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CHAPTER 1 

INTRODUCTION 

Over the course of human history, the source of the food that the population relies 

on for survival has changed dramatically (Jay, 2000).  Hunting and gathering have given 

way to the domestication of plants and livestock.  The growing of food for a family or a 

small region has been replaced by the centralization and globalization of food production.  

Growing crops in different parts of the country and the world has made fresh produce 

available at any time of year.  Rather than sitting down to a home cooked meal, 

consumers have turned to meals prepared outside the home or ready-to-eat (RTE) meals 

that require little to no preparation inside the home.  Health consciousness has led to a 

call for more natural foods, meaning less processing and a reduction in the addition of 

preservatives to food products.  These factors combine to make food safety not only a 

predominant issue to consumers but also more challenging than ever for those who 

produce these products.   

Food has long been recognized as a potential vector of disease.  For example, 

religious  restrictions on the consumption of pork were most likely put into place to 

protect against diseases associated with consumption of pork products (Hartman, 1997).  

As a consequence of the centralization of food production, religious and historical 

doctrine has been replaced by government regulation.  The inspection of meat was first 

introduced in the late 1800’s, followed by the Food, Drug, and Cosmetic Act in 1939, and 

the Food Additives Amendment in 1958 (Jay, 2000).  In the 1980s, the importance of 

food was recognized as a vector for several important pathogens; Listeria 
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monocytogenes, Escherichia coli 0157:H7, and Campylobacter jejuni. The 1990’s thus 

saw enactment of increased surveillance measures and an increase in research towards 

the transmission pathways of food pathogens in order to further improve the safety of 

foods (Allos et al., 2004).  The Foodborne Disease Active Surveillance Network 

(FoodNet), established in 1996, is an effort between the Centers for Disease Control 

(CDC), the Department of Agriculture (FDA), and state health departments to monitor 

outbreaks of foodborne diseases (Allos, et al., 2004).  PulseNet uses molecular 

techniques to provide genetic fingerprints for food pathogens associated with 

contamination and outbreaks (Allos et al., 2004).  In 1997, Pathogen Reduction, Hazard 

Analysis and Critical Control Point (HACCP) were initiated, which calls for the 

identification and control of points in a process where bacterial contamination can occur 

(Allos et al., 2004). 

The initial 1997 FoodNet estimation for yearly cases of foodborne illness in the 

United States was 76 million cases, with 325,000 hospitalizations and 5500 deaths 

(Anonymous, 2006a).  Confirmed cases within the 15% of the population that FoodNet 

surveillance covers for the time period 1996-1998 was 24,511 cases of foodborne illness, 

with Campylobacter, Salmonella, and Shigella as the leading causative agents (Kennedy 

et al., 2000).  Differences between estimated and confirmed cases are most likely due to 

the large number of foodborne illnesses that go unreported every year due to mildness of 

symptoms and short duration of the illness.  The initial surveillance results for 2005 

shows a general reduction in laboratory confirmed cases of foodborne illness with only 

16,614 cases confirmed (Anonymous, 2006c).  Salmonella, Campylobacter, and Shigella 

are still the most commonly reported foodborne pathogens.  Though cases have declined 
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every year since surveillance began, the rates of decline are slowing.  The 2005 report 

shows that Listeria levels, though down from 1996-1998, are higher than the lowest 

reported level in 2002 (Anonymous, 2006c).  Vibrio levels are actually on the rise.   

Though FoodNet data shows that cases of foodborne illness are declining, they 

still represent a substantial health care burden to the consumers and a monetary burden to 

the food industry.  When contamination is discovered in a product, the manufacturer is 

expected to voluntarily issue a recall notice.  The FDA can only act if the situation is 

urgent, in which case they request the manufacturer recall the product, typically followed 

by lawsuits and injunctions if the manufacturer refuses to follow the recommendations 

(Venugopal et al., 1996).  In 1991-1992, there were 230 recalls involving 569 products, 

138 (24%) were caused by microbial contamination (Venugopal et al., 1996).  Of these 

138 recalls, 90 (65%) involved L. monocytogenes.  Several large food recalls have 

occurred over the last few years.  In 2000, turkey and chicken deli meats were recalled in 

response to 29 cases of listeriosis which resulted in 4 deaths and 3 miscarriages 

(Anonymous, 2000).  Two years later 46 cases of listeriosis, resulting in 7 deaths and 3 

stillbirths prompted a recall of 24.7 million pounds of turkey and deli meats, the largest 

such recall in history (Anonymous, 2002).  Two high profile recalls have occurred in 

2006; a recall of 100% carrot juice prompted by 4 cases of botulism following 

consumption of heat abused juice, and the removal of all fresh bagged spinach from store 

shelves after 199 people across 26 states became infected with E. coli (Anonymous, 

2006b).  Along with the monetary loss involved with the recall of products, the presence 

of pathogens in the product also opens up the company to lawsuits by those who became 

infected. Even more importantly, a loss of trust in the brand name involved in the recall 
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can permanently eliminate market shares the brand previously held and may even lead to 

bankruptcy of the producing company.   

Though not one of the most commonly found foodborne pathogens, the industry 

pays a great deal of attention to the Gram positive, non spore forming rod L. 

monocytogenes.  Initial FoodNet surveillance found that of the 99 deaths associated with 

food pathogens, 38 were caused by L. monocytogenes (Kennedy et al., 2000).  The high 

mortality rate associated with listeriosis, the name given to a range of symptoms 

associated with L. monocytogenes infection, is due to the severity of the disease.  L. 

monocytogenes is an invasive intracellular pathogen.  Following consumption, the 

organisms exit the intestines and are quickly engulfed by immune system macrophages 

(Rocourt and Cossart, 1997).  In individuals with normally functioning immune systems, 

the intracellular microorganism attracts the attention of cytotoxic T cells, which lyse the 

infected cell and expose the pathogen to further immune system attention (Parham, 

2000).  In individuals with suppressed immune systems, the elderly, pregnant women and 

their unborn children, and those with preexisting conditions that cause immune 

suppression, the bacteria is able to replicate and spread from cell to cell.  Those with 

active immune systems may suffer mild flu-like symptoms, if they suffer any symptoms 

at all.  Those who are immunocompromised can experience septicemia, bacteremia, 

meningitis, miscarriages, and stillbirths with a 20-30% mortality rate (Rocourt and 

Cossart, 1997). 

L. monocytogenes was linked to food following several outbreaks in the 1980’s.  

In 1983, 7 adult and 34 perinatal cases of listeriosis in Canada were traced to cole slaw 
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that was later found to have been made with cabbage grown at a farm with known cases 

of ovine listeriosis (Schlech et al., 1983).  The largest known listeriosis outbreak 

occurred in Los Angeles in 1985.  142 cases of listeriosis, with 48 ensuing deaths, were 

traced back to the consumption of Mexican-style soft cheese tainted with unpasteurized 

milk (Linnan et al., 1988).  The second largest outbreak, 108 cases, with 14 associated 

deaths and 4 miscarriages/stillbirths, occurred in 1998-1999 and was linked to hot dogs 

from a facility in which the removal of a contaminated air conditioning unit caused post-

process contamination (Mead et al., 2005).  The outbreak ended with the recall of 35 

million pounds of product.  In response to these outbreaks, the United States adopted a 

zero tolerance policy for L. monocytogenes in ready to eat foods, instituted an emphasis 

on Good Manufacturing Practices (GMP), HACCP, recommendations for facility 

sanitation and safe handling of processed foods, and education for populations at risk for 

listeriosis (Shank et al., 1996). 

Controlling the growth of L. monocytogenes in a food production facility is 

challenging for manufacturers.  Many of the unprocessed products that come into the 

facility carry L. monocytogenes.  Franco et al. (1995) took samples from a poultry 

processing plant and found high levels of contamination, particularly on drumsticks, 96% 

of which showed counts exceeding 3 log CFU/g.  Beef and pork also come into the 

processing facilities carrying L. monocytogenes, with pork showing higher levels 

(Vandenelzen and Snijders, 1993).  Though the bacteria are often carried in the intestines 

(Thevenot et al., 2006), Autio et al. (2000) found that the tongue and tonsils are often the 

sources of carcass and facility contamination.  In sampling pork products processed in 

stores and in centralized facilities, the cuts that originated in the store and required the 
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most handling showed the most microbial contamination (Duffy et al., 2001).  Listeria, in 

this case, was the most common source of contamination (26.7%).  Raw vegetables can 

also bring L. monocytogenes into a processing facility from any of a variety of sources, 

including decaying vegetation and feces used as fertilizer, the soil the plants grow in, or 

the water source for the crops (Beuchat, 1996). 

With nearly every raw product coming into a facility being a potential carrier of 

L. monocytogenes, it is up to the food processors to insure that all RTE products leave the 

facility free of contamination.  L. monocytogenes coming into the plant contaminates 

areas where raw products are processed (Franco et al., 1995; Thevenot et al., 2005).  

Frequent cleaning is used to control this contamination, but L. monocytogenes has shown 

resistance to some commonly used cleaning solutions and sanitizers (Taormina and 

Beuchat, 2002).  Resistance to sanitizers, including quaternary ammonium compounds, 

has been linked to the presence of mdrL, a gene that encodes an efflux pump (Romanova 

et al., 2002).  The inefficieny of cleaning procedures to remove L. monocytogenes has 

also been associated with its ability to adhere to stainless steel and form biofilms 

(Vatanyoopaisarn et al., 2000; Thevenot et al., 2006).  The complexity of the machinery 

used in production can also hinder the cleaning process, with bacteria growing in corners 

and crevices that are difficult to clean (Lunden et al., 2002). 

The difficulty in controlling L. monocytogenes levels in RTE food products lies in 

its resistance to many commonly used preservation methods.  Proper heating and 

pasteurization insures a Listeria-free product.  Improper heating, however, allows 

survival of the pathogen, which will continue to grow once the product is refrigerated 
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(Samelis and Metaxopoulus, 1999).  Most L. monocytogenes contamination occurs 

following processing (Linnan et al., 1988; Reij and Den Aantrekker., 2004; Mead et al., 

2005).  Common routes of recontamination include improper packaging, unsanitary 

equipment, improper handling and storage, and the introduction of contaminated 

ingredients, like spices or flavorants (Reij and Den Aantrekker, 2004).  L. monocytogenes 

is psychrotrophic, meaning it can grow at low temperatures, making refrigeration 

selective for the growth of the organism.  It can also grow at high salt concentrations and 

in the presence of nitrates (Cole et al., 1990).  A survey of vacuum packaged processed 

meat showed that 53% of those surveyed were contaminated with L. monocytogenes, due 

to its ability to grow at low oxygen levels (Grau et al., 1992).  Antimicrobials, several of 

which are strong inhibitors of L. monocytogenes growth, are also used to control 

microbial growth in food products (Geise, 1994; Sofos et al., 1998).  Combinations of 

these preservation methods often have a synergistic effect, commonly referred to as the 

hurdle effect (Leistner et al., 2000). 

Recent consumer trends show an increased interest in more natural, less processed 

foods, which has turned research attention towards antimicrobial compounds that are 

found naturally in foods or produced naturally by microorganisms involved in food 

processing (Sofos et al., 1998).  The antimicrobials nisin and lysozyme are examples of 

such naturally produced compounds.  Bacteriocins are a class of peptides produced by 

lactic acid bacteria to inhibit the growth of similar bacteria, like L. monocytogenes, that 

compete for resources (Harris et al., 1989).  Nisin, a Class IIa bacteriocin, has been 

shown to be a strong inhibitor of L. monocytogenes growth (Ukuku and Shelef, 1997; 

Ennahar et al., 2000; Mota-Meira et al., 2000).  Nisin binds to the bacterial membrane 
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via interaction between positively charged lysine residues in the nisin molecule and 

negatively charged phospholipid headgroups in the membrane (Abee, 1994; Moll et al., 

1997).  Following insertion into the membrane, transient pores are formed via a 

hydrophilic interaction between nisin molecules (Winkowski et al., 1996; Moll et al., 

1997).  Potassium ions are lost via these pores which causes depolarization of the 

membrane and loss of proton motive force (Abee et al., 1994).  Lysozyme, an enzyme 

found in eggs and milk, is a strong inhibitor of L. monocytogenes growth (Hughey and 

Johnson, 1987).  Lysozyme breaks down the peptidoglycan layer of Gram positive 

bacteria by hydrolyzing the 1,4 ß-D-linkage between N-acetylhexosamines (Proctor and 

Cunningham, 1988). 

The leveling of the rate of decrease in foodborne illnesses may suggest that the 

current technology available to prevent growth of pathogens in food products has reached 

its limit.  New technology may be needed to continue reducing the number of illnesses 

and recalls caused by foodborne pathogens.  Though antimicrobials like nisin and 

lysozyme are effective in inhibiting the growth of L. monocytogenes in laboratory media, 

their effectiveness is greatly reduced in actual food products due to interactions between 

the antimicrobial and the food constituents.  Lysozyme was less effective in reducing the 

numbers of L. monocytogenes in cheese and sausage compared to in fresh fruits and 

vegetables, likely due to interaction with fats in the cheese and sausage (Hughey et al., 

1989).  Nisin activity was shown to be greatly reduced in meat products due to 

interaction with glutathione in raw meats and nitrates and fats in bacon (Ghalfi et al., 

2006; Stergiou et al., 2006).   
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The objective of this thesis is to develop a method by which antimicrobials are 

delivered into a food product as a concentrated dose to the specific area in which the 

microorganism is growing without interference from the food matrix.  More specifically, 

we plan to achieve this by delivering the antimicrobials nisin and lysozyme attached to 

nanoparticles and emulsion droplets.  We hypothesize that (a) the attachment to a 

delivery vessel may increase the local concentration of the antimicrobial in the vicinity of 

the bacterial pathogens and (b) that the size and charge of the nanoparticle following 

attachment of the antimicrobials will be critical to its efficacy against pathogens. This 

thesis is designed to test this hypothesis using silver nanoparticles with well defined sizes 

and surface chemistry that allow control over the loading of the particle and oil droplets 

to which nisin is a secondary layer attached to pork gelatin which acts as the primary 

emulsifier.
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CHAPTER 2 

LITERATURE REVIEW 

Food Antimicrobials 

The traditional function of food antimicrobials or preservatives is to prolong shelf 

life and preserve quality of food through inhibition of spoilage microorganisms.  While 

food antimicrobials have been in use since ancient times, few are used exclusively to 

control the growth of specific foodborne pathogens.  An exception is nitrite, which has 

been used, in association with salt, ascorbate and erythorbate, and low pH, for hundreds 

of years to inhibit growth and toxin production of Clostridium botulinum in cured meats.  

More recently, other antimicrobials have been applied to foods against foodborne 

pathogens.  For instance, organic acids (e.g., lactic acid, acetic acid) have been employed 

as spray sanitizers against pathogens on beef carcasses.  Organic acid salts (e.g., sodium 

lactate, sodium diacetate) have been added to processed meats to inactivate pathogens 

(primarily L. monocytogenes).  Finally, nisin and lysozyme are approved for use in 

pasteurized processed cheese as a safeguard against growth and toxin production by C. 

botulinum and lactoferrin was recently approved to control E. coli O157:H7 in meats.  In 

most instances, the antimicrobial is part of a multiple intervention system that involves 

the chemical along with environmental (extrinsic) and food related (intrinsic) stresses and 

processing steps.  This has been termed “hurdle technology” or multiple interventions 

(Leistner and Gorris, 1995, Leistner, 2000). 

There are two arbitrary classifications of food antimicrobials, traditional or 

“regulatory approved” and naturally occurring (Davidson, 2001).  The former includes 
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organic acids (acetic, lactic, propionic), sorbic acid, nitrites, sulfites, alkyl esters of p-

hydroxybenzoic acids (parabens) and some natural antimicrobials including lysozyme, 

nisin, natamycin and lactoferrin.  The latter includes compounds from microbial, plant 

and animal sources.  Using naturally occurring antimicrobials is desirable to the food 

industry for several reasons: (a) it is highly unlikely that new synthetic compounds will 

be approved for use as food antimicrobials due to the expense of toxicological testing, (b) 

there exists a significant need for expanded antimicrobial activity both in terms of 

spectrum of activity and of broad food application, (c) food processors are interested in 

producing “green” labels, i.e., ones without chemical names that apparently confuse 

consumers, and (d) there are potential health benefits that come with the consumption of 

some naturally occurring antimicrobials.  

Some of the most effective natural antimicrobials are extracted from spices and 

herbs, including Amaryllidaceae (e.g. garlic, onion) and members of the Cruciferae 

family (mustard, horseradish) (Davidson and Naidu, 2000; Sofos et al., 1998).  The 

chemical compositions of the active ingredients in these plants are diverse.  One 

commonality is that most of these compounds are oil-soluble and often derivatives of 

phenolic compounds.  The use of phenolic compounds is increasing because these 

components exhibit antimicrobial properties and have therapeutic and pharmaceutical 

applications as well. Extracts from dietary herb species belonging to the family 

Lamiaceae (mint family), including thyme, have been used as sources of medicine and 

food preservatives for over 4000 years.  Recently, some of the bioactive components 

linked to these medicinal and preservative functions have been determined to be phenolic 

metabolites (Peake et al, l991; Deighton et al, 1993; Deighton et al, l994).  Specific 
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phenolic metabolites from Lamiaceae, like rosmarinic acid (from rosemary, spearmint, 

thyme and oregano) and thymol (from thyme and oregano), have both anti-inflammatory 

(Peake et al, l991) and antioxidant properties (Kuhnt et al, l995; Shapiro and 

Guggenheim, l995) in addition to their antimicrobial function.  These pharmacological 

functions may contribute to long-term cancer prevention due to their effectiveness as 

antioxidants.  

In the context of foodborne pathogens, the antimicrobial activity of the key 

metabolites of thyme, thymol and carvacrol, have been reported to inhibit the growth of 

Salmonella enteritidis, Staphylococcus aureus, E. coli and Vibrio parahaemolyticus 

(Katayama and Nagai, 1960; Beuchat, 1976).  A second class of natural antimicrobials, 

derived from animal sources, are the polypeptide antimicrobials (Sofos et al., 1998).  

Lysozyme, a lytic enzyme extracted from egg whites, is an example of this class of 

antimicrobials.  Other animal source enzymes, such as peroxidases and oxidases, and 

chelators, such as transferrins and lactoferrin, can inhibit microorganism growth as well 

(Payne et al., 1994; Branen and Davidson, 2000). Microorganisms themselves are also an 

abundant source of naturally occurring peptides that effectively inhibit the growth of a 

wide variety of foodborne pathogens and spoilage microorganisms.  The most promising 

of these are produced by members of the Lactococcus, Pediococcus, Lactobacillus, 

Leuconostoc, and Propionibacterium species. 

Limitations of Available Food Antimicrobial Systems 

A report published by Sofos et al. (1998) identified the following factors as major 

reason for the failure to implement widespread use of antimicrobials: (a) the efficacy of 
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currently available antimicrobials in foods is low, (b) suitable antimicrobial delivery 

systems for commercial product formulations have not been developed, (c) large-scale 

extraction, isolation and production processes have not been pursued and (d) the 

toxicology and safety in food formulations has not been properly evaluated.  Low 

antimicrobial efficacy in actual food systems is the primary restriction on the extensive 

use of these substances by the food production industry.  At present, large quantities of 

traditional and naturally occurring food antimicrobials are needed to achieve even 

moderate reductions in growth rates of pathogenic organisms in food products (Davidson, 

2001). Large quantities do not only increase production costs considerably, they also 

negatively affect the sensory properties of the product (Sofos et al., 1998).  

The effectiveness of traditional antimicrobials is limited by pH and food 

component interactions.  For example, organic acids are only effective at low pH due to 

the fact that their antimicrobial activity is attributed to the undissociated acid form 

(Davidson, 2001).  Many of the compounds are also partially hydrophobic which causes 

them to interact with food lipids, making them less available for inhibition of 

microorganisms. A limitation of phenolic phytochemicals from food-grade herbs is the 

wide variation in their water-solubility characteristics.  Thymol, the major antimicrobial 

in thyme, is primarily hydrophobic and therefore insoluble in water, unlike simple 

hydroxylated phenolic acids which are primarily hydrophilic and therefore soluble in 

water.   Rosmarinic acid, another major phytochemical compound in thyme, is only 

partially soluble in cold water, but is fully soluble in a solution of hot water and ethanol.  

The plant and animal tissue from which we derive our food contains a variety of different 

microenvironments.  These microenvironments may be polar (e.g., aqueous solutions), 
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non-polar (e.g., fat cells) or amphiphilic (e.g., membranes).  Thus, for a phenolic 

compound to exhibit beneficial properties in a plant, it must be located in a 

microenvironment where it is chemically active.  The phenolic compound, for example, 

may need to be located at the interface between the oil and water regions to demonstrate 

antioxidant or antimicrobial activity (Coupland and McClements, 1996).  Many of the 

key phenolic metabolites from herbs are ineffective as antimicrobials or antioxidants in 

foods because they have yet to be successfully incorporated into the appropriate 

microenvironment.  

Similar limitations are observed when using protein or phospholipid based 

antimicrobials such as lysozyme and nisin.  These compounds may also readily absorb at 

interfaces that are present in multiphase, multicomponent food systems, making them 

unable to interact with target microorganisms.  Furthermore, chemical interactions may 

take place that lead to structural and functional changes in the antimicrobials that render 

them inactive.  This chemical and physical instability, as well as the thermodynamically 

driven accumulation of the compounds in certain regions of the food product are key 

problems that reduce the efficacy of these otherwise potent compounds in foods. 

Encapsulation and Carrier Systems To Overcome Antimicrobial Deficiencies 

For many years the pharmaceutical industry has studied the encapsulation or 

surface adsorption of a variety of chemical compounds as a way of overcoming the 

difficulties involved in their delivery and their potential for causing unwanted side 

effects.  By encapsulating or surface adsorbing the compound, it can be protected from 

degradation and release a stronger dosage in a site specific manner that increases the 
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potency of the drug while decreasing the amount needed.  The use of a 

carrier/encapsulation systems allows for breakdown of the particles and release of the 

encapsulated compound in a time dependent manner without the production of toxic 

breakdown products. 

The use and delivery of many compounds in food products have the same 

inherent difficulties.  Many compounds that give desirable flavors or structural properties 

to a product are unstable in the conditions that exist within the product or processing and 

storage conditions to which the product is exposed.  These compounds can undergo 

undesirable reactions with other ingredients or breakdown at high temperatures, high or 

low pH, or undergo hydrolytic breakdown via moisture in the product.  The use of 

antimicrobials that inhibit the growth of unwanted microorganisms in foods is also 

difficult due to the nature of the product and the antimicrobial.  Food antimicrobials, like 

nisin and lysozyme, are hydrophobic and as such end up sequestered in the lipid 

component of the food.  This drastically increases the amount of antimicrobial needed to 

show growth inhibition levels exhibited in laboratory growth medium.  Encapsulation of 

these compounds in  nano-sized particles or adsorption to their surfaces may allow some 

of these difficulties to be overcome.   

General Use of Encapsulation in the Food Industry 

Though the encapsulation of antimicrobial compounds for delivery in a food 

product has not yet been fully examined, the encapsulation procedure itself has been used 

in the food industry for many years.  Ingredient encapsulation has been examined to 

protect food constituents against damaging reactions like hydrolysis and oxidation, to 
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enhance flavors by prolonging or controlling their release, to protect ingredients from 

damaging processing or cooking temperatures, and to mask the odor and flavor of 

nutritionally desirable compounds that have a less than desirable flavor profile (Dziezak, 

1988).  Food applications for these encapsulated ingredients encompass a wide variety of 

products, including but not limited to such varied products as dehydrated fruit juices, 

baked goods, meat products, and chewing gum.  For example, a major concern in the 

production of fruit juice powders and concentrates is the loss of volatile flavor 

components during the dehydration process.  By producing a cold pressed citrus oil 

encapsulated in a modified lipophilic starch, maltodextrin, or sugar, the desired flavor 

can be reintroduced into the powdered juice and give the resulting reconstituted juice a 

high percentage of the flavor found in fresh fruit juice (Bangs and Reineccius, 1990; 

Kopelman et al., 1977a; Anandaraman and Reineccius, 1986; Andres, 1977; Bhandari et 

al., 1992; Schulz et al. 1956).  Kopelman et al., (1977b) produced a reconstituted orange 

juice that retained 75% of the initial volatiles and water soluble aroma essences of the 

fresh juice by encapsulating them in a maltodextrin sucrose carrier.  Besides enhancing 

juice flavor, encapsulation also increases the shelf life of the volatile flavor components 

by protecting them against hydrolysis and oxidation (Anandarman and Reineccius, 1986; 

Bhandari et al. 1992).   

The beneficial effects of ingredient encapsulation are not limited to flavor 

constituents.  Ingredients desired for their functional properties or nutritional value can 

often lead to instability in the food product in which they are used.  Food acids are an 

important food constituent due to their use as flavoring agents, acidulants, preservatives, 

and texture modifiers.  The use of food acids is problematic, however, due to their 
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hygroscopic nature, which causes caking in powdered products, and their undesired 

reactivity with flavor and color components.  The outer coating provided via 

encapsulation sequesters the acid, protecting it from water absorption and unwanted 

reactions with other ingredients, while protecting the beneficial aspects of the acid by 

releasing it into the product when it is most desired (Werner, 1980; Ciliberto et al., 

1981). Vitamin C, when used in baked goods, can react with other compounds, including 

iron and cinnamon, producing unwanted reaction products, and can cause yeast to begin 

producing carbon dioxide earlier than desired for proper product rising.  By 

encapsulating the vitamin C, unwanted reactions are avoided and the vitamin can be 

released when desired via time, heat, pH, or enzyme activity (Andres, 1977).  

Encapsulation can be used to protect the taste and appearance of a product, like meat, that 

would normally be altered by cooking or processing (Hoashi, 1986; Shahidi and Pegg, 

1991).  Hoashi (1986) attempted to replace the meat flavors lost in juices that escape 

during the cooking of meat products through the addition of calcium alginate gel 

encapsulated meat stocks and soups that burst and release flavor when the product is 

chewed.  Shahidi and Pegg (1991) stabilized the color of freshly cut meat via treatment 

with cooked-cured meat pigments encapsulated in food grade carbohydrates.  The color 

of the treated meat was comparable to meat treated with nitrite, but without the fear of the 

production of carcinogenic nitrosamines.  Encapsulation can also be used to protect 

against some unwanted flavors that are associated with the use of nutritionally valuable 

ingredients.  Thiamine, which gives food products a fishy, yeasty odor, was successfully 

encapsulated in a matrix of cellulose derivatives and hydroxylated lipids which allowed 

 17



 

use of the nutrient in a bioavailable form without the less than desirable flavor and odor 

(Hall et al., 1980). 

In some cases, one food product will receive a great deal of attention from those 

who encapsulate ingredients, as is the case with chewing gum.  The goal of using 

encapsulation in chewing gum is twofold; providing stability to the relatively unstable 

sweeteners used in the gum whilst prolonging their sweet flavor (Cea et al., 1983; Wei et 

al. 1986; Yang et al., 1988; Schobel et al., 1986; Cherukuri et al., 1989; Cherukuri et al., 

1990; Hoashi, 1989; Levine et al., 1992).  Aspartame, the non-caloric sweetener of 

choice in many chewing gums due to the lack of a bitter aftertaste often associated with 

the use of certain artificial sweeteners, is unstable at high temperatures and prone to 

hydrolytic breakdown.  Several encapsulation methods have been proposed to overcome 

these shortcomings.  Cea, et al. (1983) proposed a variety of wall materials including 

cellulose ethers or esters, starches, gums, gelatin, vinyl polymers, and zeins to protect the 

aspartame.  Both low and high molecular weight polyvinyl acetate in combination with a 

hydrophobic plasticizer or an emulsifier have been proposed as encapsulation medium 

(Yang, 1988; Cherukuri et al., 1989).  The addition of the emulsifier is hoped to further 

protect the encapsulated sweetener by retarding the hydrolysis of the shell material 

(Cherukuri et al., 1989).  Schobel et al. (1986), on the other hand, proposed a 

hydrophobic polymer and hydrophobic plasticizer for similar reasons.  Wie et al. (1986) 

proposed a matrix of encapsulated sweetener in an elastomer, elastomer solvent, and wax 

shell would be best to prolong sweetness.  A second encapsulation step, which would 

provide an outer coating to the layer in which the aspartame is encapsulated, was 
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suggested to improve stability and flavor release characteristics (Cherukuri et al., 1990; 

Levine et al., 1992).  

Metal Nanoparticles as Novel Carrier Systems 

Metal nanoparticles, constructed from metals such as gold, silver, and magnetic 

metals like iron oxide, have many potential uses in the biomedical field.  The 

antimicrobial activity of silver has long been utilized in the treatment of wounds and 

during surgical procedures to prevent bacterial infections (Fox Jr. et al., 1974; Bosetti et 

al., 2002; Alt et al., 2004).  The antimicrobial activity of silver is dependent upon it being 

present in its ionic form.  Silver ions interact with the cell membrane, competing with 

other compounds for binding sites, and internal compounds, particularly sulfur and 

phosphorous containing compounds, like DNA, which becomes condensed, preventing 

replication (Brown and Anderson, 1968; Doyle et al., 1980; Feng et al., 2000; Morones 

et al., 2005).  Silver nanoparticles able to produce ionic silver also demonstrate 

antimicrobial activity (Lee and Jeong, 2004; Morones et al., 2005; Cho et al., 2005; 

Sondi and Salopek-Sondi, 2004).  The apparent lack of toxicity of silver and silver ions 

combined with this antimicrobial activity makes incorporation of silver nanoparticles in 

bone cement and surgical devices a tool in combating nosocomial infections (Berger et 

al.¸1976; Bosetti et al., 2002; Alt et al., 2004; Lee and Jeong, 2004).  Silver nanoparticles 

have also shown antimicrobial activity against HIV-1 via post infection reduction in T-

cell apoptosis through an unknown mechanism (Sun et al., 2005). 

Gold nanoparticles also have a variety of potential uses, most dealing with the 

interaction between the functional group attached to the nanoparticle and another 
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molecule.  Gold nanoparticles can be used gain insight into the mechanism by which a 

biochemical system functions, as seen with the binding of flavin, a cofactor in the 

flavoenzyme system (Bayir et al., 2006).  Binding the cofactor reduces it reduction 

potential, altering activity in the system.  IgG molecules attached to gold nanoparticles 

aid in the characterization of the interaction between the molecule and a target pathogen 

(Ho et al., 2004).  Attaching a molecule to a gold nanoparticle can alter its stability.  

Cytochrome c, when bound to mecapto-undecanoic acid functionalized gold 

nanoparticles increases its susceptibility to proteolysis (Worrall et al., 2006).  Attachment 

can also serve to strengthen a molecule, as in the case of stabilizing chymotrypsin at air-

water interfaces, protecting DNA from physical and enzymatic degradation, and 

stabilizing tetraaspartate peptide in water (Verma et al., 2004; Han et al., 2006a; Jordan 

et al., 2006).  The ability to bind DNA to functionalized gold nanoparticles may provide 

a vector for gene delivery for the purpose of gene therapy (Han et al., 2006a; Han et al., 

2006b; Goodman et al., 2006).  Han et al. (2006) showed that following binding, DNA 

can subsequently be released from the nanoparticle, in this case with light, and achieve a 

high level of transcription.  Gold nanoparticles can be used to exert control over 

enzymatic systems, whether by competing with the substrate for a binding site or by 

controlling the mechanism by which the enzyme regulates itself (You et al., 2006; 

Bayraktor et al., 2006). 

Several useful applications have also been devised for magnetic nanoparticles.  

The use of small magnetic particles has been examined for the cancer treatment known as 

hyperthermia, the raising of the temperature of cancerous cells to increase their 

susceptibility to chemotherapeutic agents.  A magnetic field can be used to cause the 
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nanoparticles to oscillate, causing them to generate heat.  Smaller particles are able to 

generate greater heat in a given amount of time than larger ones (Bonder et al., 2006).  

Magnetic nanoparticles show potential as recoverable and reusable enzyme carriers 

(Tsang et al., 2006).  Attachment of β lactamase to iron oxide nanoparticles was achieved 

without blocking the enzyme active site, allowing the attached enzyme to be as accessible 

as a free enzyme, a trait that is lacking when enzymes are attached to other solid 

substrates (Tsang et al., 2006).  Magnetic nanoparticles can also be used as contrast 

agents in magnetic resonance imaging (MRI), a powerful medical diagnostic tool 

(Mornet et al., 2006).   

Nanoparticle Applications  

Nanoparticles as Antimicrobial Carrier Systems 

Nanoparticle systems can be used to overcome some of the difficulties inherent in 

using antimicrobials to treat bacterial and parasitic infection.  By encapsulating the 

antimicrobial, the need to flood the body with the compound while trying to maintain the 

delicate balance between minimum effective dose against the infection and maximum 

safe dose for the infected organism is removed (Langar and Peppas, 1981).  

Nanoparticles can be designed to deliver the antimicrobial compound to the site of the 

infection.  This is particularly useful in the case of intracellular pathogens such as L. 

monocytogenes and Salmonella Typhimurium.  Encapsulated antibiotics can be 

endocytosed by the cell, allowing for the delivery of antibiotics to the interior of 

phagocytic cells, a place most could normally not reach on their own.   
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Nanoparticles synthesized using the polymer polyacrylamide have shown promise 

in the treatment of intracellular pathogens.  Polyacrylamide nanoparticles show a high 

binding capacity to several known antibiotics and are easily taken up by phagocytic cells 

(Courvreur et al., 1979).  This compound shows no toxicity at the cellular or whole 

organism level, only causing cell damage at levels above 1% (~2x104 particles/cell) 

(Kante et al., 1982).  Once introduced into an organism, polyacrylamide nanoparticles are 

quickly cleared from the bloodstream and accumulate in the liver (42.9%), the kidneys 

(5.42%) and the bone marrow (1.96%) (Krause et al., 1985).  The majority of the 

particles in the liver accumulate in the Kuppfer cells (Lenaerts et al., 1984).  Thus, this 

polymer meets the criteria set forth by Oppenheim (1981), they are non-toxic, 

biodegradable, and accumulate at the desired site of action. 

The ability of the nanoparticle to enter cells in which intracellular 

microorganisms have taken up residence allows for the release of antibiotics into areas 

that were formerly off limits to them.  By encapsulating ampicillin in 

polyisohexylcyanoacrylate (PIHCA) nanoparticles, Youssef et al. (1988) increased its 

therapeutic index 20 fold against a chronic L. monocytogenes infection in athymic nude 

mice.  The liver was completely sterilized after two 0.8 mg injections of PIHCA 

encapsulated ampicillin.  A 0.8 mg dose of ampicillin bound in PIHCA nanoparticles 

suppressed mortality in mice with acute fatal salmonellosis (Fattal et al., 1989).  This 

represents a 120-fold increase in the therapeutic index of ampicillin.  For unbound 

ampicillin, three 32 mg doses were needed to achieve the same results.  Complete 

sterilization of the liver was not achieved in the case of the Salmonella infection.  Other 
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beta lactam antibiotics, including benzathine penicillin G, have also been encapsulated in 

nanoparticles and shown in vitro antimicrobial activity (Santos-Magalhaes et al., 2000).   

The cytotoxicity of the compound being used must be taken into affect when 

designing a nanoparticle system.  Fawaz et al. (1997) encapsulated the synthetic drug 

ciprofloxacin in polyisobutylcyanoacrylate (PIBCA) nanoparticles.  Ciprofloxacin is a 

member of the fluoroquinolones, antimicrobial agents believed to work via the inhibition 

of DNA gyrase.  The hydrophobicity of the compounds prevents their effectiveness 

against intracellular pathogens.  When testing these nanoparticles against a 

Mycobacterium avium infection in a human macrophage culture, it was found that though 

nanoparticle associated ciprofloxacin was more effective than unbound ciprofloxacin, it 

was much less so than anticipated (Fawaz et al., 1998).  This was most likely due to the 

cyotoxicity of the PIBCA itself at ciprofloxacin concentrations greater than 8 μg/ml (80 

μg/ml PIBCA) (Fawaz  et al., 1998).   

Nanoparticles as Vaccine Carriers 

To overcome the difficulties and limitations of parental vaccine delivery, micro- 

and nanoparticles have received extensive study as an alternate method of vaccine 

delivery.  Delivery of vaccine loaded nanoparticles to the mucosa or skin are viable 

alternatives to intramuscular injection.  By encapsulating the vaccine in a biodegradable 

polymer, it is possible to protect it from the harsh conditions in the stomach and thus 

deliver a vaccine orally.  Kofler et al. (1997) orally administered 800 nm PLGA 

nanoparticles loaded with LW 50020, an immunomodulator containing lysates of 7 

common respiratory pathogens, to BALB/c mice.  The particles were taken up by the 
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Peyer’s Patches and mesenteric lymph nodes that line the small intestine.  The resulting 

immune response, consisting of increased levels of IgA and IgG, was significantly higher 

than the immune response following administration of comparable levels of free LW 

50020.  The uptake of orally administered chitosan nanoparticles by Peyer’s Patches has 

also been demonstrated (van der Lubben, 2001).  Oral delivery of the vaccines allows 

boosting of the immune response in the mucosa, the immune systems first line of defense 

against infection. 

The ability to encapsulate and deliver protein and DNA vaccines has also been 

demonstrated.  Radio labeled bovine serum albumin (BSA) was used to demonstrate the 

uptake of protein from nanoparticles in the small intestine (van der Lubben, 2001).  

Bivas-Benita et al. (2003) administered chitosan encapsulated Toxoplasma gondii GRA1 

protein and DNA vaccines orally to mice.  The mice showed increased production of 

IgG1 and IgG2a, immunoglobulins associated with an immune boosting TH2 response, 

as opposed to a protective TH1 response.  Oral administration of a plasmid encoding 8 

epitopes from Mycobacterium tuberculosis caused increased IFN-γ secretion in mice 

(Bivas-Benita et al., 2004).  The sub-400 nm particles elicited a stronger response than 

intramuscular vaccination with the plasmid.  In order to encapsulate DNA in PLGA 

nanoparticles, it is necessary to alter the charge of the polymer to avoid the use of harsh 

organic acids in the encapsulation procedure  (Kumar et al., 2004).  A blend of chitosan 

and PVAL was used to give a positive charge to the normally negatively charged 

nanoparticles.   
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Nanoparticles have also proved useful in the relatively new area of vaccine 

delivery through the skin.  Chitosan nanoparticles (200nm) with internally encapsulated 

or surface attached plasmid DNA (pDNA) were topically applied to mice (Cui et al., 

2001).  The mice showed increased production of luciferase, which is encoded on the 

plasmid, after 24 hours at a higher level than in mice treated with naked pDNA.  The IgG 

titer of the nanoparticle treated mice increased after 28 days, significantly (32 fold) more 

than in mice treated with naked pDNA.  Kohli and Alpar (2004) determined that the 

charge density determined the ability of nanoparticles to move through the skin.  Particles 

with a large surface area (50 nm) or a large number of charged groups (500 nm) were 

successful in crossing the skin. 

Nanoparticles as Cancer Treament Vehicles 

Paclitaxel is a strong anti-tumor agent.  Its cytotoxicity is due to its ability to 

promote the formation of microtubules in cells (Rowinsky et al., 1990).  By disrupting 

the cells ability to control the growth and placement of microtubules, paclitaxel disrupts, 

among other things, the shape, motility, and ability to undergo mitosis (Rowinsky et al., 

1990).  The low water solubility of this compound has led to its delivery as Taxol®, a 

nonaqueous formulation containing the compound and the dehydrated alcohol 

Cremophor EL®.  There have been several documented cases of hypersensitivity to this 

compound.  Many researchers have turned to nanoparticles to overcome this limitation. 

Several research groups have produced nanoparticle encapsulated paclitaxel.  Mu 

and Feng (2002, 2003) produced paclitaxel nanoparticles using the polymer PLGA.  The 

resultant nanoparticles showed a biphasic release pattern, with a small burst release 
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followed by a steady release (11% released after 30 days).  Burt et al. (1995) 

encapsulated the drug in a 50:50 mixture of PLA and ethelyene-vinyl acetate (EVA).  

This copolymer formulation had a high loading capacity (95-100% loading at 100 and 

1000 μg) and a slow release rate (15% released after 50 days).  Drug loaded PLA:EVA 

nanoparticles (6μg drug/ml polymer) showed localized activity in a chick chorioallantoic 

membrane (CAM) model.  The effectiveness of these nanoparticles in vivo would be 

lowered, however by the fact that they would be quickly removed from the blood stream 

as has been documented repeatedly with nanoparticles made with PLA as the polymer.  

In order to maintain a high level of nanoparticles in the bloodstream, paclitaxel was also 

encapsulated in PLA-MPEG nanoparticles (Dong et al., 2004).  The addition of MPEG to 

the nanoparticle surface increased the release rate dramatically (90% released over 14 

days), however. 

In vitro studies of PLGA encapsulated paclitaxel have been undertaken.  When 

tested against a human small cell lung cancer cell line (NCI-H69) showed that paclitaxel 

loaded PLGA nanoparticles showed a higher rate of activity than paclitaxel alone or as 

Taxol® (Fonseca et al., 2002).  A 25 μg/ml dose of Taxol® reduced the cancer cell 

viability 100%.  Paclitaxel loaded nanoparticles showed the same results with a dose of 

2.5 μg/ml, which represents a ten fold increase in efficacy.  The same amount of free 

paclitaxel only reduces the viability by 70%. 

Summary of Literature Review 

There are a wide range of antimicrobials available to control the growth of 

pathogenic bacteria, many of which are naturally found in foods or produced by 
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microorganisms utilized in food production.  There exists an inherent difficulty in 

applying these compounds to food, however.  Nanoparticles, produced using compounds 

ranging from food grade chemicals to biodegradable polymers to metals, have long been 

used by the pharmaceutical industry to overcome similar difficulties in the delivery of 

therapeutic agents.  Though nanoparticles as a delivery vessel have been used to some 

extent to deliver or protect food ingredients, no work has been done to test their viability 

as delivery agents for food antimicrobials.  By using nanoparticles to deliver the 

antimicrobial compound into the food product, it may be possible to overcome the 

limitations that have deterred the use of such compounds in the past.   
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CHAPTER 3 

MATERIALS AND METHODS 

Materials 

Carboxyl-terminated silver nanoparticles were purchased from Nanohorizons 

(University City, PA).  Nisin, corn oil, sodium hydroxide (NaOH), and hydrochloric acid 

(HCl) were purchased from Sigma Chemical Co. (St. Louis, MO).  200 Bloom Porkskin 8 

mesh gelatine was donated by Gelita (Souix City, IA).  L. monocytogenes strains J1-225, 

J2-020, J1-177, and C11-115 were obtained from the International Life Sciences Institute 

North America Listeria monocytogenes Strain Collection (Fugett et al., 2006).  

Escherichia coli strains 35150, 43895, 51685, and 700599 were purchased from the 

American Type Culture Collection (ATCC) (Manassas, VA).  Tryptic soy broth (TSB), 

tryptic soy agar (TSA), and yeast extract were purchased from BD Diagnostics (Franklin 

Lakes, NJ)  Double distilled and deionized water was used in all experiments.  

Attachment of Antimicrobials to Silver Nanoparticles 

Nisin and lysozyme were attached to the nanoparticles according to the method 

developed by Fischer et al. (2003).  Briefly, the antimicrobial and the silver nanoparticles 

were incubated together in distilled water at room temperature for 16 hours.  For the 

purpose of antimicrobial testing, the concentration ratio (in µg/ml) of nisin or lysozyme 

to silver was varied (1:0.167, 1:0.25, 1:0.5, 1:1, and 2:1) during the drug loading step.  

The concentration of nisin (5 µg/mL) or lysozyme (4 µg/mL) remained constant in each 

ratio while the concentration of silver nanoparticles varied.  Following antimicrobial 

loading, the size and charge of the antimicrobial/nanoparticle combination was measured 
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using a Nano Series Zetasizer (Malvern Instruments).  Attachment of the antimicrobials 

to the gold nanoparticles will be attempted using the same protocol. 

ζ-Potential 

The ζ-potential was determined by placing 1 ml samples in a disposable cuvette. 

The cuvette was inserted into the measurement chamber of a particle electrophoresis 

instrument (Nano Series Zetasizer, Malvern Instruments, Worcestershire, UK). The ζ-

potential was then determined by measuring the direction and velocity that the particles 

moved in the applied electric field. The Smoluchowsky mathematical model was used by 

the software to convert the electrophoretic mobility measurements into ζ-potential 

values.   

Particle Size Determination 

The particle size distribution of nanoparticles was determined using a dynamic 

light scattering technique (Nano Series Zetasizer, Malvern Instruments, Worcestershire, 

UK). 1.0 ml samples, were placed in disposable cuvettes and inserted into the 

measurement chamber. The Sauter mean diameter (d32) of the samples was determined 

from the particle size distribution as:  

∑
∑=

ii

ii

Nd
Nd

d 2

3

32  (1) 

where N is the number of particles that had a particle diameter of d. 
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Bacterial Growth Conditions 

Four strains of E. coli (F4546, H1730, E0019, and 932) and four strains of L. 

monocytogenes (Scott A, 310, 108, and 101) obtained from the University of Tennessee 

Department of Food Science and Technology culture collection were maintained at 4°C 

on tryptic soy agar (TSA) or tryptic soy agar with yeast extract (TSAYE) respectively.  

Tryptic soy broth (TSB) or tryptic soy broth with yeast extract (TSBYE) was inoculated 

with E. coli or L. monocytogenes and incubated at 32°C for 24 hours and subcultured for 

an additional 18 hours.  Cultures were diluted to approximately 104 CFU/mL prior to use.   

Antimicrobial Assay 

The antimicrobial activity of the nanoparticles and nanoparticle/antimicrobial 

combinations was determined via a microdilution assay in 96 well microtiter plates.  120 

µL of the bacteria in double strength TSB or double strength TSBYE and 120 µL of the 

silver nanoparticle solution were added to the wells.  Antimicrobial only controls and 

silver nanoparticles were tested via a 12 fold 1:1 dilution which allowed testing at 

concentration ranging from 215 µg/mL to 0.1µg/mL.  Silver nanoparticle/antimicrobial 

combinations were tested via a 5 fold 1:1 dilution series.  Microtiter plates were 

incubated at 32°C and 20°C.  Optical density readings were taken at 630 nm (OD630) at 

hours 0, 3, 6, 12, 24, and 48 using a BIO-TEK Automated Plate Reader.  Minimum 

inhibitory concentration (MIC) was determined as the lowest concentration at which no 

bacterial growth was observed.   
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Emulsion Preparation  

An emulsifier solution was prepared by dispersing 0.5 wt % pork gelatin into 

water and gently heating to insure gelatin went into solution.  The solution was stirred 

overnight to insure hydration of the protein.  A primary emulsion was prepared by 

homogenizing 2 wt % corn oil with 98 wt % aqueous emulsifier solution in a blender 

followed by three passes through a microfludizer (Microfluidics 110L, Microfluidics 

Corp., Newton MA) at 9000 psi.  The pH of the emulsion was adjusted to pH 7 using 

NaOH and HCl solutions.  An aqueous nisin solution was prepared at a concentration of 

5120 μg/ml and the pH was adjusted to pH 7 using an NaOH solution.  The primary 

emulsion was diluted with the aqueous nisin solution to form secondary emulsions over a 

range of nisin concentrations. 

Antimicrobial Assay   

Four strains of E. coli (35150, 43895, 51685, and 700599) and four strains of L. 

monocytogenes (J1-225, J2-020, J1-177, and C11-115) were maintained at 4°C on TSA 

or tryptic soy agar with yeast extract (TSAYE) respectively.  TSB or tryptic soy broth 

with yeast extract (TSBYE) was inoculated with E. coli or L. monocytogenes and 

incubated at 32°C for 24 hours and subcultured for an additional 18 hours.  Cultures were 

diluted to approximately 104 CFU/mL prior to use. The minimum inhibitory 

concentration (MIC) of the double layered emulsion was determined according to the 

National Committee for Clinical Laboratory Standards (NCCLS, 1990) agar dilution 

method.  TSAYE was autoclaved and allowed to cool in a water bath until it reached a 

temperature of 50 ºC.  The double layered emulsion, the primary emulsion, and free nisin 

were added to the tempered agar at concentrations ranging from 128 μg/ml to 0.5 μg/ml.   
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Bacteria were applied to the plate via spot inoculation.  Briefly, plates were inoculated 

with three 10 μL drops containing approximately 104 CFU/ml of the strains being tested.  

The plates were incubated at 32 ºC for 24 hours.  The MIC was recorded as the lowest 

concentration at which no growth was observed. 
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CHAPTER 4 

ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES CARRYING 

NISIN AND LYSOZYME AGAINST ESCHERICHIA COLI O157:H7 AND 

LISTERIA MONOCYTOGENES 

Abstract 

The efficacy of nisin and lysozyme attached to silver nanoparticles against strains 

of Listeria monocytogenes (Scott A, 310, 108, and 101) and Escherichia coli (F4546, 

H1730, E0019, and 932) was investigated.  The effects of varying the antimicrobial to 

nanoparticle ratio and the effect of temperature on efficacy were tested.  Silver 

nanoparticles, which have been shown to have antimicrobial activities elsewhere, did not 

inhibit growth of any strain tested at any temperature.  The efficacy of nisin, a strong 

inhibitor of L. monocytogenes growth, was increased when attached to the nanoparticles.  

The antimicrobial/nanoparticle combination showed an increased efficacy at lower 

temperatures compared to growth at 32°C.  Lysozyme, also a strong inhibitor of L. 

monocytogenes growth, showed no antimicrobial activity against any strain when 

attached to the nanoparticles.  Neither antimicrobial inhibited E. coli growth when 

attached to the nanoparticles.  The change in antimicrobial activity of both nisin and 

lysozyme when attached to nanoparticles is attributed to the mechanism by which the 

antimicrobial inhibits growth. 

Introduction 

Food borne pathogens pose a significant health risk to consumers and a potential 

for lost capital to the food industry.  Though food producers go to great lengths to prevent 

 33



 

microbial contamination of their products, the nature of the product and the growth 

capabilities of the organisms often defeat even their best efforts.  In 2005, nearly 17,000 

cases of food borne illness were identified in the FoodNet surveillance population 

(roughly 15% of the US population) (Anonymous, 2006c). Listeria infections, though 

lower than during the period lasting from 1996-1998, are up compared to the lowest 

known number of cases four years ago (Anonymous, 2006c).  Recent massive recalls of 

deli meats due to L. monocytogenes contamination (Anonymous, 2002) and fresh bagged 

spinach due to E. coli contamination (Anonymous, 2006d) show that continuing efforts 

are needed to insure the safety of the food supply. 

There are a number of antimicrobials available that inhibit the growth of food 

borne pathogens.  Several of these antimicrobials, like nisin and lysozyme, have GRAS 

(generally recognized as safe) status that allows for their use in certain food products. 

Unfortunately, these antimicrobials are far less effective in heterogeneous food products 

than they are in homogenous microbiological laboratory media.  Nisin activity, for 

example, has been shown to be greatly reduced in several meat products (Murray and 

Richard, 1997; Aasen et al., 2003; Grisi and Gorlach-Lira, 2005; Ghalfi et al., 2006; 

Stergiou et al., 2006).  Interfering food constituents include glutathione (Stergiou et al., 

2006), high salt concentration (Boziaris and Nychas, 2006), nitrates (Ghalfi et al., 2006), 

fat content (Benech et al., 2002b; Ghalfi et al., 2006), and proteolytic enzymes (Murray 

and Richard, 1997; Aasen et al., 2003). 

In order to effectively use these antimicrobials in a food product, it is necessary to 

deliver them in a manner by which the antimicrobial can interact with the microorganism 
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without interference from the product itself.  Several novel delivery systems have been 

studied for this purpose.  The first type of delivery system involves the incorporation of 

antimicrobials into films that are then applied to a food surface.  Nisin has been 

incorporated into edible cellulose films (Coma et al., 2001), corn zein films (Hoffman et 

al., 2001), and polyethylene based plastic films (Siragusa et al., 1999).  Antimicrobial 

activity was maintained in each case.  The second delivery method involves the use of 

additional compounds as carriers of the antimicrobials.  Encapsulation in liposomes has 

been shown to increase the efficacy of nisin in laboratory media (Were et al., 2004) and 

in cheddar cheese (Benech et al., 2002a).  Surfactant micelles have also been shown to 

increase the antimicrobial efficacy of the essential oil components eugenol and carvacrol 

over a range of temperatures and pH (Gaysinsky et al., 2005a; Gaysinsky et al., 2005b). 

The pharmaceutical industry faces similar challenges in the delivery of 

antimicrobial compounds into their patients.  Compounds must be delivered in a dose 

potent enough to kill the microorganism, but mild enough to cause no harm to the patient 

(Langar and Peppas, 1981).  One strategy used to overcome this difficulty is the 

attachment of therapeutic agents to nanoparticles (Langer and Peppas, 1981; Oppenheim, 

1981; Soppimath et al., 2001).  A wide range of starting materials are used to construct 

the nanoparticles, from biodegradable polymers like polylactic acid (PLA) (Soppimath et 

al., 2001) to metals, like silver or gold (Sondi and Salopek-Sondi, 2004; Aymonier et al., 

2002). 

Nanoparticles have seen limited use in the food industry as a means to deliver 

ingredients into food products (Shahidi and Han, 1993).  Encapsulation methods can be 
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used to protect volatile flavor components that are often lost when a product is heated or 

dried (Kopelman et al., 1997) or to allow an ingredient, like artificial sweeteners in gum, 

to be released slowly over time (Cherukuri et al., 1989).  It is the goal of this study to 

develop a nanoparticle delivery system for the food antimicrobials nisin and lysozyme.  

To this end, we will use nanoparticles made from silver, which in and of its self is known 

to have antimicrobial properties (Brown and Anderson, 1968; Zhao and Stevens, 1998; 

Sondi and Salopak-Sondi, 2004; Morones et al., 2005)  

Materials and Methods 

Attachment of antimicrobials to silver nanoparticles 

Carboxyl-terminated silver nanoparticles were purchased from Nanohorizons 

(University City, PA).  Nisin and lysozyme (MP Biomedicals, Aurora, OH) were 

attached to the nanoparticles according to the method developed by Fischer et al. (2003).  

Briefly, the antimicrobial and the silver nanoparticles were incubated together in distilled 

water at room temperature for 16 hours.  For the purpose of antimicrobial testing, the 

concentration ratio (in µg/ml) of nisin or lysozyme to silver was varied (1:0.167, 1:0.25, 

1:0.5, 1:1, and 2:1) during the drug loading step.  The concentration of nisin (5 µg/mL) or 

lysozyme (4 µg/mL) remained constant in each ratio while the silver concentration was 

varied.  Following antimicrobial loading, the size of the antimicrobial/nanoparticle 

combination was measured using a Nano Series Zetasizer (Malvern Instruments). 

Bacterial Growth Conditions. 

Four strains of E. coli (F4546, H1730, E0019, and 932) and four strains of L. 

monocytogenes (Scott A, 310, 108, and 101) obtained from the University of Tennessee 
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Department of Food Science and Technology culture collection were maintained at 4°C 

on tryptic soy agar (TSA) or tryptic soy agar with yeast extract (TSAYE) (Difco, Detroit, 

MI) respectively.  Tryptic soy broth (TSB) or tryptic soy broth with yeast extract 

(TSBYE) (Difco, Detroit, MI) was inoculated with E. coli or L. monocytogenes and 

incubated at 32°C for 24 hours and subcultured for an additional 18 hours.  Cultures were 

diluted to approximately 104 CFU/mL prior to use.   

Antimicrobial Assays 

The antimicrobial activity of the nanoparticles and nanoparticle/antimicrobial 

combinations was determined via a microdilution assay in 96 well microtiter plates.  120 

µL of the bacteria in double strength TSB or double strength TSBYE and 120 µL of the 

silver nanoparticle solution were added to the wells.  Antimicrobial only controls and 

silver nanoparticles were tested via a 12 fold 1:1 dilution which allowed testing at 

concentration ranging from 215 µg/mL to 0.1µg/mL.  Silver nanoparticle/antimicrobial 

combinations were tested via a 5 fold 1:1 dilution series.  Microtiter plates were 

incubated at 32°C and 20°C.  Optical density readings were taken at 630 nm (OD630) at 

hours 0, 3, 6, 12, 24, and 48 using a BIO-TEK Automated Plate Reader.  Minimum 

inhibitory concentration (MIC) was determined as the lowest concentration at which no 

bacterial growth was observed.  All assays were run in duplicate. 

Results 

Size of Silver Nanoparticles with Attached Antimicrobials.   

The sizes of the silver nanoparticles with attached nisin and lysozyme are shown 

in Table 1.  The silver nanoparticles without the attached antimicrobial range in size from 
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20-30 nm.  The nanoparticles with attached nisin ranged in size from around 280-340 nm.  

The nanoparticles with attached lysozyme were smaller, ranging in size from 45-160 nm.  

Both antimicrobials showed an increase in size as the concentration ratio decreased from 

6:1 to 2:1 (290 to 337 nm with nisin, 45 to 160 nm with lysozyme), a decrease in size 

from 2:1 to 1:1 (337 to 283 nm with nisin, 160 to 60 nm with lysozyme), and an increase 

in size from 1:1 to 1:2 (283 to 329 nm with nisin, 60 to 140 nm with lysyozyme). 

Antimicrobial Activity of Silver Nanoparticles  

Figure 1 shows the growth of L. monocytogenes Scott A (A) and E. coli strain 

H1730 (B) in the presence of silver nanoparticles at 32°C.  No growth inhibition was 

observed in either strain at silver concentrations up to 215 μg/mL.  Both strains showed 

growth levels comparable to bacteria only controls (data not shown).  These results are 

typical for all strains tested at either temperature.   

Antimicrobial Activity of Nisin Attached to Silver Nanoparticles 

Table 2 shows the MIC’s obtained in the antimicrobial assays performed with 

nisin and nisin attached to silver nanoparticles.  Nisin alone inhibited growth of three 

strains of L. monocytogenes at a concentration of 21 μg/mL, with Scott A being the most 

resistant strain with an MIC of 41 μg/mL.  When loaded, the silver nanoparticles, at the 

highest concentration, were only loaded with a 5 µg/ml dose of nisin.  Any inhibition 

would therefore be seen as an increase in efficacy.  The efficacy of the silver 

nanoparticle/nisin combination increased against three strains, 101 (Figure 2A), 310 

(Figure 2B), and 108.  Scott A (Figure 2C) was again the most resistant strain.  Nisin is 

not a strong inhibitor of E. coli growth and attachment did not increase its ability to 
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inhibit growth.  There was, however, a reduction in strength of growth seen in strain 

F4546 (Figure 2D).  Reduction of the antimicrobial to nanoparticle ratio caused a 

decrease in efficacy against three of the four L. monocytogenes strains.  Only strain 101 

did not show decreased efficacy when the nisin to silver ratio was decreased.  There was 

a marked increase in antimicrobial activity of the silver nanoparticles with attached nisin 

at 20°C against both L. monocytogenes and E. coli when compared to the activity at 32°C 

(Figure 3).  

Antimicrobial Activity of Lysozyme Attached to Silver Nanoparticles 

Lysozyme did not inhibit the growth of L. monocytogenes and E. coli at high or 

low temperature when attached to the silver nanoparticles.  Lysozyme is a strong 

inhibitor of L. monocytogenes growth.  The typical MIC of lysozyme against L. 

monocytogenes was found to be 2.5 μg/mL.  Strain 101 was the most susceptible to 

lysozyme, with an MIC of 0.5 μg/ml.  Nanoparticles were prepared with a starting 

lysozyme concentration of 4 μg/mL, a concentration high enough to inhibit growth in all 

strains testd.  When attached to silver nanoparticles, lysozyme lost the ability to inhibit 

the growth of these organisms (data not shown).  Temperature did not effect the efficacy 

of the lysozyme/nanoparticle combinations.  Lysozyme, which is not a strong inhibitor of 

E. coli growth, did not inhibit growth of any strain of E. coli at any antimicrobial to silver 

nanoparticle ratio tested at either temperature. 

Discussion 

Silver nanoparticles were chosen as a delivery system for food antimicrobials due 

to the long known antimicrobial activity of silver (Russell and Hugo, 1994).  This 
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antimicrobial activity has been exploited in the medical profession to prevent infection on 

burns wounds and in association with surgical implants (Fox et al., 1974; Bosetti et al., 

2002; Alt et al., 2004) and has been examined as a packaging implement to reduce 

bacterial growth in apple juice (Nobile et al., 2004).  The silver nanoparticles in our 

study showed no antimicrobial activity against L. monocytogenes or E. coli. 

The antimicrobial activity of silver is dependent on its state.  Though the 

mechanism of action is not completely understood, the antimicrobial activity of silver is 

attributed to it being in its ionized state.  Silver ions being positively charged have been 

shown to bind to negatively charged compounds such as peptidoglycan, techoic acid, and 

protein thiol groups, disrupting membrane and protein activity in the cell (Doyle et al., 

1980; Beveridge and Murray, 1980; Feng et al., 2000).  The silver nanoparticles used in 

this study, with attached carboxyl group, were not used at a pH which would allow them 

to exist in an ionic state. Thus the absence of any antimicrobial activity is not a surprise.  

Interestingly, Sondi and Salopek-Sondi (2004) showed that silver nanoparticles, 

regardless of charge, inhibited E. coli growth.  This activity was limited to solid media.  

Nanoparticles in liquid media only delayed growth, which resumed as nanoparticles were 

removed from the media via interaction with dead cellular material.  Though no such 

growth delay was noted in this case, solid media was not used to determine if the liquid 

media was in fact reducing antimicrobial activity.  Panàček et al. (2006) demonstrated 

that silver nanoparticle size effects antimicrobial activity.  The relative uniform size of 

the nanoparticles used in this study did not allow this to be examined.   
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Lysozyme, an enzyme that occurs naturally in many food products, inhibits the 

growth of Gram positive bacteria by hydrolyzing the 1, 4 ß-D-linkage between N-

acetylhexosamines in the peptidoglycan layer (Proctor and Cunningham, 1988).  

Lysozyme inhibited L. monocytogenes at low concentrations.  E. coli growth was not 

inhibited by lysozyme, which is not an effective inhibitor of Gram negative bacterial 

growth due to the protection provided by lipopolysaccharide in the outer membrane 

(Ohno and Morrison, 1989).  When attached to silver nanoparticles, lysozyme showed no 

inhibitory activity against any strain of L. monocytogenes or E. coli at any concentration 

ratio or temperature tested.  This is likely due to the interaction between the enzyme and 

the nanoparticle blocking or altering the active site of the enzyme in such a way that the 

enzyme activity is lost.  Fischer et al. (2002) found that similarly binding the enzyme α-

chemotrypsin to gold nanoparticles led to the eventual denaturation of the enzyme. 

Like lysozyme, nisin, which is a strong inhibitor of Gram positive bacterial 

growth, is not effective in controlling the growth of Gram negative bacteria.  Herein, 

nisin did not inhibit the growth of any E. coli strain.  Attachment of nisin to sliver 

nanoparticles did not enhance it efficacy against E. coli at 32°C.  Two strains, E0019 and 

F4546, were, however inhibited at lower temperatures.  A marked increase in efficacy 

was observed against L. monocytogenes.  Growth inhibition was observed when silver 

nanoparticles loaded with as little as 5 µg/mL of nisin, a 4 fold increase in efficacy when 

compared to nisin alone. 

This increased efficacy may also be explainable via the mechanism by which 

nisin inhibits growth.  Nisin inhibits bacterial growth by forming pores in the bacterial 
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membrane, which causes ATP efflux, reduced intracellular ATP concentration, and a 

dissipated proton motive force (Winkowski et al., 1996).  Pore formation is accomplished 

via the barrel-stave method (Ojcious et al., 1991).  Briefly, the amphiphilic nisin 

molecule attaches to the membrane through interactions between the negatively charged 

phospholipid head groups and the positive arginine residues in the nisin molecule.  The 

nisin molecules are pulled into the membrane where they float around until contact with 

other nisin molecules via hydrophobic interaction causes formation of transient pores 

(Winkowski et al., 1996).  The assumed ability of the silver nanoparticles to deliver a 

more concentrated dose of nisin molecules to a smaller area of the membrane increases 

the likelihood of nisin-nisin interaction and thus pore formation in the membrane. Figure 

4 demonstrates this proposed mechanism of action.  This increased interaction would 

allow increased efficacy against the bacterium with a smaller initial dose.   

Increased efficacy of nisin and nisin/nanoparticle combinations was observed at 

lower temperatures.  This is a commonly observed phenomenon when antimicrobials are 

used to inhibit L. monocytogenes growth at low temperatures.  Membrane fluidity and 

phospholipids content have been shown to affect the efficiency of nisin (Mazzotta and 

Montville, 1997; Crandall and Montville, 1998; Ming and Daeschel, 1993; Li et al., 

2002).  Juneja and Davidson (1993) observed similar results with propyl paraben.  The 

ability of L. monocytogenes to grow at low temperatures is due, at least in part, to the 

ability to change the fatty acid composition of the membrane of fluidity, in effect 

increasing the membrane fluidity (Annous et al., 1997). 
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Varying antimicrobial to nanoparticle concentrations were used to determine the 

effect of the nanoparticle charge on antimicrobial activity.  Some decrease in efficacy 

was observed when nanoparticle to antimicrobial concentration increased.  It is thought 

that this is due to repulsion between the negatively charged head groups in the 

membrane.  More experiments will be needed to determine how the antimicrobial is 

loading on the nanoparticle and in turn interacting with the membrane to fully understand 

the effects of the nanoparticle delivery.  Further studies will also be needed to determine 

if the increased efficacy demonstrated in this study will occur in an actual food product. 

Conclusions 

Silver nanoparticles were examined for their ability to deliver the food 

antimicrobials nisin and lysozyme.  Attaching nisin to the nanoparticles increased its 

efficacy, suggesting that silver nanoparticles are a potential delivery mechanism for this 

antimicrobial.  Lysozyme, however, lost its ability to inhibit microbial growth when 

attached to the nanoparticles.  Further research is needed to characterize the interaction 

between the antimicrobial, nanoparticle, and microorganism.  The ability of this 

increased efficacy to be duplicated in an actual food product will also be examined.   
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CHAPTER 5 

DOUBLE LAYER EMULSION DROPLETS AS A POTENTIAL DELIVERY 

VESSEL FOR THE FOOD ANTIMICROBIAL NISIN 

Abstract 

Layer-by-layer deposition is the process by which alternating layers of positively 

and negatively charged particles are deposited on a charged surface to form thin film 

structures.  This technique has also proven useful in the building of layers of charged 

emulsifiers on the surface of emulsion droplets, conferring added protection against 

aggregation in the face of changes in temperature, pH, salt concentration, and moisture 

content, as well as improved protection against lipid oxidation.  Using the layer-by-layer 

deposition technique, we created a double layered emulsion in which the second layer 

was composed of the food antimicrobial nisin.  This antimicrobial, though a potent 

inhibitor of the foodborne pathogen Listeria monocytogenes in laboratory media, often 

proves ineffective in food products due to interactions with food constituents reducing 

the antimicrobial activity of the molecule.  The goal of this project was to use the double-

layered emulsion as a delivery system to overcome this deficiency.  Binding the nisin to 

the emulsion droplet, however, decreased its antimicrobial activity substantially, most 

likely due to strong interactions with the primary protein emulsifier or a reduction in the 

charge of the nisin molecule itself as part of the attachment process.  The addition of 

EDTA, which has been shown to increase effectiveness of certain antimicrobials against 

Gram-negative bacteria, had no effect on the efficacy of the nisin loaded emulsion 

droplets. 
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Introduction 

Decher and Hong (1991a) described layer-by-layer deposition as a technique by 

which thin films of alternating layers of positively and negatively charged molecules are 

deposited onto a charged surface via electrostatic interactions.  These molecules, whether 

bipolar amphiphiles or multipolar electrolytes, can be brought onto the charged surface 

by dipping the surface into aqueous solutions containing the charged molecules (Decher 

and Hong, 1991a; Decher and Hong, 1991b).  The layer-by-layer deposition process has 

been used to build multilayer films on solid micro- and nanosized particles as well as flat 

surfaces (Pommersheim et al., 1994; Caruso et al., 1998; Sukorukov et al., 1998; Caruso 

and Möhwald, 1999a; Caruso and Möhwald, 1999b).  This method allows for the 

building of functionalized surfaces on particles with nanometer-level control over the 

thickness of the deposited layer (Pommersheim et al., 1994; Caruso and Möhwald, 

1999a).  One key use of this technique is to design particles that exhibit biological 

activity, including attachment of antibodies like immunoglobulin G (IgG) and fluorescent 

labels for immunoassays or the attachment of active enzymes for variety of enymatic 

reactions (Pommersheim et al., 1994; Yang et al., 2001).   

The application of the layer-by-layer technique to emulsion droplets makes this 

technique potentially useful to the food industry (Guzey and McClements, 2006).  In the 

formation of multiple layered emulsions, a primary emulsion is first created by 

homogenizing oil, water, and a charged emulsifier, which acts as the first layer.  The 

second layer is added by diluting the primary emulsion in an aqueous solution containing 

oppositely charged molecules that will attach to the primary charged emulsifier (Ogawa 

et al., 2003a).  The addition of two or more layers to the oil droplet conveys stability 
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against aggregation in the presence of environmental stresses encountered during the 

processing of the food product, including changes in temperature, salt concentration, pH, 

and moisture content (Aoki et al., 2005; Klinkersorn et al., 2005a; Surh et al., 2005).  

Coating the oil droplets with multiple layers of emulsion droplets has also been shown to 

slow lipid oxidation (Ogawa et al., 2003; Klinkerson et al., 2005a).  The goal of this 

study was to use the layer-by-layer deposition technique to assemble emulsion droplets 

with nisin, a generally recognized as safe (GRAS) antimicrobial, as the secondary 

emulsifier for the purpose of antimicrobial delivery. 

 Nisin is a bacteriocin, a peptide produced by lactic acid bacteria to inhibit the 

growth of similar bacteria that compete for their resources, such as the foodborne 

pathogen Listeria monocytogenes   (Harris et al., 1989; Ukuku and Shelef, 1997; Ennahar 

et al., 2000; Mota-Meira et al., 2000).  Ethylenediaminetetraacetic acid (EDTA), used in 

conjunction with several antimicrobials, including nisin, has been shown to have a 

synergistic effect in regard to the efficacy of the antimicrobial against foodborne Gram-

negative pathogens like E. coli via disruption of the outer membrane (Jay, 2000; Branen 

and Davidson, 2004; Lambert et al., 2004).  L. monocytogenes is problematic to food 

manufacturers in that it can grow at low temperatures, at high salt concentrations, and at 

low oxygen levels, nullifying many of the methods by which manufacturers limit the 

growth of microorganisms in their products (Cole et al., 1990; Grau et al., 1992; Samelis 

and Metaxopoulus, 1999).  Though nisin inhibits the growth of this organism, its use in 

food products is limited due to the loss of efficacy caused by interactions between nisin 

and the constituents of the food matrix into which it is introduced (Murray and Richard, 
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1997; Aasen et al., 2003; Grisi and Gorlach-Lira, 2005; Boziaus and Nychas, 2006; 

Ghalfi et al., 2006; Stergiou et al., 2006). 

To overcome the loss of antimicrobial activity due to the interference of the food 

product itself, research has turned to the development of delivery systems to deliver the 

antimicrobial into the product in a way that it still remains active against the target 

pathogens.  Several novel delivery systems have been studied for this purpose.  The first 

type of delivery system involves the incorporation of antimicrobials into films that are 

then applied to a food surface.  Nisin has been incorporated into edible cellulose films 

(Coma et al., 2001), corn zein films (Hoffman et al., 2001), and polyethylene based 

plastic films (Siragusa et al., 1999).  Antimicrobial activity was maintained in each case.  

The second delivery method involves the use of additional compounds as carriers of the 

antimicrobial.  Encapsulation in liposomes has been shown to increase the efficacy of 

nisin in laboratory media (Were et al., 2004) and in cheddar cheese (Benech et al., 2002).  

Surfactant micelles have also been shown to increase the antimicrobial efficacy of the 

essential oil eugenol over a range of temperatures and pH (Gaysinsky et al., 2005a; 

Gaysinsky et al., 2005b).  By attaching nisin to a primary emulsifier, in this case the 

protein pork gelatin, we hypothesized that emulsion droplets may act as a delivery 

vehicle for nisin and thus overcome the difficulties inherent in the use of this 

antimicrobial in a food system.   
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Materials and Methods 

Materials   

Nisin, corn oil, sodium hydroxide (NaOH), hydrochloric acid (HCl), and EDTA 

were purchased from Sigma Chemical Co. (St. Louis, MO).  200 Bloom Porkskin 8 mesh 

gelatine was donated by Gelita (Souix City, IA).  Distilled and deionized water was used 

for the preparation of all solutions.  L. monocytogenes strains J1-225, J2-020, J1-177, and 

C11-115 were obtained from the International Life Sciences Institute North America 

Listeria monocytogenes Strain Collection (Fugett et al., 2006).  Escherichia coli strains 

35150, 43895, 51685, and 700599 were purchased from the American Type Culture 

Collection (ATCC) (Manassas, VA).  Tryptic soy broth (TSB), tryptic soy agar (TSA), 

and yeast extract were purchased from BD Diagnostics (Franklin Lakes, NJ). 

 

Emulsion Preparation   

An emulsifier solution was prepared by dispersing 0.5 wt % pork gelatin into 

water and gently heating to insure gelatin went into solution.  The solution was stirred 

overnight to insure hydration of the protein.  A primary emulsion was prepared by 

homogenizing 2 wt % corn oil with 98 wt % aqueous emulsifier solution in a blender 

followed by three passes through a microfludizer (Microfluidics 110L, Microfluidics 

Corp., Newton MA) at 9000 psi.  The pH of the emulsion was adjusted to pH 7 using 

NaOH and HCl solutions.  An aqueous nisin solution was prepared at a concentration of 

5120 μg/ml and the pH was adjusted to pH 7 using NaOH and HCl solutions.  The 

primary emulsion was diluted with the aqueous nisin solution to form secondary 

emulsions over a range of nisin concentrations. 
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Particle Size and ζ -Potential Measurement   

Particle size and ζ- potential measurements were conducted using a Nano Series 

Zetasizer (Malvern Instruments).  Concentrated emulsions were diluted to a 

concentration of approximately 0.005 wt % prior to measurement.  Mean particle 

diameters were calculated as the average of three measurements with standard deviation.  

The ζ- potential measurements are reported as the average and standard deviation of three 

measurements. 

 

Antimicrobial Assay 

Four strains of E. coli (35150, 43895, 51685, and 700599) and four strains of L. 

monocytogenes (J1-225, J2-020, J1-177, and C11-115) were maintained at 4°C on TSA 

or tryptic soy agar with yeast extract (TSAYE) respectively.  TSB or tryptic soy broth 

with yeast extract (TSBYE) was inoculated with E. coli or L. monocytogenes and 

incubated at 32°C for 24 hours and subcultured for an additional 18 hours.  Cultures were 

diluted to approximately 104 CFU/mL prior to use.  The minimum inhibitory 

concentration (MIC) of the double layered emulsion was determined according to the 

National Committee for Clinical Laboratory Standards (NCCLS, 1990) agar dilution 

method.  TSAYE was autoclaved and allowed to cool in a water bath until it reached a 

temperature of 50 ºC.  The double layered emulsion, the primary emulsion, and free nisin 

were added to the tempered agar at concentrations ranging from 128 μg/ml to 0.5 μg/ml.  

EDTA was added to plates at concentrations ranging from 2048 μg/ml to 8 μg/ml.  EDTA 

was added to the double layered emulsion dilution series at 512 μg/ml and 256 μg/ml. 
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Bacteria were applied to the plate via spot inoculation.  Briefly, plates were inoculated 

with three 10 μL drops containing approximately 104 CFU/ml of the strains being tested.  

The plates were incubated at 32 ºC for 24 hours.  The MIC was recorded as the lowest 

concentration at which no growth was observed. 

 

Results 

Formation of double-layered emulsions   

Double layered emulsions were produced using the layer-by-layer depositioning 

technique.  The attachment of the second layer, the nisin, to the primary emulsifier pork 

gelatin was determined via ζ- potential measurements.  When an oppositely charged 

polymer is attached to the first layer, a reversal in the surface charge can typically be 

observed (Caruso et al. 1998).  Figure 5 shows ζ- potential measurements taken across a 

pH range for the primary emulsion (A) and the aqueous nisin solution (B).  In order to 

attach positively to charged emulsion droplets stabilized by gelatin, nisin in the aqueous 

solution must carry a negative charge.  Figure 5(B) indicates that the isoelectric point (pI) 

of nisin is approximately pH 5. Thus nisin was added to the pork gelatin emulsions at pH 

7 to obtain dual layered emulsion droplets. At pH 7 pork gelatin carruer a strongly 

positive charge while nisin carries a slightly negative charge.  The ζ- potential emulsion 

droplets stabilized by pork gelatin as a function of added nisin is shown in Figure 6.  The 

addition of the negatively charged nisin caused a strong decrease in the positive charge of 

the emulsion droplet suggesting at least a partial, if not full coverage of the positively 

charged primary emulsion layer.  A slight increase in droplet size was also observed 
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following addition of the nisin solution, from an average diameter of 322.33 ± 8.32 nm to 

338.33 ± 13.05 nm, which is characteristic after adsorption of a secondary layer. 

  

Antimicrobial Assays   

The results of the agar dilution assay are shown in Table 3.  Dilutions were 

prepared from an initial stock solution containing the emulsion plus nisin at a 

concentration of 1024 µg/ml, representing the concentration of nisin which caused the 

greatest amount of charge reduction in the primary protein emulsion layer (Figure 5).  

Nisin, not normally a strong inhibitor of E. coli growth, did not inhibit the growth of any 

strain tested at either pH whether alone or as the secondary layer on the corn oil droplet.  

Nisin alone inhibited three of the four L. monocytogenes strains tested, with strain J2-020 

showing resistance to the highest nisin concentration tested.  The results in Table 3 show, 

however, that corn oil droplets with a positively charged protein as the primary emulsifier 

did not act as a delivery vessel of antimicrobially active nisin.  The highest concentration 

of nisin in combination with the emulsion droplets, 128 µg/ml, only inhibited one strain, 

J1-177, at pH 6.  All other strains of L. monocytogenes tested grew at the highest nisin 

concentration, which is two to four times the MIC of the free nisin.  The addition of 

EDTA to the emulsion had no effect on the efficacy of the nisin against any of the strains 

tested (Table 4). 

 

Discussion 

The reduction in charge of the primary emulsifier demonstrated in Figure 5 

suggests that the emulsion droplets were successfully coated with the nisin as a 

 51



 

secondary emulsifier.  Caruso and Möhwald (1999) reported a complete charge reversal, 

as measured by ζ- potential, followed the addition of each oppositely charged layer on 

latex particles.  Klinkesorn et al. (2005a), Klindersorn et al. (2005b) and Aoki et al. 

(2005) showed similar changes in ζ- potential when adding layers to emulsion droplets.  

Ogawa et al. (2003) found a small increase in particle diameter following addition of the 

secondary layer similar to the size increase of emulsion droplets upon addition of nisin in 

this study.  

The attachment of the nisin to the protein emulsifier layer greatly decreased its 

antimicrobial efficacy, however.  As previously stated, nisin activity is greatly reduced in 

food products due to the interaction of the antimicrobial with the constituents of the 

product, including lipids (Benech et al., 2002; Ghalfi et al., 2006), salts (Boziaris and 

Nychas, 2006), nitrates (Ghalfi et al., 2006), proteolytic enzymes (Murray and Richard, 

1997; Aasen et al., 2003), and proteins (Aasen et al., 2003; Stergiou et al., 2006).  Aasen 

et al. (2003) showed that more than 80% of the bacteriocins nisin and sakacin P added to 

chicken cold cuts and smoked salmon were absorbed into the protein matrix after 10 

minutes, making them unavailable for antimicrobial activity.  Stergiou et al. (2006) 

showed that lost nisin activity in meat products was due to the formation of bonds 

between nisin and glutathione in proteins.  Though the formation of a secondary nisin 

emulsion layer may have been successful, the binding of the nisin to the pork gelatin 

emulsifier may have caused the loss of antimicrobial activity. 

The loss of nisin activity may also be attributed to the reduction in charge.  Nisin 

activity is most likely charge dependent, with positive lysine residues in the nisin 

molecule interaction with the negatively charged phospholipids head groups in the 
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membrane (Abee, 1994; Moll et al., 1997).  The nisin molecules used in this study were 

either negatively charged when used at pH 7 (Figure 5 (B)) or have an approximate 

charge of zero when attached to the oil droplets (Figure 6).  Nisin susceptibility tests 

conducted at pH 7 showed no efficacy difference compared to nisin susceptibility at an 

unaltered pH (data not shown).  The net zero charge of the nisin molecule attached to 

emulsion droplet may have reduced the ability of the nisin molecule to interact with the 

bacterial membrane, thus reducing its ability to inhibit the growth of the L. 

monocytogenes strains.  The ability of EDTA to disrupt the outer membrane of Gram-

negative bacteria did not increase the efficacy of the nisin either, further supporting the 

molecules inability to interact with the bacterial membrane. 

 

Conclusions 

 A double layer emulsion was successfully constructed using pork gelatin as a 

cationic primary emulsifier and the food antimicrobial nisin as an anionic secondary 

emulsifier.  The construction of this emulsion, however, greatly reduced the antimicrobial 

efficacy of the nisin, rendering the emulsion unsuitable as a deliver vessel for nisin. 

 53



 

CHAPTER 6 

CONCLUSIONS 

Microbiological contamination is a serious problem for both producers and 

consumers of food products.  L. monocytogenes, in particular, is problematic due to its 

ability to grow under a wide range of conditions and the high mortality rate associated 

with listeriosis.  Though antimicrobials like nisin and lysozyme effectively inhibit the 

growth of this organism, and are approved for food use, the application of these 

compounds to actual food products is problematic.  Constituents of the food interferes 

with the activity of the antimicrobial, greatly decreasing its efficacy.  The focus of this 

study was to devise a method by which these antimicrobials can be delivered into a food 

product without losing activity.  To this end, nisin and lysozyme were attached to silver 

nanoparticles. 

The attachment of lysozyme, an enzyme whose antimicrobial activity is 

dependent upon its enzymatic activity, to the nanoparticles greatly decreased its 

antimicrobial efficacy, most likely due to a conformational change or blocking of the 

active site.  Nisin activity, on the other hand, was significantly increased when attached 

to the metal nanoparticles, suggesting that metal nanoparticles are a viable candidate for 

food antimicrobial delivery.  The increase in efficacy is likely due to the ability of the 

nanoparticles to deliver a concentrated dose of the antimicrobial to the bacterial 

membrane.  Further characterization of the interaction between the antimicrobial nisin 

and the silver nanoparticle and between the loaded silver nanoparticles and the bacteria is 

needed before this increase in efficacy can be fully explained.  Further testing is also 
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needed to determine if this increased efficacy will still exist when applied to a food 

product.  Since silver is not likely to be an acceptable food additive, a method by which 

these nanoparticles can be used with a food product will need to be determined; addition 

to packaging may be one such option.   

The use of a double layered emulsion as the delivery method for nisin is 

advantageous due to the importance of emulsions in many food products and the all 

natural status of the constituents of the emulsion, in this case corn oil and gelatin.  Using 

gelatin as an emulsifier, however, has proven problematic due to the lose of activity 

observed in nisin when it has bound a protein.  The results of this study support the 

inactivation of nisin by proteins in a food product.  Addition of EDTA to the emulsion 

proved ineffective in the restoration of antimicrobial activity to the molecule.  The ability 

to use a wide array of non-protein emulsifiers, allowing for the testing of numerous 

primary emulsifiers, in the production of emulsions makes this a promising delivery 

method.   
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CHAPTER 7 
 

TABLES AND FIGURES  

Tables 

 
Table 1.  Particle size of nanoparticle/antimicrobial combinations. 

Concentration Ratio Particle size (nm) 
Nisin 

1:0.167†

1:0.25†

1:0.5†

1:1†

2:1† 

 

Lysozyme 
1:0.167†

1:0.25†

1:0.5†

1:1†

2:1†

290±35 
324±132 
337±132 
283±61 
329±101 

 
 

45±4 
60±10 

160±37 
60±9 

140±15 
†concentration ratio of antimicrobial to nanoparticles in μg/mL
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Table 2. MIC's (μg/ml) of each silver/nisin concentration against strains of L. 
monocytogenes and E. coli at 32°C after 48 hours. 
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Table 3. MIC (μg/mL) of primary and secondary emulsions against strains of L. 

monocytogenes and E. coli 
 

MIC (μg/mL) 
Emulsion/Nisin Pathogen Nisin Emulsion 

pH 6 pH 7 
L. monocytogenes 

J1-125 
J2-020 
J1-177 

C11-115 
 

E. coli 
35150 
43895 
51685 
700599 

 
32 

>128 
64 
32 
 
 

>128 
>128 
>128 
>128 

 
>128 
>128 
>128 
>128 

 
 

>128 
>128 
>128 
>128 

 
>128 
>128 
  128 
>128 

 
 

>128 
>128 
>128 
>128 

 
>128 
>128 
>128 
>128 

 
 

>128 
>128 
>128 
>128 
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Table 4. MICs (μg/mL) of secondary emulsions with added EDTA against strains 
of L. monocytogenes and E. coli.

MIC (μg/mL) 
Emulsion/Nisin+EDTA Pathogen EDTA 

512 μg/mL* 256 μg/mL* 
L. monocytogenes 

J1-125 
J2-020 
J1-177 

C11-115 
 

E. coli 
35150 
43895 
51685 
700599 

 
>2048 
>2048 
>2048 
>2048 

 
 

>2048 
>2048 
>2048 
>2048 

 
>128 
>128 
  128 
>128 

 
 

>128 
>128 
>128 
>128 

 
>128 
>128 
>128 
>128 

 
 

>128 
>128 
>128 
>128 

*amount of EDTA in μg/mL added to emulsion containing various concentrations 
of nisin 
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Figures 

Figure 1.  Growth as measured by OD630 of L. monocytogenes strain Scott A (A) and 
E. coli strain H1730 (B) in the presence of silver nanoparticles at 32°C for 
48 hours. 

 
 

 
(A) 

 
(B) 
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Figure 2.  Growth as measured by OD630 of L. monocytogenes and E. coli in the 
presence of nisin attached to silver nanoparticles at 32°C for 48 hours. 

   
(A) (B) 

   
(C)      (D) 

 
(A) Strain 101 in the presence of nisin attached to silver nanoparticles at a ratio of 6:1.  
(B) Strain 310 in the presence of nisin attached to silver nanoparticles at a ratio of 6:1. 
(C) Strain Scott A  in the presence of nisin attached to silver nanoparticles at a ratio of 
4:1.  (D) Strain F4546 in the presence of nisin attached to silver nanoparticles at a ratio 
of 6:1.   
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Figure 3.  Growth as measured by OD630 of L. monocytogenes and E. coli in the 
presence of nisin attached to silver nanoparticles at 20°C for 48 hours. 

 

   
(A) (B) 

   
(C)      (D) 

 
(A) Strain Scott A in the presence of nisin attached to silver nanoparticles at a ratio of 
4:1.  (B) Strain 310 in the presence of nisin attached to silver nanoparticles at a ratio of 
6:1. (C) Strain 310 in the presence of nisin attached to silver nanoparticles at a ratio of 
2:1.  (D) Strain F4546 in the presence of nisin attached to silver nanoparticles at a ratio 
of 6:1.   

 62



 

Figure 4.   Proposed mode of action for increased efficacy of nisin when attached  to 
silver nanoparticles. 

 

 
Nisin molecules attached to silver   Nisin molecule interaction  

Ag 
Ag 

nanoparticle   in bacterial membrane 
 
Nisin molecule structure and hypothesized mode of action adapted from Abee et al. 
(1995) 
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Figure 5. ζ-potential as a function of pH for an emulsion and a nisin solution. 
 

 

 
(A) 

 

 
 

(B) 
 

(A) ζ- potential of the primary emulsion at pH 5 to pH 8.  (B) ζ- potential of a nisin 
solution at pH 2 to pH 9. 
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Figure 6. ζ-Potential of the primary gelatin stabilized emulsion with increasing 

addition of nisin. 
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