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ABSTRACT 

DISCRIMINATORY BIO-ADHESION OVER NANO-

PATTERNED POLYMER BRUSHES 

SEPTEMBER 2013 

SAUGATA GON, B. TECH. HIT INDIA 

M.TECH., IIT BOMBAY, INDIA 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PhD., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by Professor Maria M. Santore 

 

Surfaces functionalized with bio-molecular targeting agents are conventionally 

used for highly-specific protein and cell adhesion. This thesis explores an alternative 

approach:  Small non-biological adhesive elements are placed on a surface randomly, 

with the rest of the surface rendered repulsive towards biomolecules and cells.  While the 

adhesive elements themselves, for instance in solution, typically exhibit no selectivity for 

various compounds within an analyte suspension, selective adhesion of targeted objects 

or molecules results from their placement on the repulsive surface.  The mechanism of 

selectivity relies on recognition of length scales of the surface distribution of adhesive 

elements relative to species in the analyte solution, along with the competition between 

attractions and repulsions between various species in the suspension and different parts of 
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the collecting surface.  The resulting binding selectivity can be exquisitely sharp; 

however, complex mixtures generally require the use of multiple surfaces to isolate the 

various species:  Different components will be adhered, sharply, with changes in collector 

composition.  The key feature of these surface designs is their lack of reliance on 

biomolecular fragments for specificity, focusing entirely on physicochemical principles at 

the lengthscales from 1 – 100 nm.  This, along with a lack of formal patterning, provides 

the advantages of simplicity and cost effectiveness.  

This PhD thesis demonstrates these principles using a system in which cationic 

poly-L-lysine (PLL) patches (10 nm) are deposited randomly on a silica substrate and the 

remaining surface is passivated with a bio-compatible PEG brush. TIRF microscopy 

revealed that the patches were randomly arranged, not clustered. By precisely controlling 

the number of patches per unit area, the interfaces provide sharp selectivity for adhesion 

of proteins and bacterial cells. For instance, it was found that a critical density of patches 

(on the order of 1000/m
2
) was required for fibrinogen adsorption while a greater density 

comprised the adhesion threshold for albumin. Surface compositions between these two 

thresholds discriminated binding of the two proteins. The binding behavior of the two 

proteins from a mixture was well anticipated by the single- protein binding behaviors of 

the individual proteins. 

The mechanism for protein capture was shown to be multivalent:  protein 

adhesion always occurred for averages spacings of the adhesive patches smaller than the 

dimensions of the protein of interest.  For some backfill brush architectures, the spacing 

between the patches at the threshold for protein capture clearly corresponded to the major 

dimension of the target protein.  For more dense PEG brush backfills however, larger 
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adhesion thresholds were observed, corresponding to greater numbers of patches 

involved with the adhesion of each protein molecule. .  The thesis demonstrates the 

tuning of the position of the adhesion thresholds, using fibrinogen as a model protein, 

using variations in brush properties and ionic strength.  The directions of the trends 

indicate that the brushes do indeed exert steric repulsions toward the proteins while the 

attractions are electrostatic in nature. 

The surfaces also demonstrated sharp adhesion thresholds for S. Aureus bacteria, 

at smaller concentrations of adhesive surfaces elements than those needed for the protein 

capture.   The results suggest that  bacteria may be captured while proteins are rejected 

from these surfaces, and there may be potential to discriminate different bacterial types.  

Such discrimination from protein-containing bacterial suspensions was investigated 

briefly in this thesis using S. Aureus and fibrinogen as a model mixture.  However, due to 

binding of fibrinogen to the bacterial surface, the separation did not succeed.  It is still 

expected, however, that these surfaces could be used to selectively capture bacteria in the 

presence of non-interacting proteins. 

The interaction of these brushes with two different cationic species PLL and 

lysozyme were studied.  The thesis documents  rapid and complete brush displacement by 

PLL, highlighting a major limitation of using such brushes in some applications.  Also 

unanticipated, lysozyme, a small cationic protein, was found to adhere to the brushes in  

increasing amounts with the PEG content of the brush.  This finding contradicts current 

understanding of protein-brush interactions that suggests increases in interfacial PEG 

content increase biocompatibility.   
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CHAPTER 1 

 

INTRODUCTION 

 

Adhesion of proteins and cells on synthetic or biological surfaces is broadly 

assigned the term bio-adhesion.  Depending on the application, it may be desirable or 

highly detrimental. While bio-adhesion can involve molecular adsorption or cell 

adhesion, it is generally accepted that protein adsorption is the precursor for cell 

adhesion.
1
 Selective bio-adhesion on patterned surfaces has become a focus of scientific 

research due to its relevance in multiple areas such as bio-diagnostics, bio-sensor 

development, pharmaceutical separations, drug delivery, and tissue engineering.
2-4

 Use of 

polymer coatings to facilitate selectivity (through elimination of non-specific adhesion) 

on synthetic surfaces is a common practice.
5-10

 In most applications, however, selectivity 

is still accomplished through the incorporation of biomolecular fragments.  This thesis 

addresses the use of nano-patterns within a bio-compatible polymer brush, to achieve bio-

selectivity without incorporation of biomolecular fragments at the interface. The current 

chapter therefore presents a brief overview of bio-adhesion and its driving factors 

relevant to the development of entirely synthetic selective interfaces. 

 

1.1 Surface heterogeneity and its role in adhesion 

 

Most of the surfaces found in nature are chemically or topographically 

heterogeneous. This diversity can occur on the micron lengthscale, but often it is sub-

micron.  Heterogeneity contributes to colloidal forces and can often lead to adhesion in 
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unexpected circumstances: The presence of heterogeneities is well-established on 

minerals,
11-14

 polymers,
15-17

 and biological cells.
18-21

 While some impurities on mineral 

surfaces are known to cause aggregation,
22-25

 chemical heterogeneity in polymers can 

dominate the contact angle and wetting characteristics.
26-28

 

Biological surfaces, especially those of cells are also heterogeneous. While spatial 

and temporal heterogeneity is observed in polysaccharides of plant cell walls,
29-31

 the 

lipid rafts of biological membranes exemplify heterogeneous distributions of 

phospholipids and proteins.
32-34

 Such compositional variations are hypothesized to be 

related to bio-functionality, for instance enhanced recognition specificity of targeting, or 

improved efficiency biochemical reactions initiating on a cell’s surface. Separately, 

topographical features of bacteria can also be considered to constitute surface 

heterogeneity.  For example, some bacteria have pili (protrusions as long as 100 nm that 

concentrate cell adhesion molecules on their tips) on the outer cell surface.  Other 

bacteria, for instance Escherichia coli, have different net electrostatic charges on their 

sides versus on their poles.
35-37

   

While it is not conventional to view the ligand-receptor interactions at on cellular 

surfaces as a heterogeneous component of surface forces, this classification is useful from 

the perspective of interfacial design.  Colloidal interactions are classically described on 

planar or curved interfaces by a mean-field formalism.  By contrast, the discrete nature of 

biomolecular interactions and the dependence of these interactions on the distributions of 

molecules over a surface gives results that fundamentally differ from a mean field 

approach. Important, then to the notion of developing synthetic surfaces with discrete 
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functionality is the fact that the receptor sites in cell membrane are of the order of couple 

of angstroms to a few nanometers in size. 

 

1.1.1 Specific and Non-Specific Interactions 

Biological “binding” interactions are driven by bio-molecular recognition are 

typically referred to as specific interactions. While these interactions occur throughout 

cells, specific interactions occurring on the surfaces of cells are of central importance to 

the concepts developed in this thesis.  Cell adhesion molecules (CAMs) on outer 

membranes of cells can provide specific binding capability to other cells
 
or to the 

extracellular matrix. These specific binding interactions take place within the background 

field of other cell surface molecules, including glycoproteins.
38

 Important examples 

include the RGD-integrin interaction for adhesion of different cells to the extracellular 

matrix.
39

 This usually constitutes fairly strong bonds that are irreversible on short 

timescales.  By contrast, lectin-selectin associations between white blood cells and the 

vascular endothelium are weak and reverse rapidly, facilitating cell rolling.
40

 Another 

important interaction, extreme in its binding tightness, is the biotin-streptavidin 

interaction,
41

 often used as a building block for bio-molecular presentation and structures.  

While the biotin-streptavidin interaction has the capacity for specificity, the specificity is 

often undermined by hydrogen bonding interactions between the avidin and other species, 

necessitating the use of modified avidins and creating other technical challenges.  

Another workhorse of the bio-diagnostic and pharmaceutical industries is the interactions 

between antigens and antibodies.
42

 Attached to surfaces, antibodies facilitate assays for 

molecular and cellular targets alike.  Particularly in the case of cellular targets, other 
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interactions besides the antibody-antigen interaction must be accounted for in the design 

of the diagnostic device.  In both cases, though, it is critical to eliminate non-specific 

interactions through sophisticated surface treatments of the materials involved. 

Besides the specific bio-molecular interactions discussed above, non-specific 

forces such as van der Waals attractions, electrostatic interactions, hydrophobic 

interactions, and donor-acceptor interactions can also drive biological interactions or 

dominate specific bio-molecular interactions.
38

  The relative strength and range of 

nonspecific interactions must be therefore be taken into account in biomaterial design.  

Even when non-specific interactions, such as electrostatic or van der Waals forces, are 

weak compared with those of bio-molecular origin, non-specific interactions may play 

the major role in the phenomena of interest.  Indeed, this fact has led to the exploitation 

of electrostatic and steric interactions in the design and passivation of biomaterial 

interfaces.  Conversely, the nonspecific interactions that tend to occur between 

biomolecules or cells and synthetic surfaces can overwhelm the intended specific 

interactions undercutting technological performance.   For this reason, elimination of 

undesired non-specific interactions has been a major activity in the development of 

biomaterial surfaces.
5-7, 9, 38, 42

  At the same time, it is interesting to note that in nature, 

these non-specific interactions are appropriately managed to maintain precisely-

functioning surfaces and interfaces. 
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1.2 Adhesion on tunable surface patterns 

 

Biological surfaces often interact through pattern recognition.  This occurs on two 

lengthscales.  At the angstrom-level, unique mating between complimentary functionality 

(hydrophobic, van der Waals, electrostatic, acid-base and polar) on opposing molecular 

surfaces produces the specificity of ligands and receptors such as the antibody-antigen 

interaction.  On longer length scales, however, there is mounting evidence for additional 

pattern recognition-type mechanisms that are related to sophisticated bio-functionality.  

The organization of the cellular membrane into nanoscale rafts that concentrate 

functionality increases the binding affinity and avidity of the receptors involved.  Spatial 

arrangements likewise are thought to affect cellular sensitivity to the concentrations of 

receptors on the surface of a partnering cell.  These longer-lengthscale pattern recognition 

behaviors are critical to cell signaling and are potentially recreated in synthetic systems 

that achieve patterning on nanoscopic lengths scales.  This thesis extends early work on 

this concept, developed previously in the Santore lab for non-biological systems,
43-50

 to 

the bio-arena. 

Kozlova and Santore
49

 introduced a simple system consisting of a silica surface 

onto which cationic PDMAEMA (poly dimethylaminoethyl methacrylate) polymer coils, 

of the order of 10 nm in size, were irreversibly (on experimental timescales) and 

randomly adsorbed. These patchy collectors, when exposed to freely-flowing silica 

microparticles, showed distinct adhesion thresholds, a critical density of patches needed 

to capture the microparticles. It was noted that the silica particles adhered substantially to 

the heterogeneous collectors when their average charge was negative, contrary to 
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expectations from classical DLVO theory.  The obvious explanation was that the patches 

formed localized attractive areas for silica particles, despite the repulsive background and 

the average repulsive character of the collector surface. Kozlova and Santore
49

 reported 

the dependence of microparticle adhesion on the average patch spacing. A key concept, 

“the zone of influence,” was established as the amount of lateral area seen by the 

approaching particles. The zone of influence was calculated as a function of the particle 

size and the Debye length of the solution. Figure 1.1 illustrates the zone of influence as 

described by Kozlova and Santore.
49

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.1 Definition of zone of influence and its radius, Rzi. The sphere radius is RP and 

the Debye length is 
-1

. Rzi is calculated according to right triangles. 
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Critical to the design of these collectors were length scales intrinsic to their 

functionality, despite the random distribution of the patches.  This was evident in the 

observation that as the average patch spacing approach the radius of the zone of 

influence, the capture rate of the spheres become significant. The effect of the spatial 

distribution of patches on the capture rate of silica particles, established by Kozlova and 

Santore,
49

 was further extended to a demonstration of particle separation.  Different 

collector surfaces targeting different elements within an analyte solution (each with its 

own contact length scale  for interactions with the collector) could be sharply separated. 

While Kozlova demonstrated a size and curvature specificity for collectors containing 

cationic pDMAEMA coils, the same principle was developed for nano-particle-

containing collectors.
51

  The idea is extended to biological targets in the current thesis, 

using surfaces specifically designed to minimize non-specific attractions with 

biomolecule sand cells.   

 Preceding the current thesis on abiotic surface designs for biological 

targeting, Kalasin in the Santore group extended the work of Kozlova and Santore
49

 to a 

pilot study on bacterial (S. aureus) adhesion.
44

 Here patchy surfaces with sparse cationic 

nano-functionality were created by randomly adsorbing small amounts of pDMAEMA on 

fully adsorbed layers of bovine serum albumin (BSA).  The BSA was used to reduce non-

specific bacteria adhesion, while PDMAEMA patches were used as the attractive zones. 

A key observation by Kalasin et al.
44

 was engagement of multiple cationic patches to 

capture individual bacterial cells at an adhesion threshold. This multivalent capture of 

flowing objects was earlier reported for silica particles.
49

 Manipulating electrostatic 

interactions, achieved by varying the ionic strength, enabled the position of the threshold 
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(the valency and the number density of pDMAEMA patches at the threshold) to be 

precisely tuned. The work was complimented by the studies of Fang et al.
52

 that also 

demonstrated an effect of ionic strength on the adhesion threshold for bacterial capture, 

albeit in the opposite direction:  moving from higher ionic strength to lower ionic strength 

increased the Debye length and the adhesive strength of the collector for S. aureus 

bacteria.  These observations are put into perspective by the work of Bunt et al.
53

 in 

which, in a different environment, E.coli adhesion in a hydrocarbon bath increased with 

increase in ionic strength.  In the work of Fang, the bacteria surface interactions were 

dominated by bacterial attractions to cationic nanoparticles, giving a parallel effect.  The 

ionic strength effect in Kalasin’s system,
44

 had the opposite effect due to domination of 

bacteria-surface interactions by the electrostatic repulsion with the albumin on the 

background surface.  These differences emphasize the importance of the remainder of the 

surface in controlling seeming specific bacterial-surface interactions. 

 

1.3 Effect of flow on adhesion 

 

Flow conditions have been found to strongly influence adhesion of particles, 

proteins, and cells. Klapper et al.
54

 suggested that structure and performance of a biofilm 

formed by bacterial deposition can depend on shear stress. At higher shear stress the 

detachment force is greater and the number of adherent bacterial becomes smaller
55-57 

as 

the detachment force overwhelms
 
the adhesion. Separately, it was reported that increases 

in shear stress can make biofilms denser and thinner.
58

 However contrary to common 

findings Nilsson et. al. 
59

 reported that shear stress enhanced reduction of bacterial 
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detachment for the fimbrial FimH-mannose-mediated surface adhesion of E. Coli.
60

 Shear 

is also expected to influence the adhesion of particles and cells exhibiting adhesion 

thresholds on heterogeneous collectors. 

The influence of flow on adhesion in systems exhibiting a threshold in the density 

of adhesive surface elements can be complex. For a heterogeneously-charged surface 

with specific localized regions of attractive sites, the attractions between the patches and 

the analyte particles are opposed by hydrodynamic drag forces in addition to background 

repulsive surface forces. At the same time an increase in flow will increase the transport 

flux of the analyte particles towards the capturing surface and thereby increase the rate of 

capture.  

Not surprisingly, therefore, two different regimes are observed for capture of 

particles on heterogeneous surfaces in a laminar flow cell, of the type commonly 

employed for adhesion studies. An increase in particle capture rate with increases in the 

surface loading of attractive elements is the hallmark of the surface-limited capture 

regime. Flow reduces the particle capture rate in this regime through its opposition to 

adhesive interactions. For surfaces containing more than a critical number of attractive 

elements (not to be confused with the formal adhesion threshold), the particle capture rate 

becomes insensitive to the surface features. This is the mass transport regime. For the 

laminar flow chambers employed for this thesis, the mass particle capture rate is 

described by the Leveque equation. 

DC
DLdt

d
3/1
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1

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Here, 
dt

d
 is the capture rate, C is the bulk solution particle concentration, D is 

free solution particle diffusivity, L is the length from the solution inlet to the point of 

observation, γ is the wall shear rate.  

At mass transport-limited conditions, the flow assists the capture. The critical 

number of patches where the particle capture switches from aid being aided by flow to 

being inhibited by flow was identified by Kalasin hydrodynamic crossover.
46

  Kalasin 

and Santore demonstrated hydrodynamic cross over for silica particles with patchy silica 

surfaces.  Notably, microparticle capture rates and crossovers corresponded almost 

exactly to similar crossover behavior reported by others for the capture of flowing S. 

aureus on collagen.
61

 While the turnover in bacterial capture was attributed to 

complicated dynamic physics of the S. aureus receptor for collagen, the findings of 

Kalasin suggest a mere hydrodynamic crossover as the simpler explanation.  The 

quantitative parallels also suggest similar binding energies and dynamics between the 

cationic surface elements in Kalasin’s work and some biological adhesion molecules on 

cells, but in vitro. 

 

1.4 Surface patterning methods 

 

In order to create a patterned surface with functionality length scales similar to 

those on a cell surface, a common strategy has been to immobilize bio-specific capture 

molecules and to passivate rest of the surface. Surface modification can, itself, be a 

challenge and thus there exist diverse approaches, depending on the specific application. 

Surface functionalization is often coupled with patterning on the micron length scale, 
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including self-assembly,
62, 63

 micro-contact printing,
64-66

 or combined nano-imprint 

lithography and molecular self-assembly.
67, 68

 Other than conventional UV-lithography, 

various nanofabrication procedures such as E-beam lithography, nano-imprint 

lithography, colloidal lithography, focused ion beam lithography etc. are being used to 

create surface patterns from a few micrometers to tens of nanometers.  All these 

processes require multiple steps. They are all costly and time consuming and, even with 

these sophisticated approaches, reliably achieving sub-10 nm pattern length scales 

remains a challenge.  

The primary motivation for micro- and nano- patterning is to create devices that 

screen for multiple targets on a single readable surface.  Notably, the sophisticated 

recognition processes in biology, which go far beyond a simple yes-no readout of target 

adhesion, proceed without any regular patterning and exploit length scales intrinsic to the 

density of functionality on the cell surface. 

Creation of cationic patchy surfaces based on deposition from dilute polycation 

solutions, for instance flowing past a silica surfaces inside a laminar chamber, (an 

approach developed in the Santore lab
49

), is used extensively in this thesis.  The approach 

creates surfaces with controlled density of targeted functionality (and therefore precisely 

tuned surface length scales in the range 10-300 nm) relatively quickly and inexpensively. 

The adsorption approach lacks the ability to produce ordered arrays, which can be created 

through the methods discussed above.  The order of the heterogeneous functionality turns 

out not to be entirely necessary for the biomimetic technological targets addressed here.    

To reduce non-specific adhesion, coating the surface with a material that resists to 

bio-attachment is a critical step. Decades of fundamental and applied work have 
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advanced a variety of low fouling coatings, with none of them being entirely resistant to 

proteins and cells long term and under a variety of exposure and storage conditions.  

Most passivating materials are polymers that are non-ionic and hydrophilic.
7
 Many are 

brush-like in nature, with chains end-tethered to the surface and solvation forces causing 

the chains to stretch normal to the surface several times their free solution diameter.  

“Polymer brushes,” a formal term in the polymer physics discipline, that can be used for 

surface passivation include polyvinyl alcohol (PVA),
69

  polyacrylamide,
70

 hyaluronic 

acid,
71

 dextran,
72

 polyethylene glycol (PEG).
9, 73-75

 Also adsorption of bovine serum 

albumin and self-assembled monolayers of oligo(ethylene glycol) alkane thiols (EG-

SAMs) have been reported for surface passivation.
76-78

 

PEG in particular has garnered much interest among researchers because of its 

unique bio-compatibility. Immobilization of PEG on surfaces to reduce non-specific 

protein adhesion is a preferred approach. Incorporation of PEG into a copolymer with a 

second absorbing component is a common method to anchor PEG on a surface. Useful 

chemistries used for anchoring blocks include 3,4 dihydroxyphenilealanine (DOPA),
73, 74

 

poly propylene sulfide (PPS),
79

 poly-L-lysine (PLL),
80

 and poly-ethylene-imine (PEI),
81

 

depending on the substrate of interest. 

  

1.5 Motivation and Objective 

 

The Santore group has conducted extensive studies that addressed the impact of 

various physical forces and sub-micron surface heterogeneity on particle adhesion. These 

studies laid the ground work for the current thesis. The limitation of the surfaces studied 
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by Kalasin et al.
44-48

 was that they were not bio-compatible. Bare glass surfaces provided 

the background electrostatic repulsion forces needed for manipulation of negatively 

charged silica particle analytes, while a pilot study with BSA illustrated the possibilities 

for bacterial interaction through the reduction of non-specific interactions with S. aureus. 

At this point, the challenge remains to develop nano-patterned attractive moieties in a 

bio-compatible repulsive background. Additionally, a requirement is that the relative 

length scales of the attractive heterogeneous surface features should match the dimension 

of proteins and cells. These challenges form the subject of this thesis. 

 

1.5.1 Thesis Objective 

Our aim in this research is to create biocompatible surfaces with well-

characterized tunable attractive heterogeneities and to study the molecular interactions of 

proteins and cells with these collectors. A particular thrust is the development of highly 

selective surfaces that adhesively discriminate different proteins and cells in a mixture. 

 

1.6 Research Strategy 

 

We have implemented a graft poly-ethylene glycol (PEG) poly-L-lysine (PLL-

PEG) copolymer whose PEG side chains form a protein-repellant polymer brush.  The 

steric interactions from this brush set up a conceptual  parallel in this thesis with the 

electrostatic repulsions in the work of Kalasin. The use of PLL-PEG for surface 

passivation was first demonstrated by Sawhney and Hubbell.
82

 X-ray photoelectron 

spectroscopy (XPS) by Huang et al.
80

 suggested that, once PLL-PEG is exposed to metal 
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oxide surfaces a monolayer of  PLL binds to the negative metal oxide and the hydrated 

PEG chains extend away from the surface forming a brush structure.  In a good solvent if 

the separation distance (d) between the PEG anchoring points is less than twice the Flory 

radius rf (d < 2rf) the so called “brush” regime is invoked.
74

  As a result of the osmotic 

pressure generated by the good solvent, segmental repulsions stretch the polymer chain 

normal to the interface and can prevent close approach of proteins or other brushy 

objects.  

While other groups employing PLL-PEG brushes  focused on eliminating  

nonspecific protein adsorption
74

 or on the specific biofunctionalization of the brush itself 

(usually at the free chain ends),
9
 we relied on the unfunctionalized PLL-PEG brush to 

produce a repulsive field against which embedded attractive cationic elements compete. 

The selection of homopolymer PLL as the attractive cationic element or patch was based 

on the fact that PLL is widely known as a polymer that can enhance mammalian cell 

adhesion to solid surfaces. Moreover PLL has been shown to enhance microbial cell 

adhesion
83

 and is being widely used for surface patterning for biofilm development.
84

 

PLL has been used to form layer-by-layer thin film assembly for thin film biomaterials 

and is known to enhance protein adhesion for fibronectin
3
,
85

 which made it a suitable 

choice for our study. The PLL patches form the nanoscale elements within the PLL-PEG 

copolymer brush. The accessibility of these patches to targets in solution was probed in 

this thesis.  
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1.7 Thesis Overview 

 

This thesis explored the capabilities of nano scale heterogeneities embedded 

within a PEG brush to achieve selective adhesion of different proteins and cells. 

Polyethylene glycol (PEG) graft poly-L-lysine (PLL) copolymers were used to create the 

PEG brush on silica surfaces. The cationic PLL backbone anchor within the copolymer 

maintains the brush on the surface through electrostatic attractions to the negatively 

charged silica substrate. PEG chain lengths and grafting ratios were varied to study their 

role in bio-adhesion. Three different PEG brushes were studied for this thesis. Cationic 

homopolymer PLL coils were used as patches and were embedded within the brush 

providing a nano patterned PEG brush. 

 

Chapter 2 focuses on the stability of three PLL-PEG brushes on silica surfaces 

upon exposure to different anionic and cationic proteins, in addition to free (cationic) 

PLL itself. While all three brushes were found to almost completely resist the adhesion of 

anionic proteins, lysozyme was found to be adsorb loosely to the outer PEG layer, with 

the amount of retained lysozyme roughly proportional to the PEG content of the 

interface. By contrast, free homopolymer PLL was found to penetrate the PEG brush and 

displace the it from the silica substrate. 

 

Chapter 3 details the ability of a 2000-molecular weight PEG brush, containing 

cationic PLL patches, to tune adhesion of a model protein, fibrinogen. A sharp protein 

adhesion threshold for fibrinogen adhesion is reported. 
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Chapter 4 extends the principle of fibrinogen adhesion to other proteins: 

albumin, alkaline phosphatase and myoglobin, varying in size but possessing similar 

pKas. The adhesion thresholds were found to rank with protein size, demonstrating a 

molecular ruler effect. Highly selective capture of fibrinogen (exceeding 99%) from 

fibrinogen – albumin mixtures was achieved at a surface that had intermediate patch 

density between the adhesion thresholds of fibrinogen and albumin. 

 

Chapter 5 explores the effect of brush height, brush grafting density and 

variation of buffer ionic strength over fibrinogen adhesion. It was demonstrated how 

protein adhesion can be tuned by varying the brush architecture and ionic strength. 

Selective capture and release of proteins at different ionic strengths over the brushes was 

demonstrated. 

 

Chapter 6 extends the protein-selectivity of the three patchy brushes to cellular 

lengthscales using S. aureus adhesion as a model. Distinct adhesion thresholds for S. 

aureus capture were found for all three brushes. It was further discovered that bacterial 

adhesion thresholds preceded protein adhesion for all of the brushes. An effort was made 

to separate S. aureus from a mixture of the protein and the bacteria at an intermediate 

patchy Brush 2 surface. It was found that the particular protein fibringen altered the 

bacterial outer membrane and bacterial separation was hindered. This turned out to be a 

poor choice to demonstrate bacterial separations, but still results were suggested success 

with other systems. 
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Chapter 7 contains the concluding points for this thesis and elaborated on future 

research directions. 
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CHAPTER 2 

ARCHITECTURE AND STABILITIES OF PLL-PEG 

BRUSHES: CASE STUDIES WITH CATIONIC AND 

ANIONIC PROTEINS AND A STRONG CATIONIC 

POLYELECTROLYTE PLL 

 

2.1 Introduction 

 

 
This chapter covers the architecture and stabilities of the different PEG brushes 

studied for this thesis. The impact of different protein and polyelectrolyte over such 

brushes is further described here. Much of this chapter is reproduced from a recently 

published work.
37

 

Despite advances that enable growth of covalently-attached brushes from surface-

bound initiators, economic considerations drive continued interest in brush formation 

from the adsorption of PEG (polyethylene glycol)-containing copolymers.  For 

hydrophobic surfaces, amphiphilic co-polymers are an obvious choice to create PEG-

tethered surfaces from aqueous formulations; however, complications can arise from 

micelles in solution and on surfaces.  For negative surfaces, copolymers of PEG and 

polycations are a useful route to produce surfaces with PEG tethers.  Here, the adsorbing 

polycation is self-repellant and avoids the aggregation and micellization-based 

complications that occur with polymer amphiphiles.  Indeed, several labs have developed 

libraries of PEG-PLL (PEG-Poly-l-lysine)
1-4

 and PEG-PEI (PEG-poly(ethylene imine) 

)
5,6

 copolymers, containing at least some members that are exceptionally protein resistant, 
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adsorbing 0.01mg/m
2
 or less from serum.  Also, Messersmith has pioneered the creation 

of DOPA (3,4-dihydroxyphenylalanine)-containing PEG, most appropriate as a protein-

resistant coating for TiO2 implants.
7
 A close comparison between the best PLL-PEG 

copolymers and the PEG-DOPA polymers reveals a slight superiority of the former’s 

protein resistance in-vitro,
8
 while the significance of this difference for in-vivo 

applications is unclear.  Indeed, current indicators suggest that in the long run, the 

DOPA-based anchors, though appropriate for only limited substrate chemistries, are the 

better choice in-vivo.
7
  

Beyond the chemical instability of PEG, a problem for any physisorbed 

copolymer-based brush is its potential for displacement by competing species.  While 

biomedical studies have not revealed exactly which proteins may be responsible, 

arguments from polymer physics suggest that cationic proteins, polymers, and 

polypeptides can destabilize PEG brushes anchored by cationic chains on negative 

substrates. High molecular weight homopolymers will displace, ultimately, low 

molecular weight chains of identical chemistry,
9,10

 while densely charged polyelectrolytes 

will displace chains of lower charge density but similar length.
11

     

These rules of thumb apply to the anchoring consitituent of PEG-polycation 

adsorbed brushes.  Thus, efficient cationic challengers for brush displacement could 

include the PLL-homopolymer itself, since functionalization of PLL with PEG chains 

reduces the cationic functionality of the backbone, and since the PLL anchor of the 

copolymer must also pay the entropic “cost” of stretching its PEG tethers.
12

  The 

question, then, is to what extent can cationic challengers, such as positively charged 

proteins or PLL itself, penetrate the PEG corona and displace the PLL anchors.  Since 
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brushes with about ~1 mg/m
2
 of PEG tethers have been documented to be protein-

resistant,
2,8,13

 it is interesting to ask whether this resistance translates to an 

impermeability towards challenging species, at least ones that are peptide-based. Indeed, 

if a brush is thick enough to shield the underlying substrate from approaching proteins, 

then it may be stable against exchange for very long periods, despite a driving force 

favoring exchange.   

  This chapter examines brushes formed from PLL-PEG copolymers physisorbed 

on silica. Following the literature from the Hubbell, Voros, and Textor groups, this study 

focuses on architectures which have been previously established to be highly protein 

resistant, adsorbing less than 0.01 mg/m
2
 of serum protein at physiological pH and ionic 

strength.
8,13

  These brushes are thicker (8-16 nm) than the range of electrostatic 

interactions.  We reproduce the stability of these surfaces against adsorption of albumin, 

fibrinogen and other negative proteins, but observe that cationic protein adsorption occurs 

and that brushes can be destroyed by exposure to cationic polypeptides.  The observations 

prompt reconsideration of the general assumption of protein-PEG repulsions, and the 

ability of polypeptides to penetrate relatively thick PEG brushes. 

 

2.2 Synthesis and Characterization of Brushes 

 

 The synthesis and characterization processes of PLL-PEG brushes are described 

in this section. 

2.2.1 Brush Synthesis 
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 The general brush synthesis procedure followed the technique described by the 

Hubbell group
14-15

. However due to unavailability of the PEG reactive group as employed 

by the former group we used a slightly different PEG compound as described by (Gon et 

al., 2010)
16

. Poly-L-lysine hydrobromide (PLL) with a nominal molecular weight of 

20,000 from Sigma-Aldrich was dissolved in 50 mM pH 9.1 sodium borate buffer. Two 

different PEG molecular weights were employed, either 2000 or 5000.  For copolymers 

containing 2K PEG, the N-hydroxysuccinimidyl ester of methoxypoly(ethylene glycol) 

acetic acid (Layson Bio Inc.) was added, and the solution was stirred for 6h. For 

copolymers containing 5K PEG, this reactive compound was not available and PEG 

sodium valeic acid (PEG-SVA) was employed instead.  After reaction, the mixture was 

dialyzed against pH 7.4 phosphate-buffered saline for 24h, dialyzed against DI water for 

another 24 h, and then freeze dried and stored at -20°C.  The relative amounts of PEG 

and PLL were varied, with the grafting ratio defined to be the number of PLL monomer  

per PEG side chain.  This is inversely proportional to the percent functionalization of the 

PLL by PEG.   

 

2.2.2 Brush characterization using NMR 

 Purified copolymers were characterized in D2O using 
1
H NMR on a Bruker 400 

MHz instrument.  The grafting ratio was determined from the relative areas of the lysine 

side-chain peak (-CH2-N-) at 2.909 ppm and the PEG peak (-CH2-CH2-) at 3.615 ppm.  

Table 2.1 summarizes the molecular properties of the three samples employed in this 

study.  While other molecular architectures were synthesized as described in Appendix A, 

these particular three samples were studied further because the brushes they formed on 
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adsorption to silica eliminated the adsorption of key serum proteins, consistent with prior 

literature.
13

 NMR  data for the three polymers are given in Appendix B. 

 

Table 2.1 Molecular Properties of different brushes 

 

2.3 Experimental methodology 

 

Polymer brushes were formed by adsorbing copolymers from flowing phosphate 

buffered solution (0.008 M Na2HPO4 and 0.002M KH2PO4, pH 7.4 with Debye length 
-1

 

= 2 nm, 100 ppm copolymer) over acid-etched microscope slides (these surfaces are 

silica) in slit shear laminar flow cells at gentle flow conditions (wall shear rate = 5.0 s
-1

) 

for 20 minutes.  This was followed by continued flow of the same buffer for another 20 

minutes.  Optical reflectometry,
17

 run in-situ, was used to track the adsorption process 

  

Polymer I Polymer II Polymer III 

PLL - (2.7)PEG(2K) PLL - (2.2)PEG(5K) PLL - (4.7)PEG(5K) 

PEG MW 2,000 5,000 5,000 

Grafting Ratio 2.7 2.24 4.5 

% PLL 

Functionalization 

37% 45% 22% 

Molecular 

Weight 

136,000 367,000 188,000 

PLL - 20K 
(157 repeats) 
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and determine the ultimate mass of adsorbed copolymer.  When needed, total internal 

reflectance fluorescence (TIRF) was employed to track the adsorption or desorption of a 

fluorescently-tagged species during competitive challenge experiments.  This instrument 

was described 
18

 previously and, notably, employs the same flow chamber as the 

reflectometer. 

The polymers and proteins used to challenge the adsorbed PLL-PEG brushes were 

purchased from Sigma Aldrich and used as-is.  These included hen egg white lysozyme 

(L6876), bovine serum albumin A (7511-10G), bovine fibrinogen (F8630-1G, fraction 1, 

type 1S), equine skeletal muscle myoglobin (M0630-1G), and alkaline phosphatase 

(P7640-1G).  Notably the PLL homopolymer used to challenge the brush was the same 

PLL employed as the anchoring group of the copolymer.  In cases where TIRF was 

employed to track PLL adsorption, it was made fluorescent by labeling with fluroescein-

isothiocyanate (FITC isomer I, F250-2 from Aldrich). Labeling and purification were 

conducted as described by (Wertz and Santore, 1999)
19

.  Challenge experiments were 

conducted in the same flow chamber used to deposit brushes, with continuous flow of the 

various solutions and buffers, and the same flow rate. Studies at Debye lengths other than 

2 nm were done either in dilute (overall concentration of 0.005M for 
-1

 = 4nm) or 

concentrated buffer for 
-1

 = 1 nm. 

In some studies, small amounts of PLL were adsorbed to bare silica surfaces prior 

to the adsorption of the PLL-PEG brush.  This was carried out as a sequence of carefully-

timed adsorption steps in a single flow chamber.  Control of the particular small PLL 

amount was achieved through the use of dilute PLL solution (5 ppm) and careful timing 

of PLL flow and reinjection of buffer, so that controlled deposition, not full surface 
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saturation, occurred.  Subsequent adsorption of the brush was carried out by flowing 

PLL-PEG solution for a time appropriate to saturate the surface.  Buffer was reinjected 

only after a clear plateau was demonstrated.  This procedure has been documented in 

detail previously.
16

  It was additionally shown that (1) initial PLL adsorption did not 

produce surface aggregates and that PLL chains were well-distributed about the surface; 

and (2) initially adsorbed PLL was not displaced by subsequently adsorbing PLL-PEG.
16

 

Zeta potential measurements, intended to gauge the electrostatic features of planar 

brush-bearing surfaces, were conducted using 50 ppm suspensions of 1-micron silica 

spheres (from GelTech, Orlando) as a model for the planar silica surfaces.   Polymers 

were adsorbed to the particles to create PLL-  or brush-covered silica, using an amount of 

polymer appropriate to saturate the surface and known the specific area of the 

microparticles. Particles were incubated overnight prior to measurement of their zeta 

potential in a Malvern Zeta Sizer Nano ZS instrument. 

 

2.4 Results 

 

 2.4.1 Calculation of brush height 

The calculation of the brush heights were calculated following the “blob” 

approach put forth by Alexander and DeGennes
20-21

, in which sections of the chain, each 

possessing about a kT of energy, termed “blobs,” extend normal to the surface (Figure 

2.1).  The brush height is the blob diameter times the number of blobs: 

Height = (N / Nblob) dblob  (2.1) 
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The number of blobs in a chain is equal to the number of statistical segments in a 

chain divided by the number statistical segments in a blob, N/Nblob.  The blob diameter 

corresponds to the spacing of the PEG anchors, which is calculated from the 

experimentally adsorbed amount of PLL-PEG coverage at saturation. 

 

 

 

 

 

 

                                                

Figure 2.1 Schematic of polymer brush 

 

The PEG statistical segment length, b, was determined as 0.57 nm and the 

molecular weight of a statistical segment was found to be 59.  Therefore a 2000 

molecular weight PEG chain contains 34 statistical segments while Nblob  is calculated by  

blob diameter = b Nblob
3/5

.  

An assumption of N
3/5

 (good solvent) scaling of the chain inside each blob (at 

distances less than a persistence length) allows calculation of the number of blobs in the 

brush, as previously described.
16,22

 From Equation 2.1 we can calculate the brush height 

which is reported in Table 2.2. Most notably, the PLL content of all three brushes 

(presumably at the brush base) is substantially less than a saturated PLL layer of the same 

molecular weight, while the graft spacing of the PEG tethers is smaller than the 

calculated free coil diameter, 3.3 nm for 2K PEG and 6.1 nm for 5K PEG.  This suggests 
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that the PEG tethers are stretched normal to the surface, as required in brushes.  The 

calculation of the brush height follows the determination of the average spacing between 

tethers, giving the brush’s persistence length.  Notably, Brush #1 is shorter than the 

others but still substantially thicker than the 2nm Debye length in the main study, while 

the two thicker brushes are nearly similar in height but differ in their PEG/PLL content 

and in the effective number of “blobs” per tether.  These estimates are conceptualized in 

the Figure 2.2. 

Table 2.2 Brush architecture and zeta potentials, ζ 

 

 

 

 

 

 

 

 

 

 

 

 

While the literature suggests that electrostatic effects should be unimportant at the 

2 nm Debye length of this study, an assessment of the electrokinetic surface character is 

useful.  The lower part of Table II reveals, via zeta potential, a net negative interface for 

PLL Brush #1 Brush #2 Brush #3

Homopoly

20K

PLL-(2.7)

PEG(2K)

PLL-(2.2)

PEG(5K)

PLL-(4.7)

PEG(5K)

Saturated adsorption 0.4 mg/m2 1.1 mg/m2 0.9 1.3

Adsorbed PEG 0 0.94 mg/m2 .85 1.16

Adsorbed PLL 0.4 mg/m2 0.16 mg/m2 0.05 0.14

Area / Copolymer 83 nm2 206 nm2 680 247

Area / PEG tether 3.6 nm2 9.6 7.2

“Blob” Diameter,  or 

tether spacing

1.9 nm 3.1 2.7

Number of Blobs 4.7 5.1 6.4

Brush Height, nm 9 nm 15.5 17.2

(1 nm) [SiO2 = -57mV] 2 ±5 mV -4 ±3 mV -11 ±3 mV -4 ±3 mV

(2 nm) [SiO2 = -73mV] 6 ±3 mV -9 ±3 mV -19 ±3 mV -10 ±3 mV

(4 nm) [SiO2 = -84mV] 4 ±3 mV -21 ±3 mV -34 ±3 mV -25 ±3 mV

PLL Brush #1 Brush #2 Brush #3

Homopoly

20K

PLL-(2.7)

PEG(2K)

PLL-(2.2)

PEG(5K)

PLL-(4.7)

PEG(5K)

Saturated adsorption 0.4 mg/m2 1.1 mg/m2 0.9 1.3

Adsorbed PEG 0 0.94 mg/m2 .85 1.16

Adsorbed PLL 0.4 mg/m2 0.16 mg/m2 0.05 0.14

Area / Copolymer 83 nm2 206 nm2 680 247

Area / PEG tether 3.6 nm2 9.6 7.2

“Blob” Diameter,  or 

tether spacing

1.9 nm 3.1 2.7

Number of Blobs 4.7 5.1 6.4

Brush Height, nm 9 nm 15.5 17.2

(1 nm) [SiO2 = -57mV] 2 ±5 mV -4 ±3 mV -11 ±3 mV -4 ±3 mV

(2 nm) [SiO2 = -73mV] 6 ±3 mV -9 ±3 mV -19 ±3 mV -10 ±3 mV

(4 nm) [SiO2 = -84mV] 4 ±3 mV -21 ±3 mV -34 ±3 mV -25 ±3 mV
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all brushes.  That the surfaces have an underlying negative charge is not surprising:  The 

silica substrate is substantially negative and a PLL layer adsorbed to saturation (0.4 

mg/m
2
) only slightly overcompensates the underlying surface charge. The brushes, with 

their PLL content less than that of a fully saturated PLL layer, will therefore be 

negatively charged in region where the PEG is anchored.  That the negative interfacial 

potential can be sensed hydrodynamically via zeta potential suggests that the shear plane 

penetrates the brush somewhat.  The zeta potential is still substantially reduced (in 

magnitude) for these brush-containing surfaces compared with surfaces with similar PLL 

loading but no PEG. The extent to which proteins can sense the negative interfacial 

environment (do they penetrate the brush more or less than the shear plane?) is addressed 

below. 

 

 

 

 

 

 

 

 

 

.  

Figure 2.2 Structure of the PEG tethers within the three brushes, calculated according to 

the Alexander deGennes treatment, showing graft spacing or brush persistence length, 

equal to the “blob” size.  Also shown is the number of blobs in each brush. 
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2.4.2 Interaction with globular proteins 

Table 2.3 summarizes the adsorption of several proteins on the three brushes at a 

Debye length of 2 nm.  In general, proteins with a net negative charge, regardless of size 

or shape, do not adsorb to the brushy surfaces, while cationic proteins and polypeptides 

do adhere.  In the case of lysozyme with a net charge of 9+, substantial adsorption is 

observed for the thicker brushes, with the greatest adsorption on Brush #2, which 

contains the greatest mass of PEG.  Notably, the efficient elimination of negative protein 

adsorption (albumin, fibrinogen, and others) on these brushy surfaces reproduces reports 

in the literature for of a lack of adsorption from serum.
13-15

 Indeed the lack of serum 

adsorption was the basis our choice of these brush architectures (and in particular the 

grafting ratio).  Figure 2.3 shows the experimental results of challenging these proteins 

over different brushes. 

 

Table 2.3 Protein adsorption at 
-1

 = 2 nm, pH 7.4 (R = substantially reversible 

adsorption,   E = Exchange (displacement) of previously adsorbed brush 

 

 

    Protein Adsorption, 

mg/m
2
 

  

 MW 

Dimensions 

nm x nm x nm 

 

Charge, pI 

 

#1 

Brush 

# 

#2 

 

#3 

Fibrinogen, bovine 

serum 
340,00

0 

4.5 x 4.5 x 47 -8 - -10
23

, 

5.8
24

 

0 – 0.02 0 0 

Albumin, bovine 

serum 
68,000 4 x 4 x 14 -9, 4.8

25
-5.1 0 0 0 

Myoglobin 17,000 4.4 x 4.4 x 2.5 - , 6.8-7.0
26

 0 – 0.02 - - 

Alkaline 

Phosphatase, 

Monomer (bovine) 

 

81,000 

9 x 4 x 4 -, 5.7
27

 0 - - 

Lysozyme, hen egg 

white 
14,300 3 x 3 x 5 +7, 11

26,28
 0.05R 1.0R 0.2R 

Poly-l-lysine 20,000 Random coil +++ 0.4 E 0.4E 0.4E 
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Figure 2.3 Protein repellence characteristics of PEG brushes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Lysozyme adsorption onto three brushes at pH 7.4 and k-1 = 2 nm, followed 

by rinsing, near 20 minutes.  (Brush adsorption portion of each run is not shown.) 
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The adsorption traces for lysozyme on the three brushes are detailed in Figure 2.4,  

and run contrary to current thinking about protein-brush interactions.  First, it is generally 

accepted that protein repellence occurs when brushes are sufficiently thick to screen 

electrostatic and van der Waals attractions.  Indeed a comprehensive study employing 

libraries of PLL-PEG and DOPA-PEG polymers suggests that the most important feature 

of a brush is the tethered PEG mass:  If it is about 1 mg/m
2
 or greater, good resistance to 

serum proteins is observed, independent of PEG chain length or grafting density (for PEG 

lengths in the range from 1-5K).
8
  Figure 2.4 shows the opposite.  The thinnest brush, #1, 

adsorbs practically no lysozyme, while the thicker brushes adhere more lysozyme.  This 

suggests, first, that the attractions between lysozyme and the interface are between the 

protein and the PEG, not between the protein and the underlying substrate.  (Notably 

lysozyme –substrate interactions are electrostatically attractive, but apparently well-

screened by the thinnest of the brushes, # 1.)  Instead, the increasing protein retention 

with PEG content suggests specific interactions between PEG and lysozyme, not 

available to the other proteins.   

The claim that lysozyme adsorption does not result from electrostatic attractions 

to the underlying silica must be substantiated by a similar lack of interaction between the 

anionic protein and the brush-covered silica.  Figure 2.5 considers the influence of Debye 

length on the adsorption of fibrinogen, chosen as a model negative protein because it is 

well studied and known to adsorb onto positive
29

 and negative surfaces (including silica 

at pH 7.4).
30-32

 On negative surfaces, electrostatic attractions involve fibrinogen’s 

cationic groups, evidenced by the impact of ionic strength.
30,31

 Figure 2.5 demonstrates 
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that for 
-1

 = 4nm, fibrinogen adsorbs onto Brush #1 but not Brush #2 or #3.  This 

suggests an attraction between fibrinogen and the underlying substrate, screened by the 

thicker brushes.  That this attraction is electrostatic in origin is further supported, in 

Figure 2.5, by the observed lack of fibrinogen adsorption to all three brushes at 
-1

 of 1 

and 2 nm, conditions where the steric brush repulsions screen electrostatic interactions.  

The argument is further strengthened by the reversibility of the fibrinogen adsorption on 

Brush #1 with changing ionic strength.  Long range electrostatic attractions at 4 nm may 

draw fibrinogen to the brush periphery, but without stronger interactions the silica or train 

layer, fibrinogen is immediately and completely released when the ionic strength is 

raised.  The fast rate of protein release suggests fibrinogen adsorption (at 4 nm) on top of 

the brush. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Fibrinogen adsorption on brushes for different ionic strengths.  Note reversible 

adsorption on  Brush #1when the ionic strength is switched (inset) from the mildly 

adsorbing conditions at  k-1 = 4 nm down to  2 nm. 
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Thus, we deduce that at 2 nm, the conditions for most of this study, the brushes 

fully screen electrostatic interactions between the proteins and silica.  Therefore, the net-

negative character of the non-adsorbing proteins in Table 2.3 is not directly (through 

electrostatic repulsions) responsible for their lack of adsorption.   

 

2.4.3 Interaction with PLL 

Table 2.3 notes that PLL solutions displace PLL-PEG from the silica.  An 

example of PLL challenge of Brush #1 is shown in Figure 2.6, a reflectometry trace 

including multiple steps:  initial adsorption of PLL-(2.7) PEG-2K to form Brush #1; its 

retention on the surface during rinsing in pH 7.4 
-1

=2 nm buffer; challenge by albumin 

solution (in the same buffer, nothing happens); and subsequent challenge by PLL solution 

(100 ppm).  Brush exposure to PLL causes the surface coverage to decrease from 1.1 

mg/m
2
 to 0.4 mg/m

2
.  The latter is characteristic of a saturated PLL layer on silica, and 

indeed, when albumin is exposed again to the surface, it adsorbs rapidly.  The gray data 

set on the same graph show the adsorption of PLL on a bare silica surface and subsequent 

albumin adsorption. The latter is kinetically identical to albumin adsorption on a surface 

initially containing a PLL-PEG brush (#1), after PLL challenge.  This suggests that the 

brush is completely displaced by PLL as though the brush were never present.  The 

technical implications of the subsequent protein adsorption are clear. 

The rapid kinetics of the PLL / PLL-PEG exchange process are striking.  The loss 

of PLL-PEG from the silica is clear in Figure 2.6, but adsorption of PLL into the brush is 

equally fast, in Figure 2.7.   
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Figure 2.6 Adsorption and PLL challenge of Brush #1 in buffer  with k-1 = 2 nm. 

The original brush is exposed to 100 ppm albumin before and after the PLL challenge, 

using 100 ppm PLL solution. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Adsorption of fluorescently labeled PLL, measured by TIRF onto a bare silica 

surface, and during the challenge of Brush #1.  In the latter, the behavior of PLL-PEG 

chains are not seen since they are not fluorescently tagged. 
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Figure 2.7 demonstrates identical kinetics for PLL adsorption on bare silica and 

PLL adsorption (measured via TIRF with FITC-tagged PLL) into Brush #1. Brush #1 

presents no kinetic barrier to the penetration of PLL, and apparently the segmental 

exchange at the base of the brush is rapid.  Fast PLL adsorption kinetics is also depicted 

for PLL challenges on Brushes #2 and #3. Although PLL adsorption over Brush # 2 and # 

3 seem to be slightly slower than observed for Brush #1, with 0.4 mg/m
2
 of PLL 

established in under 2 minutes as observed in Figure 2.8.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Adsorption of fluorescent PLL on silica and during challenge experiments for 

three brushes.   
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Figure 2.9, for all 3 brushes, though it varies quantitatively.  The overshoot suggests that 

a small amount, 0.03-0.08 mg/m
2
, of PLL adsorbs on the silica before the PLL-PEG starts 

to be displaced.  The possibility of this incremental adsorption is reinforced by Table II:  

The amount of PLL anchored at the base of these brushes, 0.05-0.16 mg/m
2
, is 

considerably less than the PLL saturation coverage on a bare silica surface, 0.4 mg/m
2
.   

Also interesting, in Figure 2.7, PLL adsorbs continuously during the overshoot 

and subsequent PLL-PEG displacement processes, near the transport-limited PLL 

adsorption rate. 

 

Figure 2.9 Close up of overshoot portion of reflectometry runs in which PLL challenges 

pre-adsorbed PLL-PEG brushes.  The time axis for the different runs is shifted to 

facilitate a comparison of the overshoot seen for the different brushes. 
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Figure 2.10 argues, based on a different type of experiment, that some PLL can be 

accommodated at the base of an adsorbed PLL-PEG brush.  Here, small amounts of PLL 

were adsorbed to a bare silica surface, followed by adsorption of a saturated PLL-PEG 

brush on the remaining surface.  Figure 2.10 summarizes the amount of PLL-PEG 

accommodated after PLL preadsorption:  Small amounts of PLL do not affect the PLL-

PEG coverage, and are tolerated at the base of the brush.  However, there is a maximum 

amount (depending on the particular PLL-PEG sample) of PLL that can be 

accommodated before PLL-PEG adsorption is reduced, indicated by the vertical bars, 

whose width indicates the level of uncertainty.  Notably, for the three different PLL-PEG 

architectures, the amount of pre-adsorbed PLL that can be accommodated without 

compromise of a subsequently adsorbed brush is similar to that which can be adsorbed 

into an existing brush before the PLL-PEG is displaced.  The latter is given by the 

overshoots in Figure 2.9. 

 

 

 

 

 

. 

 

 

Figure 2.10: Amount of PLL-PEG adsorbing to silica after adsorption of small amounts 

of PLL,on the x-axis.  Gray bars indicate uncertainty in determining the x-axis values 

where the data start to turn down. 
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Desorption kinetics of three brushes as illustrated in Figure 2.11 point out the 

competition between the PLL in the solution and the PLL anchored at the base of these 

brushes. The steric repulsion from the PEG brushes and the electrostatic attraction 

between the surface and the PLL anchors oppose each other. In the absence of a strong 

polyelectrolyte like PLL the electrostatic attraction of the PLL anchors at the base of the 

brushes win over the steric repulsion generated by the PEG segments of the brushes. 

However, as the brushes are challenged with PLL solution the electrostatic attraction of 

the anchors face a two front attack. First PLL coils in the solution find some defects in 

the brush and starts adhering over the silica substrate after penetrating the brush. These 

PLL coils have more -NH2 on their surface and hence more positive charge. The PLL 

anchors at the base of the brush start to feel the electrostatic repulsion from the anchored 

PLL coils. Secondly the steric repulsion generating from the PEG brushes enhances 

altogether desorption of the brushes from the surface.  

 

 

 

 

 

 

 

 

Figure 2.11 Full reflectometry traces of runs in which PLL-PEG brushes are challenged 

by 100 ppm PLL solutions in buffer having k-1 = 2 nm. 
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A mass decrease plot is generated from Figure 2.11 and illustrated in Figure 2.12. 

From Figure 2.12 it is evident that Brush # 2 has the fastest desorption among the three 

brushes followed by Brush #1 and # 3. The grafting ratios of these three brushes show 

highest PEG loading per L-lysine repeat units in Brush # 2 followed by Brush # 1 and # 

3. Hence we can expect highest steric repulsion from PEG segments in Brush # 2 

followed by # 1 and # 3. Thus brush desorption kinetics support our former argument 

about steric force of PEG segments playing a crucial role here. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Mass decrease during PLL-challenge of the three brushes.  Examining 

relaxation timescales. 
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sign of the protein charge implicates electrostatic protein-surface interactions, with the 

negative proteins being repelled from the underlying negative substrates.  The increased 

fibrinogen adhesion at lowered ionic strengths (Figure 2.5) only on the thinnest Brush #1, 

however, clarifies that electrostatic repulsions from the silica could not be responsible for 

the non-adherence of the negative proteins at 
-1

 = 2 nm.  Indeed Figure 2.5 parallels 

findings from the literature with serum proteins, for the effects of brush thickness and 

ionic strength.
1
  It was necessary to reproduce this trend with our own materials to ensure 

the conformance of our brushes to the literature.  The importance of this result, lies (1) in 

its reaffirmation (for our materials) of the substantially greater brush thicknesses 

compared with the 2 nm Debye length (eliminating electrostatic protein-substrate 

interactions), and (2) in the contrasting behaviors of negative proteins and of lysozyme 

and PLL.  Thus the surprising influence of the net protein charge on protein interactions 

with brushy surfaces cannot be attributed to electrostatic protein-substrate (silica or train 

layer) interactions.   

It is interesting to note the negative zeta potentials of the brushy surfaces, 

significant for two reasons:  First, it may seem counterintuitive that Brush #1 had more 

mildly negative zeta potentials than thicker Brushes #2 or #3.  All other things constant, 

the magnitude of the zeta potentials should decrease with increasing brush thickness 

because the thicker brushes push the shear plane further out from the surface.
12

 Table 2.2 

reveals, however, differing amounts of PLL at the base of these brushes, altering the 

effective surface potential in the train layer of the brush.  For instance, while Brush #1 is 

thinner than Brush #2, Brush #1 also contains more PLL at its base.  Therefore the 

surface potential beneath Brush #1 will be less negative than Brush #2.  A second 
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important point is that while the zeta potentials reveal the electrostatic environment at 

some point inside the PEG brush (due to some penetration of the shear plane into the 

brush), globular proteins seem not to access this electrostatic environment at 
-1

 = 1 or 2 

nm.  That is, the shear plane during a zeta potential measurement penetrates the brush 

more than globular proteins. 

An observation which was not previously documented, to our knowledge, is the 

adhesion of lysozyme to relatively thick PEG brushes. (While Pasche has studied 

lysozyme interactions with PLL-PEG on Nb2O5 surfaces, those copolymers contained 2K 

PEG tethers and all but one system were thin brushes that did not completely screen the 

electrostatic potential from the underlying substrate.
1
  Indeed, current results with 

PLL(2.7)-PEG-2K (similar to one protein-resistant specimen within the Pasche study) 

produce very slight lysozyme adsorption in agreement with that their findings.)  Figure 2 

argues in favor of PEG-lysozyme attractions, a possibility which runs contrary to 

mainstream thinking that PEG ubiquitously repels globular proteins through steric 

(osmotic) interactions, as a result of the (1) the lack of charge on PEG, (2) its tendency to 

be well-solvated in water, with a net repulsion towards other molecules that are also 

water-solvated and (3) its hydrogen-bond accepting capacity (with no donor capacity).
33

  

We do not generally find, in the literature a discussion of PEG being adhesive towards 

some globular proteins and repulsive towards others.  We note however, the Fraden lab’s 

report of a negative second (cross) virial coefficient between PEG and lysozyme in free 

solution, based on light scattering.
34

  This measure of PEG-lysozyme attractions supports 

our interpretation of Figure 2.4.  Notably, these attractions may cause some penetration of 
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the lysozyme into the PEG layer, but lysozyme penetration through the brush layer to the 

silica substrate is not indicated or necessary to produce our observations. 

A third behavior, the penetration of random PLL coils into PEG-PLL brushes and 

their subsequent displacement, in Figure 2.6 and 2.7 is technologically important because 

it dramatically compromises the protein resistance.  These figures demonstrate that an 

established brush can be completely removed from the surface in less than five minutes, a 

surprising observation if one expects the PEG corona to osmotically shield the surface 

from PLL, or if one expects kinetically trapped states at in the adsorbed PLL layer to 

hinder exchange at the base of the brush.
11,35,36

  Our study demonstrates arrival of PLL to 

the interface to be the rate limiting step:  the adsorbed PLL-PEG brushes are in this sense 

extremely fragile.  

It is worth pointing out that PLL was the only macromolecule tested that was able 

to penetrate the PEG brushes and proceed with brush displacement.  This observation 

points toward the importance of protein / polypeptide structure in brush interactions.   

Apparently the dense globular nature of folded proteins is a key component of their 

exclusion from PEG brushes.  The rapid displacement of adsorbed PLL-PEG by PLL 

suggests a lack of steric repulsions between hydrated PEG tethers and random-coil PLL 

chains.  With PLL able to rapidly penetrate the otherwise protein-repelling brushes, 

electrostatic attractions to the base of the brush drive PLL adsorption. 

The observation of rapid PLL-PEG displacement by PLL further argues that the 

anchoring PLL sequences are highly dynamic on the silica substrate. While some studies 

of polyelectrolyte exchange between solution and an interface reveal sluggish 

kinetics,
11,35,36

 the PLL anchors of the current study are aided in their removal from the 
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surface  by the entropy gain of the PEG tethers when the anchoring sections are released 

from the substrate.  Without these tethers, short PLL train sections might re-adsorb as 

rapidly as they desorb, so that the entire PLL chain remains bound despite its dynamic 

fluctuations: A high density of PEG tethers make local PLL desorption events (involving 

a few segments) within the trains longer-lasting, facilitating adsorption of homopolymer 

PLL challengers. 

 

2.6 Conclusions 

 

This chapter examined the interactions of cationic proteins and polypeptides with 

cationically-anchored PEG brushes whose architectures were previously reported and 

confirmed here to eliminate adhesion of key serum proteins.  The study focused on ionic 

strength conditions where electrostatic interactions with the negative underlying substrate 

were screened by the brush.   

The work revealed a strong correlation between the sign of the net protein charge 

and interactions with the brushy surfaces:  Negative proteins did not adsorb, while 

positive proteins / polypeptides were attracted to and retained at the interface.  Additional 

control studies re-affirmed the lack of electrostatic interactions between globular proteins 

and the underlying substrate, focusing attention on specific interactions between globular 

proteins and the hydrated PEG tethers. In the case of lysozyme, the greatest adsorption 

occurred to the brushes having the greatest amount of tethered PEG, a finding running 

contrary to the literature for general protein repellency of PEG brushes.  While the 

specific mechanism for PEG-lysozyme attractions remains unclear, it is found that 
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cationic lysozyme behaves differently from anionic serum proteins in its interactions with 

PEG.  This finding is contrary to conventional thinking which treats all globular proteins 

as similar in their interactions with nonionic brushes.  These results point to the 

importance of the interactions between hydrated PEG brushes and globular proteins, 

which can be highly varied.  Apparently there is a sensitivity of this interaction to nature 

of each protein, a possibility which is generally overlooked in the literature which, based 

on frequently studied protein models, always assumes domination by steric repulsions 

between PEG and globular proteins. 

Beyond adhesion of the cationic protein lysozyme to the PEG brush corona, the 

study revealed that cationic random-coil polypeptides, for instance PLL, can rapidly 

penetrate a hydrated PEG brush, electrostatically interacting with the underlying substrate 

and displacing the brush.  For moderately dense PEG brushes with tethers in the 2000 – 

5000 MW range, such displacement processes are dominated by the arrival rate of PLL to 

the interface, identical to that for the adsorption of PLL on bare silica.  The immediate 

displacement of the PEG brush demonstrates a potential failure mechanism of these 

interfaces in-vivo, and motivates permanent attachment of PEG chains to the substrate.  

This work prompts reconsideration of specific PEG-protein interactions, and the 

nature of the anchoring of PEG groups in the presence of random-coil cationic 

polyelectrolytes.  The findings demonstrate that, even if the PEG tethers were covalently 

bound to a substrate, cationic proteins and homopolymers can penetrate and adhere to the 

brush, or the substrate.  Their retention in the brush potentially renders the interface 

bioadhesive to other proteins and cells, even without displacement of the PEG tethers. 
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CHAPTER 3 

MANIPULATING PROTEIN ADSORPTION USING A 

PATCHY PEG BRUSH 

 

3.1 Introduction 

 

The focus in this chapter is to develop patchy polymer brushes as a means of 

controlling adhesive protein contact.  Much of this chapter has been reproduced from a 

recently published work
45

. 

 The design of surfaces for the control of protein adsorption has been a scientific 

and industrial endeavor for the past several decades, with the goals ranging from 

complete avoidance of protein adsorption (and cell adhesion) for some implants, to 

selective reversible protein binding for pharmaceutical separations, and addressable 

specific-targeting elements in protein chip arrays and diagnostics.  Common strategies 

include immobilization of bio-specific (“affinity”) capture molecules and passivation of 

the remaining surface. Often, lithographic methods enable controlled placement of 

adhesive and non-adhesive moieties, enabling addressability. As pattern length scales 

often exceed protein dimensions proteins are found clustered over patterned surfaces. 

While this may be useful in some applications such study can not focus on molecular 

level interaction of proteins with patterned media.  

Many proteins spread and denature substantially on large areas of adhesive 

surfaces.
1-8

 It follows, then, that limiting protein-surface contact is a potential means of 
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achieving protein adhesion without denaturing.  This challenge, however, requires the 

fine tuning of binding energies and contact areas to ensure protein retention at the same 

time avoiding unfolding.  Steps have been made in this direction employing 

nanoparticles.
9-12

 For instance, it has been reported that albumin is more stable to 

denaturing when adsorbed onto small rather than large gold nanoparticles.
13

 Related to 

these findings and providing further motivation for immobilization of small numbers of 

proteins is the observation that the edges of a 2D lysozyme pattern are more accessible to 

antibody binding than the proteins in the main area of the pattern.
14

 

By way of background, hydrated polymer brushes such as PEG (polyethylene 

glycol)
15-19

 or certain zwitterionic polymers
20, 21

 have been used for prevention of non-

specific bio-adhesion. By strict definition in the polymer physics community, a brush is 

produced when polymer chains are end-grafted to an interface in a good solvent, with the 

grafting spacing smaller than the characteristic free coil size, by about an order of 

magnitude.
22-24

 As a result of the osmotic pressure generated by the good solvent, 

segmental repulsions stretch the polymer chain normal to the interface and can prevent 

close approach of proteins or other brushy objects. It is noted however that in most cases 

of bioinertness and near-perfect protein repellency, the brush density and height fall 

substantially short of the rigorous definition.
25-28

 Thus it is the case, especially in the 

biomaterial community, that the term “brush” is used loosely, as we do here.   (Indeed, 

until the advent of surface initiated polymerizations, the adsorption method of depositing 

brushes always fell short of the coverages of true brush.
28

 Adsorption continues, 

however, to be a preferred method of brush placement, due to its economic and 

processing advantages.) 
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This chapter explores the use of “patchy brushes” as materials for the 

manipulation of protein adsorption, potentially for protein separation or biomaterial 

applications.  These surfaces contain relatively flat nanoscale adhesive regions 

surrounded by a polymer protein-resistant polymer brush, shown schematically in Figure 

3.1.  Brush # 1 as described in the previous chapter is the focus here. While the adhesive 

elements or “patches” could be any arbitrary chemistry, here they are cationic.  The 

current patchy brushes are modeled after the electrostatically-patchy surfaces previously 

studied in detail by the Santore group,
29-31

 but the current surfaces employ brushes on the 

main surface region as opposed to negative charge of the prior body of work.  The size of 

the adhesive regions, 10 nm or less, is small relative to the protein size, limiting protein 

contact with the surface.   

 

 

 

 

 

Figure 3.1 Schematic of patchy brush 

 

This chapter reports the interaction of these patchy brush surfaces with fibrinogen, 

which was chosen because of its importance in different applications and its tendency to 

adhere to many different surface types.  This is a result of its substantial hydrophobicity 

and electrostatic heterogeneity:  Fibrinogen’s central e-domain is positively charged 

while the protein charge is overall net negative.
32

  Also though fibrinogen is relatively 

.  
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large, roughly 47 x 4.5 x 4.5 nm
3
,
33

 it has been shown to adhere to relatively small 

surface features, for instance the interstices of a saturated adsorbed albumin layer, ie after 

no further albumin would adhere.
34

 

This chapter demonstrates a simple method for creation of patchy brushes and 

reports their basic behavior in terms of protein interactions.  Here we demonstrate that 

patches can be made sufficiently small / weakly binding that single patches are not able 

to adsorb protein.  When the surface density of the patches becomes sufficiently high that 

fibrinogen can interact with multiple patches at once, limited adsorption occurs. The 

work demonstrates how flaws or contaminants can be accommodated in a polymer brush 

without altering its structure, and then goes on to demonstrate how these flaws or 

adhesive regions potentially lead to bioadhesion. 

 

3.2 Experimental Methodology 

 

Synthesis and characterization of Brush # 1 has been described in chapter 2. Poly-

L-lysine hydrobromide, PLL, with a nominal molecular weight of 20,000 was purchased 

from Sigma-Aldrich. Bovine serum fibrinogen (fraction I, type 1-s) was purchased from 

Sigma (F8630-1G).  In the runs in the published figures, which employed optical 

reflectometry, the protein was used as received.  The adsorption substrates for this study 

were acid-etched microscope slides.  In our procedure, overnight soaking in concentrated 

sulfuric acid, followed by copious rinsing in DI (de-ionized water) leaches metal ions 

from the soda-lime glass to produce a pure silica surface, as characterized by XPS.
33
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As described in Chapter 2 Polymer and protein adsorption were conducted in a 

laminar slit shear flow cell
35

 with a wall shear rate of 5 s
-1

, using polymers dissolved in 

0.01M pH 7.4  phosphate buffer.  In the main portion of the study, adsorption was 

monitored with near-Brewster optical reflectometry, a method sensitive to the refractive 

index of the layer, and which requires no labeling of the adsorbing molecules.  In our 

instrument,
36

 a parallel-polarized HeNe laser impinges on the liquid solid interface from 

the solid side.  Near the Brewster condition, the back reflected beam is vanishingly small, 

arising primarily from the etched silica layer on the microscope slide.  As adsorption 

proceeds, however, the intensity grows in a fashion that can be adequately quantified 

using a step profile optical model.  For the different interfacial layers (polymer and 

protein) in the current study, the overall mass is sufficiently small that this treatment 

works well, though different refractive indices potentially apply to the polymer and 

protein layers.
36

   

Control runs were performed using total internal reflectance fluorescence with the 

same flow chamber.
37

  By labeling either the PLL or the fibrinogen with fluorescein or 

rhodamine b isothiocyanate,
34

 (ITC) we were able to establish that PLL and PLL-PEG 

molecules were not displaced during fibrinogen adsorption.  A rhodamine-b-ITC labeled 

PLL sample was employed in single fluorohpore imaging studies of the distribution of 

PLL chains on the surface. 

Total internal reflection fluorescence imaging of polymer-coated surfaces was 

performed with a home-build laser system (488 nm and 532 nm) built around a Nikon Ti-

E inverted microscope using through the lens illumination (60x objective, NA 1.49). 

Images were recorded on a Cascade (Roper Scientifics) electron-multiplier CCD camera 
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with a 1 second exposure time using an EM gain set at 3564. Data was analyzed in 

ImageJ by selecting individual particles after thresholding and measuring the intensity.  

Zeta potentials for saturated layers of PLL and PLL-PEG on silica were 

determined using 1 um silica spheres from GelTech (Orlando, FL), onto which varying 

amounts of these polymer had been adsorbed. The ionic strength conditions for 

adsorption and zeta potential measurement corresponded to those used in the 

corresponding portions of the main study.   A Malvern Zeta Sizer Nano ZS instrument 

was employed. 

 

3.3 Results 

 

3.3.1 Features of patchy Brush # 1 surfaces 

Some properties of the patchy brush surfaces can be deduced from the interfacial 

properties of the component polymers, summarized in Table 3.1.   

 

3.3.1.1 PLL Patches 

  Features of the PLL patches can be inferred from properties of PLL layers, in 

Figure 3.2A.  In Table 3.1, PLL having a nominal molecular weight of 20,000 forms 

saturated layers with coverages of 0.4 mg/m
2
, typical of other densely charged cationic 

polymers on silica at pH 7.4.
38

  Coverage is independent of free solution concentration 

over a large range, as a result of the substantial segment-surface binding energy. 
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.    In general, when densely charged cationic polymers adsorb on a negative substrate, 

the backbone lies flat to the surface.
39

 This is particularly true at coverages well below 

saturation, pertinent to the current isolated cationic patches.  Consistent with this scenario 

is the mildly positive zeta potential of saturated PLL layers, on silica.  The mild 

overcompensation of charge by saturated PLL layers suggests that isolated PLL chains 

adsorbed at low coverages will also be locally positively charged.  Patches can also be 

expected to be relatively flat.
29

 

 

Table 3.1 Properties of saturated PLL and PLL-PEG Brush # 1 

 PLL PLL-PEG (Brush # 1) 

Nominal molecular weight, g/mol 20,000 147,100 

Free solution hydrodynamic radius, nm 7 -------- 

Saturated layer coverage, mg/m
2
 0.4 ±.02   1.1 ±0.1 

Effective chain footprint, nm
2
 83± 10 220 ± 22 

Zeta potential of saturated layer, mV + 5 -9± 3 

 

The net positive charge on the PLL chains gives rise to modest patch-patch 

repulsions on the surface that limit the ultimate PLL coverage.  Near neutral pH when the 

ionic strength is raised from 0.01M to 0.1M, the PLL coverage increases by about 20%.
40

 

This is consistent with the reduction of the Debye length from 3 to just under 1 nm.  With 

the 2nm Debye length at conditions for our patch deposition (ionic strength I= 0.026M 

for a phosphate buffer concentration of 0.01M), no patch ordering or other special long 

range effects of patch-patch interactions are expected in our studies.  It is worth noting, 
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however, that the documented presence of repulsions between adsorbing PLL chains and 

the impact of these repulsions on the PLL adsorption on silica argues against any surface 

aggregation of the PLL. 

 

 

 

 

 

 

 

Figure 3.2 Features of interfacial brush components. A) A saturated PLL layer showing 

the diameter of excluded footprint B) A saturated diameter of Brush # 1 showing the 

diameter of the excluded footprint of PLL-PEG and the effective diameter of a PEG 

tether. C) Inclusion of PLL patches in the brush. Graft copolymers are shown in fade pink 

to highlight patches. D) Greater PLL loading reduces brush coverage thus reducing 

crowding and PEG chain stretching. 

 

 

One metric of the patch size of adsorbed PLL derives from its free solution 

hydrodynamic coil diameter, dh = 7 nm from dynamic light scattering.  A second measure 

of the adsorbed coil size derives from the excluded footprint of a chain in a saturated PLL 

layer.  Dividing the molecular weight by the adsorbed amount in a saturated layer, and 

converting units reveals a footprint of 83 nm
2
, giving a diameter (of “gyration” a 

statistical measure) dg =9.1 nm.  The free solution hydrodynamic diameter is consistent 

with this value, as it is generally accepted that polyelectrolytes at moderate and high ionic 
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strengths act like neutral chains.  Then, a non-draining model relates the hydrodynamic to 

the statistical size: dh = 0.676 dg.
41

   

  As demonstrated previously with other systems
29, 33, 42

 for PLL, using a shear flow 

cell with well-characterized mass transport, we are able to deposit PLL in controlled 

amounts down to extremely low coverages, where individual coils are randomly isolated 

on the surface. The patch deposition by varying flow time  of PLL solution is illustrated 

in Figure 3.4. Previous study of pDMAMEA (poly[dimethylaminoethyl methacrylate]) 

polycation adsorption has demonstrated the near-random arrangement of polycations 

adsorbed in this fashion on silica, especially in the dilute range of patch loading relevant 

to the current work.
31

  Additionally, we have found that the tight binding of polycations 

on a negative surface prevents chain translation along the surface that would tend to 

reduce order. 

The random distribution of the adsorbed patches is further strongly supported by 

Figure 3.3.  Figure 3A shows a micrograph of a patchy PLL layer containing 500 chains 

/m
2
 as established by the controlled deposition.  In fabricating this specimen, a PLL 

sample containing an average of 0.6 rhodamine tags per PLL chain was diluted into an 

unlabeled PLL solution and exposed in steady flow to the substrate under tightly 

controlled timing to produce a surface having with 1.5 rhodamine tags /m
2
 with 500 

PLL chains total /m
2
.  The intent of this surface composition was to produce an image 

containing diffraction-limited spots for the individual fluorophores.  (One fluorophore on 

each of 500 chains / m
2
 would have produced a layer too densely labeled to resolve 

individual labels.)   Given the scale of the micrograph, one expects roughly 1500 

fluorophores in the image.  1300 spots are actually counted, indicating that some of the 
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diffraction-limited spots, each 250 nm in diameter contain 2 or more fluorophores, as 

expected for a random distribution (and for the finite probability of 2 labels on some of 

the chains.)  Indeed, Figure 3B, a simulated image of the randomly positioned spots in the 

same field looks similar in randomness to the micrograph, confirming the overall random 

distribution of our patches and a lack of PLL aggregation on the surface.  Figure 3C 

addresses the fact that less than 1% of the chains in Figure 3A carry fluorescent labels. 

Here the distribution of intensities per spot indicates that some spots contain multiple 

fluorophores.  As the amount of fluorescent PLL is increased, while keeping the total 

PLL patch loading constant, the distribution shifts proportionately to the right, indicating 

a greater incidence of spots with multiple fluorophores. 

In summary, the features of saturated PLL layers along with other data suggest 

that when individual PLL chains are sparsely adsorbed on silica, the resulting patches are 

about 9 nm in size, lie flat to the surface, are randomly arranged, and locally present 

positive charge.  Figure 3.5 demonstrates that the PLL patches resist desorption in pH 7.4 

buffer while and withstand challenge by PLL-PEG and fibrinogen.  Prior work suggests 

they do not diffuse laterally on the surface on timescales relevant to our study.
29,43,44
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Figure 3.3 TIRF microscopy images of PLL patches A) 33 m x 33 m micrograph 

containing 500 PLL/ m
2
, a trace amount of which is fluorescently labeled to give 1.5 

fluorophores /m
2
 corresponding to 1500 illuminated spots, some of which might 

overlap. B) Image simulated in Matlab with 1500 spots distributed randomly in the same 

area. Here doubles appear brighter. C) Distribution of spot intensities for two surfaces 

like in A with 1.5 and 3 labels per m
2
. 
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Figure 3.4 Controlled PLL deposition to make cationic patches.  Buffer injection at 

arrows limits the amount of PLL deposited.  Buffer injection at the arrow for the 

saturated run demonstrates good retention of the fully saturated layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 TIRF experiment for the adsorption of fluorescently-labeled PLL, 

subsequently challenged by flowing buffer, PLL-PEG, and fibrinogen.  The PLL-PEG 

and fibrinogen are unlabeled and therefore not visible in the experiment, which shows the 

retention of the labeled PLL. 
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3.3.1.2 PLL-PEG Brushes   

The saturation coverage of 1.1 ± 0.1 mg/m
2
 for PLL-PEG on bare silica (in Table 

3.1, and Figure 3.6 A) provides quantitative insight into the features of the PEG brush:  

With a grafting ratio of 2.8 and a PEG molecular weight of 2000, this saturation coverage 

corresponds to 220 ± 20 nm
2
 per adsorbed PLL-PEG molecule, and 3.4 nm

2
 per 

interfacial PEG chain, or a 1.85 nm diameter footprint for a tether.  These dimensions are 

shown schematically in Figure 3.2 B.  The calculated unperturbed (theta solvent) end-end 

distance of a 2000 molecular weight PEG chain is 3.35 nm (radius = 1.67 nm) or, with 

classic 3/5-power law scaling of molecular weight expected in a good solvent , the 

maximum coil radius might be as large as 2.4 nm.  Therefore the PEG chains tethered to 

our surfaces by PLL anchors are just sufficiently closely tethered to be forced to stretch 

normal to the surface.  A brush height of 9 nm is estimated as described in chapter 2. 

The larger excluded footprint (220 nm
2
) of chains within a pure saturated PLL-

PEG layer compared with those within a pure saturated PLL layer in (83 nm
2
)  in Table 

3.1 is significant.  This difference indicates that in the PLL-PEG layer, it is the PEG 

rather than the PLL backbone that limits the brush coverage.  The lower content of PLL 

backbones within the PLL-PEG layer, per Figure 3.2A and B is also consistent with the 

negative zeta potential of the saturated PLL-PEG surfaces. 

 

3.3.1.3 Patchy Brushes 

 

  Patchy brushes were created by first depositing controlled amounts of PLL from 

dilute flowing solution, (as shown in Figure 3.4) and, following a buffer rinse, backfilling 

with PLL-PEG.  (Control studies using fluorescently-labeled PLL have demonstrated full 

retention of the PLL patches throughout this process as demonstrated in Figure 3.5.) 
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Figure 3.6 A presents reflectometry data for the PLL-PEG backfilling portion of the 

process for surfaces containing different densities of preadsorbed PLL patches.  With no 

PLL pre-adsorbed, the saturation coverage for PLL-PEG on bare silica is 1.1 ± 0.1 

mg/m
2
, and its initial adsorption onto silica is transport limited.  As the amount of pre-

adsorbed PLL is increased, the ultimate PLL-PEG coverage decreases; however, the 

adsorption kinetics are mostly unaffected.  The flat signal following buffer reinjection 

demonstrates the stability of the composite layers at these conditions. 

Figure 3.7 A summarizes the data in Figure 3.6 A by plotting the amount of PLL-

PEG backfill as a function of the initially adsorbed PLL patch density.  This 

representation demonstrates that small amounts of PLL, below 900 chains /m
2
, can be 

accommodated at the interface without reducing overall brush density, shown 

schematically in Figure 3.2 C.  The mechanism derives from the smaller excluded 

footprint of PLL compared with PLL-PEG in pure saturated layers, in Table 3.1 and 

Figure 3.2 A-B.  The lower backbone content of the saturated PLL-PEG layers, compared 

with a saturated layer of pure PLL provides an opportunity for limited PLL incorporation 

at the base of the brush.  At the point where the maximum amount of PLL chains have 

been incorporated into the base of the brush, there are about 5400 PLL chains / m
2
 on 

the surface, either as part of PLL-PEG chains(4500 / m
2
) or as PLL patches (900 / m

2
).  

This is far less than the 12,000 PLL chains / m
2
 in a pure saturated PLL layer.  The 

difference provides evidence for the lack of mobility of the adsorbed chains.  Were 

chains sufficiently mobile on the surface, they might rearrange to accommodate a greater 

density of PLL at the base of the brush. 
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When PLL patch densities exceed 0.03 mg/m
2
 (900 chains /um

2
), additional PLL 

patches reduce the amount of PLL-PEG needed for backfilling.  Over most of this 

regime, each PLL patch added to the surface reduces the PLL-PEG backfill by one chain.  

(We note however, that the decay has some curvature so the effective chain exchange 

percentage is initially higher.  Our point here is, however that the displacement occurs 

near the order of a 1-1 chain swapping.)  Ultimately a saturated layer of PLL completely 

excludes PLL-PEG.  As the numbers of PEG tethers decrease with increases in the PLL 

patches, the overall average quality of the brush is reduced (ie the average chain becomes 

less extended normal to the surface because the tethers are progressively less crowded), 

in Figure 3.2 D.  

 

3.3.2 Fibrinogen adsorption on patchy surfaces 

 For each run in Figure 3.6 A, after PLL-PEG backfilling and exposure to flowing 

buffer for several minutes, the surfaces were exposed to 100 ppm solutions of flowing 

fibrinogen, with the resulting kinetic traces in Figure 4B corresponding to the runs in 

Figure 4A.  Here, without any PLL patches, a PLL-PEG brush adsorbs virtually no 

fibrinogen.  As the PLL-patch content of the brushy surface is increased, the fibrinogen 

adsorption also increases.  For small amounts of PLL patches, the fibrinogen kinetic 

traces rise slowly and become level.  With greater amounts  of PLL patches (order 0.12 

mg/m
2
 or 3500 patches / um

2 
), fibrinogen adsorption is initially rapid, with a rate 

approaching that seen on a saturated PLL layer in the inset.  After some time, however, 

the fibrinogen adsorption slows. 
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Figure 3.6 Coverage of PLL-PEG and Fibrinogen over patchy brush. A) PLL-PEG 

adsorption following different preloaded PLL coverages. B) Fibrinogen coverage over 

different patchy brushes. 

 

The inset of Figure 3.6 B emphasizes the extensive adsorption of fibrinogen on 

vast areas of surface made cationic by the adsorption of a saturated PLL-layer.  Here the 

saturated fibrinogen coverage, approaching 5 mg/m
2
, exceeds the coverages of fibrinogen 

on surfaces containing as much as 4000 PLL chains / m
2
.     
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In Figures 3.6 B and C, fibrinogen adsorption on the patchy brush surface is 

summarized in terms of the ultimate fibrinogen coverage, and also in terms of its initial 

binding rate.  The two representations are necessitated by the protracted fibrinogen 

binding kinetics at long times on the more densely patchy surfaces, in Figure 3.6 B.  

Regardless of the choice of metric for fibrinogen adsorption, an important point becomes 

clear:  There is a threshold in the density of patches that must be achieved before 

fibrinogen will adsorb to the surface.  Beyond this threshold, fibrinogen coverage (and its 

binding rate) increase with increasing cationic patch density, though coverage can be 

quite low.  Conversely, when the PLL patch density is on the order of 4000/m
2
, 

fibrinogen adsorption approaches (within a factor of 2 or so) the levels seen on purely 

PLL surfaces, in the inset of Figure 3.6 B.  The diagonal line in Figure 3.7 B marks 

fibrinogen adsorption levels that would correspond to one per cationic patch. 

 

3.4 Discussion 

 

 The threshold in patch density for fibrinogen adsorption in Figures 3.7 B and C 

occurs near 1500 patches /m
2
, which we believe to be greater (within the significance of 

experimental error) than the onset of reduced brush coverage at 900 PLL patches / m
2
 in 

Figure 3.7 A.  
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Figure 3.7 Summary of the impact of PLL patch density on (A) amount of PLL-PEG 

backfill (B) short term fibrinogen coverage and (C) initial fibrinogen adsorption rate. 
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  Therefore we conclude that the effect of the PLL patches on PLL-PEG backfilling 

is different from their effect on fibrinogen adsorption.  Indeed, if the two thresholds were 

to occur at the same PLL patch density, one would conclude simply that PLL patches at 

the base of the brush were entirely shielded by the PEG corona and any reduction in the 

PEG corona (reduced backfilling), caused by the PLL patches, would immediately lead to 

fibrinogen adsorption.  Instead Figures 3.7 B and C shows that even with some overall 

reduction in the PEG brush relative to full saturation, resistance to fibrinogen persists.  

The subsequent limited fibrinogen adsorption just above the threshold motivates 

consideration of the PLL patches and brush structure near the patches, rather than 

discussion of the overall or average properties of the brush. 

First, it is worth noting that the presence of a threshold patch density for 

fibrinogen adsorption implies that individual isolated PLL patches are unable to capture 

and hold fibrinogen molecules.  Instead two or more patches are involved in fibrinogen 

capture.  It may be the case that at the lowest patch densities, below 900 / um
2
, the 

patches are simply buried within the brush and completely shielded by the corona. 

Indeed, it is interesting to consider whether a 9 nm patch can be entirely shielded by the 

particular PEG brushes in this study.  When the PLL-PEG coverage is near the saturation 

level of 1.1 mg/m
2
, we expect a PEG chain extension or brush height of 9 nm, as 

calculated in the supplemental material.  Near a patch, some of these stretched PEG 

tethers will spill sideways and obstruct the patch, in Figure 3.2 C, reducing its accessible 

area and fibrinogen binding energy. Indeed, with a brush height of 9 nm, and a similar 

lengthscale for the sideways extension of PEG tethers over PLL patches, it becomes a 

possibility that PLL patches are completely hidden from approaching proteins. (Patch 
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accessibility will also depend on the conditions for protein exposure, for instance the 

relative exposure and brush relaxation times.)   

In the dilute patch limit above, widely spaced PLL patches are sufficiently hidden 

in a saturated PLL-PEG brush that they cannot individually bind fibrinogen.  At higher 

patch loadings, fibrinogen likely adsorbs by bridging multiple patches.  At some point, 

however, the binding energy per patch will increase relative to the dilute patch limit 

because the brush structure around the patches becomes compromised.  Bridging and 

further “revealing” of patches are mechanisms which must ultimately act in concert to 

facilitate protein capture. 

Two distinct mechanisms for brush compromise at elevated PLL patch loadings 

will act together in statistical proportion:  First, above 900 PLL patches / m
2
, PLL-PEG 

coverage is reduced because of the net reduction in surface area available for further 

copolymer adsorption.  (Here, the PLL patches are still far enough apart, 33 nm on 

average that the likelihood of PLL exclusion between neighboring pairs of patches is 

small.)  The reduced PLL-PEG adsorption gives rise to a smaller extension of the PEG 

chains and a less robust brush.  This in turn compromises the ability of the PEG brush to 

obscure isolated PLL patches, increasing the binding energy and probability for 

fibrinogen adsorption.  A second mechanism for brush compromise will become 

important at higher PLL patch loadings when two adsorbed patches lie sufficiently close 

that PLL-PEG chains might be excluded between them.  (Whether this actually occurs 

depends on whether the cationic backbone of the adsorbing chain can sufficiently uncoil 

to fill the narrow region of surface between two patches.  If backbone chain deformation 

on adsorption occurs appreciably, than this surface exclusion mechanism will not occur.)  
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Such exclusion might only occur when the patch centers are smaller than roughly 15 nm 

in separation.  With a Poisson distribution for the arrangement of random patches on a 

surface, one finds that only 5% of the patches could exclude a brush between pairs when 

there are 900 patches /m
2
.  At the threshold for fibrinogen adsorption, 1500 PLL 

patches/m
2
, 11% of the patches will be paired so as to potentially exclude a brush and 

be an effectively larger fibrinogen patch. 

A final point about fibrinogen adsorption onto the surfaces, in light of the small 

adhesive patches and the relatively large fibrinogen size: 47 nm x 4.5 nm x 4.5 nm.  It is 

not obvious that fibrinogen would adhere two as few as 2-3 small adhesive regions, as we 

argue above.  Our interpretation of Figures 3.7 B and C is, however, consistent with 

previous reports of fibrinogen binding in small exposed areas between previously 

adsorbed proteins near saturation coverages.
34

 Indeed, we previously demonstrated that 

fibrinogen could adhere tightly with an effective footprint of 120 nm
2
 or less, even 

approaching the footprint of lysozyme (12.6 nm
2
) on the same surfaces.

8
 Adhesive 

regions the same size as the protein itself are not a prerequisite for protein binding.  In 

light of fibrinogen’s ability to bind small regions of surface, and from our inferences 

about the structure of the patchy brush, we conclude that complete obscuring of patches 

in a brush is not necessary to avoid protein adsorption:  Wide separation of partially 

obscured elements will avoid protein adsorption if the binding energy per patch is 

sufficiently weak.  The compromise of the brush at increased patch density further favors 

protein adsorption. 
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3.5 Conclusions 

 

This work has demonstrated the creation of patchy brush surfaces that are useful 

for protein manipulation.  The study also illustrates general principles for structure and 

performance of polymer brushes whose tethered chains are modestly stretched normal to 

the substrate.   

While proteins such as fibrinogen generally adsorb to most surface chemistries 

including the cationic polymer layers in the current study, protein capture becomes 

impossible when adhesive elements of the same chemistry are widely spaced and 

sufficiently small or substantially shielded by a nonadhesive polymer brush.  The PEG 

“brushes” of the current study are typical of “pegylated” protein resistant biomaterials: 

This study emphasizes that protein resistance is maintained even when the PEG tethers 

form marginal brushes compared with rigorously defined brushes in the polymer physics 

literature.  The study further demonstrates that these marginal brushes are effective to 

conceal substantial amounts of buried adhesive moieties from proteins which are 

otherwise highly adhesive.  Ultimately it was demonstrated that protein adhesion 

occurred when the adsorbing protein could make multiple surface contacts, and when the 

local PEG tether concentration was sufficiently low that brush formation was 

compromised.   
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CHAPTER 4 

SINGLE COMPONENT AND SELECTIVE COMPETITIVE 

PROTEIN ADSORPTION AND SEPARATION USING A 

PATCHY POLYMER BRUSH 

 

4.1 Introduction 

 

 It has been shown that using a patchy polymer brush (Brush # 1 in the present 

study) we were able to tune fibrinogen adhesion. This chapter explores this concept for 

various proteins. Most of this chapter has been reproduced from work published 

recently.
1
 It is generally thought that, regardless of the PEG anchoring chemistry (direct 

surface grafting from the surface, or tacking to the surface by an adsorption of a PEG 

containing block copolymer), surfaces must contain more than about 1 mg/m
2
 of PEG in 

order to ensure proteins, which facilitate the binding of bacteria and cells, do not 

themselves adsorb.
2
  (In this rule of thumb it is assumed that any anchoring component of 

an adsorbed block of a copolymer does not extend off the surface into the brush or into 

solution, where it could easily be adhered by approaching protein molecules.)  The 

criterion for the PEG coverage associated with protein resistance is thought to be 

independent of the particular choice of PEG molecular weight, at least within some 

workable range on the order of 1000 g/mol.  As long as the combination of grafting 
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density and PEG chain length gives the appropriate total amount of anchored PEG, 

protein adsorption is observed to be reduced to 0.05 mg/m
2
 or less. 

 

When the surface loading of PEG falls below 1.0 mg/m
2
, moderate protein 

adsorption occurs.
2
 This behavior is often explained in terms of a thinner hydrated 

polymer brush, which allows proteins to experience electrostatic and van der Waals 

attractions with the underlying substrate and, ultimately, adsorb.
3
 An alternate 

explanation, surely appropriate for a subset of systems, involves impurities on the 

substrate that interfere locally with brush placement.  If enough bare batches are present 

at the base of a brush, protein adsorption could become appreciable.
4
 Related 

fundamental questions are cast in terms of the physics of solvated polymer brushes and 

protein-brush interactions.  For instance, when a defect or region of surface containing no 

grafted chains exists within a brush, to what extent do hydrated brush chains “spill” 

laterally to obstruct the defect, and how does this depend on the average brush grafting 

density and molecular weight?  Further, given the existence of such defects, what protein 

properties dictate the interactions between proteins and patches? 

Such questions about heterogeneous brush structure have not, our knowledge, 

been addressed in the context of protein adsorption.
5
 A limited number of studies do, 

however, provide insight into the ability of proteins to adhere to small adhesive regions 

on an otherwise less or non-adhesive surface (sometimes, but not necessarily brush-like,) 

though there is no general consensus.
6-8

 One study demonstrated single and clustered 

protein adsorption on nano-scale metal clusters on graphite
9
 and, indeed, blood protein 

adsorption was increased by the presence of nano-pyramids on germanium.
10

 Previous 
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work with surfaces nearly saturated with protein suggests that protein adsorption can 

occur in small surface interstices between previously adsorbed proteins, and that these 

interstices, in some instances can be smaller than the average protein dimension.
11

 In the 

particular case of fibrinogen which is long (47 nm) and thin (4.5 nm dia), access of the 

narrow protein tip to a small empty region of  a hydrophobic surface was sufficient to 

facilitate strong adsorption.  Access to the surface by the entire side or face of fibrinogen 

was unnecessary.  While the results from different labs with different proteins and 

surfaces achieve no general consensus, at least some of the results suggest that certain 

proteins may be able to access and adhere to nanoscale small flaws or adhesive patches 

smaller than the average protein dimension.  This further suggests that such binding may 

take place on small bald patches at the base of a brush.  

The observation of protein-dependent adhesion to nanoscale surface regions (and, 

also potentially to flaws within a brush) suggests applications involving protein 

manipulation, selective binding, separation, and diagnostics. For instance, the limited 

protein adsorption on small adhesive surface patches suggests that on different surfaces, 

the proteins adsorbed near the edges of large adhesive features may be configured more 

or less densely,
6,12-14

 or with more or less bioactivity
9,15

 than those away from the pattern 

edges.  Also, the protein size-dependence of adhesion on nano-scale features suggests 

adhesive selectivity for separation and diagnostics.    

The current chapter investigates the ability of different proteins to adhere to 

controlled but randomly placed adhesive “flaws” in otherwise protein-repellant PEG 

brushes.  The study sheds light on both the mechanisms for protein interactions with 
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imperfect brushes and on the use of such “patchy” brush interfaces as vehicles for 

affecting sharp protein separations.   

 

The system of patchy brush # 1 as discussed in the previous chapter and described 

in detail earlier
16

 is the subject of further study here. The ability of proteins to adsorb to 

patchy brushes depends on the competition between electrostatic attractions between 

negative regions on the protein and positive surface patches, and steric repulsions 

between the PEG surface brush and the body of the protein.
17

 While our initial study of 

these patchy brushes focused on patchy brush architecture and implications for the 

adsorption of a single protein (fibrinogen),
16

 the current chapter explores different 

proteins adsorbing to the same brush and demonstrates a mechanism for highly selective 

protein binding from a mixture.  We argue that the basis for the selectivity is ability of 

different proteins to bind multiple patches (a multivalency effect
18, 19

) which is a 

combination of protein size and charge.  In the absence of great charge differences, 

differences in the ability of proteins to span and bind multiple patches translates to sharp 

differences in binding. 

The patchy PEG brushes in this study differ from mixed brushes:
20-22

 The latter 

may also exhibit localized regions of different chemistry, however, the current surfaces 

are well-characterized in terms of their overall compositions and their local random 

structure has been previously established.
16

 The concept of embedding functionality at 

the base of a protein-resistant brush also differs substantially from the classical approach 

of tethering biofunctionality on the brush chain ends.
23-25
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4.2 Experimental Methodology 

 

PLL-PEG Brush # 1 as described in chapter 2 was studied here. Poly-L-lysine 

hydrobromide (20,000 MW) purchased from Sigma was used for patch generation. Silica 

surfaces of microscope slides were used as substrates after etching overnight in 

concentrated sulfuric acid as described in previous chapters. Patchy brush surfaces were 

created in-situ in a slit shear chamber containing the acid-etched slide, first flowing pH 

7.4 phosphate buffer (0.008M Na2HPO4 and 0.002M KH2PO4, Debye length 
-1

 = 2 nm), 

then flowing a 5 ppm PLL solution in the same buffer for a controlled time and 

reintroducing buffer to halt adsorption at the desired surface density of patches.  A 100 

ppm buffered solution PLL-g-PEG was then introduced to backfill the remaining surface 

with the brush.  Protein solutions were subsequently introduced in the same buffer and 

their adsorption monitored.  Previous studies demonstrated that surface area occupied by 

PLL patches did not adsorb PLL-g-PEG copolymer.
16

  Near Brewster angle 

reflectometry
26

 was used for studying adsorption of polymer and proteins.  

 This study compared the adsorption of 4 proteins, bovine serum fibrinogen 

(fraction-I, type 1-s, F8630-1G), bovine serum albumin (A3809-10G), bovine alkaline 

phosphatase (P7640-1G), and equine skeletal muscle myoglobin (M0630-1G) all 

purchased from Sigma and used as received.  For studies involving protein mixtures, the 

reflectometry measurements were complemented by TIRF experiments
27

 in the same 

flow chamber (but not run simultaneously.)  In this work, fluorescein-tagged labeled 

albumin, labeled at 0.9 tags / molecule, was labeled and purified as previously 

described.
28
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Zeta potentials were measured using a Malvern Zeta Sizer Nano ZS instrument 

and a model system consisting of 1-micron silica spheres (Gel Tech), onto which the 

materials of interest were adsorbed.  In order to direct adsorption to the particle surfaces, 

a sphere concentration of 50 ppm was employed and, in some cases, the walls of the 

containers holding the suspensions were pre-treated with PLL to avoid adsorption of 

PLL, intended for the particles, to other surfaces.  We found no evidence of loss of PLL 

from the vessel walls, and the loss of microspheres to the vessel walls had negligible 

influence on their bulk concentration. 

 

4.3 Results 

 

4.3.1 Protein properties 

Electrostatic interactions play an important role in protein adsorption on the 

brush-modified silica surfaces in this study.  It is therefore instructive to consider the 

protein properties and the ability of the proteins to adhere to relatively homogenous 

cationic and anionic surfaces.  Adsorption on the cationic surface (a saturated PLL layer) 

provides insight into how proteins could interact with patches.  Adsorption on the anionic 

surface (bare silica), provides perspective on protein interactions with any negatively 

charged areas at the base of the brush, the relevance of which will become clear below. 

Table 4.1 summarizes the properties of the proteins. Fibrinogen, albumin and 

alkaline phosphatase have major dimensions larger than individual patch size and they 

are the main focus of this chapter. Of note, the dimensional and molecular weight 

information for alkaline phosphatase here are taken from the Research Collaboratory for 
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Structural Bioinformatics  Protein DataBank and correspond to the monomer.  The 

material we purchased from Sigma is a stable dimer with a molecular weight of 160,000. 

 

Table 4.1 Properties of  proteins 

 Albumin,  
bovine serum 

fibrinogen,  
bovine serum 

Alkaline 

phosphatase, 
bovine  

Myoglobin,  
horse skeletal muscle 

Dimensions, nm x 

nm x nm 
4 x 4 x 14 4 .5 x 4.5  x 47 9 x 4 x 4 

(monomer) 

4.4 x 4.4 x 2.5 

Molecular weight 68,000 340,000 81198 

(monomer) 

17,000 

Diffusivity, cm
2
/s 4.8 x 10

-7     ref 29
 2 x 10

-7  ref  30
 9 x 10

-8
 1.2 x 10

-7 ref 31 

pI 4.8 
ref

 
29

 – 5.1 5.8 
ref

 
32

 5.7 6.8-7.4 
ref 34 

Number charges, 
pH 7.4 

-8, 
ref

 
29

 -7 to -10 
ref

 
33

 

-8 to -10 
ref

 
30

   unknown Neutral 
ref 35 

Adsorption on 

Cationic Surface 

    

Plateau* 5 mg/m
2
 12 mg/m

2
 4.8 mg/m

2
 2.0 mg/m

2
 

 kinetics Transport-limited Transport-limited Transport-

limited 

Not transport 

limited 

Adsorption on 

Anionic Surface 

    

plateau* 2 mg/m
2
 9 mg/m

2
 0.75 mg/m

2
 1.0 mg/m

2
 

 kinetics Slow Transport-limited Slow Slow 
*Plateau coverage measured at 20-25 minutes, for bulk solution of 100 ppm, and wall shear of 5 s

-1
 

 

Myoglobin is the smallest protein and its size (4.4 nm x 4.4 nm x 2.5 nm ) is 

significantly smaller than the patch size of random PLL coils (10 nm). Additionally it’s 

smallest dimension is very close to the persistence length of Brush 1, 2 nm. Myoglobin is 

almost neutral at our pH condition. Hence comparison of  adhesion characteristics of 

myoglobin with the other three proteins is presented later. 

None of these proteins adsorb onto PLL-g-PEG brushes without PLL patches. 

Importantly, at pH 7.4 all four proteins carry a net negative charge, but vary in size.  All 

adsorb onto positively- or negatively-charged uniform surfaces. Figure 4.1 shows 
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adsorption of three bigger proteins over bare silica and PLL saturated layer.  Myoglobin 

adsorption over saturated PLL and bare silica surface is presented in Figure 4.2. Like the 

bigger proteins, myoglobin adsorbs significantly over both of these surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Adsorption of bigger proteins over A) PLL saturated silica B) bare silica 
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The ultimate protein coverages in Table 4.1, after 20-25 minutes, reflect the 

protein size, with the higher molecular weight fibrinogen giving greatest surface 

coverage, presumably as a result of a thicker layer.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Myoglobin adsorption over bare silica(glass)  and PLL saturated layer 

 

Proteins generally adsorb at / near their transport-limited rates and are well-

retained upon rinsing with buffer, indicating strong binding. The exceptions are albumin, 

alkaline phosphatase  and myoglobin adsorption on the negative silica and myoglobin 

adsorption over PLL.  Here protein adsorption is slow.  In the case of albumin, adsorption 

on silica depends on ionic strength, suggesting that negative charges on albumin 

contribute a barrier against adsorption.  This negative albumin charge favors adsorption 

on uniform positive surfaces and is expected to promote adhesion to the positive patches. 
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As myoglobin is neutral at pH 7.4 the absence of electrostatic repulsion makes it adsorb 

in higher amounts compared to albumin and alkaline phosphatase. Fibrinogen adsorption 

was substantial on both positive and negative surfaces, suggesting that positive and 

negative groups on the proteins can facilitate adsorption.  Another explanation for protein 

adsorption on surfaces of the same net charge is charge regulation.
36

 

 

4.3.2 Patchy Brush 

The features of Brush # 1 have been discussed in detail in Chapter 2, but are 

included here for continuance in Table 4.2.  

 

Table 4.2  Properties of PLL and PLL-PEG Brushes in pH 7.4 phosphate buffer, I=0.026 

M 

  PLL PLL-PEG 

Nominal MW, g/mol 20,000 147,100 

Saturated layer coverage, /sat 

mg
2
 

0.4 ± 0.02 1.1  ± 0.1 

Effective chain footprint, nm
2
 

(=MW/sat) 

83  ± 10 220 ± 22 

PLL in saturated layer, mg/m
2
 0.4 0.15 

PEG in saturated layer, mg/m
2
 0 0.95 

Zeta potential of saturated layer + 5 mV -9±3 mV 

 

 The brush thickness estimated from initial coverage of Brush # 1 over silica was 

found to be 9 nm. Regardless of the actual brush thickness, one surmises that the surface 

charge beneath a saturated PLL-PEG brush is somewhat negative (motivating control 

studies of protein adsorption on negative surfaces, in Table 4.1).  This is consistent with 

the low PLL content of saturated PLL-PEG brushes, 0.15 mg/m
2
, which is less than the 

saturated homopolymer PLL coverage (0.4 m/mg
2
). Additionally, about 1/3 of the PLL in 

the PLL-PEG copolymer is reacted to form an amide, and has lost its positive charge.  
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From the observation that fibrinogen does not adsorb to saturated PLL-PEG brushes but 

it does adsorb on negative surfaces, we infer that the saturated brush holds proteins 

further from the surface than the shear plane.  The lack of protein adsorption on these 

brushes is further consistent with the PEG mass near 1.0 mg/m
2
 within the saturated 

brush, the rule of thumb suggested for protein resistance.
2
 Finally, with the modest 

adsorption of albumin and alkaline phosphatase and myoglobin on the negative surfaces, 

we would not expect their adsorption on the brush regions of the patchy surfaces. 

Also worth reemphasizing are our previous findings concerning these surfaces:
16

 

PLL and PLL-PEG are retained on silica during flow of pH 7.4 I=0.026 M buffer or 

protein solutions.  Additionally, fluorescence studies revealed the random arrangement of 

PLL patches which was unaltered by PLL-PEG backfilling. 

  

4.3.3 Protein adsorption over patchy brushes 

Adhesion of fibrinogen, albumin and alkaline phosphatase is discussed in detail 

below. Myoglobin adhesion characteristics differ from the other three proteins. 

 

4.3.3.1 Comparison of fibrinogen, albumin and alkaline phosphatase adhesion 

Figure 4.3 presents example reflectometry data for albumin and alkaline 

phosphatase adsorption onto a series of surfaces containing different loadings of PLL 

patches (with the rest of the surface backfilled with PLL-g-PEG Brush # 1 prior to 

exposure of protein solution.)  The lowest data set, essentially a flat line, demonstrates 

rejection of protein from a saturated PLL-g-PEG brush.  As PLL patches are initially 

added to this brush, the protein adsorption is difficult to discern; however, as the PLL 
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patch density is increased, protein adsorption is clear.  The PLL patch density ultimately 

controls both the ultimate protein coverage (that observed after about 20 minutes), and 

the initial rate of protein adsorption.  
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Figure 4.3 Example reflectometry data showing (A) albumin and (B) alkaline 

phosphatase  adsorption traces on to surfaces having variations in the surface loading of 

cationic patches. 

 

In Figure 4.4, adsorption for the 3 proteins is compared as a function of the 

density of PLL patches in the brush.  Figure 4.4A shows the ultimate protein coverage 

after about 20 minutes when the adsorbed amount of protein had leveled off, while Figure 

4.4B focuses on the initial protein adsorption rates, indicative of pairwise protein-

substrate interactions.    
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Independent of whether one considers the adsorption rate or amount, important 

features of the protein adsorption are apparent.  First, the cationic patches at the base of 

the brush do indeed adsorb protein, as was the intention with this surface design: greater 

patch surface loadings produce more rapid and more extensive protein adsorption.  A 

feature common to the adsorption of all 3 proteins is that they do not adhere to saturated 

PLL-g-PEG layers (without patches) and they also do not adhere to PLL-g-PEG layers 

containing a small amount of patches.  Instead, only above a threshold patch density, 

protein adsorption commences. Importantly, the threshold patch density for adsorption 

depends on the particular protein.    

Typically the existence of a threshold signals capture of target species on multiple 

rather than single patches.  If individual patches were capable of adhering individual 

targets, the data would intersect the origin.  The requirement that multiple patches engage 

each adsorbing protein molecule further suggests that the binding energy between each 

patch and a protein is insufficient to overcome protein translational entropy, and any 

entropy loss associated with the compression of PEG tethers in the vicinity of the protein. 

The energetic argument concerning the physics of the threshold was recently validated 

using adhesive cationic patches on an entirely negative non-brushy surface in studies of 

particle capture.
37
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Figure 4.4 Summary of protein (A) adsorbed amounts and (B) initial adsorption kinetics, 

as a function of the surface loading of PLL patches. 

 

 

The dependence of the threshold on the individual proteins is also interesting.  

The largest threshold  ~3700 patches/m
2
, is found for the smallest protein, albumin.  

Indeed, the secondary x-axis suggests a rough correlation between protein size and the 

A 
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average patch spacing at the threshold.  Only when the average patch spacing is 

sufficiently small that a protein can bridge at least 2 patches can adsorption occur, 

supporting the multivalency interpretation. 

 

4.3.3.2  Comparison of myoglobin adhesion with other proteins 

 Myoglobin adhesion over the patchy brushes shows a different trend from the 

behavior of fibrinogen, albumin, and alkaline phosphatase. The argument that a protein 

needs to bridge the average patch spacing in order to effectively capture itself over a 

patchy brush requires average patch spacing to be less than 4.4 nm for effective capture 

of myoglobin. Being the smallest protein among the four proteins discussed here 

myoglobin would then require highest number of patches over the surface to be captured.  

 

 

  

 

 

 

 

 

 

 

 

Figure 4.5 Comparison of myoglobin adhesion threshold with other proteins 
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Contrary to these expectations, Figure 4.5 shows myoglobin adhesion threshold is smaller 

than that of the other three proteins. The myoglobin threshold comes to an average patch 

spacing of 30 nm with PLL loading of ~1000 patches/m
2
. Hence it can be inferred that 

myoglobin adsorption is univalent in nature rather than multivalent. Figure 4.5 suggests 

that some compromise of brush structure is required before myoglobin can effectively 

bind to the patches. Referring to Figure 2.10 we find that at 1000 patches/m
2
 the brush 

coverage is 1.1 mg/m
2
. Figure 2.10 further project the brush threshold at the same patch 

density as that of myoglobin threshold. Myoglobin can also feel reduced steric repulsion 

from the brushes because of its smaller size and is expected to be more sensitive to local 

brush structure, especially near the patches, compared with the larger proteins.  All of 

these factors make myoglobin adsorption an interesting topic in this study.  

 

4.3.4 Protein separation 

The protein dependence of the binding threshold suggests that patchy brush 

surfaces could serve as separation media, if appropriately engineered.  The key is the 

choice of patch density between the thresholds of proteins of interest.  For instance, based 

on Figure 4.4, a surface with ~3400 PLL patches/m
2
 should adhere fibrinogen and reject 

albumin.  This hypothesis is tested in Figure 4.6 for mixtures of albumin and fibrinogen, 

in a weight ration of 1:1, where albumin is fluorescently labeled and fibrinogen is not.  In 

Figure 4.6  the protein mixture, exposed to a surface containing 3400 patches / m
2
, 

shows no protein adsorption in TIRF, while the same experiment conducted in the 

reflectometer shows a visible signal.  These observations indicate that only fibrinogen 

adsorbs on this surface while albumin is completely rejected.  The absence of a TIRF 
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adsorption signal indicates a complete lack of albumin adsorption but does not provide 

information about the adsorption of the unlabeled fibrinogen.  The finite reflectometry 

signal indicates substantial protein adsorption and, since albumin adsorption was ruled 

out in the TIRF experiment, the adsorption must be due entirely to fibrinogen. 

This behavior contrasts with simultaneous albumin and fibrinogen adsorption on 

control surfaces with cationic patch densities exceeding the thresholds of both species, in 

Figure 4.7.  Here, TIRF data are compared for labeled albumin adsorption from the same 

mixture, on the test surface of Figure 4A and a control surface having 8000 PLL chains / 

um
2
, above both thresholds.  Substantial albumin adsorption on the control surface is 

expected and observed but is lower than that for albumin alone (from a single-species 

solution), due to partial surface occupation by adsorbing fibrinogen. 

Figure 4.8 addresses the additivity of albumin and fibrinogen adsorption from a 

mixture, using a saturated PLL surface.  This surface was chosen because it strongly 

adsorbs both proteins and is expected to give the greatest interference between competing 

species, ie worst case scenario for separation applications.  In Figure 4.6, single-species 

adsorption traces for albumin and fibrinogen, each at 100 ppm, are presented, along with 

data for a mixture of the two proteins (200 ppm total, the same individual concentrations 

as in the single-component runs). Superposed on this is a curve for the sum of the 

individual species.  
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Figure 4.6   Adsorption kinetic traces for a mixture of fluorescent-albumin and untagged 

fibrinogen on a selective surface carrying 3400 PLL patches / m
2
.  TIRF data show only 

the  albumin coverage while the reflectometry data show the total protein adsorption. 
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Figure 4.7.  Adsorption kinetic traces measured by TIRF (sees only fluorescent albumin) 

for a mixture of fluorescent-albumin and untagged fibrinogen.  A selective surface 

carrying 3400 PLL patches / m
2
  is compared to a non-selective control surface carrying 

8000 PLL patches / m
2
. 
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Figure 4.8.  Studies on a non-selective adhesive PLL surface:  single protein solution 

adsorption (at 100 ppm protein) versus simultaneous co-adsorption of two proteins 

(each at 100 ppm) in a mixture.  Also drawn is the sum of the two data sets for single 

species adsorption, to test additivity of the co-adsorption mixture run. 
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One observes that, at low surface coverages, the protein mixture adsorbs at the 

rate expected from the sum of the two single-component experiments.  This indicates a 

lack of competition between proteins on a nearly empty surface.  The adsorption of the 

mixture slows above 1.8 mg/m
2
 total, as the surface begins to look crowded to 

approaching proteins.  Notably, in the single species run, the albumin adsorption rate 

begins to turn over at this same coverage.  It therefore may be the case that a reduced 

albumin adsorption rate, in particular, is responsible for the slowing of the mixture 

adsorption.  Notably the single species fibrinogen adsorption run is still nearly linear at 

this coverage, suggesting that in the mixture, fibrinogen may also continue to adsorb 

unimpeded at this surface condition.  Overall these data, along with those in Figure 4.4, 

suggest that up to moderate surface loadings, the single species adsorption behavior of 

proteins is a good predictor of protein adsorption from a mixture.  This simple additivity 

is relevant to the regime of interest, near the adhesion thresholds where surfaces would be 

engineered for separation applications. 

 

4.4 Discussion 

 

This chapter demonstrates that the previously reported adhesion threshold for 

fibrinogen on patchy brush surfaces
16

 is a behavior that also occurs with other proteins, 

varying only in quantitative detail. The average patch separation at the threshold 

correlates with, but is not exactly equal to the largest protein dimension.  This is most 

apparent for fibrinogen, where the average patch spacing at the threshold is 25 nm while 

the longest protein dimension is 47 nm.  (For alkaline phosphatase, the adsorption of the 



106 

 

dimer is larger than albumin but smaller than fibrinogen, though the alkaline phosphatase 

monomer (in the first 2 entries of Table 4.1) more closely approaches the albumin size.)  

These observations suggest that the protein binding mechanism is not simply protein 

bridging between two surface patches, but instead involves protein interactions with an 

appropriate number of surface sites, necessary to produce adequate binding energy.  The 

thresholds therefore rank roughly in order of protein size but will also be influenced by 

the charge density and distribution on the protein itself.  Three of the proteins in this 

study are negative with similar isoelectric points in Table 4.1 and one (myoglobin) is 

neutral.  With similarities in the negative characters of the three proteins, protein size 

becomes the primary factor in setting the adhesion threshold as long as the major 

dimensions of the proteins are larger than the patch size. 

A point worth mentioning is that, as the surface is loaded with increasing numbers 

of PLL patches, the surrounding brush structure is potentially altered.  In the limit of 

sparse PLL patches, one should continue to think of the brush structure as being similar 

to that of a brush containing no patches, with the exception of the tethers nearest the 

patches.  These neighboring tethers may not extend as far perpendicular to surface as 

those in the main body of the brush because tethers near the patches may be relaxed to 

partially (or completely) obstruct the patches.  However, as the PLL patch density is 

increased, the probability of finding PLL patches near each other is increased:  When a 

small number of PLL-g-PEG copolymers are adsorbed between closely situated PLL 

patches in Figure 5, the brush in this region will be less extended than the brush on a 

saturated surface. The localized compromised brush could extend over the full region of 
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surface between two nearby patches, creating an adhesive area perhaps 40 nm in linear 

dimension.   

We believe that, for surface compositions near the protein adsorption thresholds, 

this kind of compromise of brush structure is generally not occurring, and that patches are 

acting discretely with mostly local influence on the brush structure.  At the fibrinogen 

threshold of ~1500 PLL patches / m
2
, the PLL-g-PEG backfill density is roughly 85% 

of saturation, arguing against the potential mechanism in the previous paragraph.  (With 

1500 PLL patches per each square micron, about 12% of the surface is covered with PLL 

so one might expect a similar reduction in the backfill.)  Likewise for the alkaline 

phosphatase threshold of ~2500 PLL/ m
2
, the PLL-g-PEG coverage is 70% of 

saturation, and for the albumin threshold the PLL-g-PEG coverage is 60% of saturation.  

In the latter cases, thinner brushes might still resist protein adhesion, given the minimal 

albumin and alkaline phosphatase adsorption on glass.  One can therefore argue in favor 

of discrete patch action for protein capture, rather than a more mean field reduction in 

interfacial protein resistance. Conversely, since the size of proteins approach the brush 

persistence length, its adsorption depends on the brush structure and it becomes 

univalent.  

If patches act discretely in their interactions with proteins, one then can think of 

the thresholds (for instance in Figure 4.4, producing the separations in Figure 4.6) as 

resulting from local patch arrangements accessible to single protein molecules.  The 

presence of thresholds indicates a multivalency mechanism for protein binding:  Two or 

more patches must engage in the capture of each protein, and therefore the protein 

dimension becomes an important lengthscale in establishing protein adhesion. The other 
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important factor is the effective binding energy of each patch, which is influenced by the 

local structure of the brush near the patch.  PEG tethers may obstruct the PLL patches, 

but any lateral expansion of brush chains near patches leaves a locally compromised 

brush within a few nanometers of each isolated PLL patch.  Therefore the binding energy 

associated with each patch in the dilute surface limit is the sum of the electrostatic 

binding energy of partially obstructed patches, plus any attractions between the protein 

and the negative substrate in the region of the compromised brush, per Figure 4.9. 

 

(A)

(B)

 

Figure 4.9.  Possible near-patch brush structure.  (A) Isolated versus (B) nearby patches 

 

While in our other work, we have been able to estimate the number of patches 

involved in the capture of spheres approaching a patchy surface, we do not hazard the 

estimate in this case.  Prior studies exploited systematic changes, via ionic strength, in the 

contact area beween the approaching particles and the engineered substrate.  This is 

accomplished loosely in the current study through variations in protein size amount the 3 

test proteins, however, not only is the protein shape (aspect ratio) impossible to hold 

constant, the local charge density of  the adsorbing face of the protein may not be 

constant.  Therefore, even though the effective “contact areas” between the protein and 

the substrate may be estimated here, the protein binding energy per cationic patch is 
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unknown and not necessarily fixed (though we chose proteins with similar pI’s to 

approximate this effect). 

The adhesion characteristics of myoglobin present an interesting counter example 

to this discussion here. Myoglobin has two major difference with other three proteins 

considered. First the major dimension of myoglobin is smaller than the patch size (10 

nm) approaching the brush persistence length. Second myoglobin is net neutral at our 

operating pH of 7.4. The myoglobin threshold corresponded to an average patch spacing, 

which is greater than the major dimension of myoglobin. This suggested that myoglobin 

adhered to single patches in order to get captured over the surface. Myoglobin’s small 

size near the brush persistence length may facilitate its adhesion. The smaller size of 

myoglobin compared to a single patch size further facilitate its univalent adhesion on 

patches. Indeed the myoglobin threshold may be affected by the slightly compromised 

brush structure in the vicinity of the patches. 

 

4.5 Conclusions 

 

This chapter demonstrated an adhesion threshold in the surface density of cationic 

patches needed to produce protein adsorption into/onto an otherwise protein-resistant 

2000- molecular weight PEG brush.  The study found that this behavior, which was 

previously reported for fibrinogen, is qualitatively similar for 2 other proteins, albumin 

and alkaline phosphatase.  The three proteins, however, exhibited quantitatively different 

thresholds that ranked in order of protein size / molecular weight, with the adhesion 

threshold inversely proportional to protein size, and the patch spacing at the threshold 
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similar to the protein dimension.  These observations suggested that multivalent 

interactions are responsible for protein capture:  multiple patches must interact with each 

protein to cause it to adsorb.  Individual patches are too weakly binding, as a result of 

their fundamentally small size with limited accessibility of cationic groups and a result of 

the entropic cost of compressing nearby regions of the PEG brush as the protein 

approaches. 

The work also demonstrated the utility of surfaces engineered with patch loadings 

between the thresholds of competing adsorbing proteins from a mixture.  On adhesive 

control surfaces above all thresholds, all proteins adsorb in proportion to their 

concentration and transport properties.  Surface compositions between protein thresholds 

reject some proteins (those with high adsorption thresholds) and strongly adsorb others.  

The separation is extremely sharp and would be useful in technologies where staged 

operations, or those with multiple theoretical plates are undesirable. 
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CHAPTER 5 

SENSITIVITY OF PROTEIN ADSORPTION TO 

ARCHITECTURAL VARIATIONS IN A PROTEIN-

RESISTANT POLYMER BRUSH CONTAINING 

ENGINEERED NANO-SCALE ADHESIVE SITES 

 
5.1 Introduction 

  

 The current chapter focuses on how protein adsorption can be manipulated based 

on the architectural variation of a PEG brush. Most of this chapter has been reproduced 

from our recent paper.
1
  A popular strategy for imparting biocompatibility is the 

modification of surfaces with polymer brushes that sterically repel approaching proteins.  

For brushes to be effective, both their chemistry and interfacial architecture must be 

appropriate.  The polymer itself must be hydrophilic and well-solubilized in water, 

charge-neutral, and a hydrogen bond acceptor.
2
 Polyethylene glycol (PEG) is one of a 

handful of polymers meeting these criteria, making it a popular choice for the creation of 

protein-resistant brushes.  The brush must further have an appropriate architecture to 

screen the full range of Van der Waals and electrostatic interactions between proteins and 

the underlying substrate.
3
   This latter criterion has been usually interpreted to mean that 

the brush extension must exceed the range of substrate-protein attractions; however, it is 

understood that proteins must not penetrate or compress the brush.
3
 A tall but 
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insufficiently dense brush may not be fully effective.  Indeed, some reports suggest that 

the mass of the tethered polymer (such as PEG) is a better predictor of brush performance 

than the calculated brush height.
3,4

 In the case of PEG chains tethered to surfaces by 

different anchoring chemistries, a PEG chain mass exceeding 1.1 mg/m
2
 led to almost 

complete repellence of serum proteins, independent of the length of the tethers 

themselves, in the range from 2,000 to 10,000 molecular weight.
4
   The ease by which 

brush architecture can be altered (both in terms of tether length and density), make 

polymer brushes an attractive choice for manipulating the initial encounters of proteins 

with surfaces.  Functionalization of the free brush ends has traditionally allowed tuning of 

bio-adhesion.
5
  

A second materials-based strategy to manipulate protein adsorption is control over 

the area of protein-surface contact.  With an eye towards constraining protein 

denaturing
6,7

 or tuning the adsorbing sites,
8
 a few groups have created interfaces where 

the protein-attracting regions are small and the remaining surface is neutral or repulsive.  

Restricted contact areas have been potentially achieved employing phase-separated 

polymer
9
 and silane ligands,

10,11
 surface-immobilized or suspended nanoparticles,

12-16
 and 

other strategies.
17

  (Antibody- based and receptor capture of targeted proteins represents a 

special case outside the current scope.)  Varied observations regarding adsorption (or lack 

of it) on surfaces whose adhesive elements are similar to the protein size has not 

produced a consensus on the importance of the relative sizes of proteins and adhesive 

islands. Some argue that the adsorption site must be at least as large as the protein;
18

 

however, counter examples exist.
19

 The philosophy in the Santore lab, generally, is that 

the energy rather than the size of the initial contact is critical.
20

 While increased contact 
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area will generally provide an opportunity for strengthened interactions, sufficiently 

strong attractions might result from contact regions smaller than the size of the target.  

For example, we demonstrated that micron-scale silica spheres could be captured and 

held in flow by electrostatic attractions to single surface-immobilized 10 nm 

nanoparticles.
21,22

 More recently we demonstrated bacterial capture by single 

nanoparticles on a weakly-repulsive surface.
23

   

The current chapter focuses on surfaces containing protein-adhesive cationic 

elements or “patches,” about 10 nm in size (roughly the same as the protein), randomly 

positioned at the base of a PEG brush whose steric repulsion limits patch-protein 

interactions.  This approach opposes the conventional wisdom of placing attractive 

functionality on a brush periphery.
5
  While tethered ligands can selectively bind targets 

via biomolecular specificity, the adhesive elements buried within patchy brushes bind 

targets with sharp selectivity, as a result of competing steric repulsion from the brush and 

attractions to the adhesive elements.
24

  Without prerequisite biofunctional specificity, 

patchy brushes can be fabricated at smaller expense and tend to be more robust. 

Previous studies of patchy brushes revealed a threshold in the patch surface 

loading necessary for protein adsorption.
25

  That is, if the PEG brush contained less than 

the critical surface concentration of patches, no protein adsorption occurred.  This was 

preliminary evidence for multivalent binding.  It was speculated that a protein needed to 

adhere to multiple patches simultaneously in order to be retained.  In a second work,
24

 the 

utility of patchy brushes with protein adsorption thresholds was demonstrated.  The 

thresholds for a series of proteins correlated with their size, further supporting the 

hypothesis of multivalent protein capture.  Additionally, surfaces engineered between the 
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two thresholds of the competing species in a protein mixture could selectively adhere one 

protein.  Sharp selectivities exceeding 100 (the ratio of the surface to bulk composition) 

were demonstrated for proteins with similar charge. 

In the previous chapters we have examined the influence of cationic patches on 

protein capture in only one type of brush and at a single ionic strength.
24,25

  The current 

study, employing fibrinogen as a model protein (chosen because it is well studied on a 

variety of surfaces and because its dimensions are similar in magnitude to the patch size) 

varies the relative ranges of electrostatic attractions and steric repulsions, via systematic 

variation in ionic strength and brush architecture.  Given the complexity of the results, 

further variations in the patch composition and size are addressed separately.  The current 

study reveals how variations in electrostatic and steric forces shift the adhesion thresholds 

in ways that might be engineered to fine-tune selectivity.  Additionally, the work 

provides fundamental perspective into the properties of polymer brushes: the ability of 

tethered chains to extend laterally on a surface and the accessibility of bare protein-sized 

spots, spatial fluctuations, or flaws as the base of a brush to proteins in solution. 

 

5.2 Background on brush and strategy  

 

 

The patchy brushes in this study, represented schematically in Figure 5.1, were 

created as documented previously in Chapter 2. Tightly-controlled amounts of a cationic 

polymer, poly-L-lysine (PLL), were adsorbed on a silica surface at well-characterized 

mass transport conditions so the surface loading is limited well below saturation.  With 
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PLL coverage sufficiently low that adsorbed coils are isolated, each coil acts as a 

randomly-situated cationic patch, about 10 nm in size, an estimate based on its free 

solution size from light scattering.  (Though ionic strength was varied during the protein 

adsorption portions of the study, all patches and brushes were deposited at uniform 

conditions, in pH 7.4 phosphate buffer of ionic strength 0.026 M, having a Debye length 

of 1.96 nm.  These electrostatically screened conditions impart flexibility to the PLL 

backbone so that it is in a random coil conformation, rather than a rigid rod.  Indeed the 

observed 10 nm radius is consistent with a well-solvated random coil rather than a rod.)  

The remaining surface was backfilled via adsorption from solution, with a PLL-PEG 

graft copolymer to prevent protein adsorption on the bare silica.  Key in this approach, 

the PLL component of the patches was the same as the anchoring part of the PLL-PEG 

backfill brush.  This led to exclusion of PLL-PEG from the regions where PLL is already 

adsorbed.    Notable features of these interfaces
25

 are described below. 

1) A net positive charge on a saturated layer of PLL on silica (0.4 mg/m
2
), suggesting a 

local positive charge in the vicinity of the isolated patches of the current study, 

 2) Retention of patches on the surface during backfilling and subsequent use of the 

surfaces at the conditions of these studies, with the backfill brushes also being robust at 

the conditions of interest
26

. 

3) Substantial fibrinogen adsorption onto saturated PLL layers on silica, suggesting 

protein-patch attractions, at least in the absence of the brushy backfill. 

The copolymers (Polymer I, Polymer II, Polymer III) from which these brushes 

were created has been discussed in detail in Chapter 2. Other brush properties, such as 
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brush height and persistence length, were calculated according to the Alexander-

DeGennes model,
27,28

 as described previously
25

. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Interfacial structure with increased patch loading, (A) Full brush containing no 

patches, (B) Full brush containing buried patches, (C) Increased patches reducing 

backfill, (D) Substantial patch loading causing patches to lose identity while brush 

structure is lost (mushroom brush) 

 

  

The Alexander-DeGennes brush model
28

 , while unrealistic in its treatment of the 

brush as a sharply-defined (step-function) region having a constant polymer solution 

concentration, is powerful in its nearly accurate predictions of key brush properties, as 

reviewed by Milner.
29

  The parabolic brush treatment, thought to give a more accurate 
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description of brush features including the interfacial concentration profile of segments 

(and estimating a nominal brush height to be about 25% greater than the Alexander-

DeGennes treatment), has been shown by Kent
30

 to be achieved only in rare experimental 

instances where the loading of chains at the interface is much greater than what we 

achieved in the current work.  The significance of this for the current work is that the 

description of our brushes is imprecise because of the lack of an appropriate model.   On 

the other hand, the three brushes presented in this work are distinct in their architectures, 

protein interactions and, separately, their dynamics.
26

  

The brushes as described in Chapter 2, without the incorporation of PLL patches, 

completely resist the adsorption of serum proteins such as fibrinogen and albumin (within 

detectible limits of 0.01 mg/m
2
), and related brushes have been shown to eliminate 

protein adsorption from serum below the detectible limits.
31,32

  The nearly perfect protein 

resistance of the brushes themselves is a key element in this work.  The current study 

focuses on the ability of the patches to interact with and adsorb proteins in the presence 

of protein-repelling brushes.  The only exception to the nearly perfect protein resistance 

is Brush #1 (Polymer I) which, when 
-1

 = 4 nm, adsorbs 0.08 mg/m
2
 of fibrinogen.  This 

adsorption is, however, reversible, with fibrinogen washing off the surface (giving 

coverage below 0.01 mg/m
2
) when the ionic strength is increased.  This suggests that 

only with shorter Brush #1, when the ionic strength allows electrostatic interactions with 

the base of the brush to be felt by proteins at the periphery, does slight and weak protein 

adsorption occur on the outside of the brush.  For thicker Brushes #2 (Polymer II) and #3 

(Polymer III), and for higher ionic strengths, all brushes screen electrostatic and other 

protein substrate interactions. 
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As a general rule, adsorbed PLL patches occupy the negative silica and reduce the 

amount of PLL-PEG backfill necessary to saturate the interface.  The details of the 

progressive reduction in backfill with increasing PLL patches are presented in Figure 5.2, 

reproduced from a recent paper on brush-protein interaction physics.
26

  

 

 

 

 

 

 

 

Figure 5.2: Amount of PLL-PEG copolymer adsorbed against PLL patches 
30 

An interesting recent finding is that low levels of PLL patches do not alter the 

brush; however, at above some level of PLL coverage, the amount of PLL-PEG needed to 

saturate the surface is reduced substantially.  The amount of PLL that can be incorporated 

at fixed PLL-PEG loading and the degree to which PLL-PEG backfill is reduced depends 

on the PLL-PEG architecture and the brush itself, varying substantially among the three 

samples in our system.  Since brushes without patches contain limited amounts of PLL 

anchoring groups on the silica beneath the brush relative to a saturated PLL layer (0.4 
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mg/m
2
), small amounts of homopolymer PLL can be accommodated before the backfill is 

affected. 

 

5.3 Materials and methods 

 

 The PEG brushes were synthesized and characterized as described in Chapter 2. 

Acid-etched (overnight in concentrated sulfuric acid, and well-rinsed in DI water) 

microscope slides (Fisher Finest) were used as the adsorption substrate.   XPS has 

revealed these to have a silica surface
33

.  Polymer and protein adsorption were carried out 

in a laminar slit shear flow cell at a wall shear rate of 5 s
-1

 using polymers dissolved in 

0.01 M pH 7.4 phosphate buffer (0.002M KH2PO4 and 0.008M Na2HPO4).  Notably, all 

patchy brushes were created in this buffer, and for protein adsorption studies at other 

ionic strengths, the buffer was switched subsequently, a process which did not alter the 

originally-formed patchy brushes. This buffer has a Debye length, 
-1

 = 2nm.  Buffers 

with 
-1

 = 4 nm or 1 nm were created by diluting to an overall concentration of 0.005M 

or operating at a greater concentration.  Patchy brushes were created by flowing a 5 ppm 

PLL solution over the surface for a specific amount of time, allowing only the desired 

amount of PLL to adsorb and be retained before the flow was switched back to buffer.  

Then a 100 ppm buffered solution of the particular PLL-PEG of interest was flowed to 

backfill the remaining surface before the flow was again switched to buffer.  This 

procedure has been documented and studied in detail,
24,25

 including a study of the brush 
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stability.
26

 The buffer was then switched to that of the protein adsorption study, and 

fibrinogen introduced at 100 ppm in the buffer of interest for 20-30 minutes, prior to 

switching back to buffer. 

Adsorption of polymer and protein was observed using a custom-built near-

Brewster optical reflectometry instrument in which 633 nm parallel-polarized laser light 

impinges on the interface from the substrate side
34

.  The reflected intensity is proportional 

to the square of the adsorbed interfacial mass, with the calibration constant determined 

from the optical properties of the solution and the adsorbed layer, or from an appropriate 

kinetic-based calibration.  Notably, slightly different calibration constants apply to 

polymer and protein adsorption portions of the runs.   

 

5.4 Results 

 

Figure 5.3 presents a series of raw reflectometry data for fibrinogen adsorption 

onto different surfaces with varying amounts of PLL patches in a PLL-PEG brush.  This 

example, with Brush #2, is typical of all the data obtained with the other brushes.  Most 

importantly, without any patches at the base of the brush, there is no protein adsorption.   

With increasing amounts of PLL patches, fibrinogen adsorbs more readily, both in 

terms of the initial rate and the coverage after approximately 20 minutes (at which time 

buffer was re-injected).  Indeed with 10,700 patches / m
2
, the fibrinogen coverage 

approaches that on a saturated PLL layer without PLL-PEG.
24

  The 0.4 mg/m
2
 of PLL at 
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saturation on silica translates to 12,000 patches /m
2
.  The nearly linear initial data in 

Figure 5.3 allow determination of the initial protein adsorption rate, providing insight into 

single protein-surface encounters at short times. 

 

 

 

 

 

 

 

 

Figure 5.3 Reflectometry traces for fibrinogen adsorption over patchy Brush # 2 at 2 nm 

Debye length buffer strength 

 

 

The data from Figure 5.3, along with other data for Brushes #1 and #3 and data at 

different ionic strengths, are summarized in Figure 5.4, which plots the initial fibrinogen 

adsorption rate as a function of PLL patch density within each brush. Each part of Figure 

5.4 summarizes data for a different brush, highlighting the influence of the Debye length. 

The main feature of each data set is its extrapolation to a finite x-intercept. This x-

intercept is termed the “adhesion threshold,” the minimum surface loading of adhesive 

patches needed to produce protein adhesion.   



127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Summary of initial fibrinogen adsorption rates, comparing adsorption at 

different Debye lengths, for the three brushes in parts A, B, C. One example of threshold 

quantification is illustrated in red. 
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Previous studies of the fibrinogen adhesion threshold in a brush similar to Brush 

#1at 
-1

 = 2 nm supported the interpretation that the threshold is indicative of multivalent 

protein capture. Because they are buried within the brush, individual patches are too 

weakly binding to each adhere fibrinogen.  For several patches to simultaneously engage 

a protein (providing the requisite binding energy), surfaces must be loaded with sufficient 

patch density, so that the 47 nm length of the fibrinogen molecule exceeds the average 

patch spacing.  This interpretation, which was reasonable for brushes like Brush #1, 

might also hold for Brushes #2 and #3, discussed below.   

Figure 5.4 examines the impact of Debye length on the fibrinogen adsorption 

rates for the three different brush types.  As a general trend, a particular brush is most 

adhesive at low salt conditions where the Debye length is 4 nm and least adhesive at 

higher ionic strengths where the Debye length is 1 nm.  This is a result of the range and 

strength of electrostatic attractions from the PLL patches towards fibrinogen.  While 

there may be some interpretation as to the exact value of each threshold (for instance 

illustrated in Figure 5.4C), it is remarkable that a 3 nm change in Debye length shifts the 

position of the threshold by several thousand patches / m
2
 for any particular brush.  For 

instance, in the case of Brush # 1 in Figure 4A, the threshold shifts from near 1000 

patches / m
2
 at 

-1
 = 4 nm to around 5000 patches / m

2
 or greater when 

-1
 = 1 nm.  

The effect is even greater for the thicker Brushes, #2 and #3. This range of threshold 

shifts corresponds to about 50% of the possible range of surface composition or capacity 

for patches. Adhesion onto patchy brushes is therefore highly sensitive to ionic strength, 

likely a result of the comparable ranges of Debye lengths and brush thicknesses in this 

study.   
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Fibrinogen adsorption is slight when the Debye length is 1 nm:  with hardly any 

adsorption up to 8000 patches / m
2
.  This patch density was generally the maximum 

tested because 8000 patches / m
2
 comprise two thirds of a fully saturated PLL layer. 

Adsorbed PLL coils are not positioned as isolated adhesive islands at high PLL coverages 

and, further, the polymer brush is not well-established because the backfill amount has 

become small.  In Figure 4C, nonetheless, we extended the range of study slightly, 

because even with 8000 PLL/ um
2
 there was no evidence for fibrinogen adsorption on 

Brush #3.  The observations of negligible fibrinogen adsorption for 
-1

 = 1 nm, with as 

many as 8000 or 9000 PLL patches / m
2
 (and as little as 0.15 mg/m

2
 of PLL –PEG 

brush,) are unexpected, given the lack of an established PEG brush in this regime.  Even 

though the electrostatic attractions between fibrinogen and PLL are short range at 
-1

 =1 

nm, the attractions are still expected to be substantial. 

Figure 5.5 recapitulates the data from Figure 5.4, providing a perspective on the 

impact of the brush choice on the fibrinogen capture rate.  For a fixed Debye length in a 

single panel of the figure, the trends are generally clear.  For instance at a Debye length 

of 
-1

 = 2 nm, the threshold increases with increases in the brush thickness, with the 

thresholds and brush numbers ranking in order:  #1, #2, #3.  The ranking of the thresholds 

is different, however, at 4 nm: the threshold order is Brush #1, Brush #3, and Brush #2.  

While there are complexities in the ranking of the thresholds at different ionic strengths, 

the basis for discussion in the next section, there is a zero-order ranking of the thresholds 

with the brush thickness:  Brush #1 always has the smallest thresholds.  Brush #2 and #3, 

which exhibit slight differences in height, have greater thresholds than Brush #1. 
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Figure 5.5 Summary of different adsorption rates focusing on different brush architecture 

for different Debye lengths in the different parts of the figure 

 

 

Figure 5.6 summarizes the impact of Debye length on the thresholds for the three 

brushes.  The two data sets for each brush (with the curves through the data set drawn 

only to guide the eye) demonstrate the range of PLL loadings at the threshold, depending 



131 

 

on the particular criterion for the threshold.  The upper data sets represent extrapolations 

of the linear part of the data to the x-axis.  The lower data sets represent the PLL 

coverage when fibrinogen adsorption first becomes noticeable, shown in Figure 5.4C.  

The difference between the two varies with conditions. 

 

 

 

 

 

 

 

 

Figure 5.6 Impact of Debye length on the adhesion thresholds for 20 k PLL patches in the 

three brushes 

 

Important to note, the crossing of the data for Brushes #2 and #3 is modest if one 

consistently employs a single criterion for the threshold (linear extrapolation or rigorous 

onset of protein adsorption).  Figure 5.3 suggests a decay-type functionality for the 

impact of Debye length.  However, with a practical limited range (1-4 nm) in the Debye 

length, speculating on the functional form is premature. 
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5.5 Discussion 

 

To attempt a quantitative interpretation of the protein capture mechanism and the 

impact of steric forces, this study considered systematic variations in brush architecture.  

Because the brushes are created by adsorption, governed by the competition between 

entropic stretching of the tethers and the enthalpic binding of the anchors, a non-linear 

relationship links the adsorbed amount of the brush and the molecular parameters of the 

graft copolymers.  This translates to simultaneous variation in some brush properties.  For 

instance, the brush heights and their persistence lengths are different from their PEG 

content.  Prior studies suggest that either brush height or the amount of PEG in a brush 

correlates well with protein resistance.
3,4

  That this classical perspective would apply to 

patchy brushes is unclear:  All three brushes in this study were chosen because of their 

protein repellence before the incorporation of adhesive patches.
26,31,32

  Adhering proteins 

are directed onto patchy “flaws.”    

Figure 5.5 suggests, at first glance, that the protein adsorption thresholds rank 

with brush height, rather than PEG content.  As discussed in Chapter 2, Brush #1, with its 

2K molecular weight tethers is by far the thinnest brush, though it ranks between Brushes 

#2 and #3 in terms of the amount of PEG it contains.  Complicating the correlation is the 

fact, in Figure 5.2 that, as the amount of patches increases, the amount of PLL-PEG 

backfill is reduced, reducing the brush thickness.  The proper way to consider the impact 

of brush parameters is to document the condition of the brush at each threshold, rather 

than the brush height without the addition of patches.  Figure 5.7 therefore summarizes 

the adhesion thresholds (both the high and low limits as presented in Figure 5.6) in terms 
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of the calculated brush thickness, PEG content, and brush persistence length (average 

tether spacing), based on the amount of backfill, from Figure 5.2, at each threshold.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Adhesion threshold as a function of (A) the PEG content of the patchy brushes 

(B) the corrected brush height, (C) as a function of persistence length based on the 

backfill as shown in figure 5.2 

 

In Figure 5.7A, with the thresholds for each Debye length presented as a function 

of the PEG content of the brush at each threshold, in Figure 5.7B where thresholds are 
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presented as a function of brush height at each threshold, and in Figure 5.7C which tests 

dependence on persistence length, there appear different behaviors at different Debye 

lengths.  At Debye lengths of 2 and 4 nm, the data exhibit the most nearly clear 

functionality on brush height in Figure 5.7B.  For the data set with 
-1

 = 1 nm in any part 

of Figure 5.7, the data turn back on themselves (if the data are connected in the same 

sequence as the ordering for the longer Debye lengths).  Alternately, if the data are 

considered in the order of the brush feature (ie rank #1, #3, #2) then the data are non-

monotonic in brush height or PEG content, and sometimes reverse their ordering at 

different Debye lengths. 

It was observed that, for 
-1

 = 4 nm, the electrostatic attractions between the 

patches and the fibrinogen are the strongest. As a result of the thresholds occurring at 

relatively low PLL loadings, with 
-1

 = 4 nm, the amounts of adsorbed PLL-PEG at these 

thresholds are similar to the adsorbed amounts in the “full” brushes of Table II, also on 

the x-axes of Figure 5.7.  This suggests that while individual patches attract fibrinogen (at 


-1

 = 4 nm) too weakly to hold fibrinogen onto a single patch, they are still able, from 

their positions at the base of the brush, to exert weak attractions towards fibrinogen.  

While one patch cannot capture fibrinogen, several of them can, as evidenced by the 

existence of a threshold.  Thus, at 
-1

 = 4 nm, fibrinogen adsorption near the threshold 

follows the intended patchy brush concept and can be modeled simply by plain brush 

parameters and a PLL-loading-independent fibrinogen-patch attraction. 

At the other extreme, with 
-1

 = 1 nm, the fibrinogen-patch interactions are weak, 

and in the limit of low patch loadings (backfilled by the full brushes), the attractions may 
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be completely screened.  Protein adsorption occurs only when there is so much PLL that 

the brushes are severely compromised compared with their “full properties”.  In most 

cases, there is so little interfacial PEG that tethers are likely configured as non-stretched 

chains or “mushrooms.”  This loss of brushy character suggests data at 
-1

 =1 nm be 

omitted from any attempt at a correlation on physical brush features.  The data are 

retained in the graphs because of their potential practical utility in protein separations. 

In Figure 5.7 for 
-1

 =2 or 4 nm that, regardless of whether one considers PEG 

loading, brush height, or persistence length at the fibrinogen capture threshold, there is 

not an obvious correlation between the threshold and brush architecture.  The trend with 

brush height is, however, better than those with PEG surface loading or brush persistence 

length.  Brush height screens protein-substrate interactions in the absence of patches, and 

it also determines the extent to which small adhesive islands can be accessed.  The forces 

driving chain stretching perpendicular to the substrate also determine lateral chain 

stretching to obstruct patches. 

The illustrations in Figure 5.1 schematically interpret how PLL-PEG loading, via 

brush height, could influence the ability of fibrinogen to access patches.  The schematics 

consider a series of surfaces in which the PLL patch density is increased and the 

remaining surface is backfilled with one choice of PLL-PEG.  At low PLL amounts, the 

effective binding energy per isolated PLL patch is constant. (Both the brush height and its 

ability to obstruct patches are unchanged.)  As more PLL is added to the interface, 

however, the amount of PLL-PEG which can subsequently adsorb is reduced, causing the 

effective binding energy per patch to increase as the patches become more exposed. A 
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quantitative analysis of the fibrinogen binding energy per patch requires an understanding 

of the brush structure near the patch, for instance the extent to which chains extend 

laterally over the patch.  This level of detail is beyond the current scope. 

 

5.6 Summary 

 

This chapter examined the impact of ionic strength and brush architecture on the 

ability of a model protein, fibrinogen, to adsorb onto 10-nm cationic patches at the base 

of a protein-repellant PEG brush.  Beyond confirming the general expectation that 

taller/denser brushes more effectively hide the buried “stickers,” interesting and 

technologically useful behaviors were revealed:  

 1)  In all cases fibrinogen capture was multivalent, involving from 2-5 patches or patch-

protein interactions,  

2)  At 
-1

 = 4 nm where the electrostatic patch-protein interactions were strongest, protein 

adsorption started at conditions where the brush structure was uninfluenced by the 

presence of patches, leading to a fixed binding energy / patch. 

3) At 
-1

 = 1 nm where the protein-patch interaction energy was weakest, the protein 

adsorption thresholds occurred at high PLL surface loadings where the amount of backfill 

brush was reduced, strengthening the weak binding energy.   
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4)  While ionic strength and brush structure profoundly affected the protein adsorption 

thresholds, producing a range of thresholds that covered half the possible surface 

loadings of PLL patches, the impact of these parameters on the numbers of patches 

actually engaged in protein capture was smaller:  2-5 patches were needed for capture.  

This was a result of competing effects of ionic strength and steric repulsions due to 

altered brush structure and the adhesion thresholds. 

A clear correlation on brush height, PEG surface loading at the threshold, or brush 

persistence length was not discovered.  For instance, there was no single brush height or 

PEG surface loading below which the patches were sufficiently accessible to produce 

adsorption. Likewise, analysis such as that in Figure 5.7 did not motivate collapse of data 

using the ratio of the brush height to the Debye length. This complexity is likely a result 

of the multivalent mechanism of protein capture, which depends on the binding energy of 

single patches along with the probability of finding several of them in close proximity.  

One might speculate that, in the case of univalent capture of proteins onto single patches, 

critical brush parameters might be revealed.  Notably, the current investigation revealed 

that brush height is a more important factor that the amount of PEG at the interface in 

controlling multivalent protein binding onto buried patches. This finding opposes the 

importance of PEG surface loading for the adsorption of serum proteins onto uniform 

(non-patchy) brushes. 

 

 

. 
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CHAPTER 6 

BACTERIAL ADHESION OVER PATCHY BRUSHES: A 

CASE STUDY WITH S. AUREUS 

 

6.1 Introduction 

 

 Bacterial adhesion and the design of surfaces to control cell-scale bioadhesion is a 

large area covering a range of disciplines including marine science, plant and soil 

science, the food industry, and the biomedical field. In the previous chapters, protein 

adhesion to nano-patterned PEG brushes has been described. The current chapter focuses 

on the adhesion of S. aureus bacteria on three different types of patchy PEG brushes ( 

Brush # 1, Brush # 2 and Brush # 3).  Those brushes are described in detail in Chapter 2. 

Much of this chapter has been reproduced from a recently published article.
1
 Solvated 

polymer brushes, for instance tethered polyethylene glycol (PEG), are commonly placed 

on surfaces to inhibit bio-fouling by proteins and cells.
2,3

  Key to the bioadhesion-

resistance of these interfaces (beyond choosing a polymer chemistry that is 

fundamentally protein-repellant: neutral, hydrophilic, well-hydrated, and hydrogen bond 

accepting
4
) is the physical design of the brush.  Its height must exceed the range of 

electrostatic
5
 and van der Waals attractions

6,7
 and its density must be sufficient to avoid 

penetration by small proteins.
7,8

   Classic in the literature, surface forces experiments on 

solvated brushes generally confirm the expected force-distance profiles that tend to be 

strongly repulsive and long in range,
9-16

  while atomic force microscopy indicates less 
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repulsion due to tip penetration into the brush.
10

  A recent study of PEG brushes with 

colloidal force microscopy demonstrated the relative ranges of steric and electrostatic 

interactions.
17

 The latter have proven useful in anticipating which brush architectures will 

resist fouling.
5
  With the advent of well-characterized brushes, protein adsorption studies 

focused on the fundamental brush parameters of tether length and spacing, corroborating 

physical models of brush-protein interactions.
6-8,13 ,14 ,18-23

 At the same time, however, 

careful studies with well-characterized brushes supported a rule of thumb that about 

1mg/m
2
 of end-grafted PEG is sufficient to eliminate bioadhesion in-vitro.

19-21,24
 This 

observation was independent of tether length and spacing over a relatively broad range.  

It has been vexing, however, that protein-resistant PEG brushes (based on in-vitro 

characterization) still support non-specific bio-adhesion in applied and animal studies.
3,25

  

Perfectly designed brushes can be difficult to implement. Even with the proper 

tether chemistry for the application, appropriate anchoring, and judicious choice of chain 

length and tether spacing,  impurities can locally block brush deposition (or growth), 

creating flaws and heterogeneities as small as tens of nanometers.
10

  While such tiny 

isolated bare patches on the substrate tend to be obstructed by the lateral expansion of the 

tethers, they are still locally less repulsive (and even attractive) to objects in solution 

compared with the “perfect” brush.  Our lab has developed a controlled method to 

distribute such isolated flaws randomly on a brushy surface, and we have demonstrated 

that these “synthetic flaws” are useful in understanding the engineering challenges of 

brush fabrication.
26

 We have additionally demonstrated the utility of flaws, as a motif for 

the design of functional brushes.
27

 Embedding discrete functionality at the base of a brush 

rather than placing it on extended tethers sets up competition between local attractions 
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and the steric forces of the brush which leads to highly selective capture on the molecular 

level, for instance for proteins from solution.
27

  

The flawed or “patchy” brushes, are based on a convenient PEG anchoring 

scheme originally developed in the Hubbell and Textor labs.
28,29

  With poly-l-lysine 

(PLL)-PEG graft copolymers adsorbing on silica primarily by their main cationic 

backbones, the PEG tethers extend into solution to form the brush.  It has been 

demonstrated that by random adhesion of PLL patches prior to PLL-PEG adsorption, the 

patches (PLL is more strongly adsorbing than the PLL-PEG) are retained during PLL-

PEG backfill and that both the PLL and PLL-PEG are retained on the surface over and 

beyond the conditions (protein bacterial exposure and ionic strength variations).
30

 In the 

current study, isolated PLL coils at the base of the brush not only provide nano-scale 

tether-free imperfections, they localize dense cationic functionality that is 

electrostatically attractive to negative proteins and bacteria, including S. aureus.  These 

PLL coils carry greater positive charge than the PLL backbone of the PLL-PEG 

copolymer, since PEG grafting (on the PLL  backbone of the copolymer) occurs at the 

sites of amines. 

It is important to note that the brushes used for this study (as described in Chapter 

2), before the incorporation of PLL patches, completely resist protein and S. aureus 

adhesion (to within 0.01 mg/m
2
)
30

 and were among the most protein- and bacteria-

repellant architectures in the large library of “bottle brush” copolymers developed by 

Textor and Hubbell.
28,29

  While it was observed and later explained with self consistent 

field models,
31

  that some molecular architectures (especially those with large PEG 

functionalization of the PLL backbone) produced adsorbed layers which failed to form 
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classical brushes or to repel proteins, our study starts with brushes that avoid primary,
7
 

secondary,
7
 and tertiary

32
 protein adhesion and introduces well- characterized 

electrostatically adhesive “flaws” in a controlled fashion.  Further, our choices of 

molecular architectures range from 25-50% in PEG functionalization, and have been 

shown to behave similarly, in their protein resistance, to single PEG chains anchored 

individually at appropriate densities,
21

 as is the case for a classical polymer brush.  We 

have not detected any suggestion that the specific PLL-PEG graft copolymer 

architectures we have chosen produce lateral heterogeneities in the brush and that instead, 

the interesting features of the brush adhesiveness in our studies arise from the 

homopolymer PLL patches we intentionally place on the substrate.  This further 

substantiates the use of classical brush models for this study. 

The impact of the polymer brush architecture on protein adsorption,
26,27,30,33

 has 

been described in previous chapters. Current chapter focuses on Staphylococcus aureus 

capture at the same interfaces and reveals information about the brush compression 

during initial bacterial capture that compliments the classical literature on PEG brush 

compression.
9,12,13,33

 Our emphasis on initial capture focuses on physico-chemical 

interactions and avoids longer-time processes such as viscoelastic relaxation of the 

bacteria’s shape or “living” responses of the bacteria.  (The choice of S. aureus bacteria 

allows focus on the simplest spherical shape. The study does not address complexities 

associated with bacterial protrusions.)  

Important distinctions in how steric forces potentially play out for micron-scale 

and molecular-scale objects have been further highlighted in this chapter.  In this study, 

the flaws or PLL “patches” are used as a measure of the brush compression energy during 
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bacterial capture:  The brushes themselves (without flaws) are robust against bacteria 

(and protein capture).  The adhesive patches at the base of the brush, when present in 

sufficient numbers, pull S. Aureus bacteria (negatively charged 1 um spheres in the initial 

instants of their capture) to the interface, and are opposed by the steric repulsions from 

the brush on the remaining contact area.  Thus the number of patches needed for bacterial 

capture provides a measure of the relative energy of brush compression, reported in this 

paper for three brushes which vary in height and PEG content.   

Additionally in this chapter, the S. aureus adhesion is compared with previous 

studies of protein capture on the same surfaces,
27,33

 to reveal potential differences 

between-micron-scale and molecular-scale steric interactions on these brushes.  The latter 

provide insights into the failure of in vitro studies with serum proteins to predict the 

fouling of materials in implant studies. 

 

6.2 Materials and methods 

 

Poly-l-lysine hydrobromide (PLL) samples with molecular weights of 20,000 and 

50,000 were purchased from Sigma and used as the adhesive cationic patches in these 

studies.  Additionally, the 20,000 molecular weight PLL served as the anchoring 

component of the three copolymer brushes in this study.   

Three graft copolymers, synthesized and purified as described in Chapter 2, were 

used to create the brushes in this study.  They were all based on 20,000 molecular weight 

PLL but vary the length and density of their PEG side chains.  These particular 

copolymers were chosen because the brushes they form upon adsorption to negative 
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surfaces almost completely eliminate adhesion of serum proteins
28,29

 and bacteria.
35

 The 

brush architecture was modified by varying the PEG tether length and the grafting ratio. 

The “grafting ratio” is defined as the number of PLL units per PEG side chain.  This 

quantity is the inverse of the fraction of PLL units functionalized, but is reported here for 

consistency with prior convention.
28,29

  The grafting ratio of the copolymers dissolved in 

D2O was determined using 
1
H NMR on a Bruker 400 mHz instrument, based on the 

relative areas of the lysine side-chain peak (-CH2-N-) at 2.909 ppm and the PEG peak (-

CH2-CH2-) at 3.615 ppm. 

The surfaces of interest were formed by sequential adsorption of PLL and PLL-

PEG from flowing pH 7.4 phosphate buffered solutions (phosphate buffer is 0.008M 

Na2HPO4 and 0.002M KH2PO4 having Debye length 
-1

 = 2 nm) on acid etched 

microscope slides, also described previously.
26,33

 These substrates, Fisher Finest, were 

soaked overnight in concentrated sulfuric acid and rinsed with DI water to remove the 

metal ions from the near-surface region, leaving a nearly pure silica surface.  The slides 

were then placed in a slit shear flow chamber and buffer was introduced into the fluid 

space.  Flowing buffer, at a gentle wall shear rate of 5 s
-1

, was followed by 5 ppm PLL 

solution for a targeted amount of time to limit the adsorption of PLL chains below that of 

a saturated PLL layer.  Buffer was then reintroduced, followed by a 100 ppm solution of 

the PLL-PEG of interest to backfill the remaining silica surface with a PEG brush.  The 

amount of time necessary to deposit the desired amount of PLL was originally 

determined by monitoring the adsorption process using near-Brewster reflectometry.
26

  In 

most of the current studies, especially those of bacterial capture, the surface fabrication 

was run “blind” based on previous calibrations for adsorption times.  Studies of 
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fibrinogen adsorption (Sigma, F8630-1G, used as supplied) employed near-Brewster 

reflectometry,
36

 and here it was possible to monitor the polymer deposition to create each 

surface just before the protein adsorption studies in the same flow chamber.  In the 

fibrinogen adsorption studies, 100 ppm protein solution in pH 7.4 phosphate buffer was 

flowed over the surface of interest for 20-30 minutes and the reflectivity signal 

monitored.  Buffer was subsequently reintroduced.  

Table 6.1 summarizes the properties of the three brushes without adhesive 

patches.  These parameters which describe the brush structures, were calculated from 

measurements of the adsorbed PLL-PEG mass and knowledge of the PEG content in each 

copolymer, as described in Chapter 2.  Parameters, such as the average spacing between 

grafting sites, follow without any assumptions for a particular model of the brush.  Other 

properties, such as the number of “blobs” in the brush, its height, and its energy are 

model-specific.  Here, the “Flory” brush from Alexander and DeGennes and the 

semidilute brush model of DeGennes are compared and found to be in good 

agreement.
37,38

 The height calculations based on the Alexander-DeGennes treatment carry 

second and third virial coefficients measured by osmometry (Advanced Instruments) for 

PEO solutions (8000 molecular weight, Polysciences) up to 17 wt%.  These values were 

found to adequately predict measured depletion forces in a separate work.
39

  Notable in 

Table 6.1 is that Brushes 1 and 2 are similar in PEG content while Brushes 2 and 3 are 

similar in height, allowing the importance of these parameters to be tested. 
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Table 6.1.  Brush Architectures 

 

 Brush #1 

PLL-(2.7) 

PEG(2K) 

Brush #2 

PLL-(2.2) 

PEG(5K) 

Brush #3 

PLL-(4.7) 

PEG(5K) 

Saturated adsorption, mg/m
2
 1.1 0.9 1.3 

Adsorbed PEG, mg/m
2
 0.94 0.85 1.16 

Area /Copolymer, nm
2
 206 680 247 

Area /PEG tether, nm
2
 3.6 9.6 7.2 

Tether Spacing, 


, nm
*1

 1.9 3.1 2.7 

Number of Blobs 4.7 5.1 6.4 

Brush Height, ho, nm
*2

 7.5 -9 14.5 - 15.5 16.5 - 17.2 

*1. Tether spacing is equivalent to the blob diameter, also called the brush persistence 

length;   = areal density of tethers  

*2.  Brush heights show the range calculated for the Alexander-DeGennes treatment of 

the Flory brush and the semidilute brush of blobs.  Calculations for both are detailed in 

the Supporting Information.       

 

S. aureus (ATCC 25923) was chosen for this study because of its spherical shape 

and negative charge.  The particular strain was originally a clinical isolate, and has 

become widely used in standardized tests of bacterial antibiotic susceptibility. This 

particular strain was additionally chosen for its nonpathogenic behavior, while still 

closely resembling strains found in hospital infections. Bacteria were grown according to 

standard procedure in Luria-Bertani (LB) medium. Cultures were incubated aerobically 

overnight at 37 °C, shaking at 200 rpm.  Bacteria were harvested after a total of 24h 

during logarithmic growth. Bacteria were subsequently centrifuged at 100 x g and re-

suspended in phosphate buffer twice.  This rinsing procedure was shown to remove 

protein and other molecules which might potentially contaminate the surfaces. All 

bacteria were studied within 24h of preparation and stored in a refrigerator near 4°C. The 

nominal target bacterial concentration was 5 x 10
5
/ ml during the runs. 
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In studies of bacterial adhesion, bacteria suspensions were flowed over test 

surfaces in a custom-built “lateral” microscope.  This instrument orients test surfaces 

perpendicular to the floor so that no gravitational forces contribute to or detract from 

bacteria-surface interactions.  Bacteria capture was monitored on video and, using ImageJ 

software, the numbers of bacteria in each frame were determined, enabling the bacterial 

capture kinetics to be plotted.  Bacterial accumulation was typically linear in time for at 

least 10 minutes, allowing the initial bacterial capture rates to be determined.  These 

initial capture rates, which do not reflect bacteria-bacteria interactions at the surface, 

provide information about the interactions of individual bacteria with the substrates.   

Procedures follow those of prior studies in our lab for other surfaces.
40-42

 

This chapter reports bacterial capture efficiencies.  The capture efficiency is the 

initial bacterial capture rate on a test surface, normalized by the transport-limited 

(maximum possible) capture rate for the same suspension.  The latter is measured on a 

surface that is strongly and rapidly adhesive towards bacteria.  This analysis method is 

necessary because different batches of bacteria measured on different days contain 

slightly different bacterial concentrations, which are difficult to quantify with the 

necessary precision.
40

  Measuring the transport-limited bacterial capture rates for each 

batch of bacteria suspension and presenting data in the form of bacterial capture 

efficiencies facilitate quantitative comparisons of different bacterial batches on different 

test surfaces.  A saturated adsorbed PLL layer, which is densely positively charged, was 

employed as the strongly attractive surface.  Transport limited bacterial capture on this 

type of surface, for the range of adsorption conditions studied here has been previously 

established.
26
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6.3 Results 

 

For two different patch molecular weights, 20,000 and 50,000 in Brush 2, Figure 

6.1A summarizes the adhesion or capture efficiencies of S. aureus from flowing 

phosphate buffer. Because brushes completely resist bacterial adhesion, in Figure 6.1A 

patches must be present within the brushes to produce bacterial capture.  The onset of 

bacterial capture occurs at patch surface loadings or “thresholds” rather than the data 

passing through the origin. 

Adhesion thresholds are indicators of multivalent bacterial capture,
43

 that is, the 

involvement of several patches in the capture of each bacterial cell.  This interpretation 

becomes clear when one considers that the surfaces containing fewer than the threshold 

density of adhesive patches are incapable of adhering bacteria.  Thus, while single 

patches may attract bacteria, individual attractions are too weak to capture and hold 

single bacterial cells, even in gentle flow.  

The shifting of the thresholds to smaller patch loadings (to the left) for larger 50K 

patches in Figure 6.1A is consistent with the expectation that higher molecular weight 

patches will have stronger attractions towards bacteria.  With fewer large patches needed 

for bacterial capture (compared with a greater number of small patches) the threshold for 

large patches lies to the left of that for the small patches.  In the limit of very strong 

patch-bacteria interactions, bacteria can be captured and held by surface species, and data 

extrapolate to the origin rather than a finite x-intercept.
40
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Figure 6.1 The effect of the molecular weight of the PLL patches in Brush #2 on the  

bacterial capture efficiency, for 20,000 (gray diamonds) and 50,000 (black squares) PLL, 

plotted as a function of (A) patch number and (B) patch mass. 

 

Figure 6.2 explores the impact of the brush architecture on bacterial capture for 

PLL patches of 20,000 molecular weight.  Part B of Figure 6.2, previously published,
33

 

facilitates a direct comparison to fibrinogen adsorption for the same series of surfaces, in 

the discussion below.  In Figure 6.2, the threshold concentrations of adhesive patches for 

bacterial capture increases with brush height, since the range of steric repulsions 

increases accordingly.     
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Figure 6.2 A) Bacterial capture efficiencies on three different brushes containing 

embedded 20,000 molecular weight poly-l-lysine patches.  Adsorption is from flow at  = 

5 s
-1

 and an ionic strength of 0.026 M corresponding to 
-1

 = 2 nm.  B) Fibrinogen 

adsorption on the same surfacesfor 
-1

 =  2 nm, from reference 33. 

 

 

A comparison of parts A and B of Figure 6.2 reveals several interesting 

observations.  First, thresholds for fibrinogen capture occur at much higher patch 

concentrations than the thresholds for bacteria.  The observation of fibrinogen thresholds 

suggests weak patch-protein interactions:   Fibrinogen adheres by bridging two or more 

adhesive surface sites.
33

 This interpretation is consistent with the average patch spacing at 
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the fibrinogen thresholds (12-22 nm), which is less than fibrinogen’s 45 nm length.  Since 

proteins are relatively small, then, the surface loading of these randomly-arranged 

patches must be relatively large to ensure statistically significant numbers of protein-

sized surface regions in which multiple adhesive sites are closely situated.   Since the 

bacterial cells are larger than proteins, multivalent bacterial capture can potentially occur 

at lower patch loadings, consistent with the scale of the second x-axis (average patch 

spacing) in Figure 6.2.  The actual bacterial thresholds will depend on the particular 

numbers of patches needed for capture and the bacterial-surface contact area, discussed 

below. 

A second important observation in Figure 6.2 is that the sensitivity of the 

threshold position to the brush architecture is greater for the proteins than it is for S. 

aureus.  That is, we observe a greater shifting in the protein thresholds in part B for 

Brushes 1-3 compared with the spread of the data in Figure 6.2 A.  This observation has 

the technologically-useful benefit that brushes could be chosen to tune the relative 

adhesion of proteins and cells on these surfaces.   

 

6.4 Discussion 

 

 While it has long been known that the brushy biocompatible surfaces which avoid 

protein adhesion are also useful in repelling cells such as bacteria,
3
 the remarkable size 

range (3 orders of magnitude from molecular to cellular-scale) of the objects that can be 

manipulated by steric forces has historically been taken for granted.  Figures 2 and 3 

reveal important similarities and differences in how brushy steric repulsions come into 
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play for bacteria versus proteins experiencing localized attractions.  If one views the 

adhesive “patches” as synthetic receptors or, at least, technologically-useful constructs 

for manipulation of biological entities, it is remarkable that the same brushy interfaces 

with the same adhesive “elements” produce parallel behaviors at the molecular and 

cellular level.  On the other hand, if one views the cationic patches as (quantifiable 

models for) flaws in an otherwise bio-resistant brush, we have the striking observation 

that such small flaws (individually too adhesively weak to immobilize much of anything), 

are far more catastrophic in that they more readily facilitate unwanted cell adhesion 

compared to protein adhesion.  (Of the several proteins we have studied on these 

brushes,
27,30

 fibrinogen is the largest [4.5 nm x 4.5 nm x 47 nm] and correspondingly 

most adhesive, with other proteins such as albumin adhering only at even higher patch 

loadings.
27

)  For most surfaces, even engineered surfaces, protein adsorption is typically 

thought to be a precursor for cellular adhesion.
2,3

 On the “flawed” brushes in this study, 

cells adhere directly without prerequisite protein adsorption.   We are aware of one other 

study documenting a similar trend on PEG-coated steel.
25

 

 

6.4.1 Role of adhesive flaws on bacterial and protein adhesion 

A basic quantity at the core of understanding S. aureus versus protein capture is 

the numbers of adhesive patches (the “valency”) required for their capture.  Even without 

understanding the physics of the brushes or the patch-bacteria interaction, it is possible to 

estimate the valency.  A statistical treatment that was published previously
43

 was used to 

understand the patch distribution.  The model assumes only (1) a random arrangement of 

adhesive sites on the surface, described by a Poisson distribution (a material feature 
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which has been previously established
26

) and (2) a known area between the surface and 

the target over which the attractive forces act. S. aureus is approximated as a simple 

sphere, a simplification which provides an estimate of the contact area, but which might 

more seriously break down for other bacterial strains with protrusions such as pili that 

might penetrate the brush rather than compress it.  The treatment predicts the normalized 

capture probability as a function of the overall loading of patches.  The latter is the 

quantity on the x-axis of Figures 6.1 and 6.2.  The capture probability is roughly 

proportional to the capture rate or efficiency on the y-axis of these figures.
43

 A prior 

work, which accessed a regime of monovalent bacterial capture on more strongly 

adhesive elements, presented a scheme to translate capture probability to efficiency.
41

 

This conversion translates to other systems with weaker adhesive elements such as the 

current study.  In presenting the predictions of the statistical model, we include both 

scales on the y-axes. 

Figure 6.3A provides perspective on the area over which S. aureus-surface 

attractions act.  When a bacterium, approximated as a sphere of radius Rp = 500 nm, first 

touches the surface, the area over which attractive (electrostatic) forces act is defined by 

the overlap of the electrostatic double layers of the sphere and the collector.   The radius 

of this electrostatic force zone follows from geometry, (rf
es 

)
2
 + (Rp – 

-1
)
2
 = (Rp + 

-1
)
2
   

or  rf
es  

= 2(Rp 
-1

)
1/2

.  Here the Debye length, 
-1

,
 
is 2 nm.  For a 1-micron spherical 

bacterium rf
es

 = 63.25 nm,  and the electrostatic area, (rf
es 

)
2
, is 4000 nm

2
. 
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Figure 6.3 Schematic of a bacteria contact with a patchy brush surface (A) defining the 

electrostatic interaction radius rf
es

 (B) defining the steric brushy interaction radius rp for 

brush height h and brush compression δ. 
 
 

6.4.2 Impact of Steric Repulsion from brush architecture on bacteria 

The multiple attractions from the adhesive patches offset the different amounts of 

steric repulsion between the different brushes and a bacterium (or protein).  In 

understanding this repulsion, two aspects must be considered:  (1) the area over which the 

repulsion acts and (2) the physics of the repulsion:  compression or penetration.   

During bacterial capture, different steric interaction areas (of radius rs) for the 

different brushes result from the brush-dependence of the range of steric forces.  In a first 

approximation illustrated in Figure 6.3B, a spherical bacterium of radius Rp = 500 nm 

compresses the brush, of initial height h to final separation h’, so that the bacterial surface 

comes within about a Debye length (h’=
-1

=2 nm) of the charged patches.  The brush 
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deformation, , follows as h – 2 nm.   Then from geometrical arguments motivated by 

Figure 4B, rs
2
 + (Rp – )

2
 = Rp

2
, so that rs =  (

2
 +2Rp)

1/2
.  For instance for Brush 1 with 

 = 7 nm, one obtains an approximate interaction radius, rs ~ 84 nm, and a total steric 

interaction area of about 7000 nm
2
.  Larger steric areas result for Brushes 2 and 3, still 

with h’= 2 nm, summarized in Table 6.2 as published recently
1
.  To a first approximation, 

the total steric repulsion should scale as the steric contact area.  Proportionate numbers of 

adhesive elements, as calculated in the previous section, are expected to be needed within 

the electrostatic contact area to produce bacterial capture.  Notably, the definitions of 

steric and electrostatic areas differ fundamentally.  The steric area varies with differences 

in the brush, but the electrostatic interaction area depends on Debye length. 

We estimate, as a first approximation, that bacteria-brush interactions resemble 

brush compression by an impenetrable wall, neglecting complexities of the bacterial 

surface which are insufficiently known to develop a more sophisticated picture. We 

proceed with this approach, as the use of brush compression models for cell interactions 

has shown recent success for the adhesion and release of mammalian cells which may be 

softer than bacteria.
49

 The work brush of compression depends on the brush architecture, 

primarily through the parameters N and , the statistical number of segments per tether 

and areal density of tethers, respectively as summarized in Table 6.1.   
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Table 6.2.  Brush Features Relevant to Steric Repulsion of Bacteria and Protein 

 

 Brush 1 Brush 2 Brush 3 

Calculated Bacterial Capture 

Valency for 20K PLL patch 

13 18 20 

Bacterial interaction radius,
note-1

 

rs, nm 

84 117 124 

Bacterial interaction area,
 note-1

 

nm
2
 

7,000 13,700 15,400 

Fibrinogen interaction area, nm 150-200 150-200 150-200 

PEG Content at Bacterial 

Threshold 

   (20K patch), mg/m
2
 

0.81 0.80 1.11 

Brush Height at Bacterial 

Threshold, nm  

    (20K patch) 

7 13 16 

Brush Compression Energy, 2
nd

 

virial              Relative to that of 

Brush 1
note-2

 

--- 0.98 1.88 

Brush Compression Energy, full 

osmotic expression, relative to 

Brush 1 

--- 0.9 2.9 

PEG Content at Fibrinogen 

Threshold,
32

 

 mg/m
2
 (20K patch) 

0.57 ±0.12 0.6 ±0.04 0.80 ±0.13 

Brush Height at Fibrinogen 

Threshold,
 
 nm   (20K patch) 

6 12 14 

Average Tether Spacing at 

Fibrinogen Threshold, nm (20K 

patch), 
-1/2

 

2.4±0.2 3.7±0.1 3.2±0.3 

Steric (Penetration) Repulsion, 

kT  per Fibrinogen 

180  50 65 

StericCompression Penalty, kT  

per Fibrinogen 

68 20 25 

1.
 Assumes an ultimate gap separation of 2 nm       

2.
Assumes similar brush compressions 

for all brushes 
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Worth noting is that h and , along with the total tethered PEG, are preserved at 

the bacterial adhesion thresholds.  That is, for a series of surfaces with increasing 

numbers of cationic patches at the base of a brush, the amount of brush needed to backfill 

the remaining surface decreases once the patch loading reaches a critical level, on the 

order of 800 mg/m
2
 for Brush 1, 1200 mg/m

2
 for Brush 2, and 2200 mg/m

2
 for Brush 3.

32
 

This decrease in backfill tends to compromise the brush, especially near the high protein 

adsorption thresholds in Figure 3B. However, the threshold patch densities for bacterial 

capture in Figures 6.1 and 6.2A occur at relatively low patch loadings and therefore 

correspond to negligible decreases in the PLL-PEG backfill relative to a brush containing 

no patches.  The properties of the various brushes at the adhesion thresholds for bacteria 

and fibrinogen are summarized in Table 6.2, and for the bacterial adhesion are similar to 

the properties in Table 6.1. 

With the properties of the brush determined at conditions where bacteria start to 

adhere, in Table 6.2, it becomes possible to estimate the steric cost of compression. Two 

approaches were considered for this calculation, both based on the Alexander DeGennes 

treatment of a Flory brush.
37,38

  The Alexander-deGennes treatment, which neglects the 

real concentration profile in the brush in favor of a constant segmental concentration, is 

unrealistic.  However, for uncompressed brushes, both osmotic and stretching energies 

are over estimated and errors cancel, so that estimates of brush height are often 

reasonable.
18

  Additionally, for the large compressions in our work (starting with brushes 

on the order of 10 nm and compressing down to a thickness on the order of a Debye 

length), the structural features of the brush, for instance the tether spacing and segmental 

concentration profile, become relatively unimportant.  Milner has demonstrated, for 
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instance, that the step function and parabolic brush forms give similar results for large 

compressions such as those in the current study.
18

 The essential feature is that the 

compression is resisted by the osmotic pressure in the gap. 

Assuming that the critical number of adhesive patches needed for capture is 

proportional to the steric repulsion, the ranking of the bacterial thresholds should follow 

similarly.  This is the case qualitatively:   In Figure 6.2A, though the ratios of the 

valencies for Brushes 2 and 3 relative to Brush 1 (18:13 and 20:13, respectively) are not 

exactly 1 and 3, respectively.  One can explain this modest discrepancy, however, by 

relaxing the assumption that bacterial capture on the three brushes results in the exactly 

the same gap thickness (closest bacteria-surface contact) for all three brushes.  The 

approximate agreement between these brush thresholds and the relative valencies for the 

bacterial capture supports the assumption of strong compression, providing insight into 

the nature and extent of bacterial-surface interactions. 

 

6.4.3 Steric Interaction of brushes with proteins 

The large protein thresholds and sensitivity of protein capture to brush 

architecture suggest differences, relative to bacteria, in the steric interactions between 

brushes and fibrinogen.   First, multivalent fibrinogen adsorption suggests a side-on 

protein orientation to the surface allowing the long fibrinogen molecule to bridge several 

patches.  Protein approach to within a Debye length of the underlying substrate requires 

entry of the protein into the brush by compression or penetration.  Thus the full side-on 

area, between 150 and 200 nm for fibrinogen independent of brush architecture, 
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comprises the area governing the steric interactions in Figure 6.4. This is much smaller 

than the bacterial contact areas in Figure 6.3. 

 

Figure 6.4 Side on fibrinogen adsorption, required for bridging multiple patches, likely 

requires brush penetration, especially because the narrow fibrinogen dimension is smaller 

than the brush height. 

 

If fibrinogen penetrates a Flory brush in a side-on orientation, the entropic cost is 

the osmotic penalty associated with the protein excluded volume.
7,51

  Estimating the 

excluded fibrinogen volume as 4.5 x 4.5 x 45 = 900 nm
3
, and using second and third 

virial coefficients of 0.0057 cm
3
 mol/g

2
 and 0.059 cm

6
 mol /g

3
, respectively, to estimate 

the osmotic pressure,
39

 (also used to calculate the brush height), the results are 

summarized in Table 6.2.   

The calculations raise two points:  First, the calculated insertion costs suggest a 

ranking of the fibrinogen thresholds as Brush 1, Brush 3 and then Brush 2.  While we do 

not observe this for 
-1

=2 nm, we did report this trend at higher ionic strength,
33

 



164 

 

suggesting more extensive protein penetration at the smaller Debye length of 
-1

 =1 nm 

into the same series of brushes.  Second, the calculated steric insertion costs in Table 6.2 

seem large:  They represent an upper limit because the tether spacing in the calculation is 

an average value for the brush, not accounting for the greater tether spacing (order 10 

nm) in the vicinity of the patches where the fibrinogen is actually located.  Additionally, 

in the case of the thinner brush 1 at the fibrinogen threshold (around 6 nm), it may be that 

fibrinogen (4.5 nm high) need not insert fully, suggesting the insertion penalty could be 

reduced on the order of 50%.  The dependence of the insertion cost on brush structure 

(with persistence lengths between 2 and 10 nm) could produce extreme sensitivity of 

fibrinogen interactions to local brush structure. 

With side-on fibrinogen adsorption bridging multiple patches, the cost of brush 

compression is also worth estimating.  First, the side-on contact area, 4.5 x 45 ~ 200 nm
2
, 

is estimated to be brush-independent, due to small fibrinogen dimensions perpendicular 

to the brush.  Compressing this area of brush in a piston-like fashion (rather than applying 

Derjaguin, since fibrinogen is not a sphere), gives the results summarized in Table 6.2.  

Note that in obtaining these figures, the osmotic pressure is the resistance to compression, 

as described by Milner.
18

  Rather than employing the second virial expression for osmotic 

pressure, a different expression as described by (Gon et al., 2012)
1
, with  = 0.4

49
 was 

used, because of the elevated segmental concentrations in a gap whose thickness is the 2 

nm Debye length.  While the results appear slightly less costly than penetration, the 

sufficient uncertainty (the actual position of the protein within the brush, and the details 

of its surface contour) in the calculations precludes a firm argument for penetration or 

compression by protein.  Penetration may be favorable only because it can exploit 
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structural details of the brush in the vicinity of the patches to further lower the energetic 

cost.  Compression would tend to be sensitive average the local chain concentration in the 

vicinity of the patch and protein and therefore potentially sustain a higher steric penalty. 

 

6.5 Conclusions 

 

In the study of S. aureus interactions with flawed or patchy protein-resistant 

brushy surfaces, this study considered both the size (or binding energy) of the patches 

and the architecture of the brush. By varying the patch molecular weight, the numbers of 

cationic charges in localized surface regions were varied.  Larger patches produced 

bacterial adhesion at lower patch loadings, and analysis confirmed the importance of both 

the patch size (numbers of charges) and the random patch arrangement.  This reinforced 

the discrete, rather than mean field, nature of the bacteria-surface attractions. 

Experiments provided an estimate of the relative brush compression penalty, ie 

the steric forces between S. aureus and surfaces containing different engineered brushes.  

Results were consistent with dramatic brush compression to heights on the order of the 2 

nm Debye length. A treatment using the full Flory expression to estimate the osmotic 

pressure of a substantially compressed brush agreed reasonably with the estimates based 

on valency calculations.  A simplified second virial expression for the osmotic pressure 

on compression was not inconsistent with the data. Both approaches, which were 

dominated by an osmotic term, reinforced a simple design rule for brushes, focusing on 

the amount of PEO tethered at the interface (assuming sufficient brush height and small 

persistence length relative to the protein size.)  This further emphasized the relative 
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unimportance detailed brush structure (segmental concentration profile, tether density as 

long as it is smaller than the protein size).  The consistency with large brush 

compressions explains observations in the literature concerning the important of overall 

brush mass. 

Protein adhesion on the same series of brushes was found to require greater patch 

densities than those needed for bacterial capture.  This observation carries scientific and 

practical weight. The greater patch density required for protein capture was a result of the 

localization of attractive interactions into patchy regions.  With weakly attractive surface 

patches, a higher overall patch density is needed for protein capture because proteins 

must be able to bridge multiple patches in order to adsorb.  Such bridging by larger 

bacteria can occur with smaller overall patchy loadings. Also observed, the threshold or 

patch loading for the onset of adsorption was much more sensitive, for proteins, to brush 

architecture than the thresholds for bacterial capture.  This is thought to be a result of a 

protein’s ability to penetrate the brush in a manner dependent on local brush structure.  

By contrast, bacterial adhesion requires a more uniform brush compression.   

These observations imply that for brush-based protein resistant biomaterials, 

nanoscale flaws can induce bacterial fouling and cell adhesion long before protein 

adsorption occurs.  This behavior differs markedly from classical understanding that 

protein adsorption precedes cell adhesion and explains why protein adsorption can 

sometimes be a poor predictor of cell-surface interactions. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS OF 

RESEARCH 

 

7.1 Conclusion 

 

 In this study a new class of biomaterials was developed and studied in the context 

of various applications. The program extended the classical construct of a sterically-

repulsive PEG brush by embedding cationic patches at the base of the brush, setting up 

competition between the steric repulsion of the brush and electrostatic attractions to 

approaching molecules and cells. The interaction of these surfaces with different proteins 

and S. aureus bacteria was studied, using three different PEG brushes that systematically 

varied the PEG chain length, grafting density, and mass of PEG. 

 

7.1.1 New concept of patchy brush 

 The concept of a patchy brush is like putting selective imperfections within a 

polymer brush, providing insights into why some brushes fail while, at the same time, 

developing a novel and useful interfacial design strategy. Our study showed that cationic 

PLL patches adsorbed on silica are stable when exposed to buffer, protein solution, or an 

adsorbing copolymer that forms a polymer brush. Backfilling rest of the surface with the 

PEG brush then presents a surface with sparse cationic moieties separated by a bio-

resistant stable PEG brush. As the size of these patches was a few nanometers (smaller 
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than the protein molecules in study) and as they tended to be weakly attracted towards 

negative objects in suspension, these nano-patterned PEG brushes showed unique bio-

selective characteristics. The patches could interact, via electrostatic attractions, with 

negatively charged proteins or cells. Notably, the interactions between the individual 

patches and approaching objects are non-specific and non-selective. In this thesis, it was 

demonstrated that by tuning the average spacing between the adhesive patches, and 

ensuring a dominant repulsion between the brush on the remaining surface with 

approaching objects, one can achieve a remarkable control of sharp and specific bio-

adhesion. Hence the main focus of this thesis was to produce sharp tunability of bio-

adhesion without employing bio-specific target molecules like biotin, RGD or various 

cell adhesion molecules (CAMs). 

 

7.1.2 Brush stability analysis with protein and polyelectrolyte addition 

 The stability of three PEG brushes, varying molecular weight, tether spacing, and 

overall PEG content (but all strongly repellant to serum proteins) was studied by 

challenging the brushes with various proteins and a weak cationic polyelectrolyte, poly-l-

lysine (PLL). The brush repelled all the anionic proteins, namely fibrinogen, albumin, 

alkaline phosphatase but retained the globular cationic protein lysozyme. Lysozyme 

adsorption increased with increasing PEG content in the brush, with the greatest 

lysozyme retention in brushes that were the most repellant to serum proteins. We 

therefore concluded that weak attractions between PEG and lysozyme were the cause.  

Separately, it was found that PLL challenge to adsorbed PLL-PEG brushes triggered 

complete brush desorption from the surface. This was expected, but the displacement was 
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found to take place on extremely rapid timescales, suggesting that PLL penetrates the 

PEG brush layers easily and that the PLL anchor onto the silica substrate is 

fundamentally dynamic. 

 

7.1.3 Tuning size based protein adhesion 

Systematic variation of the number density of cationic PLL patches within a PEG 

brush revealed a series of sharp protein adhesion thresholds for fibrinogen, albumin, 

alkaline phosphatase and myoglobin. The threshold position (the density of patches at the 

threshold) increases as the protein size decreases, for fibrinogen, albumin, and alkaline 

phosphatase. While fibrinogen, albumin and alkaline phosphatase were all negatively 

charged at our operating condition (pH 7.4) and bigger than the patch size (10 nm), 

myoglobin’s major dimension (4.4 nm) was smaller than the patch size and it is neutral at 

pH 7.4. The adhesion thresholds of the bigger proteins were found, in studies varying 

ionic strength, to be driven by electrostatic attraction between proteins.  Protein 

adsorption occurred only when individual proteins were able to bridge the spacings 

between the patches, so that the surfaces acted like a molecular ruler.
1,2

 In contrast, 

myoglobin showed a capability of binding onto single patches without bridging between 

patches, and the interaction of myoglobin with the patches was not electrostatic 

attraction. Sharp separation of fibrinogen and albumin was achieved at an intermediate 

surface in between the threshold points of the two proteins. 
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7.1.4 Tuning protein adhesion by controlling brush height, density, and ionic 

strengths 

The effects of brush heights and ionic strength on protein adhesion were studied 

using fibrinogen as a model protein. It was found that adhesion thresholds for proteins 

can be tuned by changing the brush heights and ionic strengths of buffer solutions. The 

patchy brushes showed the ability to adsorb protein from a low ionic strength buffer and 

then release them at a higher ionic strength. Ionic strength was therefore demonstrated as 

a means of brush regeneration, with nearly reproducible cycles of protein adsorption and 

desorption, with changing ionic strength. 

 

 

7.1.5 Tuning bacterial adhesion 

Adhesion of S. aureus on the three patchy brushes was studied. Distinct adhesion 

thresholds for bacterial adhesion were observed for three brushes suggesting that such 

brushes can be used to tune bacterial adhesion and eventually separate different bacterial 

types. A distinct difference between protein and bacterial adhesion thresholds for all of 

the brushes was observed. This suggested that smart surfaces can be engineered to initiate 

separation of cells from its culture medium. The effect of fibrinogen on adhesion 

characteristics of S. aureus was studied and it was found that fibrinogen hampers capture 

of bacteria to due protein binding directly to the surface of S. aureus.  This highly 

specific binding of fibrinogen on S. aureus was an unanticipated complication for this 

particular bacterium which has been found to present fibrinogen receptors. 
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7.2 Future directions 

 

 The construct of patchy brush can be extended to diverse applications. Based on 

their unique bio-adhesive properties, the relatively simple and cost effective ways of 

surface preparation methodologies for such patchy brushes then can be useful in several 

bio-diagnostics and separation applications.  A few of these potentially beneficial areas 

are highlighted below. 

 

7.2.1 Generation of myoglobin sensor 

Myoglobin is among the smallest proteins which are not normally found in blood 

serum. During skeletal muscle injury myoglobin can secret into blood and urine and 

hence is commonly known as cardiac biomarker.
3
 Common myoglobin detection kits that 

are commercially available give only qualitative information about myoglobin presence 

and can often give false signals.
3-5

 Our experimental results showed that at surface 

conditions where fibrinogen, albumin, alkaline phosphatase do not adhere, myoglobin 

does adhere (near the onset of PEG threshold). Since fibrinogen and albumin are the 

major proteins present in serum, this observation suggests an application where these 

surfaces could be employed in the testing blood serum for trace myoglobin levels. The 

result can lead to an efficient myoglobin detector sensor. 

 

7.2.2 Generation of smart surfaces to effectively capture and kill bacteria 

 Precise tuning of bacterial adhesion leads to the possibility of producing smart 

systems that can effectively capture and kill bacteria. Besides synthetic polymers and 
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antimicrobial proteins for bacterial killing, other constructs have also been considered, 

for instance, recently bacteriophages been successfully attached to polymer materials and 

shown promise for bacterial manipulation.
6
 Monoclonal antibodies have also been found 

to fill bacteria once it comes in contact with bacteria membrane.
7
 The potential to 

immobilize such killer constructs within our patchy regions would enable sophisticated 

and  achieve tunable bacteria capture and killing. 

 

7.2.3 Capture of cells from media and complex biological fluids 

 This thesis demonstrated that S. aureus adhesion precedes that of fibrinogen on 

series of brushy surfaces containing increasing densities of cationic patches. If this size 

effect can be extrapolated to other systems, it suggests that mammalian cell adhesion will 

precede protein adhesion in cell culture media. Hence patchy brushes could potentially be 

exploited to capture cells from the culture media and other complex biological fluids. A 

typical example is breast cancer cells which might be present in breast milk early on, or 

in blood during metastasis. Harvesting these epithelial cells from either complex fluid 

and discriminating them from other cells remains a challenge. Our research shows 

promise that such a surface can be engineered to efficiently capture cells of interest from 

complex fluids and culture media. 

 

7.2.4  Separating different bacteria and cells 

 Nano scale surface heterogeneity has been found to be effective in separating 

silica particles based on their sizes. The adhesion thresholds achieved in our patchy 

brushes for S. aureus shows promise that size based separation between different 
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bacterial strains or between different cell lines can be achieved by our patchy brushes in 

future. 

 In general the patchy brushes showed promise as a biologically compatible 

system and they present great promise in selective protein and cell detection, sorting, 

separation and for the development of biomedical devices in the future.  
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APPENDIX A 

EFFECT OF GRAFTING RATIO ON PROTEIN ADHESION 

OVER BRUSH # 1 

 

Different PLL-PEG brushes were synthesize with 2000 MW PEG tether attached 

to 20000 MW PLL backbone with varying grafting ratio. These experiments were done 

initially to find a suitable grafting ratio that would lead to best protein repellence 

characteristics for the brush. As shown in Figure A 1 PLL-PEG with grafting ratio 2.7 

showed least amount of protein adhesion. A second batch of this polymer showed almost 

negligible protein adhesion and was selected for this study. This polymer was called 

Brush # 1 throughout this thesis. 
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Figure A.1 Protein repellence for PLL-PEG with different grafting ratios 
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APPENDIX B 

 
 

NMR DATA FOR BRUSH 1 2 AND 3 
 

 

The PLL-PEG was characterized with 
1
H NMR using a D2O solvent with a 

Brucker 400 MHz instrument. The areas of the lysine side chain peak (-CH2-N-) at 2.909 

ppm  highlighted in yellow and PEG peak (-CH2-CH2-) at 3.615 ppm highlighted in light 

blue were compared to determine the grafting ratio for the three brushes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 NMR data for Brush # 1 
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Appendix C Surface regeneration for brush 1 and 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2 NMR data for Brush # 2 

 

 

 

 

 

 

 

 

 

 

 

Brush # 2Brush # 2



184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.3 NMR data for Brush # 3 

 

 

 

 

 

 

 

 

 

Brush # 3Brush # 3



185 

 

BIBLIOGRAPHY 

 
 

Adamczyk, Z, Nattich, M., Wasilewska, M, & Sadowska, M. (2011). Deposition of 

colloid particles on protein layers: fibrinogen on mica. Journal of Colloid and 

Interface Science, 356(2), 454-464. 

 

 

Agnihotri, A., & Siedlecki, C. A. (2004). Time-Dependent Conformational Changes in 

Fibrinogen Measured by Atomic Force Microscopy. Langmuir, 20(20), 8846-

8852.  

 

 

Alang Ahmad, S., Hucknall, A., Chilkoti, A., & Leggett, G. J. (2010). Protein Patterning 

by UV-Induced Photodegradation of Poly(oligo(ethylene glycol) 

methacrylate) Brushes. Langmuir, 26(12), 9937-9942.  

 

 

Alexander, S. (1977). Adsorption of chain molecules with a polar head a scaling 

description. Journal de Physique (Paris), 38(8), 983-7.  

 

 

Alexander, S. (1977). Polymer adsorption on small spheres. A scaling approach. Journal 

de Physique (Paris), 38(8), 977-981.  

 

 

Almog, C., Isakov, A., Ayalon, D., Burke, M., & Shapira, I. (1987). Serum myoglobin in 

detection of myocardial necrosis in patients with “coronary insufficiency.” 

Clinical Cardiology, 10(5), 347-349. 

 

 

Amanda, A., & Mallapragada, S. K. (2001). Comparison of protein fouling on heat-

treated poly(vinyl alcohol), poly(ether sulfone) and regenerated cellulose 

membranes using diffuse reflectance infrared Fourier transform spectroscopy. 

Biotechnology Progress, 17(5), 917-923.  

 

 

Applegate, B. M., Perry, L. L., Morgan, M. T., & Kothapalli, A. (2010, March 25). 

Methods for generation of reporter phages and immobilization of active 

bacteriophages on a polymer surface. 

 

 

Arai, T., & Norde, W. (1990). The behavior of some model proteins at solid-liquid 

interfaces. 1. Adsorption from single protein solutions. Colloids and Surfaces, 

51, 1-15. 

 



186 

 

Asuri, P., Karajanagi, S. S., Vertegel, A. A., Dordick, J. S., & Kane, R. S. (2007). 

Enhanced stability of enzymes adsorbed onto nanoparticles. Journal of 

Nanoscience and Nanotechnology, 7(4-5), 1675-1678.  

 

 

Bartoli, F., Burtin, G., & Guerif, J. (1992). Influence of Organic-Matter on Aggregation 

in Oxisols Rich in Gibbsite or in Goethite .2. Clay Dispersion, Aggregate 

Strength and Water-Stability. Geoderma, 54(1-4), 259-274.  

 

 

Bartucci, R., Pantusa, M., Marsh, D., & Sportelli, L. (2002). Interaction of human serum 

albumin with membranes containing polymer-grafted lipids: spin-label ESR 

studies in the mushroom and brush regimes. Biochimica et Biophysica Acta, 

Biomembranes, 1564(1), 237-242.  

 

 

Bergstrand, A., Rahmani-Monfared, G., Ostlund, A., Nyden, M., & Holmberg, K. (2009). 

Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention 

of protein fouling. Journal of Biomedical Materials Research Part A, 88A(3), 

608-615. 

 

 

Billsten, P., Wahlgren, M., Arnebrant, T., McGuire, J., & Elwing, H. (1995). Structural 

changes of T4 lysozyme upon adsorption to silica nanoparticles measured by 

circular dichroism. Journal of Colloid and Interface Science, 175(1), 77-82.  

 

 

Böhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined 

by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345.  

 

 

Brant, J. A., Johnson, K. M., & Childress, A. E. (2006). Characterizing NF and RO 

membrane surface heterogeneity using chemical force microscopy. Colloids 

and Surfaces a-Physicochemical and Engineering Aspects, 280(1-3), 45-57.  

 

 

Brittain, W. J., & Minko, S. (2007). A structural definition of polymer brushes. Journal 

of Polymer Science, Part A: Polymer Chemistry, 45(16), 3505-3512.  

 

 

Blawas, A. S., & Reichert, W. M. (1998). Protein patterning. Biomaterials, 19(7-9), 595-

609. 

 

 



187 

 

Bloustine, J., Virmani, T., Thurston, G. M., & Fraden, S. (2006). Light Scattering and 

Phase Behavior of Lysozyme-Poly(Ethylene Glycol) Mixtures. Physical 

Review Letters, 96(8). 

 

 

Böhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined 

by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345.  

 

 

Bos, M. A., & van, V. T. (2001). Interfacial rheological properties of adsorbed protein 

layers and surfactants: a review. Advances in colloid and interface science, 

91(3), 437-471. 

 

 

Bosker, W. T. E., Iakovlev, P. A., Norde, W., & Stuart, M. A. C. (2005). BSA adsorption 

on bimodal PEO brushes. Journal of Colloid and Interface Science, 286(2), 

496-503.  

 

 

Bunt, C. R., Jones, D. S., & Tucker, I. G. (1993). The effects of ph, ionic-strength and 

organic-phase on the bacterial adhesion to hydrocarbons (bath) test. 

International Journal of Pharmaceutics, 99(2-3), 93-98.  

 

 

Chang, H. T., Rittmann, B. E., Amar, D., Heim, R., Ehlinger, O., & Lesty, Y. (1991). 

Biofilm detachment mechanisms in a liquid-fluidized bed. Biotechnology and 

Bioengineering, 38(5), 499-506.  

 

 

Camesano, T. A., & Abu-Lail, N. I. (2002). Heterogeneity in bacterial surface 

polysaccharides, probed on a single-molecule basis. Biomacromolecules, 3(4), 

661-667.  

 

 

Casimirius, S., Flahaut, E., Laberty-Robert, C., Malaquin, L., Carcenac, F., Laurent, C., 

& Vieu, C. (2004). Microcontact printing process of individual for the 

patterned growth CNTs. Microelectronic Engineering, 73-4, 564-569.  

 

 

Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K. 

A., & Linse, S. (2007). Understanding the nanoparticle-protein corona using 

methods to quantify exchange rates and affinities of proteins for nanoparticles. 

Proceedings of the National Academy of Sciences of the United States of 

America, 104(7), 2050-2055.  

 

 



188 

 

Chang, B.S., Kendrick, B.S., & Carpenter, J.F. (1996). Surface-induced denaturation of 

proteins during freezing and its inhibition by surfactants. Journal of 

pharmaceutical sciences, 85(12), 1325-1330. 

 

 

Chen, H., Yuan, L., Song, W., Wu, Z. K., & Li, D. (2008). Biocompatible polymer 

materials: Role of protein-surface interactions. Progress in Polymer Science, 

33(11), 1059-1087.  

 

 

Chen, S. F., Zheng, J., Li, L., & Jiang, S. (2005). Strong Resistance of Phosphorylcholine 

Self-Assembled Monolayers to Protein Adsorption: Insights into Nonfouling 

Properties of Zwitterionic Materials. Journal of the American Chemical 

Society, 127(41), 14473-14478.  

 

 

Collins, J. A., Xirouchaki, C., Palmer, R. E., Heath, J. K., & Jones, C. H. (2004). Clusters 

for biology: immobilization of proteins by size-selected metal clusters. 

Applied Surface Science, 226(1-3), 197-208.  

 

 

Cowan, S. E., Liepmann, D., & Keasling, J. D. (2001). Development of engineered 

biofilms on poly-L-lysine patterned surfaces. Biotechnology Letters, 23(15), 

1235-1241. 

 

 

Currie, E. P. K., Norde, W., & Stuart, M. A. C. (2003). Tethered polymer chains: surface 

chemistry and their impact on colloidal and surface properties. Advances in 

Colloid and Interface Science, 100, 205-265. 

 

 

Dalsin, J. L., Hu, B. H., Lee, B. P., & Messersmith, P. B. (2003). Mussel adhesive protein 

mimetic polymers for the preparation of nonfouling surfaces. Journal of the 

American Chemical Society, 125(14), 4253-4258.  

 

Dalsin, J. L., Lin, L. J., Tosatti, S., Voros, J., Textor, M., & Messersmith, P. B. (2005). 

Protein resistance of titanium oxide surfaces modified by biologically inspired 

mPEG-DOPA. Langmuir, 21(2), 640-646.  

 

 

de, Backer, M., McSweeney, S., Rasmussen, H. B., Riise, B. W., Lindley, P., & Hough, 

E. (2002). The 1.9 Å crystal structure of heat-labile shrimp alkaline 

phosphatase. Journal of Molecular Biology, 318(5), 1265-1274.  

 

 



189 

 

de, Gennes. P. G. (1976). Scaling theory of polymer adsorption. Journal de Physique 

(Paris), 37(12), 1445-1452.  

 

 

de Gennes, P. G. (1976). J. Phys. (Paris), 38, 1443.  

 

 

de las Heras Alarcón, C., Farhan, T., Osborne, V. L., Huck, W. T. S., & Alexander, C. 

(2005). Bioadhesion at micro-patterned stimuli-responsive polymer brushes. 

Journal of Materials Chemistry, 15(21), 2089.  

 

 

de, V., Leermakers, F. A. M., de, K., Cohen, S., & Kleijn, J. M. (2010). Field Theoretical 

Analysis of Driving Forces for the Uptake of Proteins by Like-Charged 

Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. 

Langmuir, 26(1), 249-259.  

 

 

Desfougeres, Y., Croguennec, T., Lechevalier, V., Bouhallab, S., & Nau, F. (2010). 

Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged 

Globular Proteins into Microspheres. Journal of Physical Chemistry B, 

114(12), 4138-4144.  

 

 

Deshmukh, V., Britt, D. W., & Hlady, V. (2010). Excess fibrinogen adsorption to 

monolayers of mixed lipids. Colloids and Surfaces. B, Biointerfaces, 81(2), 

607-613.  

 

 

Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: interactions, structure 

and surface rheology. Colloids and Surfaces, B: Biointerfaces, 15(2), 161-176. 

 

 

Dijt, J. C., Cohen, S., & Fleer, G. J. (1994). Competitive Adsorption Kinetics of 

Polymers Differing in Length Only. Macromolecules, 27(12), 3219-28.  

 

 

Dinçer, S., Türk, M., Karagöz, A., & Uzunalan, G. (2011). Potential c-myc antisense 

oligonucleotide carriers: PCl/PEG/PEI and PLL/PEG/PEI. Artificial Cells, 

Blood Substitutes, and Immobilization Biotechnology, 39(3), 143-154.  

 

 

Dorobantu, L. S., Bhattacharjee, S., Foght, J. M., & Gray, M. R. (2008). Atomic force 

microscopy measurement of heterogeneity in bacterial surface hydrophobicity. 

Langmuir, 24(9), 4944-4951. 

 



190 

 

Draper, J., Luzinov, I., Minko, Sergiy, Tokarev, I., & Stamm, Manfred. (2004). Mixed 

Polymer Brushes by Sequential Polymer Addition: Anchoring Layer Effect. 

Langmuir, 20(10), 4064-4075.  

 

 

Drobek, T., Spencer, N. D., & Heuberger, M. (2005). Compressing PEG brushes. 

Macromolecules, 38(12), 5254-5259.  

 

 

Duffadar, R., Kalasin, S., Davis, J. M., & Santore, M. M. (2009). The impact of 

nanoscale chemical features on micron-scale adhesion: Crossover from 

heterogeneity-dominated to mean-field behavior. Journal of Colloid and 

Interface Science, 337(2), 396-407. 

 

 

Dufrene, Y. F. (2003). Recent progress in the application of atomic force microscopy 

imaging and force spectroscopy to microbiology. Current Opinion in 

Microbiology, 6(3), 317-323.  

 

 

Dutta, D., Sundaram, S. K., Teeguarden, J. G., Riley, B. J., Fifield, L. S., Jacobs, J. M., 

Addleman, S. R., Kaysen, G. A., Moudgil, B. M., & Weber, T. J. (2007). 

Adsorbed proteins influence the biological activity and molecular targeting of 

nanomaterials. Toxicological Sciences, 100(1), 303-315.  

 

 

Efremova, N. V., Bondurant, B., O'Brien, D. F., & Leckband, D. E. (2000). 

Measurements of interbilayer forces and protein adsorption on uncharged lipid 

bilayers displaying poly(ethylene glycol) chains. Biochemistry, 39(12), 3441-

3451. 

 

 

Elbert, D. L., & Hubbell, J. A. (1996). Surface treatments of polymers for 

biocompatibility. Annual Review of Materials Science, 26, 365-394.  

 

 

Fang, B., Gon, S., Park, M., Kumar, K. N., Rotello, V. M., Nusslein, K., & Santore, M. 

M. (2011). Bacterial adhesion on hybrid cationic nanoparticle-polymer brush 

surfaces: Ionic strength tunes capture from monovalent to multivalent binding. 

Colloids and Surfaces B-Biointerfaces, 87(1), 109-115.  

 

 

Fang, B., Gon, S., Park, M. H., Kumar, K. N., Rotello, V. M., Nusslein, K., & Santore, 

M. M. (2012). Using Flow to Switch the Valency of Bacterial Capture on 

Engineered Surfaces Containing Immobilized Nanoparticles. Langmuir, 

28(20), 7803-7810. 



191 

 

Fang, C. P., & Drelich, J. (2004). Theoretical contact angles on a nano-heterogeneous 

surface composed of parallel apolar and polar strips. Langmuir, 20(16), 6679-

6684.  

 

 

Fang, J., & Knobler, C. M. (1996). Phase-separated two-component self-assembled 

organosilane monolayers and their use in selective adsorption of a protein. 

Langmuir, 12(5), 1368-1374.  

 

 

Falconnet, D., Csucs, G., Grandin, H. M., & Textor, M. (2006). Surface engineering 

approaches to micropattern surfaces for cell-based assays. Biomaterials, 

27(16), 3044-3063. 

 

Falconnet, D., Pasqui, D., Park, S., Eckert, R., Schift, H., Gobrecht, J., Barbucci, R., & 

Textor, M. (2004). A novel approach to produce protein nanopatterns by 

combining nanoimprint lithography and molecular self-assembly. Nano 

Letters, 4(10), 1909-1914.  

 

 

Feller, L. M., Cerritelli, S., Textor, M., Hubbell, J. A., & Tosatti, S. G. P. (2005). 

Influence of poly(propylene sulfide-block-ethylene glycol) di-and triblock 

copolymer architecture on the formation of molecular adlayers on gold 

surfaces and their effect on protein resistance: A candidate for surface 

modification in biosensor research. Macromolecules, 38(25), 10503-10510.  

 

 

Feng, L., & Andrade, J. D. (1994). Proteins at Interfaces II: Fundamentals and 

Applications. Horbett, T. A., Brash, J. L. Eds. American Chemical Society: 

Washington DC, 602, 66-79. 

 

 

Feuz, L., Leermakers, F. A. M., Textor, M., & Borisov, O. (2008). Adsorption of 

molecular brushes with polyelectrolyte backbones onto oppositely charged 

surfaces: A self-consistent field theory. Langmuir, 24(14), 7232-7244.  

 

 

Fischer, N. O., McIntosh, C. M., Simard, J. M., & Rotello, V. M. (2002). Inhibition of 

chymotrypsin through surface binding using nanoparticle-based receptors. 

Proceedings of the National Academy of Sciences of the United States of 

America, 99(8), 5018-5023. 

 

 

Fu, Z., & Santore, M. M. (1998). Kinetics of Competitive Adsorption of PEO Chains 

with Different Molecular Weights. Macromolecules, 31(20), 7014-7022.  



192 

 

Fu, Z., & Santore, M. M. (1998). Poly(ethylene oxide) adsorption onto chemically etched 

silicates by Brewster angle reflectivity. Colloids and Surfaces, A: 

Physicochemical and Engineering Aspects, 135(1-3), 63-75.  

 

 

Gao, P., & Cai, Y. (2008). The Boundary Molecules in a Lysozyme Pattern Exhibit 

Preferential Antibody Binding. Langmuir, 24(18), 10334-10339.  

 

 

Gautrot, J. E., Huck, W. T. S., Welch, M., & Ramstedt, M. (2010). Protein-Resistant 

NTA-Functionalized Polymer Brushes for Selective and Stable 

Immobilization of Histidine-Tagged Proteins. ACS Applied Materials & 

Interfaces, 2(1), 193-202.  

 

 

Gon, S., Bendersky, M., Ross, J. L., & Santore, M. M. (2010). Manipulating Protein 

Adsorption using a Patchy Protein-Resistant Brush. Langmuir, 26(14), 12147-

12154. 

 

 

Gon, S., Fang, B., & Santore, M. M. (2011). Interaction of Cationic Proteins and 

Polypeptides with Biocompatible Cationically-Anchored PEG Brushes. 

Macromolecules, 44(20), 8161-8168.  

 

 

Gon, S., & Santore, M. M. (2011). Single Component and Selective Competitive Protein 

Adsorption in a Patchy Polymer Brush: Opposition between Steric Repulsions 

and Electrostatic Attractions. Langmuir, 27(4), 1487-1493.  

 

 

Gon, S., & Santore, M. M. (2011). Sensitivity of Protein Adsorption to Architectural 

Variations in a Protein-Resistant Polymer Brush Containing Engineered 

Nanoscale Adhesive Sites. Langmuir, 27(24), 15083-15091. 

 

 

Gon, S., Kumar, K. N., Nusslein, K., & Santore, M. (2012). How bacteria adhere to 

brushy PEG surfaces: Clinging to flaws and compressing the brush. 

Macromolecules, 45(20), 8373-8381 

 

 

Graf, M., Galera, G. H., & Wӓtziq, M. (2005). Protein adsorption in fused-silica and 

polyacrylamide-coated capillaries. Electrophoresis, 26(12), 2409-2417. 

 

 

 



193 

 

Grover, D. S., Atta, M. G., Eustace, J. A., Kickler, T. S., & Fine, D. M. (2004). Lack of 

clinical utility of urine myoglobin detection by microconcentrator 

ultrafiltration in the diagnosis of rhabdomyolysis. Nephrology, Dialysis, 

Transplantation, 19(10), 2634-2638. 

 

 

Gun'ko, V. M., Leboda, R., Turov, V. V., Villieras, F., Skubiszewska-Xieba, J., 

Chodorowski, S., & Marciniak, M. (2001). Structural and energetic 

nonuniformities of pyrocarbon-mineral adsorbents. Journal of Colloid and 

Interface Science, 238(2), 340-356.  

 

Gupta, R., & Kumar, A. (2008). Molecular imprinting in sol-gel matrix (Retracted article. 

See vol. 28, pg. 939, 2010). Biotechnology Advances, 26(6), 533-547.  

 

 

Halperin, A. (1999). Polymer brushes that resist adsorption of model proteins: Design 

parameters. Langmuir, 15(7), 2525-2533.  

 

 

Halperin, A., Buhot, A., & Zhulina, E. B. (2005). Brush effects on DNA chips: 

Thermodynamics, kinetics, and design guidelines. Biophysical Journal, 89(2), 

796-811.  

 

 

Halperin, A., Fragneto, G., Schollier, A., & Sferrazza, M. (2007). Primary versus ternary 

adsorption of proteins onto PEG brushes. Langmuir, 23(21), 10603-10617. 

 

 

Halperin, A., & Kroger, M. (2009). Ternary Protein Adsorption onto Brushes: Strong 

versus Weak. Langmuir, 25(19), 11621-11634.  

 

 

Halperin, A., & Kroger, M. (2012). Theoretical considerations on mechanisms of 

harvesting cells cultured on thermoresponsive polymer brushes. Biomaterials, 

33(20), 4975-4987.  

 

 

Hammer, D. A., & Tirrell, M. (1996). Biological adhesion at interfaces. Annual Review of 

Materials Science, 26, 651-691 

 

 

Hancock, J. F. (2006). Lipid rafts: contentious only from simplistic standpoints.  Nature 

Reviews Molecular Cell Biology, 7(6), 456-462.  

 

 



194 

 

Hansupalak, N., & Santore, Maria M. (2003). Sharp Polyelectrolyte Adsorption Cutoff 

Induced by a Monovalent Salt. Langmuir, 19(18), 7423-7426. 

 

 

Hansupalak, N., & Santore, M. M. (2004). Polyelectrolyte Desorption and Exchange 

Dynamics near the Sharp Adsorption Transition: Weakly Charged Chains. 

Macromolecules, 37(4), 1621-1629.  

 

 

Harris, L. G., Tosatti, S, Wieland, M., Textor, M, & Richards, R. G. (2004). 

Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-

functionalized and peptide-functionalized poly(L-lysine)-grafted-

poly(ethylene glycol) copolymers. Biomaterials, 25(18), 4135-4148.  

 

 

Haynes, C. A., & Norde, W. (1995). Structures and stabilities of adsorbed proteins. 

Journal of Colloid and Interface Science, 169(2), 313-328. 

 

 

Heuberger, M., Drobek, T., & Spencer, N. D. (2005). Interaction forces and morphology 

of a protein-resistant poly(ethylene glycol) layer.  Biophysical Journal, 88(1), 

495-504.  

 

 

Hodgkinson, G., & Hlady, V. (2005). Relating material surface heterogeneity to protein 

adsorption: the effect of annealing of micro-contact-printed OTS patterns. 

Journal of Adhesion Science and Technology, 19(3-5), 235-255.  

 

 

Holland, N. B., Qiu, Y. X., Ruegsegger, M., & Marchant, R. E. (1998). Biomimetic 

engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide 

surfactant polymers. Nature, 392(6678), 799-801.  

 

 

Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J., & Uhlen, M. 

(2005). The biotin-streptavidin interaction can be reversibly broken using 

water at elevated temperatures. Electrophoresis, 26(3), 501-510. 

 

 

Hong, R., Fischer, N. O., Verma, A., Goodman, C. M., Emrick, T., & Rotello, V. M. 

(2004). Control of protein structure and function through surface recognition 

by tailored nanoparticle scaffolds. Journal of the American Chemical Society, 

126(3), 739-743.  

 

 



195 

 

Huang, N. P., Michel, R., Voros, J., Textor, M., Hofer, R., Rossi, A., Elbert, D. L., 

Hubbell, J. A., & Spencer, N. D. (2001). Poly(L-lysine)-g-poly(ethylene 

glycol) layers on metal oxide surfaces: Surface-analytical characterization and 

resistance to serum and fibrinogen adsorption. Langmuir, 17(2), 489-498.  

 

 

Huang, Y.W., & Gupta, V. K. (2004). A SPR and AFM study of the effect of surface 

heterogeneity on adsorption of proteins. Journal of Chemical Physics, 121(5), 

2264-2271.  

 

 

Jacobs, C., & Shapiro, L. (1999). Bacterial cell division: A moveable feast. Proceedings 

of the National Academy of Sciences of the United States of America, 96(11), 

5891-5893.  

 

 

Jauneau, A., Quentin, M., & Driouich, A. (1997). Micro-heterogeneity of pectins and 

calcium distribution in the epidermal and cortical parenchyma cell walls of 

flax hypocotyl. Protoplasma, 198(1-2), 9-19.  

 

 

Jiang, M., Popa, I., Maroni, P., & Borkovec, M. (2010). Adsorption of poly(-lysine) on 

silica probed by optical reflectometry. Colloids and Surfaces, A: 

Physicochemical and Engineering Aspects, 360(1-3), 20-25.  

 

 

Jürgens, K. D., Peters, T., & Gros, G. (1994). Diffusivity of myoglobin in intact skeletal 

muscle cells. Proceedings of the National Academy of Sciences of the United 

States of America, 91(9), 3829-3833. 

 

 

Jones, J. F., Feick, J. D., Imoudu, D., Chukwumah, N., Vigeant, M., & Velegol, D. 

(2003). Oriented adhesion of Escherichia coli to polystyrene particles. Applied 

and Environmental Microbiology, 69(11), 6515-6519.  

 

 

Kalasin, S., Dabkowski, J., Nusslein, K., & Santore, M. M. (2010). The role of nano-

scale heterogeneous electrostatic interactions in initial bacterial adhesion from 

flow: A case study with Staphylococcus aureus. Colloids and Surfaces B-

Biointerfaces, 76(2), 489-495. 

 

Kalasin, S., Martwiset, S., Coughlin, E. B., & Santore, M. M. (2010). Particle Capture via 

Discrete Binding Elements: Systematic Variations in Binding Energy for 

Randomly Distributed Nanoscale Surface Features. Langmuir, 26(22), 16865-

16870. 



196 

 

Kalasin, S., & Santore, M. M. (2008). Hydrodynamic crossover in dynamic microparticle 

adhesion on surfaces of controlled nanoscale heterogeneity. Langmuir, 24(9), 

4435-4438. 

 

 

Kalasin, S., & Santore, M. M. (2009). Non-specific adhesion on biomaterial surfaces 

driven by small amounts of protein adsorption. Colloids and Surfaces B-

Biointerfaces, 73(2), 229-236.  

 

 

Kalasin, S., & Santore, M. M. (2010). Sustained Rolling of Microparticles in Shear Flow 

over an Electrostatically Patchy Surface. Langmuir, 26(4), 2317-2324. 

 

 

Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., & Whitesides, G. M. (1999). 

Patterning proteins and cells using soft lithography. Biomaterials, 20(23-24), 

2363-2376. 

 

 

Karajanagi, S. S., Vertegel, A. A., Kane, R. S., & Dordick, J. S. (2004). Structure and 

Function of Enzymes Adsorbed onto Single-Walled Carbon Nanotubes. 

Langmuir, 20(26), 11594-11599.  

 

 

Kasemo, B. (2002). Biological surface science. Surface Science, 500(1-3), 656-677. 

 

Katsikogianni, M., Amanatides, E., Mataras, D., & Missirlis, Y. F. (2008). 

Staphylococcus epidermidis adhesion to He, He/O-2 plasma treated PET films 

and aged materials: Contributions of surface free energy and shear rate. 

Colloids and Surfaces B-Biointerfaces, 65(2), 257-268.  

 

Katsikogianni, M. G., & Missirlis, Y. F. (2010). Interactions of bacteria with specific 

biomaterial surface chemistries under flow conditions. Acta Biomaterialia, 

6(3), 1107-1118. 

 

 

Katsikogianni, M., Spiliopoulou, I., Dowling, D. P., & Missirlis, Y. F. (2006). Adhesion 

of slime producing Staphylococcus epidermidis strains to PVC and diamond-

like carbon/silver/fluorinated coatings. Journal of Materials Science-

Materials in Medicine, 17(8), 679-689. 

 

 

King, M. R., & Hammer, D. A. (2001). Multiparticle adhesive dynamics. Interactions 

between stably rolling cells. Biophysical Journal, 81(2), 799-813.  



197 

 

King, M. R., Rodgers, S. D., & Hammer, D. A. (2001). Hydrodynamic collisions 

suppress fluctuations in the rolling velocity of adhesive blood cells. Langmuir, 

17(14), 4139-4143.  

 

 

Kingshott, P., & Griesser, H. J. (1999). Surfaces that resist bioadhesion. Current Opinion 

in Solid State & Materials Science, 4(4), 403-412. 

 

 

Kingshott, P., Thissen, H., & Griesser, H. J. (2002). Effects of cloud-point grafting, chain 

length, and density of PEG layers on competitive adsorption of ocular 

proteins.  Biomaterials, 23(9), 2043-2056. 

 

 

Kelley, T. W., Schorr, P. A., Johnson, K. D., Tirrell, M., & Frisbie, C. D. (1998). Direct 

force measurements at polymer brush surfaces by atomic force microscopy.  

Macromolecules, 31(13), 4297-4300. 

 

 

Kelly, M. S., & Santore, M. M. (1995). The role of a single end group in poly(ethylene 

oxide) adsorption on colloidal and film polystyrene: complimentary 

sedimentation and total internal reflectance fluorescence studies. Colloids and 

Surfaces, A: Physicochemical and Engineering Aspects, 96(1/2), 199-215. 

 

 

Kenausis, G. L., Voros, J., Elbert, D. L., Huang, N. P., Hofer, R., Ruiz-Taylor, L., Textor, 

M., Hubbell, J. A., & Spencer, N. D. (2000). Poly(L-lysine)-g-poly(ethylene 

glycol) layers on metal oxide surfaces: Attachment mechanism and effects of 

polymer architecture on resistance to protein adsorption.  Journal of Physical 

Chemistry B, 104(14), 3298-3309.  

 

 

Kent, M. S. (2000). A quantitative study of tethered chains in various solution conditions 

using Langmuir diblock copolymer monolayers. Macromolecular Rapid 

Communications, 21(6), 243-270.  

 

 

Kent, M. S., Lee, L. T., Factor, B. J., Rondelez, F., & Smith, G. S. (1995). Tethered 

chains in good solvent conditions: an experimental study involving Langmuir 

diblock copolymer monolayers. Journal of Chemical Physics, 103(6), 2320-

2342.  

 

 

Kerrigan, J. J., McGill, J. T., Davies, J. A., Andrews, L., & Sandy, J. R. (1998). The role 

of cell adhesion molecules in craniofacial development. Journal of the Royal 

College of Surgeons of Edinburgh, 43(4), 223-229.  



198 

 

Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P. (2002). Viscoelastic 

fluid description of bacterial biofilm material properties. Biotechnology and 

Bioengineering, 80(3), 289-296. 

 

 

Kortright, J. B., Kim, S. K., Denbeaux, G. P., Zeltzer, G., Takano, K., & Fullerton, E. E. 

(2001). Soft-x-ray small-angle scattering as a sensitive probe of magnetic and 

charge heterogeneity. Physical Review B, 64(9), 2401-2404. 

 

 

Kozlova, N., & Santore, M. M. (2006). Manipulation of micrometer-scale adhesion by 

tuning nanometer-scale surface features. Langmuir, 22(3), 1135-1142. 

 

 

Kuehner, D. E., Engmann, J., Fergg, F., Wernick, M., Blanch, H. W., & Prausnitz, J. M. 

(1999). Lysozyme Net Charge and Ion Binding in Concentrated Aqueous 

Electrolyte Solutions. Journal of Physical Chemistry B, 103(8), 1368-1374.  

 

 

Ladd, J., Zhang, Z., Chen, S., Hower, J. C., & Jiang, S. (2008). Zwitterionic Polymers 

Exhibiting High Resistance to Nonspecific Protein Adsorption from Human 

Serum and Plasma. Biomacromolecules, 9(5), 1357-1361.  

 

 

Lau, K. H. A., Bang, J., Kim, D. H., & Knoll, W. (2008). Self-assembly of Protein 

Nanoarrays on Block Copolymer Templates. Advanced Functional Materials, 

18(20), 3148-3157. 

 

 

Lin, J. J., Bates, F. S., Hammer, D. A., & Silas, J. A. (2005). Adhesion of polymer 

vesicles. Physical Review Letters, 95(2).  

 

 

Linse, S., Cabaleiro-Lago, C., Xue, W. F., Lynch, I., Lindman, S., Thulin, E., Radford, S. 

E., & Dawson, K. A. (2007). Nucleation of protein fibrillation by 

nanoparticles. Proceedings of the National Academy of Sciences of the United 

States of America, 104(21), 8691-8696. 

 

 

Lubarsky, G. V., Davidson, M. R., & Bradley, R. H. (2004). Elastic modulus, oxidation 

depth and adhesion force of surface modified polystyrene studied by AFM 

and XPS. Surface Science, 558, 135-144.  

 

 

 



199 

 

Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). 

Nanoparticle size and surface properties determine the protein corona with 

possible implications for biological impacts. Proceedings of the National 

Academy of Sciences of the United States of America, 105(38), 14265-14270.  

 

 

Lutz, J. F. (2008). Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new 

generations of smart biocompatible materials. Journal of Polymer Science 

Part a-Polymer Chemistry, 46(11), 3459-3470. 

 

 

Mahmud, G., Huda, S., Yang, W., Kandere-Grzybowska, K., Pilans, D., Jiang, S. Y., & 

Grzybowski, B. A. (2011). Carboxybetaine Methacrylate Polymers Offer 

Robust, Long-Term Protection against Cell Adhesion. Langmuir, 27(17), 

10800-10804. 

 

 

Mahnke, J., Stearnes, J., Hayes, R. A., Fornasiero, D., & Ralston, J. (1999). The influence 

of dissolved gas on the interactions between surfaces of different 

hydrophobicity in aqueous media Part I. Measurement of interaction forces. 

Physical Chemistry Chemical Physics, 1(11), 2793-2798.  

 

 

Malaquin, L., Carcenac, F., Vieu, C., & Mauzac, M. (2002). Using polydimethylsiloxane 

as a thermocurable resist for a soft imprint lithography process. 

Microelectronic Engineering, 61-2, 379-384.  

 

 

Malmsten, M., Emoto, K., & Van Alstine, J. M. (1998). Effect of chain density on 

inhibition of protein adsorption by poly(ethylene glycol) based coatings.  

Journal of Colloid and Interface Science, 202(2), 507-517.  

 

 

Martin, J. I., & Wang, Z. G. (1995). Polymer brushes - scaling, compression forces, 

interbrush penetration, and solvent size effects.  Journal of Physical 

Chemistry, 99(9), 2833-2844. 

 

 

Matsuda, T., Moghaddam, M. J., Miwa, H., Sakurai, K., & Iida, F. (1992). Photoinduced 

prevention of tissue adhesion. ASAIO journal (American Society for Artificial 

Internal Organs : 1992), 38(3), M154-157.  

 

 

Mayor, S., & Rao, M. (2004). Rafts: Scale-dependent, active lipid organization at the cell 

surface. Traffic, 5(4), 231-240. 

 



200 

 

 

McCann, M. C., Wells, B., & Roberts, K. (1992). complexity in the spatial localization 

and length distribution of plant cell-wall matrix polysaccharides. Journal of 

Microscopy-Oxford, 166, 123-136.  

 

 

McPherson, T., Kidane, A., Szleifer, I., & Park, K. (1998). Prevention of Protein 

Adsorption by Tethered Poly(ethylene oxide) Layers: Experiments and 

Single-Chain Mean-Field Analysis. Langmuir, 14(1), 176-186.  

 

 

Mehta, P., Patel, K. D., Laue, T. M., Erickson, H. P., & McEver, R. P. (1997). Soluble 

monomeric P-selectin containing only the lectin and epidermal growth factor 

domains binds to P-selectin glycoprotein ligand-1 on leukocytes. Blood, 90(6), 

2381-2389.  

 

 

Mendez-Vilas, A., Diaz, J., Donoso, M. G., Gallardo-Moreno, A. M., & Gonzalez-

Martin, M. L. (2006). Ultrastructural and physico-chemical heterogeneities of 

yeast surfaces revealed by mapping lateral-friction and normal-adhesion 

forces using an atomic force microscope. Antonie Van Leeuwenhoek 

International Journal of General and Molecular Microbiology, 89(3-4), 495-

509.  

 

 

Meyer, A., Auemheimer, J., Modlinger, A., & Kessler, H. (2006). Targeting RGD 

recognizing integrins: Drug development, biomaterial research, tumor 

imaging and targeting. Current Pharmaceutical Design, 12(22), 2723-2747.  

 

 

Michel, R., Pasche, Stephanie, Textor, Marcus, & Castner, D. G. (2005). Influence of 

PEG Architecture on Protein Adsorption and Conformation. Langmuir, 

21(26), 12327-12332 

 

 

Miller, R., Guo, Z., Vogler, E. A., & Siedlecki, C. A. (2005). Plasma coagulation 

response to surfaces with nanoscale chemical heterogeneity. Biomaterials, 

27(2), 208-215.  

 

 

Milner, S. T. (1991). Polymer brushes. Science (New York, N.Y.), 251(4996), 905-914. 

 

 

Minko, S., Muller, M., Usov, D., Scholl, A., Froeck, C., & Stamm, M. (2002). Lateral 

versus perpendicular segregation in mixed polymer brushes. Physical review 

letters, 88(3), 035502. 



201 

 

Mohamed, N., Rainier, T. R., & Ross, J. M. (2000). Novel experimental study of 

receptor-mediated bacterial adhesion under the influence of fluid shear. 

Biotechnology and Bioengineering, 68(6), 628-636.  

 

 

Mrksich, M., Chen, C. S., Xia, Y., Dike, L. E., Ingber, D. E., & Whitesides, G. M. 

(1996). Controlling cell attachment on contoured surfaces with self-assembled 

monolayers of alkanethiolates on gold. Proceedings of the National Academy 

of Sciences of the United States of America, 93(20), 10775-10778.  

 

 

Muller, B., Riedel, M., Michel, R., De Paul, S. M., Hofer, R., Heger, D., & Grutzmacher, 

D. (2001). Impact of nanometer-scale roughness on contact-angle hysteresis 

and globulin adsorption. Journal of Vacuum Science & Technology B, 19(5), 

1715-1720.  

 

 

Nam, J., & Santore, M. M. (2011). Depletion versus Deflection: How Membrane 

Bending Can Influence Adhesion. Physical Review Letters, 107(7). 

 

 

Nilsson, L. M., Thomas, W. E., Sokurenko, E. V., & Vogel, V. (2006). Elevated shear 

stress protects Escherichia coli cells adhering to surfaces via catch bonds from 

detachment by soluble inhibitors. Applied and Environmental Microbiology, 

72(4), 3005-3010.  

 

 

NopplSimson, D. A., & Needham, D. (1996). Avidin-biotin interactions at vesicle 

surfaces: Adsorption and binding, cross-bridge formation, and lateral 

interactions. Biophysical Journal, 70(3), 1391-1401.  

 

 

Norde, W. (1995). Adsorption of proteins at solid-liquid interfaces. Cells and Materials, 

5(1), 97-112. 

 

 

Obel, N., Erben, V., Schwarz, T., Kuhnel, S., Fodor, A., & Pauly, M. (2009). 

Microanalysis of Plant Cell Wall Polysaccharides. Molecular Plant, 2(5), 922-

932.  

 

 

Ortega-Vinuesa, J. L., Tengvall, P., & Lundstrom, I. (1998). Molecular packing of HSA, 

IgG, and fibrinogen adsorbed on silicon by AFM imaging. Thin Solid Films, 

324(1,2), 257-273.  

 

 



202 

 

Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., & Whitesides, G. M. (2001).  

Survey of Structure-Property Relationships of Surfaces that Resist the 

Adsorption of Protein. Langmuir, 17(18), 5605-5620.  

 

 

Park, S., Bearinger, J. P., Lautenschlager, E. P., Castner, D. G., & Healy, K. E. (2000). 

Surface modification of poly(ethylene terephthalate) angioplasty balloons 

with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating 

polymer network coating. Journal of Biomedical Materials Research, 53(5), 

568-576.  

 

 

Park, S., Kim, H. C., & Chung, T. D. (2007). Site-specific anti-adsorptive passivation in 

microchannels. Biochip Journal, 1(2), 98-101.  

 

 

Pasche, Stephanie, De, P., Voeroes, J., Spencer, N. D., & Textor, Marcus. (2003). 

Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on Niobium 

Oxide surfaces: a quantitative study of the influence of polymer interfacial 

architecture on resistance to protein adsorption by ToF-SIMS and in situ 

OWLSu OWLS. Langmuir, 19(22), 9216-9225. 

 

 

Pasche, S., Textor, M., Meagher, L., Spencer, N. D., & Griesser, H. J. (2005). 

Relationship between interfacial forces measured by colloid-probe atomic 

force microscopy and protein resistance of poly(ethylene glycol)-grafted 

poly(L-lysine) adlayers on niobia surfaces. Langmuir, 21(14), 6508-6520. 

 

 

Pasche, Stéphanie, Vörös, J., Griesser, H. J., Spencer, N. D., & Textor, Marcus. (2005). 

Effects of Ionic Strength and Surface Charge on Protein Adsorption at 

PEGylated Surfaces. The Journal of Physical Chemistry B, 109(37), 17545-

17552.  

 

 

Pedersen, J. S., & Sommer, C. (2005). Temperature Dependence of the Virial 

Coefficients and the Chi Parameter in Semi-Dilute Solutions of PEG. Progr. 

Colloid Polymer Sci., 130, 70-78.  

 

 

Pike, L. J. (2004). Lipid rafts: heterogeneity on the high seas. Biochemical Journal, 378, 

281-292.  

 

 

 



203 

 

Plaksin, I. N., & Shafeev, R. S. (1958). The Influence of the Electrochemical 

Heterogeneity of the Sulfide Mineral Surface on the Xanthate Distribution 

under the Conditions of Flotation. Doklady Akademii Nauk Sssr, 121(1), 145-

148.  

 

 

Pluckthun, A., & Pack, P. (1997). New protein engineering approaches to multivalent and 

bispecific antibody fragments. Immunotechnology, 3(2), 83-105.  

 

 

Priest, C., Stevens, N., Sedev, R., Skinner, W., & Ralston, J. (2008). Inferring wettability 

of heterogeneous surfaces by ToF-SIMS. Journal of Colloid and Interface 

Science, 320(2), 563-568.  

 

 

Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: Where we have been and where we 

are going. Annual Review of Biomedical Engineering, 6, 41-75. 

 

 

Rebar, V. A., & Santore, M. M. (1996a). A total internal reflectance fluorescence 

nanoscale probe of interfacial potential and ion screening in polyethylene 

oxide layers adsorbed onto silica. Journal of Colloid and Interface Science, 

178(1), 29-41.  

 

 

Rebar, V. A., & Santore, M. M. (1996b). History-Dependent Isotherms and TIRF 

Calibrations for Homopolymer Adsorption. Macromolecules, 29(19), 6262-

6272.  

 

 

Riedel, M., Muller, B., & Wintermantel, E. (2001). Protein adsorption and monocyte 

activation on germanium nanopyramids. Biomaterials, 22(16), 2307-2316.  

 

 

Ronholm, J., Zhang, Z., Cao, X., & Lin, M. (2011). Monoclonal Antibodies to 

Lipopolysaccharide Antigens of   Salmonella enterica   serotype 

Typhimurium DT104. Hybridoma, 30(1), 43-52.  

 

 

Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual Review 

of Cell and Developmental Biology, 12, 697-715.  

 

 

Ruths, M., Johannsmann, D., Ruhe, J., & Knoll, W. (2000). Repulsive forces and 

relaxation on compression of entangled, polydisperse polystyrene brushes. 

Macromolecules, 33(10), 3860-3870. 



204 

 

Sanford, M. S., Charles, P. T., Commisso, S. M., Roberts, J. C., & Conrad, D. W. (1998). 

Photoactivatable Cross-Linked Polyacrylamide for the Site-Selective 

Immobilization of Antigens and Antibodies. Chemistry of Materials, 10(6), 

1510-1520.  

 

 

Santore, M. M. (2005). Dynamics in adsorbed homopolymer layers: Understanding 

complexity from simple starting points. Current Opinion in Colloid & 

Interface Science, 10(3,4), 176-183.  

 

 

Santore, M. M., & Kozlova, N. (2007). Micrometer scale adhesion on nanometer-scale 

patchy surfaces: Adhesion rates, adhesion thresholds, and curvature-based 

selectivity. Langmuir, 23(9), 4782-4791. 

 

 

Santore, Maria M., & Wertz, C. F. (2005). Protein Spreading Kinetics at Liquid-Solid 

Interfaces via an Adsorption Probe Method. Langmuir, 21(22), 10172-10178.  

 

 

Santore, M. M., Zhang, J., Srivastava, S., & Rotello, V. M. (2009). Beyond Molecular 

Recognition: Using a Repulsive Field to Tune Interfacial Valency and Binding 

Specificity between Adhesive Surfaces. Langmuir, 25(1), 84-96. 

 

 

Sawhney, A. S., & Hubbell, J. A. (1992). Poly(ethylene oxide)-graft-poly(l-lysine) 

copolymers to enhance the biocompatibility of poly(l-lysine)-alginate 

microcapsule membranes. Biomaterials, 13(12), 863-870. 

 

 

Schillemans, J. P., Hennink, W. E., & van Nostrum, C. F. (2010). The effect of network 

charge on the immobilization and release of proteins from chemically 

crosslinked dextran hydrogels. European Journal of Pharmaceutics and 

Biopharmaceutics, 76(3), 329-335. 

 

 

Shang, L., Wang, Y., Jiang, J., & Dong, S. (2007). pH-Dependent Protein 

Conformational Changes in Albumin:Gold Nanoparticle Bioconjugates: A 

Spectroscopic Study. Langmuir, 23(5), 2714-2721.  

 

 

Sharma, A., Konnur, R., & Kargupta, K. (2003). Thin liquid films on chemically 

heterogeneous substrates: self-organization, dynamics and patterns in systems 

displaying a secondary minimum. Physica a-Statistical Mechanics and Its 

Applications, 318(1-2), 262-278.  

 



205 

 

Shapiro, L., McAdams, H. H., & Losick, R. (2002). Generating and exploiting polarity in 

bacteria. Science, 298(5600), 1942-1946.  

 

 

Shibata, C. T., & Lenhoff, A. M. (1992). TIRF of salt and surface effects on protein 

adsorption. II. Kinetics. Journal of Colloid and Interface Science, 148(2), 

485-507.  

 

 

Shin, Y., Roberts, J. E., & Santore, Maria M. (2002). Influence of charge density and 

coverage on bound fraction for a weakly cationic polyelectrolyte adsorbing 

onto silica. Macromolecules, 35(10), 4090-4095.  

 

 

Slater, J. H., & Frey, W. (2008). Nanopatterning of fibronectin and the influence of 

integrin clustering on endothelial cell spreading and proliferation. Journal of 

Biomedical Materials Research. Part A, 87(1), 176-195. 

 

 

Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly(ethylene oxide) Grafted to 

Silicon Surfaces: Grafting Density and Protein Adsorption. Macromolecules, 

31(15), 5059-5070.  

 

 

Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly(ethylene oxide) grafted to 

silicon surfaces: Grafting density and protein adsorption. Macromolecules, 

31(15), 5059-5070. 

 

 

Song, J., Duval, J. F. L., Stuart, M. A. C., Hillborg, H., Gunst, U., Arlinghaus, H. F., & 

Vancso, G. J. (2007). Surface ionization state and nanoscale chemical 

composition of UV-irradiated poly(dimethylsiloxane) probed by chemical 

force microscopy, force titration, and electrokinetic measurements. Langmuir, 

23(10), 5430-5438.  

 

 

Stolnik, S., Illum, L., & Davis, S. S. (1995). Long circulating microparticulate drug 

carriers. Advanced Drug Delivery Reviews, 16(2,3), 195-214.  

 

 

Strobel, M., Jones, V., Lyons, C. S., Ulsh, M., Kushner, M. J., Dorai, R., & Branch, M. 

C. (2003). A comparison of corona-treated and flame-treated polypropylene 

films. Plasmas and Polymers, 8, 61-95.  

 

 



206 

 

Sukhishvili, S. A., & Granick, S. (1998). Kinetic regimes of polyelectrolyte exchange 

between the adsorbed state and free solution. Journal of Chemical Physics, 

109(16), 6869-6878.  

 

 

Suprun, E. V., Shilovskaya, A. L., Lisitsa, A. V., Bulko, T. V., Shumyantseva, V. V., & 

Archakov, A. I. (2011). Electrochemical Immunosensor Based on Metal 

Nanoparticles for Cardiac Myoglobin Detection in Human Blood Plasma. 

Electroanalysis, 23(5), 1051-1057.  

 

 

Sweryda-Krawiec, B., Devaraj, H., Jacob, G., & Hickman, J. J. (2004). A new 

interpretation of serum albumin surface passivation. Langmuir, 20(6), 2054-

2056.  

 

 

Szleifer, I. (1997). Polymers and proteins: Interactions at interfaces. Current Opinion in 

Solid State & Materials Science, 2(3), 337-344. 

 

 

Teichroeb, J. H., Forrest, J. A., & Jones, L. W. (2008). Size-dependent denaturing 

kinetics of bovine serum albumin adsorbed onto gold nanospheres. European 

Physical Journal E: Soft Matter, 26(4), 411-415.  

 

 

Teichroeb, J. H., Forrest, J. A., Ngai, V., & Jones, L. W. (2006). Anomalous thermal 

denaturing of proteins adsorbed to nanoparticles. European Physical Journal 

E, 21(1), 19-24.  

 

 

Thibault, C., LeBerre, V., Casimirius, S., Trevisiol, E., Francois, J., & Vieu, C. (2005). 

Direct microcontact printing of oligonucleotides for biochip applications. 

Journal of Nanobiotechnology, 3(1), 1-12.  

 

Thomas, W., Forero, M., Yakovenko, O., Nilsson, L., Vicini, P., Sokurenko, E., & Vogel, 

V. (2006). Catch-bond model derived from allostery explains force-activated 

bacterial adhesion. Biophysical Journal, 90(3), 753-764. 

 

 

Tombacz, E., & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in 

aqueous suspension in comparison with montmorillonite. Applied Clay 

Science, 34(1-4), 105-124.  

 

 



207 

 

Tosatti, S., De, P., Askendal, A., VandeVondele, S., Hubbell, J. A., Tengvall, P., & 

Textor, M. (2003). Peptide functionalized poly(L-lysine)-g-poly(ethylene 

glycol) on titanium: resistance to protein adsorption in full heparinized human 

blood plasma. Biomaterials, 24(27), 4949-4958.  

 

 

Tosatti, S., Schwartz, Z., Campbell, C., Cochran, D. L., VandeVondele, S., Hubbell, J.A., 

Denzer, A., et al. (2004). RGD-containing peptide GCRGYGRGDSPG 

reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-

poly(ethylene glycol)-coated titanium surfaces. Journal of biomedical 

materials research. Part A, 68(3), 458-472. 

 

 

Toscano, A., & Santore, Maria M. (2006). Fibrinogen Adsorption on Three Silica-Based 

Surfaces: Conformation and Kinetics. Langmuir, 22(6), 2588-2597.  

 

 

Tsapikouni, T. S., & Missirlis, Y. F. (2007). pH and ionic strength effect on single 

fibrinogen molecule adsorption on mica studied with AFM. Colloids and 

Surfaces, B: Biointerfaces, 57(1), 89-96.  

 

 

Tweedle, M. F. (2006). Adventures in multivalency the Harry S. Fischer Memorial 

Lecture CMR 2005; Evian, France. Contrast Media & Molecular Imaging, 

1(1), 2-9.  

 

 

Uhlmann, P., Houbenov, N., Brenner, N., Grundke, K., Burkert, S., & Stamm, Manfred. 

(2007). In-Situ Investigation of the Adsorption of Globular Model Proteins on 

Stimuli-Responsive Binary Polyelectrolyte Brushes. Langmuir, 23(1), 57-64.  

 

 

Verschoor, J. A., Meiring, M. J., Vanwyngaardt, S., & Weyer, K. (1990). Polystyrene, 

poly-l-lysine and nylon as adsorptive surfaces for the binding of whole cells of 

mycobacterium-tuberculosis h37 rv to elisa plates. Journal of Immunoassay, 

11(4), 413-428.  

 

 

VandeVondele, S., Voros, J., & Hubbell, J. A. (2003). RGD-Grafted poly-l-lysine-graft-

(polyethylene glycol) copolymers block non-specific protein adsorption while 

promoting cell adhesion. Biotechnology and Bioengineering, 82(7), 784-790.  

 

 

Wagner, V. E., Koberstein, J. T., & Bryers, J. D. (2004). Protein and bacterial fouling 

characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic 

acid) co-polymers. Biomaterials, 25(12), 2247-2263.  



208 

 

Wang, Z., Hemmer, S. L., Friedrich, D. M., & Joly, A. G. (2001). Anthracene as the 

origin of the red-shifted emission from commercial zone-refined phenanthrene 

sorbed on mineral surfaces. Journal of Physical Chemistry A, 105(25), 6020-

6023.  

 

 

Wasilewska, Monika, Adamczyk, Zbigniew, & Jachimska, B. (2009). Structure of 

Fibrinogen in Electrolyte Solutions Derived from Dynamic Light Scattering 

(DLS) and Viscosity Measurements. Langmuir, 25(6), 3698-3704.  

 

 

Watanabe, H., & Tirrell, M. (1993). Measurement of forces in symmetrical and 

asymmetric interactions between diblock copolymer layers adsorbed on mica. 

Macromolecules, 26(24), 6455-6466. 

 

 

Wei, Y., Ji, Y., Xiao, L. L., & Jian, J. A. (2010). Construction of biomimetic polymer 

surface for endothelial cell selectivity. Acta Polymerica Sinica(12), 1474-

1478.  

 

 

Wei, J., Ravn, D. B., Gram, L., & Kingshott, P. (2003). Stainless steel modified with 

poly(ethylene glycol) can prevent protein adsorption but not bacterial 

adhesion. Colloids and Surfaces B-Biointerfaces, 32(4), 275-291.  

 

 

Wertz, C. F., & Santore, M. M. (1999). Adsorption and Relaxation Kinetics of Albumin 

and Fibrinogen on Hydrophobic Surfaces: Single-Species and Competitive 

Behavior. Langmuir, 15(26), 8884-8894.  

 

 

Wertz, C. F., & Santore, Maria M. (2002). Fibrinogen Adsorption on Hydrophilic and 

Hydrophobic Surfaces: Geometrical and Energetic Aspects of Interfacial 

Relaxations. Langmuir, 18(3), 706-715.  

 

 

Wittmer, C. R., Phelps, J. A., Saltzman, W. M., & Van Tassel, P. R. (2007). Fibronectin 

terminated multilayer films: Protein adsorption and cell attachment studies. 

Biomaterials, 28(5), 851-860.  

 

 

Wolfram, T., Belz, F., Schoen, T., & Spatz, J. P. (2007). Site-specific presentation of 

single recombinant proteins in defined nanoarrays. Biointerphases, 2(1), 44-

48.  

 

 



209 

 

Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for 

solution-based molecular recognition. Chemical Society Reviews, 35(1), 14-

28.  

 

 

Yamakawa, H. (1971). Modern Theory of Polymer Solutions. Harper and Row. New 

York 

 

 

Yamamoto, S., Ejaz, M., Tsujii, Y., & Fukuda, T. (2000). Surface interaction forces of 

well-defined, high-density polymer brushes studied by atomic force 

microscopy. 2. Effect of graft density.  Macromolecules, 33(15), 5608-5612.  

 

Yamamoto, S., Ejaz, M., Tsujii, Y., Matsumoto, M., & Fukuda, T. (2000). Surface 

interaction forces of well-defined, high-density polymer brushes studied by 

atomic force microscopy. 1. Effect of chain length. Macromolecules, 33(15), 

5602-5607.  

 

 

Yang, Z., Zhou, F., Yuan, J., Ma, L., Zhai, C., & Cheng, S. (2006). Preparation of PLL-

PEG-PLL and its application to DNA encapsulation. Science in China Series 

B: Chemistry, 49(4), 357-362.  

 

 

Zalipsky, S. (1995). Chemistry of polyethylene-glycol conjugates with biologically-

active molecules. Advanced Drug Delivery Reviews, 16(2-3), 157-182. 

 

 

Zhang, J., Srivastava, S., Duffadar, R., Davis, J. M., Rotello, V. M., & Santore, Maria M. 

(2008). Manipulating Microparticles with Single Surface-Immobilized 

Nanoparticles. Langmuir, 24(13), 6404-6408.  


	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	9-1-2013

	Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes
	Saugata Gon
	Recommended Citation



