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ABSTRACT

PARTICLE-COLLECTOR INTERACTIONS
IN NANOSCALE HETEROGENEOUS SYSTEMS

FEBRUARY 2013

MARINA BENDERSKY

B.Sc., TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jeffrey M. Davis

Particle-surface interactions govern a myriad of interface phenomena, that span

from technological applications to naturally occurring biological processes.

In the present work, particle-collector DLVO interactions are computed with the

grid-surface integration (GSI) technique, previously applied to the computation of

particle colloidal interactions with anionic surfaces patterned with O(10 nm) cationic

patches. The applicability of the GSI technique is extended to account for interac-

tions with collectors covered with topographical and chemical nanoscale heterogeneity.

Surface roughness is shown to have a significant role in the decrease of the energy

barriers, in accordance with experimental deposition rates that are higher than those

predicted by the DLVO theory for smooth surfaces. An energy- and force-averaging

technique is presented as a reformulation of the GSI technique, to compute the mean

particle interactions with random heterogeneous collectors. A statistical model based
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on the averaging technique is also developed, to predict the variance of the interac-

tions and the particle adhesion thresholds. An excellent agreement is shown between

the models’ predictions and results obtained from GSI calculations for large number

of random heterogeneous collectors.

Brownian motion effects for particle-collector systems governed by nanoscale het-

erogeneity are analyzed by introducing stochastic Brownian displacements in particle

trajectory equations. It is shown that for the systems under consideration and particle

sizes usually used in experiments, it is reasonable to neglect the effects of Brownian

motion entirely. Computation of appropriately defined Péclet numbers that quantify

the relative importance of shear, colloidal and Brownian forces validate that conclu-

sion.

An algorithm for the discretization of spherical surfaces into small equal-area el-

ements is implemented in conjunction with the GSI technique and mobility matrix

calculations of particle velocities, to obtain interactions and dynamic behaviors of

patchy particles in the vicinity of uniform flat collectors. The patchy particle and

patchy collector systems are compared in detail, through the computation of statis-

tical measures that include adhesion probabilities and maximum residence times per

patch. The lessened tendency of the patchy particle to adhere on the uniform col-

lector is attributed to a larger maximum residence time per patch, which precludes

interactions with multiple surface nano-features at a given simulated time.

Also briefly described are directions for future work, that involve the modeling of

two heterogeneous surfaces, and of surfaces covered with many types of heterogeneity,

such as patches, pillars and spring-like structures that resemble polymer brushes or

cellular receptors.
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CHAPTER 1

INTRODUCTION

1.1 Motivation.

Among myriad physical and biological phenomena controlled by interactions be-

tween particles and macroscopically planar surfaces with nanoscale heterogeneity are

colloidal adsorption,7,59,88,110,118 separation and filtration,15,107 coating and cleaning

applications,96,97 and the receptor-mediated adhesion and rolling of neutrophils on

ligand-coated surfaces.57 Surfaces patterned with pillars have recently been shown

to control frictional adhesion in some biomimetic systems.124 Furthermore, mecha-

nisms that are governed by the recognition of surface features, which can be analyzed

with measurements of surface-particle forces36,76 or from deposition morphologies on

heterogeneous surfaces,2,9 underly the development of “lock and key” colloidal appli-

cations19,77 that enable sensors at the nano- and micro-scales.

Colloidal interactions between spherical particles and patterned, planar surfaces

with spatially varying charge have been studied extensively.38,39,73,107 Particle depo-

sition onto unfavorable collectors was predicted to increase significantly if the patches

for favorable deposition are large, such that a particle interacts with only one patch

on the collector surface.107 In recent studies with nanoscale patches, which are orders

of magnitude smaller than the depositing particles, it was also revealed that small

amounts of randomly-distributed, attractive patches induce particle deposition onto

net-repulsive surfaces.37–39,71,81,103 The particle capture in this latter system is due to

the interaction of a particle with many patches, the nonuniform distribution of which

creates locally-attractive regions on the surface.4,6, 8, 64,98,104
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The systems modeled throughout this work are inspired by experimental studies

of colloidal silica particles that deposit on planar surfaces patterned with nanoscale

heterogeneities. In experiments performed by Santore and Kozlova,81,103 uniformly

and negatively charged 460-nm diameter silica particles flowed in solution over planar

negatively charged silica surfaces patterned with positively charged round patches.

The planar surfaces are acid-washed microscope slides covered by controlled amounts

of the cationic polyelectrolyte pDMAEMA (poly-dimethyl-aminoethyl methacrylate).

The round 11-nm diameter pDMAEMA patches are relatively flat, and protrude over

the surface only about 1 nm. Due to the shear flow (at rates varying from 10 to 50

sec−1), the patches are randomly and irreversibly deposited on the surface. Varying

patch densities are obtained by allowing the pDMAEMA solution to flow over the

negatively charged surface for different periods of time. The pDMAEMA patches

resist desorption and self-exchange with other pDMAEMA chains, and, most im-

portantly, they remain adhered on the surface even while exposed to flowing silica

particles. TIRF (total internal reflectance fluorescence) was used to measure the de-

position of the fluorescent-core silica particles on the charge heterogeneous surface.

Particle deposition was found to be controlled by the spacing between the positive

patches. For surfaces densely covered by patches (small patch-patch spacing), adhe-

sion is rapid and transport-limited. For larger patch-patch spacing, however, adhesion

rates become slower and the amount of deposited particles also decreases. A criti-

cal patch-patch spacing above which silica particles do not adhere on the surface

constitutes an adhesion threshold.

The existence of an adhesion threshold indicates that more than one surface het-

erogeneity (patch) is needed to capture a flowing silica sphere, thus suggesting that

particles adhere on the surface due to the concerted action of many patches located

within a specified area on the collector’s surface. A “zone of influence” (ZOI)81,103

on the planar collector is thus defined as the area for which the interaction per unit
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area with the particle is significant. Assuming the overall interactions are dominated

by the electrostatic double layer repulsions, the geometry of the ZOI depends on the

Debye length and the particle size. A shell of one Debye length width around each of

the interacting surfaces is chosen to define the spatial extent of the zone of influence.

The radius of the zone of influence RZOI is indeed obtained from the right triangle

that results from the intersection of the particle’s and collector’s one Debye length

shells when the particle is in contact with the collector. As shown schematically in

Fig. 1.1,

R2
ZOI = (a+ κ−1)2 − (a− κ−1)2 = 4κ−1a and RZOI = 2

√
aκ−1 .

Figure 1.1. Schematic diagram of the particle-surface interface. The radius of the
zone of influence is defined by the right triangle obtained by the intersection of one
Debye length width shells surrounding the particle’s and collector’s surfaces.

The particle size (or curvature) and the Debye length are therefore combined into

one single length scale that accurately describes the effects of surface heterogeneities

on the overall character of the interactions. The spatial fluctuations of surface het-

erogeneities within the ZOI are thus of crucial importance to particle deposition and

the corresponding adhesion thresholds.
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The random distribution of adhesive patches on a collecting surface, that is also

covered by poly(ethylene glycol) (PEG) brushes, is shown in Fig. 1.2 52 by the simi-

larities between a micrograph of roughly 500 PLL/µm2 where about 1500 illuminated

spots correspond to a trace amount of the PLL fluorescently labeled, and a MAT-

LAB generated image of 1500 points randomly distributed throughout an area of the

same size. It is the random distribution of nano-features on the collector that will

determine the adhesive character of the particle (or protein)-collector interactions.

Figure 1.2. (a) Micrograph (33 x 33 µm 2) of roughly 500 PLL/µm2. Approximately
1500 illuminated spots correspond to a trace amount of PLL fluorescently labeled.52

(b) MATLAB generated image of 1500 points randomly distributed on an area of the
same size.52

Computationally efficient models that can accurately predict the behavior of sys-

tems comprising heterogeneous particles and surfaces can effectively aid in experi-

mental design. By providing insights that contribute to the understanding of the

experimental findings, theoretical calculations reduce the number of parameters that

would need to be empirically probed, in order to obtain, for instance, a desired (adhe-

sive or non-adhesive) behavior. Accurate theoretical analysis can also provide insight

on the forces and mechanisms that determine the specific adhesive and deposition be-

haviors of heterogeneous particle-collector experimental systems. The present study
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is thus motivated by the need for computationally efficient modeling and simulation

tools that will contribute not only to the efficient development of experimental set-ups

specifically tailored for desired applications, but also shed some light on the physics

underlying particle-heterogeneous collectors interactions.

Particle-surface interactions have been the subject of extensive theoretical and

computational studies, which almost exclusively rely on the Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory of colloid stability. Within the framework of the DLVO

theory, the total particle-surface interaction results from the assumed additive effects

of attractive van der Waals (vdW) and repulsive Electrostatic Double Layer (EDL)

interactions. Significant discrepancies between DLVO theoretical predictions and ex-

perimental findings, for example, in particle deposition studies, suggested that other

types of colloidal interactions or interacting surfaces’ roughness should be added to

the computations, thus giving rise to the so-called “X-DLVO” models.20,59,60

Perhaps, the most computationally challenging component of DLVO interactions

is the computation of the electrostatic surface potentials required in calculations of

EDL forces and energies. Surface potentials are given by the Poisson-Boltzmann

equation, the non-linearity of which does not allow for a straightforward, analytical

solution. Numerous numerical techniques,47,55,62,63 such as multi-grid and nonlinear

conjugate gradient methods, have been developed and applied to the solution of the

nonlinear form of the Poisson-Boltzmann equation. The solution domains are usually

restricted to a box or a cell, such that the numerical solutions are only relevant for

systems with membrane-like geometries.47

Accurate predictions of a particle’s trajectory as it translates over a collecting

surface requires, at every simulated time step, the computation of DLVO forces,

which in turn determine the particle’s location at the next simulated time step. The

numerical solution of the nonlinear form (or even of the linear form) of the Poisson-

Boltzmann equation at every time step would be extremely challenging not only
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due to the complexity of the particle-surface system configuration but also in terms

of computational costs. Simple analytical and approximate techniques, such as the

Derjaguin integration method and the linear superposition approximation, make use

of the linear form of the Poisson-Boltzmann equation and yield accurate predictions of

colloidal interactions for simple system geometries. The validity of these approximate

methods, however, is unfortunately limited to small particle-surface separations or

large Debye lengths.

The development of the surface-element integration (SEI) technique constitutes

a significant improvement over Derjaguin’s integration method and the linear super-

position approximation. The SEI technique yields accurate values of the colloidal

forces and energies of interactions for sphere-plate system configurations and is not

restricted with respect to particle-surface separation distances nor Debye lengths.

The SEI technique requires, however, the numerical integration of colloidal energies

or forces over the entire particle’s surface or volume. The applicability of the SEI

technique to the computation of particle trajectories thus presents, in practice, com-

putational constraints that are similar to those imposed by the numerical solution

of the Poisson-Boltzmann equation. Moreover, it is not clear how the SEI method

could be modified in order to account for small chemical and topographical hetero-

geneities on the colloidal particle’s surface, since an analytical expression that defines

the particle’s geometry is used to simplify the numerical integrations.

The grid-surface integration (GSI) technique, recently developed by Duffadar and

Davis,38,39 is a numerical method for computing particle-surface colloidal interactions

that is based on the SEI technique but does not require numerical integrations nor

the definition of the particle geometry by an analytical expression. The GSI tech-

nique involves the discretization of both the particle surface and the heterogeneous

(planar) wall, and the total interaction (energy or force) between the particle and
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the heterogeneous surface is obtained by summing the interactions for each pair of

discrete areal elements.

Computations of many particle trajectories can ultimately lead to the prediction

of particle adhesion thresholds and particle deposition behaviors, and thus define

distinct regions in parameter space that distinguish between firm, no adhesion, and

skipping and rolling motion regimes.

Most theoretical studies on colloid deposition on homogeneous and heterogeneous

surfaces involve the formulation and numerical solution of rigorous transport equa-

tions,1,70,106 resulting in model predictions that can be either limited by the validity of

simplifying assumptions1 or dependent on experimentally determined parameters.70

Estimates of particle deposition rates on heterogeneous surfaces based on a linear

patch-wise model70,107 are accurate for macroscopic patches because the patches are

much larger than the depositing colloidal particles, and interactions between patch

boundaries are negligible. For surface heterogeneities much smaller than the col-

loidal particles, however, the predictions of the patchwise model do not agree with

experimentally determined deposition rates.40

Deposition kinetics and jamming concentrations of hard spheres adsorbing on

striped surfaces and surfaces covered by smaller spherical asperities that behave as

adhesion sites have been computed with random sequential adsorption (RSA) sim-

ulations.2,3, 6 Particle deposition modeled with RSA simulations do not include the

effects of DLVO interactions, but instead depend on a series of attempts in which

locations on the heterogeneous surface are randomly chosen. A particle will be con-

sidered to be irreversibly adhered at a specific location if an unoccupied adhesion site

is present at such location, and if the additional particle would not overlap with pre-

viously adhered ones. The particles adhere with unity probability after an available

adsorption site is selected, and a new adhesion trial, uncorrelated with previous ones,

is attempted when deposition is not geometrically possible. The sequential adsorp-
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tion attempts continue until the jamming state is reached. Adsorption probabilities

predicted by RSA simulations, therefore, are mainly dependent on geometrical sys-

tem parameters, such as the particle to adsorption site ratio, and do not account for

particle flow effects nor colloidal interactions.

For the particle-collector nanoscale heterogeneous systems under consideration,

Brownian motion effects have been typically neglected in previous computational

studies.37–39 The displacements of free particles due to Brownian motion, however,

are often significant in time intervals characteristic of the imposed flow, and Brow-

nian motion can enable particle deposition on both homogeneous and heterogeneous

collecting surfaces, even in the presence of an energy barrier.2,118

While adhesive dynamic simulations91 showed that bond dissociation dynamics

are not significantly influenced by Brownian forces and recent studies on particle

interactions with rough collectors74 also indicated that Brownian motion effects are

negligible, microchannel flow experiments of particle deposition114 suggest that, for

low-energy barrier systems, Brownian motion can indeed increase particles’ tendency

to adhere on heterogeneous collectors.

Previous work focused on the study of the dynamics and aggregate formation

properties of many-particle systems,12,44 on particle deposition on homogeneous col-

lectors74 or on particle behavior in parallel-plate microchannel flow.114 A detailed

study of Brownian motion effects on particle interactions with collectors covered with

flat or protruding nano-features is, however, lacking.

Interest in the study of interactions of anisotropic particles has grown signifi-

cantly, leading to the recent development of innovative particle synthesis techniques

used to engineer nano- and colloidal particles with multiple surface features. “Patchy

particles”, as defined by Zhang and Glotzer,127 are particles that exhibit strong di-

rectional interactions induced by distinct patches on the particle’s surface. Highly

anisotropic interactions between patchy particles and/or surfaces patterned with ef-
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fectively “attractive” and “repulsive” interaction sites can lead to the assembly of

otherwise neutral or repulsive surfaces into ordered arrays.

Anisotropic particles at the nano and colloidal scales of diverse shapes, sizes

and electronic and optical properties were synthesized with chemical, physical and

biologically-inspired ingenious techniques.25,48,58,68,95, 109 These patchy particles can

be used as building blocks of target structures that can, in turn, be assembled in

multiple emerging technologies, such as photonic crystals, sensors, and electronic,

molecular imaging and drug-delivery devices.11,28,95,123

From the theoretical perspective, patchy particles were first classified by Glotzer

and Solomon,48 who developed a unifying framework to describe the classes of patchy

particles already synthesized. In many recent computational studies, patchy parti-

cles are modeled as units composed of distinct “atoms”, and specific attributes are

assigned to each atom, depending on whether it belongs to the ‘patch’ or ‘core’ sur-

face areas of the particle. The self assembly of ordered periodic structures is also

predicted by Brownian dynamics simulations65 and molecular dynamic computations

that predict the assembly of nanoparticles and polyelectrolytes into charged, patchy

colloids.84

While theoretical work on patchy particle interactions at the molecular scale is

frequently found in the literature, only a handful of studies describe colloidal in-

teractions of heterogeneous particles in close contact to a wall and the effects of

such heterogeneities on particle deposition. Sphere-plate and sphere-sphere DLVO

interactions for spheres patterned with topographical heterogeneity were computed

numerically18,108 and analytically,110 and model predictions were found to agree with

experimental measurements.111 Spherical chemical heterogeneity, however, was not

included. A recent study by Chatterjee et. al.29 is focused on the deposition of

micro-scale particles onto larger Janus and patchy spherical collectors. Chemical het-

erogeneity is modeled by patterning defined regions of the spherical collector with
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adhesion-favorable and adhesion-unfavorable surface properties. The patterned areas

of the spherical collectors were larger than the depositing colloidal particles.

The effect of nanoscale heterogeneity that patterns spherical particles and inter-

actions between such heterogeneous particles and collectors has not been studied,

however, in previous work. The study of patchy particles as depositing agents, in

contrast to their behavior as collecting surfaces,29 can aid toward the understanding

of the physical processes that underlie a myriad of “smart” devices, and possibly fur-

ther advance the development of computational and simulation techniques that can

accurately model such processes.

1.2 Objectives and Outline.

A computational study of particle-surface interactions with nanoscale heterogene-

ity is presented in the pages that follow, to ultimately gain insight into the adhesive

and dynamic system behaviors that bear importance from theoretical and practical

perspectives.

Results presented throughout this work aim to:

• Investigate the effects of topographical heterogeneity on the system’s energy-

distance profile to elucidate possible reasons for discrepancies found between

experimental and theoretical experimental rates.

• Develop further existing computational techniques to incorporate topographi-

cal and chemical heterogeneities, that have not been accounted for jointly in

previous work, though their presence is ubiquitous in experimental systems

• Develop simple and computationally inexpensive models, not found in the lit-

erature, to predict mean and variance of interactions and adhesion thresholds

for system configurations with collectors that are randomly patterned at the

nanoscale.
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• Analyze in detail the effects of Brownian motion on the behavior of particle-

collector nanoscale heterogeneous systems, to verify the assumption found in

the literature that such effects can be entirely neglected.

• Develop a new computational technique to simulate interactions of patchy parti-

cles that could be fabricated, for instance, by coating silica spheres with cationic

patches or polymer brushes, and that could model cells covered with receptors.

• Establish the basis of a novel approach that allows for the modeling of inter-

actions between heterogeneous particles and surfaces, to significantly increase

the resemblance between simulated and real surfaces and to possibly model a

number of physical processes that underlie surface scribing, cleaning, filtration,

“lock and key”, and protein recognition applications, among others.

Theoretical background that defines fundamental concepts and computational

techniques developed in previous work, some of which are implemented to obtain

the results presented in this work are described in Chap. 2. In Chap. 3, interactions

between uniform spheres and heterogeneous collectors are studied in detail. Collec-

tor topography effects on particle adhesion are evaluated in Sec. 3.1. A force- and

energy-averaging technique that predicts mean interactions for the systems considered

is also developed. In Sec. 3.2, a statistical model based on the averaging technique is

formulated as a computationally efficient tool that predicts variance of interactions

and particle adhesion thresholds. The specific effects of Brownian motion in the dy-

namics of the heterogeneous systems considered are studied in Sec. 3.3 by introducing

stochastic Brownian displacements in particle trajectory equations. Péclet numbers

that quantify shear, Brownian and colloidal forces are also defined. In Chap. 4, the

(patchy particle)-(collector) system is thoroughly characterized in terms of adhesion

thresholds, spatial variations in the trajectories, and maximum residence times per

patch. Detailed comparisons with the extensively studied (particle)-(patchy collec-
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tor) system are also presented. In Chap. 5, the main findings and conclusions are

summarized, and a number of possible directions for future work are delineated.
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CHAPTER 2

BACKGROUND

2.1 The Gouy-Chapman double-layer model.

The surface charge of a particle in an electrolyte solution is balanced by oppositely

charged counterions, such that the solution is electrically neutral. The counterion

distribution is not uniform, since counterions tend to concentrate close to the particle

surface due to electrostatic attractions but also diffuse randomly in the solution under

the action of thermal forces. The region that contains the surface charge, referred

to as the compact or Stern layer, and the region where the ions move freely due to

their thermal energy, termed the diffuse layer, comprise the electric double layer. The

nature and concentration of the salts in solution determine the surface charge and

counterion distributions.41,100

Within the Gouy-Chapman model27,54 of the diffuse layer that surrounds a charged

particle, the interface is flat, infinite and impenetrable, the ions are point charges, and

the solvent’s properties (such as permittivity) do not depend on the distance from

the surface.100 It is also assumed that the surface charge and potential are uniformly

distributed over the surface. Indeed, many surfaces can be considered as having an

effectively uniform surface charge density because the rate of ions exchange between

surface sites and the adjacent solution is faster than the rate of approach of colloidal

particles toward the interface.41,100

The relationship between charge density, ρ (C/m3), and potential, ψ(V), at any

point in the solution is described by the Poisson equation,41
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∇2ψ = −ρ
ε
, (2.1)

where ε is the absolute permittivity of the medium (C2/Nm2). The Poisson equation

is accurate for electrolyte concentrations lower than 1M and surface potentials less

than 200mV.100

The ions in the diffuse layer are in equilibrium, so the force, which is given by the

gradient of the electrochemical potential,100 must be zero, or,

kBT∇ni + ezi∇ψ = 0 , (2.2)

where kB is the Boltzmann constant, T is the absolute temperature, ni and zi are

the concentration and valence of ion i, respectively, and e is the fundamental electric

charge, 1.6×10−19C.

From Eq. (2.2), it is seen that the ions in solution follow a Boltzmann distribution,

ni = ni 0 exp

(

−zieψ
kBT

)

(2.3)

where ni denotes the number concentration of ion i at a point in the solution where

the potential is ψ and ni 0 stands for the concentration in the bulk (where ψ = 0).

For symmetrical (z − z) electrolytes, the charge density is given by:41

ρ = ze(n+ − n−) = −2zen0 sinh

(

zeψ

kBT

)

(2.4)

where n+ and n− represent the concentrations of cations and anions and n0 is the

concentration of each ion in the bulk solution. In Eq. (2.4), z is the valence of the

ions and does not include the charge sign.
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The variation of the potential normal to a flat interface can be obtained by com-

bining the one dimensional form of Eq. (2.1) with Eq. (2.4), to obtain the Poisson-

Boltzmann equation,41

d2ψ

dx2
=

2zen0

ε
sinh

(

zeψ

kBT

)

. (2.5)

By introducing the dimensionless parameters Ψ = zeψ/kBT and κ2 = 2e2n0z
2/εkBT

(for z − z electrolytes), the Poisson-Boltzmann equation is simplified to

d2Ψ

dx2
= κ2 sinhΨ , (2.6)

where κ is the Debye-Hückel parameter, and has units of inverse length.

Applying the Debye-Hückel approximation, a linear form of the Poisson-Boltzmann

equation can be obtained for low surface potentials (ψ less than about 25 mV in 1-1

electrolytes) by assuming sinh ψ ' ψ, so that Eq. (2.6) can be further simplified to

d2Ψ

dx2
= κ2 Ψ . (2.7)

The solution of Eq. (2.7),

Ψ = Ψs exp(−κx), (2.8)

where Ψs is the potential at the interface, reveals the exponential decay of the poten-

tial with increasing distance from the charged interface. For example, at a distance

1/κ from the surface, the potential decreases to 1/e of the surface potential. The

Debye-Hückel parameter is thus also referred to as the Debye-Hückel length since

it determines the thickness of the diffuse layer. In the general case of electrolyte

solutions of different ions, κ is defined as

κ =

√

e2
∑

ni0z2i
εkBT

, (2.9)

where the sum applies to all the ions in the solution.
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2.2 Electrostatic double-layer interactions.

When two charged particles approach each other, their double-layers overlap and

give rise to double-layer interactions. These interactions can either be repulsive or

attractive, depending on whether the approaching particles bear charges with the

same or opposite sign, respectively.41

Verwey and Overbeek117 distinguished between interactions at constant surface

potential and interactions at constant surface charge. As the particles come closer to

each other, the double layer charge at the particles surfaces decreases and therefore

some ions diffuse into the solution in order to maintain the thermodynamic equi-

librium in the double layer. The Brownian motion of the relatively heavy colloidal

particles as they approach each other is in general much slower than the thermal

diffusion of the ions. The particles surface charge is thus adjusted rapidly, to main-

tain the thermodynamic equilibrium, and the surface potential is assumed to remain

constant. For some systems, however, the transport of ions from the particle surface

to the solution, and vice versa, is not a fast process since it is controlled by the pres-

ence of an energy barrier. In this case, the particles surface charge is adjusted slowly

enough such that it can be assumed to remain constant. Unless otherwise indicated,

the assumption of constant surface potential will be the assumption of choice in the

computations presented within this work.117

The double layer interaction energy between two approaching surfaces can be

found by solving the Poisson-Boltzmann equation (Eq. (2.6)) for the system of inter-

est. Simple, analytical expressions cannot be usually obtained, however, by directly

solving that equation. Alternatively, an expression for the energy of interaction for a

given system can be constructed from expressions for each of the system surfaces in

isolation. In this way, accurate approximations can be derived.41

A compromise between the Constant surface Potential Approximation (CPA) and

Constant surface Charge Approximation (CCA) is given by the Linear Superposition
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Approximation (LSA). Within the LSA, a region exists between the interacting sur-

faces where the potential is small and obeys the linear Poisson-Boltzmann equation

(LPB, Eq. (2.7)). The total interaction is obtained by summing the contribution of

each interacting surface. The LSA is found to be an accurate approximation only if

the particles’ separation distance (h) is large (κh� 1).

2.2.1 Plate-plate interactions.

For symmetrical (z-z) electrolytes, a number of expressions for the energy of in-

teraction between two infinite parallel flat plates have been derived by integrating

the pressure (force per unit area) between two flat double layers over the distance be-

tween the plates. Approximate expressions can be obtained by using this integration

method under various assumptions (CPA, CCA, and/or LSA). A comprehensive list

of the numerous expressions is presented by Elimelech et al.41

In the present work, the electrostatic double-layer (EDL) interactions are com-

puted on the basis of the exact, analytical expression derived by Hogg et al.61 by

solving the LPB equation (Eq. (2.7)) for the case of constant surface potential bound-

ary conditions. The two dissimilar plates are separated by a distance h and charged

with small potentials (ψ < 25mV). The bottom plate (for which x = 0) is charged

with a potential ψp,1, while the potential of the top plate (located at x = h) is de-

noted by ψp,2. The solution to Eq. (2.7) with these boundary conditions yields the

dependence of the potential between the plates on the distance from the bottom plate,

ψ = ψp,1 cosh(κx) +

(

ψp,2 − ψp,1 cosh(κh)

sinh (κh)

)

sinh (κx) . (2.10)

The potential energy of interaction (UEDL) is found from the change in free energy

of the system caused by bringing the plates together from infinity,61 that is,

UEDL = ∆G = Gh −G∞ . (2.11)
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As shown by Verwey and Overbeek,117 the free energy of a single double layer for

the case of small and constant surface potential ψp can be computed from

G = −1

2
σψp , (2.12)

where σ (C/m2) is the surface charge density. The total free energy of the system is

obtained by adding the free energies of the separate double layers,

Gh = −1

2
(σ1ψp,1 + σ2ψp,2) , (2.13)

where σ1 , σ2 are the surface charge densities corresponding to each of the double

layers.

The dependence of the surface charge density on the surface potential for a plate-

plate system configuration is determined from117

σ = −ε
(

dψ

dx

)

∣

∣

∣

x=0
, (2.14)

such that

σ1 = −εκ [ψp,2 cosech(κh)− ψp,1 coth(κh)] (2.15)

and

σ2 = εκ [ψp,2 coth(κh)− ψp,1 cosech(κh)] , (2.16)

where ε (C2/Nm2) is the absolute permittivity of the medium. The free energy of

the double layer system can thus be obtained by inserting Eqs. (2.15)-(2.16) in Eq.

(2.13), to obtain

Gh =
εκ

2
[2ψp,1 ψp,2 cosech(κh)− (ψ2

p,1 + ψ2
p,2) coth(κh)] . (2.17)
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For large separation distances, cosech(κh) → 0 and coth(κh) → 1 such that the free

energy is given by

G∞ = −εκ
2
(ψ2

p,1 + ψ2
p,2) . (2.18)

Finally, the total energy of interaction per unit area between two infinite, parallel,

flat double layers is obtained by substituting Eqs. (2.17) and (2.18) in Eq. (2.11);

namely,

UA
EDL =

εκ

2

[

(ψ2
p,1 + ψ2

p,2)(1− coth (κh)) + 2ψp,1 ψp,2 cosech (κh)
]

. (2.19)

Eq. (2.19) is an analytical, exact solution of the LPB equation for the case of two

infinite, parallel, flat plates, and will be used extensively throughout this work.

As shown, Eq. (2.19) is derived from the solution of the LPB equation under the

assumption of constant potential boundary conditions. It is noted that the assump-

tion of constant surface charge could undermine the validity of the LPB equation

which is accurate only for small surface potentials. When the separation distance be-

tween two surfaces at constant charge decreases, the surface potentials will increase,

and possibly become large enough (ψ > 25mV) so that the LPB is no longer valid for

small separations. Constant potential boundary conditions, however, allow the use of

the LPB equation for the whole range of particle-surface separations, as long as the

potentials are relatively small.

2.2.2 Sphere-sphere interactions.

The dependence of the surface potential around a sphere on the distance from

its center can be found by solving the Poisson-Boltzmann equation, expressed in

spherical coordinates. Due to the particle’s curvature, however, an analytical solution

does not exist, and instead, the sphere’s surface potential is obtained from numerical

or asymptotic solutions that usually depend on the specific system of interest.100 It is
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expected, therefore, that the two-sphere problem will lack closed-form solutions and

rely on approximating assumptions.

Many double layer interactions expressions for the sphere-sphere system result

from solving either the linear or the non-linear form of the Poisson-Boltzmann equa-

tion with the aid of the Derjaguin approximation (discussed in detail in Sec. 2.5) and

in combination with either the constant charge (CCA) or constant surface potential

(CPA) assumptions. A few expressions were derived, however, by implementing an

integral approach for the distribution of electric dipoles or on the basis of the LSA.

McCartney and Levine90 solved the LPB equation for a system composed of two

identical spheres, by expressing the potentials in terms of the surface distribution of

electric dipoles.13,90 This method yields accurate results for κa ≥ 5, where a is the

spheres’ radius, and predicts the correct dependence of the potential on the distance

for large sphere-sphere separation distances. Even though this technique represents

an improvement over the results predicted with the Derjaguin approximation, the

integral equation that governs the distribution of the electrical dipoles cannot be

easily modified to obtain higher approximations nor extended to analytically solve

the non-linear Poisson-Boltzmann equation for higher potentials.

The McCartney-Levine model is extended by Bell et al.13 for the case of unequal

spheres charged with small, dissimilar potentials, for large values of κa1, κa2, where

a1 and a2 denote the particle radii. A solution for the case of larger potentials is

also presented, and found to be in agreement with numerical results for κa ∼ 5. Bell

et al.13 ultimately suggest that accurate force and energy predictions of the double

layer interactions for the sphere-sphere system, for all separations and potentials,

could be obtained by combining the LSA with the Derjaguin approximation, which

yield correct results at large and small separation distances, respectively.

An expression derived by Bell et al.13 on the basis of the LSA for the case of

unequal spheres charged with dissimilar potentials can be extended, in principle, to
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describe interactions between particles of arbitrary shape, size, potential (as long as

they are uniform and constant), and electrolyte type. This method, however, makes

use of the asymptotic form of the potential distribution at large separations in the

diffuse layer. Even though the asymptotic form for a spherical particle is well known,

it depends on a parameter that can be determined only numerically, thus precluding

the extensive use of the LSA expression.

A comprehensive list of approximate expressions that describe electrostatic double

layer interactions for the sphere-sphere system is presented by Elimelech et al.41

2.2.3 Sphere-plate interactions.

Expressions for the sphere-plate system can be obtained by modifying the sphere-

sphere interactions obtained by applying different assumptions (LSA, CCA, CPA,

Derjaguin approximation) and assuming the radius of one of the spheres tends to

infinity.41 Analytical expressions for sphere-plate interactions, that, in contrast, are

not derived by modifying the sphere-sphere expressions, but instead make use of the

plate-plate expressions, were recently derived.

Zypman128 derived a closed-form, exact expression of the force for the sphere-

plate system that depends on the energy per unit area between two flat plates. The

force can be integrated analytically for the sphere-plate configuration to obtain the

respective energy of interaction. Even though the expressions are valid for both van

der Waals (vdW) and EDL interactions, they can only be analytically obtained for

a few simple geometries. Moreover, the expressions obtained with this method are

lengthy and cumbersome, such that their wide practical use is somewhat limited.

Another closed-form expression for sphere-plate double layer interactions was re-

cently derived by Lin and Weisner.85 By making use of the Derjaguin geometrical

construction34 (see Sec. 2.5), an expression for the sphere-plate EDL interaction en-

ergy is obtained by integrating the plate-plate interaction energy over the front and
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back hemispheres of the particle. The method is applicable to the cases of constant

surface potential, constant surface charge and to the intermediate case as defined by

the LSA. The expressions derived by Lin and Weisner85 are considered to be exact

since they rely on exact plate-plate expressions. Their validity is therefore not re-

stricted in terms of particle sizes and separation distances. It is not clear, however,

whether such expressions are applicable to particle-collector systems with nanoscale

heterogeneities or in systems that include particles lacking a spherical geometry.

2.3 van der Waals forces.

The London-van der Waals forces, or more simply, the van der Waals (vdW)

forces, arise from spontaneous or permanent electric and magnetic polarizations of

the interacting bodies. In Hamaker’s microscopic approach,56 the interaction between

two macroscopic bodies can be obtained from the pairwise summation of all the

intermolecular interactions between them. By integrating the energy per unit volume

between two spherical particles over the particles’ volumes, Hamaker56 derived an

expression for sphere-sphere van der Waals interactions that is dependent on the

particle radii and on the separation distance only. In a similar fashion, relevant

expressions are obtained for the sphere-plate and plate-plate system configurations.56

In particular, the van der Waals interaction energy per unit area between two infinite

and parallel flat plates is given by

UA
vdW = − AH

12πh2
, (2.20)

where h is the separation between the plates and AH is the Hamaker constant, that

depends on the particle and fluid properties and generally lies between AH = 10 ×

10−21 J and AH = 10×10−19 J. Hamaker56 showed that interactions between particles

of the same material are always attractive, if the molecules of the fluid between the

22



particles do not present a marked orientation. The character of interactions between

particles of different materials, however, can be either attractive or repulsive. Eq.

(2.20) implies that the attraction between the interacting surfaces increases with

decreasing separation distance, and it ultimately becomes infinite at the surfaces

contact. In practice, the attraction remains finite at all separations because as the

interacting surfaces come to a close approach, other forces arise, such as the Born

repulsion.41

As mentioned, Hamaker’s approach makes use of the additivity assumption, that

can result in an overestimation of the interactions. Liftshitz83 developed a new theory

that does not require the use of such an assumption. Liftshitz’s method, however,

is difficult to implement due to the lack of experimental data on the particles and

medium permittivities, in particular for system geometries other than the plate-plate

configuration. Differences between the approaches were shown to be negligible and in

practice, Hamaker’s approach is often the method of choice. Hamaker’s expressions

are also improved by the addition of correction factors that account for retardation

effects.41,66

Attractions are meaningfully reduced due to retardation effects when the separa-

tion distance between the interacting surfaces becomes comparable to the character-

istic wavelength of λ ' 100 nm.41 In the results presented throughout this work, the

van der Waals interactions between two infinite parallel flat plates do not account for

retardation effects, and are obtained from Eq. (2.20). The separation distances con-

sidered are much smaller than 100 nm, and moreover, at large separations the van der

Waals interactions are weak, such that the inclusion of retardation effects becomes

unnecessary.

23



2.4 The DLVO theory.

Derjaguin and Landau35 and Verwey and Overbeek117 developed independently a

theory of colloid stability, presently widely known as the DLVO theory. According to

this theory, van der Waals (vdW) attractions and electrostatic double layer (EDL) re-

pulsions can be added to yield the total energy of interaction between particles and/or

surfaces, as a function of the separation distance. The energy-distance profile usually

shows an infinitely deep minimum (at small separations), a local maximum (the en-

ergy barrier), and another minimum (the secondary minimum, at larger separations).

The specific shape of the energy-distance profile depends on interaction parameters

(such as particle size, Debye length, zeta potentials and Hamaker constants) and, as

will be shown, determines colloidal deposition.

It should be noted that an infinitely deep primary minimum is physically unre-

alistic. Therefore, for practical purposes, a finite potential at the primary minimum

is often obtained by imposing an arbitrary distance of closest approach (of 0.1 - 0.2

nm),41 or by explicitly adding short-range Born repulsions to the total energy of in-

teraction. Other short-range effects,41 such as ion hydration or surface roughness,

limit the minimum separation distance and define an effective contact area, such that

the surfaces are prevented from coming into physical contact.

While the DLVO theory successfully explains the stability of lyophobic colloids,

for some systems discrepancies have been found between the theoretical predictions

and experimental measurements of particle deposition, stability and adhesion. Ex-

perimental particle deposition rates are often found to be considerably larger than

those predicted by the DLVO theory. The discrepancies between the theory and the

experimental data are usually accounted for by adding “non-DLVO” forces to the van

der Waals (vdW) attractions and the electrostatic double layer (EDL) repulsions, and

the resulting model is usually termed the “extended-DLVO” or “X-DLVO” model.
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Hoek and Agarwal59 recently computed interactions between rough surfaces using

an extended-DLVO model that included, in addition to vdW and EDL interactions,

Lewis acid-base interactions, and steric and hydrodynamic forces. Surface roughness

was indeed found to decrease the energy of interaction, and particle deposition on

relatively repulsive surfaces was predicted due to the presence of locally attractive

sites.

In aqueous systems, other attractive and repulsive forces could be responsible for

the differences between experimental measurements and theoretical predictions. The

hydration of ions at either interacting surface, for example, can introduce additional

repulsive interactions, while hydrophobic effects increase the attraction between the

surfaces.41 As described in Sec. 5.2.1.2, the presence of adsorbed polymers can also

affect the total interactions by either increasing the repulsions or the attractions,

through steric interactions and polymer bridging, respectively.

2.5 The Derjaguin approximation.

Derjaguin34 developed a technique that provides analytical expressions for the

interactions between two curved surfaces, which are discretized into concentric rings

of differential width. The total interaction is obtained by integrating the ring-ring

interactions over the area of the curved surfaces in the vicinity of the region of closest

approach. Assuming each ring can be treated as a flat plate, the ring-ring interactions

are computed from the expressions derived for two infinite, parallel flat plates.34,120

The Derjaguin approximation is also applicable to systems that include both curved

and flat surfaces, such as the sphere-plate system.

The interaction energy predicted by Derjaguin’s integration (DI) method can be

generally expressed as

UDI = f(a)

∫ ∞

D

U(h)dh , (2.21)
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where f(a) is a geometric factor that represents the local curvature of the surface

at the point of closest approach, D is the minimum separation distance between

the interacting surfaces, U(h) is the interaction energy, and h is the local separation

distance between corresponding parallel flat rings. The geometric factor equals f(a) =

2πa1a2
(a1+a2)

for the case of two interacting spheres of radii a1 and a2, and f(a) = 2πa for

the sphere-plate system, where a represents the particle radius.

The Derjaguin approximation can be used to calculate both van der Waals and

electrostatic double layer forces and energies. As shown by White,120 it also provides

a first order approximation for forces and torques in systems composed of particles

with arbitrary curvature, such as cylinders and ellipsoids.

The Derjaguin method has, however, a number of limitations. The assumption

that the flat rings can be treated as parallel flat plates is only valid when large

particles interact at small separation distances (h� a),41 such that curvature effects

are minimal. The interacting double layers should be thin (κa � 1), so that the

gap between the interacting curved (convex) surfaces can be assumed to be one-

dimensional, and the surface potentials are assumed to be small (ψ < 25mV).

Despite these restrictions, the Derjaguin approximation predicts accurate results

for κa > 10, and even for κa > 5.117 Its use, however, is mostly limited to systems

with large particles interacting at small separation distances. The surface-element

integration (SEI)17 technique, described in the following section, is presented as a

more accurate and versatile alternative to Derjaguin’s integration method.

2.6 The SEI technique.

Developed by Bhattacharjee and Elimelech,17 the surface-element integration (SEI)

technique is an integral method that allows for the computation of colloidal interac-

tions between a sphere and an infinite flat plate.

26



The approaching particle is discretized into differential surface elements, whose

projected area on the plane of the flat plate is denoted by dA. The total particle-plate

interaction energy is calculated by numerically integrating the interaction energy per

unit area between two infinite flat plates over the projected area of the spherical

particle, i.e.,

dUSEI = U(h) dA . (2.22)

U(h) is the interaction energy between two infinite parallel flat plates as a function

of the local separation distance h. It should be noted that Eq. (2.22) represents

the interaction between one surface areal element of the first surface (in this case,

the particle) with the entire second surface (in this case, the planar plate). The SEI

technique involves the discretization of only one of the interacting surfaces.

In order to simplify the integration of Eq. (2.22), the local separation distance h

between any point on the particle and the planar surface is obtained from an analytical

expression that defines the surface of the approaching particle.

Since EDL interactions are a surface phenomenon, the integral in Eq. (2.22) is

performed over the particle’s surface. Van der Waals interactions, however, arise from

the particle’s volume, so the corresponding integration, also given by Eq. (2.22), is

performed over the particle’s volume. The validity of the SEI technique thus follows

from the equivalence between surface and volume integrals, as established by Gauss’s

divergence theorem.

The SEI technique can be applied to compute both long and short range inter-

actions for spheres of arbitrary size and flat plates, at all separation distances. The

thickness of the interacting double layers is not limited either, such that the SEI tech-

nique is clearly an improvement over the Derjaguin method. Some limitations to the

SEI technique, however, do exist. The SEI method can be extended, in principle, to

particles of arbitrary shape. An asymmetrical surface might not be defined, however,

by a simple analytical expression, such that the integral in Eq. (2.22) could become
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too complicated for practical purposes. Moreover, the implementation of the SEI

technique to compute interactions of particles in shear flow is not straightforward.

Each time step would require one or two numerical integrations, that would yield

the instantaneous EDL and vdW forces, such that the application of the SEI method

would become, in this case, computationally prohibitive.

2.7 The GSI technique.

The grid-surface integration (GSI) technique14,38,39 is a method for computing

colloidal interactions between a particle of arbitrary shape, size, and surface prop-

erties and a heterogeneously patterned surface and is based on the surface element

integration (SEI) method. The GSI technique, however, involves the discretization

of both the particle surface and the heterogeneous (planar) wall, such that the total

interaction (energy or force) between the particle and the heterogeneous surface is

obtained by summing the interactions for each pair of discrete areal elements. The

sum of pairwise interactions is thus given by38

F =
∑

particle

∑

wall

P (h) e1 · ez dS, (2.23)

where P (h) is the force or energy of interaction per unit area between a particle’s areal

element (dA) and a corresponding element on the substrate (dS). The unit vector

ez specifies the direction normal to the surface, and the unit vector e1 indicates the

direction between areal elements on the particle and the substrate (see Fig.3.1). The

summations in Eq. (2.23) are performed over all of the discretized elements on the

particle and collector.

The interactions between each pair of areal elements are determined from analyt-

ical expressions for colloidal energies or forces between parallel plates. The EDL and

vdW interaction energies per unit area between two infinite, parallel flat plates are
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obtained from Eqs. (2.19) and (2.20), respectively. Both the EDL and vdW forces

between a particle and a heterogeneous surface are computed by incorporating the

force per unit area,

FA(h) = −∂U
A(h)

∂h
, (2.24)

in the GSI technique with P (h) = FA(h).

The accuracy and validity of the GSI technique was shown elsewhere,38 by com-

paring interactions computed by implementing the GSI method with those obtained

from numerical solutions of the LPB equation and from exact expressions derived

for simple system geometries. The GSI technique can easily accommodate surface

heterogeneities, that can be randomly located on either one or both of the interacting

surfaces. Thus, unless otherwise specified, the GSI technique will be applied in all of

the results that follow, to compute DLVO interaction energies and forces.

2.8 Hydrodynamic Interactions. The mobility matrix.

The dynamic profiles of the moving particles are obtained using the method of

Duffadar and Davis38 in which GSI computations of colloidal interactions are incor-

porated into a mobility tensor formulation of the hydrodynamics problem. Applying

this formulation, the particle’s translational velocity V ≡ (Vx Vy Vz)
t and rotational

velocity Ω ≡ (Ωx Ωy Ωz)
t , in a cartesian coordinate system in which the y-axis is

normal to the xz-plane, are obtained from







V

Ω






=







MV F MΩF

MV T MΩT













F

T






(2.25)

where F ≡ (Fx Fy Fz)
t and T ≡ (Tx Ty Tz)

t are the components of the externally

applied forces and torques on the sphere due to the shear flow and colloidal interac-

tions with the heterogeneous surface. The mobility matrix elementsMi, j, composed of

dimensionless functions that model the fluid’s resistance to particle motion, are:26,38
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1. MV F

M11
V F =M33

V F = Tr/6πµaDf (2.26)

M22
V F = 1/6πµaλ (2.27)

M ij
V F = 0 for i 6= j (2.28)

2. MΩF

M31
ΩF = −M13

ΩF = Tt/(6πµa
2Df ) (2.29)

M ij
ΩF = 0 for (i, j) 6= (1, 3) 6= (3, 1) (2.30)

3. MV T

M31
V T = −M13

V T = −Fr/8πµa
2Df ) (2.31)

M ij
V T = 0 for (i, j) 6= (1, 3) 6= (3, 1) (2.32)

4. MΩT

M11
ΩT =M33

ΩT = Ft/8πµa
3Df (2.33)

M22
ΩT = 1/8πµa3χ (2.34)

M ij
ΩT = 0 for i 6= j , (2.35)

where Df = TtFr − FtTr. The function λ is given by Brenner21

λ =
4

3
sinhα

∞
∑

n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[

2 sinh[(2n+ 1)α] + (2n+ 1) sinh(2α)

4 sinh2[(n+ 0.5)α]− (2n+ 1)2 sinh2 α
− 1

]

,

(2.36)
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with α = ln[(a+D)/a+ (((a+D)/a)2 − 1)1/2], where a is the particle radius and D

is the minimum particle-planar surface separation distance. For D/a < 1× 10−5, the

asymptotic expression is λ→ a/D.26 The function χ is defined by Jeffrey,69

χ =

∑∞
n=1 cosech

3nα

cosech3α
, (2.37)

for all α.

The hydrodynamic functions F t
x, T

t
y , F

r
x and T r

y depend on the particle size (a), the

fluid viscosity (µ), and the particle-surface separation distance only. The minimum

particle-surface separation distance is denoted by D, while the separation distance

between the particle’s center and the plane surface is indicated by h, such that h =

D + a.

For small particle-collector separation distances, the hydrodynamic functions are

approximated by the asymptotic expressions derived by Goldman et. al.,50 valid in

the limit D/a < 0.003202,

F t
x ∼ 8

15
ln(D/a)− 0.9588 , (2.38)

T t
y ∼ − 1

10
ln(D/a)− 0.1895 , (2.39)

F r
x ∼ − 2

15
ln(D/a)− 0.2526 (2.40)

and

T r
y ∼ 2

5
ln(D/a)− 0.3817 . (2.41)

For larger separation distances, the asymptotic expressions for F t
x and T t

y ,

F t
x ∼ −

[

1− 9

16

(a

h

)

]−1

(2.42)

and

T t
y ∼ 3

32

(a

h

)4

, (2.43)
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are given by Faxén.46 The function F r
x is found by Goldman et al.50 from the

reciprocity relation F r
x/T

t
y = 4/3,22 such that

F r
x ∼ 1

8

(a

h

)4

. (2.44)

The expression for T r
y valid at large separation distances is given by Maude,89

T r
y ∼ −

[

1 +
5

16

(a

h

)3
]

. (2.45)

The asymptotic expressions obtained for the hydrodynamic resistance functions

are well approximated by analytical expressions derived by Duffadar and Davis.38

These expressions, obtained by fitting the data tabulated by Goldman et. al.,50 read

F t
x =

−1

0.14116 + 0.5967 (D/a)0.2984
, (2.46)

T t
y =

0.04362− 0.0459 (D/a)0.557

0.06801 + (D/a) 0.557
, (2.47)

F r
x =

0.05826− 0.06126 (D/a)0.557

0.06801 + (D/a) 0.557
(2.48)

and

T r
y =

−0.312373− 0.739 (D/a)0.4906

0.0954 + (D/a)0.4906
. (2.49)

Comparisons between hydrodynamic resistances obtained from asymptotic expres-

sions, tabulated data (where available) and Eqs. (2.46)-(2.49) are presented in Figs.

2.1 and 2.2 for small and large particle-surface separation distances D/a, respectively.

As seen in Fig. 2.1, the agreement between both approaches increases for sepa-

ration distances closer to the limit D/a = 0.003202. For larger separation distances,

in particular in the range 0.003202 < D/a < 1, which is the most relevant to ex-

periments and to the results presented throughout this work, it is shown in Fig. 2.2
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(a)

(d)

(b)

(c)

Figure 2.1. Hydrodynamic resistance functions in the separation distance range
1 × 10−4 < D/a < 0.003202 obtained from the asymptotic expressions (2.38)-(2.41)
and from Eqs. (2.46)-(2.49). (a) F t

x. (b) T
t
y . (c) F

r
x . (d) T

r
y .
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(a) (b)

(c) (c)

Figure 2.2. Hydrodynamic resistance functions for separation distances D/a >
0.003202 obtained from the asymptotic expressions (2.42)-(2.45) and from Eqs.
(2.46)-(2.49). Results are compared to tabulated data of corrected calculations by
Goldman et al.50 of O’Neill’s93 bipolar coordinate solution of the translating sphere
problem (F t

x and T t
y tabulated data), and of Dean and O’Neill’s32 solution of the

rotating sphere problem (F r
x and T r

y tabulated data) . (a) F t
x. (b) T

t
y . (c) F

r
x . (d) T

r
y .
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that results predicted by Eqs. (2.46)-(2.49) agree almost perfectly with those ob-

tained from the asymptotic expressions (2.42)-(2.45) and tabulated data presented

by Goldman et al.50

In a simple linear shear flow, the particle not only translates in the direction of

flow parallel to the collector surface but it also rotates about an axis parallel to the

heterogeneous surface. Solving the Stokes equation (Re � 1) and the continuity

equation for the fluid velocity and pressure, within the lubrication approximation,

Goldman et al. developed closed form expressions for the normalized, dimensionless

shear-induced (S) forces and torques49,51

F S∗
x = F S

x /6πµahγ̇ and T S∗
y = T S

y /4πµa
3γ̇ , (2.50)

where ∗ symbolizes a dimensionless expression. In the limiting case of a sphere touch-

ing the planar surface (h/a = 1), the resulting shear-induced force and torque are

F S∗
x = 1.7005 and T S∗

y = 0.9440.

For the case of larger values of h/a, for which the “method of reflections” is valid,

Goldman et al.51 derived the asymptotic expressions

F S∗
x ∼ 1 +

9

16

a

h
(2.51)

and

T S∗
y ∼ 1− 3

16

(a

h

)3

, (2.52)

which approximate well the data obtained with the closed-form expressions presented

by Goldman.49

On the basis of the data tabulated by Goldman et al.,51 Duffadar and Davis38 also

developed expressions for the dimensionless shear-induced force and torque;

F S∗
x =

1.7007337 + 1.0221606 (D/a)

1 + 1.0458291 (D/a)− 0.0014884706 (D/a)2
(2.53)
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and

T S∗
y = 0.054651334(18.276952− exp(−1.422943(D/a))) . (2.54)

In Fig. 2.3, the shear-induced forces and torques obtained from the asymptotic

expressions (2.51)-(2.52) and from Eqs. (2.53)-(2.54) are compared to the tabulated

data presented by Goldman et al.51 It is seen that results obtained with Eqs. (2.53)-

(2.54) agree perfectly with the tabulated data.

Unless otherwise specified, all results presented throughout this work are obtained

by approximating the hydrodynamic resistance functions with Eqs. (2.46)-(2.49) and

the normalized dimensionless shear-induced forces and torques with Eqs. (2.53)-

(2.54).

To obtain the particle’s dynamic profile as it translates and rotates in shear flow in

parallel to a collecting surface, the particle’s center position at every simulated time-

step is updated with the velocities computed from Eq. (2.25). Particle trajectories

are thus presented as plots of the minimum particle-surface separation distance D as

a function of the particle’s horizontal displacement in parallel to the collector.
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(a)

(b)

Figure 2.3. Comparison of the dimensionless shear-induced forces (a) and torques
(b) obtained from the asymptotic expressions51 (2.51)-(2.52), from tabulated data
calculated with closed-form expressions49,51 and from Eqs. (2.53)-(2.54) derived to
accurately approximate such data.38
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CHAPTER 3

PARTICLE INTERACTIONS WITH NANOSCALE-
HETEROGENEOUS COLLECTORS

3.1 The GSI technique applied to chemically and topographi-

cally heterogeneous surfaces. A force- and energy-averaging

model.

3.1.1 Introduction.

The effect of topographical heterogeneity on DLVO35,117 interactions has been the

focus of many studies. Discrepancies between experimental particle deposition rates

and (often considerably smaller) theoretical values predicted by the DLVO model

using the Derjaguin approximation have frequently been ascribed to the roughness

of both the particles and collecting surfaces,42,64,87,110,113 as asperities on both inter-

acting surfaces were shown to decrease the total interaction energy and the height

of the energy barrier. This conclusion is supported by direct measurements of the

interaction energy111 between a rough spherical particle and a smooth flat surface and

by an analytical model that was developed for the same system.110 Similar results

were found from application of the surface element integration (SEI) technique,17 de-

scribed in Sec. 2.6, to rough (rippled) surfaces18 and smooth particles interacting

with collectors patterned with hemispherical59,60,88 and cylindrical88 pillars and pits.

In all cases, a decrease in the repulsive particle-surface interaction energy barrier was

attributed to surface roughness (because part of the surface is further away from the

particle), which should correspond to larger deposition rates than predicted by the

DLVO theory for smooth surfaces.88
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In this section, the combined effect of topographical and electrostatic surface het-

erogeneity is examined by extending the applicability of the GSI technique38,39 to a

nano-pillared surface for which the surface potential on the top of the pillars differs

from the potential of the underlying surface. The physical system and model formu-

lation are described in Sec. 3.1.2. The choice of an appropriate surface discretization

scheme is described in Sec. 3.1.3. In Sec. 3.1.4, interaction energies and forces are

presented for particles interacting with surfaces covered with ordered arrays of pillars.

The particle size and pillar height, spacing, and surface potential are varied. In Sec.

3.1.5, the computations are extended to surfaces with randomly distributed pillars

and spatially varying potential, which are idealized models of surfaces that could be

fabricated by the deposition of cationic patches onto pillared surfaces. A new model

based on energy- and force-averaging is introduced as a simple method to compute

the mean interaction energy or force between the heterogeneous surfaces. Conclusions

are presented in Sec. 3.1.6.

3.1.2 Description of the model.

The model system is schematically illustrated in Fig. 3.1. A negatively-charged

particle interacts with a heterogeneous substrate, which is patterned with nano-pillars

of varying height (hp), diameter (dp), and electrostatic potential. The distance of

closest approach between the sphere and the top of the pillars is D, while h represents

the local separation distance (normal to the plane of the substrate) between the

sphere’s surface and either a pillar or the underlying portion of the surface between

the pillars. For surface configurations in which the nano-pillars are arranged in an

ordered fashion, the center-to-center distance between pillars is Lp. The ordered

configuration is considered ‘centered’ (c) if a pillar or patch corresponds to the surface

areal element located directly below the sphere’s center. The configuration is referred
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to as ‘not-centered’ (nc) if the surface element below the sphere’s center is halfway

between pillars.

Figure 3.1. Schematic diagram of a spherical particle of radius a interacting with
a topographically heterogeneous surface. The nano-pillars of diameter dp and height
hp are separated by a center-to-center distance of Lp. The local separation distance
between the sphere and the surface element vertically below it is h(x, y), and D is the
distance of closest approach between the sphere and the plane defined by the tops
of the pillars. Areal elements on the particle and on the heterogeneous surface are
indicated by dA and dS respectively. The electrostatic zone of influence (ZOI) is also
indicated.

For the computations of the forces and energies, the spherical particle is located at

a fixed separation distance D from the collector. The electrostatic ‘zone of influence’

(ZOI), defined as the area of the surface for which the interaction per unit area with

the particle is significant,38 is indicated schematically in Fig. 3.1. As described in

Chapter 1, the radius of the ZOI (RZOI)
81,103 is an effective length scale over which

variations in the local patch density are significant. It scales to first order as39

RZOI ∼
√
4κ−1a (3.1)

for a particle in contact with (or very close to) the surface. The size of the ZOI is

also found to be an important factor affecting the interactions between colloidal par-
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ticles and nano-pillared, electrostatically heterogeneous surfaces and can be used to

characterize the local variations in surfaces with randomly distributed heterogeneity.

As noted in Sec. 2.7, particle-surface DLVO interactions are computed by imple-

menting the GSI technique. In the expressions that define the colloidal energies of

interaction, Eqs. (2.19) and (2.20), appropriate modifications are required in order to

account for surface heterogeneities. Topographical heterogeneity is incorporated into

the local separation distance h(x, y) between elements on the particle and substrate.

Chemical heterogeneity is incorporated by assigning different values of the Hamaker

constant AH , and of the particle and collector surface potentials ψp,1 and ψp,2, respec-

tively, to appropriate surface elements. In the present study, ψp,2 = ψp,2(x, y) for the

heterogeneous substrate, while ψp,1 is independent of position because the particle is

assumed to have a uniform surface potential. A range of surface potentials is used

in the results that follow. The Hamaker constant is taken to be AH = 5 × 10−21 J,

which is representative of silica-silica interactions in aqueous solution.

3.1.3 Surface discretization scheme.

The size of the grid elements in the GSI technique is chosen to provide accu-

racy and efficiency for extended calculations. To preserve the local nature of the

interactions, the elemental areas on the surface should be no larger than the size of

the heterogeneity and may need to be smaller to provide sufficient resolution. Con-

versely, a surface discretization that includes extremely small grid elements increases

the computational cost of the simulations and may not provide a significant benefit

over direct numerical solution of the Poisson-Boltzmann equation for the particular

surface and geometry.

As an illustration of convergence, a heterogeneous surface is discretized by four

different grids. In each discretization scheme, the circular patches of 10 nm diameter

are approximated by different numbers of square grid elements, and the grids are
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(a) (b)

Figure 3.2. Schematic of the discretization scheme ‘Grid 13’. (a) No correction
factors. (b) Factors added to each grid element. Grid elements shaded with distinct
patterns have different weighting factors.

named by the number of squares that represent a patch. Most simply, one patch on

the surface could be modeled by one square grid element whose length equals the

patch diameter. The respective force or energy computed for that element should

be multiplied by the factor π/4 to account for the difference in area between the

inscribed circular patch and the square grid element. Similarly, finer discretization

schemes are improved by the inclusion of correction factors such that the error due

to approximating a circle is minimized.

For example, in the discretization scheme Grid 13, the area of the circular patch

is approximated by 13 grid elements, as shown in Fig. 3.2(a), and the particle-

patch interactions result from the summation of the interactions with each of these

elements. A more accurate approximation results from incorporating each of the 21

shaded squares in Fig. 3.2(b). To remove the error introduced from an inaccurate

approximation of the area of a patch, the circle can be inscribed in a square whose

length equals the patch diameter, and the areal contributions of each grid element

can be corrected with appropriate weighting factors.

A heterogeneous surface patterned with 10 nm-diameter patches was discretized

into several grids, and the DLVO interaction between a spherical particle and this sur-

face were computed by implementing the GSI technique to test convergence. Shown in
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Fig. 3.3(a) is the dimensionless electrostatic force (FEDLκ
−1/(kBT )) acting on a 2 µm

diameter particle interacting with an electrostatically heterogeneous but flat surface

as a function of the dimensionless particle-surface separation distance, κD. Simi-

larly, shown in Fig. 3.3(b) is the dimensionless total energy of interaction (U/(kBT ))

between a 10 µm diameter particle and a heterogeneous, pillared surface vs. κD.

For both the flat and the pillared surfaces, the results from Grids 1 and 13 with

the correction factors are indistinguishable. As each grid incorporates the exact area

of the circular patch, this agreement indicates convergence, and the coarse grid with

one element per patch is sufficiently accurate in this instance. Other grid sizes that

model the patch with an integer number of squares yield inaccurate results because of

the error in approximating the area of a circular patch, especially for smaller particle-

surface separation distances where the interactions are most sensitive to the relevant

length scales. In general, the size of the surface element must be much smaller than

the ZOI to incorporate the local heterogeneities accurately, dp/2 � RZOI ∼
√
4κ−1a .

Similar convergence studies were performed for the other cases considered in the

remainder of this work, and the presented results were obtained using the coarsest

grid that provides accurate results. For each grid element containing a circular patch,

the interactions with the remaining portion of that element outside the circular patch

were computed as interactions with the underlying (flat) surface. If the length scale

of the heterogeneity is significantly larger than 10 nm or not small relative to RZOI,

a finer grid is used such that each patch or pillar is the composite of at least 4 areal

elements.

In a recent study,88 surfaces patterned with cylindrical or hemispherical nano-

asperities were modeled by a mesh composed of grid elements of 10 nm length, and

it was noted that smaller grid elements could yield even more accurate results. The

contribution from each grid element was not corrected by a geometric factor, so the

results have some grid-dependence, as the area of the nominally circular surface of
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Figure 3.3. Electrostatic force and total energy for a spherical particle interacting
with a heterogeneous surface for κ−1 = 5 nm and AH = 5 × 10−21 J. The absolute
temperature is T = 298.15 K. The heterogeneities are located on the surface in an
ordered-centered configuration. (a) Dimensionless electrostatic force for a patchy
surface (hp = 0 nm) for dp = 10 nm, Lp = 20 nm, ψsphere = ψsurface = −25 mV, and
ψpatches = 50 mV. (b) Total energy of interaction vs. κD for a nano-pillared surface
with hp = 20 nm, dp = 50 nm, Lp = 100 nm, ψsurface = ψpillars = −50 mV, and
ψsphere = −25 mV.
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a pillar depends on the number of square grid elements used to represent it. This

dependence becomes small as the number of elements per cylinder increases, and a

hemispherical asperity is not easily modeled with a coarse grid and a correction factor,

which explains the comparatively large number of elements used in that study.

3.1.4 Interaction energy between a particle and heterogeneous surface.

3.1.4.0.1 Effect of pillar height on particle-surface interactions. The re-

sults in this subsection are for the interactions between 2a = 2µm diameter particles

and surfaces patterned with nano-protrusions (“pillars”) in a centered configuration.

The spherical particle (ψsphere) and the underlying surface (ψsurface) between the pil-

lars are assigned the same electrostatic potential, which is typically different from

that of the pillar tops (ψpillars). For surfaces patterned with nano-pillars in a cen-

tered configuration, the total energy of interaction as a function of the normalized

particle-surface separation distance κD is shown in Fig. 3.4(a) for the surface poten-

tials ψsphere = ψsurface = −27 mV and ψpillars = 27 mV. Increasing the pillar height

hp reduces the potential energy barrier, which would favor particle adhesion on the

surface. For fixed D, it is seen in Fig. 3.4(b) that increasing hp decreases the vdW

attraction between the sphere and heterogeneous surface. The pillars force the par-

ticle further away from the underlying surface (increasing h for the regions between

the pillars), which decreases the contribution of these regions to the vdW attraction.

The EDL energy barrier is greatly reduced by the addition of the nano-pillars,

which in this case are assigned an electrostatic surface potential of opposite sign to

that of the spherical particle. In particular, and as shown in Fig. 3.4(c), the energy

barrier observed for a flat surface is eliminated when the pillar height is increased to

10 nm. The particle-surface interactions are increasingly dominated by particle-pillar

interactions as hp is increased, while the influence of the regions of the surface without

pillars is almost negligible because UEDL decays strongly over a distance D ≈ 2κ−1.
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Figure 3.4. Interaction between a spherical particle of radius a = 1µm and a
centered, nano-pillared surface with dp = 10 nm, Lp = 20 nm, and varied hp for
ψsphere = ψsurface = −27 mV, ψpillars = 27 mV, κ−1 = 5nm, and AH = 5 × 10−21 J.
The fraction of the surface area covered by pillars is Θ = 0.25. (a) Total potential
energy U vs. κD. (b) VdW energy vs. κD. (c) EDL energy vs. κD.
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For the system parameters considered, i.e., particle and pillar surface potentials of

opposite sign, the interactions between a particle and a smooth, homogeneous surface

with the same potential as the pillars are attractive. The particle-pillar interactions

therefore decrease the energy barrier to adhesion because the pillars limit the mini-

mum separation distance between the particle and the repulsive underlying surface.

The reduction in the total potential energy barrier with increasing hp in Fig. 3.4(a)

is thus due to the reduction in the EDL energy barrier, which outweighs the decrease

in the vdW attraction.

The total energy of interaction as a function of the dimensionless distance κD

for this system is shown in Fig. 3.5(a) for ψpillars = 54 mV, which corresponds to

a stronger attraction between the tops of the pillars and the particle. These results

qualitatively resemble those shown for ψpillars = 27 mV, as a decrease in the total

energy barrier is observed when the surface is patterned with nano-pillars with an

opposite potential to that of an interacting spherical particle. In Fig. 3.5(b), the

contributions of the EDL and the vdW energies are plotted separately as a function

of the pillar height for fixed D = 5nm. For κ−1 = 5 nm, the strong decay of U with

increasing hp is due to a strong decay of UEDL. The decrease of UvdW with increasing

hp has a much less significant influence on the total particle-surface interactions.

For κ−1 = 2 nm, the decrease in both U and UEDL with hp is much less pronounced

than for κ−1 = 5nm because the magnitude of the EDL interactions is smaller for

smaller κ−1. Furthermore, for hpκ � 1 the EDL interactions are dominated by

interactions between the particle and the tops of the pillars that are in the ZOI, as

the interactions with the regions of the surface between the pillars are negligible.

Because RZOI ∝ κ−1/2, there are fewer pillars in the ZOI for smaller κ−1, which

reinforces the diminished decrease in U and UEDL with hp. The decrease in U with

increasing hp is not monotonic for κ−1 = 2 nm, as U vs. hp has a shallow well with a

minimum that corresponds to hp = 10 nm. The appearance of this well indicates that
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Figure 3.5. Potential energy of interaction between a 2a = 2µm spherical particle
and a nano-pillared surface with Θ = 0.25, dp = 10 nm, Lp = 20 nm, ψsphere =
ψsurface = −27 mV, and ψpillars = 54 mV. (a) U vs. κD for a centered configuration
with varying hp. (b) U vs. hp/D for D = 5 nm. (c) U vs. κD for different hp and
surface configurations. (d) U vs. κD for different hp and centered and not-centered
surface configurations for dp = 20 nm and Lp = 160 nm.
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the competing effects of the attractive vdW forces are not always negligible, though

they can be controlled by tuning the relevant parameters.

In all cases shown, U is essentially independent of the pillar height for hp ≥ 30

nm. For sufficiently large hp, therefore, the overall particle-surface interactions are

dominated by particle-pillar interactions because the distance between the particle

and the flat portions of the surface is relatively large. Moreover, the significant decay

in U as the pillar height is increased from hp = 0 nm to hp = 1 nm indicates that

the addition of relatively short pillars or patches that protrude slightly above the

surrounding surface can be sufficient to change the energetic balance of the system

and possibly lead to particle deposition even if a flat surface is significantly repulsive.

This strong influence of surface topography is illustrated, for example, in recent ex-

periments involving the deposition of 1µm silica particles from a flowing suspension

onto heterogeneous, patchy surfaces. For 10 nm cationic patches that lie flat on the

surface, there is a nonzero adhesion threshold, indicating that particles are captured

by groups of several patches that create locally-attractive regions on the surface.37

With 10 nm surface-immobilized nanoparticles that have a comparable charge to the

patches but protrude above the underlying surface, the adhesion threshold vanishes,

indicating that one nanoparticle is sufficient to capture a microparticle.126

3.1.4.0.2 Centered vs. Not-Centered Configurations. In the results shown

in Figs. 3.5(a)-(b), the topographical heterogeneities were distributed on the surface

in an ordered fashion, where the center-to-center distance between two pillars is fixed

at 20 nm, the diameter of each pillar is 10 nm, and a pillar lies directly below the

sphere’s center. The results predicted using this centered surface configuration can be

compared to those obtained using the not-centered surface configuration, for which

the surface areal element located below the sphere’s center is halfway between pillars.

In Fig. 3.5(c), U is plotted against κD for the same parameters as in Fig. 3.5(a) for

a flat surface and for hp = 5nm for both centered and not-centered configurations.
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For these small and closely-spaced pillars and κ−1 = 5nm, both configurations yield

nearly identical results that are indistinguishable on the plot. Results presented

by Martines et al.88 for pillars with the same potential as the flat surface show

a difference between centered and not-centered configurations only for large pillar

spacings (Lp = 300 nm), small separation distances (D/a < 8 × 10−4), and small

Debye lengths (κ−1 ≈ 1 nm). As seen in Fig. 3.5(d), the difference between the

centered and not-centered configuration is much more pronounced in the present

system for the parameters Lp = 160 nm, κ−1 = 1nm, dp = 20 nm, and hp = 0 nm and

10 nm, which is consistent with the results of Martines et al.88

Because the interaction energy for on-center interactions is significantly lower than

for off-center interactions, lateral forces induced by the heterogeneity will bias the

particles position toward on-center interactions, and off-center configurations would

be very unlikely. Computations of the expected particle-surface interaction energy

for such ordered surfaces should therefore use a weighted average of lateral positions.

This consideration of lateral forces is particularly significant for surfaces with large

asperities and under conditions of no net suspension flow. For heterogeneous features

that are small with respect to the zone of influence and randomly distributed on

the surface, the effects of the lateral forces are less pronounced. If the particles are

transported over the (randomly) heterogeneous surface by hydrodynamic interactions

in flow, the influence of the lateral forces is diminished, and the particles will more

evenly sample the patchy collector.

3.1.4.0.3 Effect of particle size. Particle-surface interactions are determined

not only by the height and potential of the pillars but also by the spatial extent of

the ZOI, which increases in size as a increases, as seen from Eq. (3.1). Shown in Fig.

3.6 is U vs. κD for particles of varying sizes interacting with surfaces with different

hp. As shown in Fig. 3.6(a), particles with a = 0.5µm and a = 5µm are more

strongly attracted to the patterned surface with hp = 1nm than to the flat surface,
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Figure 3.6. Potential energy for particles of varying size interacting with nano-
pillared surfaces with dp = 10 nm ordered in a centered configuration with Lp = 20
nm, AH = 5 × 10−21 J, ψsphere = ψsurface = −27 mV and ψpillars = 54 mV. (a) U vs.
κD for varying a and hp. U vs. κD for (b) hp = 5 nm and (c) hp = 1 nm.
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which is consistent with results presented earlier. The reduction of the energy barrier

relative to its maximum value for flat surfaces is about 60% for both particle sizes.

Shown in Figs. 3.6(b) and 3.6(c) is U vs. κD with 0.5µm ≤ a ≤ 10 µm for surfaces

patterned with pillars of heights hp = 5nm and hp = 1nm, respectively. For taller

pillars (hp = 5nm), the repulsive interactions between the sphere and underlying

surface between the pillars are less significant than interactions with the top of the

pillars. Larger particles are therefore more strongly attracted to the surface because

of their larger ZOI and a larger number of interacting pillars. As shown in Fig.

3.6(c), surfaces with shorter pillars attract larger particles more strongly at particle-

surface separation distances D such that κD ≤ 1 or κD ≥ 3.5. For intermediate

values of D (1 ≤ κD ≤ 3.5), however, the surface is more attractive towards smaller

particles. For shorter pillars, the attractive sphere-pillar interactions are opposed

by significant, repulsive interactions with the underlying surface. If this repulsive

interaction dominates, smaller particles are more strongly attracted to the surface

because the smaller ZOI includes fewer flat surface areal elements. Each competing

effect dominates the interactions for different D, as also seen in Fig. 3.6(a).

3.1.4.0.4 Interactions with both topographical and chemical heterogene-

ity. The GSI technique can also be applied to surfaces with chemical heterogeneity

that is independent of topographical heterogeneity. Consider a surface with square

nanopillars122 of width dp = 20 nm in an ordered array with Lp = 40 nm (correspond-

ing to a surface coverage Θpillars = 0.253) and cationic patches of diameter 10 nm

that are randomly distributed on the tops of the pillars and on the surface between

the pillars to yield a surface coverage of Θpatches = 0.25. These surfaces are highly

idealized versions of surfaces that could be fabricated by depositing polyelectrolyte

patches onto surfaces with topographical heterogeneity. While such surfaces might be

used to control particle-surface interactions in separations and sensing applications,

the idealized surfaces are introduced here primarily to illustrate the extension of the
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Figure 3.7. Potential energy of interaction U vs. κD between 2a = 4µm particles
and ordered surfaces with centered pillars and randomly located patches for dp = 20
nm, Lp = 40 nm, dpatch = 10 nm, and varying hp. Other parameters are Θpillars =
0.253, Θpatches = 0.25, κ−1 = 4 nm, AH = 5×10−21 J, ψsphere = ψsurface = ψpillars = −25
mV, and ψpatch = 50 mV.

GSI approach to surfaces with both types of heterogeneity. Shown in Fig. 3.7 is

U vs. κD for a sphere of radius a = 2µm interacting with a topographically and

electrostatically heterogeneous surface. It is seen that increasing hp reduces the en-

ergy barrier even though the sphere-pillar interactions are repulsive. This reduction

occurs partly from the interaction of the particle with the patches on the tops of the

pillars, the competing effects of vdW interactions, and because the underlying surface

is net-repulsive.

3.1.5 Force and energy-averaging model for heterogeneous surfaces with

randomly distributed patches.

Computational38,39 and experimental37,81,103,126 studies have shown that unfavor-

able surfaces with electrostatic heterogeneity at the 10 nm length scale are more

attractive towards the adhesion of colloidal particles than would be expected from

uniform surfaces with the same net charge. While much of this behavior can be at-

tributed to spatial fluctuations in the local density of patches, which create ‘hot-spots’
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that adhere particles on a net repulsive surface, computations38 have shown that the

patchy surfaces are still more attractive overall than predicted from the classical

DLVO theory that treats the surface charge as uniformly smeared out over the sur-

face. This classical DLVO approach, which is labeled the “mean field” (MF) approach

in what follows, proceeds by averaging the surface potential over the heterogeneous

collector,

ψavg = Θψpatch + (1−Θ)ψsurface , (3.2)

where Θ is the fraction of the surface covered by patches or pillars, and then comput-

ing the mean-field interaction potential UMF
EDL or force FMF

EDL using the average potential

ψavg. The GSI technique is applied, and the potential of each grid element on the

heterogeneous surface is equal to the constant ψavg in place of ψp,2(x, y) in Eq. (2.19).

The computed EDL forces on a spherical particle with a = 0.5µm located at a

fixed separation distance D = 5 nm from a flat, electrostatically patchy surface are

shown in Fig. 3.8(a) for varying κ−1. Results are shown for the mean-field model

described above and for the GSI technique averaged over 1500 surfaces with patch

locations specified “randomly” to generate Poisson statistics. The fluctuation in the

number of patches in the ZOI as the particle samples different locations makes some

surface regions more attractive than the average, as expected. More significantly,

the mean force computed from the GSI technique is considerably more attractive (or

less repulsive) than that predicted from the MF model because of the nonlinearity

inherent to Eq. (2.19), which does not allow a simple averaging of ψ over the surface.

Indeed, Song et al.107 assigned a nominal surface potential ψnom to a heterogeneous

surface to calculate the EDL interaction energy, which they defined as the potential of

a homogeneous surface that would produce the same EDL interaction with a particle

as the heterogeneous surface (at an identical separation distance). They recognized

that ψnom is not intended to describe the actual potential of the heterogeneously

charged surface. Shown in Figs. 3.9(a) and 3.9(b) are UEDL vs. κD calculated from
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the average of the GSI technique applied to many random surfaces and the nominal

surface potential ψnom that yields the same value of UEDL at each D, respectively.

Unfortunately, ψnom varies with separation distance D and even changes sign, which

greatly limits its applicability for computing EDL interactions between particles and

heterogeneous surfaces. For large particle-surface separation distances, the nominal

surface potential converges to the average surface potential, ψavg = −10.27 mV, com-

puted with the appropriate weighting factor Θ′ for the system parameters indicated

in Fig. 3.9(b).

Furthermore, as seen in Fig. 3.8(a), there is very strong agreement between the

average of the GSI calculations for many randomly heterogeneous surfaces and sur-

faces with the same Θ but with the patches distributed in an ordered manner with

constant Lp. This agreement suggests that the total interaction between the particle

and surface could be determined much more accurately from a linear combination

(with a suitable weighting factor) of the interactions between the particle and the

repulsive and attractive elements of the surface rather than from interactions with a

uniform surface bearing an average (ψavg) or even nominal (ψnom) potential.

An effective method of calculating DLVO interactions between a particle and a

heterogeneous surface with (ordered or random) nanoscale variations in charge or

topography begins with the GSI technique expressed in Eq. (2.23) for some local

interaction P (h(x, y)) (force or energy) between grid elements on the particle and

surface. Summing over the grid elements on the (uniform) particle, let Pi be the

interaction between one of the N grid elements on the heterogeneous surface and the

entire particle, such that the total interaction PGSI is

PGSI =
N
∑

i=1

Pi. (3.3)

If a collector grid element corresponds to a patch (the procedure is analogous for pillars

even if the potential of the top surface is not favorable), Pi = P att
i . If the collector
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Figure 3.8. Comparison of direct GSI computations with simplified MF, GSIUA,
and GSIFA models for 2a = 1µm particles interacting with flat, patchy surfaces
with dp = 10 nm, Θ = 0.25, and ψsphere = ψsurface = −25 mV, and ψpatch = 50
mV. GSIhet represents the average of calculations for 1500 locations on surfaces with
randomly located patches. (a) FEDL vs. κD for D = 5 nm. Error bars represent one
standard deviation. (b) UEDL vs. κD for κ−1 = 4 nm. Computations for the ordered
centered configuration (dash-dotted line) coincide perfectly with predictions of the
GSIUA model (dashed line). Both dotted lines (not labeled) denote GSIUA averages
± 1.5 standard deviations of calculations for ∼ 200 surfaces with randomly located
heterogeneity. Results obtained by the MF model are denoted by the solid line.
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Figure 3.9. (a) GSIUA results for UEDL vs. κD for a 2a = 1µm particle interacting
with a flat surface with Θ′ = 0.25 (π/4), κ−1 = 2nm, ψsphere = ψsurface = −25 mV, and
ψpatch = 50 mV. (b) Nominal surface potential ψnom vs. κD for the same parameters
as in (a).
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grid element corresponds to a repulsive region without heterogeneity, Pi = P rep
i .

The expected value of the interaction between surface element i and the particle is

therefore

Pi = prob(i = patch)P att
i + prob(i = no patch)P rep

i

= ΘP att
i + (1−Θ)P rep

i , (3.4)

where it has been implicitly assumed that each patch corresponds to one grid element.

In practice, a geometrical factor is introduced to account for the circular patch, which

requires replacing Θ with Θ′, where Θ′ = GΘ for some geometrical factor G. (For a

circular patch modeled by one square grid element, G = π/4.)

Substituting Eq. (3.4) into Eq. (3.3) yields

PGSI =
N
∑

i=1

{

Θ′P att
i + (1−Θ′)P rep

i

}

= Θ′

N
∑

i=1

P att
i + (1−Θ′)

N
∑

i=1

P rep
i

= Θ′P att + (1−Θ′)P rep, (3.5)

where P att is the interaction (force or energy) between a particle and a homogeneous

surface with the same potential as the patches (or pillar tops) and P rep is the inter-

action between a particle and a homogeneous surface with the same potential as the

(repulsive) surface between the patches or pillars. At a given separation distance, the

average interaction between a particle and a heterogeneous surface with randomly-

distributed, nanoscale charge heterogeneity can therefore be determined from Eq.

(3.5) for any Θ′. This approach requires only two GSI computations: one for a ho-

mogeneous surface with Θ = 0 and one for a homogeneous surface with Θ = 1. Eq.

(3.5) is, therefore, a powerful result.
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Equation (3.5) can be applied to surfaces with patches of different Hamaker con-

stant or for surfaces with nano-pillars or nano-pits that replace the patches, and Θ′

is the fraction of the surface covered by patches or pillars. When applied to pillared

surfaces, the GSI computation of P att is performed with D = Dp , the separation

distance between the particle and the plane determined by the tops of the pillars,

and the computation of P rep is performed with D = Ds , the separation distance be-

tween the particle and the underlying surface, such that Ds −Dp = hp. The method

based on Eq. (3.5) is termed the force-averaging (GSIFA) model if P = FEDL and the

energy-averaging (GSIUA) if P = UEDL. This approach is based on a linear combina-

tion of forces or energies computed between the particle and homogeneous surfaces

corresponding to Θ = 0 and Θ = 1, rather than a linear combination of surface po-

tentials that is subsequently used to compute the EDL force or energy. By contrast,

net surface potentials determined for 0 < Θ < 1 correspond more closely to ψavg and

cannot be used directly to compute accurate DLVO interactions. For example, it has

been noted that the apparent zeta potential of heterogeneous particles or heteroge-

neous collecting surfaces determined from electrophoresis115,116 or streaming potential

measurements9 does not yield accurate predictions of colloidal forces or stability.

For systems with well-defined heterogeneity, such as silica particle deposition onto

surfaces with adsorbed polyelectrolyte patches,81 it is typically straightforward to

determine the surface potentials corresponding to Θ = 0 and Θ = 1. The poten-

tial corresponding to Θ = 0 can be determined from zeta potential or streaming

potential measurements for the bare surface with no heterogeneity. The potential

corresponding to Θ = 1 can be determined by repeating this measurement for a sur-

face saturated with patches. The determination of the relevant surface potentials

for systems with heterogeneity that is not as well characterized or controlled, such

as inherently rough surfaces for which the true surface potential may be obscured

in measurements, requires the coupling of the measurements with a model for the
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apparent surface potential of a surface with a particular roughness distribution to

elucidate the true surface potential.

The GSIFA and GSIUA models are entirely different than the patchwise model78,79,107

that was previously applied to determine particle deposition rates on heterogeneous

surfaces with large patches. In that approach, the macroscopic patches of equal

potential are treated as homogeneous surfaces, and the particle deposition rate is

found from a linear combination of the deposition rates on homogeneous surfaces

corresponding to the favorable and unfavorable regions of the patchy surface. De-

position rates predicted by the patch model did not agree with experimental rates40

determined for systems with surface heterogeneities much smaller than the interact-

ing spherical particle. As seen from Fig. 3.8, the GSIFA and GSIUA models yield

results that are indistinguishable from the average of individual GSI computations

performed for numerous surfaces with randomly distributed patches and have a much

lower computational cost.

The GSI, GSIUA, and MF models are also applied to the computation of the

electrostatic energy of interaction between a 1µm diameter particle and a surface

patterned with flat patches at a fixed Debye length of κ−1 = 4 nm, with results

presented in Fig. 3.8(b). The profile based on the average of GSI calculations for

many different surface locations converges to that predicted by the GSIUA model

as the number of surfaces (or surface locations) is increased. The results from the

simple MF model based on the average surface potential ψavg = −10.27 mV clearly

provide little, if any, useful information about UEDL for κD < 2. The actual average

interaction (GSIUA) has an energy barrier nearly 60 kBT lower, indicating that the

surface is considerably less repulsive on average than predicted by the MF model.

Furthermore, as indicated by the envelope of ±1.5 standard deviations about the

mean, there are surface regions that are much less repulsive than the average character

of the surface.
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Figure 3.10. Comparison of different models to calculate average electrostatic forces
FEDL between particles of varying sizes and surfaces with randomly distributed nano-
pillars for dp = 10 nm, hp = 0 nm, Θ = 0.25, ψsphere = ψsurface = −54 mV, and
ψpatches = 108 mV.

For particles of varying sizes interacting with heterogeneous surfaces, a similar

comparison of the models was performed for the computation of the electrostatic

forces at a fixed Debye length of κ−1 = 4 nm, and results are shown in Fig. 3.10. For

all particle sizes, the GSIUA model yields results that are in excellent agreement with

the average of forces computed by implementing the GSI technique for an ordered

surface and for many surfaces with randomly located heterogeneities.

3.1.5.1 The GSIUA and GSIFA models extended to nano-pillared surfaces.

The GSIFA model can also be used to compute electrostatic forces between a par-

ticle and a nano-pillared surface. In Fig. 3.11(a) the electrostatic force on a particle

with a = 0.5µm is plotted vs. κD for surfaces with short pillars. The agreement

between the results predicted by the force-averaging model and the average of GSI

computations performed for about 1500 randomly patterned surfaces is excellent. For
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Figure 3.11. Comparison of different models to calculate average interactions be-
tween a particle with a = 0.5µm and surfaces with randomly distributed nano-pillars
for dp = 10 nm, Θ = 0.25, ψsphere = ψsurface = −25 mV, and ψpatches = 50 mV.
(a) FEDL vs. κD for fixed D = 5 nm and various hp. Results are shown from the
GSIFA model (curves) and from averaging 1500 individual GSI calculations (symbols)
for different positions on surfaces with randomly distributed pillars. The error bars
represent one standard deviation. (b) UEDL vs. κD for hp = 0 nm (dash-dotted line),
0.5 nm (dashed line), and 1 nm (solid line). Both dotted lines denote GSIUA aver-
ages ± 1.5 standard deviations of calculations for 200 surfaces with randomly located
heterogeneity for hp = 1nm.
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a range of κ−1, FEDL is significantly more attractive with the inclusion of pillars as

short as 1 nm.

As seen in Fig. 3.11(a), the addition of pillars that extend only a nanometer

above the surface is sufficient to transform a surface with reasonably strong repulsion

towards particles into one that is attractive on average. This result has significant

implications for colloidal deposition onto heterogeneous surfaces with adsorbed poly-

electrolytes.9,37,81,103 Not only are the surfaces more attractive than expected from

a MF model, but fluctuations in the local patch density create locally attractive re-

gions on net-repulsive surfaces (as noted previously), and polyelectrolyte patches that

extend only a fraction of a nanometer above the surface create an even stronger at-

traction than anticipated if the surface is considered flat. Significant deposition of

colloidal particles could therefore occur even for surfaces predicted to be repulsive,

using refined techniques to account for electrostatic heterogeneity (e.g., GSI38,39), if

nanoscale variations in the topography of the surface are not included.

Plotted in Fig. 3.11(b) is U vs. κD with κ−1 = 4nm computed from the GSIUA

model and from the mean of 200 heterogeneous surfaces with randomly distributed

patches. For these parameters, an increase from hp = 0 to hp = 0.5 nm decreases the

mean energy barrier by ∼ 17 kBT , and an increase to hp = 1nm reduces the barrier

by ∼ 26 kBT .

In Fig. 3.12(a), UEDL vs. D/hp is plotted for various κ−1. The energy bar-

rier increases with increasing κ−1 and is reached at a larger D. The dependence of

max(UEDL) on κ−1 is shown in Fig. 3.12(b) for varying hp. The energy barrier in-

creases with κ−1 for hp > 0. The energy barrier is smaller for larger hp because the

attractive sphere-pillar interactions become more significant as hp is increased. By

contrast, the energy barrier decreases slightly with increasing κ−1 when the interact-

ing surface is patterned with flat patches. Moreover, the magnitude of the variations

for patchy collectors is only ∼ 2.5 kBT for 0 nm < κ−1 < 20 nm, while a much greater
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Figure 3.12. GSIUA results for EDL energy for a particle with a = 0.5µm interacting
with a pillared surface with dp = 10 nm, Θ = 0.25, ψsphere = ψsurface = −25 mV, and
ψpatch = 50 mV. (a) UEDL vs. κD for hp = 0.5 nm and several κ−1. (b) max(UEDL)
vs. κ−1/a for several hp.
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change is observed for nano-pillared surfaces (∼ 37.5kBT , in average) with pillars that

are only a fraction of a nanometer high. For flat surfaces, both the attractive and

repulsive components of the surface are similarly influenced by a variation of the De-

bye length, so that the overall variation of the electrostatic energy barrier is minimal.

The results in Fig. 3.12(b) further suggest that small variations in topography can

be sufficient to remove large EDL barriers to colloidal deposition on patchy surfaces.

3.1.6 Conclusion.

The GSI technique has been extended and used to compute the force and poten-

tial energy of interaction between a microsphere and patterned surfaces with both

chemical and topographical variations at the nanoscale. The chemical heterogeneity

is created by 10 nm-diameter patches distributed at random on the surface, and the

patches are assigned a different potential than that of the underlying surface. The

topographical heterogeneity arises from nanopillars of varying height, diameter, and

arrangement. This nano-topography decreases the size of the potential energy barrier

for unfavorable surfaces because the pillars limit the minimum separation distance

between the interacting surfaces, and this effect is enhanced if the surface potential

is not uniform. The topography has a significant influence on the interaction even

for very short pillars, as a strongly unfavorable surface with chemically-heterogeneous

patches can become net-attractive if the patches extend O(1 nm) above the underlying

surface. This result indicates that even refined techniques for electrostatically hetero-

geneous surfaces may underpredict colloidal deposition unless nanoscale variations in

the surface topography are included.

A novel force- and energy- averaging model has also been introduced as a simple

technique to compute the net interaction force or energy between a colloidal parti-

cle and a patchy heterogeneous surface. The results are identical to the arithmetic

mean of many GSI computations for different locations on the patchy surface, or
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equivalently, of many randomly heterogeneous surfaces, but require only two GSI

computations for homogeneous surfaces: one with the potential of the patches and

one with the potential of the underlying surface. This averaging technique is not

restricted to the GSI approach but can also be applied with the SEI technique or

the Derjaguin approximation used to compute the interactions between homogeneous

surfaces. The net interactions with heterogeneous surfaces are significantly more at-

tractive than estimated from a simple mean-field approach with an average surface

potential. The GSIFA and GSIUA models are particularly relevant for computing in-

teractions involved in colloidal deposition with adsorbed polyelectrolyte patches, as

the apparent zeta potential9,115 of heterogeneous particles or collecting surfaces does

not yield accurate predictions of colloidal forces or stability, because the net surface

potential corresponds more closely to the average (arithmetic mean) potential ψavg

in a mean-field approach. These results also help explain the increased attraction

towards colloidal particles (relative to standard DLVO calculations) of net-repulsive,

patchy surfaces with randomly distributed, attractive nanoelements.

3.2 Mean and variance of DLVO interaction energies and

particle adhesion thresholds. A statistically-based model.

3.2.1 Introduction.

Deposition morphologies and the dynamic adhesion of colloidal particles,2,7, 9, 72,81, 103

bacteria,31,102 and cells57,75 on heterogeneous substrates are typically controlled by

chemical and topographical surface features. Estimates of particle deposition rates on

heterogeneous surfaces based on a linear patchwise model70,107 are accurate for patches

much larger than the depositing colloidal particles. For surface heterogeneities much

smaller than the colloidal particles, however, the predictions of the patchwise model

do not agree with experimentally determined deposition rates,40 as some deposition

is always predicted if any region of the surface is favorable. By contrast, in exper-
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iments with colloidal particles flowing over net-unfavorable surfaces with adsorbed

polyelectrolyte chains or patches of O(10 nm),9,37,81 deposition is observed only if the

areal fraction of the surface covered by the patches, Θ, exceeds a nonzero adhesion

threshold, Θcrit. This nonzero threshold indicates that, for patches much smaller than

the particles, a group of patches, creating a local “hot spot”, is required to adhere a

particle.

Recent computations based on the trajectories of individual particles have accu-

rately reproduced measured deposition rates and adhesion thresholds.37 While direct

simulations of particle motion yield experimentally-validated phase space diagrams

that delineate dynamic adhesion regimes of skipping, rolling, and arrest, this ap-

proach is computationally expensive. Many different trajectories must be generated

to ensure a statistically meaningful sample of the heterogeneity, and each point in

the trajectory of an individual particle requires the computation of DLVO interac-

tions with a particular location on a heterogeneous surface.38 There is thus a need

to predict particle interactions with nanoscale, patchy surfaces without the details

of many particle trajectories. Progress has been made through a statistically-based

model within the framework of the random sequential adsorption (RSA) approach,8,9

with the number of macro-ions that form a locally-attractive adsorption center a key

parameter of the model.

In the present section, a statistical approach is introduced as an alternative method

to quantify the effect of randomly-located surface heterogeneities on adhesion thresh-

olds and spatial fluctuations in the potential energy of interaction, which replaces

the need for lengthy computations of particle trajectories. This approach requires

no assumption of the number of patches involved in particle capture, as the presence

of locally attractive regions is determined from DLVO calculations for the patchy

surface.
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A description of the model is presented in Sec. 3.2.2, and trajectories of particles

interacting with patchy surfaces are presented in Sec. 3.2.3. In Sec. 3.2.4, collection

probability curves are constructed from the trajectories of particles flowing over the

heterogeneous collector surface. In Sec. 3.2.5, a statistical model14 is extended to

characterize spatial fluctuations in the particle-collector interaction energy, which

enables the identification of local hot spots on net-unfavorable, heterogeneous surfaces

without explicit surface construction. This statistical model is then used to determine

adhesion thresholds in Sec. 3.2.6 and applied to particle adhesion on nanopatterned

surfaces. Excellent agreement is found with the trajectory-based approach of Sec.

3.2.4. Conclusions are presented in Sec. 3.2.7.

3.2.2 Description of the model. Computational method.

Presented in Fig. 3.13(a) is a schematic diagram of the model system, which

resembles the system described in Sec. 3.1.2 and that used in experimental set-

ups.37,81,103 The flowing particles of radius a are negatively charged, and the collec-

tor substrate consists of a negatively charged flat surface patterned with positively

charged cylindrical asperities of height hp and diameter dp, located at randomly se-

lected locations. The electrostatic potentials of the spherical particle and bottom

flat surface are ψsphere = ψsurface = -25 mV, and that of the nano-heterogeneities

(“patches” or “pillars”) is ψpatch/pillar = 50 mV. The local particle-surface separation

distance is denoted by h, while D is the minimum separation distance between the

particle’s surface and either the bottom flat surface or the top of the pillars. Due to

the linear shear flow with shear rate γ̇, the particle translates in the x-direction with

a linear velocity Vx and rotates around an axis parallel to the collector surface with a

rotational velocity Ωy. The particle velocities are obtained from the mobility matrix

formulation presented in Sec. 2.8, and it is assumed that the nano-protrusions on the

collector surface have a negligible influence on the velocity field. The shear-induced
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Figure 3.13. (a) Schematic diagram of a spherical particle of radius a interacting in
shear flow with a heterogeneous surface with nano-pillars of diameter dp and height
hp. The electrostatic zone of influence (ZOI) is indicated. (b) Trajectories of 1µm
diameter particles interacting in shear flow with heterogeneous surfaces with different
hp for randomly distributed pillars. The parameters are AH = 5×10−21 J, ψpillar = 50
mV, ψsphere = ψsurface = −25 mV, and Pe = 6πµa3γ̇/kBT = 14.31, where µ ' 1 · 10−3

Pa · sec is the water viscosity at T = 298.15 K. The decrease of D/a at the secondary
minima with increasing hp is shown in the inset. For hp = 0, Brownian motion is
computed from Brownian forces (solid line) and from Brownian displacements with
UCFs (dash-dot-dot line).
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force and torque on the particle are determined from Eqs. (2.50) and the dimension-

less correction factors are given by Eqs. (2.53) and (2.54). The inertial lift force on

the particle is negligible at these low Reynolds numbers,38 so particle motion in the

z-direction normal to the collector results only from DLVO interactions and Brownian

motion. Brownian effects for the results presented in this section are incorporated

from the stochastic expression91

FBr =
kBT

a
η̂ , (3.6)

where η̂ is a random number of the normal standard distribution. The effects of

Brownian motion on trajectories of particles interacting with nanoscale heterogeneous

collectors is studied in detail in Sec. 3.3. The DLVO forces per unit area (EDL and

vdW forces) between the particle and the heterogeneous surface are obtained from

Eq. (2.24) and then incorporated into the GSI technique.

3.2.3 Particle trajectories.

In this section, the GSI technique is applied to compute trajectories as particles

translate under shear flow and interact with a topographically and electrostatically

heterogeneous surface.

For a given amount of surface charge, a model heterogeneous surface of 15µm

x 15µm in size is generated by assigning patches or pillars at randomly selected

locations. Once the collector surface is constructed, the centers of flowing particles

are initially positioned on the left edge of the collector, at randomly sampled locations

along the y-axis. The initial separation distance (D = 40 nm) is sufficiently large

that the particles must overcome an energy barrier closer to that of a net-repulsive

surface. The particle trajectories (separation distance vs. distance translated in x)

are determined by integrating dx/dt = V in time, with x ≡ (x, y, z) the position of

the particle. If the particle-surface separation distance falls below a certain threshold
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(D ≤ δ = 1nm), the particle is considered to be irreversibly adhered to the surface.

This value of the limiting distance for adhesion is chosen so that the particle adheres

close to the primary minimum (as seen, for example, in Fig. 3.16(a)). Additional

calculations with smaller δ yielded the same results. A simulation is also stopped

when a particle translates over the entire collector without adhering.

Trajectories for 1µm diameter particles flowing over a heterogeneous surface with

a fixed surface coverage of Θ = 0.12 and varying pillar heights are shown in Fig.

3.13(b). For the set of chosen parameters and surfaces with relatively tall pillars, the

flowing particles are arrested due to strong attractive interactions, either with the

first few pillars the particle encounters (hp = 5nm) or after translating an horizontal

distance of x ' 7a (hp = 2nm). For shorter pillars (hp = 0, 1 nm), however, the

particles flow over the collector without adhering.

The trajectories exhibit fluctuations independent of Brownian effects that instead

arise from variations in the number of patches in the electrostatic zone of influ-

ence (ZOI). As D/a → 0, the radius of the zone of influence at leading order is

RZOI =
√
4κ−1a.38 The dynamic behavior is therefore determined by the fluctuating

energy landscape as the particle samples the surface, which is induced by the com-

petition between repulsive interactions with the underlying surface and attractive

interactions with patches or pillars. Increasing the pillar height strengthens the at-

tractive interactions, decreasing the average particle-surface separation distance D/a

and increasing the magnitude of the profiles’ fluctuations. The decrease in D/a at

the secondary minimum (determined from the mean of U vs. D calculations at many

surface locations) with increasing hp is shown in the inset in Fig. 3.13(b). These D/a

values are in excellent agreement with the arithmetic mean of the separation distance

as particles translate with the trajectories shown in Fig. 3.13(b).
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3.2.4 Collection probability.

The collection probability can be defined as74

η =
ND

Ntot

, (3.7)

where ND is the total number of particles deposited on the electrostatically hetero-

geneous, rough surface and Ntot = 2000 is the total number of particles released.

Direct simulations of particles trajectories flowing over surfaces with randomly

located asperities are used to determine ND. Plotting η vs. Θ provides collection

probability curves that resemble particle deposition rate curves,37,71,103 but the prob-

ability curves do not contain any rate information. The particle adhesion threshold,

Θcrit, is defined as the minimum value of Θ for which the collection probability is

greater than zero and can be readily found from the collection probability curves. In

all collection probability computations shown in Figs. 3.14(a) and 3.14(b), for a given

value of Θ, the locations of the patches or pillars on the surface and the Ntot initial

particle positions are identical for different pillar heights to isolate the influence of hp

on η.

Collection probability curves for various pillar heights are shown in Fig. 3.14(a).

The adhesion threshold is lower for taller pillars, in qualitative accordance with ex-

tensive studies42,64,67,110,113 that attribute increased particle adhesion rates, or lower

overall energies of interaction, to surface roughness. As the pillar height decreases,

the collection probability curve broadens. Particle adhesion on surfaces patterned

with short pillars depends largely on whether or not the particle encounters a suffi-

ciently large, locally attractive region as it translates. A few tall pillars, however, are

shown to arrest particles effectively (e.g., the particle trajectory for hp = 5 nm in Fig.

3.13(b)).

In Fig. 3.14(b), collection probability curves are shown for varying κ−1 at constant

hp = 2 nm. The curves shift to the right and the adhesion threshold increases for
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(b)

Figure 3.14. Collection probability curves for 1µm particles interacting with het-
erogeneous surfaces for (a) varying hp and (b) varying κ−1. The parameters are
ψpillar = 50 mV, ψsurface = ψsphere = −25 mV, Pe = 14.31, and AH = 5× 10−21 J.
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larger values of κ−1. As κ−1 is increased, the ZOI is larger, and the particles experience

less localized interactions and more of the average (repulsive) surface charge. For

κ−1 = 1 nm, all particles adhere for Θ = 0.01 because the ZOI is small, corresponding

to localized EDL interactions, and a few pillars are sufficient to adhere a particle.

3.2.5 Statistical model. Energy fluctuations.

From the GSIUA
14 model, derived in Sec. 3.1.5 as a mere reformulation of the

GSI technique, the interaction energy between the particle and the heterogeneous

collector is

U =
N
∑

i=1

Ui =
N
∑

i=1

[

prob(i = patch)Uatt
i + prob(i 6= patch)U rep

i

]

. (3.8)

This equation can be applied at any location on the surface (with the probability 1

or 0 for an ordered surface). The key step in the GSIUA approach is recognizing that

the probability that an element on the collector corresponds to a patch is identical

to Θ, the fractional areal coverage of the collector by patches, and that each grid

element on the collector is indistinguishable. This is true only for patches that are

randomly distributed on the surface and small compared to the ZOI (so the analysis

cannot proceed beyond Eq. (3.8) for ordered surfaces, such as stripes). For random

surfaces,

U =
N
∑

i=1

Ui =
N
∑

i=1

[

ΘUatt
i + (1−Θ)U rep

i

]

= Θ
N
∑

i=1

Uatt
i + (1−Θ)

N
∑

i=1

U rep
i

= ΘUatt + (1−Θ)U rep
i . (3.9)

The mean particle-surface interaction can therefore be determined from a linear com-

bination of two calculations involving uniform collectors: one with the surface poten-
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tial of a patch (for Uatt) and one with the potential of the underlying surface (for

U rep).

This model can be extended to predict the statistical variation of U over the

heterogeneous collector by considering the statistical distribution of patches in the

ZOI. The average number of patches (or pillars) in the ZOI is Navg = ΘAZOI/Apatch,

where AZOI = πR2
ZOI and Apatch = πd2p/4. The number of patches in the ZOI is

assumed to be randomly distributed following a Poisson distribution to model particle

deposition experiments81,103 in which the deposition of each new isolated patch is

approximately independent of previously deposited patches. Although Θ can be small,

the number of patches is sufficiently large (Npatches,pillars > 1000) that the Poisson

distribution can be approximated by a normal distribution N ∼ (µ = σ2, σ). Within

α standard deviations about the mean, the maximum (minimum) number of patches

in the ZOI is given by

Nmax/min = Navg ± α
√

Navg , (3.10)

with Θmax/min = ΘNmax/min/Navg. The GSIUA can then be used to calculate U ± α

standard deviations by replacing Θ by Θmax/min.

For a constant value of hp, heterogeneous surfaces are generated with an appropri-

ate statistical distribution of heterogeneities, and the standard GSI technique is used

to compute U vs. D for NGSI = 1000 distinct heterogeneous surfaces with Θ = 0.15.

A large number of surfaces (or surface locations) is required to ensure that the particle

samples the statistical distribution of the patches. The arithmetic mean and standard

deviation of the interaction energy is then computed for each separation distance D

and plotted in Fig. 3.15. The mean of the NGSI calculations is indistinguishable from

the results of the simpler GSIUA model, in agreement with previous results.14 More

significantly, there is excellent agreement between the results for U ± σ determined

from the NGSI calculations at different surface locations (for each κD) and the pre-

dictions of the statistical GSIUA model with Θ replaced by Θmax/min. This simpler

75



statistical approach requires only 2 GSI calculations for homogeneous surfaces yet

provides the same information as explicit computations with the NGSI different loca-

tions on randomly heterogeneous surfaces. Furthermore, the computation of energy

fluctuations for different values of the average surface coverage Θ does not require

additional GSI energy-distance simulations. Instead, only the scaling factors Θmax

and Θmin need to be recalculated.

3.2.6 Statistical model. Adhesion thresholds.

The prediction of adhesion thresholds is of considerable importance to experi-

mental applications developed to control particle aggregation and deposition. In this

section, the statistical model of Sec. 3.2.5 is used to predict adhesion thresholds, and

excellent agreement is shown with the results of the particle trajectory simulations in

Sec. 3.2.4.

To account for the most attractive regions on the surface, corresponding to the

largest expected number of patches in the ZOI, Eq. (3.10) is applied with α = 3
√
2

to determine Nmax. The corresponding maximum surface coverage in a surface region

the size of the ZOI is

Θmax = Θ
Nmax

Navg

= Θ
(

1 + αN−1/2
avg

)

. (3.11)

The total interaction energy as a function of the distance D for Θ = Θmax is then com-

puted by applying the GSIUA model. This calculation is simply a linear combination

of interactions between the negatively charged sphere and homogeneous positively

and negatively charged surfaces with weighting factor Θmax. A representative energy-

distance profile is shown in Fig. 3.16(a). The energy barrier (based on the maximum

surface coverage Θmax) is referred to as Umax. The maximum surface coverage Θmax

is then determined for other average coverages Θ, and Umax is determined for each Θ.

These calculations simply require the interactions with homogenous surfaces (com-

76



 U

k
B
T

(a)

U
max

k
B
T

(b)

Figure 3.15. Mean potential energy of interaction (U) and its standard deviation
(U ±σ) vs. the normalized separation distance κD. Computed values for U from the
GSIUA model and the mean of 1,000 direct GSI calculations (for each κD) are indis-
tinguishable (both marked with solid curves). Dashed lines indicate U±σ determined
from the 1,000 GSI calculations at different locations on the heterogeneous surface.
Dotted lines are the U ± σ predictions of the GSIUA model that requires only 2 GSI
calculations for homogeneous surfaces (for each κD). The parameters are a = 0.5µm,
κ−1 = 3 nm, AH = 5 × 10−21 J, ψsphere = ψsurface = −25 mV, and Ψpatch/pillar = 50
mV.
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puted just once) to be scaled by the statistically determined Θmax values, each of

which is determined for a specified Θ. The adhesion threshold Θcrit is the value of Θ

at which the energy barrier vanishes.

In Fig. 3.16(b), the decrease of Umax with increasing Θ is shown for various hp. It

is seen that the addition of pillars only a few nanometers high significantly reduces

the energy barrier and the adhesion threshold (indicated by arrows).

The adhesion thresholds determined from this statistical approach are compared

in Table 3.1 to the values obtained by direct simulations in Sec. 3.2.4. The agreement

is excellent in all of the cases considered. For hp = 0nm and κ−1 = 3nm, the values

of Θ limiting the adhesion threshold differ in less than 1%. The decrease of the

adhesion threshold with increasing hp is due to stronger attractive interactions with

small numbers of tall pillars, which effectively enhance particles deposition.

(a) hp [nm] Sims. GSIUA (b) κ−1 [nm] Sims. GSIUA (c)AH [10−21 J] Sims. GSIUA

0 0.16 0.15 1 0.01 0.01 1 0.10 0.10
1 0.10 0.10 2 0.03 0.03 5 0.07 0.07
2 0.07 0.07 3 0.07 0.07 8 0.06 0.06
5 0.02 0.02 5 0.13 0.13 12 0.04 0.04

Table 3.1. Agreement between direct simulations (Sims.) of particle trajectories
for 2a = 1µm particles with ψpatch/pillar = 50 mV, ψsphere = ψsurface = −25 mV and
γ̇ = 25 sec−1, and the GSIUA statistical model. The values of the critical surface
coverage required for particle adhesion (Θcrit) are shown as a function of the (a)
nano-pillar height, with κ−1 = 3 nm and AH = 5 × 10−21J, (b) Debye length, with
hp = 2nm and AH = 5 × 10−21J, and (c) Hamaker constant, with κ−1 = 3 nm and
hp = 2nm.

The proposed statistical model can easily accommodate variations in the param-

eters that define the colloidal interactions, such as the Debye length κ−1 and the

Hamaker constant AH. The results presented in Table 3.1 show a complete agree-

ment between the direct simulations and the predictions of the statistical model, for

varying values of κ−1 and AH . The adhesion threshold increases with larger κ−1 not

only due to stronger electrostatic repulsions at a fixed separation distance but also
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Figure 3.16. Energy-averaging statistical model for system parameters a = 0.5µm,
κ−1 = 3 nm, AH = 5 × 10−21 J, ψsphere = ψsurface = −25 mV, and ψpatch/pillar = 50
mV. (a) U vs. κD from the GSIUA model for Θmax = 0.157 and Θmax = 0.296, which
correspond to Θ = 0.08 and Θ = 0.18 respectively. (b) Dependence of Umax on Θ for
various hp. Umax is the energy barrier of energy-distance profiles, such as that shown
in (a), obtained with the GSIUA method and Θmax. The adhesion threshold Θcrit,
determined by the value of the average surface coverage Θ for which Umax vanishes
and marked by an arrow, increases as hp decreases.
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because the ZOI increases for larger κ−1, such that the particle feels more of the av-

erage (repulsive) interaction from the heterogeneous surface. The adhesion threshold

decreases for stronger van der Waals attractions, represented by larger values of AH .

Some flow-rate dependence can be imbedded in the parameter α. For larger shear

rates, corresponding to a reduced interaction time between a particle and surface

feature, adhesion is governed by an effective zone of interaction that is larger than

the ZOI and more elongated. The influence of shear rate could be incorporated into

α. It is seen from Eqs. (3.10) and (3.11) that if the radius of the ZOI is increased by a

factor a, R′
ZOI = aRZOI, then α is reduced: α′ = α/a, which corresponds to a smaller

value for Θmax. A larger value of Θ is therefore required to attain the same value of

Θmax for smaller α, which corresponds to an increase in the adhesion threshold with

the shear rate, in qualitative agreement with experiments.71

The surface loading at which a heterogeneous surface becomes net-attractive is

denoted by Θ and defined as the average loading of patches for which the energy

barrier towards adhesion vanishes. It is thus given implicitly by Umax(Θ = Θ) = 0

and can determined from Eq. (3.9). Plots of Θ vs. κ−1 for representative particle

sizes and surface potentials are included in Fig. 3.17. It is seen that the effective

surface loading, Θ, increases monotonically with the Debye length but does not vary

significantly with the particle size. The lower adhesion threshold observed for smaller

particles103 is therefore due primarily to the smaller ZOI, which makes the particles

more sensitive to local hot spots on the surface.

For a patchy surface, the maximum number of patches that can be located within

the ZOI is Ntot = AZOI/Ap, where Ap is the area of one patch. The average number

of patches within the ZOI is then defined as Navg = ΘAZOI/Ap. In combination with

Eq. (3.11), Θmax is expressed as

Θmax = Θ

[

1 + α

(

Θ
AZOI

Ap

)−1/2
]

. (3.12)
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Figure 3.17. Effective surface loading Θ when the energy barrier vanishes for a
uniform surface plotted against the Debye length κ−1 for a particle of diameter (a)
2a = 100 nm and (b) 2a = 1µm for ψp/ψs [mV] = +25/ − 25 (circles), +50/ − 50
(squares), +50/− 25 (diamonds), and +100/− 50 (triangles).
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The limit in which the maximum surface loading of patches within the ZOI, Θmax,

can be approximated by the surface loading that defines a net attractive surface, Θ,

is expressed as Θmax ' Θ. In this case, Θ = Θc because the adhesion threshold is

defined as the surface loading at which the energy profile computed with Eq. (3.9)

and Θ = Θmax does not exhibit an energy barrier. Therefore,

Θ ≈ Θmax = Θc + α

√

ΘcAp

AZOI

, (3.13)

where Θmax is given by Eq. (3.12). Solving for Θc provides an approximation for the

adhesion threshold,

Θ1/2
c = −α

2

√

Ap

AZOI

+

√

α2Ap

4AZOI

+Θ . (3.14)

For particles being transported over the surface in a shear flow, the effective zone of

interaction can be approximated as

AZOI = AZOI,0 + Ch γ̇ RZOI , (3.15)

where AZOI,0 is the zone of influence in the absence of fluid flow and Ch is a hydro-

dynamic constant similar to the parameter introduced by Adamczyk et al.5

It is seen from Fig. 3.18 that Θc increases withAZOI , with Θc → Θ asAZOI/ZZOI,0 →

∞. As the effective interaction area becomes large, the particle-wall interactions

therefore asymptote to those for uniform surfaces, and the effects of heterogeneity are

lost. As α is increased, Θc decreases for small AZOI because adhesion is sensitive to

local fluctuations in the patch density.

Equations (3.14) and (3.15) can be applied for the parameters reported by Kalasin

and Santore,71 who studied the influence of shear rate on dynamic microparticle

adhesion on electrostatically patchy surfaces. The constants α and Ch are treated as
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Figure 3.18. Adhesion threshold (Θc) for varying α as a function of the areas ratio
AZOI/AZOI,0. Other parameters are a = 500 nm, dp = 10nm, hp = 0nm, Θ = 0.25,
κ−1 = 3nm, AH = 5×10−21 J.
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Figure 3.19. Adhesion threshold Θc plotted against the shear rate γ̇. The lines are
the theoretical predictions, and the symbols are the experimental data from Figure 3
of Kalasin and Santore.71
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fitting parameters. As seen from Fig. 3.19, the predicted variation of the adhesion

threshold with the shear rate is in good agreement with the experimental results. Such

agreement is surprising given the simplicity of the model but supports the argument

that an increase in the shear rate raises the adhesion threshold not only because of

the enhanced hydrodynamic force and torque on a particle,51 which could overcome

local adhesive forces, but also because of the increased size of the zone of interaction

for dynamic adhesion, which diminishes the influence of small-scale heterogeneity.

3.2.7 Conclusion.

A statistical model was introduced to calculate DLVO interactions between par-

ticles and patchy collectors with nanoscale electrostatic and topographical hetero-

geneity. The patches are randomly distributed on the collector and create localized

attractive regions on an otherwise repulsive surface. In this approach, the statistical

distribution of patches is combined with DLVO calculations between a particle and

two homogeneous surfaces: one with the surface potential of the patches and one

with the potential of the underlying collector surface. These surface potentials could

be obtained in experiments from zeta potential measurements for the bare collector

and for one that is saturated with polyelectrolyte patches. Predictions of the mean

interaction energy and its variance as a particle samples the collector are in excellent

agreement with the mean and variance of many DLVO calculations for interactions

with a heterogeneous collector.

With an appropriately defined zone of influence for the electrostatic-double-layer

interactions, the statistical model can predict adhesion thresholds corresponding to

the critical surface loading of patches at which particles begin to adhere from flow-

ing solution. These predictions are indistinguishable from the results of computed

particle trajectories over heterogeneous surfaces but require only simple DLVO calcu-

lations involving homogeneous surfaces that are similar in complexity to a standard,
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mean-field application of classical DLVO theory. This approach is relevant to stud-

ies of particle interaction and deposition onto heterogeneous collectors, particularly

those with adsorbed polyelectrolyte patches, and the model successfully predicts the

increase in the adhesion threshold with the shear rate of the flowing suspension ob-

served in experiments.71

The results of the statistical model reveal several reasons that patchy surfaces

are more attractive toward microparticles than expected. Classical DLVO theory is

typically applied with calculations based on a mean (apparent) surface potential, such

as the zeta potential measured from electrophoretic mobility or streaming potential

experiments, which typically has the same sign as that of the particles when the

patch coverage is sparse. A group of patches in close proximity can create a local hot

spot capable of capturing a particle, as noted in many studies.9,37,81,103 In addition,

the mean interaction between the heterogeneous collector and microparticle is less

repulsive than predicted by classical DLVO theory because of the random distribution

of nanoscale, cationic patches (vs. treating the surface charge as uniformly smeared

out over the surface). Furthermore, at moderate and large ionic strength, deposition

is enhanced significantly if the patches protrude only slightly from the collector.

3.3 Brownian motion effects.

3.3.1 Introduction.

As described in previous sections, recent studies of particles flowing over collectors

patterned with nanoscale patches, which are orders of magnitude smaller than the

depositing particles, revealed that small amounts of randomly-distributed, attractive

patches induce particle deposition onto net-repulsive surfaces.37,39,71,81,103 Deposi-

tion rates for such systems are found to be larger than expected from a mean-field

application of the classical DLVO theory.14 The discrepancies between empirical and

predicted results are attributed to particle interactions with many patches, which
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create locally attractive regions (“hot spots”)38 on the collector as a result of their

non-uniform distribution.

Therefore, particle deposition on collectors patterned with nano-scale heterogene-

ity is found to be controlled not only by the total amount of attractive charge on

the collector, but also, by the spacing between the particle-attracting patches. For

surfaces densely covered by patches (small patch-patch spacing), adhesion is rapid

and transport-limited. For larger patch-patch spacing, however, adhesion rates be-

come slower and the amount of deposited particles also decreases.71 The dependence

of the adhesion capability of the collector on the patch-patch spacing is thus better

characterized by the system’s adhesion threshold. The adhesion threshold is usually

defined as the critical fraction of collector surface area covered with heterogeneity

below which particles do not adhere on the collector. Alternatively, it can be defined

as the critical patch-patch spacing above which silica particles do not deposit on the

collector.81,103

In theoretical and computational studies37–39 of such systems, comprising flat and

spherical electrostatically non-uniform collectors in which particles deposit from a

flowing solution, Brownian motion effects have typically been neglected. The dis-

placements of free particles due to Brownian motion, however, are often significant

in time intervals characteristic of the imposed flow. Brownian motion can enable

particle deposition on both homogeneous and heterogeneous collecting surfaces, even

in the presence of an energy barrier.2,118

While adhesive dynamic simulations91 showed that bond dissociation dynamics

are not significantly influenced by Brownian forces and recent studies on particle

interactions with rough collectors74 also indicated that Brownian motion effects are

negligible, microchannel flow experiments of particle deposition114 suggest that, for

low-energy barrier systems, Brownian motion can indeed increase particles’ tendency

to adhere on heterogeneous collectors.
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Brownian motion effects are modeled in this work through the introduction of

stochastic Brownian displacements in the Langevin-type particle trajectory equa-

tions.12,44,74,114,119 Alternatively, Brownian motion effects have also been modeled by

computing Brownian forces .24,91 This empirical approach is briefly described in the

Appendix A.

Previous work focused on the study of the dynamics and aggregate formation

properties of many-particle systems,12,44 on particle deposition on homogeneous col-

lectors74 or on particle behavior in parallel-plate microchannel flow.114 In this study,

Brownian motion effects are investigated for the case of a spherical particle interacting

with collectors patterned with nanoscale heterogeneity.

Results presented in this section intend, therefore, to elucidate the specific effects

of Brownian motion on particle interactions with collectors patterned with flat circular

patches or with cylindrical pillars that protrude a few nanometers from the collector.

As described in Secs. 3.1 and 3.2, the model systems resemble experimental set-ups

used to study deposition mechanisms of colloidal particles, such as latex spheres that

deposit on substrates covered with disk-shaped or spherical adsorption sites,2 or silica

particles that adhere from flowing solution on patterned planar collectors.81,103

Particle trajectories are presented in Sec. 3.3.3 for particles that translate and

rotate in shear flow over heterogeneous collectors, being subject not only to DLVO

interactions with the nano-scale collector heterogeneity but also to Brownian motion

effects. Electrostatic double layer (EDL) and van der Waals (vdW) forces and ener-

gies (DLVO interactions) are computed by implementing the GSI technique.14,38 The

shear-induced force and torque acting on the particle as it translates over a collector

and the DLVO forces that result from particle interactions with it, are incorporated

in the mobility matrix26 formulation described in Sec. 2.8 to yield the particle’s veloc-

ities. Brownian motion effects are modeled by updating the particle’s position with

stochastic Brownian displacements.74 In Sec. 3.3.4, the relative importance of shear,
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colloidal, and Brownian effects is evaluated through the computation of appropriate

Péclet numbers, which are unique for this heterogeneous system. Conclusions are

presented in Sec. 3.3.5.

3.3.2 Methods.

The model system, schematically illustrated in Fig. 3.20, depicts a colloidal par-

ticle of radius a translating in shear flow parallel to a chemically and topographically

heterogeneous collector. The collector heterogeneities are located at randomly cho-

sen positions, to satisfy Poisson statistics as a first approximation of distributions of

patches attained in experiments.37 The fraction of surface area of the collector covered

with heterogeneities is denoted by Θ. The heterogeneities consist on either flat patches

(with pillar height hp = 0 nm) or cylindrical pillars (hp = 2 nm) that are charged

with an electrostatic surface potential of ψpatch, pillar = 50 mV. The surface potential

of the bare collector and of the flowing particle are ψsphere = ψcollector = −25mV.

Brownian motion effects are modeled by introducing Brownian displacements41,74,92

in the parallel and normal directions to the collector surface. This approach parallels

the Brownian Dynamics method12,44,119 and yields a Langevin-type equation for the

particle trajectory.

In the results presented in this section, the general form of such equation reads

x(t) = xo(t) +U∆t+RBr , (3.16)

where x(t) = (x, y)t is the particle position vector, and the superscript o refers to

the initial or previous condition. The particle translational and rotational velocities

vector U = (Vx Vy Vz Ωx Ωy Ωz)
t is calculated from a mobility matrix formulation of

the hydrodynamics problem,26,38

U = MF , (3.17)
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Figure 3.20. Schematic diagram of a spherical particle of radius a interacting with a
heterogeneous surface patterned with randomly distributed nano-pillars of height hp.
The local separation distance between the sphere and the collector element vertically
below is h(x, z) and D is the minimum separation distance between the sphere and
the plane defined by the top of the pillars. Shear-induced and colloidal forces act in
the directions parallel and normal to the collector, respectively.

where F = (Fx Fy Fz Tx Ty Tz)
t is the vector of all external forces and torques act-

ing on the spherical particle, and M is a 6 x 6 matrix comprising hydrodynamic

functions.21,38,50,51,69 Eq. (3.17) is mere a reformulation of Eq. (2.25).

The last term in the rhs in Eq. (3.16) is included to model Brownian motion

effects. Non-zero Brownian displacements are defined as41,74,92

RBr =







RBrx

RBry






=







RBr‖

RBr⊥






=

√

2D∞dt







√
f4

√
f1






λ̂, (3.18)

where the vector λ̂ contains random numbers of the normal standard distribution,

dt is the time step, D∞ = (kBT )/(6πµa) is the Stokes-Einstein diffusivity, and µ the

fluid viscosity. The functions

f1 = 1.0− 0.3990 exp(−0.1487D)− 0.6010 exp[−1.202 (D0.9267)] (3.19)

and
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f4 = 1− 2.6760 exp(−0.3581D) + 1.9990 exp[−0.2320 (D1.2600)] , (3.20)

are universal correction functions (UCFs) that account for hydrodynamic effects and

depend solely on the minimum particle-surface separation distance D.74 The time

step used in all the results that follow is dt = 1× 10−5 sec.

3.3.3 Effects of particle size and pillar height.

The influence of Brownian motion on particle dynamics is expected to vary most

significantly with system properties such as particle size and collector topography.

Trajectories of small (a = 0.1µm) and large (a = 1µm) particles flowing over patchy

(hp = 0nm) and pillared (hp = 2nm) collecting surfaces are shown in Fig. 3.21, as

plots of the dimensionless separation distance κD∗ vs the horizontal dimensionless

displacement κx. D∗ denotes the minimum particle-flat collector separation distance

and is defined as D∗ = D + hp. For both pillared and patchy collectors, the mobility

matrix hydrodynamic functions in Eq. (3.17) were computed with Eqs. (2.46)-(2.49)

at the separation distance h∗ = a + D∗, while the UCFs f1 and f4 in Eqs. (3.19)-

(3.20) were calculated at the separation distance h∗ = D∗. Trajectories presented in

Fig. 3.21 are computed by either neglecting Brownian motion effects or by including

them as Brownian displacements.

The spatial fluctuations observed in the dynamic profiles of large particles inter-

acting with patchy and pillared collectors (Figs. 3.21(a)-(b)) are due to interactions

between the flowing particle and both the attractive and repulsive collector surface

elements. The attractive interactions are not strong enough to capture the particle on

the surface, and the particle continues to flow until it reaches the edge of the simulated

collector, given by a horizontal distance of 24.2 µm. Interactions of small particles

flowing over patchy and pillared collectors (Figs. 3.21(c)-(d)), however, depict in all

cases trajectories of particles that adhere on the collector. For the case of a small

particle interacting with a patchy collector (Fig. 3.21(c)), trajectories computed by
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(a) (b)

(c) (d)

Figure 3.21. Trajectories of particles interacting in shear flow with surfaces pat-
terned with randomly located flat patches or cylindrical pillars with a surface area
coverage of Θ = 0.12. Other simulation parameters are: γ̇ = 25 sec−1, AH = 5
×10−21 J, ψsphere = ψcollector = −25 mV, ψpatch = 50 mV. In each plot, trajectories
are obtained by either neglecting Brownian motion effects or by incorporating them
in the computations as Brownian displacements. (a) a = 1µm particles interacting
with patchy surfaces (hp = 0 nm). (b) a = 1µm particles interacting with pillared
surfaces (hp = 2 nm). (c) a = 0.1µm particles interacting with patchy surfaces (hp =
0 nm). Two trajectories are shown for the case of Brownian displacements (dashed
and dash-dotted lines). (d) a = 0.1µm particles interacting with pillared surfaces (hp

= 2 nm).
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including Brownian displacements can also describe non-adhering particles, which,

instead, continue to flow and translate over the entire simulated collector.

The total DLVO energy of interaction for large (a = 1µm) and small (a = 0.1µm)

particles interacting with collectors patterned with flat patches (hp = 0nm) or cylin-

drical pillars (hp = 2nm) at a fixed surface area coverage of Θ = 0.12 is computed

with the GSIUA technique,14 described in Sec. 3.1.5, and results are presented in Fig.

3.22(a).

As shown in Fig. 3.22(a), the total energy of interaction for large (a = 1000 nm)

particles interacting with patchy (hp = 0 nm) and pillared (hp = 2 nm) collectors

presents high energy barriers, of about 175 kBT and 50 kBT , respectively. The small

(a = 100 nm) particles’ energy profiles, however, present much lower energy barriers,

of about 5 kBT for the case of the pillared (hp = 2 nm) collector and about 17 kBT

for the case of the patchy collector (hp = 0 nm). As previously noted, in the case

of a small particle interacting with a patchy collector (Fig. 3.21(c)), trajectories

obtained with Brownian displacements for a surface coverage of Θ = 0.12 either

indicate that the particle flows until it reaches the collector’s edge or show particle

adhesion. Results obtained when Brownian motion is neglected, however, only yield

trajectories that denote particle adhesion. For the case of a small particle interacting

with a patchy collector, therefore, Brownian effects become more prominent and

influence the particle’s tendency to adhere on the collector as a direct consequence of

the intermediate magnitude of the energy barrier, of about 17 kBT .

Heterogeneous collectors can be characterized by energy contour plots, as those

shown in Figs. 3.22(b)-(c), for 2a = 200 nm and 2a = 2µm diameter particles, re-

spectively. An heterogeneous collector is sampled such that, at each collector areal

element, the DLVO energy-distance profile is computed with the GSI technique when

the particle’s center projection on the xz-plane is positioned at the center of the dis-

crete collector element. Thus, for each collecting surface element at which the particle
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Figure 3.22. (a) Total DLVO energy of interaction obtained with the GSIUA
14

technique for large (a = 1µm) and small (a = 0.1µm) particles interacting with
collectors patterned with flat patches (hp = 0nm) or cylindrical pillars (hp = 5nm)
with a surface area coverage of Θ = 0.12. (b)-(c) Energy profiles for 2a = 200 nm (b)
and 2a = 2µm (c) particles interacting with a patchy collector (hp = 0nm, Θ = 0.22).
The fractions of the collector that are favorable for adhesion (i.e. U < kBT ) are 32%
for the 2a = 200 nm (b) particle and 2.8% in the case of the 2a = 2µm (c) particle.
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center is located, a different energy-distance profile is obtained due to interactions

with different regions of the heterogeneous surface. The magnitude of the energy

barrier (UMAX) is stored for each heterogeneous surface element, and these values are

color-scaled to yield an energy-contour plot that highlights the various attractive and

repulsive regions within the collector. Surface elements for which there is no energy

barrier are assigned the value UMAX = 0. A dark blue color denotes the lowest val-

ues of the energy barrier (more attractive regions) while the regions with the highest

values of the energy barrier (more repulsive areas) are marked with a dark red color.

Intermediate values are scaled with other colors, as indicated in the color scale in

Figs. 3.22(b)-(c).

To isolate the specific influence of Brownian displacements on the small particle’s

(2a = 200 nm) tendency to adhere on the patchy (hp = 0 nm) collector, a few thousand

simulations of particle trajectories were performed for a few values of the collector

heterogeneity coverage Θ. At a fixed value of Θ, all trajectories are simulated with

the same collector surface, and in all cases, the particles are released from the same

initial height of D = 40 nm. The shear flow rate is γ̇ = 25 sec−1 and the colloidal

interactions are defined by the Hamaker constant AH = 5 × 10−21 J and the Debye

screening length κ−1 = 4nm.

From the direct simulation of particle trajectories, the probability of particle ad-

hesion due to Brownian motion effects PBr is defined as

PBr =
ND

Ntot

, (3.21)

where ND is the total number of particles deposited on the patchy collecting surface

and Ntot is the total number of particles released.

Though defined in the same way as the particle deposition probability computed in

recent studies74 and described in Sec. 3.2.4, the particle adhesion probability defined

in Eq. (3.21) differs qualitatively from previous definitions. For a fixed value of the
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surface area coverage Θ, PBr is obtained from trajectories of particles translating over

one collecting surface, and the many trajectories differ only in the random numbers

that characterize the Brownian effects. At each adhesion attempt, one particle is

released and allowed to interact with the heterogeneous collector in shear flow. The

simulation runs are independent, such that the collector is patterned with randomly

distributed cationic patches only, and previously adhered colloidal particles are not

considered.

For the case of a small particle (2a = 200 nm) interacting with a patchy (hp =

0nm) collector, PBr values were computed for a range of values of Θ, 0.10 ≤ Θ ≤ 0.15.

To obtain more statistically relevant predictions, Wilson score intervals121 that include

the actual values of the adhesion probability are constructed based on the estimates

given by Eq. (3.21). Wilson score intervals represent an improvement with respect

to the normal approximation intervals and are used in this work due to their high

accuracy even for a small number of trials and extreme probabilities. The Wilson

score interval is defined as

p̂+ 1
2n
z21−α/2 ± z1−α/2

√

p̂ (1−p̂)
n

+
z2
1−α/2

4n2

1 + 1
n
z21−α/2

(3.22)

where p̂ is the probability estimate, n is the sample size, and z1−α/2 is the (1− α/2)

percentile of a standard normal distribution with an α error percentile.

Adhesion probability values are thus obtained as series of intervals computed from

Eq. (3.22), with an arbitrarily chosen 95% confidence interval (α = 0.05), such that

z1−α/2 = 1.96. The sample size is n = Ntotal and the probability estimate p̂ = PBr

is obtained from Eq. (3.21). The specific number of trajectory simulations for each

PBr data point therefore varied between Ntot = 6,200 and Ntot = 10,000, such that

the difference between either end of the interval and the interval center is lower than

1.5%.
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The spread of the Brownian motion-induced adhesion probabilities can be quan-

tified by the difference

∆Θ = ΘPmax −ΘC , (3.23)

where

ΘPmax = Θ(PBri = 1), ∀ i ∈ [1, Ntot], (3.24)

and

ΘC = Θ(PBri = 1), ∃ i ∈ [1, Ntot]. (3.25)

ΘPmax and ΘC are the surface area heterogeneity coverages at which the adhesion

probability PBr is equal to 1, for either all of the Ntot particles released, or for at least

one of them, respectively.

For a 200-nm diameter particle, the computed spread of the Brownian adhesion

probability is

∆ΘBD, 2a = 200 nm = 0.15− 0.11 = 0.04 (3.26)

where the subscript BD denotes Brownian displacements. The non-zero spread indi-

cates that, for the small particle considered, a range of values of Θ exist for which the

adhesion probability 0 < PBr < 1. For these Θ values, therefore, Brownian displace-

ments introduce significant spatial variations that are not observed when Brownian

motion effects are ignored. These fluctuations in the direction of flow can, indeed,

become meaningful enough so as to yield smaller adhesion probabilities PBr for larger

values of the surface coverage Θ.

The binding capability of the collector, therefore, appears to be governed not only

by the total amount of attractive heterogeneity but also by the magnitude of the

spatial variations in the flow direction. Flowing particles can be translated due to

Brownian displacements into more attractive or more repulsive areas of the collector,

and irrespectively of the total amount of heterogeneity that patterns the collector

surface.
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The respective spread of the adhesion probabilities for large particles (2a = 2µm)

is equal to zero,

∆ΘBD, 2a=2µm = 0.21− 0.21 = 0 . (3.27)

A zero probability spread indicates that the probability of adhesion on a specific

heterogeneous collector characterized by a given surface coverage Θ is either 0 or 1,

in complete agreement with trajectory computations in which the effects of Brow-

nian motion are not considered. The computed spread in Eq. (3.27) thus suggests

that Brownian motion has a negligible effect on the trajectories of large particles

translating over collectors patterned with nano-scale heterogeneity.

For a fixed surface coverage of Θ = 0.15, a histogram of the horizontal displace-

ments the particles translate in the direction parallel to the collector before adhering

is shown in Fig. 3.23. The trajectories, which include the effects of Brownian dis-

placements, not only predict adhesion at distances x/a ' 398 but also in the vicinity

of x/a = 1719, 4478, 5250 and x/a = 5800, suggesting the existence of other “hot

spots”37 for particle adhesion in those regions of the collector.

3.3.4 Péclet numbers.

To provide quantitative insight on the relative importance of shear and Brownian

effects acting in the direction of flow, a Péclet number is defined as

Pe(B/S) =
D‖(H, a)

γ̇a2
, (3.28)

where D‖ = f4D∞ is the diffusion coefficient in the direction parallel to the collector

and depends solely on the particle size and distance H between the particle’s center

and the collector.41,74 To avoid the unrealistic case of the particle being in physical

contact with the collector, an arbitrarily small distance of δ = 0.5 nm is chosen as

the distance at contact, such that H = a+ δ.
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Figure 3.23. Statistical distribution of the locations of adhered particles obtained
from simulations of particle trajectories in which Brownian motion is computed as
Brownian displacements, for a collector patterned with a heterogeneity coverage of
Θ = 0.15. Other simulation parameters are: 2a = 200 nm, hp = 0 nm, κ−1 = 4 nm,
AH = 5 ×10−21 J, ψsphere = ψcollector = −25 mV, ψpatch = 50 mV.

Figure 3.24. PeB/S numbers as a function of the particle size.
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Eq. (3.28) resembles the Péclet number defined by Kemps and Bhattacharjee74 to

describe the transport of colloidal particles in the proximity of surfaces patterned with

spherical asperities. In that study, however, the Péclet number indicated a greater

relative importance of the shear flow with respect to the particle diffusion, such that

the diffusivity considered in the Péclet number definition was that of the bulk, or,

the Stokes-Einstein diffusivity, and hydrodynamic effects were incorporated only in

the computation of particle trajectories.

In the current work, the effects of Brownian motion on particles interacting with

heterogeneous collectors are studied for small separation distances in particular, with

relevance to the evaluation of Brownian effects on adhesion thresholds. It thus seems

appropriate to consider the hydrodynamic effects that effectively reduce the particle

diffusivity as the particle approaches the collector, and define the Péclet number in

terms of D‖ instead of D∞.

As shown in Fig. 3.24, Pe(B/S) values decrease exponentially with particle size,

suggesting that Brownian motion dominates over shear forces only for small particles.

While Brownian effects are prominent with respect to shear forces, or comparable to

them, for small particles (a ≤ 200 nm) in low-shear rate flows, for particle radii

as small as a = 500 nm and larger, PeB/S numbers fall below 0.05, suggesting that

Brownian forces become negligible.

To quantify the relative importance of Brownian motion effects and DLVO inter-

actions a Péclet number PeB/C is defined as

PeB/C =
kBT

UGSIUA
(D = κ−1)

, (3.29)

where UGSIUA
(D = κ−1) denotes the average particle-flat collector total energy of

interaction computed with the GSIUA technique14 at a fixed separation distance D =

κ−1.
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(a)

(b)

Figure 3.25. PeB/C numbers as a function of the particle size, for heterogeneous and
homogeneous collectors. (a) PeB/C numbers for a range of surface loadings Θ, in the
case of heterogeneous collectors. (b) PeB/C numbers computed for various collector
surface potentials ψcollector, for uniformly charged, flat collectors.
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Péclet numbers obtained from Eq. (3.29) are presented as a function of the particle

size in Fig. 3.25, for a few values of the surface coverage Θ.

For particle sizes that are relevant for experimental purposes and a range of sur-

face loadings for which the collector is net repulsive, particle-collector dynamics are

dominated by DLVO interactions, rather than Brownian motion effects, as suggested

by the numbers PeB/C < 1 shown in Fig. 3.25(a). The random distribution of patches

on the collector surface creates both locally attractive and locally repulsive areas, such

as those showed in Fig. 3.22(b) for a flat collector with a surface area heterogeneity

coverage of Θ = 0.12 sampled by a 2a = 400 nm diameter particle. Brownian motion

cannot overcome the high energy barriers that characterize the locally repulsive areas,

such that particle deposition on patchy collectors is not due to Brownian motion, but

instead, controlled by spatially-varying DLVO interactions.

Particle deposition on slightly net-repulsive homogeneous collectors, however, can

be attributed to Brownian motion effects since these systems present energy barri-

ers that are lower than those in the locally repulsive areas within the heterogeneous

collectors. PeB/C numbers for the case of interactions with electrostatically and to-

pographically uniform collectors, obtained from Eq. (3.29) for a range of particle

sizes and varying collector potentials are shown in Fig. 3.25(b). For small parti-

cles (a ≤ 250 nm) and slightly repulsive uniform collectors (Ψcollector = −5 mV),

PeB/C > 1 suggest that Brownian motion effects are indeed more significant than,

or comparable to, DLVO interactions, and can therefore be responsible for increased

deposition rates.

3.3.5 Conclusion.

The influence of Brownian motion on the dynamics of large and small colloidal

particles flowing over patchy and pillared collectors was studied by modeling particle
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trajectories that included the effects of Brownian displacements, in addition to those

of shear and colloidal forces.

Brownian motion is expected to be meaningful only for particle-collector systems

characterized by a relatively low energy barrier in the energy-distance profile. For

large particles, interactions with both patchy and pillared collectors are found to be

governed by high energy barriers, which prevent particle deposition. Small particles,

however, are strongly attracted to pillared collectors, such that particle adhesion is

controlled by DLVO interactions and not by Brownian motion. Brownian motion

effects, therefore, could be significant only in the case of small particles flowing over

patchy collectors because these systems present intermediate, or relatively-low energy

barriers.

In the case of interactions between a small particle and a patchy collector, the

addition of Brownian displacements introduces significant spatial variations in particle

trajectories. These spatial variations of the adhesion sites translate into a non-zero

spread of the adhesion probability, in contrast to the zero-probability spread obtained

when Brownian motion effects are neglected.

A Péclet number that quantifies the relative importance of shear and Brownian

effects decreases exponentially with particle size. For the low shear rate flow consid-

ered, Brownian effects are seen to become more significant than, or comparable to,

the shear motion only for particle radii of up to a ' 200 nm. For larger particles,

Brownian motion effects are negligible, as evidenced by Péclet numbers that fall below

unity.

To quantify the relative importance of Brownian and colloidal (DLVO) effects,

PeB/C numbers were defined as the ratio of the thermal energy to the average particle-

collector DLVO energy of interaction at a fixed separation distance D = κ−1. PeB/C

numbers computed for varying particle sizes and for surface loadings Θ for which

average interactions are repulsive, decrease exponentially with particle size and are
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smaller than 1 for all the parameter ranges considered. Therefore, in the case of

particles flowing over collectors patterned with nano-scale heterogeneity, Brownian

motion effects are shown to be negligible also with respect to DLVO interactions.

The results presented in this section thus reveal that Brownian motion has a

negligible influence on particle trajectories over collectors patterned with nano-scale

heterogeneity, the non-uniform distribution of which creates locally attractive and

repulsive areas within the collector. High energy barriers in strong locally repulsive

areas cannot be overcome by Brownian motion (PeB/C � 1), such that particle deposi-

tion on patchy collectors is controlled by spatially varying DLVO interactions and not

by Brownian motion. Even though Brownian effects become more significant than,

or comparable to, shear forces for small particles in low shear rate flows, the overall

adhesive behavior of the system, which is characterized by the adhesion threshold,

remains unaffected by the introduction of Brownian motion effects in the simulations.

For particle sizes that are usually used in experimental studies (a = 0.5, 1µm), it is

thus reasonable to neglect Brownian motion effects in studies of particle trajectories

over collectors covered with nano-scale heterogeneity.
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CHAPTER 4

INTERACTIONS BETWEEN NANOSCALE-
HETEROGENEOUS PARTICLES AND CHEMICALLY

UNIFORM FLAT COLLECTORS

4.1 Introduction.

Interest in the study of interactions of anisotropic particles has grown signifi-

cantly, leading to the recent development of innovative particle synthesis techniques

used to engineer nano- and colloidal particles with multiple surface features. “Patchy

particles”, as defined by Zhang and Glotzer,127 are particles that exhibit strong di-

rectional interactions induced by the presence of a finite number of distinct patches

on the particle’s surface. Highly anisotropic interactions between patchy particles

and/or surfaces patterned with effectively “attractive” and “repulsive” interaction

sites can lead to the assembly of otherwise neutral or repulsive surfaces into ordered

arrays. Surface-anisotropy in shape, size, patchiness, and chemical functionality can,

in fact, be precisely tailored towards the design of specific target structures.48

Anisotropic particles at the nano and colloidal scales of diverse shapes, sizes

and electronic and optical properties were synthesized with chemical, physical and

biologically-inspired ingenious techniques.48,95 Selective crystallization and deposi-

tion facilitated the fabrication of gold and silver 3D nano-structures, such as nano-

rods,68 cubes and boxes.109 Reductive synthesis of colloidal particles in solution is

another chemical synthesis technique used to yield anisotropic nano-particles of con-

trolled shape, such as platinum, gold, and copper structures of diverse morpholo-

gies, including tetrahedral, cubic, icosahedral, and also flat triangular and hexag-

onal.10,53,86 Colloidal particles of controlled configuration are also obtained using
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automated stepper lithography, and the resulting “LithoParticles”,58 produced in let-

ter shapes, are released into a liquid solution to yield “a colloidal alphabet soup”.

Particles with dipolar charge distribution, particle-doublets, and “raspberry-like”

microparticles were synthesized by microcontact printing of a monolayer of small

(negatively charged) colloid particles onto a monolayer of larger (positively charged)

particles.25

Current patchy particle synthesis techniques pose, however, either scalability dif-

ficulties, or, are limited in terms of achieving controlled numbers and chemical func-

tionalization of patches that pattern particle surfaces.95 New techniques that aim

to overcome such challenges are constantly emerging. The newly-developed Particle

Replication In Nonwetting Templates (PRINT R©)99,125 method, for example, makes

use of a non-wetting substrate to yield isolated nano-particles, eliminating the need

to separate the desired particles from the template or mask.

Patchy particles can be used as building blocks of target structures that can be

assembled in photonic crystals, sensors, and electronic, molecular imaging and drug-

delivery devices.11,28,95,123 Anisotropy-based particles can also be incorporated within

self-healing materials, switching displays, which resemble nature-abundant camou-

flage techniques, and other “smart” materials, i.e., materials capable of reacting to

external stimuli.123 Janus particles, whose surface is divided into two clearly-defined

areas of equal size, and patchy particles, have also been recently used as autonomous

swimmers, and such self-propelling microscale objects could potentially be developed

into drug delivery, fluid mixing, and on-chip particle transport applications.95 The

exact propulsion mechanism of the micro-swimmers, however, is not yet fully under-

stood and constitutes a subject of current research.

From the theoretical perspective, patchy particles were first classified by Glotzer

and Solomon,48 who developed a unifying framework to describe the classes of patchy

particles already synthesized. Each anisotropy type of a colloidal building block is
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assigned a ‘dimension’, such that the anisotropic characteristic increases when moving

along a specific dimension. Some of such dimensions are anistropy attributes such as

surface coverage or patchiness (A), aspect ratio (B), branching(E), and roughness (H).

Anisotropic particles are then described by a dimensionality number that indicates

the number of orthogonal dimensions that are necessary to characterize the particle.

The particle complexity thus increases with increasing dimensionality number.

In many recent computational studies, patchy particles are modeled as units com-

posed of distinct “atoms”. Specific attributes are assigned to each atom, depending

on whether it belongs to the ‘patch’ or ‘core’ surface areas of the particle. Zhang

and Glotzer127 performed Brownian dynamic simulations to model the self assembly

of particles patterned with patches positioned at specific locations. The ‘atoms’ pair

potentials were modeled with Lennard-Jones potentials to describe weak, long-range

attractive interactions, and excluded-volume interactions are included through a soft

sphere approach. A number of precise and ordered structures, such as chains, sheets,

rings, icosahedra and other polyhedra, were obtained for varying configurations of the

particle patches. The self assembly of ordered periodic structures is also predicted

by Brownian dynamics simulations of tethered nanoparticles,65 and star-branched

and spherical polyelectrolytes are shown by molecular dynamic computations to as-

semble into charged, patchy colloids.84 Other theoretical approaches model patchy

particle interactions by including pair potential functions to investigate, for example,

reversible gel formation,101 and the interplay between self-assembly and condensation

of patchy particles decorated with a few weakly attractive spots.112 Anisotropic in-

teractions between particles are also incorporated in models of globular proteins,45,105

and in lattice density functional studies that characterize T-shaped equilibrium as-

semblies of patchy particles.94

While theoretical work on patchy particle interactions at the molecular scale

abund, only a handful of studies describe colloidal interactions of heterogeneous par-
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ticles in close contact to a wall and the effects of such heterogeneities on particle depo-

sition. Sphere-plate and sphere-sphere DLVO interactions for spheres patterned with

topographical heterogeneity were computed numerically18,108 and analytically,110 and

model predictions were found to agree with experimental measurements.111 Spherical

chemical heterogeneity, however, was not included. A recent study by Chatterjee et.

al.29 is focused on the deposition of micro-scale particles onto larger Janus and patchy

spherical collectors. Chemical heterogeneity is modeled by patterning the spherical

collector with adhesion-favorable and adhesion-unfavorable surface properties, which

are assigned to either each half of the sphere (Janus collectors) or to alternating stripes

that cover the spherical surface (patchy collectors). The stripes width is larger than

the depositing particle diameter. Deposition of colloidal particles onto the spheri-

cal heterogeneous collectors is analyzed as a function of system parameters, such as

collector orientation, amount of collector heterogeneity and colloidal particle velocity.

By contrast, microscale particles flowing over heterogeneous collectors bearing

nanoscale patches have been studied extensively, both experimentally71,72,81,103 and

computationally,14,38,39,126 as described in previous sections.

Results presented in this section describe the effect of nanoscale spherical hetero-

geneity on particle-collector interactions, emphasizing the role of patchy particles as

the depositing agents, in contrast to previous studies29 in which the patchy particles

modeled heterogeneous collectors much larger than the depositing colloidal particles.

A sphere-partition algorithm that yields the discretization of spherical surfaces into

equal-area elements is introduced in Sec. 4.2. Colloidal DLVO interactions, computed

as the sum of attractive van der Waals (vdW) and repulsive electrostatic double layer

(EDL) interactions, are computed first for the homogeneous particle-collector sys-

tem in Sec. 4.3 to validate the algorithm used for the discretization of the sphere.

In Sec. 4.4, particle trajectories of patchy particles patterned with ordered hetero-

geneity flowing over uniform flat collectors are presented for various heterogeneity
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orientations. Dynamics of particle-collector systems involving patchy particles cov-

ered with randomly-distributed, nanoscale heterogeneity are analyzed in Sec. 4.5.

Statistical measures such as the collection probability, number of local extrema in the

particle trajectories, and effective residence time of a patch within the electrostatic

zone of influence (ZOI) are introduced. Detailed comparisons are made with the cor-

responding patchy collector configuration that has been extensively studied in both

experimental81,103 and computational previous work.38,39 Adhesion regime diagrams

for each system are presented to quantify the average surface loading of patches at

which particles begin to adhere. The main findings and conclusions are summarized

in Sec. 4.6.

4.2 Sphere discretization.

In order to simulate collector interactions with heterogeneous spherical particles

using the GSI technique,38 the spherical surfaces must be discretized into differential

areal elements, each of which can be assigned distinct properties. In the results

presented in this section, spherical surfaces are discretized into regions of equal area

using Leopardi’s82 recursive zonal EQual area Sphere Partitioning (EQSP) algorithm,

which yields the discretization of higher dimensional spheres into regions of equal area

and small diameter. A schematic diagram of a sphere discretized intoNp = 500 regions

(elements) is presented in Fig. 4.1(a).

The accuracy of the EQSP algorithm is firstly verified by discretizing a 2a = 1µm

diameter sphere into Np = 25963 elements, such that the individual element area is

dAi ' 121 nm2. For each sphere surface element, the absolute value of its projected

area on an horizontal plane is computed from

dSi = |n · e⊥| dAi , (4.1)
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(a)

(b)

Figure 4.1. (a) Illustration of a sphere discretized into Np = 500 equal area regions.
(b) Schematic diagram of a uniform particle of radius a interacting with a uniform flat
collector. The local and minimum particle-collector separation distances are denoted
by h and D, respectively. Differential surface elements dA on the particle and dS
on the collector are also indicated, as well as the unit vector e1 that points in the
direction of the collector surface element. The rotational and translational velocities
are Ωx and Vy, respectively, and the flow shear rate is γ̇.
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where dAi is the area of the sphere element i, dSi is its projected area on the plane,

n is the vector normal to the sphere element and e⊥ denotes the direction normal

to the projection plane. The sum of the elemental projected areas
∑

dSi is within

0.0038% of the exact value of 2S = 2π a2 (for two hemispheres).

4.3 Homogeneous particle-collector systems.

In the GSI technique, the total force or energy of interaction is obtained from a

pairwise summation of interactions between differential areal elements on the collector

and particle surfaces. In previous work,14,37–39 the collector surfaces were electrostat-

ically and topographically heterogeneous, while the flowing colloidal particles were

smooth, uniformly charged spheres. A discretization scheme of the spherical sur-

face was therefore not needed, and only the heterogeneous collector was partitioned

into small areal elements. The accurate modeling of systems of heterogeneous parti-

cles, however, does require the discretization of the spherical surfaces. In the results

that follow, the use of the GSI technique is extended to the modeling of systems

that include heterogeneous colloidal particles by incorporating the EQSP sphere dis-

cretization scheme in the computation of DLVO particle-collector interactions.

The case of particles with ordered heterogeneity is considered first. DLVO interac-

tions for the homogeneous system are obtained by implementing the GSI technique,

and including the discretization of only one interacting surface, which is either the

spherical surface or the flat collector. For the case of a discretized, homogeneous

spherical particle, all the EQSP-generated differential elements are assigned the same

surface properties, which also equal those of the uniformly patterned collector.

Presented in Fig. 4.1(b) is a schematic diagram of an homogeneous particle-

collector system. Negatively charged, flowing particles of radius a interact with the

flat uniform collector, which is also negatively charged. The local and minimum

particle-collector separation distances are denoted by h and D, respectively. Due to
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the linear shear flow with shear rate γ̇, the particle translates in the y-direction with

a linear velocity Vy and rotates around an axis parallel to the collector surface with

a rotational velocity Ωx. The origin of the Cartesian coordinate system is the left

edge of the collector. For interactions of 2a = 1µm diameter particles, the collector

length is L = 30µm, while shorter collectors of length L = 20µm were simulated for

interactions of 2a = 500 nm diameter particles. A spherical coordinate system with

origin in the sphere’s center, is also defined. The inclination angle is θ, 0 ≤ θ ≤ π,

and the azimuth angle is φ, 0 ≤ φ ≤ 2π. The radial direction is normal to the particle

surface.

In Fig. 4.2(a), the energy profile of a smooth and uniformly charged 2a = 1µm

diameter particle interacting with a flat surface is shown. Colloidal interactions are

characterized by the inverse Debye screening length κ−1 = 4 nm and Hamaker con-

stant AH = 5×10−21 J. The surface loading Θ, defined as the area of the collector

(or particle) patterned with heterogeneity relative to the total collector (or particle)

area, is equal to zero for both interacting surfaces, which carry an electrostatic po-

tential ψ = −25 mV. The energy profile is thus defined by the repulsive electrostatic

double layer (EDL) interactions between the uniformly and equally charged particle

and collector surfaces.

The interactions presented in Fig. 4.2(a) are computed by implementing the GSI

technique and either including (solid line) or not (dotted line) the EQSP algorithm

for the modeling of the uniformly charged, smooth sphere. As in Sec. 4.2, the uni-

form 2a = 1µm diameter particle is discretized into Np = 25963 elements, such that

the area of each element is dAi ' 121 nm2. In the case for which the spherical sur-

face is not discretized into differential elements, the collector surface is partitioned

instead. The collector grid consists of 91 square elements that represent a length of

2a = 1µm, such that the length of each square element is ≈ 11 nm. The spherical

and planar discretization schemes are specifically chosen so as to define equal-area
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Figure 4.2. Energy-distance profile (a) and particle trajectory (b) for a uniform par-
ticle interacting with a uniform collector. The particle’s surface is either discretized
into equally patterned area elements (with the EQSP algorithm) or treated as a non-
discretized uniform surface, in which case the collector surface is discretized instead.
In both cases, DLVO interactions are computed with the GSI technique. The sim-
ulation parameters are: 2a = 1 µm, γ̇ = 25 sec−1, κ−1 = 4 nm, AH = 5×10−21 J,
ψcollector = ψsphere = -25 mV.
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elements, in this case of dAi ' 121 nm2. In heterogeneous systems, the size of one

areal element usually equals the surface feature size, and therefore, discretization

schemes vary with particle and surface features dimensions. It is seen in Fig. 4.2(a)

that both computational techniques yield results that are in perfect agreement. Par-

ticle trajectories for the homogeneous system were also calculated with the mobility

matrix approach described in Sec. 2.8 and implementing both computational meth-

ods, with results shown in Fig. 4.2(b). A comparison with trajectories obtained for

uniform non-discretized spheres and sets of different parameters also showed a com-

plete agreement between the GSI and the GSI-EQSP techniques, which validates the

discretization scheme.

4.4 Interactions with heterogeneous particles: Ordered het-

erogeneity.

Particle heterogeneity is modeled by partitioning the spherical surface into dif-

ferential areal elements, each of which can be assigned distinct surface properties.

Ordered particle heterogeneity assigned in the form of stripes with a subtended angle

of π/6 radians, located at different polar (or zenith) angles θ from the positive z-axis

are shown schematically in Fig. 4.3. The origin of the spherical coordinate system is

the center of the particle, as shown in Fig. 4.1(b).

Trajectories of striped particles translating in shear flow over uniformly charged,

flat collectors are presented in Fig. 4.4. The spherical surfaces are topographically

smooth and electrostatically heterogeneous. In Fig. 4.4(a), the sphere stripes are

charged with a surface potential of ψstripe = 50 mV, while the remaining sphere

surface and the flat collector bear an equal potential of ψsphere = ψcollector = −25

mV. The attractive stripe-surface interactions dominate the particle’s behavior and

thus all the striped particles ultimately adhere on the collector surface. Each striped

particle adheres at a different horizontal displacement from the origin of the collector,
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Figure 4.3. Schematic diagram of 2a = 1µm diameter spheres patterned with stripes
located at varying polar angles θ. (a) θ = 3π/4. (b) θ = π. (c) θ = π/4. (d) θ = π/2.

however, due to the initial angular orientation of the stripe. The distance the particle

translates before adhering on the collector increases as |(π/2− θ)| increases. For the

case of θ = π/4, however, the traveled distance before adhesion is larger than that for

θ = 3π/4 due to the clockwise rotation of the particle in the shear flow. For the same

sphere-collector system properties, non-adhesive particle behavior is observed with a

slightly repulsive stripe electrostatic potential. Particle trajectories computed for a

sphere stripe potential of ψstripe = −10 mV are presented in Fig. 4.4(b). The particles

do not adhere on the collector and instead translate in cyclic trajectories that are off-

phase, as a result of the different initial angular orientations of the stripes. Colloidal

interactions are defined by the Debye length κ−1 = 4 nm and the Hamaker constant

AH = 5×10−21 J, chosen to resemble experiments performed for silica-water-silica

systems.
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(a)

(b)

Figure 4.4. Trajectories of 2a = 1µm diameter spheres patterned with stripes
located at different initial polar locations interacting with uniformly charged, flat col-
lectors. The unpatterned regions of the sphere and the uniform collector are charged
with a uniform electrostatic potential of ψuni = -25 mV. The potential assigned to
the sphere stripes varies, to yield attractive or repulsive interactions. (a) Attractive
stripe-collector interactions, obtained with a stripe potential ψstripe = 50 mV. (b)
Repulsive stripe-collector interactions, obtained with a stripe potential ψstripe = −10
mV.
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A myriad of particle dynamic behaviors can thus be readily simulated with the

EQSP-GSI technique by varying not only the number, angular initial orientation, and

width of the stripes, but also the particle and collector surface properties. Parameters

that define colloidal interactions, such as the inverse Debye screening length κ−1 and

the Hamaker constant AH, can also be specifically tailored for each pair of sphere-

collector surface elements.

4.5 Interactions with heterogeneous particles: Random het-

erogeneity.

Particles with randomly distributed heterogeneity can also be constructed by ran-

domly selecting the sphere elements that are assigned the distinct surface proper-

ties. In this section, interactions between patchy particles and uniformly charged,

flat collectors are studied for different particle sizes and a range of surface loadings

and Debye lengths. Detailed comparisons to interactions computed for systems of

uniformly charged spheres with patchy collectors are made to quantify differences

in the systems’ adhesive properties. The patchy particle and patchy collector sys-

tems are schematically depicted in Fig.4.5. Patches on either heterogeneous surface

are assigned a potential of ψhet = 50 mV, while the other regions of the heteroge-

neous surface and the homogeneous surface bear a uniform electrostatic potential of

ψuni = −25 mV. The interactions between a patch and the homogeneous surface are

therefore attractive, while the interactions between other regions are repulsive. The

individual patch area equals that of the surface element (Apatch ' 121 nm2), such

that the patches approximately model 11 nm squares. Due to the pseudo-random,

Poisson distribution used to locate patches on both heterogeneous surfaces (planar

or spherical), there are no regions on either heterogeneous surface where patches are

preferably assigned.
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(a)

(b)

Figure 4.5. Schematic diagrams of particle-collector systems with one heterogeneous
surface. (a) Patchy sphere-homogeneous collector. (b) Homogeneous sphere-patchy
collector.

For a fixed surface loading of Θ = 0.17, trajectories of patchy particles flowing

over uniformly charged collectors and those of uniformly charged particles flowing

over patchy collectors are presented in Figs. 4.6(a)-(b) for two particle sizes and

Debye lengths. For each case, the ratio of the particle’s rotational to translational

velocities are plotted as a function of the horizontal displacement in Figs. 4.6(c)-(d).

In Fig. 4.6(a), the upper lines represent trajectories of 2a = 1µm diameter patchy

and uniform spheres translating in shear flow above uniform and patchy collectors

respectively, for a Debye length of κ−1 = 5 nm. Due to the large Debye length,

both particles translate at a relatively large separation distance from the collector,

and the particles do not contact or deposit on the collector. The average separation

distance for the patchy particle is D/a = 6.639× 10−2 ± 2.075× 10−3 (D = (33.2±

1.04) nm), while that of the uniform particle is D/a = 6.599 × 10−2 ± 2.130 × 10−3

(D = (33.0 ± 1.07) nm), in agreement with the secondary minimum in the energy
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Figure 4.6. Trajectories and velocity ratios for patchy and uniform particles of
two different sizes interacting at Debye lengths κ−1 = 1, 5 nm, for a fixed surface
loading Θ = 0.17. Rolling friction is computed with a friction coefficient of µR =
1.3 × 10−4.(a)(b) Particle trajectories of patchy and uniform particles, for particle
sizes of 2a = 1µm (a) and 2a = 500 nm (b). (c)(d) Angular to translational velocity
ratios of patchy and uniform particles, for particle sizes of 2a = 1µm (c) and 2a = 500
nm (d). For clarity, all solid lines represent the patchy particle system, while all dotted
lines indicate results obtained for the patchy collector system.
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profile Dmin = 33.1 nm, computed with the GSIUA technique.14 Although the mean

separation distance and its standard deviation are practically the same for the patchy

particle and patchy collector, adhesion probabilities are found to be larger in patchy

particle systems than in patchy collector systems. This behavior is examined in more

detail in Sec. 4.5.1 and linked to patchy residence times in Sec. 4.5.3. In Fig. 4.6(c),

the ratio of the rotational and translational velocities for a Debye length κ−1 = 5 nm

are shown by the lower solid and dotted lines, which indicate results for the patchy

and uniform spheres, respectively. In both cases, the ratios fluctuate around the same

values, that are less than unity when the particle is not in contact with the collector,

confirming that the particles translate faster than they rotate.

The lower solid and dotted lines in Fig. 4.6(a) show trajectories of 2a = 1µm

diameter patchy and uniform particles, respectively, for a Debye length κ−1 = 1 nm.

It is seen that both particles frequently contact the collector surface (at an arbitrarily

small distance δ = 1 nm taken as representative of surface roughness) to yield a

trajectory that is characterized by alternating periods of rolling motion and of free

flow in close proximity to the collector. Both particles maintain a separation distance

D < 5 nm as they flow above the entire simulated collector. Velocity ratios as a

function of the horizontal displacement are shown by the upper solid and dotted lines

(for patchy and uniform particles respectively) in Fig. 4.6(c). The rolling periods for

both particles are identified by velocity ratios that are equal to unity, as it is assumed

that the particle does not slip when it contacts the surface, while the translation

between those periods corresponds to velocity ratios that fall below unity.

Trajectories of 2a = 500 nm diameter particles at Debye lengths κ−1 = 1, 5 nm are

shown in Fig. 4.6(b). The patchy spheres are discretized into Np = 6489 elements,

such that the surface area of each element remains dAi ' 121 nm2, and the patchy

collectors are modeled with a grid consisting of 45 square elements that represent a

length of 2a = 500 nm, such that the length of each square element is ≈ 11 nm. At a
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large Debye length of κ−1 = 5 nm, the patchy particle (upper solid line) translates at

a separation distance of (33.40±1.45) nm, while the average separation distance of the

uniform particle (upper dotted line) is (33.20±1.68) nm, in good agreement with the

secondary minimum in the energy profile of Dmin = 33.5 nm, computed with the GSIUA

technique.14 The amount of spatial fluctuations of the uniform particle trajectory is

larger, as expected from the larger separation distance standard deviation. More

importantly, the uniform particle adheres on the patchy collector, while the patchy

particle flows above the entire uniform collector, without adhering. The respective

velocity ratios, presented in the lower solid and dotted lines in Fig. 4.6(d) are smaller

than 1. Both particles translate fast, with respect to their rotational motion, and,

for the uniform particle, the ratio increases to 1 when the particle is arrested on the

collector due to a rolling resistance in the direction of flow that retards the particle’s

motion as a consequence of elastic deformations of the surfaces in contact.

The condition for particle arrest is found from a force balance in the direction of

flow and reads39

Fy +
Tx
a

− Frf < 0 (4.2)

where Fy and Tx are the shear-induced force and torque, respectively, and Frf = µRF
N
z

is the rolling resistance, determined by a friction coefficient µR and the normal force

FN
z = −FDLV O. The particle therefore arrests on the collector once the DLVO forces,

multiplied by an appropriate friction coefficient, are sufficiently attractive to overcome

the shear-induced effects, or, when

Fy +
Tx
a

+ µRFDLV O < 0 . (4.3)

The rolling friction is computed with a friction coefficient of µR = 1.3× 10−4.

For a Debye length of κ−1 = 1 nm, trajectories of patchy and uniform 2a = 500 nm

diameter particles are shown by the lower solid and dotted lines in Fig. 4.6(b), and
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enlarged for clarity in the inset of the same figure. Both particle trajectories exhibit

rolling periods that alternate with free flow segments in which the particles translate

in close proximity to the collector. Due to friction forces, both particles ultimately

adhere on the collector when the DLVO attraction becomes sufficiently large. The

velocity profiles, denoted by the upper solid and dotted lines in Fig. 4.6(d), reach

a value of unity, thus indicating rolling periods, but fluctuate around values lower

than unity in the trajectory segments in which the particles loose contact with the

collector.

A more quantitative analysis of the respective rotational and translational motions

of the patchy and uniform spheres whose trajectories are presented in Fig. 4.6 is

obtained by comparing the average rotational and translational velocities. In each

case, the segment of the trajectory over which the average velocities were computed

lies between the first local extremum (after the initial location) and the last one (not

including the final position of the sphere). To obtain more accurate average values,

the mean velocities are not calculated as averages given by

V (Ω) =
1

N

i=N
∑

i=1

Vi(Ωi) , (4.4)

but instead, they are computed using the trapezoidal rule, such that

V =
1

yN − y1

i=N−1
∑

i=1

1

2
(Vi + Vi+1)(yi+1 − yi) (4.5)

and

Ω =
1

yN − y1

i=N−1
∑

i=1

1

2
(Ωi + Ωi+1)(yi+1 − yi) , (4.6)

where y1, yN are the horizontal locations corresponding to the first and last local

extremum points, respectively. The average translational (V ) and rotational (Ω)

velocities computed with Eqs. (4.5)-(4.6) are presented in Table 4.1. The subscripts

“p” and “u” denote patchy and uniform spheres, respectively.
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2a = 500 nm 2a = 1µm

Debye length [nm] Ωx, p/Ωx, u Vy, p/Vy, u Ωx, p/Ωx, u Vy, p/Vy, u
1 1.2490 1.5716 1.0328 1.1729
5 1.0007 1.0016 1.0007 1.0013

Table 4.1. Ratios of rotational and translational velocities of ‘patchy’ (p) and ‘uni-
form’ (u) particles, for two particle sizes (2a = 500 nm, 2a = 1µm) and two Debye
lengths κ−1 = 1, 5 nm. Velocity averages are computed for the trajectories presented
in Fig. 4.6.

At a large Debye length, both large and small, patchy and uniform particles rotate

and translate at the same velocities, as denoted by the ratios that are equal to unity

in the lower row in Table 4.1.

At a small Debye length, however, differences between patchy and uniform par-

ticles become noticeable. Though the large patchy particle rotates at roughly the

same velocity as the uniform particle, its translation is approximately 17% faster

than that of the uniform particle. For smaller particles, however, differences are more

significant, as denoted by the rotational velocity ratio of ≈ 1.25 and the translational

velocity ratio of ≈ 1.57.

Differences between particle sizes are thus significant only for interactions at small

Debye lengths. In particular, the highest rotational and translational velocity ratios,

which indicate a more meaningful distinction between patchy and uniform spheres,

are obtained for a small particle size of 2a = 500 nm diameter and a low Debye length

of κ−1 = 1 nm.

The radius of the electrostatic zone of influence (ZOI), RZOI ≡ 2
√
κ−1a, has been

introduced in Sec. 1.1 as the lengthscale over which the interaction per unit area

is significant, in systems involving particle interactions with patchy collectors.81,103

The overall character of the interactions is thus determined by the size of the ZOI,

which, in turn, is defined as a function of the Debye length κ−1 and the particle size a.

Differences between trajectories of patchy and uniform spheres are thus expected to
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be meaningful for small particles interacting at relatively low Debye lengths, because

a smaller ZOI increases the heterogeneous character of the interactions. For the op-

posite case of large RZOI values, particle-collector interactions have a more mean-field

like character, such that the effect of the heterogeneity is lessened, and a distinction

based on the specific heterogeneity location (sphere or collector) is inferred to be

much less significant. Results presented in the sections that follow will thus refer to

computations performed for a 2a = 500 nm diameter patchy particle discretized into

Np = 6489 elements. Heterogeneous collectors are discretized using a grid consisting

of 45 square elements that represent a length of 2a = 500 nm, such that the length

of each square element is ≈ 11 nm.

4.5.1 Collection probability.

Collection probability curves are computed to distinguish further the behavior of

the patchy particle and patchy collector systems. Collection probabilities are defined

as the ratio of adhered particles (successes) to the total number of simulated particle

trajectories (trials).74 Computations of a large, statistically significant number of

particle trajectories are necessary due to the random distribution of heterogeneity on

the patchy surfaces, which are either planar or spherical. The collection probability

estimate is obtained, as in Sec. 3.2.4, from

η̂ =
ND

Ntotal

(4.7)

where ND is the number of particles deposited on the collector and Ntotal is the total

number of particle trajectories simulated.

To obtain more statistically relevant predictions, Wilson score intervals121 that

include the actual values of the collection probability are constructed based on the

estimates given by Eq. (4.7), and following the steps described in Sec. 3.3.3. Col-

lection probability curves presented in Fig. 4.7 are obtained as series of intervals
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computed from Eq. (3.22) with a 95% confidence interval (α = 0.05), such that

z1−α/2 = 1.96. The sample size is n = Ntotal and the probability estimate p̂ = η̂ is

obtained from Eq. (4.7).

Unlike deposition rate curves, the collection probability curves presented in Fig.

4.7 do not contain any rate information, since they do not depend on the specific

location on the collector at which the particle adheres nor on the required computa-

tional time. In similar computational studies performed on the basis of the random

sequential adsorption (RSA) model described in Sec. 1.1, the particle adsorption

kinetics is characterized by plots of the absorbed particle coverage as a function of

a dimensionless adsorption time that depends on the adhering particle size and the

number of simulated adhesion attempts.6,8 The RSA approach is thus most relevant

when a significant fraction of the surface is covered by adhered particles. Experimen-

tal work71,72,81,103 involving heterogeneous collectors with nanoscale patches has been

focused on adhesion thresholds and initial deposition rates (when the fraction of the

collector covered by adhered particles is negligible). In the present study, particle

trajectories were thus computed sequentially for collectors with no adhered particles.

Particle adhesion is determined by its translation and rotation in shear flow subject

to the computed DLVO interactions with the heterogeneous surfaces. The collection

probability estimate given by Eq. (4.7) is the ratio of successful adhesion attempts

to the total number of attempts, and resembles the available surface function (ASF),

defined as the normalized particle adsorption probability in the limit Nattempts → ∞.8

In Fig. 4.7, collection probability curves are presented for patchy particles and

patchy collectors at Debye lengths κ−1 = 2, 4 nm. The total number of particle trajec-

tories simulated for each point on this plot is Ntotal = 1000. Each of the trajectories

computed for patchy particles was performed for a different heterogeneous particle, in

which the patches are randomly distributed on the spherical surface. Alternatively,

uniformly charged particles were simulated to flow over distinct heterogeneous collec-
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Figure 4.7. Collection probability curves of 2a = 500 nm diameter, patchy and
uniform particles, interacting at Debye lengths κ−1 = 2, 4 nm. Each data point is
presented as a Wilson score interval.

tors, each of which was patterned with patches located at randomly chosen locations.

Once the sphere or planar surface was discretized into elements with equal area, the

algorithm used to choose the location of a patch was identical. For each data point

in Fig. 4.7, the number of particles that adhered on the collector was recorded, the

respective collection probability estimate η̂ obtained from Eq. (4.7) and the Wilson

score interval computed from Eq. (3.22).

For a given model system and set of parameters, the adhesion threshold is de-

fined as the smallest surface loading for which particles adhere on the collector

(Θc = min(Θ) : η > 0). Such thresholds are readily determined from the collec-

tion probability curves. It is seen in Fig. 4.7 that adhesion thresholds increase with

increasing Debye length for both the patchy and the uniform spheres. At larger

Debye lengths, the larger ZOI determines a stronger mean-field character of the in-

teractions, because surface nano-features are effectively smeared over a greater area
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of the collector. Thus, at larger Debye lengths, the increasing repulsive character of

the interactions leads to larger adhesion thresholds.

Interestingly, the adhesion thresholds for patchy spheres are larger than those of

the uniform spheres at both Debye lengths. The higher threshold for the patchy

sphere is attributed to its decreased tendency to contact and adhere on the uniform

collector, with respect to the uniform sphere flowing over the patchy collector. The

lessened adhesive behavior of the patchy particle is due to its larger effective residence

time per patch with respect to that of the uniform particle, as described in detail in

Sec. 4.5.3.

It is also noted that, with respect to the uniform sphere collection probability

curves, those of the patchy particles have, at both Debye lenghts, a larger spread

∆Θ = ΘL − Θc, where ΘL is defined as the minimum surface loading for which all

particles adhere on the collector (ΘL = min(Θ) : η̂ = 1). The patchy sphere thus

presents intermediate adhesive behaviors (0 < η̂ < 1) over a larger range of surface

loadings Θ. As described in Sec. 4.5.2, the standard deviation of the number of

local extrema in the separation distance is significantly larger for the patchy particles

than for the uniform particles; in particular, for larger values of the surface loading

at which a larger number of particles adhere on the collector. For heterogeneity

distributed on spherical surfaces, particle trajectories for the same system parameters

are notably different. For heterogeneous planar surfaces, however, only minor changes

are visible in the particle trajectories for a fixed set of system parameters. Adhesion

probability curves for patchy particles are thus broader than those for the patchy

collector system because as the surface loading increases, so does the number of

possibly different trajectories of the patchy particle, which, in turn, translates to an

adhesion probability that is less than unity. The patchy particle system therefore

reaches an unity adhesion probability at a larger surface loading than that for the

patchy collector system.
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Alternatively, particle collection probabilities can be defined as the ratio of the

number of surface elements that yield attractive interactions to the total number of

surface elements. Discrete surface elements are considered to yield attractive interac-

tions if their energy profile does not present an energy barrier, that is, if UMAX < 0.

Computations are identical to those performed to obtain the energy contour plots

presented in Figs. 3.22(b)-(c). As described in Sec. 3.3.3, the DLVO energy-distance

profile is computed with the GSI technique by placing the particle’s center projection

at the center of each element of an heterogeneous collector. Due to interactions with

different regions of the heterogeneous surface, a distinct energy-distance profile is ob-

tained at each element of the discretized collector. The number of collector elements

for which the energy barrier disappears is divided by the total number of collector

elements sampled, to yield a newly defined collection probability that is based on

DLVO calculations.

Collection probabilities obtained from the trajectory-based approach described

previously are compared in Fig. 4.8 to those computed with the newly defined model

that stems from DLVO calculations, for a uniform 2a = 500 nm diameter particle

interacting with a heterogeneous collector at Debye lengths κ−1 = 2, 4 nm. The

curves with filled markers are those presented in Fig. 4.7 for the case of a patchy

collector.

As shown in Fig. 4.8, the adhesion probability curves based on DLVO calculations

are broader than those obtained from particle trajectory computations. Heteroge-

neous surfaces are characterized by distinct local regions that can be either attractive

or repulsive, and the transition between such regions is gradual and smooth, as seen

in the energy contour plots presented in Figs. 3.22(b)-(c). The probability that for

a given surface element the energy barrier is UMAX < 0 thus correlates with the re-

spective probability for the neighboring elements. If a specific element is attractive,

it is reasonable to expect that elements located within a certain distance from it will
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Figure 4.8. Adhesion probability curves based on particle trajectories (filled mark-
ers) and DLVO computations (empty markers) for a uniform 2a = 500 nm diameter
particle interacting with patchy collectors at Debye lengths κ−1 = 2, 4 nm.

also be defined as attractive. If, however, an element presents a high energy barrier,

it can be assumed that such element belongs to a locally repulsive region, such that

closely surrounding elements will also bear a repulsive character. Adhesion probabili-

ties based on trajectory computations define, in contrast, steeper curves. At different

simulation attempts, the probability of a particle adhering on a specific heteroge-

neous collector is uncorrelated to that of a subsequent particle adhering on a different

collector. Broader adhesion probability curves obtained from the approach based on

DLVO calculations are therefore linked to the probability correlations between surface

elements within a locally attractive or repulsive region.

While all trajectory-based probabilities are smaller for the larger Debye length

κ−1 = 4 nm, in the case of probabilities defined with DLVO computations, at large

surface loadings Θ = 0.36−0.40 for which η → 1, the computed results for the higher

Debye length κ−1 = 4 nm are larger than those obtained for the smaller Debye length
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κ−1 = 2 nm. Such “crossing” of the collection probability curves is only minimal, thus

not visible in the presented plots, and could be due to computational round off errors.

It is reminiscent, however, of the hydrodynamic crossover observed in experiments37

that is attributed to the shift from heterogeneity-governed interactions at low Debye

lengths to mean-field like interactions at high Debye lengths. Adhesion probabilities

based on DLVO interactions computed for larger sets of system configurations and

parameters could yield a better description of the nature of such crossing.

The parallel-like trajectory-based adhesion probability curves presented for dis-

tinct system properties in Figs. 3.14 and 4.7 resemble the cumulative distribution

functions (CDFs) of the Poisson distribution, appropriately defined for the heteroge-

neous systems considered.

In Fig. 4.9, the probability mass function (PMF) of the Poisson distribution

obtained from

f(k;λ) =
λk e−λ

k!
, (4.8)

is compared to PMF values computed for one specific collector. In Eq. (4.8), k is the

number of occurrences and the positive real number λ is the distribution parameter

that equals the expected value and the variance of a discrete stochastic variable X.

For the heterogeneous systems under consideration, the distribution parameter λ is

defined in terms of an arbitrarily chosen collector length L and the surface loading Θ,

such that λ = ΘL2. The heterogeneous collector is divided into square L×L regions,

and the number of surface features (k) within each region is recorded. The probability

P (X = 15) = 0.02 indicates, for example, that a region of the collector containing 15

surface heterogeneities can be found with a probability of 2%. The agreement between

Poisson PMF values calculated from Eq. 4.8 and those obtained from the collector

data is clear, and the distribution of collector heterogeneities indeed follows Poisson

statistics. Such agreement, however, would be improved by performing averages over

many heterogeneous collectors.
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(a)

(b)

Figure 4.9. Poisson probability mass functions (PMFs) calculated from Eq. (4.8)
and obtained with data of one heterogeneous collector for each value of Θ, for varying
distribution parameters. (a) Θ = 0.01, L = 6 and λ = 0.36. (b) Θ = 0.10, L = 15
and λ = 22.5.
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The cumulative distribution function (CDF) of the Poisson distribution,

P (X ≤ k) = e−λ

bkc
∑

i=0

λi

i!
, (4.9)

is computed for three different values of the surface loading Θ = 0.10, 0.15, 0.30 and

presented in Fig. 4.10. For each value of Θ, the parameter L is arbitrarily chosen

to yield different values of the distribution parameter λ, each of which determines

one CDF curve. As seen in Fig. 4.10, CDF plots at fixed Θ values appear to be

parallel. Therefore, such CDF curves could be appropriately scaled to either resemble

adhesion probability results presented in Figs. (3.14) and (4.7) or to better model

experimental deposition rate curves37 that are not parallel for varying Debye lengths.

The parameter L should depend, for example, on colloidal interaction properties (such

as κ−1 and AH).

4.5.2 Number of local extrema in separation distance.

Particle-collector interactions in heterogeneous systems present spatial variations,

which are due to the presence of local regions that have a more (or less) attractive

character than that predicted by a mean field average of the heterogeneity. The

various locally attractive and locally repulsive areas within the heterogeneous surface

are clearly identified by the fluctuations observed in particle trajectories, such as those

presented in Figs. 4.4 and 4.6.

Trajectories for the patchy particle and patchy collector systems differ in the

extent of fluctuations in the particle-collector separation distance. Such differences

can be quantified by computing the number of local extrema in the trajectories as a

function of the surface loading Θ, for each particle type (patchy or uniform). Due

to the inherent random nature of the heterogeneity, the number of extrema for each

particle type at each value of Θ is obtained as an average performed over a number

of trajectories.
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(a)

(b)

(c)

Figure 4.10. Cumulative distribution functions (CDFs) of the Poisson distribution
computed with Eq. (4.8) for varying Θ. The parameter L is chosen in each case to
yield different values of the distribution parameter λ. (a) Θ = 0.10. (b) Θ = 0.15.
(c) Θ = 0.30.
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For a fixed value of Θ, the average number of extrema per unit distance in the

trajectory of the i-th particle is defined as

Next i =
Ni

yi
(4.10)

where Ni is the number of local extrema observed in the trajectory of particle i and

yi is the horizontal distance (in the plane defined by the collector) between the first

and last local extrema.

For Ns trajectories of particles that adhere on the collector, at a fixed surface

loading Θ, the average density of extrema is

< Next >s=

∑i=Ns

i=1 Next i

Ns

. (4.11)

Similarly, for Nns particles that do not adhere on the collector,

< Next >ns=

∑j=Nns

j=1 Next j

Nns

. (4.12)

The average density of extrema for a fixed Θ is then obtained as the linear com-

bination

< Next >= p < Next >s +(1− p) < Next >ns (4.13)

where

p =
ND

Ntotal

, (4.14)

ND is the number of particles deposited on the collector, and Ntotal ' 200. Trajecto-

ries for which Ni ≤ 1 were discarded.
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The variance of < Next > is obtained from an error propagation expression derived

for Eq. (4.13), assuming that, for the specific case of the trajectories considered in

these results, p is a precisely known constant. Thus,

σ2
Next

= p2σ2
Next, s

+ (1− p)2σ2
Next, ns

. (4.15)

For colloidal interactions with κ−1 = 4 nm and AH = 5×10−21 J, the number of

extrema is plotted in Fig. 4.11 as a function of the surface loading Θ.

It is seen in Fig. 4.11 for both patchy and uniform particles, that the average

number of local extrema remains relatively constant for low values of the surface

loading Θ, but increases as the surface loading is further increased. As described in

Sec. 4.5, interactions with surface heterogeneity are defined as attractive, regardless

of the specific location (spherical or planar) of such heterogeneity. For increasing

surface loading, thus, the increasingly stronger attractive interactions decrease the

particle-collector separation distance, resulting in a larger number of spatial fluctu-

ations (number of extrema) in the particle trajectories. For both particle types, the

average number of extrema starts increasing when the probability of adhesion p (for

the particular set of trajectories considered) is p ' 0.37, occurring at Θ ' 0.16 and at

Θ ' 0.20 for the uniform and patchy particles, respectively. The standard deviation

in the number of extrema increases as well, and more significantly than the number of

extrema itself, with increasing surface loading Θ. As the number of adhering particles

increases, the existence of different adhesion sites on each heterogeneous surface (pla-

nar or spherical) multiplies the number of different trajectories that denote particle

adhesion, which leads to an increased standard deviation in the number of extrema at

larger values of Θ. In particular, the standard deviation increases dramatically when

the adhesion probability approaches unity, as seen in Fig. 4.11.

The total number of extrema for the patchy particle is smaller (Ntot,p ' Ntot,u/2)

than that of the uniform particle. As described in detail in Sec. 4.5.3, the larger
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Figure 4.11. Weighted number of extrema as a function of the surface loading,
Θ, for patchy and uniform particles and a fixed particle diameter of 2a = 500 nm
averaged over Ntot ' 200 trajectories.

residence time per patch of the patchy particle partially precludes interactions with

other heterogeneity regions, which gives rise to smoother trajectories, or, equivalently,

a smaller number of extrema. For each particle type (patchy and uniform), the

maximum and minimum number of extrema are also computed and found to be

essentially equal, Nmax, p (u) = Nmin, p (u) = Ntotal, p (u)/2, as expected.

The standard deviation is, however, significantly larger for the patchy particles

than for the uniform particles, in particular for larger values of Θ for which a greater

number of particles adhere on the collector. The distribution of heterogeneity over

a spherical surface yields a broader distribution of trajectories, i.e., trajectories for

the same system parameters will be notably different. Heterogeneity distributed

over a planar surface, however, does not lead to meaningful differences in particle

trajectories, for a fixed set of system parameters, such that the standard deviation
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in the number of extrema is expected to be lower than that in the case of the patchy

particles.

For the limiting values of the surface loading, that denote an homogeneous re-

pulsive (Θ = 0) or a net-attractive surface (not necessarily entirely covered with

heterogeneity, for which Θ = 1), the number of trajectory local extrema is zero. In

the case of interactions between two homogeneous equally charged surfaces (Θ = 0),

the particle translates without fluctuations at a constant separation distance that

corresponds to the secondary minimum in the energy-distance profile. In the case of

a net-attractive heterogeneous sphere (collector) interacting with a uniformly charged

collector (sphere), the particle trajectory does not present any fluctuations and in-

stead, the separation distance monotonically decreases until the particle contacts the

collector at an arbitrarily small separation distance D = δ.

4.5.3 Maximum residence times.

Differences in the trajectories and adhesive behaviors of the systems with patchy

particles and patchy collectors can be interpreted based on the effective time period

over which one patch influences the electrostatic double layer interaction between a

particle and the collector. For simplicity, the maximum residence time is defined as

the maximum time a surface element remains in the ZOI. For a patchy collector, this

residence time is the time required for the particle to translate a distance of 2RZOI.

For a patchy particle, the residence time is the time required for the particle to rotate

through the corresponding subtended angle.

A particle in a shear flow in close proximity to a planar surface is shown schemat-

ically in Fig. 4.12(a). The particle translates with velocity Vy and rotates at angular

velocity Ωx. For the case in which the heterogeneity is located on the collector, the

appropriate maximum residence time depends on the translational velocity Vy, as

illustrated in Fig. 4.12(b), and is defined as
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(a)

(b) (c)

Figure 4.12. (a) Schematic definition of the radius of the Zone of Influence RZOI.
Debye layers of width κ−1 around each interacting surface, particle velocities Ωx and
Vy, and the angular displacement α that corresponds to a linear displacement of RZOI,
are also indicated. (b)(c) Schematic diagrams illustrating the appropriate displace-
ments and velocities that define the maximum residence time per (heterogeneous)
surface element for patchy collectors and spheres. (b) Linear displacement and linear
velocity Vy for the case of a patchy collector. (c) Angular displacement and rotational
velocity Ωx for the case of a patchy particle.

τtr =
2RZOI

Vy
. (4.16)

If the heterogeneity is located on the spherical surface, as depicted in Fig. 4.12(c),

the maximum residence time is a function of the rotational velocity Ωx,

τrot =
2α

Ωx

, (4.17)

where 2α is the angular displacement that corresponds to a linear displacement of

2RZOI, and sin(α) = RZOI/(a+ κ−1).
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The “rotational” residence time defined by Eq. (4.17) is equivalent to a transla-

tional residence time for small angular displacements (sin(α) ≈ α) defined in terms

of an effective translational velocity, V r
y ≡ aΩx,

τrot =
2RZOI

(a+ κ−1)Ωx

≈ 2RZOI

aΩx

=
2RZOI

V r
y

. (4.18)

For particle sizes and Debye lengths frequently chosen in experimental studies, the

angular displacements are indeed small. For example, the approximation sin(α) ≈ α

presents an error of less than 1% for particle sizes 2a = 500 nm - 1 µm and Debye

lengths κ−1 = 2 - 5 nm. When the particle is not in contact with the collector,

it is important to note that V r
y < Vy, as the particle rotates more slowly than it

translates.50,51 It is assumed that the particle rolls without slipping if it contacts the

collector, such that V r
y = Vy, as seen in Figs. 4.6(c)-(d). The particle arrests on the

collector once the rolling resistance exceeds the shear-induced force and torque, as

described in Sec. 4.5.

Computations of maximum residence times are most relevant for particle trajec-

tories at surface loadings for which the adhesion probability is small. Particle trajec-

tories for systems with large surface loadings (either on the spherical or the planar

surface) do not exhibit significant segments of particle translation nor rotation, since

the strong attraction brings the particles to an immediate arrest, denoted by a short

and monotonically decreasing trajectory.

The secondary minimum in the energy-distance profile is chosen as the appropriate

separation distance for the computation of the velocities required in Eqs. (4.16)-(4.17)

and is computed using the GSIUA technique,14 described in Sec. 3.1.5. The rotational

and translational velocities are obtained from the mobility matrix formulation of the

hydrodynamics described in Sec. 2.8, i.e., U = MF, where U is the vector of particle

velocities, F is the vector of the externally applied forces and torques, and the 6x6

mobility matrix M depends on the hydrodynamic functions Ft, Fr, Tt, Tr that model

138



the fluid’s resistance to particle motion. For maximum residence time calculations, the

hydrodynamic functions are computed with the functional forms given by Duffadar

and Davis,38 Eqs. (2.46)-(2.49), at a separation distance h = Dsec.min.. The particle

velocities are given by

Vy =
Tr

6πµaDf

Fy −
Tt

6πµa2Df

Tx (4.19)

and

Ωx = − Fr

8πµa2Df

Fy +
Ft

8πµa3Df

Tx , (4.20)

where Df = Tt Fr − Ft Tr, Fy = F S and Tx = T S are the shear-induced force and

torque, γ̇ is the shear rate, and µ = 1×10−3 Pa · sec is the water viscosity at T = 293

K. The shear force F S and torque T S are obtained by rearranging Eq. (2.50), and

substituting Eqs. (2.53)-(2.54) in place of the dimensionless correction factors. The

velocities given by Eqs. (4.19)-(4.20) are incorporated in Eqs. (4.16)-(4.17) to obtain

maximum residence times per element as a function of the surface loading, for varying

particle size and Debye length.

For patchy and uniform particles, at varying particle size and Debye length, max-

imum residence times are plotted in Fig. 4.13 as a function of the surface loading

of patches. In all cases, the residence time slightly increases with the surface load-

ing because stronger attractive interactions decrease the particle-collector separation

distance, which reduces the particle velocities. Surface loading values considered in

residence time calculations are those for which a secondary minimum in the energy-

distance profile exists.

For a fixed particle size of 2a = 500 nm, maximum residence times as a function

of surface loading, for both particle types (patchy, uniform), and two Debye lengths

κ−1 = 2, 4 nm are presented in Fig. 4.13(a). At a constant Debye length of κ−1 = 4
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(a)

(b)

(c)

Figure 4.13. Dimensionless maximum residence time per patch vs. surface loading,
for patchy and uniform spheres of varying particle sizes and at different Debye lengths.
(a) Maximum residence times of patchy and uniform particles, interacting at Debye
lengths κ−1 = 2, 4 nm. The particle size is fixed at 2a = 500 nm diameter. (b)
Maximum residence times of patchy and uniform particles, of sizes 2a = 500 nm
and 2a = 1µm diameter. The Debye length is fixed at κ−1 = 4 nm. (c) Ratios of
translational to rotational maximum residence times for varying particle sizes and
Debye lengths.
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nm, the residence times of the patchy particles are significantly larger than those of

the uniform spheres (in average, for the presented range of Θ, τrot ' 1.75 τtr). The

same trend is observed for the lower Debye length κ−1 = 2 nm. The larger residence

time per heterogeneous surface element of the patchy particle limits heterogeneous

(attractive) interactions, because patchy particles interact with each uniform collec-

tor element for longer periods of time. Uniform particles, however, interact with

each heterogeneous collector element for shorter periods of time, allowing for an in-

creased number of interactions with multiple patches within the same time period. In

agreement with all the results presented in this section, the larger residence time for

patches on the particle translates to a smaller number of trajectory fluctuations (num-

ber of local extrema), lower adhesion probabilities, and higher adhesion thresholds

than those computed for uniform particles flowing over a patchy collector.

For both particle types, it is also shown in Fig. 4.13(a) that, for a fixed particle

size, residence times are larger for the larger Debye length. At a constant particle

size, a change in the Debye length has two competing effects. An increase in the

Debye length corresponds to an increase of RZOI ≡
√
4κ−1a, suggesting the maximum

residence time should increase at larger values of κ−1. At the same time, however, a

larger Debye length moves the secondary minimum farther away from the collector,

which increases the particle velocity. At a constant particle size of 2a = 500 nm, the

increase in the size of the ZOI overcomes the increase in the particle velocity, such

that the maximum residence times increase with increasing Debye length.

The dependence of the maximum residence time on the surface loading at a con-

stant Debye length of κ−1 = 4 nm is shown in Fig. 4.13(b) for patchy and uniform

particles of sizes 2a = 500 nm and 1 µm. For both particle sizes, the patchy particle

residence times are larger than those of the uniform particles because the rotational

velocity is significantly smaller than the translational velocity. The effect of particle

size on the maximum residence time, at a constant Debye length, is dual, just as the
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effect of the Debye length at a constant particle size, previously described. At a fixed

Debye length, the larger particle has a larger ZOI, thus, it could be expected that

the larger particles will exhibit the larger residence times. It is the smaller particle,

however, for which the maximum residence times are larger. The smaller ZOI of the

smaller particle defines more localized interactions that also bear a stronger attractive

character. Such interactions reduce the flowing particles’ velocities, to yield larger

maximum residence times.

The ratio of the translational and rotational maximum residence times for the

particle sizes and Debye lengths presented in Figs. 4.13(a)-(b) are shown as a function

of the surface loading in Fig. 4.13(c). It is readily noted that

τtr
τrot

=
2RZOI/Vy
2RZOI/aΩx

=
aΩx

Vy
. (4.21)

The velocity-, or equivalently, residence time-ratios given by Eq. (4.21) and shown

in Fig. 4.13(c) are smaller than 1, and thus indicate that the particle translates

faster than it rotates, in agreement with the results presented in Figs. 4.6(c)-(d) for

trajectory segments in which the particle does not contact the collector.

In particular, for 2a = 500 nm patchy and uniform particles interacting with

uniform and patchy collectors respectively, at a Debye length κ−1 = 4 nm and surface

loading Θ = 0.17, the trajectories and velocity ratios as a function of the horizontal

displacement are shown in Figs. 4.14(a)-(b). As seen in Fig. 4.6(b) for interactions

at a Debye length κ−1 = 5 nm, the trajectories shown in Fig. 4.14(a) indicate that

the uniform particle adheres on the patchy collector, while the patchy particle does

not. The average velocity ratio of both particles, computed with Eqs. (4.5)-(4.6) for

the trajectory segments between the first and last extrema, is 0.5112± 3.6854×10−3.

This value agrees perfectly with the residence time ratio of 0.5134 presented for the

same system parameters (2a = 500 nm, Θ = 0.17 and κ−1 = 4 nm) in Fig. 4.13(c).
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Figure 4.14. Particle trajectories (a) and rotational to translational velocity ra-
tios (b) for patchy particle and patchy collector systems of 2a = 500 nm particles
interacting at a Debye length κ−1 = 4 nm and a surface loading Θ = 0.17.
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The ratio of translational to rotational residence times, or, the equivalent angular

to translational velocity ratio, given by Eq. (4.21), can be re-written as

aΩx

Vy
=

(Ωx/0.5γ̇)

(Vy/hγ̇)

(a/h)

2
(4.22)

where γ̇ is the flow shear rate, and h = D + a is the distance between the sphere’s

center and the flat surface, such that a/h = [(D/a) + 1]−1. Following the analysis by

Goldman et. al,51 it is found that

aΩx

Vy
=

(a/h)

2

[2(h/a)F S∗ T t − F tT S∗]

[(1/2)(a/h)F rT S∗ − F S∗T r]
. (4.23)

The dependence of the angular to translational velocity ratios on the dimensionless

separation distance D/a can thus be computed with appropriate sets of expressions

that define the hydrodynamic functions F t, T t, F r and T r, and the dimensionless

correction factors of the shear-induced force and torque, F S∗ and T S∗. Velocity ratios

computed from two different approaches to the approximation of such functions are

compared in Fig. 4.15.

In the first approach, velocity ratios are computed with the asymptotic expressions

(2.42)-(2.45) for the hydrodynamic functions and (2.51)-(2.52) for the shear-induced

force and torque correction factors, presented by Goldman et al.50,51 for the limit

of large separation distances D/a. The second approach makes use of the functional

forms derived by Duffadar and Davis,38 given by Eqs. (2.46)-(2.49) for the hydro-

dynamic functions and Eqs. (2.53)-(2.54) for the shear-induced force and torque

correction factors. Results obtained from the asymptotic expressions and functional

forms are also compared to velocity ratios tabulated by Goldman et al.50,51 The ve-

locity ratio data is computed, in turn, with tabulated values of the hydrodynamic

functions50 and of the shear force and torque dimensionless factors.51
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Figure 4.15. Angular to translational velocity ratios as a function of the separation
distance D/a computed by Eq. (4.23) furnished by asymptotic expressions or func-
tional forms that approximate the hydrodynamic functions and the shear-induced
force and torque correction factors. Tabulated data calculated by Goldman et al.50,51

is also presented.

As seen in Fig. 4.15, there is good agreement between results obtained from

the asymptotic expressions and the functional forms, which also fit well the tabu-

lated data. Moreover, the agreement is perfect for the range of separation distances

0.003202 < D/a < 1, which is the most relevant to experiments and to the results

presented throughout this work.

Angular to translational velocity ratios shown in Fig. 4.15 decrease for larger

separation distances D/a. This result coincides with the increase of the residence

time ratio for larger surface loadings Θ, shown in Fig. 4.13(c). As the surface load-

ing increases, the more attractive particle-collector interactions reduce the average

separation distance, thus increasing the rotational to translational velocity ratio, or,

equivalently, the translational to rotational residence time ratio.

The larger maximum residence times per heterogeneity element obtained for patchy

particles, at varying Debye lengths and particle sizes, thus leads to their lessened ad-
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hesive behavior with respect to that of the uniform particles, as suggested by all the

results presented in Sec. 4.5. For both particle types, however, the residence times

increase with increasing Debye length at a fixed particle size, and decrease with in-

creasing particle size at a fixed Debye length. Ratios of translational to rotational

maximum residence times smaller than 1 indicate that the particle translates faster

than it rotates. Such ratios also increase in all cases with surface loading, due to

the increase of the respective times with increasing surface loading. Translational to

rotational residence time ratios are found to be equivalent to angular to translational

velocity ratios, which decrease for larger separation distances. The increase of resi-

dence time ratios with surface loading parallels the decrease of the velocity ratios for

larger separation distances because stronger attractive interactions draw the particles

closer to the collector.

4.5.4 Adhesion regime diagrams.

The dependence of adhesion thresholds for each type of particle on the Debye

length can be presented in adhesion regime diagrams that delineate regions in the

parameter space in which particle adhesion, defined as irreversible particle arrest,

can or cannot be expected. Fig. 4.16 presents adhesion/no adhesion regimes for

the patchy and uniform sphere systems considered, for a particle size of 2a = 500

nm diameter. As expected from the results presented in previous sections, adhesion

thresholds are consistently higher for patchy particles than for uniform ones, such

that the adhesion regime of the patchy sphere is smaller than that of the uniform

sphere.

The differences in thresholds are noticeable at intermediate Debye lengths. At a

high Debye length of κ−1 = 10 nm, computations within this work revealed an equal

threshold of Θc = 0.19 for both particle types. Due to a larger ZOI, the heterogeneity

is smeared over a larger (planar or spherical) area and the interactions bear a more
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Figure 4.16. Adhesion regime diagram, presented as the dependence of the adhesion
thresholds Θc on the Debye length κ−1, for 2a = 500 nm diameter, patchy and uniform
particles. For patchy particle and patchy collector systems, the ‘Adhesion’ and ‘No
adhesion’ regimes are located above and below solid and dashed lines, respectively.

mean-field like character, irrespective of their specific location on the collector or

sphere. At a low Debye length of κ−1 = 1 nm, the computed thresholds for patchy

particle and patchy collector systems also coincide, and are equal to Θc = 0.02.

The strongly localized double-layer interactions are significant only over a small area

defined by a small ZOI, such that, as in the case of large Debye lengths, the total

interactions are not sensitive to the specific location, spherical or planar, of the surface

heterogeneities.

It is interesting to note that each of the ‘adhesion’ and ‘no adhesion’ regimes can

be subdivided to account for rolling/skipping motions and thus distinguish between 4

typical dynamic behaviors, given by the adhesion/no adhesion and surface contact/no

surface contact possible combinations. Particles of 2a = 500 nm diameter, with a

Debye length of 5 nm (upper lines in Fig. 4.6(b)) are examples of particles that do

not contact the collector and do not adhere on the surface (patchy sphere) and that do
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not contact the collector but do adhere on the surface (uniform sphere). Alternatively,

at a low Debye length of 1 nm, small patchy and uniform spheres contact the collector

and adhere on it (lower lines in Fig. 4.6(b)), while large particles contact the collector

but without adhering (lower lines in Fig. 4.6(a)).

4.6 Conclusion.

Particle-collector systems with one heterogeneous surface, which is either the

spherical particle or the flat collector, are characterized in detail for different system

geometries and a range of varying parameters including particle size, Debye length

and electrostatic potentials. DLVO interactions are computed by implementing the

GSI technique, and incorporated in a mobility matrix formulation of the dynamics

problem that yields particle trajectories as it translates in shear flow above a flat

collector.

The patchy collector system, thoroughly studied in previous work, does not require

spherical surfaces to be discretized into areal surface elements. To model interactions

of systems that include heterogeneous particles, however, the inclusion of such a dis-

cretization scheme in the computational model is, in fact, essential. The recursive

zonal EQual area Sphere Partitioning (EQSP) algorithm is introduced as an accurate

technique that yields the discretization of spherical surfaces into small, equal-area

elements. DLVO interactions for patchy particle systems are thus modeled by in-

corporating EQSP-generated spherical surface elements within the GSI technique.

The system’s dynamic behavior is also obtained in this case from mobility matrix

computations.

Differences in the adhesive and dynamic behaviors of particle-collector heteroge-

neous systems, in which only one surface is patterned with nanoscale features, are

quantified by computations of adhesion thresholds and of average numbers of trajec-
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tory local extrema. Maximum residence times per heterogeneous surface element are

also defined for patchy particles and for patchy collectors.

The lessened tendency of the patchy particle to adhere on a uniform collector,

with respect to that of the uniform particle adhering on a patchy collector, is at-

tributed to larger maximum residence times per element for the patchy particle. A

larger residence time per element precludes multiple interactions with many heteroge-

neous surface elements in a given time period, which translates into fewer attractive

interactions. Moreover, larger residence times reduce the amount of spatial fluctua-

tions exhibited by patchy particles interacting with uniform collectors, and leads to a

smaller number of trajectory local extrema, as shown in the results presented in this

chapter. Trajectory spatial variations, in turn, correlate with the extent of interac-

tions with heterogeneous surface elements, and ultimately provides insight into the

adhesive character of the system for a given set of parameters. Adhesion thresholds

of patchy particles are, indeed, larger than those of uniform particles adhering on

patchy collectors.

A new computational approach, that introduces a discretization scheme of spher-

ical surfaces incorporated within GSI computations of DLVO interactions, has been

applied to the computation of patchy particle trajectories. The use of this newly de-

veloped simulation technique can be extended, for instance, to model particle-collector

systems of two heterogeneous surfaces, which more accurately represent experimental

systems.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion.

Physical and biological phenomena that are interesting from a practical and theo-

retical point of view are controlled by particle-collector interactions. Some examples

include colloidal adsorption in separation, filtration, coating and cleaning applica-

tions, receptor-mediated processes, such as the adhesion and rolling of neutrophils on

ligand-coated surfaces, and the development of micro and nano-sensors for “lock and

key” devices. A detailed analysis of DLVO interactions and dynamic behaviors of

heterogeneous particle-collector systems can also provide a better understanding of

the physics underlying such mechanisms, and address questions related to experimen-

tal deposition rates that are higher than expected from a classical treatment of the

DLVO theory, or, to the specific influence of DLVO interactions on the shear-induced

motion of a colloidal sphere above a collector with nanoscale heterogeneity.

Theoretical background on the nature and properties of electrostatic double layer

and van der Waals interactions and on the DLVO theory of colloid stability is pre-

sented in Chap. 2. Numerical approximation techniques, such as the Derjaguin

approximation and the SEI and GSI techniques, developed to approximate DLVO

interactions for a number of system configurations, are also described. In particular,

the method of choice for all DLVO force and energy computations throughout this

work is the GSI technique, that defines the total particle-collector interaction as the

result of a pairwise summation of interactions between differential elements on each
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surface. A mobility matrix formulation of the hydrodynamic problem, which yields

particle velocities required to calculate particle trajectories, is introduced as well.

Systems comprised of smooth uniform particles and topographically and electro-

statically heterogeneous collectors are studied in Chap. 3.

In Sec. 3.1, particle interactions with collectors patterned with topographical

heterogeneities, modeled as cylindrical pillars, are computed with the GSI technique,

previously applied to the computation of interactions with flat collectors only. The

versatility of the GSI technique is also illustrated by modeling collectors with chemical

and topographical heterogeneity, such as surfaces patterned with pillars and patches

that are assigned distinct chemical properties. Due to interactions with attractive

nano-topography, the potential energy barrier toward particle deposition is found to

decrease significantly, even for nano-pillars that protrude a few nanometers from the

flat surface.

As well, a novel force- and energy- averaging model is introduced as a simple

method to compute the net interaction between a particle and a heterogeneous patchy

collector. This technique requires the computation of interactions with two homoge-

neous surfaces, each of which is uniformly charged. One homogeneous collector bears

the electrostatic potential of the patches, while the other is charged with the potential

of the underlying surface. It is noted that particle interactions with each homoge-

neous surface is not restricted to the GSI technique, and instead, such computations

could be obtained from SEI computations or Derjaguin approximation predictions.

The total particle-patchy collector interactions are then obtained by scaling the homo-

geneous interactions with the surface loading of patches. Net interactions predicted

by the force- and energy-averaging technique are more attractive than expected from

a mean-field approach based on an average surface potential, which parallels the

zeta potential measured in particle deposition experiments and introduced in many

theoretical models. Discrepancies between theoretical predictions and experimental
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deposition rates, usually higher than expected, could thus be attributed to the aver-

aging of the heterogeneous surface electrostatic potential. To obtain more attractive

interactions, interactions with attractive and repulsive homogeneous surfaces could

be averaged instead.

The energy-averaging technique developed in Sec. 3.1 is extended in Sec. 3.2 to

define a statistical model that predicts the mean and variance of particle DLVO in-

teractions with heterogeneous collectors. Such predictions are in complete agreement

with calculations obtained by performing averages over many randomly heterogeneous

patchy and pillared collectors. The statistical model also allows for the computation

of adhesion thresholds, defined as the minimum surface loading of patches at which

particles begin to adhere from flowing solution. Adhesion thresholds calculated with

the computationally inexpensive statistical model coincide with results obtained by

simulating large numbers of particle trajectories. Moreover, the statistical technique

accurately predicts the increase in the adhesion threshold with the shear rate of the

flowing suspension observed in experiments.

In Sec. 3.3, Brownian motion effects on the dynamics of colloidal particles flowing

over patchy and pillared collectors are studied by introducing Brownian displacements

in particle trajectory calculations.

Brownian motion is expected to be meaningful only for particle-collector systems

characterized by a relatively low energy barrier in the energy-distance profile. Energy-

distance profiles of large particles interacting with patchy and pillared collectors are

shown to be governed by high energy barriers that preclude particle deposition. In-

versely, small particles are strongly attracted to pillared collectors, and interactions

are dominated by DLVO energies and not by Brownian motion. Small particles in-

teracting with patchy collectors, however, present intermediate, relatively low energy

barriers, such that Brownian motion effects are studied in detail for these systems.
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It is shown that the addition of Brownian displacements to the particle trajectories

introduces significant spatial variations.

A Péclet number that quantifies the relative importance of shear and Brownian

effects is also defined, and found to decrease exponentially with particle size. At the

low flow shear rates considered, Brownian motion effects are significant only for small

particles, with radii of up to a ' 200 nm. Péclet numbers that evaluate Brownian

with respect to colloidal effects calculated for varying particle sizes and for surface

loadings for which the average interactions are repulsive, also decrease exponentially

with particle size and are smaller than unity for all the parameter ranges considered.

It is thus concluded that Brownian motion has a negligible influence on particle

trajectories over collectors patterned with nano-scale heterogeneity, because the non-

uniform distribution of such heterogeneity creates locally attractive and repulsive

areas within the collector. High energy barriers in strong locally repulsive areas cannot

be overcome by Brownian motion, while interactions with strong locally attractive

regions are also DLVO-dominated due to the presence of low energy barriers. For

small particles in low shear rate flows, Brownian motion effects can be comparable

to those of the shear flow. The overall adhesive behavior of the system, however,

remains unaffected by the introduction of Brownian effects in the simulations.

In Chap. 4, interactions between patchy particles and collectors are described

in detail and a thorough comparison with the extensively studied particle-patchy

collector system is presented.

The spherical surface of the patchy particle is discretized into differential ele-

ments with the recursive zonal EQual area Sphere Partitioning (EQSP) algorithm,

introduced as an accurate technique that yields the partitioning of spherical surfaces

into small, equal-area elements. DLVO interactions for patchy particle systems are

modeled by incorporating EQSP-generated spherical surface elements within the GSI
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technique. The system’s dynamic behavior is also obtained in this case from mobility

matrix computations.

Differences in the adhesive and dynamic behaviors of patchy particle and patchy

collector systems are quantified by computations of adhesion thresholds and of average

numbers of trajectory local extrema. For each system, maximum residence times per

heterogeneous surface element are also defined. The tendency of the patchy particle to

adhere on a uniform collector is found to be smaller than that of the uniform particle

adhering on a patchy collector, and attributed to the larger residence time per patch

for the patchy particle. Such larger residence times also reduce the amount of spatial

fluctuations exhibited by patchy particles and lead to a smaller number of trajectory

local extrema. Trajectory spatial variations, in turn, correlate with the extent of

interactions with heterogeneous surface elements, and ultimately provide insight into

the adhesive character of the system. Adhesion thresholds of patchy particles are,

indeed, larger than those of uniform particles adhering on patchy collectors.

A new computational approach, that introduces a discretization scheme of spher-

ical surfaces incorporated within GSI computations of DLVO interactions, has been

applied to the computation of patchy particle trajectories. The use of this newly

developed simulation technique can be extended, as described in Sec. 5.2, to model

particle-collector systems of two heterogeneous surfaces, which more accurately rep-

resent experimental systems.
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5.2 Future Work.

5.2.1 Interactions between heterogeneous particles and heterogeneous

collectors.

5.2.1.1 Preliminary results: Discretization of both interacting surfaces

and identification of contact areas.

To model more realistic particle-collector systems, heterogeneities should be in-

cluded in the modeling of both the particle and the collector surfaces. The discretiza-

tion into differential areal elements of both interacting surfaces is thus required in the

simulations, as is the respective synchronization between such partitioning schemes.

Chap. 3 described interactions with patchy or pillared collectors, such that in that

case it was only the planar or pillared collecting surface that was discretized into

differential areal elements. In Chap. 4, inversely, the systems primarily described

involved patchy particles, such that in those cases only the spherical surfaces were

partitioned into equal-area nano-elements. In this subsection, it is briefly shown

that both discretization schemes, planar and spherical, can be seamlessly integrated

into a single computational approach that yields the dynamic interactions between

heterogeneous particles and collectors.

As a test case, preliminary results of simulations that integrate two discretization

schemes into one computational approach are presented for the case of a patchy

particle flowing over a uniform flat collector. In particular, the trajectory studied in

detail is that of a 2a = 500 nm diameter particle, patterned with cationic patches

at a surface loading of Θ = 0.17, that flows over a uniform flat collector. Colloidal

interactions are defined by the Debye length κ−1 = 1 nm and the Hamaker constant

AH = 5×10−21 J. These system parameters and particle trajectory correspond exactly

to those presented in Sec. 4.5, in the inset in Fig. 4.6(b).

In Fig. 5.1, the particle trajectory is obtained with an integrated computational

method that combines discretization schemes for both interacting surfaces. The dis-
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Figure 5.1. Trajectory of a 2a = 500 nm diameter patchy particle flowing over a
uniform flat collector. The particle heterogeneity is defined by the surface loading
Θ = 0.17, and other simulation parameters are: γ̇ = 25 sec−1, κ−1 = 1 nm, AH = 5
×10−21 J. Compare with the trajectory indicated by the solid line in the inset of Fig.
4.6(b).

cretized collector is, however, electrostatically and topographically homogeneous, such

that all the differential areal elements that conform its surface are assigned the same

properties. It is clearly seen, by comparison of the trajectories presented in Fig.

5.1 and in the inset of Fig. 4.6 that both computational approaches are in perfect

agreement, as expected.

Discretization of both interacting surfaces permits, moreover, to identify the re-

gions in each surface that come into contact, or, at an arbitrarily chosen separation

distance. For the test case chosen, the differential elements of the patchy sphere that

reach a local separation distance from the planar collector h < 5 nm are shown in Fig.

5.2 for a selected times during the simulation. At time t = 0 sec, no sphere regions

are in proximity to the collector. As the simulation progresses, however, the different

areas of the spherical surface for which h < 5 nm increase with time, as indicated by
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Figure 5.2. Differential elements on the spherical surface that reach a local sep-
aration distance from the planar collector h < 5 nm, at various times during the
simulation. (a) Initial condition of the sphere, t = 0 sec. (b) t = 0.03 sec. (c)
t = 0.07 sec. (d) Final position of the sphere, t = 0.14 sec.

the increasingly larger quantity of black dots in Figs. 5.2(b)-(d). The time step in

the simulations is dt = 2×10−5 sec.

The regions of the patchy sphere that at any given simulated time-step reach a

local separation distance h < 5 nm are also color-scaled according to the frequency

in which each surface element meets such “approach” condition.

In Fig. 5.3(a), dark red areas denote spherical regions that approach the collector

most frequently (at a local separation distance h < 5 nm), while dark blue areas

indicate regions that are in close proximity to the collector the least frequently. The

increasing frequency of approaches is thus indicated by the continuous progression

of the figure colors from dark blue, to light blue, green, yellow, and red. Another

representation of the spherical “approach” areas is shown in Fig. 5.3(b). The spherical

elements for which at any given time h < 5 nm are marked in blue, if a cationic patch

is not assigned to that location, or in red, in the opposite case in which there is a patch
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Figure 5.3. (a) A color-scale image of the final position of the sphere, in which the
differential elements that reach a local separation distance from the collector h < 5
nm are colored based on the frequency of close approach instances. Areas in dark
blue denote the least frequently approached regions, and elements for which most
frequently h < 5 nm are marked in dark red. (b) A colored representation of the
sphere-collector close approach regions in which each sphere element is marked in red
if a patch is assigned to that sphere element, or, in blue, otherwise. Other sphere
elements patterned with heterogeneity, and which do not approach the collector at a
separation distance h < 5 nm are indicated by black markers.
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that patterns such surface element. The black points denote all other cationic patches

distributed on the sphere’s surface, on areal elements for which the local separation

distance at all times is h > 5 nm. It is noted that within the closest approach

areas only a few surface elements are patterned with cationic patches, which are not

isolated, but mostly form small groups of a few units. As mentioned previously,

locally favorable regions or “hot spots” can induce attractive interactions that prevail

over interactions with surrounding electrostatically repulsive elements.

Projections of the spherical surface on the collector at the same time steps as those

featured in Fig. 5.2(a)-(d) are indicated in Fig. 5.4(a) by circles that are progressively

centered at larger y/a values, and that are also marked in varying colors. The path

that the sphere draws on the collector, namely, the projections on the collector of the

sphere locations for which h < 5 nm at any given time step during the simulation, is

marked in black. In Fig. 5.4(b), the sphere’s path is color-scaled, such that the highest

frequencies of approach instances are marked in yellow and red, while the smallest

number of approach opportunities are marked in blue, according to the shown color-

scale. The light violet background denotes regions in the collector for which the local

separation distance with the sphere is h > 5 nm at all simulation time-steps.

The trajectory paths depicted in Figs. 5.2-5.4 is in excellent agreement with the

computed trajectory presented in Fig. 5.1. The calculated trajectory in Fig. 5.1

indicates one brief rolling period around y/a ' 0.3, after which the particle detaches

from the surface, before it contacts the surface again (in rolling motion) until it

adheres due to friction forces. Both rolling periods, as well as the “detachment” period

in between, can be clearly identified in Figs. 5.2-5.4. The horizontal displacement of

y/a ' 2.5 at which the particle is arrested on the collector, as shown in Fig. 5.1, is

also seen in Figs. 5.4(a)-(b).

Future work will therefore focus on the further extension of this integrated com-

putational approach to include collector heterogeneities. Though the introduction of
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Figure 5.4. (a) Sphere projections on the collector at simulation times t = 0 sec
(blue circle), t = 0.03 sec (red circle), t = 0.07 sec (green circle), and t = 0.14 sec
(pink circle). The sphere’s path on the collector’s surface, defined by projections
of the sphere elements that closely approach the collector, is denoted by the black
pattern. (b) A color-scaled image of the sphere’s path on the collector’s surface, based
on the number of instances in which h < 5 nm for each sphere element.
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collector heterogeneities is relatively simple, the definition of the specific interaction

types on a given heterogeneous system might require careful considerations. If each

of both interacting surfaces is patterned with only one type of heterogeneity, the

system will be characterized by 4 kinds of possible interactions given by the plau-

sible (sphere element)-(collector element) combinations, since each element can be

patterned, or not, with a heterogeneity. Each type of interaction can, in turn, be

specifically tailored to model different system behaviors.

For example, patches can be chosen to be transferred from the collector to the

sphere; namely, if a sphere element contacts a patterned collector element, interactions

can be defined such that the sphere “collects” that heterogeneity, removing it from the

collector. Alternatively, the collector can be designated as the heterogeneity-removing

agent. Cleaning and filtering applications, as well as reversible adsorption processes,

could thus be modeled with the proposed integrated computational technique.

Moreover, surface heterogeneities, located at one or both interacting surfaces, can

be assumed to be rigid and non-removable. Interactions between them, however,

could induce chemical and morphological changes in one or both interacting surfaces,

to modify the system’s overall behavior. Such computational model would resemble

the mechanisms underlying, for instance, lock-and-key devices and protein recogni-

tion applications. With appropriate modifications, the proposed computational tech-

nique that includes surface discretization schemes for both interacting surfaces can

be adapted to model multiple other systems that rely on interfacial interactions, such

as those used in surface scribbing and in soft lithography experiments.

5.2.1.2 Surfaces patterned with multiple types of nano-features.

5.2.1.2.1 Adhesive Dynamic Simulations. Hammer et al.57 developed Adhe-

sive Dynamic simulations to recreate the entire range of adhesive phenomena of cells.

The model generates statistical measures of adhesion, such as mean and variance in
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velocity, rate constants for cell attachment and detachment, and the frequency of

adhesion. The cell is assumed to behave as a hard sphere, covered by rigid microvilli

randomly distributed on the cell’s surface. Cell receptors, modeled as springs, are also

randomly distributed on the cell’s surface and on the tips of the microvilli. The mi-

crovilli are much longer than the cell receptors, such that only those receptors located

on the microvilli tips will yield meaningful contributions to the total cell-substrate

interactions.

The formation and breakage of cell to surface bonds is assumed to be a reversible

stochastic chemical process,33 in which the forward and reverse reaction rates depend

on the separation distance between the microvillus tip and the ligand-coated sub-

strate, the bond length, spring constants and the thermal energy. Probabilities for

bond formation and breakage are obtained from the respective reaction rate expres-

sions, and at each simulated time step, bond formation or breakage is established

from the comparison of the corresponding probability with a pseudo-random number.

All the bond-induced forces and torques acting on the cell, along with the hy-

drodynamic and colloidal forces, are computed at each time step and the transla-

tional and rotational velocities of the cell are calculated using the mobility tensor

approach21,50,51,69 previously described.

Adhesive dynamics simulations57 allowed for the calculation of five distinct types

of adhesion behavior. These are: unbound (I), rolling at constant speed (II), tum-

bling (III), which suggests a largely rolling motion with very brief periods of adhesion,

transient adhesion (IV), which suggests significant periods of adhesion during which

the cell remains motionless, followed by tumbling or rolling, and adhesion (V), ob-

served sometimes immediately after contact with the surface, and where the cell is

motionless for long periods of time.

The method was also extended to the study of different aspects of rolling adhe-

sion, such as the interplay of two receptor systems16 or the effect of catch bonds.23
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Recently, Korn and Schwarz80 developed a new variant of this algorithm, in which the

spatial positions of the receptors on the sphere and the ligands on the wall are fully

resolved. This model80 is based on a Langevin equation that accounts for hydrody-

namic interactions, thermal fluctuations and adhesive interactions. Also in this case,

five different dynamic states of motion of the cell are identified and the transitions

between these states are mapped in a dynamic state diagram as a function of the

rates for bond formation and rupture.

5.2.1.2.2 Steric interactions and polymer bridging. Aggregation and depo-

sition phenomena can be influenced by attractive or repulsive interactions between

adsorbed layers of polymers, that enable bonds with spring-like structures.

Polymers that have some affinity for the surface but adsorb such that some seg-

ments of their chains extend from the surface into the surrounding solution are usually

referred to as stabilizers, since they form layers that provide the coated surface with

stability against aggregation.41 The close approach of two adsorbed layers results in

a strong repulsion between the polymer-coated surfaces, as a consequence of the over-

lap of the hydrophilic chains. Attractive vdW forces also act between the polymer

chains, but their effect is too weak to outweigh the dominant steric repulsion. The

thickness of the adsorbed polymer layer with respect to the particle size significantly

influences the particle’s steric stabilization, such that larger particles would require

thicker layers than smaller particles to achieve the same degree of stabilization.

Adsorbed polymer chains can, inversely, enhance particle aggregation and deposi-

tion through the formation of polymer bridges. Equally charged particles or surfaces

can develop attractive interactions due to bridges formed by long chain polymers that

attach to particle surfaces such that the chain is either curled on the surfaces or close

to them, instead of extending toward the surrounding medium.41 In this way, an in-

dividual chain can be attached to two or more particles, thus bridging them together.

Effective flocculation requires, however, a polymer dosage that is large enough to
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allow for the formation of strong bridge-bonds, while at the same time sufficiently

low, such that the polymer does not saturate the particle surfaces and allows polymer

segments due to the bridging to easily adsorb.

5.2.1.2.3 Colloidal and receptor-ligand particle-surface interactions. The

computational technique described in Sec. 5.2.1.1 can be appropriately modified in

order to study the dynamic states of particles flowing over surfaces patterned with

multiple types of nano-constructs (to parallel biological systems, in which cells have

multiple classes of receptors involved in adhesion43).

The particles, modeled as rigid spheres, and the heterogeneous substrate or collec-

tor can both be patterned not only with flat or protruding electrostatically heteroge-

neous nano-features, but also with spring-like structures that resemble cellular ligands

or receptors, polymer brushes or polyelectrolyte chains. Specific receptor-ligand and

long range colloidal interactions between areal elements on each surface can all be in-

corporated in a mobility matrix approach within the computational model described

in Sec. 5.2.1.1 to yield the heterogeneous particle’s (cell) velocities as it translates

over the heterogeneous collector (substrate).

Receptor-ligand, colloidal, shear and Brownian interactions between particles and

collectors could all be ultimately combined in a relatively simple model, to predict not

only the energy profile of the system but also its dynamic and adhesive behavior. In

theory, this model could also account for the interacting surfaces’ and heterogeneities’

elasticity. Simulation data contained within adhesive regime diagrams constructed for

the systems described could aid in the formulation of lab experiments, as well as in

the understanding of the underlying physical processes.
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5.2.2 Spatial distribution of adhered particles on collectors. The satura-

tion coverage.

In all previous work, it has been assumed that particles are suspended in dilute

solutions, and only one interacting particle is modeled in each energy or trajectory

computation. Such particle is subject to DLVO interactions, in the presence or ab-

sence of shear flow, due to its proximity to a collector (uniform or heterogeneous) on

which no other colloidal particles are previously adhered.

A model that could more realistically resemble the experimental particle depo-

sition process, should include the effects of previously adhered particles. Particle

solutions can still be assumed to be dilute, if one particle is released at each sim-

ulation attempt. If the particle adheres on the collector, however, it should not be

removed, and instead, the adhered particle can be modeled just as a spherical asper-

ity that patterns the collector. In each following simulation attempt, interactions are

thus computed between the flowing particle and the newly patterned collector, that is

covered not only by nano-scale features but also by previously adhered colloidal par-

ticles. Total energies and forces of interactions are comprised, therefore, of attractive

and repulsive interactions between the flowing particle and the surface elements of

the heterogeneous collector, and, as well, of repulsive interactions between the flow-

ing particle and those adhered on the collector. Sphere-sphere DLVO interactions

between adhered particles on the collector can also be computed, for example, by

implementing the GSI technique or from an analytical expression, and added to the

flowing particle-collector interactions to obtain the total DLVO force or energy of the

system.

Ultimately, it will be interesting to gain insight into the distribution of the ad-

hered particles on the collector and to determine the saturation coverage (by adhered

particles) beyond which no more newly released particles will deposit on the collec-
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tor. The continuous adhesion of particles on the initially bare collector will eventually

hinder, or block, particle adhesion in the following simulated attempts.

Particle deposition morphologies have been previously studied with the statistically-

based Random Sequential Adsorption (RSA) model, in which the adhesion of ran-

domly sampled particles is based, solely, on whether or not such particle contacts

the collection site without overlapping with previously adhered particles. If the ar-

rest conditions are met, the particle is considered to be irreversibly adhered, and

the computations proceed with new adhesion attempts. The computational approach

presented in this section thus resembles the RSA technique. In the proposed model,

however, particle deposition is determined by DLVO interactions and by the system’s

dynamic behavior in shear flow, and not by random sampling of particles’ locations.

In contrast to collection or adhesion probabilities presented in Chaps. 3-4, collec-

tion efficiencies could also be defined on the basis of deposited particle distributions

for given sets of system parameters. Newly defined collection efficiencies can, in

turn, possibly translate into particle deposition rates that are typically measured in

experiments.

5.2.3 Lateral Forces.

In particle-collector systems with nano-scale heterogeneity described in this work,

the effect of lateral forces was not included in the simulations. The random distri-

bution of the surface features, which are small with respect to the electrostatic zone

of influence (ZOI), suggest that lateral forces are not significant. If, moreover, the

particles translate in shear flow, the lateral forces’ effect is diminished even further

because the heterogeneity is sampled more evenly.

Lateral forces could have a meaningful effect, however, if the modeled system is

characterized by clearly defined heterogeneous regions, such as stripes, patches that

are comparable in size to the interacting particle, or other types of surface features
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arranged in an ordered fashion. Interactions at the edges of those distinct regions will

most likely be driven by lateral forces, in particular under conditions of no net flow.

Kemps and Bhattacharjee73 calculated lateral forces acting on a nano-particle

located at fixed separation distances from a heterogeneous collector that was modeled

as an array of much smaller spherical subunits. The total DLVO particle-collector

interaction was computed as the sum of the interactions between the nano-particle and

each of the subunits that comprised the collector. Each of this pairwise (nano-sphere)-

(spherical subunit) interaction was obtained from analytical expressions derived for

sphere-sphere system geometries. The total DLVO energy of interaction was then

differentiated with respect to each coordinate, in a cartesian coordinate system, to

obtain the respective forces in each direction, namely, Fx, Fy, and Fz. The lateral force

was defined as FL =
√

F 2
x + F 2

y , where x and y are the coordinates that define the

plane of the substrate (and z is the coordinate orthogonal to them). The computation

of DLVO interactions with analytical expressions derived for sphere-sphere systems

poses some limitations on the model’s validity, since those interactions are based on

centre-to-centre separation distances between the spheres. The spherical subunits,

however, protrude by a distance equal to its radius above the point at which the

interactions are computed. As has been extensively shown in previous and current

work, even a relatively small asperity protruding only slightly above the collector can

have a meaningful effect on the overall energy profile of the system, by reducing, for

example, the height of the energy barrier.

Alternatively, Czarnecki30 calculated tangential forces resulting from surface rough-

ness by numerically differentiating the system’s total energy of interaction. A number

of small spheres of randomly chosen radii were positioned at randomly selected loca-

tions on a smooth flat surface. A larger spherical particle is placed above such collector

and the total DLVO energy of the system is obtained as the sum of the sphere-sphere

interactions between the large particle and the small spheres that pattern the collec-
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tor. Sphere-sphere interactions are computed with analytical expressions that depend

on the centre-to centre separation distance. Sphere-plate interactions, in the collec-

tor regions in between the spherical asperities, were neglected, because the analytical

expressions for this case only describe interactions in the normal direction and do

not depend on the coordinate tangential to the collector. Along a line parallel to the

collector, the large particle was moved in small distance intervals and the total energy

of interaction of the system was computed at multiple points along the line. Tangen-

tial forces were obtained as the difference of interaction energies at two neighboring

points divided by the distance between such points.

A numerical differentiation approach similar to that described by Czarnecki,30 can

be developed for the particle-collector systems described within this work, in which

both interacting surfaces are discretized into differential areal elements. One major

limitation of this approach, however, is imposed by the size of the surfaces discrete

elements, which would be naturally chosen as the numerical integration step. If the

element size is too large, of about 10 nm length, the obtained approximation could

be of little or no use. If, instead, a fraction of a surface element is chosen as the

integration time step, the resulting numerical scheme could be too cumbersome and

impractical.

Another possible approach toward the computation of lateral or tangential forces

is based on the GSI technique implemented for two discretized interacting surfaces.

For a given differential surface element on the spherical particle, interactions can be

computed between that element and each of the collector differential elements. Such

computation will then be repeated for all and each spherical surface element. The

obtained DLVO forces can then be decomposed into contributions that are parallel and

normal to the collector. DLVO forces and energies can be computed, for example, with

expressions derived for plate-plate systems, because the most significant interactions

are expected for sphere-collector differential elements that are almost parallel to each
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other. At intermediate lateral separation distances between sphere and collector areal

elements, the assumption of parallel plate interactions remains valid, and, at the same

time, the magnitude of lateral forces could be found to be meaningful with respect

to that of other forces acting on the system.
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APPENDIX

BROWNIAN FORCES

An alternative approach to the inclusion of Brownian motion effects on particle

trajectory computations consists on introducing Brownian forces24,91 directly in the

mobility matrix formulation that yields the particle’s velocity. The Brownian forces

model appears to have been derived from the definition of a specific Péclet number24

and not from a strict theoretical basis. Even though the Brownian displacements

approach, described in Sec. 3.3, has been more frequently implemented, Brownian

motion effects have also been modeled by incorporating Brownian forces.24,91

In this Appendix, trajectories of particles flowing over heterogeneous collectors

are computed by incorporating Brownian forces, and a brief comparison of results

obtained with the Brownian displacements model is also presented.

Brownian forces in the normal and flow directions are computed from the same

stochastic expression91 presented in Sec. 3.2.2 (Eq. (3.6)),

FBr =
kBT

a
η̂ ,

where kB is the Boltzmann constant, T = 298.15K is the absolute temperature,

and η̂ is a random number of the normal standard distribution. These forces are

incorporated directly in the appropriate components of the force vector within the

mobility matrix computations, such that

Fx = Fshear + FBrx and Fy = FDLVO + FBry , (A.1)
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where FBrx and FBry are the Brownian forces in the flow and normal directions respec-

tively, computed from Eq. (3.6) with different random numbers for each direction.

The last term in the rhs in Eq. (3.16) is, therefore, RBr = 0.

Trajectories of particles flowing heterogeneous patchy or pillared collectors pat-

terned with a surface charge of Θ = 0.12 are shown in Fig. A.1. The computations

are performed by either neglecting Brownian motion effects or by incorporating them

as Brownian forces. It is seen that, in all cases, depicted for large and small particles

interacting with patchy and pillared collectors, the Brownian forces model yields tra-

jectories that are almost indistinguishable from those obtained when Brownian effects

are not included in the computational results.

To investigate further the effects of Brownian forces on particle motion over nano-

scale heterogeneous collectors, and in order to parallel the results presented in Sec.

3.3, a histogram of the horizontal displacements of adhering particles is presented in

Fig. A.2. In contrast to respective results predicted with the Brownian displacements

approach (shown in Fig. 3.23), computations that include Brownian forces predict

that the adhering particles will be all located within the same local “hot spot” in the

collector. The locations of adhered particles obtained by modeling Brownian effects

as Brownian forces follow a normal distribution, with an average of x/a = 394.54 and

variance σ2 = 0.37.

For the present case of Brownian motion effects modeled as Brownian forces, a

new Péclet number that quantifies the relative importance of Brownian and shear

forces is defined as

Pe(B/S), BrF = FBr/Fshear, (A.2)

where FBr is computed from Eq. (3.6) and Fshear is given by the general form in Eq.

(2.50) with the dimensionless correction factor given by Eq. (2.53).

Péclet numbers PeB/S defined for both the Brownian forces and Brownian displace-

ments models are shown as a function of particle size in Fig. A.3. Péclet numbers
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Figure A.1. Trajectories of particles interacting in shear flow with surfaces patterned
with randomly located flat patches or cylindrical pillars with a surface area coverage
of Θ = 0.12. Other simulation parameters are the same as those in Fig. 3.21. In
each plot, trajectories are obtained by either neglecting Brownian motion effects or by
incorporating them in the computations as Brownian forces. (a) a = 1µm particles
interacting with patchy surfaces (hp = 0 nm). (b) a = 1µm particles interacting
with pillared surfaces (hp = 2 nm). (c) a = 0.1µm particles interacting with patchy
surfaces (hp = 0 nm). (d) a = 0.1µm particles interacting with pillared surfaces (hp

= 2 nm).
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Figure A.2. Statistical distribution of the locations of adhered particles obtained
from simulations of particle trajectories in which Brownian motion is computed as
Brownian forces, for a collector patterned with a heterogeneity coverage of Θ = 0.15.
Other simulation parameters are the same as in Fig. 3.23.

Figure A.3. PeB/S numbers, defined for the Brownian forces and Brownian displace-
ments models, as a function of the particle size.

173



obtained for the Brownian forces model were computed by substituting the separation

distances h = D + a in Eq. (2.50) and D in Eq. (2.53) with D = δ. No meaningful

differences are observed between both Péclet numbers, and, indeed, the Brownian

forces model also predicts an exponential decrease of PeB/S with increasing particle

size. Computations of Brownian effects modeled as Brownian forces also suggest,

therefore, that Brownian motion is significant with respect to shear motion for small

particles in low shear flows only.

As seen from the results presented in Figs. A.1-A.3 and in Sec. 3.3, a compari-

son between the Brownian displacements and Brownian forces models suggests that

Brownian displacements predict a slightly greater influence of Brownian motion on

the behavior of the systems considered. Brownian displacements are, indeed, incor-

porated directly in the Langevin-type particle trajectory equation. Brownian forces

are introduced, in contrast, in the force vector component of the mobility matrix

calculations and their magnitude added to colloidal and shear forces. It is suggested

that, for the systems considered, Brownian forces are smaller, possibly by an order

of magnitude, than colloidal and/or shear forces, resulting in meaningfully lessened

Brownian motion effects.

For a range of system parameters, a detailed quantitative comparison of the vari-

ous forces acting on particles flowing over nanoscale heterogeneous collectors should

be performed to investigate further the observed differences between both models.

Limiting cases for which both approaches agree perfectly should also be identified to

provide a theoretical foundation of the Brownian forces model, such that Brownian

forces would parallel the fundamentally-defined, mean squared displacements of a

Brownian particle.
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