similar to fuzzy 

logic, these are stored as IF-THEN clauses which can be used to establish relationships 

between the changes in load and changes in the factors that drive electricity demand. 
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Typical arguments in an ES load forecasting system include season, day of the week, 

temperature and change in temperature (Alfares et al., 2002). 

For short-term load forecasting, Rahman and Hazim (1996) developed an expert 

system that performed extremely well and was not dependent upon location. Other ES load 

forecasting models include Brown et al. (1999) and Ho et al. (1990).  Kim et al., (1995) 

were able to use a neural network to produce an initial set of hourly load predictions which 

were then adjusted by a second-stage fuzzy expert system as a means to accommodate the 

presence of holidays and changes in temperature. Other hybrid models have incorporated 

expert systems alongside other AI-based and statistical methods alike. (Rahman and 

Shreshta, 1991; Mohamad et al., 1996; Chandrashekara et al., 1999). 
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2.3  Day Ahead Forecasting at ISO New England 

For every hour of the day, there is a forecaster assigned to the ISONE control room. The 

main responsibility of this position is to develop an hourly demand forecast for the next 

operational day as well as the next six days. Specifically, the day-ahead demand forecast 

must be completed and published before 10:00 am. These forecasts fall into the 

classification as “offline” as they are not continually updated for dispatch purposes but 

rather for day-ahead unit commitment. As ISONE is required to provide this forecast before 

10:00 am, the day-ahead forecasting horizon is 36 hours ahead3. 

The forecaster begins each short term forecast by accumulating weather forecasts for 

the eight New England cities provided by three separate weather vendors4. These weather 

data are analyzed and validated against past performances and other sources such as the 

National Weather Service. Each vendor’s provided weather forecast is visually inspected 

for five different variables: temperature, dew point, wind speed, cloud cover and 

precipitation intensity. Once validated, the weather forecasts for each vendor are 

aggregated to a single regional weather forecast. 

ISONE is provided with both actual and forecasted weather for weather stations 

corresponding to each load zone. However, these stations are chosen based solely on their 

geographical proximity to the load zone and therefore do not represent the actual weather 

that occurs over the entire load zone. ISONE has not undergone any analysis to determine 

                                                             
3 http://www.iso-ne.com/rules_proceds/operating/sysop/out_sched/sop_outsch_0040_0010.pdf 
4 http://www.iso-ne.com/rules_proceds/operating/sysop/rt_mkts/sop_rtmkts_0050_0030.pdf 
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the appropriateness of these weather station locations for each load zone. These data are 

not used in any other analysis done at ISONE, nor is there a forecast made for each load 

zone.5 

These predictions of short-term weather conditions are then used as inputs for 

forecasting models available to ISONE. Expert knowledge and experience are blended with 

numerical predictions of demand to produce a short term load forecast for the New 

England region. Currently, the ISONE control room forecaster employs three separate 

modeling approaches for short term load forecasting. These consist of the following: 

1) SimDay: The similar day approach allows the forecaster to review a range of 

historical daily load shapes and their corresponding weather conditions. The 

forecaster may choose criteria such as how many years back, which days of the year, 

and the percent deviation of actual weather from forecasted weather. These 

predetermined criteria limit the search, and five historical days are eventually 

selected. The forecaster then has the option to adjust for historical energy growth 

and even to manually enter specified hourly weights as a means to blend each hour 

into a single ‘similar-day’ load curve. 

2) MetrixND (Metrix Next Day): This model uses only weather inputs to produce load 

forecasts. Specifically, it uses effective temperature (EFF) during the heating months 

of October through April and a temperature-humidity index (THI) during the 

cooling months of May through September.  MetrixND is a product offered by 

                                                             
5 Note: This is stated within the data dictionary of the historical data sets ISONE publicly provides. 
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ITRON, a leading technology company in the energy and water industries.6 While 

the software has the capability of producing load forecasts by means of exponential 

smoothing, ARIMA, regression, and neural networks, ISONE utilizes the last of these. 

3) ANN (Artificial Neural Network):  Four different ANNs are used by ISONE to 

produce short term load forecasts. Two of these ANNs are “fast” learners which 

weight the most recent demand and weather more than earlier observations. The 

other two ANNs are “regular” learners and weigh all observations evenly. All four 

models are retrained on an annual basis. Similar to the MetrixND model, all four 

ANNs use EFF during heating months and THI during the summer months. 

Both the MetrixND and ANN models are used to create day-ahead forecasts, the seven-

day forecast, and to update the current day load forecast.7 In the context of the day-ahead 

forecasts, the forecasts produced by both the ANN and MetrixND models are then 

combined by the forecaster with the Simday load shape to produce a single regional 

forecast for the next 36 hours. Regression models are not currently used for short-term 

load forecasting at ISONE. 

                                                             
6 https://www.itron.com/na/productsAndServices/pages/MetrixND.aspx 
7 http://www.ferc.gov/industries/electric/indus-act/rto/metrics/iso-ne-rto-metrics.pdf 
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CHAPTER 3 MODELING APPROACH 

3.1  Overview 

Classical linear regression has many applications. However, it is based on 

assumptions that are usually very restrictive. One particular difficulty relates to situations 

where the functional relationship may be nonlinear.  Semiparametric regression models 

offer a bridge between classical linear regression models and those that assume no specific 

functional form. The latter approach is generally referred to as nonparametric and is 

determined purely by sample data. While linear regression is fully capable of addressing 

nonlinearities, there are instances where linear regression may not provide a suitable fit or 

assumes an inappropriate functional form. 

The proposed methodology here focuses on the complex relationships that exist 

between electricity demand and its driving forces. Particular attention is paid to the 

functional form of the relationship between weather and demand as it is often highly 

nonlinear. The nonparametric approach suggested here uses a regression framework but 

permits adaptations (referred to as nonparametric terms) to enter the model specification. 

The resulting fitted model retains the parsimony of a linear model while simultaneously 

relaxing some of the underlying assumptions of the classical linear model. 

The theoretical research that underlies the mechanisms of semiparametric 

regression is not a recent development.  For instance, smoothing techniques using splines 
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have long been used to accommodate apparent nonlinearities in observed data (Craven and 

Wahba 1979, De Boor 1978, Eubank 1988). However, the ability to incorporate these ideas 

into a single conceptual framework is a fairly recent development. In 2003, Ruppert, Wand 

and Carrol published the book Semiparametric Regression, the first to formally show the 

connection between penalized splines and mixed-effects analysis. Smoothing in a mixed-

model setting allows for well-established estimation procedures such as maximum 

likelihood and best prediction. Mixed-model software such as SAS and R conveniently 

performs the estimation. This text is considered a comprehensive treatment of the 

semiparametric methodology (Ruppert, et al., 2009). 

Since 2003, research into the use of semiparametric modeling has exploded; a 2009 

review of progress in this field, again by Ruppert, et al., reported successful applications in 

on-line auctions, genomics, air pollution, agriculture and even cosmology. These studies 

have also shown that nonparametric components can be accurately modeled relatively 

simply using low-rank smoothing splines. In view of the numerous complicated and highly 

sophisticated models that have gained popularity in load forecasting applications, we seek 

a simpler approach. 

This chapter begins by briefly reviewing classical linear regression and provides 

examples of when parametric and nonparametric methods may be more appropriate, 

respectively. Section 3.2 describes curve fitting with splines and focuses on penalized 

splines as an attractive method for scatter plot smoothing. Section 3.3 shows how 

penalized spline models are equivalent to a mixed model while section 3.4 concludes by 
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including additional parametric and nonparametric terms in an additive semiparametric 

model. 

3.2  Classical Linear Regression 

Given data points ���, ���, where  � � 1, … , �, consider the following bivariate statistical 

model 

 �� �  ��   �!��  "� �1�  
where ��  and  �� are observed variables in period i, �� and �! are population parameters 

and "� is a disturbance that is �. �. -. �0, /0 ). This is an example of a simple linear regression 

model. Equation �1) is simple because there is only one explanatory variable. Also, the 

model is linear in the parameters. This means that the exponent on each parameter is one 

and no parameter is multiplied by another parameter.  

Note that the only other term used to capture variation in the response variable is 

the random or stochastic disturbance "�. As this term is assumed to have mean zero and 

constant variance /0, taking expectations of Equation �1) leads to the expected mean of �� 
conditioned on the observed value of �� . Specifically, 

 12��|��4 � ��   �!�� �2�  
Equation �2) asserts that there is a linear relationship between the observed 

response variable �� and the observed predictor variable �� . That linear relationship could 

be estimated with a (linear) model if values for the parameters in Equation (2) were 

estimated. This estimated model can be expressed as  

 �6� �  ��7   �!7�� �3�  
where the error at time period i is given by 
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 �� 9 �6� �  :� �4�  
 

Estimates of the parameters �� and �!  are obtained by minimizing the sum of 

squared errors defined as 

 <=�� 9 2��7   �!7��4>0 �  <��� 9 �6��0?
�@!  ?

�@!  �5�  
The parameter estimates that minimize Equation (5) are found by taking the first 

partial derivatives with respect to both �� and  �!, respectively. Setting these derivatives to 

zero and solving forms the necessary conditions for an optimum. Checking the second 

partial derivatives guarantees a minimum. Simultaneously solving yields estimates of the 

population parameters �� and �!. If this effort is successful, then population parameter 

estimates have been found that make the sum of squared errors as small as possible. 

Ordinary Least Squares (OLS) or just least squares is a method that can provide these 

parameter estimates. 

This method can be applied when simple linear regression is extended to include 

more predictor variables. The multivariate linear statistical model with B predictors is 

given by the following equation: 

 �� �  ��   �!�!,�  �0�0,�  C  �D�D,�  "�  �6�  
where �D,�  is an observation of explanatory variable m at time period i and �D is a scalar 

valued regression coefficient associated with explanatory variable m. Equation �6) is 

referred to as the population regression function while its fitted counterpart is referred to 
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as the sample regression function. As more predictors are included in a regression model, 

matrix notation is often used to compactly express these equations. 

We can express Equation �1) or Equation �6) with more general matrix notation: 

 

 F � GH  I �7�  
 

where 

 

 F � K��L�?M , G �  N1 �!,! … �D,!L L O L1 �!,? … �D,?
P , H � 2��  �!  … �D4Q, I � K"�L"?M �8�  

 

Here, G is an �� S 2B  14� design matrix where each row corresponds to an 

observation and each column after the first corresponds to predictor variable  T � 1, … , B. 

While there are m predictors, the first column of G is an �� S  1� vector of ones 

corresponding to a single intercept parameter. Hence, the number of columns in G is B  1. 

It is clear now that simple regression is a special case of multivariate regression where m=1 

predictor. Both F and I are �� S  1� column vectors denoting observations of the response 

variable and the disturbance, respectively. Finally, H is a � 2B  14  S  1� vector of 

regression coefficients where each entry is a coefficient corresponding to the jth predictor 

variable in G. From here on, matrices and vectors are denoted with bold notation.  

For the linear regression model in matrix notation, the sum of squared residuals is 

given by the following equation: 
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 U      V  �F 9 GHW�Q�F 9 GHW� �9�  
Its expansion leads to 

          �  FQF 9 2HWQGQF  2HWQGQGHW �10�  
Ordinary least squares corresponds with taking this quantity and treating it in the 

context of a minimization. It minimizes by taking the partial derivative of Equation (10) 

with respect to HW and setting it equal to zero to yield the first order necessary conditions 

(FONC) for an optimum as follows: 

  FONC         ]FTF 9 2HWQGQF  2HWQGQGHW]HW � 0 

                        92GQF  2GQGHW � 0 

                                             GQGHW � GQF 

 

�11�  
�12� 
�13� 

Pre-multiplying both sides of Equation �13� by �GQG�_! yields the normal equations: 

                              �G`G�_!GQGHW � �G`G�_!GQF �14�  
 

These equations can now be solved for the vector of parameters that minimizes the 

residual sum of squares: 

  HW � �G`G�_!GQF �15�  
Equation (15) is the least squares estimator for the � 2B  14 S  1� vector of regression 

coefficients. If the goal of the linear regression model is to explain marginal effects, then 

inference can made regarding the entries of the coefficient vector. If prediction is the goal, 

then the least squares coefficients along with observations of explanatory variables can be 
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used to make predictions of the dependent variable. The fitted values of the response 

variable can be determined with the following calculation: 

 Fa � GHW �16�  
where Fa is an �� S  1� vector of fitted or predicted values of the response variable.  We 

note here that an interesting result occurs when Equation (15) is substituted into Equation 

�16� : 

 Fa � G�G`G�91GTF � bF �17�  
Here, A is referred to as the hat or smoothing matrix as it puts a ‘hat’ on the response 

variable. Equation �17) shows that the relationship between Fa and y is a straightforward 

linear transformation. 

3.3  Assumptions of Linear Regression 

Linear regression can be a useful tool for establishing functional relationships among 

variables and for predicting behavior. The model itself – referred to as the classical linear 

regression model (CLRM) – follows a very strong set of assumptions. The assumptions of 

the CLRM are as follows: 

1) Linearity: The specified population regression function is the true data generating 

process and is linear in its parameters.  

 �� �  ��   �!�!,�  �0�0,�  C  �d�d�  "� �18�  
 None of the parameters is raised to a power or multiplied by another parameter. 

2) Strict Exogeneity of the Explanatory Variables: 
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 12"�|�� , … , �?4 �  0 �19�  
Equation �19) states that the expected value of the residual at time period i is not a 

function of the explanatory variables at any time period. In essence, this assumption 

defines something called strict exogeneity and requires that the predictor variables 

are nonrandom and are uncorrelated with the disturbances at any time period. 

Notice that Equation �19) is a conditional expectation. Furthermore, this implies 

that the unconditional mean of the disturbance is zero as well; i.e., 12"�4 � 0. In one 

statement, we have: 

 1e12"�|�� , … , �?4f � 12"�4 �  0 �20�  
 ghi�"���� �  0,   j� � 1, … , �     �21�  

3) No Multicollinearity: This requires that there is no perfect linear correlation among 

explanatory variables in the design matrix; i.e., the columns of X must be linearly 

independent of each other. Absence of perfect correlation results in full rank, where 

the rank of X is defined to the number of linearly independent columns m+1. If this 

assumption is violated, multicollinearity (or just collinearity) is the result. It leads to 

inflated standard errors on the regression coefficients. This has a negative effect on 

hypothesis tests and confidence interval precision. 

4) Constant Variance (Homoscedasticity): The variance of the stochastic disturbances 

is a constant over all observations.  

 12"�0|��4 �  /0 �22�  
Nonconstant variance results in heteroscedasticity. Its negative consequence is to 

bias the standard errors on the regression coefficients.
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5) No Serial Correlation among the Disturbances:  

 1e"�"kl��f �  0,   j� m T �23�  
Correlation of the disturbances is known as autocorrelation. Its negative 

consequence is to bias the standard errors on the regression coefficients. 

The method of least squares does not provide unbiased and consistent parameter 

estimates when its underlying assumptions are violated. When the assumptions of the 

CLRM do hold, however, the Gauss-Markov Theorem guarantees that the resulting 

estimators are best, linear, and unbiased (BLU). 

3.4  Applications of Linear Regression 

To illustrate a simple application of parametric regression, we use a data set containing 

2,208 hourly observations of temperature and electricity demand in New England. These 

observations are limited to the months of June, July and August for 2011. Here, electricity 

demand (i.e., load) is measured in Megawatts (MW). Drybulb temperature in degrees 

Fahrenheit is a measurement of air temperature using a thermometer that is feely exposed 

to the air while being shielded from moisture. This method of measuring temperature is 

used as a proxy for the true air temperature.  

The Pearson correlation coefficient (r) between load and summer temperature is 

calculated and reported in Table 3-1. This statistic quantifies the degree of linear 

association between summer temperature and electricity demand. 
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Table 3-1: Correlation Coefficient for Electricity Load and Temperature for June, July and August, 2011 

Correlation Coefficient .85 

Pr >| r |  <.0001 

 

The degree of linear association is strong (r=.85) and highly statistically significant (p-

value < .0001). Figure 1 displays a scatterplot for the n=2,208 observations. 

Figure 1: Electricity Load versus Temperature for June, July, and August, 2011 

 

Least squares is used to estimate a possible relationship between electricity demand (yn) 

and temperature (xn) over all time periods i. The fitted equation is: 

 �6� �  910,047   368.94��  �24�  
Table 3-2 summarizes the relevant estimation results for Equation (24) . 
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Table 3-2: Least Squares Estimates from Equation (24) 

Parameter Estimates 

Independent 

Variable 

Estimate Standard Error t-Statistic Pr >| t | 

95% Lower 

Confidence Limit 

95% Upper 

Confidence Limit 

Intercept -10,047 356.01 -28.22 <.0001 -10,746.00 -9,349.30 

Temperature 368.94 4.98 74.05 <.0001 359.17 378.71 

 

The coefficient on temperature is positive and highly statistically significant (p-value 

<.0001). It suggests that a one degree increase in drybulb temperature is expected to 

increases average electricity demand by approximately 369 MW. This is entirely plausible 

as higher temperatures in the summer months lead to increased use of air conditioning and 

other cooling methods that rely on electricity. Figure 2 superimposes the fitted regression 

Equation (24) onto the observations presented in Figure 1. 
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Figure 2: Electricity Load and Fitted Values versus Temperature for June, July, and August 2011 

 

Visually, the regression provides a good fit. The coefficient of determination is 

respectable (R2=0.71) for this simple specification. It suggests that 71% of the variation in 

electricity demand is explained by temperature. Table 3-3 reports the analysis-of-variance 

(ANOVA) results. 

Table 3-3: ANOVA table from Equation (24) 

Analysis of Variance  

Source Degrees of Freedom Sum of Squares Mean Square F - Statistic Pr > F  

Model 1 19,581,176,979 19,581,176,979 5482.91 <.0001  

Error 2206 7,878,308,844 3,571,310    

Total 2207 27,459,485,823     
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The overall fit (F=5482.91) is very large and also highly statistically significant (p-value 

<.0001). This simple linear specification is a springboard for refinement. 

The problems of autocorrelation and heteroscedasticity could very well be present 

but we do not address these issues here. A formal diagnostic analysis of any regression 

includes a Durbin-Watson8 test for autocorrelation and hypothesis tests for heteroscedastic 

errors such as White’s9 or the Breusch-Pagan test10.  In the event that these diagnostic 

measures indicate a violation of any one of the classical regression modeling assumptions, 

there are well-established methods to address each issue. We realize this simple model 

does not represent the true data generating process. 

The relationship between temperature and summer electricity demand in New 

England is clearly evident, and linear regression is a viable modeling choice. There are 

instances where a model linear in the parameters is not an accurate functional form of the 

relationship between predictor and response. As an example, we plot the same data set of 

drybulb temperature and load with an expanded horizontal axis. Figure 3 is the same 

scatterplot as Figure 2 with the exception that temperature’s units on the horizontal axis 

are extended to -10° Fahrenheit. 

                                                             
8 Durbin, J. (1969), “Tests for Serial Correlation in Regression Analysis Based on the Periodogram of 

Least-Squares Residuals,” Biometrika, 56, 1–15. 
9 White, H. (1980), "A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for 

Heteroscedasticity," Econometrica, 48, 817-838 
10 Breusch, T. S. and Pagan, A. R. (1980), "The Lagrange Multiplier Test and Its Applications to Model 

Specification in Econometrics," The Review of Economic Studies, 47:1, 239-253. 
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Figure 3: Electricity Load versus Temperature for June, July, and August, 2011 

 

Rather than limiting our observations to the summer months only, we now consider a 

data set comprised of hourly observations of electricity demand and temperature for the 

entire year of 2011. Expanding the units on the horizontal axis of Figure 2 permits the 

inclusion of data points for other months of the year. Figure 3 displays all observations of 

temperature and demand in New England for all of 2011. The immediate impact of the 

inclusion of these additional observations is the need for an amended functional form. 
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Figure 4: Hourly Observations of Electricity Demand versus Drybulb Temperature: All Months in 2011 

 

The linear form that was appropriate for the summer months only (Figure 3) would 

no longer be appropriate when considering data for the entire year. The correlation 

coefficient between summer temperature and load dropped to 0.24 when using the entire 

data set, suggesting a weak linear association. The p-value was less than .0001. It is not 

surprising that the correlation coefficient is significant given the thick band associated with 

the data in Figure 4. 

The same bivariate linear regression model that was estimated for the summer was 

applied to the complete set of 2011 hourly observations. The resulting fitted equation for 

the annual data is 
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 �6� �  12,824   37.61��  �25�  
Compared to the summer fitted regression, the annual fitted regression has an intercept 

that is drastically different in magnitude and sign as well as a slope coefficient that is 

significantly smaller. The R2 for the annual regression is now a mere 0.06 compared to the 

summer regression of 0.71. Only 6% of the variation in electricity demand is explained by 

temperature. Table 3-4 reports the annual regression coefficient estimates. 

Table 3-4: Least Squares Estimates from Equation (25) 

Parameter Estimates 

Independent 

Variable 

Estimate Standard Error t-Statistic Pr >| t | 

95% Lower 

Confidence Limit 

95% Upper 

Confidence Limit 

Intercept 12,824 87.19 147.08 <.0001 12,653.00 12,995.30 

Temperature 37.61 1.61 23.42 <.0001 34.46 40.76 

 

Temperature is still positive and a statistically significant predictor of average electricity 

demand in New England. However, the test statistics are smaller. Table 3-5 presents the 

amended ANOVA table. 

Table 3-5: ANOVA table from Equation (25) 

Analysis of Variance  

Source Degrees of Freedom Sum of Squares Mean Square F - Statistic Pr > F  

Model 1           4,222,886,758.00        4,222,886,758.00  548.59 <.0001  

Error 8758        67,416,949,381.00                7,697,756.00     

Total 8759        71,639,836,139.00      
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The F-Statistic for the annual regression is almost exactly one tenth the magnitude of 

the one resulting from the summer regression. It is, however, still statistically significant.  

Finally, Figure 5 superimposes fitted regression Equation �25� onto the data. 

Figure 5: Electricity Load and Fitted Values versus Temperature for 2011 

 

There is strong graphical evidence that the true relationship between temperature 

and electricity demand, over time, may in fact be highly nonlinear. In the presence of this 

nonlinear relationship, we amend Equation �1� to fit a quadratic model where temperature 

squared is included as an additional predictor. The reformulated model is presented as: 

 �� �  ��   �!��  �0��0  "�  �26�  
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Equation (26) retains linearity in its coefficients while permitting the function itself to 

be nonlinear due to nonlinearity in the variables. Transforming the explanatory variable to 

a higher degree and then including the higher-degree terms in the model is a way to 

accommodate nonlinear relationships. The estimation results from fitting the alternative 

quadratic specification are presented in Table 3-6. 

Table 3-6: Least Squares Estimates from Equation (26) 

Parameter Estimates 

Independent 

Variable 

Estimate Standard Error t-Statistic Pr >| t | 

95% Lower 

Confidence Limit 

95% Upper 

Confidence Limit 

Intercept 21,733 155.293 139.95 <.0001 21,428 22,037 

Temperature -383.17 6.63847 -57.72 <.0001 -396.19 -370.16 

Temperature 

Squared 

4.27 0.06596 64.68 <.0001 4.13713 4.39574 

 

The fitted equation from Equation (26) is superimposed onto the full year observations in 

Figure 6. 
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Figure 6: Electricity Load and Fitted Values versus Temperature for 2011 

 

The restriction of a linear association is relaxed by including the squared term for 

temperature. In this sense, Equation (26) is an unrestricted model while Equation (1) is a 

restricted model. 

 The ANOVA results associated with the Table 3-6 estimation results are presented in 

Table 3-7. 
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Table 3-7: ANOVA table from Equation (26) 

Analysis of Variance  

Source Degrees of Freedom Sum of Squares Mean Square F - Statistic Pr > F  

Model 2 26,018,039,453.00 13,009,019,726 2497.05 <.0001  

Error 8757 45,621,796,686.00 5,209,752    

Total 8759 71,639,836,139.00     

 

The overall fit of the unrestricted model, as reflected by F=2,497, is greater than that of the 

restricted model (F=548.59). We conduct a Chow test to formally test which model is 

better. Under the null hypothesis that the coefficient on the quadratic term in Equation 

(26) is zero, the appropriate F-statistic is given by: 

 
p �  �qq1r 9 qq1s�/Tqq1sups

 �27�  
where qq1ris the residual sum of squares for restricted model �1), qq1s is the residual sum 

of squares and  ups  is the degrees of freedom for the unrestricted model (26), and j is the 

number of restrictions. 

Using the ANOVA output from Table 3-5 and Table 3-7, the test statistic is calculated as: 

 

p �  �67,416,949,381.00 9 45,621,796,686�/145,621,796,6868757
� 21,795,152,6955,209,751.82 � 4,183.53 

�28�  

At the 5% level of significance, the critical value (pv) with (1, 8757) degrees of freedom is 

3.84. As p � 4,183.53 is greater than  pv � 3.84, the null hypothesis is resoundly rejected. 
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This is strong statistical evidence that a nonlinear relationship exists between temperature 

and electricity demand11. 

Nonlinear least squares is a competing approach for accommodating nonlinearities 

in a regression framework. While the appropriately specified linear regression model 

results in unbiased estimators, the nonlinear least squares counterpart may be biased 

owing to a lack of an explicit solution.  In this case, iterative procedures are available using, 

for example, the Gauss-Newtown and Levenberg-Marquandt algorithms (Ruppert et al. 

2003, pp. 49). Comparable to the first CLM assumption, nonlinear regression assumes only 

nonlinear relationships between predictor and response variables. This is also not an ideal 

modeling technique for short term load forecasting as there may be additional predictors 

whose effect can be accurately captured in a linear regression model.  

3.5 Nonparametric Estimation 

While nonlinear relationships can be accommodated in a linear regression model, an 

alternative approach that introduces flexibility regarding the specification of a functional 

form is nonparametric regression. The terms curve fitting and scatterplot smoothing have 

also been used interchangeably for nonparametric regression (albeit primarily in the 

univariate case). This methodology works toward a smooth functional relationship and is 

based solely on sample observations; i.e., it is data-driven. There are many methods 

available to approximate a smooth function (Silverman, 1985) Examples are kernel density 

                                                             
11 The same result is obtained by doing a straightforward t-test on the coefficient for the temperature- 

squared variable in Table 3-6. In particular, notice that the F-statistic (=4,183.53) in Equation (28) can 

likewise be obtained by squaring the t-statistic for Temperature Squared reported in Table 3-6; i.e., 64.682 = 

4,183.5. This is no coincidence. F = t2 when testing a single coefficient. 



 

41 

 

estimation, exponential smoothing and smoothing splines. For exposition, consider this 

simple nonparametric model:  

 �� �   w����  "�  , �29�  
 

where w���� is a smooth function and all other notation is the same as before. This model is 

nonparametric in the sense that the function w is generalized and is not assigned or 

assumed to take on a specific form. In other words, there is no population parameter or set 

of parameters that define the relationship. 

A simple method of estimating the function w is by piecing together several line 

segments or polynomials at different locations in the domain of w to form a ‘grand’ curve. 

These line segments are variable constructs called splines, and the locations where they are 

tied together are referred to as knots. Choosing the knot locations and the number of line 

segments allows flexibility in the estimation of w����.  

The simplest spline model uses polynomial functions of degree 1. In this case, each 

piece-wise function is linear and can be mathematically expressed as follows: 

 ��� 9 xy�z � { 0, �� 9 xy  | 0   �� 9 xy, �� 9 xy } 0 ~  �30�  
Here xy refers to a scalar-valued knot, indexed by κ � 1, … , K. The relative value of xy 

within the sample range ��   defines the knot’s location. Choosing the location of a knot can 

be arbitrary or based on sample information such as sample quartiles. Equation �30� is 

sometimes referred to as the “positive” portion of ��� 9 xy� as it takes a nonzero value only 
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when the value of ��� 9 xy� is nonzero and zero otherwise. In other words, the variable ��  

is truncated at the value xy.  

 In general, these constructs can be referred to as basis functions or spline basis 

functions because they represent a change in direction or the structural characteristics of a 

particular relationship. A basis for modeling structural change is formed when more than 

one basis function is employed12. As an example, consider the same annual data set used to 

get fitted Equation �25� and where one knot is placed at 65 degrees. With k=1 knot, there is 

only one basis function. Specifically, 

 ��� 9 65�z  �31�  
By including this spline basis function and the temperature variable itself as explanatory 

variables in a linear regression, we estimate the marginal effect that temperature has on 

electricity demand both below and above 65 degrees Fahrenheit. The resulting regression 

model is 

 �� � �0  �1��  �0��� 9 65�   "� �32�  
For this example, least squares was used to estimate this model and yielded the 

following fitted equation: 

 ��a � 16,041 9 46.63� �  485��� 9 65�   �33�  
 As the basis function ��� 9 65�z is just a function of temperature, its evaluated value 

is inherently dependent on the value of temperature. Readers uncomfortable with this 

                                                             
12 A basis in linear algebra is a set of elements within a vector space, a linear combination of which can be 

used to uniquely express any other element in that vector space. used to uniquely express any other element 

in that vector space. 
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notation should just consider that this new term simply represents the deviation of ��  from 

65 degrees. However, if this deviation is negative (i.e., � � | 65) then evaluation of 

��� 9 65�z produces a value of zero. Therefore, the inclusion of ��� 9 65�z into model (33) 

conveniently allows us to estimate temperature’s effect (i.e., slope) both below and above 

65 degrees. In the context of fitted Equation (33), least squares has provided parameter 

estimates that seem to indicate a relatively small and negative marginal effect of 

temperature up until 65 degrees (-46.63) and a much larger, positive marginal effect 

afterwards (e.g., 485). Table 3-8 presents the complete estimation results.  

Table 3-8: Least Squares Estimates from Equation (33) 

Parameter Estimates 

Independent 

Variable 

Estimate Standard Error t-Statistic Pr >| t | 

95% Lower 

Confidence Limit 

95% Upper 

Confidence Limit 

Intercept 16,041 80.46 199.36 <.0001 15,884.00 16,199.30 

Temperature -46.63 1.68 -27.70 <.0001 -49.96 -43.29 

Basis Function 485.89 6.48 74.95 <.0001 474.68 497.09 

 

 Using the estimates provided in Table 3-8, fitted values of electricity demand can be 

produced with corresponding observations of temperature. The negative coefficient 

reported on Temperature (-46.63) in Table 3-8 is the marginal effect of each additional 

degree Fahrenheit on load. However, the basis function plays a unique role when 

calculating a fitted load value. It modifies the impact of each degree Fahrenheit depending 

on where the temperature falls relative to 65°. The positive coefficient on the basis function 

affects temperature’s impact. Specifically, expanding Equation (33) and collecting terms 

confirms that there is in fact a completely different slope before and after 65 degrees. At 
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� � � 65, the enumerated value of ��� 9 65�z is nonzero and Equation (33) can be 

expanded: 

 

��a � 16,041 9 46.63� �  485�� 9 485 � 65  
     � 16,041  438.37�� 9 31,525 

     � 915,484  438.37�� 

 
 
�34� 

Equation (34) reveals a significantly positive slope at temperatures above 65 degrees. 

Effectively, there are two estimated equations that are based on this single knot and 

specific basis function used in estimation. Specifically, 

 ��a � 16,041 9 46.63� � , j � � | 65 �35�  
 ��a � 915,484  438.37� � , j � � } 65  �36�  

 

Figure 7 superimposes the fitted Equation (33) onto the scatterplot of annual temperature 

and demand data.  
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Figure 7: Scatterplot of Annual Data and Fitted Values using a Single Knot at 65 Degrees 

  

From this scatterplot, there appears to be a distinctive change in the relationship between 

demand and temperature at 65 degrees Fahrenheit. This single-knot representation is also 

referred to as the broken-stick model. 

Choosing 65 degrees in this application as a knot location was not an arbitrary 

choice. This temperature is often used to indicate human comfort and to delineate between 

heating and cooling effects of temperature on electricity demand13. For instance, at 

temperatures above 65 degrees, there is said to be a cooling effect as electricity is used to 

bring the temperature back down to 65 degrees and vice versa. In our spline model, this 

knot is designed to represent change in curvature. If more knot locations are chosen, then 

                                                             
13 http://www.srh.noaa.gov/key/?n=climate_heat_cool 
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each would represent a point where some change is expected to occur in the relationship of 

interest. While employing a single basis function at x � 65 appears to have captured an 

important structural change, the fit is still rough and the true functional might be better 

approximated with more knot locations. 

Equation (32) could be amended to include additional knot locations that 

correspond to generating additional truncations of the variable �� . These collectively form 

what is referred to as the truncated line basis or truncated power functions (TPF). The 

former is named from the resulting line segments in a regression model while the latter 

incorporates higher degree polynomial line segments that are also truncated at specified 

values. For instance, the TPF basis of degree p is given by 

 1, � � , ���, ��� 9 x1� � , … , ��� 9 xκ� �   �37�  
It can be clearly seen that the truncated line basis is a special case of the TPF basis 

where p = 1.   Using a higher degree TPF basis in a regression might allow for more 

curvature and smoothness in the estimated function but does not necessarily result in a 

better fit. In addition, the ability to choose among alternative bases allows flexibility in 

spline models. In particular, the TPF basis can cause numerical instability in least squares 

estimation as variable truncation leads to design matrices with columns whose entries are 

mostly zero. With columns of the design matrix nearly identical to each other, this can lead 

to problems calculating �G�G�_! in the least squares estimator as G�G  becomes singular 

and, thus, its inverse does not exist. 

 In light of this drawback, bases with improved numerical properties, such as the 

radial and B-spline bases, are commonly used (Eilers and Marx, 1996). However, most 

statistical packages automatically treat the design matrix with an orthogonal 
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transformation in the presence of an ill-conditioned design matrix. Demmler- Reinsch 

Orthogonalization and QR decomposition are widely used (Calderon et al, 2009). Therefore 

the basis that is used in constructing a spline model is not necessarily the one used in 

estimating that model. Using more sophisticated spline bases has not been shown to 

necessarily improve overall fit, and linear splines have been shown to perform adequately 

in many instances (Ruppert et al., 2003).  

For the current context, we focus only on the TPF basis of degree 1 where each 

spline basis function is linear. 

 1, �� ,   ��� 9 x1� , … , ��� 9 xκ�   �38�  
Using these basis functions as explanatory variables in a linear regression amounts to 

connecting line segments at the knots used to construct the respective function.  By using 

the basis in Equation �38�, the number of knots can be extended to yield the following 

linear spline: 

 w����  �  �0  �1��  < �κ��� 9 xκ� 
�

κ�1
 �39�  

where �y is a regression coefficient (i.e., parameter) associated with knot xy. Since there is 

a single coefficient to be estimated for each basis function (at each knot), it can be shown 

that using spline models in this way is a simple extension of classical linear regression. 

Including more knot locations in a spline model can result in capturing more of the 

structural characteristics of the target relationship.  Rewriting Equation (29) in the context 

of Equation (39), we have general formulation for nonparametric regression using linear 

splines and K knots as follows: 



 

48 

 

 

 �� �   w����  "�  , �29� 
  �� � �0  �1��  < �κ��� 9 xκ� 

�
κ�1

 "� �40�  
For illustrative purposes, we chose knots at 5, 25, 45, and 65 degrees and estimate 

Equation �40� using least squares. The resulting parameter estimates are presented in 

Table 3-9 below. 

Table 3-9: Least Squares estimates for fitting Equation (40) with four knots. 

Parameter Estimates 

Independent 

Variable 

Estimate Standard Error t-Statistic Pr >| t | 

95% Lower 

Confidence Limit 

95% Upper 

Confidence Limit 

Intercept 16,649 420.96 39.55 <.0001 15,823 17,474 

Temperature -159.20 86.94 -1.83 0.06 -329.62 11.22 

5-25 133.85 91.01 1.47 0.14 -44.54 312.24 

25-45 -77.53 14.91 -5.2 <.0001 -106.76 -48.30 

45-65 109.33 8.45 12.94 <.0001 92.76 125.90 

>65 400.35 9.06 44.2 <.0001 382.59 418.10 

 

Fitted values for the K=4 model are plotted in Figure 8 below. 
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Figure 8: Scatterplot of Annual Data and Fitted Values using Knots at 5, 25, 45 and 65 Degrees 

  

There are several noticeable differences between the fitted curves in Figure 7 and 

Figure 8. In the latter, there appears to be no marginal effect between 45 and 65 degrees, as 

suggested by the near-horizontal fit of the equation between these two temperatures. Also, 

the changes in slope for earlier segments suggest additional features of the relationship at 

lower temperatures. Including more knots has resulted in a smoother curve than that 

provided by the simple broken-stick model.  

This is meant only as a modeling example. Our intent is to model the underlying 

relationship itself.  A linear spline fit with four knots might very well be an approximation 

of that relationship but it is not necessarily the case that the true relationship is linear 
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between each of the pre-selected knot locations. Our goal is to estimate an assumed smooth 

functional relationship. 

3.5.1 Penalized Splines  

It is clear that modeling the relationship between temperature and electricity 

demand, as well as the performance of splines in general, depend on choices such as 

number of knots, their location, and the degree of the basis functions used in their 

application. In addition, a smoother fit can be achieved by using higher-degree polynomials 

or by directly penalizing the roughness of the fit. For instance, smoothing splines are spline 

models that use every unique data point as a knot (Reinsch, 1967; Wahba, 1990). The 

“roughness” of a smoothing spline fit is penalized by constraining the integrated squared 

second derivative (See Equation (41) below). The purpose of this constraint is to permit a 

large number of knots while requiring the �y coefficients to be within a certain limit. This 

penalty was pioneered by Reinsch (1967).  

The sum of squared residuals and the penalty for the general smoothing spline can 

be written as 

  q �  <��� 9   w�����0 9 � � �w���� ���0-��
�

?
�@! ,  �41�  

where � is referred to as the smoothing parameter and is used to control the degree of 

smoothing. Notice that the second term in Equation (41) is the integral over the squared 

second derivative of  w. Penalizing the second derivative allows for direct control over the 

smoothness of the fit. However, this penalty is not limited to the second derivative, and any 

derivative can be used. The second derivative is a common choice as it represents a 



 

51 

 

compromise between the linear fit which results from penalizing the first derivative and 

the complex equations that result from penalizing higher degree derivatives (Eilers and 

Marx, 1996, p.91). Also, because every unique data point is used as a knot location, 

smoothing splines use n basis functions in their estimation (where, again, n is the number 

of observations). As such, this can cause difficulty in calculating model selection criterion 

when the sample size is large or when additional predictors are included. 

Choosing the appropriate number of knots for a spline model has received much 

attention and, in general, “overfitting” is a consequence of too many knots while 

“underfitting” results from too few knots (Eilers and Marx, 1996). Overfitting a spline with 

too many knots is of particular concern as it can results in approximating both the 

structural features as well as the random fluctuations (noise) of the underlying process. 

O’Sullivan (1986, 1988) showed how choosing a relatively large number of knots, less than 

n, in conjunction with a penalty on the second derivative could provide comparable results 

to a smoothing spline with n knots.  

An alternative roughness penalty was introduced by Eilers and Marx (1996) using 

splines with equally spaced knots. It penalizes the differences between adjacent spline 

coefficients rather than basing the penalty on a derivative. While the penalty of Eilers and 

Marx was applied to a particular spline basis, referred to as B-splines (de Boor, 1978), it 

can also be applied to any other corresponding basis. An advantage of this approach is the 

ability to choose the spline model and penalty separately. These penalized splines have 

since been generally referred to as P-splines and share a lot in common with the low-rank 

pseudosplines, which were proposed by Hastie (1996). Ruppert (2002) discusses choosing 
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the number of knots and the penalty simultaneously. The results of Monte Carlo 

simulations in his study suggest a default number of knots that is sufficiently large enough 

to capture the underlying process but has little impact on the fit when this default value is 

exceeded. 

Ruppert, et al. (2003) show how penalized spline regression can be generalized and 

applied by (1) choosing  the degree of the spline and the number and location of knots for 

the spline model and (2) choosing the way that the roughness of the fitted spline will be 

quantified and penalized. They go on to say that choosing the basis functions used in model 

construction and the basis functions used in actual estimation are secondary, yet still 

essential choices. Our approach follows that of Ruppert, et al (2003) very closely. The 

general definition of a penalized spline given in Ruppert, et al (2003) allows for a 

straightforward application using mixed models discussed in the following section. The P-

spline approach used here is laid out below using the familiar example of annual electricity 

usage and temperature. 

3.5.2 Penalized Spline Example 

Let X be an n x (2+K) design matrix consisting of temperature observations and 

defined as 

 � V  K1 �� ��� 9 x!�z … ��� 9 x��zL L L O L1 �? ��? 9 x!�z L ��? 9 x��zM �42�  
In addition, let y be an (n x 1) vector of observations of electricity load,  � be a (2+K) 

x 1 vector of regression coefficients, and � be a n x1 vector of independently and identically 

distributed residuals. � can be written out fully as: 
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 � �
��
��
�β�β!�!L����

��
�
 �43�  

which is of dimension (2+K) x 1. 

The impact that temperature has on electricity load can be expressed as a linear 

spline (where p=1) and reformulated in matrix notation in the classical linear model as 

 � �  ��  � �44�  
 Even if K is sufficiently large, least squares estimation of Equation (44) can still 

result in a rough fit (Ruppert, et al. 2003, p. 65). If there are many knots, then there are 

many line segments that make up the spline. Each of these segments has its own slope. 

Collectively, these can result in an overall rough or wiggly fit. This can be avoided by 

imposing a constraint. As previously discussed, smoothing splines ‘shrink’ the influence 

that each knot has on the fit by penalizing the integrated second derivative of the whole fit. 

This concept can also be applied to low-rank smoothers, where the number of basis 

functions is less than the sample size n (Hastie, 1996).  Penalized splines are low-rank 

smoothers where the influence of each spline coefficient �� is constrained by imposing the 

following restriction: 

 < �6�� | Υ �45�  
where Υ is some arbitrary constant. The purpose of this constraint is to permit a large 

number of knots while requiring the �� coefficients to be within a certain limit. Each �� is, 

by definition, a slope. Restricting the collective set of these slopes means promoting 

smoothness in the spline without compromising the number of knots. 
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There exist other constraints that would result in a smooth fit, but this particular 

constraint is attractive as it is easy to implement with least squares. To see how, consider 

the penalty matrix14  defined by  

   �  
��
��
�0 0 0 0 00 0 0 0 00 0 1! 0 00 0 0 O 00 0 0 0 1���

��
�
 �46�  

The matrix D (of dimension 2+K by 2+K) has nonzero entries on only those diagonal 

elements that correspond to knot coefficients (as opposed to the intercept or the coefficient 

for temperature). These nonzero entries correspond to the columns of X that are populated 

with the spline basis functions. The other columns, specifically the first and second, and 

their associated regression coefficients are not affected by this penalty because the first 

two diagonal entries in D are zero.  While our choice of D coincides with a P-spline using 

the truncated line basis, other penalties are possible. In fact, Eilers and Marx (1996) 

originally constructed a matrix D by using second-differences in order to approximate the 

penalty on the second derivative which is commonly used in smoothing splines. Using D to 

target only the spline coefficient entries in the parameters vector �, the constraint in 

Equation (45) can be formulated in matrix notation as: 

 �Q � ¡ Υ �47�  
Note that � is defined by Equation (43). 

 Minimizing the least squares objective function (i.e., the sum of squared residuals) in 

Equation (9) subject to Equation (45) amounts to a Lagrange multiplier constrained 

                                                             
14 The penalty matrix can take numerous forms appropriate for the corresponding choice of basis. The 

only necessity is that the penalty matrix must be positive semi-definite.  
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minimization. This is sometimes referred to as penalized sum of squares or regularized 

regression. The criterion for estimating a P-spline model with least squares is given by 

 ¢���B�£: =� 9  ��W>Q=� 9  ��W>    �0��Q � �48�  
The term �0��Q �  is known as a roughness penalty as it quantifies and restricts the 

roughness of the resulting fit. Ruppert, et al. (2003) justify the exponent 2� on the 

smoothing parameter, where again p is the degree of the spline, by noting that 

transforming � (e.g., with quadratic or cubic splines) warrants a comparable 

transformation of �.  Using the same calculations to find the least squares estimator, the 

solution to the minimization problem, for a given  λ, can be shown to be15 

 �¥7 � =�¦�   �0� >_§ �¦� �49�  
Fitted values of the response variable are calculated by 

 �6 � �=�¦�   �0� >_§ �¦� �  ��¥7 �50�  
Analogous yet separate to the classic smoothing spline, the degree of smoothing for a 

penalized spline is likewise controlled through a smoothing parameter � } 0. When � is 

set to zero, the roughness penalty on the spline coefficients becomes zero. As such, a 

smoothing parameter of zero in Equation (49) results in the constrained estimator 

becoming the least squares estimator. On the other hand, when � ¨ ∞ the fit ‘shrinks’ 

towards the pth degree polynomial regression.  

There exist several ways to determine the appropriate degree of smoothing. Both 

smoothing splines and penalized splines can have smoothness chosen by criteria such as 

Cross-Validation (CV), General Cross-Validation (GCV), Akaike’s Corrected Information 

Criterion (AICc) and Mallows’ criterion (Cp). However, using criteria such as these becomes 

                                                             
15 Ruppert et al, 2003, p.66 
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complicated when a large range of candidate values is used to estimate � or if smoothing 

parameter estimates are simultaneously required for multiple nonparametric terms 

(Calderon et al., 2009).  

 Alternatively, the degree of smoothing can be obtained through maximum likelihood 

(ML) and restricted maximum likelihood (REML) estimation. The likelihood approach 

toward penalized spline smoothing has a strong connection with mixed model 

methodology, and current software packages can be used. This approach is described in 

section 3.6. 

To illustrate how this new formulation results in a smoother fit, consider changing the 

number of knots from 4 (see Figure 8) to 20. Using K=20 knots, a linear spline model was 

fit to the annual data with least squares16. Figure 9 provides a pictorial representation. 

Notice that Figure 9 is still rough, even with more knots. 

                                                             
16 Figure 9 was fit using PROC REG is SAS while Figure 10 was fit using PROC MIXED. The latter can easily 

be used for standard least squares, but for simplicity, PROC REG is used when smoothing is not required. 
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Figure 9: Fitted Values from a Linear Spline Model with K=20 Knots 

 

Next, a P-spline (penalized) model was estimated using the same 20 knots. Figure 10 

displays the fitted function. 
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Figure 10: Fitted Values from a Penalized Spline with K = 20 Knots 

 

The degree of smoothing in Figure 10 was obtained with REML estimation. Both spline 

models represented by Figures 9 and 10 use the truncated line basis of degree one17 with 

the same equally distanced knots. It is clear that shrinking the spline coefficients in the P-

spline formulation has resulted in a smoother fit.  

3.6 Penalized Splines as Mixed Models 

Linear regression models that incorporate random effects are known as mixed models. 

Recall that the classical linear regression model treats all of the regression coefficient 

coefficients as fixed. A mixed model framework allows for some coefficients to be random. 

                                                             
17 Note: Ruppert (2003) shows how the smoothing parameter is proportional to the degree of the spline 

basis on page 66. 
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There exists a surprisingly simple equivalence between the penalized spline proposed by 

Eilers and Marx (1996) and an analogous mixed-model representation. By treating the 

coefficients of the spline basis (i.e., the ��) as random, the linear spline model in Equation 

(40) can be represented as a random coefficient linear regression spline (Brumback et al., 

1999). The model is: 

 �� � �0  �1��  < �κ��  � 9 xκ� 
�

κ�1
 "� �51�  

 

The first thing to notice is that Equation (51) is a repeat of Equation (40). However, the �� 

are no longer treated as (fixed) population parameters. Instead, each coefficient is assumed 

to be random, with u�~N�0, /«0� and /«0  denotes the variance of the random coefficients. 

By separating the fixed and random effects, Equation (51) can be reformulated as a 

general linear mixed model: 

 � �  ��  ¬­  � �52�  
where the design matrices are now defined as 

 � V  K1 ��L L1 �?M , ¬ V K��� 9 x!�z … ��� 9 x��zL O L��? 9 x!�z L ��? 9 x��zM, �53�  
and ® and I are assumed to behave as follows: 

      1 ¯®I° � ¯±±° �54�  
The covariance structure for this mixed-model representation is defined as 

 ghi ¯®I° � ¯² ±± ³°   �55�  
where 
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  ² � /«0´,   ³ � /µ0´ �56�  
By Equation (55) note that ® and I are assumed to be independent of each other.  

It is clear that fitting a mixed model entails estimation of both fixed effects and 

covariance parameters, as well as the prediction of random effects. There is a significant 

distinction between the term estimation and prediction; a population parameter is a 

constant value that may be estimated while random coefficients are stochastic and must be 

predicted. Preferred estimation methods, such as Bayesian likelihood based approaches, do 

not apply to random effects.  Ruppert et al. (2003, p.98-99) provides a treatment of this 

approach and begins by rewriting Equation (52) as follows:  

 � �  ��  ��,   where   �� �  ¬­  �  
 

�57�  
Presenting the mixed-model in this way allows us to consider the stochastic term �� in 

Equation (57) to be viewed as a summation of two separate stochastic components, namely 

the random coefficients ­ and the stochastic disturbances �.   The covariance matrix (V) 

used in estimation is now generalized to incorporate the additional stochastic terms in 

Equation (57): 

 ¶ V ghi��� � ghi���� � ¬·¬¦  ¸ �58�  
where all notation has been defined in Equations (52) – (56).  

In the presence of covariance matrix V in Equation (58), the appropriate estimator 

is the generalized least squares (GLS) estimator written as follows:  

 �¹ � =�¦¶_§�>_§ �¦¶_§� �59�  
The GLS estimator of � is appropriate in the presence of ­ in Equation (52) or ��  in 

Equation �57�.  Furthermore, Maximum Likelihood (MLE) or Restricted Maximum 
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Likelihood (REML) can be used to estimate the parameters �  as well as the components of  

¶ in this context. When there is an unknown, generalized covariance matrix to be 

estimated, the consistent estimator is called the estimated generalized least squares (EGLS) 

estimator. However, when ML or REML is used to optimize first over �, for a fixed V, the 

likelihood function is maximized by Equation (59) (Ruppert, et al., 2003, p 100). This is 

illustrated below by substituting �¹ into the log likelihood function.  

Fitting the mixed-model in Equation (52) requires predictions of the random effects 

­, which the GLS estimator does not provide. Robinson (1991) as well as Hayes and Haslett 

(1999) show that the notion of Best Linear Unbiased Prediction (BLUP) can produce 

predictions of the random coefficients once the parameters  �  and ¶  have been estimated. 

The goal of BLUP is to minimize the prediction error18, subject to a condition of 

unbiasedness, over all candidate linear random and fixed effects vectors  ­º and �¹ . In this 

context, Robinson (1991, p.19) has shown that the solution for the random effects vector is 

given by 

 ­º � ²¬¦¶_§=� 9 ��¹>  �60�  
Note that ­º  can be found only after �¹ has been determined. Thus the BLUP prediction of 

the random effects from Equation (52) can be solved once the appropriate estimators have 

been applied. 

 For a penalized spline model in mixed model representation, the appropriate degree 

of smoothing is determined by the estimated variance components σ¼0  andσ½0 and the two 

popular estimation techniques mentioned above, MLE and REML, can be applied. To 

illustrate this important and advantageous aspect of our approach, the log likelihood 

                                                             
18 Ruppert, et al., 2003, p. 99, Robinson, 1991. 
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function used in estimating the variance components is derived. Here again we follow 

Ruppert, et al. (2003) very closely. Our justification for this rests in that the text itself is a 

comprehensive collection of approaches and applications.  

The log likelihood function for estimating Equation (52) can be written as 

 L��, ¿� �  9 12 2ÀhÁ|¶|  �� 9 ���Â¶_!�� 9 ���  �ÀhÁ�2Ã�4 �61�  
 

The process of MLE first optimizes Equation (61) over all �. The result is the GLS estimator 

�¹ in Equation (59)19. Substituting the resulting GLS estimator �¹ into the log likelihood 

function results in the profile log likelihood function and can be written as 

 L� ¿� �  9 12 ¯ÀhÁ|¶|  �Q¶_! ÄÅ 9 =�¦¶_§�>_§ �Q¶_!Æ F° 9 �2 ÀhÁ�2Ã� �62�  
Thus, using MLE and optimizing Equation (62) over V results in parameter estimates for 

both � and V.20 

Implementing REML is more complicated than ML and is asymptotically equivalent. 

However, REML has the advantage of accounting for the degrees of freedom that are 

attributable to the fixed effects components in a mixed model. The restricted log likelihood 

function is given by 

 Lr� ¿� �  L� ¿� 9 12 ÀhÁlGQ¶_!Gl �63�  
                                                             
19 PROC MIXED documentation in SAS version 9.3 confirms this. It also indicates that the Newton-

Raphson algorithm is implemented as default and Lindstrom and Bates (1988) give details on why it is 

preferable. 
20 Much of the material on pages 48-53 here are a summary of Ruppert, et al (2003) pages 98 – 102. 
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In the case of a penalized spline with random spline coefficients, the variance 

components, /µ0 and /«0, are assumed known and therefore so is ¿, Specifically, that 

¿ � /«0¬¬Q  /µ0´. In this context, the solutions for �¹ and ­º in Equations (59) and (60) can 

therefore be rewritten as 

 ­º � /«0¬¦=/«0¬¬Q  ´/µ0>_!=� 9 ��¹>  �64�  
and 

 �¹ � Ç�¦=/«0¬¬Q  ´/µ0>_!�È_§  �¦=/«0¬¬Q  ´/µ0>_!� �65�  
Equations (64) and (65) are a special case of the mixed model BLUP results but with the 

disturbance behavior and covariance structure specified in Equations (54), (55)  and (56). 

The connection between mixed models and penalized splines now becomes 

palatable. Brumback et al. (1999) showed that the solution of the penalized spline model in 

Equation (49) is exactly equivalent to the mixed model where the spline basis coefficients 

are treated as random effects21. Assuming that �|­ ~N��� 9 ¬­, ³� and ­ ~N�0, ²�, i.e. as is 

the case of  a random effects coefficient linear spline, then maximizing the log likelihood of 

(y, u) over the unknown � and ­  leads to the following criterion: 

  �� 9 �� 9 ¬­�Q³_!�� 9 �� 9 ¬­�     ­Q²_!­ �66�  
Ruppert, et al. (2003) points out that Equation (66) is a just a generalized least squares 

criterion that is subject to the penalty ­Q²_!­. As such, the criterion involved with fitting a 

mixed-model also, in some manner, involves penalization.  

                                                             
21 See also Ruppert and Carrol, Spatially-Ddapted Penalties For Spline Fitting, 1999. 
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Returning to the corresponding P-spine criterion in Equation (48) and noting that 

the spline coefficients in a mixed model representation are limited to the vector u, we 

divide the P-spline criterion by /µ0 to form the following expression: 

 
1/µ0  �� 9 �� 9 ¬­�Q�� 9 �� 9 ¬­�    �0�

/µ0 ­Q �­ �67�  
where  � is defined as a �� S  �� identity matrix. Compared to D in Equation (46) where 

only the spline coefficients are to be penalized, the penalization term in Equation (67) 

requires that every coefficient in u be penalized. As such, the identity matrix is used for the 

penalty matrix  �.  
If ghi�­� � /«0´ � ·,   (i.e., as is the case of a penalized spline)  then its inverse ·_! 

in Equation (66) is just 
!ÉÊË ´ �  !ÉÊË  � . Analogously, if ghi�I� � /µ0´ � ¸, then its inverse, 

¸_! is just   
!ÉÌË ´. Specifically, these relationships can be defined as 

 ¸_! � K1//µ0 … 0L O L0 … 1//µ0
M � 1/µ0 ´, ·_! � K1//«0 … 0L O L0 … 1//«0

M � 1/«0  � �68�  
It can now be seen that by defining the matrices G and R as is done in Equation (56) 

and substituting the specific form of these variance components into Equation (66)  yields 

mixed model criterion identical to the penalized spline criterion. In this context, � can be 

expressed explicitly in terms of the variance components:   

 
�0�
/µ0 � 1/«0 �69�  

Multiplying both sides by /µ0 allows us to solve for lambda: 



 

65 

 

 �0� � /µ0/«0 �70�  
Thus, the degree of smoothing for a penalized spline model can be chosen through 

likelihood-based estimation of /µ0 and /«0. To further appreciate the relationship between 

mixed models and P-splines, the fitted values that result from both can also be shown to be 

equivalent. For given solutions �¹  and ­º, the BLUP of the response variable is given by 

 �6 � ��¹  ¬­º �71�  
 

By denoting the combined design matrix of both fixed and random effects as 

Í � 2� ¬4 the fitted values of the response variable are shown to be 

 �6 � Í=Í¦Í   λ >_§ Í¦� �72�  
where D is already defined. Brumback et al. (1999) note that this is exactly equivalent to 

the fitted values of the penalized spline smoother of Eilers and Marx (1996) found in 

Equation (48) 

PROC MIXED in SAS can be used in smoothing applications with mixed models. The 

relationship between penalized splines and mixed-model theory allows for both REML and 

ML to be employed in parameter estimation as well as choosing the degree of smoothing. 

Our approach exploits this relationship and extends the case of a single smooth function to 

that of multiple smooth functional relationships. 

3.7 Semiparametric Additive Models 

The last two sections have shown how penalized splines can be used to estimate a 

smooth functional relationship and how they can be formulated as a mixed model. There 



 

66 

 

are many instances, however, when multiple predictors should be modeled in such a 

flexible fashion. In the previous section, we discussed the extension of simple regression to 

include multiple predictors. Whether a parametric, nonparametric or semiparametric 

model specification is employed, it is easy to see that each is a special case of an additive 

model, where the response variable is a simple summation of each predictor’s effect and the 

residual. Ezekiel (1924) provided much of the early work on additive models while 

Friedman and Stuetzle (1981) continued. The simple assumption of additivity was explored 

by Stone (1985) and allowed for several nonparametric relationships to be investigated 

simultaneously. Additional flexibility was introduced with the class of Generalized Linear 

Models (Nelder and Wedderburn, 1972), which relaxes the distributional assumptions of 

the linear model22.  However, it wasn’t until 1990 that the seminal monograph Generalized 

Additive Models (GAM) by Hastie and Tibshirani took additive models and generalized them 

to other families of distributions. Since its publication, GAMs have been widely used and 

implemented in statistical packages such as S-PLUS and SAS. 

An example of an additive model with three predictor variables �!,�, �0,�, and �Î,� is given 

by 

 �� �   w=�!,�, �0,�, �Î,�>  "� �  w!=�!,�>  w0=�0,�>  wÎ=�Î,�>  "� , �73�  
An additive model is a multivariate regression model where the functional form of 

each term is generalized. Specifically, the functions w!, w0, and wÎcan each be estimated as 

smooth functions or be required to be linear, simultaneously. This flexibility allows the 

estimation of classical linear, nonparametric and semiparametric specifications. 

                                                             
22 See section on Mixed-Model Theory in the PROC MIXED documentation in SAS version 9.3,  
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 Our approach focuses on the inclusion of both linear (“parametric”) and 

nonparametric terms in a regression context. For example, if the predictor variable �!,� in 

Equation (74) is modeled linearly while allowing smoothing functions for �0,� and �Î,� then 

the subsequent specification would be 

 �� �  ��   �!�!,�  w0=�0,�>  wÎ=�Î,�>   "� �74�  
 When multiple smoothing functions require estimation, the classic approach and the 

one used by SAS and S-PLUS is referred to as the backfitting algorithm. This algorithm can 

be unattractive with large data sets as well as with many predictors. It is an iterative 

process that ultimately fits smoothing splines for each nonparametric component until the 

best overall fit is achieved. In this case, the smoothing parameter for each is chosen by a 

criterion such as Cross Validation (CV), Generalized Cross Validation (GCV), Akaike’s 

Information Criterion (AIC) or its adjusted value (AICc). Each of these can require many 

potentially unnecessary calculations as indicated in section 3.6. 

 Alternatively, the smoothing functions that appear in Equation (74) can be fit using 

penalized splines. A semiparametric additive model using penalized splines results in the 

following equation: 

 �� �  ��   �!�!,�  �0,� < �yË0 ��0,� 9 xyË0 �z
ÏË

yË@!  < �yÐÎ ��Î,� 9 xyÐÎ �z
ÏÐ

yÐ@!   "� �75�  
where for a general predictor Ñ, the term xyÒÓ  is a knot location associated with Ñ, indexed 

by κÓ � 1, … , �Ó , and �yÒÓ  is the corresponding knot coefficient. (Note that each 

superscript in Equation (75) is not intended to indicate a polynomial power). 
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 As we have shown, this approach can be accommodated in a mixed-model. The 

appropriate design matrices are 

 

� �  N1 �!,� �0,� �Î,�L L L L1 �!,? �0,? �Î,?P ,  

 ¬� � N��0,� 9 x!0�z … ��0,� 9 xÏË0 �zL O L��0,? 9 x!0�z L ��0,? 9 xÏË0 �z
P , 

 ¬Î � N��Î,� 9 x!Î�z … ��Î,� 9 xÏÐÎ �zL O L��Î,? 9 x!Î�z L ��Î,? 9 xÏÐÎ �z
P, 

  ¬ � 2¬0 ¬Î4 

�76�  

where the dimensions of �, ¬�, ¬Î, and ¬ are (n x 4), (n x xÏË0 ), (n x xÏÐÎ ) and                              

(n x �xÏË0  xÏÐÎ �), respectively. The corresponding mixed model representation and 

covariance structure is given by 

 � �  ��  ¬­  � �77�  
 

 ² � �ÔÕ2­4 � Ö/�20 ´ ±± /�30 ´× , ³ � �ÔÕ2�4 �  /µ0´ �78�  
There are several advantages for fitting an additive model with a mixed model 

formulation. Firstly, the degree of smoothing for each nonparametric term can be 

determined through ML and REML. Analogous to the case of a single predictor, the degree 

of smoothing for a general predictor Ñ in this context is given by  

 �Ó � Ø/6µ0/6Ó0  �79�  
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By estimating the within-knot variance of each Ñ, an appropriate degree of 

smoothing proportional to the residual variance is determined. A second advantage is the 

reduced dimensionality that results from using low-rank smoothers. Stone (1985) defines 

dimensionality as “…the variance in estimation, ‘the curse of dimensionality’ being that the 

amount of data required to avoid an unacceptably large variance increases rapidly with 

increasing dimensionality”.23 Where smoothing splines require a basis function at each 

unique data point, they are referred to as being full rank. In contrast is the penalized spline 

where knot location and number can be chosen appropriately. Lastly, and as already 

discussed, the connection between penalized splines and mixed models allows for current 

mixed model software to be used in fitting a semiparametric additive model.  

                                                             
23 Stone, C. J. (1985), "Additive Regression and Other Nonparametric Models," Annals of Statistics, 13, 

689–705 



 

70 

 

CHAPTER 4 NEW ENGLAND SHORT – TERM LOAD FORECASTING 

MODEL 

The previous section has developed a framework in the family of semiparametric 

additive models for making predictions. This chapter outlines and describes how this 

framework is applied to regional and zonal load forecasting in the New England region of 

the United States. While there exist numerous New England utilities and municipalities that 

use short term load forecasting, we focus on the prediction of regional load primarily done 

at ISO New England (ISONE). Modeling choices are discussed and the functional form for 

each candidate predictor is discussed.  

4.1 Overview  

The modeling approach here embodies that of a similar study by Fan and Hyndman 

(2010). Where sophisticated neural networks have become a popular modeling choice, Fan 

and Hyndman (2010) have applied semiparametric additive regression as an alternative 

forecasting framework for electricity demand in the short run. While significant differences 

exist between the modeling choices of Fan and Hyndman (2010) and those adopted here, 

both use semiparametric regression to forecast short term electricity load.  

We start with the following simple relationship: 

 �Ù �  Ú�Û�B:�  Ü�Ý:g:�Û -:BÞ�-�   w�ß:ÞÛÚ:Ý�  "Ù �80�  
where electricity demand, �Ù , in megawatts at hour t responds to calendar effects, dynamic 

effects, and prevailing weather effects represented in Equation (80) as Ú�·�, Ü�·�, and w�·�, 

respectively. While other studies have typically decomposed load into base and weather 
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sensitive components, this decomposition of load in Equation (80) follows that used in Fan 

and Hyndman (2010). 

 A primary objective of this modeling application is to avoid making unnecessary 

assumptions about the structural relationship between electricity demand and its short 

term driving forces. For each of the general effects listed above, functional forms for Ú�·�, 

Ü�·�, and w�·�  are explored and modeled first individually and then collectively in the 

family of additive models.
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4.2  The Functional Form of ������� 

Calendar effects refer to how the time of year impacts electricity usage. The form of 

Ú�Û�B:� is expressed as 

 Ú�Û�B:� �  δ�  < δâDâä
å

â@!  iNä  < γçMçä
!!

ç@!  �81�  
where 

ukÙ   � an indicator, i.e. dummy, variable for each of four working days of the week, T � 1 Ûh 424, where ukÙ �  1 for working day j and zero otherwise. 

éÙ    �  an indicator variable for nonworking days: Saturdays, Sundays or holidays, 

where éÙ � 1 for a Saturday, Sunday or holiday and zero otherwise. 

¢DÙ � an indicator variable for each of 11 months of the year, B � 1 Ûh 11, where ¢DÙ  

= 1 for month B and zero otherwise.25 

δ�    � an intercept parameter. 

δâ     � a parameter for each working day j. 

i     � a parameter for nonworking days. 
γç   � a parameter for each month m. 

 

Federal holidays as well as weekend days are designated nonworking days. These are 

listed in the following table. 

 

 

                                                             
24 Note: The effect of the fifth working day is captured in the intercept. 
25 Note: The effect of the twelve month is captured in the intercept. 
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Table 4-1: Dates considered to be Nonworking. 

Nonworking Days 

(1) Saturday 

(2) Sunday 

(3) New Year’s Eve 

(4) New Year’s Day 

(5) Martin Luther King Jr. Day 

(6) President’s Day (Washington’s Birthday) 

(7) Memorial Day 

(8) Independence Day 

(9) Labor Day 

(10) Thanksgiving Eve 

(11) Thanksgiving Day 

(12) Christmas Day 

 

If the expression for Ú�Û�B:� in Equation (81) is explicitly substituted into Equation 

(80), we have 

 
�Ù �  δ0  < δjDjt

4
j�1  iNt  < γmMmt

11
m�1

 Ü�Ý:g:�Û -:BÞ�-�   w�ß:ÞÛÚ:Ý�  "Ù 

�82�  
In modeling calendar terms, we make the assumption that day of the week, month of 

the year, and nonworking days have the effect of shifting electricity usage in a parallel 

fashion.  Each parameter associated with the day-of-week and month dummy variables 

simply shifts the intercept of the model. Figure 11 plots average daily load curves by each 

weekday. This graphic was created using hourly observations of regional demand from 

January 1, 2009 to May 31, 2012. Hour 1 on the horizontal axis of each graph is equivalent 

to 1:00 a.m., hour 3 to 2:00 a.m., and so no. Each plot in Figure 11 retains the same general 

shape, yet each is of a slightly different size. A simple intercept shifter seems an adequate 

way to control for the differences among weekdays. 
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Figure 11: Plots of Average Hourly Demand in MW by Weekday 

 

Note: Weekdays 1 and 7 correspond to the nonworking days of Saturday and Sunday. Their 

average load shapes are visibly less (or shorter) than that of weekdays 2 through 5 which 

are working days. This suggests that there is a diurnal effect influencing electricity load. 

Because industrial and commercial electricity usage across the New England region is 

reduced on holidays and weekends, the average load shape of nonworking days is different 

than that of the generic working day.  

Figure 12 plots the average load for each hour from 2009 through 2011. Again, hour 1 

on each horizontal axis signifies 1:00 a.m., hour 2 is 2:00 a.m., and so on. The delineation is 
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made between nonworking days and working days. The reduction of average hourly usage 

during a nonworking day is clearly visible. The visible impact of a nonworking day in 

Figure 12 is captured by the parameter i in Equation (82) with the expectation of a 

statistically significant negative shift in average demand.  

Figure 12: Average Hourly Electricity Demand of Nonworking Days vs. Working Days. 

 

 There are also monthly effects that correspond to the changing seasons during a 

calendar year. Figure 13 displays the average load as well as the corresponding 95% upper 

and lower confidence limits for each month in 2009, 2010 and 2011, respectively. 
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Figure 13: Average Monthly Load in New England for 2009, 2010 and 2011. 

 

There is a significant change from each monthly average load to the next. New England 

seasonality is among the strongest in the world and has a direct impact on average monthly 

usage (Zielinski, 2003). The impact a particular calendar month B has on usage is treated 

as fixed and captured by the shift parameter γç in Equation (82). 



 

77 

 

 It is important to note that treating each month as a fixed effect for each observation 

of load does not take into account the variety in daily load shapes from one season to 

another. In other words, there is evidence that each month has a fixed effect on average 

hourly electricity usage, but not that that effect is constant across each hour of the day. 

Figure 14 displays the average daily load shapes as well as the 95% upper and lower 

confidence limits for each month during 2009, 2010, and 2011. While the increase in 

average usage during summer and winter is visible and corroborates a fixed monthly effect, 

the average daily load shape takes a variety of forms. 

Figure 14: Average Hourly Load Shapes by Month 
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The approach taken here with regard to calendar terms is identical to that of Fan 

and Hyndman (2010), as well as ANN and MetrixND models at ISONE. Fan and Hyndman 

(2010) address the variability in average daily load shape from month to month through 

the estimation of a separate model for each half-hour. We estimate a separate model for 

each hour of the day. This is discussed in section 4.5.  

4.3  The Functional Form of ������	� ����	�� 

Regardless of the time of year, there is also a decaying effect of recent electricity 

usage when used specifically for cooling or heating. For buildings and structures, this 

includes the ability to retain heat and the subsequent speed of heat loss. Structure-specific 

characteristics such as these produce patterns of dynamic effects on future values of load. 

Take a typical winter weekday for example: the load which is used for electric heating at 

hour 10 (e.g., 10:00 a.m.)  depends on how much heating related load was drawn from the 

grid at hour 8 (e.g., 8:00 a.m.). In other words, the amount of heating provided at 8:00 a.m. 

and how much of the heat remains insulated, has an effect on how much heating and 

therefore load will be needed at 10 a.m. Therefore, the future value of load depends directly 

on values of recent demand. ISO New England (ISONE) does not consider incorporate these 

structure-specific effects in its forecasts. Incorporating terms that capture these lagged 

effects can provide more accurate short term forecasts. 

Our approach toward modeling dynamic effects of load follows Fan and Hyndman 

(2010). The term Ü�·� in Equation (80) is designed to capture how recent values of 

electricity load can help predict future values in the short term.  One can get a flavor for the 
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importance of lagged values by viewing the autocorrelation function (ACF) for electricity 

load.  

An autocorrelation function is a construct that shows the relationship between a 

variable at time t and its lagged values (e.g., t-1, t-2, t-3, etc.). It is also flexible enough to 

show the potential relationship at patterned (i.e., “seasonal”)  intervals (e.g., every 24 hours 

– t-24, t-48, t-72, etc.). For example, it is reasonable that electricity usage 24 hours earlier, 

i.e., at t-24, would provide accurate predictions of the electricity usage at hour t. These 

lagged effects are due to the high degree of diurnal activity that exists in electricity usage. In 

other words, consumers of electricity typically exhibit consistent daily patterns of usage. 

Fan and Hyndman (2010) take this a step further and also use lagged values around the 

same time period from the previous two days. 

This relationship is supported by observing the autocorrelation function for hourly 

electrical load. Analysis using the ACF as well as a generalized ACF modified to identify 

nonlinear association was done by Darbellay and Slama (2000). For our data, electricity 

usage at t-1 and at each 24 hour displacement provides the highest correlations. Figure 15 

shows the correlation between load at any time t and each lag t-1, t-2, …, t-168. Irrespective 

of when t occurs, Figure 15 illustates that the highest correlation with t takes place with 

itself lagged 24 hours. This lagged effect is demonstrated with the repeated pattern out to 

168 hours. Figure 15 plots the value of each correlation in addition to its 95% upper and 

lower confidence limits. 24 hour displacements remain the most statistically significant 

even at t-168.   
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Figure 15: Autocorrelation Function of Regional Electricity Demand 

 

While lagged values may be useful predictors, these observations are not necessarily 

available when a prediction is to be made. In order to support the Day-Ahead market, 

ISONE is required to issue forecasted hourly values of regional demand before 10 am on 

the previous day. As such, there is a maximum of 38 and a minimum of 14 hours between 

when ISONE makes it forecasts (10 am) and when it must forecast load for the Day Ahead 

market (midnight the following day). Therefore, the most recent observation of load 

available at the time of forecasting is at t-38. However, the forecasts generated and 

described in Chapter 5 are limited to an ex post analysis. Our analysis focuses on creating a 

predictive model where the explanatory variables, including lagged demand, would be 
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known. In view of this, the most significant autocorrelations exist at 24 hour displacements 

starting at t-24. 

 We can get a preliminary idea as to how current load is related to lagged load by 

considering Figure 16. 17 and 18 (The data points in these figures represent plots of each 

observation of load against its value lagged 48, 72 and 96 hours, respectively. For instance 

a single data point in Figure 16 plots the value of �Ù and �Ù_åñ). All figures demonstrate a 

linear association between current load and loads lagged 48, 72 and 96 hours, respectively. 

Figure 16: Scatter Plot of Load against Observations Lagged 48 Hours. 
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Figure 17: Scatter Plot of Load against Observations Lagged 72 Hours. 

 

Figure 18: Scatter Plot of Load against Observations Lagged 96 Hours. 
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Table 4-2 reports the correlation coefficients for six different lags along with their 

probability values. These results suggest that it would be appropriate to model lagged load 

in the specification. Notice that these correlation coefficients are likewise represented by 

the peaks of the 24-hour periods for Figure 15. 

Table 4-2: Correlation Statistics for Lagged Observations of Demand 

Lag Correlation Coefficient P-Value 

t-24 .910 .000 

t-48 .812 .000 

t-72 .768 .000 

t-96 .758 .000 

t-120 .772 .000 

t-144 .825 .000 

t-168 .864 .000 

 

Using only those lagged values of demand in increments of 24 hours, 

Þ�Ý:g:�Û -:BÞ�-�  in Equation (80) can be modeled as follows: 

 

Ü�·� � α1yt924  α2yt948  α3yt972  α4yt996  α5yt9120  α6yt9144
 α7yt9168 

          � < αnyä_ó
ô

n@!  

�83� 

where 

 yä_ó � lagged demand at time t-p where p � 24, 48, 72, 96, 120, 144, 168. 

α�      � a parameter for each lagged demand variable, � � 1 Ûh 7 

If the expression for Þ�Ý:g:�Û -:BÞ�-� in Equation (83) is explicitly substituted into 

Equation (80) we have 
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 �Ù �  δ0  < δjDjt
4

j�1  iNt  < γmMmt
11

m�1  < α�yä_ó
ô

n@!   w�ß:ÞÛÚ:Ý�  "Ù �84�  
 

4.4 The Functional Form of 
��������� 

Weather components for load forecasting models currently used at ISONE are limited to 

temperature, humidity, wind speed and cloud cover. These four variables are known to be 

useful predictors for electricity usage (Soliman and Al-Kandari, 2010; Bunn and Farmer, 

1985). They are also provided to ISONE from its three weather vendors to calculate the 

effective temperature (ET) and temperature-humidity index (THI) used for short term load 

forecasting. Aside from ISONE, it is also common to use observations of these variables to 

construct weighted indices as proxies for prevailing weather conditions (e.g., THI).  

However, there is research that indicates the use of an index such as THI may not 

produce accurate electricity demand forecasts for the northeastern United States. Perhaps 

more so than any other region in the world, New England weather is among the most 

varied over such a small area (Zielinksi and Heim, 2003).  It is affected by numerous 

sources of climate forces that operate on diurnal, annual and especially seasonal-scales. 

New England’s proximity to the Atlantic Ocean as well as the coastal orientation of its 

populations has a strong influence on the degree of perceived comfort. These 

characteristics and patterns combine to create the sometimes chaotic tendencies of the 

region’s climate.  

There also exist several known patterns of high and low pressure systems, whose daily 

positions directly control temperature and precipitation in the region through their air 
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mass type. The development of global circulation systems, such as the subtropical 

Bermuda-Azores High and the subtropical Icelandic Low in the North Atlantic Ocean, can 

have a pronounced impact on regional climate. The former is known to bring warm and 

humid air to New England while the latter brings cool and humid air (Zielinski and Heim, 

2003). In view of this, a single index constructed from observations of humidity and 

temperature may be a poor indicator for the actual weather condition. 

In addition, there is growing evidence that historically consistent climatological 

patterns are changing across New England (Zielinksi and Heim, 2003, Clean Air – Cool 

Planet, 2005). This evidence prompts the search for a more flexible and robust method to 

incorporate weather information. 

In this spirit, the functional form of w is generalized and given by 

 w�ß:ÞÛÚ:Ý�  �  w!�õ:B�Ù�  w0�ö�BÙ�  wÎ�÷÷Ù�  wå�øqÙ�  �85�  
where  

õ:B�Ù � drybulb temperature26 in degrees Fahrenheit at hour t.  
ö�BÙ �  relative humidity at hour t, measured by dewpoint.  
÷÷Ù      � amount of cloud cover at hour t, measured by the proportion of sky concealment.  
øqÙ    �  wind speed in miles per hour at hour t.  

The nonparametric representations for weather in Equation (85) allows for data-driven 

relationships to be estimated using observations of weather variables and load. Fitting this model 

through the use of penalized splines results in the following expression: 

                                                             
26 Drybulb temperature in degrees Fahrenheit is a measurement of air temperature using a thermometer that is freely exposed to the air while being shielded from moisture. 
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Where, for a general weather variable , the term xyÒÓ  is a knot location associated with Ñ, 

indexed by κÓ � 1, … , �Ó  and �yÒÓ  is the corresponding knot coefficient. 

 Figure 19, 20, and 22 show plots of each weather variable against regional 

electricity from 2009 through 2011 and reveal separate relationships for each weather 

variable / load plot. Both temperature and humidity have a similar “U-shaped” relationship, 

while the plots of wind speed and cloud cover against load reveal a less defined 

relationship. 
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Figure 19: Electricity Load versus Temperature for 2009, 2010, and 2011. 

 

Figure 20: Electricity Load versus Humidity for 2009, 2010, and 2011. 
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Figure 21: Electricity Load versus Wind Speed for 2009, 2010, and 2011. 

 

Figure 22: Electricity Load versus Cloud Cover for 2009, 2010, and 2011. 
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The lack of a clear relationship relating wind speed and load in Figure 21 and cloud 

cover and load in Figure 22 can be partially attributed to the manner in which the observed 

data were recorded. While temperature and humidity are recorded as degrees Fahrenheit, 

wind speed is measured by integers in terms of miles per hour while cloud cover is 

recorded as the proportion of sky concealment ranging from 0 to 10 and in unit increments 

1. As such, both of these are essentially categorical variables that may hide variation in 

their load-weather relationships. 

4.5 Semiparametric Forecasting Model 

The analysis presented in the preceding three sections has investigated and addressed 

relationships between load and the short-term predictors. These relationships are complex, 

changing over time, and potentially highly nonlinear.  In view of this, many advanced 

techniques have been applied to load forecasting as discussed in Chapter 2.  

Alternatively, Fan and Hyndman (2011) propose a short-term load forecasting model 

that remains within the family of additive regression models and can accommodate 

nonlinear relationships through the use of regression splines. In addition to this recent 

work by Fan and Hyndman, a similar study by Engle, et al. (1986) uses a semiparametric 

specification for studying electricity demand.  We take these ideas and extend them to 

models using penalized splines in the mixed-model framework discussed in Chapter 3. 

 Using the forms for Ú�Û�B:�, Ü�Ý:g:�Û -:BÞ�-�, and w�ß:ÞÛÚ:Ý� developed in the 

last three sections, a final semiparametric load forecasting model is constructed: 
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Fan and Hyndman (2011) successfully reduce prediction error around the peak periods 

by estimating 48 separate models for each half hour of the day. In their study, data were 

collected for the Australian Electricity Market (AEM). This market has half hour 

‘settlement’ periods, and load is consequently metered at this frequency. The transmission 

grid in the corresponding region of Australia is also known for its extreme volatility where 

the within-day variation in electricity usage is high and demand patterns change over the 

course of a day. Similar load forecasting studies have shown that treating each half hourly 

or hourly period as separate is a good way to achieve better forecasts and also to partially 

mitigate the serial autocorrelation in the load series (Ramanathan et al., 1997; Fay et al., 

2003). Accordingly, our data are hourly and we fit a separate model for each hour of the 

day.  

4.5.1 Description of the Data 

ISONE makes available a large amount of data related to historical electricity usage 

in New England and the zones that collectively form the regional transmission grid. Hourly 
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data sets containing observations of metered demand, price and weather conditions are 

available from March 1st, 2003 to date27. Plots of these hourly data allow for visual 

inspection of the load series. The surface representation of regional load against time and 

temperature in Figure 23 displays the seasonal patterns of New England electricity usage 

as well as confirms a consistently nonlinear weather relationship over time.  

Figure 23: Surface Representation of Regional Load against Time and Temperature 

 

While not clearly evident in Figure 23, there is also significant change in regional usage 

patterns from year to year. Figure 24, 25 and Figure 26 plot the annual load patterns over 

time for the years 2009, 2010, and 2011, respectively. These figures illustrate that the 

summer months (June, July and August) are when electricity usage is highest as well as 

most variable. 2009 appears to have a large summer peak occurring in late August, while 

2010 and 2011 have summer peaks in July. In addition, 2010 has a large spike in the 

beginning of September and in late May. 2011 also has a similar spike in June. 

                                                             
27 The excel files containing these historical data are constantly updated on the ISONE website. 
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Figure 24: Regional Load in New England, 2009. 

 

Figure 25: Regional Load in New England, 2010. 
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Figure 26: Regional Load in New England, 2011. 

 

Also evident in the annual plots of load is the apparent propensity toward high winter 

usage in addition to the high summer usage. This is attributable to electric heating and 

extended hours of darkness. We note that the variation of usage over the winter is not as 

large as the summer, however. 

The high variability that characterizes New England summer load is a daily 

phenomenon. Figure 27 displays daily load shapes for each day during July, 2011. The 

presence of large intraday variation as well as between-day variation is evident. 
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Figure 27: Regional Load during July, 2011. 

 

The diminished use of electrical power during the Independence Day holiday is evident in 

Figure 27. In fact, this holiday has such a pronounced effect that its hourly values of 

electricity consumption are the smallest over the entire month of July. 

So far, we have focused on the New England regional load series. However, as already 

mentioned, this load is composed of eight different zones around the region. The individual 

observations of load for each of the eight load zones in New England are determined by 

metering. Weather observations are collected from eight weather stations across New 

England. The states of Connecticut, Rhode Island, Vermont, New Hampshire and Maine 

each represent a single load zone while Massachusetts is divided into three: northeast 

(NEMASS), southeast (SEMASS), and western and central (WCMASS). Figure 28 displays 

the locations of all eight load zones in the region. 
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Figure 28: Geographical Representation of New England Load Zones. 

 

While Maine is the largest load zone by land mass, NEMASS and Connecticut generally 

have much higher loads than any other zone due to population density. Varying levels of 

commercial, industrial and residential electricity usage as well as the potential for 

drastically different climate conditions across the region can also contribute to zonal 

differences. Figure 29 displays each zone’s load as a percent of regional load from January 

1st, 2008 to January 1st, 2011 as a means to graphically present the heterogeneity of usage 

across load zones and over time. 
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Figure 29: Breakdown of Zonal Load as a Percentage of Regional Load 

 

Over the course of each calendar year, NEMASS and Connecticut load zones account for 

the majority of regional load, while the other zones fluctuate relative to each other.  This 

zonal variation is due to state specific weather factors, populations and demographics. 

None of these zonal specific characteristics are currently analyzed for ISONE load 

forecasting.  

Regardless, the observations of regional weather conditions used for ISONE’s load 

forecasts are calculated on a weighted basis from eight weather stations across the region. 
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These weights are static and determined by historical electricity sales data28. Table 4-3 

reports each of the weather stations and their corresponding weight. 

Table 4-3: ISONE Weather Stations 

Variable State Station Code Closest Load Zone Weight 

Boston MA BOS NEMASS 0.208 
Bridgeport CT BDR -- 0.277 
Burlington VT BTV Vermont 0.073 
Concord NH CON New Hampshire 0.212 
Portland ME PWM Maine 0.049 
Providence RI PVD Rhode Island & SEMASS 0.057 
Windsor Locks CT BDL Connecticut 0.043 
Worcester MA ORH WCMASS 0.084 

 

Additional data were collected from the ISONE Forecasting Office. In addition to the 

hourly temperature and humidity observations available through data sets on the ISONE 

website, cloud cover and wind speed observations were obtained through this extended 

data set. However, while historical data back to 2003 are available on the website, the 

range of this extended data set spans from January 1st, 2009 to May 31st, 2012. As such, an 

hourly data set of load and weather observations is available for each load zone and the 

region during this time frame. Table 4-4 reports summary statistics for the regional data 

set while Appendix A contains replicated tables for each load zone. 

Table 4-4: Summary Statistics for Regional Dataset 

Variable Sample Size (n) Mean Standard Deviation Median Minimum Maximum 

Load 29,928 14,620.00 2,855.00 14,766.00 8,296.00 27,707.00 

Temperature 29,928 49.87 18.05 50.00 -6.00 100.00 

Humidity 29,928 38.06 19.02 39.00 -20.00 74.00 

Wind Speed 29,928 8.62 4.32 8.00 0.00 34.00 

Cloud Cover 29,928 4.22 2.79 4.00 0.00 10.00 

                                                             
28 Each ISONE data set contains a data dictionary and explains these calculations. For instance, see 

http://www.iso-ne.com/markets/hstdata/znl_info/hourly/index.html 
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4.5.2 Regional and Zonal Predictions 

Currently, day-ahead forecasts made by ISONE are limited to regional demand values 

and forecasts are not made on a zonal basis. Given the potential for weather variation 

across the region and the high influence that weather conditions have on electricity usage, 

using a weighted temperature variable for a region like New England may not be ideal. We 

expect that producing short term forecasts for load in a specific zone can also provide 

desirable information for unit commitment processes as each zone is characterized by a 

different mix of generating units and thus different fuel types and supplies. In addition to 

improving reliability of the system as a whole, a deeper understanding of future zonal 

requirements can mitigate financial and economic losses that stem from prediction error.  

Given the access to zonal data sets as well as the potential benefit from producing zonal 

forecasts, Equation (87) was fit for each hour and each load zone as well as the region as a 

whole. Collecting and aggregating the zonal forecasts produced a second set of forecasts for 

the region in addition to those outputted from the regional model. The extended data set 

mentioned in section 4.5.1 was divided into within-sample (training) and out-of-sample 

(forecasting) periods. Specifically, each forecasting model was trained using data from 

2009 through 2010 and used to make forecasts for 2011. Data from 2012 were not 

included in this analysis as it did not constitute an entire year of data
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CHAPTER 5 DISCUSSION OF RESULTS 

 

This chapter discusses the results of fitting forecasting models for the region as well as 

for each load zone. Estimating hourly models produced a great deal of output as well as 

diagnostic measures. We present the results of fitting these models with the series of tables 

below.  The relevant fit statistics, variance component estimates, and test statistics are 

presented and discussed.  In section 5.2, forecasting performance is discussed while 

Appendix B contains the detailed results from each load zone’s respective set of hourly 

models.  The predictions provided by the zonal forecasting models are then aggregated 

across load zones to form a second regional forecast comparable to that provided by the 

regional forecasting model. The forecasting performance of both is then evaluated and 

compared. 

5.1 Model Estimation Results 

For each nonparametric component, knot placement and number were chosen 

following the default choices described in Wand (2002) and defined in Ngo and Wand 

(2004).  

Specifically, a default rule for knot locations can be expressed by  

 
κd � {x  1�  2� ÛÚ �ÞB�À: 	�Þ�Û�À: hw ÛÚ: ���	�: x���,

for x � 1, … , �  �88�  
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where x here indexes the knot locations and x�  denotes observation i of (weather) variable x. 

Analogously, a reasonable choice for the number of knot locations is suggested by Wand 

and given by 

 � � max � 5, min 
14 � ��B�:Ý hw ���	�: x���, 35�� �89�  
 

The components appearing in Equation �89898989) are intended to employ a minimum 

number of knots required to capture structural change (e.g., 5 in this case) but also to set 

an upper threshold where including additional knots may be unnecessary or inappropriate. 

That threshold is chosen to be the minimum of either ¼ the number of unique values of an 

observed variable (e.g., temperature) or 35. 

Another method of selecting the number of knots as well as the knot locations is 

detailed in Ngo and Wand (2004). The SAS code published in their study provides an 

algorithm that selects knots at equally spaced intervals while limiting the total number of 

knots. Given a series of observations, the algorithm to determine the number of knots and 

their location is as follows:  

1. Determine unique values fir the observed variable. 

2. Calculate the number of unique values divided by 5 and set as the total number of 

knots. 

3. If the calculated total number of knots is greater than or equal to 40, then set the 

total number of knots at 40. 
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4. Calculate the interval between knots by taking the number of unique values and 

dividing by the chosen total number of knots. Round to the nearest integer. 

5. Output knot locations based on the calculated total number of knots and the 

calculated interval between each knot. 

The SAS code for this algorithm can be found in Appendix C. This approach is more 

arbitrary and, unlike the default rules provided in Equations (88) and (89), does not 

explicitly take into consideration the distribution of the observed variable. In other words, 

whereas Equation (88) employs the sample quantiles of the observed variable to determine 

knot location, the algorithm provided in Ngo and Wand (2004) does not. 

However, Wand (2002) and Ruppert, et al. (2003) discuss how knot number and 

placement is not a critical modeling choice for penalized splines as long as a sufficiently 

large number of knots is chosen to capture the underlying structure. As such, the SAS code 

provided in Ngo and Wand (2004) was used to determine knot location as well as the 

number of knots for each nonparametric term.  

Both ML and REML estimation approaches estimation were attempted. As REML is 

asymptotically equivalent to ML, models that were initially estimated with ML resulted in 

the same estimates of λ (Equation 79, p. 69) as those estimated with REML. However, the 

REML method was ultimately chosen for estimation as it accounts for the degrees of 

freedom that are attributable to fixed effect terms within each model. It is this set of 

estimates that facilitates smoothing of weather predictors for each hourly model. As such, 

the resulting degree of smoothing for each weather predictor in each model is enumerated 

and characterized by its variance components. As stated in section 4.5.2, models were 
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estimated using 2009 and 2010 data (i.e., the training or within sample period). For each 

model, the estimated variance component associated with each weather variable is 

provided in Table 5-1. 
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Table 5-1: Estimated Variance Components and Smoothing Parameters for Each Hourly Regional Model. 

Hour 
a�����  
a�®��  
a���  
a���  
aI�    ����� ��®� ��� ��� 

1 5,074.11 23.77 1,603.96 316.65 64,911.11 3.58 52.26 6.36 14.32 

2 4,258.03 24.40 1,150.10 735.49 54,667.34 3.58 47.34 6.89 8.62 

3 3,446.45 17.27 1,452.47 287.63 49,940.65 3.81 53.77 5.86 13.18 

4 3,485.75 22.83 2,086.24 228.35 48,718.09 3.74 46.20 4.83 14.61 

5 3,708.99 15.68 1,915.13 359.68 44,610.78 3.47 53.33 4.83 11.14 

6 3,941.04 19.42 4,566.87 292.43 52,941.15 3.67 52.22 3.40 13.46 

7 4,235.41 38.37 6,435.55 0 100,801.40 4.88 51.26 3.96 0.00 

8 4,289.13 471.98 0 577.07 132,351.60 5.55 16.75 0.00 15.14 

9 4,824.26 682.31 5,209.49 0 113,130.70 4.84 12.88 4.66 0.00 

10 5,675.81 782.17 616.55 0 109,386.30 4.39 11.83 13.32 0.00 

11 7,124.34 961.81 1,083.45 0 108,453.60 3.90 10.62 10.01 0.00 

12 4,082.52 1,156.83 0 396.34 130,403.90 5.65 10.62 0.00 18.14 

13 5,341.91 1,438.57 0 1195.75 166,844.20 5.59 10.77 0.00 11.81 

14 10,408.50 1,005.18 1,940.03 0 125,932.50 3.48 11.19 8.06 0.00 

15 5,478.17 810.23 0 0 234,358.00 6.54 17.01 0.00 0.00 

16 3,678.97 887.27 0 46.69 257,351.20 8.36 17.03 0.00 74.24 

17 3,645.86 916.63 0 371.12 265,674.40 8.54 17.02 0.00 26.76 

18 4,255.34 1,179.68 0 259.07 249,963.40 7.66 14.56 0.00 31.06 

19 8,681.27 1,509.72 1,746.25 85.59 208,111.10 4.90 11.74 10.92 49.31 

20 4,316.87 1,299.82 0 2,531.8 174,070.50 6.35 11.57 0.00 8.29 

21 4,324.94 752.22 1,871.60 0 157,067.70 6.03 14.45 9.16 0.00 

22 3,962.84 351.81 846.02 96.27 109,865.70 5.27 17.67 11.40 33.78 

23 2,988.46 127.05 81.44 345.32 72,452.32 4.92 23.88 29.83 14.48 

24 5,561.27 51.32 4,226.64 256.03 74,050.94 3.65 37.98 4.19 17.01 

 

To illustrate the estimation results presented in Table 5-1, we consider the 

estimated variance components for hour 14 (i.e., at 2 pm) as an example. The data used to 

fit this model were observed at 2 p.m. when daily load is typically at its diurnal peak. For 

each nonparametric component of the hour 14 forecasting model, the estimated variance 

components yield the following smoothing parameter estimates: 
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 �Ù�D� � Ø /6µ0/6Ù�D�0 �  125,932.4510,408.53 �   3.48 �90�  
 

 ��«D � Ø /6µ0/6�«D0 �   125,932.451,005.18 �   11.19 �91�  
 

 �vv � Ø/6µ0/6vv0 �  125,932.451,940.03 �   8.05 �92�  
 

 ��� � Ø /6µ0/6��0 �  125,932.450.00 �   Not Calculated �93�  
 Because the MIXED procedure yielded a variance estimate of zero associated with 

wind speed in hour 14, there is no subsequent smoothing applied to this term in the model. 

In other words, wind speed enters into the hour 14 model linearly and the resulting 

parameter estimates for its spline functions are nothing more than the standard result 

from OLS.  

Across all hourly models, temperature and humidity have smoothing parameter 

estimates that are consistent in magnitude. The same estimates for cloud cover and wind 

speed are larger during late night and early morning models, while models for other times 

of the day estimate much smaller smoothing parameters for these terms. Notably, the 

model estimated for hour 15 has both 
a���  and 
a���  as zero. This result may be due in part to 

the nature of the observed data themselves. As mentioned in Section 4.4, both wind speed 

and cloud cover are essentially recorded as categorical variables and may mask relevant 
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variation between load and weather. As a consequence, the corresponding smoothing 

parameter estimates are zero and these terms enter into their respective models as fixed 

rather than random.  

In order to test for and validate the use of the mixed model approach, a model 

specification test was conducted for each hourly model.  Specifically, a likelihood ratio test 

is available using PROC MIXED. These tests specify a null model where all explanatory 

variables are fixed and the only variance component is σ½0I. The alternative model 

specification to test is that which is actually estimated with PROC MIXED; specifically, 

where each nonparametric component is estimated with a penalized spline. The test 

statistic is asymptotically distributed as a Chi-Square with degrees of freedom equal to q-1, 

where q is the number of covariance parameters. The test statistic is calculated as -2 

multiplied by the log likelihood from the null model minus -2 multiplied by the log 

likelihood from the model that was fitted.29 The results of these tests for the regional 

models are reported in Table 5-2, while those for each zonal model are contained in 

Appendix B.  

                                                             
29http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_mix

ed_sect025.htm 
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Table 5-2: Null Model Likelihood Ratio Tests for Each Hourly Regional Model 

Hour Degrees of Freedom Chi-Square Statistic p-value 

1 4 1,928.01 0.00 

2 4 1,241.94 0.00 

3 4 1,224.43 0.00 

4 4 1,193.04 0.00 

5 4 1,211.25 0.00 

6 4 1,180.91 0.00 

7 3 885.53 0.00 

8 3 833.37 0.00 

9 3 998.32 0.00 

10 3 1,052.20 0.00 

11 3 1,075.64 0.00 

12 3 1,092.52 0.00 

13 3 1,077.37 0.00 

14 3 966.01 0.00 

15 2 998.50 0.00 

16 3 966.88 0.00 

17 3 950.15 0.00 

18 3 954.20 0.00 

19 4 959.19 0.00 

20 3 996.72 0.00 

21 3 979.27 0.00 

22 4 1,115.96 0.00 

23 4 1,246.78 0.00 

24 4 1,279.14 0.00 

 

Again, we consider hour 14 as an example. The calculated test statistic was 966.01 

with 3 degrees of freedom. At a 5% level of significance, the Chi-Square critical value 

associated with 3 degrees of freedom is 12.83. The test statistic is much larger than the 

critical value, the corresponding probability value (0.00) is less than the level of 

significance (0.05) and the null hypothesis specifying a fixed effects-only model is rejected. 
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The varying degrees of freedom between hourly models directly correspond to the 

estimates of zero variance for several hourly models in Table 5-1. For each hourly model, 

the null hypothesis (i.e., fixed effects model) is rejected at virtually any level of significance. 

This is strong statistical evidence that, for those models with nonzero variance estimates, 

the covariance structure corresponding to fitting a semiparametric model is necessary. 

Since each hourly model has at least two variance estimates, a semiparametric specification 

is employed for all models. 

5.2 Generating Forecasts of Demand 

Once a model is estimated, it can be used to produce forecasts. An example of how 

forecasts are generated for each hourly model is described in this section. This section 

begins by providing and discussing the parameter estimates associated with the fixed 

effects components of a regional model. Table 5-3 contains the fixed effect parameter 

estimates and the corresponding standard errors, test statistics and probability values 

obtained for hour 14.  Again, the data used for estimating these models begins January 1, 

2009 and ends December 31, 2010. 
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Table 5-3: Fixed Effects Parameter Estimates for Hour 14 Regional Model 

Model Component Parameter Estimate 
Standard 

Error 
t-statistic p-value 

Intercept δ� 12,330.98 2,006.66 6.15 0.00 

Tuesday δ! 943.04 61.78 15.26 0.00 

Wednesday δ0 310.80 67.26 4.62 0.00 

Thursday δÎ 318.40 67.86 4.69 0.00 

Friday δå 123.94 62.12 2.00 0.05 

Nonworking / Holiday i -1,357.45 54.22 -25.04 0.00 

January γ! -10.11 70.42 -0.14 0.89 

February γ0 -89.12 67.02 -1.33 0.18 

March γÎ -156.30 74.51 -2.10 0.04 

April γå -340.25 88.28 -3.85 0.00 

May γ� -260.00 95.17 -2.73 0.01 

June γ� 173.40 104.90 1.65 0.10 

July γô 124.37 112.09 1.11 0.27 

August γñ 193.55 115.01 1.68 0.09 

September γ� -83.24 100.66 -0.83 0.41 

October γ!� -103.85 87.41 -1.19 0.24 

November γ!! -101.40 83.09 -1.22 0.22 

24 Hour Lagged Demand α! 0.30 0.01 20.53 0.00 

48 Hour Lagged Demand α0 -0.01 0.02 -0.82 0.41 

72 Hour Lagged Demand αÎ 0.03 0.02 1.93 0.05 

96 Hour Lagged Demand αå 0.02 0.02 1.28 0.20 

120 Hour Lagged Demand α� -0.04 0.02 -2.67 0.01 

144 Hour Lagged Demand α� 0.04 0.01 2.87 0.00 

168 Hour Lagged Demand αô 0.04 0.01 2.88 0.00 

Temperature θ! -51.47 212.08 -0.24 0.81 

Humidity θ0 -15.73 60.04 -0.26 0.79 

Cloud Cover θÎ 33.55 11.33 2.96 0.00 

Wind Speed θå -0.71 3.31 -0.21 0.83 

 

The parameter estimates reported result in the construction of a fitted model that is 

additive in nature. This characteristic allows us to generate separate forecasts for each of 

the components of the model in Equation (94). For exposition, we walk through the process 

of producing a forecast for 2 pm on Friday, July 20th, 2011.  

Using the results in Table 5-3, the fitted equation to forecast calendar effects is given 

by 
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h�tıme� � �  12,330.98  943.04 D!ä  310.80D0ä  318.40 DÎä  123.94 Dåä
9 1,357.45 Nä 9 10.11 M!ä 9  89.12 M0ä 9 156.30 MÎä
9 340.25 Måä 9  260.00 M�ä  173.40 M�ä   124.37 Môä
  193.55 Mñä 9 83.24 M�ä 9 103.85 M!�ä 9  101.40 M!!ä 

�94�  

 

Hour 14 (i.e., 2 pm) on July 20th, 2011 represents a single observation of data from 

the available data set. Notice that this time and date coincide with a post-sample (out-of-

sample) time period. There is an estimated intercept of 12,330 MW for this hour and since 

the day of the week for this observation was Friday, all day-of-week binary variables 

become zero with the exception of Dåä. This dummy variable becomes one and its 

corresponding marginal effect is 123.94 MW. It is a working day and  Nä becomes zero. 

Lastly, the month is July, the seventh month of the year. As such, monthly binary variables 

become zero with the exception of Môä. This binary variable becomes one and its 

corresponding marginal effect is 124.37 MW. Using these estimates, the aggregate calendar 

effect at this time can be forecasted. 

 

 
h�tıme� � �  12,330.98  123.94�1�  124.37�1� 
                 �  §�,���. �� ��   

�95�  
 

The second component found in Equation (94) is that of Ü�Ý:g:�Û -:BÞ�-�. 

Substituting the coefficients in Table 5-3 into Equation (96) yields the following fitted 

equation: 
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Ü�. �� � 0.30 yä_0å 9 0.01 yä_åñ  0.03 yä_ô0  0.02 yä_�� 9 0.04 yä_!0�

 0.04 yä_!åå  0.04 yä_!�ñ 

�96� 
 

Using the above fitted equation, observed values of lag demand can be used to 

forecast the effect recent demand has on load in at hour t. For the observation chosen, the 

lagged values of demand required to calculate Ü�. �� are contained in Table 5-4 below. 

Table 5-4: Lagged Demand Observations at 2 pm on July 20th, 2011. 

Variable Load (MW) 

24 Hour Lagged Demand 23,531 

48 Hour Lagged Demand 22,433 

72 Hour Lagged Demand 20,101 

96 Hour Lagged Demand 18,686 

120 Hour Lagged Demand 19,219 

144 Hour Lagged Demand 18,419 

168 Hour Lagged Demand 22,591 

 

 It is straightforward to plug the observed demand values from Table 5-4 into fitted 

Equation (96) to forecast the effect recent demand has on load for the observation chosen. 

 
Ü�. �� � 7,059.30 9 224.33  603.03  373.72 9 768.76  736.76  903.64 

           �  ,! "."! �� 

�97� 
 

 Note that the effect of the most recent lagged demand value is by far the greatest of 

any lagged demand value. This result supports the analysis done using the autocorrelation 

function in section 4.3. 

 Both Ú�Û#B:��  and Ü�. �� require only those parameter estimates that pertain to the 

fixed effect model components in order to forecast their effect on load. However, the 
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calculation of w�ß:ÞÛÚ:Ý��  requires the inclusion of random effect predictions as each 

weather variable was treated as a random effect during the model fitting process.  
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Table 5-5 displays the corresponding prediction results. 
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Table 5-5: Random Effects Parameter Predictions for Hour 14 Regional Model 

Model Component Parameter Prediction Standard Error t-statistic p-value 

�$���� 9 �9�°��z �!Â 0.00
30

 102.02 0.00 1.00 �$���� 9 "°�z     ®�$     0.00 102.02 0.00 1.00 �$���� 9  °�z     ®"$     0.00 102.02 0.00 1.00 �$���� 9 §"°�z     ®&$     0.00 102.02 0.00 1.00 �$���� 9 § °�z     ®�$     17.36 74.93 0.23 0.82 �$���� 9 �"°�z     ®!$     -101.65 46.32 -2.19 0.03 �$���� 9 � °�z     ®�$     45.07 39.82 1.13 0.26 �$���� 9 ""°�z     ® $     50.01 35.53 1.41 0.16 �$���� 9 " °�z     ®�$     -54.79 34.37 -1.59 0.11 �$���� 9 &"°�z     ®§±$     43.54 33.23 1.31 0.19 �$���� 9 & °�z     ®§§$     14.52 33.62 0.43 0.67 �$���� 9 �"°�z     ®§�$     24.44 31.55 0.77 0.44 �$���� 9 � °�z     ®§"$     0.13 30.95 0.00 1.00 �$���� 9 !"°�z     ®§&$     44.63 30.59 1.46 0.15 �$���� 9 ! °�z     ®§�$     47.91 29.79 1.61 0.11 �$���� 9 �"°�z     ®§!$     125.72 30.11 4.18 0.00 �$���� 9 � °�z     ®§�$     118.99 32.64 3.65 0.00 �$���� 9  "°�z     ®§ $     -75.99 36.77 -2.07 0.04 �$���� 9   °�z     ®§�$     89.30 55.41 1.61 0.11 �$���� 9 �"°�z     ®�±$     73.37 88.90 0.83 0.41 �$���� 9 ��°�z     ®�§$     0.00 102.02 0.00 1.00 �'®�� 9 �9§!��z     ®§'     0.00 31.70 0.00 1.00 �'®�� 9 �9§§��z     ®�'     0.00 31.70 0.00 1.00 �'®�� 9 �9!��z    ®"'     -4.63 31.50 -0.15 0.88 �'®�� 9 �9§��z    ®&'     -1.08 27.98 -0.04 0.97 �'®�� 9 &�z     ®�'     34.01 23.81 1.43 0.15 �'®�� 9 ��z     ®!'     7.77 22.40 0.35 0.73 �'®�� 9 §&�z    ®�'     9.39 20.87 0.45 0.65 �'®�� 9 §��z    ® '     -30.89 20.40 -1.51 0.13 �'®�� 9 �&�z    ®�'     16.74 19.50 0.86 0.39 �'®�� 9 ���z    ®§±'     5.99 19.73 0.30 0.76 �'®�� 9 "&�z    ®§§'     -26.92 19.75 -1.36 0.17 �'®�� 9 "��z    ®§�'     16.95 19.17 0.88 0.38 �'®�� 9 &&�z    ®§"'     16.22 19.15 0.85 0.40 �'®�� 9 &��z    ®§&'     -9.62 19.10 -0.50 0.61 �'®�� 9 �&�z    ®§�'     50.34 19.65 2.56 0.01 �'®�� 9 ���z    ®§!'     71.26 19.57 3.64 0.00 �'®�� 9 !&�z    ®§�'     -1.55 20.80 -0.07 0.94 �'®�� 9 !��z    ®§ '     -18.14 27.72 -0.65 0.51 �'®�� 9 �"�z    ®§�'     0.70 31.60 0.02 0.98 �'®�� 9 �&�z    ®�±'     0.00 31.70 0.00 1.00 �((� 9 ��z �!��  -4.16 20.23 -0.21 0.84 �((� 9 ��z �0��  -26.63 41.81 -0.64 0.52 �)U� 9 ��z �!�� 0.00 0.00 0.00 0.00 �)U� 9 §§�z �0�� 0.00 0.00 0.00 0.00 �)U� 9 §��z �Î�� 0.00 0.00 0.00 0.00 �)U� 9 �"�z �å�� 0.00 0.00 0.00 0.00 �)U� 9 ���z ���� 0.00 0.00 0.00 0.00 �)U� 9 "§�z ���� 0.00 0.00 0.00 0.00 

                                                             
30 Predicted parameter estimates extremely small but yet still nonzero. 
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Note that the predictions associated with extreme values of temperature and humidity 

drop out of the model. Given that the focus is currently limited to a forecasting model that 

generates mid-afternoon predictions, it is not an unjustifiable result that extreme values of 

temperature and humidity were not significant predictors of load at this time.   Also, the 

random effects component pertaining to wind speed is dropped from the model entirely. 

This result is validated by the three degrees of freedom that were used for the hour 14 null 

model likelihood ratio test found in Table 5-2. In other words, the variance component 

related to wind speed was omitted during the model fitting process. 

For context, our 2 p.m. sample observation was an hour where the temperature was 87 

degrees Fahrenheit, the humidity was 64 degrees, the cloud cover was at about 30% (i.e., 

3/10 or just 3), and the wind speed was measured as 13 miles per hour. Given these 

prevailing weather conditions, the basis functions used in the penalized spline for each 

weather predictor can be calculated.   
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Table 5-6 reports the enumerated value of each basis function corresponding to our 

sample observation. 
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Table 5-6: Spline Basis Functions Evaluated using Prevailing Weather Conditions at 2 pm, July 20th, 2011. 

Temperature 

Basis Function 

($���� = 87) 

Value 

Humidity 

Basis Function 

('®�� � !&� 

Value 

Cloud Cover 

Basis 

Function �((� � "� 

Value 

Wind Speed 

Basis 

Function 

)U� � §"� 

Value 

�$����9 �9�°��z 89 
�'®��9 �9§!��z 80 �((� 9 ��z 0 �)U� 9 ��z 8 

�$���� 9 "°�z    84 
�'®��9 �9§§��z 75 �((� 9 ��z 0 

�)U�9 §§�z 
2 

�$���� 9  °�z    79 �'®�� 9 �9!��z 70  
 �)U�9 §��z 

0 

�$���� 9 §"°�z    74 �'®�� 9 �9§��z 65 
  �)U�9 �"�z 

0 

�$���� 9 § °�z    69 �'®�� 9 &�z 60 
  �)U�9 ���z 

0 

�$���� 9 �"°�z    64 �'®�� 9 ��z 55 
  �)U�9 "§�z 

0 �$���� 9 � °�z    59 �'®�� 9 §&�z 50     �$���� 9 ""°�z    54 �'®�� 9 §��z 45     �$���� 9 " °�z    49 �'®�� 9 �&�z 40     �$���� 9 &"°�z    44 �'®�� 9 ���z 35     �$���� 9 & °�z    39 �'®�� 9 "&�z 30     �$���� 9 �"°�z    34 �'®�� 9 "��z 25     �$���� 9 � °�z    29 �'®�� 9 &&�z 20     �$���� 9 !"°�z    24 �'®�� 9 &��z 15     �$���� 9 ! °�z    19 �'®�� 9 �&�z 10     �$���� 9 �"°�z    14 �'®�� 9 ���z 5     �$���� 9 � °�z    9 �'®�� 9 !&�z 0     �$���� 9  "°�z    4 �'®�� 9 !��z 0     �$���� 9   °�z    0 �'®�� 9 �"�z 0     �$���� 9 �"°�z    0 �'®�� 9 �&�z 0     �$���� 9 ��°�z    0       

 

Using these evaluated functions, the load-weather relationship can be estimated and 

an aggregate demand forecast generated. Similar to the broader decomposition of load into 

its three main drivers (i.e., Ú�Û�B:�, Ü�Ý:g:�Û -:BÞ�-�, w�ß:ÞÛÚ:Ý�), each weather 

variable is isolated and individually evaluated. Again, because our model is additive, the 

effect of temperature, humidity, cloud cover and wind speed is each calculated in the 

following equations.  
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w!�õ:B�Ù��  �  951.47 �87�  0 �89�  0 �84�  0 �79�   0 �74�
 17.36 �69� 9 101.65 �64�  45.07 �59�  50.01 �54�
9 54.79 �49�  43.54 �44�  14.52 �39�  24.44 �34�
 0.13 �29�  44.63 �24�  47.91 �19�  125.72 �14�
 118.99 �9� 9 75.99 �4�  89.3 �0�  73.37 �0�  0 �0� 

                         � �§&.�� �� 

 

�98�  

 

 

w0�ö�BÙ��  �  915.73 �64�  0 �80�  0 �75� 9 4.63 �70� 9 1.08 �65�
 7.77 �55�  9.39 �50�  30.89 �45�  16.74 �40�
 5.99 �35�  26.92 �30�  16.95�25�  16.22�20�
9 9.62 �15�  50.34 �10�  71.26 �5� 9 1.55 �0� 9 18.14 �0�
 0.7 �0�  0 �0� 

                     � §,! §.�  �� 

�99�  

 

 
  wÎ�÷÷Ù��  �  33.55 �3� 9 4.16 �0� 9 26.63 �0� 

                  � §±±.!� �� 

�100�  
 

 
wå�øqÙ��  �  90.71 �13�  0 �8�  0 �2�  0 �0�  0 �0�  0 �0�  0 �0� 

                  � 9�. �" �� 

�101�  
 From Equations (98) through (101), it appears that mid-afternoon July humidity is 

the strongest contributor to regional load, followed by temperature. The predictive impact 
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of 30% cloud cover is an additional 100 MW of load on the system. This is the equivalent of 

an entire power plant. Finally, as the random effects associated with wind speed are 

omitted, the contribution of wind speed on the grid is limited to the estimated fixed effect 

parameter θå7  and corresponds to a load reduction of about 9 MW.  

 Aggregating these piecewise forecasts allows for calculation of the total predicted 

effect of weather upon regional load. 

 

w�ß:ÞÛÚ:Ý��  �  w!�õ:B�Ù��  w0�ö�BÙ��    wÎ�÷÷Ù��  wå�øqÙ��  

                         � 714.52  1,681.58  100.65 9 9.23 

                         � �,& �.�� ��  
�102�  

Again, aggregating all piecewise forecasts allows a final prediction of New England 

regional load at 2 pm on July 20th, 2011. 

 
�Ùa � §�, ���. �� ��   ,! "."! ��   �,& �.�� 

      �  �",��±. §� ��  �103�  
The actual load, yä, on the regional grid at this hour was 23,858 MW. The forecasted 

load, �Ùa ,  produced using actual observed weather and previous load under-forecasted the 

actual load by 107.83 MW or about 0.4% error. The example provided in this section fully 

describes the process that generates all other forecasts for all regional and zonal models. 

Their comparative performance is discussed in the next section. 
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5.3 Comparison of Forecast Performance 

Following Fan and Hyndman (2010) as well as forecasting protocol at ISONE, 

forecasting performance is measured using Mean Absolute Error (MAE) and Mean Absolute 

Percent Error (MAPE). The MAE metric remains in terms of Megawatts and is 

advantageous for control room operators who may need to rapidly change resource 

commitment, while MAPE measures the average absolute error as a percent. The 

expressions that define each are given below. 

 ¢*1 �  1� <|�Ù 9 �Ùa |n
t�1  �104�  

 

 ¢*+1 �  100� < |�Ù 9 �Ùa |�Ù
n

t�1  �105�  
 

where again �Ù is an actual observation of load at time t and �Ùa  is its predicted value. 

These metrics were calculated for both within-sample and out-of-sample periods 

defined in Section 4.5, and the overall forecasting performance of both models is provided 

in Table 5-7. 

Table 5-7: Overall Forecasting Performance for Within-Sample and Out-of-Sample Periods. 

Metric 
Within Sample Out of Sample 

Regional 

Model 

Zonal 

Aggregation 
Difference 

Regional 

Model 

Zonal 

Aggregation 
Difference 

MAPE (%) 1.62% 1.66% -0.04% 1.93% 1.97% -0.03% 

MAE (MW) 243.47 248.63 -5.16 283.04 287.36 -4.32 
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Both the regional model and zonal aggregation performed better during the within-

sample time frame. However, the regional model performs better than the zonal 

aggregation during both within-sample and out-of-sample.  In terms of both MAE and 

MAPE, the difference between each model’s performance was slightly smaller during the 

out-of-sample period (e.g., -0.03% compared to -0.04%). In addition, the 1.93% and 1.97% 

overall out-of-sample MAPEs for both models are highly competitive with MAPE metrics 

reported by ISONE to FERC for approximately the same time frame31. 

 It is important to note that the out-of-sample forecasts generated by each estimated 

model are referred to as ex post in that they are ‘after the fact’. In other words, ex post 

forecasts are made using actual observations of predictor variables during this post-sample 

period. In contrast, ex ante forecasts are made using the available information of predictor 

variables at the time of forecasting. This may be actual values or predicted values. For 

instance, an ex ante forecast of load depends on weather forecasts as inputs to the model. 

The day-ahead forecast issued by ISONE at 10 a.m. every day relies on weather forecasts 

and the most recent observations of demand. As such, the ISONE day-ahead forecast is a 36 

hour ex ante forecast.  

 The available data sets contain forecasted weather variables provided by each 

weather vendor. It is not clear, however, at which hour t these weather forecasts were 

provided to ISONE. In addition, the first 24-hour displacement of recent demand would not 

be available at the time of forecasting. Since there is a 36 hour forecasting horizon, forecast 

                                                             
31 http://www.iso-ne.com/regulatory/ferc/filings/2011/aug/ad10-5-00_8-31-11_joint_iso-

rto_metrics_report.pdf 
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of regional demand at the appropriate hours (t-24) would have to be provided as model 

inputs in order to make a true ex ante forecast. As such, a true ex ante 36-hour forecast 

using these data is not currently possible.  

Given that New England experiences the highest demand for electricity during the 

summer months, particular attention is paid to forecasting performance at this time. Out of 

the ten highest observations of daily peak demand that occurred during 2011, eight of them 

took place in the month of July and five of those eight were during the week spanning July 

17th to July 24th.  Figure 30 depicts the actual hourly demand for electricity during this 

week in New England. This figure also contains the forecasted values as well as 95% 

prediction intervals32 produced by the regional model. 

                                                             
32 Prediction intervals were calculated using the ‘OUTPRED’ option in PROC MIXED. Specifically, 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_mixed_sec

t015.htm 
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Figure 30: Forecasted Load vs. Actual Load for the New England Region during Peak Load, 2011. 

 
During 2011, the highest load on the New England electricity grid occurred on July 22nd 

and was metered at approximately 27,707 MW. The regional model generated a forecast 

for this hour that was slightly higher at 28,681 MW with an absolute percent error of 3.5%. 

The actual value of load at this hour as well as almost every hourly value of load during this 

week was well within the limits of the 95% prediction interval. 

While forecasting performance at the highest values of summer demand was good, the 

large variation of load during these months resulted in poor forecasting performance 

compared to other months.  For both periods and for both models, the largest MAPE 

occurred during July and August.  These months also contain the largest percent 

differences between models for both periods. Specifically, there is a difference of -0.17 
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between model MAPE during August of the within-sample period and a difference of -0.23 

during July of the out-of-sample period. Table 5-8 reports monthly forecasting performance 

for all periods and all models as measured by MAPE. 

Table 5-8: MAPE (%) by Month 

Month 
Within Sample Out of Sample 

Regional 

Model 

Zonal 

Aggregation 
Difference 

Regional 

Model 

Zonal 

Aggregation 
Difference 

January 1.31% 1.36% -0.05 1.52% 1.54% -0.03 

February 1.26% 1.31% -0.05 1.45% 1.48% -0.03 

March 1.47% 1.53% -0.07 1.46% 1.53% -0.07 

April 1.56% 1.54% 0.02 1.67% 1.81% -0.14 

May 1.62% 1.52% 0.10 1.40% 1.29% 0.11 

June 1.66% 1.57% 0.10 2.07% 2.15% -0.08 

July 2.10% 2.21% -0.11 2.32% 2.55% -0.23 

August 1.84% 2.01% -0.17 3.10% 3.07% 0.03 

September 1.84% 1.83% 0.02 1.61% 1.55% 0.06 

October 1.37% 1.47% -0.09 2.50% 2.46% 0.04 

November 1.52% 1.57% -0.05 2.08% 2.12% -0.04 

December 1.87% 1.94% -0.07 1.97% 2.00% -0.03 

 

The largest MAPE for any month during the out-of-sample period was 3.10% for the 

regional model and 3.07% for the zonal aggregation. Both of these were in the month of 

August. Conversely, the best forecasting performance for any month in the same time frame 

occurred in May with MAPEs of 1.40% and 1.29% for the regional and zonal models, 

respectively. In general, the forecasting performance as measured by MAPE was consistent 

across months for both models. Figure 31 and Figure 32 depict these results graphically.
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Figure 31: Within Sample MAPE(%) by Month, 2009 & 2010 

 

Figure 32: Out-of-Sample MAPE (%) by Month, 2011 
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An identical analysis was applied using the MAE metric. Not surprisingly, the monthly 

forecasting performances as told by MAE are comparable to those measured by MAPE. 

Table 5-9 reports the results. 

Table 5-9: MAE (MW) by Month 

Month 
Within Sample Out of Sample 

Regional 

Model 

Zonal 

Aggregation 
Difference 

Regional 

Model 

Zonal 

Aggregation 
Difference 

January 211.04 217.83 -6.78 244.49 246.44 -1.95 

February 190.96 197.13 -6.18 226.79 229.82 -3.03 

March 207.27 217.13 -9.86 212.80 222.41 -9.60 

April 210.75 207.23 3.51 221.44 240.97 -19.53 

May 220.94 205.76 15.18 201.83 186.14 15.69 

June 252.18 236.03 16.15 319.25 328.17 -8.92 

July 353.13 372.01 -18.88 403.51 443.31 -39.80 

August 307.96 334.47 -26.51 437.20 429.24 7.96 

September 270.18 269.69 0.49 239.60 230.06 9.54 

October 184.51 196.10 -11.59 311.47 307.34 4.14 

November 208.77 214.97 -6.21 280.78 285.22 -4.45 

December 294.14 304.55 -10.40 289.58 291.51 -1.93 

 

An interesting result of this analysis indicates that forecasting performance is worst 

earlier in the year during 2009 and 2010 than it is in 2011. This conclusion is also 

supported by Figure 13 which indicates a trend of average monthly demand peaking more 

towards the end of the year. In addition, 2011 was known to be an unusually warm 

summer. Given the high correlation with temperature and humidity, forecasts made during 

an unusually warm season or year may be prone to error if the underlying model was 

trained using unsuitable past observations of weather.  Figure 33 and Figure 34 show 

monthly MAE for both periods. 



 

126 

 

Figure 33: Within-Sample MAE (MW) by Month, 2009 & 2010 

 

Figure 34: Out-of-Sample MAE (MW) by Month, 2011 
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Finally, an analysis was done on the forecasting performance of each hourly model. 

Table 5-10 reports MAPE performance for each hour. Comparable to the performance 

during the summer months, the afternoon hours exhibit the worst performance. This is 

expected and is a standard result with other load forecasting applications. However, the 

zonal aggregation consistently performed slightly better than the regional model at this 

time of day. During the out-of-sample period, the zonal aggregation produced forecasts 

with smaller MAPEs than those produced by the regional model contiguously from hour 12 

to hour 19. Furthermore, the largest MAPE for any hour in the out-of-sample zonal 

aggregation does not exceed 2.5%.  
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Table 5-10: MAPE (%) by Hour. 

Hour 
Within Sample Out of Sample 

Regional Model Zonal Aggregation Difference Regional Model Zonal Aggregation Difference 

1 1.34% 1.42% -0.09% 1.60% 1.75% -0.15% 

2 1.32% 1.42% -0.10% 1.64% 1.76% -0.12% 

3 1.35% 1.42% -0.07% 1.64% 1.76% -0.12% 

4 1.37% 1.41% -0.03% 1.59% 1.70% -0.11% 

5 1.34% 1.39% -0.05% 1.61% 1.68% -0.07% 

6 1.37% 1.44% -0.07% 1.74% 1.78% -0.04% 

7 1.69% 1.73% -0.04% 2.06% 2.10% -0.04% 

8 1.62% 1.67% -0.04% 1.96% 2.00% -0.03% 

9 1.39% 1.44% -0.05% 1.79% 1.86% -0.06% 

10 1.42% 1.43% -0.01% 1.90% 1.91% 0.00% 

11 1.50% 1.49% 0.01% 1.93% 1.94% -0.01% 

12 1.62% 1.61% 0.01% 2.00% 1.98% 0.03% 

13 1.78% 1.78% 0.00% 2.09% 2.02% 0.07% 

14 1.96% 1.98% -0.02% 2.25% 2.19% 0.06% 

15 2.12% 2.15% -0.02% 2.37% 2.35% 0.01% 

16 2.22% 2.24% -0.02% 2.43% 2.39% 0.04% 

17 2.25% 2.24% 0.01% 2.55% 2.50% 0.05% 

18 2.08% 2.10% -0.01% 2.48% 2.47% 0.01% 

19 1.96% 1.95% 0.01% 2.29% 2.25% 0.04% 

20 1.73% 1.72% 0.01% 1.96% 2.01% -0.05% 

21 1.60% 1.63% -0.04% 1.77% 1.85% -0.07% 

22 1.40% 1.49% -0.09% 1.63% 1.74% -0.12% 

23 1.28% 1.36% -0.08% 1.61% 1.64% -0.04% 

24 1.27% 1.36% -0.09% 1.53% 1.63% -0.10% 

 

While the average hourly forecasting errors may indicate some differences in 

central tendency between models, looking at the distribution of forecasting errors by hour 

reveals extremely similar results for both approaches. A convenient way of investigating 

the distribution of forecast errors is with a box-and-whisker diagram (or just boxplot). The 

following diagram explains the notation and symbols used in a boxplot produced by the 

VBOX statement within the SAS procedure PROC SGPLOT33.  

  

                                                             
33 http://support.sas.com/documentation/cdl/en/grstatproc/62603/HTML/default/viewer.htm#vbox-

stmt.htm 
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Figure 35: SAS boxplot legend. 

 

Figure 35 provides a legend for the meaning of the typical components in a boxplot: 

mean, quantiles, interquantile ranges, and outlier notation. 

Boxplots of absolute percent error by hour illustrate that even the pattern of 

outliers for each hour is consistent across models for both within-sample and out-of-

sample time periods. Figure 36 - 39 display these patterns for within-sample, zonal and 

regional and for out-of-sample, zonal and regional. Each black dot is an outlier and denotes 

an observed error which is 1.5 IQR above the 75th percentile. The center of each hourly 

boxplot provides a perspective for the placement of the percentiles (quantiles), mean, 
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minimum and interquartile range. Note: a ‘diamond’ symbol found in the following figures 

replaces the ‘cross’ indicator for mean value found in Figure 35: SAS boxplot legend.. 

 

Figure 36: Within-Sample Boxplots of Hourly Error Percent for the Regional Model.  
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Figure 37: Within-Sample Boxplots of Hourly Error Percent for the Zonal Aggregation. 
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Figure 38: Out-of-Sample Boxplots of Hourly Error Percent for the Regional Model. 

 
 

Figure 39: Out-of-Sample Boxplots of Hourly Error Percent for the Zonal Aggregation. 
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Comparing the error distribution among hourly models between the zonal 

aggregation and the regional model reveals little difference between the two approaches 

for both within-sample (Figures 36 and 37) and out-of-sample periods (Figures 38 and 39). 

For the figures pertaining to the within-sample period, the presence of far error outliers for 

both approaches is greatest during the afternoon peak demand period and the morning 

ramp up period when most commercial and industrial users begin their daily activities. 

This can be seen in Figures 36 and 37 during hours 14 through 19 and hours 6 through 9, 

respectively. A comparison between out-of-sample and within-sample error distributions, 

for both approaches, is difficult given the differing magnitudes. The increased magnitude of 

outliers in Figures 38 and 39 mask the density of outliers as compared to that of Figures 36 

and 37. These extreme outliers in the out-of-sample period make a straightforward 

comparison with the within-sample errors difficult. However, the similarity in error 

distributions between approaches is even more pronounced in the out-of-sample period. 

This can be seen when contrasting Figure 38 and Figure 39. It appears that there is no 

significant difference between regional and zonal approaches at least in terms of absolute 

error among hourly models. 
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 

This paper has proposed a novel short term load forecasting approach using 

penalized splines in a semiparametric regression framework using data provided by the 

regional system operator for New England, ISONE. The equivalence between penalized 

splines and the special case of mixed model methodology allowed for estimation using 

existing software and the investigation of possible improved forecasting performance 

resulting from independent zonal models as opposed to the aggregate regional models 

currently used at ISONE. The conclusions inferred from these forecasting results are 

presented below. This paper concludes by outlining further areas of research and their 

expected results. 

6.1 Key Findings  

The primary focus of this research was to apply an emerging modeling methodology to 

the common problem of forecasting short term energy demand. The semiparametric, 

additive approach for load forecasting proposed by Fan and Hyndman (2011) performed 

extremely well when applied to Australian historical data. While not identically 

reproduced, the novel mixed model approach adopted in this thesis also performs well in 

generating short term forecasts of load in New England. 

There exist subtle, yet significant, differences between the specifications of Fan and 

Hyndman (2011) and that adopted here. For example, the mixed-effects approach 

preferred by Ruppert, et al., (2003) is not implemented in Fan and Hyndman (2011). The 

latter authors prefer a simple approach using pre-specified knot locations and OLS to fit 
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hourly forecasting models. Furthermore, the semiparametric methodology proposed by 

Fan and Hyndman (2011) is somewhat simpler than that used in this research. To be more 

specific, Fan and Hyndman (2011) estimate smooth functions with simple cubic regression 

splines rather with penalized splines. They do not report any model specification tests that 

validate the use of cubic smoothing splines (as opposed to penalized splines). It is unclear 

which modeling choice performs better, or whether one is more appropriate than the 

other.  

For both approaches, the same binary indicator variables are used for working and 

nonworking days. However, Fan and Hyndman (2011) have an additional term for the 

“time of year” effect. This additional term is treated as a smooth function and is estimated 

with a cubic regression spline. Fan and Hyndman (2011) also treat the relationships 

between load and lagged demand values as smooth functions, rather than entering the 

model linearly. Finally, Fan and Hyndman (2011) limit their weather variable to 

temperature in degrees Celsius but include transformations of temperature. For instance, 

the maximum and minimum temperature in the last 24 hours, and the difference in 

recorded temperature between two weather sites is used rather than temperature itself. 

Discrepancies in selecting predictor variables and how to incorporate those variables into 

the model represent differences in approaches.  

However, these differences do not indicate that a particular semiparametric 

specification is more appropriate than the other. While the specific models used in Fan and 

Hyndman (2011) differ from those used in this research, each was chosen through separate 

variable selection processes. In fact, differences in available resources, population levels 
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and regulatory policies can cause clear differences in the fundamental characteristics of 

one electricity market to another. This heterogeneity among wholesale markets supports 

the notion that a model which performs well in one electricity market may not necessarily 

perform comparably in another. What does remain constant between the two 

specifications is the underlying approach towards model building; both models 

fundamentally decompose electricity load into calendar effects, lagged demand effects, 

weather effects and stochastic noise.  

Explicit comparison of forecasting performance between the two studies is also 

difficult. There are several reasons for this, but in particular, a valid comparison of 

forecasting performance (e.g., MAPEs) is not possible as Fan and Hyndman (2011) estimate 

half-hourly models and our research presents hourly models. In other words, the specific 

MAPEs reported by Fan and Hyndman (2011) can’t be directly contrasted to those 

generated by the models presented in this thesis. While an exact comparison may not be 

straightforward, Fan and Hyndman (2011) do state that the overall MAPE and MAE for 

their models were calculated to be 1.88% and 0.11 gigawatts, respectively. This metric is of 

comparable magnitude to the 1.62% within-sample and 1.93% out-of-sample MAPE 

calculated using the mixed modelapproach. As Fan and Hyndman (2011) state, this is 

satisfactory performance compared with state-of-the art load forecasting techniques.34 

Subtle differences aside, it is clear that semiparametric regression-based short term 

load forecasting models can perform extremely well. This conclusion is supported by 

adequate forecasting performance for all models estimated. As discussed previously, ISONE 

                                                             
34 Page 5 of Fan and Hyndman (2011). 
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makes use of several forecasting methods to produce the day-ahead forecast. Currently, 

neither the forecasts of load, nor the forecasting performance for any of the ISONE models 

is available. However, the annual performance of ISONE forecasts is reported in a 2010 

FERC report to Congress35. In the report, the overall MAPE metrics for day-ahead load 

forecasting range from approximately 1.6% to 2.0% and span the years 2005 to 2010. 

ISONE’s MAPE for the current out-of-sample period (e.g., 2011) is not available. However, 

given that ISONE uses several models to produce a single forecast, the 1.66% within-

sample MAPE and 1.93% out-of-sample MAPE are extremely competitive.  

 It is clearly defined whether the forecasting performance reported in the FERC 

report are ex ante or ex post. However a discussion surrounding ISONE’s weather vendors 

describes the potential increase in forecast error that stems from poor weather forecasts. 

This leads us to believe that the forecasting performance metrics reported for ISONE may 

be calculated using weather forecasts as predictor variables and therefore constitute ex 

ante forecasting performance. A logical comparison would be to estimate the 

semiparametric models with actual weather observations and then to use forecasts of 

weather to produce ex ante forecasts. This is discussed further in the next section. 

 One of the additional research objectives outlined in this thesis, and an always-current 

topic of interest in the forecasting literature, is to investigate whether or not a forecasting 

model based on aggregated data performs better than estimating multiple (zonal) 

forecasting models and then aggregating the forecasts. A main finding of this research is 

that an aggregation of zonal forecasts does not necessarily perform better than that which 

                                                             
35 http://www.ferc.gov/industries/electric/indus-act/rto/metrics/iso-ne-rto-metrics.pdf 
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is produced from a single regional model. On an hourly, monthly and annual basis, both 

approaches perform very similarly and there is no clear winner. However, the single 

regional model does perform slightly better overall than the zonal aggregation in both 

within sample and out of sample periods. 

6.2 Areas of Further Research 

There were numerous opportunities for further research identified during the process 

of fitting these models and producing forecasts. A very clear progression from the ex post 

forecasting performance evaluated in Chapter 5 would be to produce ex ante forecasts with 

the hourly models fitted with PROC MIXED and evaluate their performance. If the idea of 

adding a semiparametric STLF model to the group of models currently used at ISONE was 

suggested, an analysis of ex ante forecasting performance would be required. After all, 

these are in fact what the models actually get used for. Note: in order for the fitted models 

in Chapter 5 to be used to produce ex ante forecasts, a previously forecasted value of 

hourly demand would have to be provided in addition to the forecasted weather. This is 

because the day-ahead forecast must be issued at 10 a.m. and, at the time of forecasting, the 

most recent observation of load would be lagged by 36 hours. As such, the observation for 

yä_0å used in making forecasts would have to be itself a previously forecasted value. 

Another possibility would be to estimate the models exactly as described in Chapter 4, but 

omitting yä_0å. These models would be very similar, and wouldn’t require a previously 

forecasted value of demand. In either scenario, evaluating the semiparametric STLF model 

in terms of its ex ante forecasting performance is one area which warrants further 

research. 
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Another area relates to improving individual zonal forecasting performance. For 

instance, there is currently no analysis that focuses on how each load zone is paired with its 

representative weather station other than proximity. More detailed and granular weather 

data that are matched to zonal populations (and therefore load) might be one way of 

improving zonal forecasts. This idea is also mentioned in Fan and Hyndman (2011) as a 

potential research area.  

While the weather variables used in fitting the semiparametric models (e.g., wind 

speed, cloud cover, temperature and humidity) are all used as inputs in the ISONE models, 

comfort indexes and aggregated proxies such as effective temperature and THI are also 

used by ISONE. Furthermore, the selection of weather variables used as model inputs 

changes over the course of a year. Specifically, effective temperature is used in the winter 

while THI is used in the summer. A more thorough analysis of weather variable selection 

could potentially lead to improved forecasting performance. 

Within the framework of penalized splines and mixed models, a clear extension of the 

model specifications currently used would be to fit comparable models using other spline 

basis functions. For instance, radial or B-spline basis could be calculated for all of the 

smooth functions to be estimated. Other higher or lower degree polynomials of the 

Truncated Power Functions are another option for investigation. 

Finally, an important extension to this research is exploration of the time-series 

properties of both load and weather variables at the frequency levels presented in this 

research. To date, this topic has received minimal attention. Nonstationarity in load or 
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weather variables or both may be an issue. If so, they may be cointegrated. This would 

suggest alternative modeling procedures that enhance forecasting performance.
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A. SUMMARY OF DATA SETS 

 

Table 7-1: Summary Statistics for Regional Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 14,619.75 2,854.91 8,296.00 27,707.00 

Temperature 29,928.00 49.87 18.05 -6.00 100.00 

Humidity 29,928.00 38.06 19.02 -20.00 74.00 

Wind Speed 29,928.00 8.62 4.32 0.00 34.00 

Cloud Cover 29,928.00 4.22 2.79 0.00 10.00 

 

 

Table 7-2: Summary Statistics for NEMASS Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 2,973.27 564.95 1,911.00 5,716.00 

Temperature 29,928.00 51.71 17.31 -2.00 102.00 

Humidity 29,928.00 39.01 18.83 -19.00 75.00 

Wind Speed 29,928.00 10.85 5.49 0.00 44.00 

Cloud Cover 29,928.00 4.77 3.18 0.00 10.00 

 

 

Table 7-3: Summary Statistics for SEMASS Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 2,048.60 388.33 768 3,715.00 

Temperature 29,928.00 51.54 17.58 -1 101.00 

Humidity 29,928.00 39.59 19.23 -19 77.00 

Wind Speed 29,928.00 8.55 5.34 0.00 39.00 

Cloud Cover 29,928.00 4.87 3.08 0.00 10.00 
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Table 7-4: Summary Statistics for WCMASS Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 1,735.45 388.00 889 3,700.00 

Temperature 29,928.00 49.75 18.51 -7 99.00 

Humidity 29,928.00 37.92 19.33 -20 76.00 

Wind Speed 29,928.00 8.82 4.76 0.00 58.00 

Cloud Cover 29,928.00 4.31 2.99 0.00 10.00 

 

 

Table 7-5: Summary Statistics for Connecticut Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 3,603.14 767.75 1628 7,303.00 

Temperature 29,928.00 51.14 18.54 -5 102.00 

Humidity 29,928.00 38.67 19.26 -19 75.00 

Wind Speed 29,928.00 7.47 5.09 0.00 71.00 

Cloud Cover 29,928.00 4.62 2.92 0.00 10.00 

 

 

Table 7-6: Summary Statistics for Rhode Island Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 942.59 203.13 370 1,967.00 

Temperature 29,928.00 51.54 17.58 -1 101.00 

Humidity 29,928.00 39.59 19.23 -19 77.00 

Wind Speed 29,928.00 8.55 5.34 0.00 39.00 

Cloud Cover 29,928.00 4.87 3.08 0.00 10.00 
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Table 7-7: Summary Statistics for Vermont Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 683.65 113.86 414 1,023.00 

Temperature 29,928.00 46.55 20.09 -19 96.00 

Humidity 29,928.00 36.10 19.62 -25 74.00 

Wind Speed 29,928.00 7.10 5.45 0.00 36.00 

Cloud Cover 29,928.00 4.60 3.54 0.00 10.00 

 

 

Table 7-8: Summary Statistics for New Hampshire Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 1,326.09 266.17 540 2,467.00 

Temperature 29,928.00 46.77 19.79 -22 100.00 

Humidity 29,928.00 35.84 19.47 -26 75.00 

Wind Speed 29,928.00 5.60 5.42 0.00 35.00 

Cloud Cover 29,928.00 3.56 3.87 0.00 10.00 

 

 

Table 7-9: Summary Statistics for Maine Data Set. 

Variable Sample Size Mean Standard Deviation Minimum Maximum 

Load 29,928.00 1,307.42 210.21 806 2,025.00 

Temperature 29,928.00 47.08 17.84 -14 100.00 

Humidity 29,928.00 37.12 19.05 -23 76.00 

Wind Speed 29,928.00 7.48 5.24 0.00 53.00 

Cloud Cover 29,928.00 3.64 3.73 0.00 10.00 
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B. ZONAL FORECASTING RESULTS 

Load Zone: Connecticut. 

Table 7-10: Overall Forecasting Results - Connecticut Load Zone. 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

78.289605 2.11% 12635.4002 98.51226 2.88% 29516.83448 

 

Table 7-11: Hourly Forecasting Results - Connecticut Load Zone. 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 54.72 1.84% 5,679.08 71.84 2.59% 15,598.00 

2 50.97 1.81% 5,006.41 69.28 2.61% 14,279.56 

3 50.13 1.84% 4,648.85 67.52 2.63% 13,938.87 

4 50.47 1.88% 4,553.98 65.36 2.57% 12,515.13 

5 51.85 1.90% 4,927.63 66.08 2.56% 12,731.10 

6 57.24 1.97% 5,887.98 71.94 2.62% 14,783.71 

7 73.13 2.26% 9,745.47 92.33 3.03% 24,463.49 

8 75.63 2.15% 11,661.47 98.70 3.01% 29,757.80 

9 70.51 1.89% 10,007.17 96.10 2.80% 30,759.27 

10 73.10 1.86% 10,146.05 98.47 2.76% 31,680.12 

11 76.58 1.89% 10,971.05 102.89 2.79% 34,024.75 

12 83.93 2.03% 13,188.43 107.86 2.90% 36,569.88 

13 91.37 2.20% 15,118.78 110.73 2.96% 36,789.54 

14 102.03 2.45% 18,996.90 116.52 3.09% 38,820.63 

15 110.12 2.66% 22,202.60 127.57 3.36% 42,564.45 

16 113.00 2.74% 25,269.11 125.13 3.34% 41,532.63 

17 113.46 2.72% 24,432.39 134.64 3.50% 45,029.68 

18 108.64 2.58% 22,823.05 136.10 3.46% 47,614.30 

19 98.60 2.36% 18,786.33 130.23 3.29% 42,817.65 

20 88.79 2.14% 15,513.48 116.05 2.98% 36,478.24 

21 85.87 2.06% 15,875.40 105.19 2.76% 33,351.69 

22 76.32 1.92% 12,732.26 96.48 2.65% 29,450.30 

23 64.55 1.77% 8,418.39 83.18 2.50% 24,589.78 

24 57.94 1.77% 6,657.34 74.13 2.46% 18,263.47 
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Table 7-12: Monthly Forecasting Results - Connecticut Load Zone. 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 67.19 1.67% 8,189.98 92.14 2.33% 14,755.45 

February 67.28 1.78% 8,310.98 76.94 1.98% 9,667.72 

March 58.30 1.69% 5,888.73 62.80 1.77% 6,378.16 

April 69.46 2.13% 12,012.08 70.60 2.20% 9,031.76 

May 67.83 2.02% 10,126.20 64.45 1.82% 10,380.24 

June 89.69 2.35% 14,642.93 103.69 2.74% 18,609.34 

July 120.27 2.84% 26,743.67 143.53 3.28% 34,508.22 

August 109.69 2.64% 21,467.51 168.75 5.59% 114,172.34 

September 84.87 2.36% 13,370.89 89.22 2.40% 14,390.44 

October 57.18 1.80% 6,026.42 117.05 4.49% 69,338.45 

November 61.57 1.86% 9,415.43 109.61 3.62% 34,179.79 

December 83.59 2.14% 14,474.08 80.61 2.27% 15,519.03 
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Load Zone: Northeastern Massachusetts (NEMASS). 

Table 7-13: Overall Forecasting Results - NEMASS. 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

59.153651 1.92% 7,434.12 63.93485 2.06% 9,406.97 

 

 

Table 7-14: Hourly Forecasting Performance - NEMASS 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 38.06 1.50% 3,122.33 41.14 1.59% 3,658.44 

2 34.88 1.44% 2,603.95 40.56 1.65% 3,376.87 

3 35.42 1.49% 2,728.85 41.50 1.73% 3,604.99 

4 33.27 1.42% 2,474.02 39.75 1.69% 3,260.05 

5 33.24 1.42% 2,237.95 39.15 1.64% 3,074.10 

6 36.97 1.50% 2,675.28 42.04 1.68% 3,494.50 

7 44.49 1.66% 3,899.84 50.54 1.84% 5,253.08 

8 49.67 1.71% 5,132.33 53.72 1.82% 6,705.84 

9 49.71 1.63% 4,972.50 55.56 1.80% 6,752.23 

10 54.46 1.72% 5,795.33 61.23 1.91% 7,763.43 

11 59.70 1.82% 6,531.42 66.60 2.02% 8,686.41 

12 64.91 1.94% 8,081.62 70.77 2.12% 10,168.79 

13 73.40 2.17% 9,825.11 76.20 2.26% 11,664.53 

14 80.67 2.39% 11,513.13 84.41 2.50% 14,782.80 

15 87.63 2.60% 13,857.70 90.27 2.67% 17,094.33 

16 91.18 2.70% 14,765.33 91.40 2.70% 17,517.57 

17 93.85 2.76% 15,608.50 97.65 2.85% 20,211.98 

18 89.20 2.60% 14,862.98 97.21 2.81% 19,325.51 

19 80.19 2.37% 12,764.40 89.67 2.61% 15,960.27 

20 70.74 2.10% 9,828.81 77.01 2.26% 12,936.64 

21 67.74 2.02% 9,400.10 70.75 2.09% 11,289.62 

22 59.82 1.86% 7,310.37 62.42 1.92% 8,851.78 

23 48.73 1.63% 4,837.64 50.93 1.68% 6,253.28 

24 41.75 1.53% 3,589.40 43.98 1.59% 4,080.32 
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Table 7-15: Monthly Forecasting Performance - NEMASS 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 46.71 1.44% 4,386.12 51.01 1.58% 4,998.04 

February 43.43 1.41% 3,296.34 49.83 1.60% 4,266.95 

March 50.79 1.74% 4,714.83 47.24 1.59% 3,745.69 

April 49.76 1.79% 5,577.23 50.67 1.84% 5,029.08 

May 55.32 1.94% 6,345.89 52.46 1.77% 7,634.02 

June 62.24 1.99% 7,613.55 85.23 2.62% 18,396.11 

July 100.35 2.92% 19,585.26 111.03 3.08% 20,729.06 

August 88.23 2.56% 13,609.08 94.74 2.88% 17,768.97 

September 55.77 1.82% 5,970.91 62.19 2.02% 7,488.90 

October 50.70 1.84% 5,037.50 57.38 2.05% 8,895.07 

November 43.34 1.55% 4,550.35 48.68 1.75% 5,362.37 

December 59.46 1.88% 7,583.50 55.10 1.87% 8,028.40 
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Load Zone: Southeastern Massachusetts (SEMASS) 

Table 7-16: Overall Forecasting Results - SEMASS. 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

47.66 2.29% 4,640.54 56.77 2.90% 8,222.79 

 

 

Table 7-17: Hourly Forecasting Results - SEMASS. 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 38.27 2.24% 2,839.07 48.31 2.92% 5,928.39 

2 36.48 2.23% 2,578.99 46.40 2.95% 5,347.61 

3 34.60 2.17% 2,210.07 44.06 2.88% 4,809.65 

4 33.40 2.12% 2,003.82 41.55 2.76% 4,367.80 

5 32.41 2.02% 1,886.30 39.69 2.62% 4,378.59 

6 33.61 1.99% 2,071.86 42.46 2.66% 4,920.37 

7 41.30 2.22% 3,350.41 49.66 2.84% 6,736.55 

8 42.33 2.11% 3,958.69 50.21 2.70% 7,884.62 

9 40.35 1.90% 3,457.80 51.47 2.65% 8,051.07 

10 41.26 1.87% 3,371.48 55.23 2.73% 8,639.01 

11 42.98 1.89% 3,586.60 57.80 2.78% 9,194.87 

12 47.28 2.04% 4,226.23 59.13 2.80% 9,449.41 

13 51.33 2.21% 4,841.31 60.65 2.85% 9,797.92 

14 56.77 2.43% 6,014.67 66.38 3.09% 10,717.14 

15 62.05 2.68% 7,227.77 68.74 3.19% 10,953.16 

16 64.70 2.81% 7,593.81 71.27 3.29% 11,297.95 

17 64.27 2.76% 7,756.45 71.44 3.25% 11,253.18 

18 64.96 2.76% 8,258.61 74.24 3.28% 12,292.93 

19 61.04 2.62% 7,325.48 70.45 3.09% 10,827.53 

20 58.00 2.49% 6,589.24 65.97 2.92% 9,646.76 

21 55.83 2.42% 6,562.24 63.36 2.85% 9,167.63 

22 53.28 2.40% 5,924.41 61.18 2.86% 8,719.81 

23 46.76 2.30% 4,469.00 54.19 2.77% 7,100.46 

24 40.56 2.20% 3,268.75 48.62 2.72% 5,864.62 
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Table 7-18: Monthly Forecasting Results - SEMASS. 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 37.76 1.68% 2,594.87 40.91 1.84% 3,170.77 

February 32.83 1.54% 1,748.58 42.07 1.91% 3,116.29 

March 40.43 2.05% 2,758.68 44.31 2.16% 3,115.44 

April 37.72 2.03% 2,928.97 40.00 2.15% 2,873.61 

May 45.11 2.35% 4,384.27 46.92 2.36% 4,984.58 

June 47.42 2.25% 4,540.60 67.74 3.24% 7,495.85 

July 77.22 3.38% 10,951.97 91.16 3.82% 13,626.14 

August 70.13 3.08% 8,044.80 77.42 3.69% 11,831.96 

September 50.34 2.44% 5,047.91 49.79 2.43% 4,645.84 

October 37.25 1.99% 2,710.95 76.69 5.73% 31,294.73 

November 38.89 2.06% 3,606.15 49.63 2.67% 5,628.22 

December 53.71 2.44% 5,779.29 52.54 2.61% 6,000.83 
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Load Zone: Southeastern Massachusetts (WCMASS). 

Table 7-19 : Overall Forecasting Results - WCMASS 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

41.951606 2.31% 3,942.08 48.60843 2.72% 6,481.79 

 

 

Table 7-20: Overall Forecasting Results - WCMASS 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 28.80 2.01% 1,785.72 35.60 2.48% 3,256.02 

2 26.72 1.97% 1,521.08 33.36 2.47% 2,832.29 

3 24.45 1.87% 1,255.19 32.27 2.46% 2,600.99 

4 24.26 1.88% 1,196.21 31.54 2.42% 2,464.94 

5 23.81 1.82% 1,128.86 31.64 2.40% 2,454.37 

6 25.22 1.83% 1,204.25 35.15 2.52% 2,867.70 

7 33.82 2.22% 2,155.50 44.84 2.90% 4,538.65 

8 36.08 2.15% 2,611.47 44.22 2.65% 5,010.69 

9 34.37 1.91% 2,376.21 41.50 2.33% 4,187.23 

10 37.04 1.95% 2,705.02 43.10 2.29% 4,166.84 

11 41.47 2.10% 3,390.32 44.90 2.29% 4,698.87 

12 44.39 2.21% 3,775.49 45.79 2.32% 5,267.27 

13 49.57 2.47% 4,772.18 52.53 2.65% 7,287.12 

14 55.32 2.74% 5,933.02 60.17 3.01% 9,899.06 

15 59.33 2.98% 7,035.30 66.82 3.37% 11,865.85 

16 64.22 3.21% 8,379.08 68.78 3.49% 12,270.55 

17 64.40 3.18% 8,322.79 71.93 3.59% 12,675.74 

18 62.52 3.02% 7,950.88 72.09 3.50% 12,668.69 

19 58.59 2.81% 7,017.59 66.52 3.19% 11,278.02 

20 53.12 2.54% 5,797.81 59.08 2.84% 9,445.75 

21 48.94 2.33% 5,303.15 52.02 2.53% 7,586.10 

22 41.96 2.12% 3,985.90 49.10 2.51% 6,625.20 

23 36.48 2.05% 2,854.57 44.50 2.52% 5,537.04 

24 31.95 2.03% 2,152.22 39.14 2.48% 4,077.95 
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Table 7-21: Overall Forecasting Results - WCMASS 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 33.65 1.82% 2,211.64 35.72 1.94% 2,707.31 

February 28.20 1.61% 1,403.02 34.25 1.91% 1,874.51 

March 33.10 1.99% 1,882.33 35.03 2.07% 2,086.08 

April 40.32 2.56% 4,762.67 34.09 2.17% 2,350.99 

May 36.60 2.27% 3,268.82 34.33 2.12% 1,965.39 

June 49.76 2.66% 4,960.40 64.17 3.39% 8,168.49 

July 67.32 3.16% 8,496.98 81.73 3.65% 13,306.58 

August 71.94 3.37% 9,253.68 99.97 5.70% 31,315.58 

September 41.20 2.32% 3,255.76 51.83 2.87% 5,127.30 

October 29.39 1.85% 1,919.20 32.68 2.07% 1,920.24 

November 30.20 1.86% 2,185.59 34.22 2.11% 2,833.14 

December 39.25 2.13% 3,244.25 43.56 2.51% 3,439.74 
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Load Zone: Rhode Island. 

Table 7-22: Overall Forecasting Results – Rhode Island. 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

19.92 2.06% 813.24 23.64 2.65% 2,096.11 

 

 

Table 7-23: Hourly Forecasting Results – Rhode Island 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 14.76 1.88% 417.56 18.77 2.46% 1,140.67 

2 14.12 1.89% 377.07 17.28 2.39% 967.16 

3 13.30 1.84% 351.12 16.40 2.34% 829.02 

4 13.02 1.83% 336.09 15.39 2.24% 760.36 

5 12.58 1.75% 302.15 15.70 2.26% 762.04 

6 13.26 1.76% 317.80 16.88 2.30% 872.41 

7 16.87 2.05% 552.29 21.09 2.62% 1,323.58 

8 18.76 2.08% 759.05 22.69 2.60% 1,691.74 

9 17.99 1.87% 698.16 22.71 2.45% 1,811.78 

10 18.26 1.79% 676.99 23.41 2.47% 2,170.60 

11 19.48 1.84% 748.20 25.20 2.68% 2,665.45 

12 21.68 2.01% 894.77 25.43 2.70% 2,887.59 

13 23.67 2.18% 1,064.32 26.46 2.82% 3,094.51 

14 25.78 2.37% 1,270.37 28.53 2.99% 3,194.55 

15 27.61 2.55% 1,495.53 30.24 3.15% 3,200.89 

16 28.32 2.65% 1,486.43 32.11 3.32% 3,340.93 

17 27.91 2.60% 1,397.49 32.79 3.34% 3,350.03 

18 27.44 2.51% 1,423.60 32.93 3.28% 3,353.93 

19 25.23 2.34% 1,225.60 29.86 3.00% 2,835.03 

20 22.35 2.06% 925.24 27.29 2.73% 2,583.39 

21 21.31 1.97% 901.08 24.15 2.44% 2,367.45 

22 20.09 1.93% 784.06 22.93 2.38% 2,042.22 

23 18.28 1.92% 630.71 20.30 2.30% 1,615.80 

24 16.02 1.87% 482.14 18.84 2.36% 1,445.61 
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Table 7-24: Monthly Forecasting Results – Rhode Island 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 15.89 1.59% 459.25 17.64 1.79% 693.59 

February 14.19 1.49% 346.78 16.43 1.68% 455.28 

March 16.48 1.83% 467.03 15.51 1.69% 426.74 

April 17.61 2.04% 898.41 14.66 1.72% 408.29 

May 16.89 1.94% 622.25 17.20 1.88% 773.59 

June 21.00 2.13% 803.06 28.73 2.91% 1,470.02 

July 28.71 2.56% 1,449.49 37.78 3.18% 2,144.13 

August 30.58 2.75% 1,515.22 53.45 7.94% 14,737.70 

September 22.01 2.27% 877.51 25.78 2.66% 1,132.81 

October 17.58 2.09% 683.31 17.05 1.94% 860.44 

November 16.56 1.90% 678.13 17.78 2.04% 775.11 

December 20.47 2.07% 873.52 20.73 2.24% 968.55 
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Load Zone: Vermont. 

Table 7-25: Hourly Forecasting Results – Vermont 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

12.141588 1.78% 272.56 14.20642 2.08% 365.25 

 

 

Table 7-26: Hourly Forecasting Results – Vermont 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 10.48 1.86% 192.90 11.93 2.12% 258.62 

2 10.23 1.89% 181.91 11.68 2.15% 246.97 

3 9.88 1.86% 172.94 11.42 2.15% 241.76 

4 9.77 1.85% 168.76 10.93 2.07% 220.58 

5 9.47 1.75% 159.13 10.88 2.01% 221.48 

6 10.26 1.78% 184.05 11.59 1.99% 265.98 

7 12.79 1.98% 310.21 13.45 2.08% 377.65 

8 12.72 1.80% 325.22 13.41 1.91% 391.04 

9 11.78 1.61% 263.56 13.37 1.84% 353.37 

10 11.91 1.58% 254.91 13.96 1.88% 355.39 

11 12.63 1.66% 277.38 15.02 2.00% 378.78 

12 13.48 1.76% 307.47 16.10 2.13% 420.51 

13 13.46 1.78% 311.90 16.13 2.16% 411.04 

14 13.73 1.83% 328.55 16.77 2.26% 446.75 

15 14.03 1.90% 339.88 16.99 2.31% 459.94 

16 14.32 1.94% 358.71 17.01 2.31% 459.80 

17 14.68 1.96% 373.37 17.39 2.32% 480.92 

18 14.57 1.90% 398.16 17.66 2.30% 518.73 

19 13.87 1.80% 366.83 16.31 2.12% 478.19 

20 12.77 1.67% 315.26 15.23 2.01% 439.50 

21 12.36 1.64% 282.62 15.18 2.03% 419.49 

22 11.70 1.66% 296.36 13.84 1.94% 343.08 

23 10.28 1.57% 191.55 13.02 2.00% 313.64 

24 10.22 1.71% 179.83 11.71 1.95% 262.89 
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Table 7-27: Hourly Forecasting Results – Vermont 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 14.25 1.88% 336.61 16.05 2.10% 384.88 

February 13.07 1.80% 299.60 14.04 1.90% 311.80 

March 10.98 1.62% 191.16 14.09 2.01% 314.90 

April 10.68 1.71% 191.60 13.96 2.15% 309.93 

May 10.41 1.70% 200.63 10.82 1.70% 215.89 

June 9.42 1.43% 155.36 12.09 1.83% 258.11 

July 12.68 1.81% 305.08 15.05 2.14% 357.50 

August 11.35 1.62% 222.72 15.64 2.38% 559.59 

September 10.71 1.67% 198.59 9.61 1.47% 150.34 

October 9.01 1.38% 142.48 9.88 1.55% 166.70 

November 14.37 2.21% 407.29 14.83 2.33% 433.23 

December 19.00 2.55% 625.02 24.20 3.42% 905.01 

 

  



 

167 

 

Load Zone: New Hampshire. 

Table 7-28: Overall Forecasting Results – New Hampshire. 

Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

27.77 2.10% 1,618.72 33.33 2.57% 2,443.86 

 

 

Table 7-29: Hourly Forecasting Results – New Hampshire. 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 22.21 2.10% 918.46 29.12 2.77% 1,718.43 

2 22.11 2.23% 1,041.88 28.30 2.83% 1,713.67 

3 20.68 2.12% 816.86 28.71 2.95% 2,244.27 

4 20.37 2.13% 875.99 27.05 2.79% 1,583.03 

5 20.56 2.09% 862.38 26.92 2.72% 1,502.11 

6 21.73 2.05% 1,003.51 28.27 2.66% 1,650.62 

7 28.11 2.36% 1,726.25 35.14 2.94% 2,506.33 

8 28.04 2.15% 1,787.94 33.99 2.63% 2,509.42 

9 25.86 1.87% 1,458.80 31.75 2.34% 2,408.70 

10 26.11 1.81% 1,380.50 31.85 2.25% 2,373.51 

11 27.48 1.86% 1,484.40 32.09 2.22% 2,336.46 

12 28.34 1.90% 1,594.48 32.26 2.20% 2,508.20 

13 29.62 1.99% 1,759.68 34.28 2.33% 2,647.13 

14 32.29 2.17% 2,032.58 36.35 2.50% 2,965.93 

15 34.30 2.34% 2,258.47 38.06 2.64% 3,176.53 

16 35.82 2.45% 2,400.82 39.13 2.72% 3,327.40 

17 37.88 2.53% 2,743.70 40.15 2.74% 3,446.33 

18 36.77 2.42% 2,727.91 41.85 2.76% 3,599.37 

19 35.05 2.30% 2,517.19 39.61 2.59% 3,214.57 

20 31.73 2.08% 2,116.63 36.54 2.41% 2,771.98 

21 28.62 1.91% 1,743.61 34.54 2.31% 2,470.35 

22 26.41 1.86% 1,456.20 32.39 2.30% 2,100.13 

23 24.03 1.87% 1,173.81 31.12 2.46% 1,955.47 

24 22.36 1.94% 967.24 30.39 2.67% 1,922.77 
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Table 7-30: Monthly Forecasting Results – New Hampshire 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 23.63 1.64% 1,031.25 26.91 1.86% 1,254.68 

February 27.54 2.21% 2,544.78 27.71 2.02% 1,582.21 

March 23.11 1.81% 877.89 28.21 2.16% 1,181.03 

April 23.29 1.94% 1,305.67 30.94 2.58% 1,707.95 

May 22.87 1.90% 973.77 33.81 2.72% 1,663.03 

June 25.72 1.98% 1,182.40 33.85 2.53% 2,009.62 

July 38.80 2.67% 2,780.07 47.71 3.19% 3,522.14 

August 36.20 2.49% 2,172.84 39.56 2.97% 4,550.28 

September 29.38 2.29% 1,614.00 24.40 1.84% 974.28 

October 19.86 1.63% 761.24 40.16 3.87% 6,165.56 

November 25.83 2.09% 1,593.65 29.06 2.33% 2,089.26 

December 36.29 2.56% 2,585.23 36.57 2.70% 2,446.35 
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Load Zone: Maine. 

Table 7-31: Overall Forecasting Results – Maine. 

.Overall 

Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

26.91 2.04% 1322.81727 32.11 2.49% 1973.636392 

 

 

Table 7-32: Hourly Forecasting Results – Maine. 

Hour 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

1 20.71 1.94% 725.32 24.58 2.33% 1,194.86 

2 20.08 1.95% 667.85 24.99 2.45% 1,164.18 

3 20.29 2.01% 716.78 24.98 2.49% 1,155.42 

4 20.33 2.01% 730.48 25.09 2.51% 1,110.39 

5 20.25 1.95% 718.38 24.90 2.43% 1,178.77 

6 22.23 1.99% 887.70 28.05 2.55% 1,463.00 

7 27.16 2.19% 1,374.95 34.38 2.80% 2,276.76 

8 26.34 1.96% 1,367.37 34.22 2.59% 2,288.56 

9 26.06 1.85% 1,234.89 34.57 2.51% 2,164.57 

10 26.14 1.80% 1,258.03 35.16 2.48% 2,124.95 

11 28.14 1.91% 1,376.18 36.11 2.52% 2,192.61 

12 29.84 2.03% 1,536.72 35.76 2.50% 2,156.88 

13 31.30 2.15% 1,673.48 36.15 2.55% 2,134.62 

14 31.77 2.21% 1,697.90 36.51 2.58% 2,192.89 

15 33.57 2.36% 1,901.35 35.08 2.52% 2,105.00 

16 32.99 2.32% 1,924.79 36.15 2.61% 2,359.33 

17 35.50 2.44% 2,162.31 38.03 2.69% 2,745.49 

18 34.80 2.35% 2,156.78 38.71 2.67% 3,012.02 

19 33.09 2.24% 1,918.36 36.56 2.51% 2,778.52 

20 29.41 1.99% 1,574.35 35.13 2.42% 2,625.28 

21 26.28 1.81% 1,287.44 32.48 2.29% 2,391.86 

22 25.06 1.83% 1,135.41 29.23 2.19% 1,745.33 

23 23.08 1.85% 923.98 27.77 2.28% 1,476.00 

24 21.50 1.89% 796.82 26.01 2.32% 1,329.97 
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Table 7-33: Hourly Forecasting Results – Maine. 

Month 
Within Sample Out of Sample 

MAE MAPE MSD MAE MAPE MSD 

January 23.52 1.67% 945.98 26.69 1.93% 1,102.11 

February 25.13 1.78% 8,310.98 24.95 1.85% 1,015.74 

March 24.87 1.69% 5,888.73 26.54 2.08% 1,137.43 

April 23.04 2.13% 12,012.08 40.50 3.20% 2,679.09 

May 26.59 2.02% 10,126.20 25.99 2.11% 1,185.74 

June 23.29 2.35% 14,642.93 28.86 2.28% 1,264.66 

July 30.45 2.84% 26,743.67 36.25 2.58% 2,033.43 

August 30.80 2.64% 21,467.51 42.20 3.31% 5,044.98 

September 30.15 2.36% 13,370.89 33.27 2.63% 1,784.49 

October 23.24 1.80% 6,026.42 33.55 2.71% 1,878.41 

November 29.88 1.86% 9,415.43 34.34 2.79% 2,483.04 

December 31.41 2.14% 14,474.08 31.74 2.41% 1,992.03 
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C. SAS CODE AND ALGORITHMS 

The following macro was used to calculate the default number of knots for each weather variable. 

%macro default_knots(librefknots=,data=,knotdata=,varknots=,numknots=); 

 

proc sort data=&data (keep=&varknots) out=q1; 

 by &varknots; 

run; 

/*finds unique values*/ 

data q2; 

 set q1; 

 by &varknots; 

 if first.&varknots; 

run; 

 

data &librefknots..&knotdata; 

 set q2 nobs=n; 

 knotsp=int(n/5); 

 if knotsp>=40 then kmx=40; else 

 if knotsp<40 then kmx=knotsp; 

  %if &numknots ne %then %do 

  ktemp=&numknots; 

  if 1 <= ktemp <= 40 then kmx=ktemp; 

  %end; 

 

 kintrvl=round(n/kmx); 

 knotsok=mod(_n_,kintrvl); 

 knots=&varknots; 

 if knotsok=0 or _n_=n-1 then output; 

  

 

run; 

 

%mend; 

The following macro was used to create an analysis data set. 

%macro make_data_set(data, out); 

 

 data &out; 

  set &data; 

 

  time = _n_; 

 

  lag24  = lag24(load); 

  lag48  = lag48(load); 

  lag72  = lag72(load); 

  lag96  = lag96(load); 

  lag120 = lag120(load); 

  lag144 = lag144(load); 

  lag168 = lag168(load); 
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  templag = lag(temp); 

  tempsqr = temp**2; 

  tempcub = temp**3; 

 

  humlag = lag(hum); 

  humsqr = hum**2; 

  humcub = hum**3; 

 

  wslag = lag(ws); 

  wssqr = ws**2; 

  wscub = ws**3; 

 

  cclag = lag(cc); 

  ccsqr = cc**2; 

  xxcub = cc**3; 

 

  labor09 = holiday('labor',2009); 

   format labor09 date9.; 

  labor10 = holiday('labor',2010); 

   format labor10 date9.; 

  labor11 = holiday('labor',2011); 

   format labor11 date9.; 

  labor12 = holiday('labor',2012); 

   format labor12 date9.; 

 

  july409 = holiday("usindependence",2009); 

   format july409 date9.; 

  july410 = holiday("usindependence",2010); 

   format july410 date9.; 

  july411 = holiday("usindependence",2011); 

   format july411 date9.; 

  july412 = holiday("usindependence",2012); 

   format july412 date9.; 

   

  newyears09 = holiday("newyear",2009); 

   format newyears09 date9.; 

  newyears10 = holiday("newyear",2010); 

   format newyears10 date9.; 

  newyears11 = holiday("newyear",2011); 

   format newyears11 date9.; 

  newyears12 = holiday("newyear",2012); 

   format newyears12 date9.; 

 

  mlk09 = holiday("mlk",2009); 

   format mlk09 date9.; 

  mlk10 = holiday("mlk",2010); 

   format mlk10 date9.; 

  mlk11 = holiday("mlk",2011); 

   format mlk11 date9.; 

  mlk12 = holiday("mlk",2012); 

   format mlk12 date9.; 

 

  presidents09 = holiday("uspresidents",2009); 

   format presidents09 date9.; 

  presidents10 = holiday("uspresidents",2010); 

   format presidents10 date9.; 
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  presidents11 = holiday("uspresidents",2011); 

   format presidents11 date9.; 

  presidents12 = holiday("uspresidents",2012); 

   format presidents12 date9.; 

 

 

  memorial09 = holiday("memorial",2009); 

    format memorial09 date9.; 

  memorial10 = holiday("memorial",2010); 

    format memorial10 date9.; 

  memorial11 = holiday("memorial",2011); 

    format memorial11 date9.; 

  memorial12 = holiday("memorial",2012); 

    format memorial12 date9.; 

 

  thanksgiving09 = holiday("thanksgiving",2009); 

    format thanksgiving09 date9.; 

  thanksgiving10 = holiday("thanksgiving",2010); 

    format thanksgiving10 date9.; 

  thanksgiving11 = holiday("thanksgiving",2011); 

    format thanksgiving11 date9.; 

  thanksgiving12 = holiday("thanksgiving",2012); 

    format thanksgiving12 date9.; 

 

  xmas09 = holiday("christmas",2009); 

    format xmas09 date9.; 

  xmas10 = holiday("christmas",2010); 

    format xmas10 date9.; 

  xmas11 = holiday("christmas",2011); 

    format xmas11 date9.; 

  xmas12 = holiday("christmas",2012); 

    format xmas12 date9.; 

 

  if weekday(date) in (1 7) then nonworking = 1; 

 

  else if date = labor09 then nonworking =1; 

  else if date = labor10 then nonworking =1; 

  else if date = labor11 then nonworking =1; 

  else if date = labor12 then nonworking =1; 

 

  else if date = july409 then nonworking =1; 

  else if date = july410 then nonworking =1; 

  else if date = july411 then nonworking =1; 

  else if date = july412 then nonworking =1; 

 

  else if date = newyears09 then nonworking =1; 

  else if date = newyears10 then nonworking =1; 

  else if date = newyears11 then nonworking =1; 

  else if date = newyears12 then nonworking =1; 

 

  else if date = mlk09 then nonworking =1; 

  else if date = mlk10 then nonworking =1; 

  else if date = mlk11 then nonworking =1; 

  else if date = mlk12 then nonworking =1; 

 

  else if date = presidents09 then nonworking  =1; 

  else if date = presidents10 then nonworking  =1; 
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  else if date = presidents11  then nonworking =1; 

  else if date = presidents12  then nonworking =1; 

 

  else if date = memorial09 then nonworking =1; 

  else if date = memorial10 then nonworking =1; 

  else if date = memorial11 then nonworking =1; 

  else if date = memorial12 then nonworking =1; 

 

  else if date = thanksgiving09 then nonworking =1; 

  else if date = thanksgiving10 then nonworking =1; 

  else if date = thanksgiving11 then nonworking =1; 

  else if date = thanksgiving12 then nonworking =1; 

 

  else if date = xmas09 then nonworking =1; 

  else if date = xmas10 then nonworking =1; 

  else if date = xmas11 then nonworking =1; 

  else if date = xmas12 then nonworking =1; 

 

  else nonworking = 0; 

 

  if month(date) = 1  then month1 = 1; else month1   =0; 

  if month(date) = 2  then month2 = 1; else month2   =0; 

  if month(date) = 3  then month3 = 1; else month3   =0; 

  if month(date) = 4  then month4 = 1; else month4   =0; 

  if month(date) = 5  then month5 = 1; else month5   =0; 

  if month(date) = 6  then month6 = 1; else month6   =0; 

  if month(date) = 7  then month7 = 1; else month7   =0; 

  if month(date) = 8  then month8 = 1; else month8   =0; 

  if month(date) = 9  then month9 = 1; else month9   =0; 

  if month(date) = 10 then month10 = 1; else month10 =0; 

  if month(date) = 11 then month11 = 1; else month11 =0; 

 

  weekday = weekday(date); 

 

  if weekday(date) = 1 then monday    = 1; else monday    = 0; 

  if weekday(date) = 2 then tuesday   = 1; else tuesday   = 0; 

  if weekday(date) = 3 then wednesday = 1; else wednesday = 0; 

  if weekday(date) = 4 then thursday  = 1; else thursday  = 0; 

  if weekday(date) = 5 then friday    = 1; else friday    = 0; 

 

 run; 

 

%mend; 
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SAS program to prepare data sets and also to fit models. 

/* 

============================================================================= 

SAS PROGRAM : FIT FORECASTING MODELS 

 

MASTERS THESIS - APPLIED ECONOMETRICS 

 

TITLE       : ZONAL AND REGIONAL LOAD FORECASTING IN THE NEW ENGLAND                    

WHOLSEALE ELECTRICITY MARKET 

SUBTITLE    : A SEMIPARAMETRIC REGRESSION APPROACH 

WRITTEN BY  : JONATHAN T. FARLAND 

DATE        : AUGUST 15th, 2013 

 

============================================================================= 

*/ 

 

/*clear log and output windows*/ 

dm "log;    clear"; 

dm "lst;    clear"; 

dm "output; clear"; 

 

/*directory*/ 

%let dir = FOO; 

 

/*libraries*/ 

libname macros "%superq(dir)\SAS\Macros"; 

libname rawdat "%superq(dir)\Data"; 

libname sasdat "%superq(dir)\Data\sasdat"; 

libname output "%superq(dir)\Output"; 

 

options symbolgen; 

options spool; 

 

/*seperate program containing macros used below*/ 

%include "&dir\SAS\Macros\load_forecasting_macros.sas" / source2; 

 

/*specify the load zone as a macro variable*/ 

%let lz = region; 

 

/* 

LOAD ZONE                     VALUE 

Entire Region               = region 

North Eastern Massachusetts = nemass 

South Eastern Massachusetts = semass 

Western Massachusetts       = wcmass 

Connecticut                 = ct 

Rhode Island                = ri 

Vermont                     = vt 

New Hampshire               = nh 

Maine                       = me 

*/ 

 

/* Log and Output files */ 

%let log_path = &dir\Results\logs\&lz; 
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/*clear directory*/ 

proc datasets lib=work  

 nolist kill;  

quit; run; 

 

 

/*initialize data set*/ 

data original; 

 set sasdat.&lz; 

run; 

 

/*use a subroutine to make necessary variables for model fitting*/ 

%make_data_set(original, ds); 

 

/* 

============================================================================= 

Determining Knots for the weather variables 

============================================================================= 

*/ 

 

/*the macro "default_knots" calculates the default number of knots 

recommended by Ruppert et al (See "Smoothing with Mixed Model Software" with 

Long Ngo and M.P.Wand)*/ 

%default_knots(librefknots=work,data=work.ds,knotdata=knots_temp,varknots=tem

p); 

%default_knots(librefknots=work,data=work.ds,knotdata=knots_hum,varknots=hum)

; 

%default_knots(librefknots=work,data=work.ds,knotdata=knots_cc,varknots=cc); 

%default_knots(librefknots=work,data=work.ds,knotdata=knots_ws,varknots=ws); 

 

 

/*create a generic constant to merge later on. specifically, 'm'*/ 

data ds2; 

 set ds; 

 m=1; 

run; 

 

 

data kt_temp; 

 set work.knots_temp nobs=nk_temp; 

 call symput('nkt_temp',nk_temp); 

run; 

proc transpose data=work.knots_temp prefix=knots_temp_ out=knotst_temp; 

 var knots; 

run; 

 

data kt_hum; 

 set work.knots_hum nobs=nk_hum; 

 call symput('nkt_hum',nk_hum); 

run; 

proc transpose data=work.knots_hum prefix=knots_hum_ out=knotst_hum; 

 var knots; 

run; 
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data kt_cc; 

 set work.knots_cc nobs=nk_cc; 

 call symput('nkt_cc',nk_cc); 

run; 

proc transpose data=work.knots_cc prefix=knots_cc_ out=knotst_cc; 

 var knots; 

run; 

 

data kt_ws; 

 set work.knots_ws nobs=nk_ws; 

 call symput('nkt_ws',nk_ws); 

run; 

proc transpose data=work.knots_ws prefix=knots_ws_ out=knotst_ws; 

 var knots; 

run; 

 

/*merge all 'knot' data sets together */ 

data knotst; 

 merge knotst_temp knotst_hum knotst_cc knotst_ws; 

 m=1; 

run; 

 

/* 

============================================================================= 

Creating the Z matrix 

============================================================================= 

*/ 

 

data ds3; 

 merge ds2 knotst; 

 by m; 

 

%let nk1=&nkt_temp; 

%let nk2=&nkt_hum; 

%let nk3=&nkt_cc; 

%let nk4=&nkt_ws; 

 

/*create truncated power functions of degree p=1 */ 

 

array Z1a (&nk1) Z1_1-Z1_&nk1; 

array knots1a (&nk1) knots_temp_1-knots_temp_&nk1; 

 do k=1 to &nk1; 

  Z1a(k)=temp-knots1a(k); 

  if Z1a(k) < 0 then Z1a(k)=0; 

 end; 

 

array Z2a (&nk2) Z2_1-Z2_&nk2; 

array knots2a (&nk2) knots_hum_1-knots_hum_&nk2; 

 do k=1 to &nk2; 

  Z2a(k)=hum-knots2a(k); 

  if Z2a(k) < 0 then Z2a(k)=0; 

 end; 

array Z3a (&nk3) Z3_1-Z3_&nk3; 

array knots3a (&nk3) knots_cc_1-knots_cc_&nk3; 

 do k=1 to &nk3; 

  Z3a(k)=cc-knots3a(k); 

  if Z3a(k) < 0 then Z3a(k)=0; 
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 end; 

array Z4a (&nk4) Z4_1-Z4_&nk4; 

array knots4a (&nk4) knots_ws_1-knots_ws_&nk4; 

 do k=1 to &nk4; 

  Z4a(k)=ws-knots4a(k); 

  Z4a(k) = Z4a(k); 

  if Z4a(k) < 0 then Z4a(k)=0; 

 end; 

 

drop knots1_1-knots1_&nk1 knots2_1-knots2_&nk2 

     knots3_1-knots3_&nk3 knots4_1-knots4_&nk4 _name_; 

run; 

 

/* 

============================================================================= 

Make Training Dataset 

============================================================================= 

*/ 

 

/*select training period*/ 

%let training_beg = '01JAN09 00:00:00'dt; 

%let training_end = '31DEC10 23:00:00'dt; 

 

/*isolate training data set*/ 

data trn; 

 set ds3; 

 if datetime ge &training_beg and datetime le &training_end; 

 training = 1; 

run; 

 

/*create two forecast data sets: 

 (1) without load to make predictions with proc mixed and 

 (2) with    load to calculate forecasting errors from predictions 

*/ 

 

data fcst; 

 set ds3; 

 if datetime > &training_end; 

 drop load; /*without dependant variable*/ 

run; 

 

data fcst2; 

 set ds3; 

 if datetime > &training_end; 

run; 

 

/*stack training and forecasted*/ 

 

data ds4; 

 set trn fcst; 

 /*generate forecasting flag*/ 

 if training ne 1 then forecast = 1; 

 else                  forecast = 0; 

 

/*generate correct hour variable that ranges from 1 - 24 (as opposed to the 

way the data came to us, e.g., 0-23)*/ 

 hour2 = hour+1; 
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 drop hour; 

run; 

 

/* 

============================================================================= 

Fit hourly models 

============================================================================= 

*/ 

 

ods listing; 

ods html; 

 

proc sort 

 data = ds4; 

 by hour2; 

run; 

 

ods output CovParms=work.varcomp FitStatistics=work.FitStatistics 

LRT=work.RatioTest SolutionF=work.FParms SolutionR=work.RParms 

Tests3=work.FixedTests Type1=work.ANOVA; 

ods graphics on; 

proc mixed data = ds4 noprofile method=REML 

plots(maxpoints=50000)=residualpanel; 

by hour2; /*estimate hourly models*/ 

model load = tuesday--friday month1-month11 nonworking lag24--lag168 temp hum 

cc ws /  solution outp=work.yhat; 

 random Z1_1-Z1_&nk1 / type=toep(1) s; 

 random Z2_1-Z2_&nk2 / type=toep(1) s; 

 random Z3_1-Z3_&nk3 / type=toep(1) s; 

 random Z4_1-Z4_&nk4 / type=toep(1) s; 

run; 

ods graphics off; 

 

/*stack fixed and random solutions*/ 

data parms; 

 set Fparms 

  Rparms; 

 keep effect estimate; 

run; 
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