文章编号:1001-0920(2012)04-0531-04

基于模糊支持向量机的产品设计时间预测

商志根1,2, 严洪森1

(1. 东南大学 a. 自动化学院, b. 教育部复杂工程系统测量与控制重点 实验室, 南京 210096; 2. 盐城工学院 自动化系, 江苏 盐城 224003)

摘 要: 针对产品设计时间预测中存在的小样本、不确定性数据和异方差噪音等问题,将模糊回归理论与 par -*ν*-SVM 相结合,基于 Necessity 模型构造约束条件,提出了 par - F*ν*-SVM,并给出了相应的设计活动时间智能预测方法和相关参数的优选算法.最后通过注塑模具设计的实例分析表明了所提出的基于 par - F*ν*-SVM 的时间预测方法是有效、可行的.

关键词:设计时间预测;支持向量机;模糊理论;异方差中图分类号: TP391文献标识码: A

Forecasting product design time based on fuzzy support vector machine

SHANG Zhi-gen^{1,2}, YAN Hong-sen¹

(1a. School of Automation, 1b. Key Laboratory of Measurement and Control of CSE of Ministry of Education, Southeast University, Nanjing 210096, China; 2. Department of Automation, Yancheng Institute of Technology, Yancheng 224003, China. Correspondent: SHANG Zhi-gen, E-mail: szgszg1375@163.com)

Abstract: Aiming at the problems of small samples, uncertainty data and heteroscedastic noise in design time forecast, fuzzy regression theory is combined with par - ν -SVM, the constraints are formulated based on the necessity model, and a kind of fuzzy support vector machine named par - F ν -SVM is proposed. Then an intelligent forecast method of design activity time and its relevant parameter-choosing algorithm are proposed. The results of application in injection mold designs show that the time forecast method based on par - F ν -SVM is of feasibility and effectiveness.

Key words: design time forecast; support vector machine; fuzzy theory; heteroscedasticity

1 引 言

产品设计活动是一个复杂的动态过程,其时间受 很多因素的影响.这些因素大多具有随机性、模糊性、 多种混合噪音等特征,其与设计活动时间之间的高度 非线性关系很难用一个确定的模型表达.文献[1]提 出一种基于设计结构矩阵理论的多目标流程优化遗 传算法,通过优化任务执行顺序,减少产品开发过程 中的返工来压缩进度、降低成本,可用来估算产品开 发时间,但需假定产品开发项目中各任务的时间分布. 文献[2]针对产品设计时间预测问题提出一种模糊神 经网络模型,在产品设计早期利用含有模糊的产品特 征信息对设计时间进行预测,但神经网络本身是大样 本分析方法,泛化能力较差,而且由于所涉及的输入 变量较多而使得模糊神经网络模型面临"维数灾难" 问题. 支持向量机采用结构风险最小化原则,对于较少的样本可将样本数据映射到一个高维空间中,进而将数据间的关系用一种确定的方式表达^[3]. *ϵ*-SVM回 归方法中,参数*ϵ*用于控制回归估计的精度,但*ϵ*的取 值通常难以把握. Schölkopf等人^[4]提出了*ν*-SVM方 法,使得*ϵ*的大小能够自动调整,从而简化了SVM的 参数调节. 文献[5]将模糊回归理论与*ν*-SVM方法相 结合,将确定的输出转化成三角模糊数,基于 Hausdorff度量设置约束条件,依据经验确定模糊幅 度,提出了F*ν*-SVM,得到了一种设计时间智能预测 方法;但在*ν*-SVM与F*ν*-SVM中,各样本的不敏感区 的大小是相同的,仅适用于在整个域中噪音分布相 同的情况. 因为产品设计任务来自不同企业,其过程 受多种不同因素的干扰,所以样本不同,噪音的分布 也不同. 文献[6]在设计参数-不敏感损失函数的基础

收稿日期: 2010-11-04; 修回日期: 2011-01-17.

基金项目: 国家自然科学基金项目(50875046,60934008).

作者简介:商志根(1979-),男,博士生,从事进化算法、智能预测等研究;严洪森(1957-),男,教授,博士生导师,从事 生产计划与调度、知识化制造等研究.

上,提出了 par - ν-SVM,得到了随样本不同管道大小 可变的回归模型,所以 par - ν-SVM 比 ν-SVM 更适用 于产品设计时间预测.

本文将模糊回归理论与par-*v*-SVM相结合,基 于 Necessity 回归^[7]的思想设置约束条件,提出了问题 规模比 F*v*-SVM小的 par-F*v*-SVM.将此模型与产品 设计时间预测的特点相融合来设计模糊幅度以及其 他相关参数的优选算法,在求解回归模型的同时得到 管道大小,同时给出输出值的参考范围,是一种新的 设计活动时间智能预测方法.

2 par - $\mathbf{F}\nu$ -SVM

经典的模糊线性回归理论是由Tanaka等人^[8]提 出的,针对的是参数为模糊数的情形.但是,在很多实 际问题中部分或全部观测值往往用语言或不确定数 据表达,产品设计活动时间的预测便属于这类问题. 由此建立的模型,其输入含有模糊数,而参数和输出 为确定数.

2.1 模糊线性运算

设 $T(\mathbf{R})$ 和 $T(\mathbf{R})^n$ 分别表示1维和n维三角模 糊数空间. A, B为 $T(\mathbf{R})$ 上的2个模糊数: $A = (m_A, s_A, t_A), B = (m_B, s_B, t_B)$. m, s, t分别表示模糊数的中 心和左右模糊幅度. m - s, m + t分别为三角模糊数的 左右边界. $T(\mathbf{R})$ 上的线性运算定义为

$$A + B = (m_A + m_B, \max(s_A, s_B), \max(t_A, t_B));$$

$$kA = \begin{cases} (km_A, s_A, t_A), \ k \ge 0; \\ (km_A, t_A, s_A), \ k \le 0; \end{cases}$$

$$A - B = (m_A - m_B, \max(s_A, s_B), \max(t_A, t_B))$$

2.2 par - Fν -SVM

给定训练集 { $(x_1, y_1), \dots, (x_i, y_i), \dots, (x_l, y_l)$ }, 其中列向量 $x_i \in T(\mathbf{R})^n, y \in \mathbf{R}, i = 1, 2, \dots, l$. 为简单 起见,所有样本的三角模糊数为对称形式,即 $s_{x_i} = t_{x_i}, x_i = (m_{x_i}, s_{x_i})$. 构造线性回归函数 $f(x) = w \cdot x + b$,回归精度控制函数 $g(x) = c \cdot x + d$,其中列向量 $w \in \mathbf{R}^n, c \in \mathbf{R}^n$. 基于 Necessity 回归的基本思想设置不 敏感区,即若下式成立:

其中 $\rho(s_x)$ 为x中的最大模糊幅度,则不考虑回归误差. par-F ν -SVM在 par- ν -SVM的基础上,通过如下优化问题得到 $T(\mathbf{R})$ 上具有较好泛化能力的回归函数:

$$\min_{\boldsymbol{w}, \boldsymbol{c}, b, d, \boldsymbol{\xi}^{(*)}} \frac{1}{2} (\|\boldsymbol{w}\|^2 + b^2) + D\left(\nu\left(\frac{1}{2}(\|\boldsymbol{c}\|^2 + d^2)\right) + \frac{1}{l}\sum_{i=1}^{l} (\xi_i + \xi_i^*)\right);$$

s.t.
$$\boldsymbol{w} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} + b + \rho(\boldsymbol{s}_{\boldsymbol{x}_{i}}) - y_{i} \geq$$

 $- (\boldsymbol{c} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} + d + \rho(\boldsymbol{s}_{\boldsymbol{x}_{i}})) - \xi_{i},$
 $\boldsymbol{w} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} + b - \rho(\boldsymbol{s}_{\boldsymbol{x}_{i}}) - y_{i} \leq$
 $(\boldsymbol{c} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} + d + \rho(\boldsymbol{s}_{\boldsymbol{x}_{i}})) + \xi_{i}^{*},$
 $\xi_{i}, \xi_{i}^{*} \geq 0, \ i = 1, 2, \cdots, l.$ (2)

其中: D 为惩罚系数, 用来控制模型复杂性与训练误 差之间的平衡, D > 0; $\nu \in (0,1]$; $\xi_i^{(*)}$ 为松弛变量; $\rho(\mathbf{s}_{\mathbf{x}_i}) = \max\{s_{x_{i1}}, \dots, s_{x_{in}}\}; \frac{1}{2}(||\mathbf{c}||^2 + d^2)$ 表征不敏 感区域的大小^[6], 因为在给定训练集时, 减小 $\frac{1}{2}(||\mathbf{c}||^2 + d^2)$ 可以实现 $\mathbf{c} \cdot \mathbf{m}_{\mathbf{x}}$ 的减小, 所以 $\frac{1}{2}(||\mathbf{c}||^2 + d^2)$ 可间 接表征不敏感区域的大小. 由优化问题 (2) 可知, 当 $\rho(\mathbf{s}_{\mathbf{x}_i}) = 0$ 时, par - F ν -SVM 退化为 par - ν -SVM.

图 1 为 par - $F\nu$ -SVM 线性情况下的示意图,其中 位于中心的斜线表示 $w \cdot m_x + b$.

图 1 par - Fv - SVM 线性情况下的不敏感区示意图

为了得到线性情况下上述 par -F *ν* -SVM 的对偶问题, 定义 Lagrange 函数如下:

$$L(\boldsymbol{w}, \boldsymbol{c}, b, d, \boldsymbol{\xi}^{(*)}, \boldsymbol{\alpha}^{(*)}, \boldsymbol{\beta}^{(*)}) = \frac{1}{2}(\|\boldsymbol{w}\|^{2} + b^{2}) + D\left(\nu\left(\frac{1}{2}(\|\boldsymbol{c}\|^{2} + d^{2})\right) + \frac{1}{l}\sum_{i=1}^{l}(\xi_{i} + \xi_{i}^{*})\right) + \sum_{i=1}^{l}(\alpha_{i}(-\boldsymbol{c} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} - d - 2\rho(\boldsymbol{s}_{\boldsymbol{x}_{i}}) - \boldsymbol{w} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} - b - \xi_{i} + y_{i})) + \sum_{i=1}^{l}(\alpha_{i}^{*}(-\boldsymbol{c} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} - d - 2\rho(\boldsymbol{s}_{\boldsymbol{x}_{i}}) + \boldsymbol{w} \cdot \boldsymbol{m}_{\boldsymbol{x}_{i}} + b - \xi_{i}^{*} - y_{i})) - \sum_{i=1}^{l}\beta_{i}\xi_{i} - \sum_{i=1}^{l}\beta_{i}^{*}\xi_{i}^{*}.$$
(3)

其中: 乘子 $\alpha_i^{(*)}$, $\beta_i^{(*)} \ge 0$. Lagrange 函数对于参数 w, c, b, d, $\boldsymbol{\xi}^{(*)}$ 的偏导数均应等于零, 从而可以得到

$$\begin{cases} \boldsymbol{w} = \sum_{i=1}^{l} (\alpha_{i} - \alpha_{i}^{*}) \boldsymbol{m}_{\boldsymbol{x}_{i}}, \\ \boldsymbol{c} = \frac{1}{D\nu} \sum_{i=1}^{l} (\alpha_{i} + \alpha_{i}^{*}) \boldsymbol{m}_{\boldsymbol{x}_{i}}, \\ \boldsymbol{b} = \sum_{i=1}^{l} (\alpha_{i} - \alpha_{i}^{*}), \\ \boldsymbol{d} = \frac{1}{D\nu} \sum_{i=1}^{l} (\alpha_{i} + \alpha_{i}^{*}), \\ D/l - \alpha_{i}^{(*)} - \beta_{i}^{(*)} = 0, \ i = 1, 2, \cdots, l. \end{cases}$$
(4)

将式(4)代入Lagrange函数,并对 α^(*) 求极大,可 得到优化问题(2)的对偶优化问题

$$\max_{\boldsymbol{\alpha}^{(*)}} -\frac{1}{2} \sum_{j=1}^{l} \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \boldsymbol{m}_{\boldsymbol{x}_i} \cdot \boldsymbol{m}_{\boldsymbol{x}_j} - \frac{1}{2} \sum_{j=1}^{l} \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) - \frac{1}{2D\nu} \sum_{j=1}^{l} \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) (\alpha_j + \alpha_j^*) \boldsymbol{m}_{\boldsymbol{x}_i} \cdot \boldsymbol{m}_{\boldsymbol{x}_j} - \frac{1}{2D\nu} \sum_{j=1}^{l} \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) (\alpha_j + \alpha_j^*) - 2\sum_{i=1}^{l} (\alpha_i + \alpha_i^*) \rho(\boldsymbol{s}_{\boldsymbol{x}_i}) + \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) y_i;$$
s.t. $0 \leq \alpha_i^{(*)} \leq D/l, \ i = 1, 2, \cdots, l.$ (5)

根据 Karush-Kuhn-Tucker (KKT) 条件, 在最优解 处有

$$\begin{cases} \alpha_i(-\boldsymbol{c}\cdot\boldsymbol{m}_{\boldsymbol{x}_i} - d - 2\rho(\boldsymbol{s}_{\boldsymbol{x}_i}) - \boldsymbol{w}\cdot\boldsymbol{m}_{\boldsymbol{x}_i} - b + y_i - \xi_i) = 0, \\ \alpha_i^*(-\boldsymbol{c}\cdot\boldsymbol{m}_{\boldsymbol{x}_i} - d - 2\rho(\boldsymbol{s}_{\boldsymbol{x}_i}) + \boldsymbol{w}\cdot\boldsymbol{m}_{\boldsymbol{x}_i} + b - y_i - \xi_i^*) = 0, \\ (D/l - \alpha_i^{(*)})\xi_i^{(*)} = 0, \quad i = 1, 2, \cdots, l. \end{cases}$$
(6)

定理1 由 $T(\mathbf{R})$ 上 par - F ν -SVM 对应的最优 化问题计算得到的 α_i 和 α_i^* 必定满足 $\alpha_i \alpha_i^* = 0$.

证明 由式(6)并结合图1可知:对于管道上边界 之上的点,有 $\xi_i^* = 0, \alpha_i^* = 0, \xi_i > 0, \alpha_i = D/l;$ 对于管道 下边界之下的点,有 $\xi_i^* > 0, \alpha_i^* = D/l, \xi_i = 0, \alpha_i = 0;$ 对 于管道上边界的点,有 $\xi_i^* = 0, \alpha_i^* = 0, \xi_i = 0, 0 \le \alpha_i \le D/l;$ 对于管道下边界的点,有 $\xi_i^* = 0, 0 \le \alpha_i^* \le D/l, \xi_i$ =0, α_i =0; 对于管道之内的点,有 $\xi_i^{(*)} = 0, \alpha_i^{(*)} = 0$.所 以,对于 par - F ν -SVM 中的任一数据点,有 $\alpha_i \alpha_i^* = 0$. 由此定理1得证. □

求解优化问题(5),可得到参数 $\alpha_i^{(*)}$,由式(4)可得到b和d的值,进而得到f(x)和g(x),即

$$f(\boldsymbol{x}) = \left(\sum_{i=1}^{l} (\alpha_i - \alpha_i^*) \boldsymbol{m}_{\boldsymbol{x}_i} \cdot \boldsymbol{m}_{\boldsymbol{x}} + b, \rho(\boldsymbol{s}_{\boldsymbol{x}_i})\right), \quad (7)$$

$$g(\boldsymbol{x}) = \left(\frac{1}{D\nu} \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) \boldsymbol{m}_{\boldsymbol{x}_i} \cdot \boldsymbol{m}_{\boldsymbol{x}} + b, \rho(\boldsymbol{s}_{\boldsymbol{x}_i})\right).$$
(8)

因为*y*是数值型数据,所以*f*(*x*)的中心为一般预测值,*f*(*x*)和*g*(*x*)的两左边界之和为乐观预测值, *f*(*x*)和*g*(*x*)的两右边界之和为悲观预测值.需说明的是,文中的预测误差是指一般预测值与真实值之间的误差.

对于非线性问题,可以通过非线性变换 $m_x \rightarrow \Phi(m_x)^{[5]}$ 将原问题映射到某个高维线性特征空间;然后在特征空间中构造回归估计函数.在高维特征空间中,线性问题中的内积运算可用核函数代替,从而将模型推广到非线性问题.本文选用高斯径向基函数作为核函数.

2.3 模糊幅度的确定和参数选择

在文献[5]中,模糊幅度的确定依赖于经验,但在 小样本情况下难以获得较为准确的值.当模糊幅度过 小时,不能描述现实状态,丢失过多信息;当模糊幅度 过大时,造成模型过于保守.[11]也表述了选择模糊 幅度的重要性,但仍沿用[5]的方法.为简单起见,各 模糊变量取相同的模糊幅度s.本文利用遗传算法,采 用在训练集均方误差可接受的条件下选择尽可能大 的s值的方法来解决其选值问题.

对于 D, ν 和核函数的常量参数 σ 的选择,除可使 用交叉验证的方法外,近年来相关研究者已将各种智 能优化算法用于 SVM 的参数组合寻优^[9-10].本文在 确定 s 值之后,再次利用遗传算法,以训练集均方误差 最小化为目标,选定 D, ν 和 σ ,利用凸二次规划求解 优化目标函数问题,并判断 KKT 条件,得到参数 $\alpha^{(*)}$.

3 基于 par - $F\nu$ - SVM 的设计时间预测

本文以订单型注塑模具设计活动时间预测为例, 假定设计团队和设计环境不变情况下,考虑6个产品 特征因素:结构复杂性SC,造型难度MD,壁厚变化 WV,型腔数CA,长径比尺寸S和形状特征数FF,前3 个属性为模糊语言型,后3个为数值型^[12].整个数据 集有72组样本,取前60组数据作为训练数据集,后 12组数据作为测试数据集.在训练模型之前,将数值 型数据归一化以克服量纲的不同;然后将归一化后的 数值量转换成以其为中心、以0为模糊幅度的三角模 糊数;最后将模糊语言变量处理成三角模糊数,语言 变量 VL, L, M, H和VH对应5个三角模糊数,其中心 分别为0.1,0.3,0.5,0.7和0.9.

利用 Matlab 7.7 编制相应的模型训练和回归预测 程序,运行环境为 Intel Core 2 Duo 2.26 GHz,内存 2 G 的微机. par - $F\nu$ - SVM 模型中 4 个参数的取值范围为:

 $s \in [0.001, 0.1], D \in [1, 10\,000], \nu \in [0.001, 1], \sigma \in [0.001, 1]$ 3]. 遗传算法初始参数的取值设定为: 初始群体个体 数目20, 最大进化代数100, 交叉概率0.5, 变异概率 0.07,每代保留最优个体.依据实际应用情况,确定模 型在训练集上可接受的均方误差最大为0.02,所以当 训练集均方误差小于或等于0.02时,在s,D,ν和σ参 数选择范围内运行遗传算法选择最大的s值,确定s = 0.0123. 选定s值之后,在 D,ν 和 σ 参数选择范围 内,以训练集均方误差为适应值,再次运行遗传算法 确定参数 D, ν 和 σ, 即 D=9666.5413, ν=0.9921, σ= 1.4887. par-Fν-SVM除给出一般预测值外,还可以 给出悲观预测值和乐观预测值.由图2可以看出,在测 试集中除T10的真实值在乐观预测值和悲观预测值 界定的范围之外,其余都在其范围内,并且测试样本 不同,给定范围的大小也不同.表1给出了Fν-SVM, par-*v*-SVM和par-F*v*-SVM在测试集上还原后的预 测值. 由表1可知, 尽管 par - $F\nu$ - SVM 中的 s 取值较 小,但其结果与 par-ν-SVM 的结果存在明显差异.

图 2 par - $F\nu$ -SVM 在测试集上的结果

表1 3种模型预测比较

序号	实际值	模型输出还原值			
		$F\nu$ -SVM	par - ν -SVM	par - F ν -SVM	
T1	31	35.3150	44.5770	34.5482	
T2	41	40.6722	49.2378	40.794 5	
T3	62	62.0286	64.2010	61.8430	
T4	34.5	33.3127	32.5963	34.1359	
T5	16	16.4244	18.1929	17.4337	
T6	32.5	32.9651	33.8130	33.6000	
T7	42.5	40.2429	47.5392	39.8091	
T8	16.5	15.3938	13.9874	16.9077	
Т9	22	21.5211	16.7111	22.6664	
T10	54.5	46.3906	48.204 2	47.9894	
T11	55	54.1493	52.9014	54.4841	
т12	41.5	41 752 2	48 768 8	43 299 9	

表2给出了3种模型在测试数据集的3项误差 指标: RMSE, MAPE和MAE.在par-F ν -SVM的对偶 优化问题(5)中有2l个变量,4l个约束条件,par- ν -SVM的对偶优化问题的规模与par-F ν -SVM相同;而 F ν -SVM的对偶优化问题有4l个变量,8l+2个约束 条件.考虑表2的3项指标和问题规模,可以看出par-F ν -SVM的预测性能好于F ν -SVM和par- ν -SVM.此 外, par - Fν -SVM 给出了较为可信的乐观预测值和悲观预测值, 使产品设计企业在设计任务开始阶段便可 以更好地安排相关设计人员和设备. 在不同样本数量 下对 par - Fν -SVM 模型的性能进行实验, 实验结果如 表 3 所示. 从表 3 可以看出, 随着样本数的减少, par-Fν -SVM 仍表现出较好的性能, 说明 par - Fν -SVM 模 型适合于小样本情况下的设计时间预测.

表 2 3种模型的各项误差指标

齿 刑	测试结果		
侠室	RMSE	MAPE	MAE
$F\nu$ -SVM	2.7933	0.0446	1.6502
par - ν -SVM	5.9425	0.1456	4.8274
par - $F\nu$ -SVM	2.4118	0.045 5	1.6167

表3 不	同样本数量下	par - Fv -S	VM 的性能
------	--------	-------------	--------

样本粉量	测试结果		
什个奴里	RMSE	MAPE	MAE
40	2.4999	0.0549	1.8645
20	3.063 5	0.0583	2.2409

4 结 论

产品设计时间受很多因素的影响,在产品设计早期观测得到的因素数据不仅具有模糊性和不确定性,而且存在小样本和异方差噪音等问题,利用传统方法 很难建立精确的非线性时间预测模型.本文在 par - ν-SVM 中引入模糊回归运算,基于 Necessity 回归的思 想设置约束条件,提出一种新的模糊支持向量机 par -Fν-SVM,将此模型引入高维数小样本的设计时间预 测领域,并设计了相关参数优选方法.通过实例应用 的对比分析,表明了所提出的设计时间预测方法具有 较好的预测效果.

参考文献(References)

- 陈冬宇, 邱菀华, 杨青, 等. 基于 DSM 的复杂产品开发流 程优化遗传算法[J]. 控制与决策, 2008, 23(8): 910-914.
 (Chen D Y, Qiu W H, Yang Q, et al. DSM-based complex product development process optimization using genetic algorithm[J]. Control and Decision, 2008, 23(8): 910-914.)
- [2] 许多, 严洪森. 产品设计时间智能预测方法的研究[J]. 控制与决策, 2004, 19(2): 143-152.
 (Xu D, Yan H S. Research on intelligent estimation method for product design time[J]. Control and Decision, 2004, 19(2): 143-152.)
- [3] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 2000: 138-140.
- [4] Schölkopf B, Smola A J, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.

(下转第541页)