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   ABSTRACT 

PALEOBIOLOGY OF THE CLIMACTICHNITES TRACKMAKER: AN ENIGMATIC 

LATE CAMBRIAN ANIMAL KNOWN ONLY FROM TRACE FOSSILS 

MAY 2007 

PATRICK RYAN GETTY, B.S., UNIVERSITY OF MASSACHUSETTS 

M.S., UNIVERSITY OF MASSACHUSETTS 

Directed by:  Professor James W. Hagadorn 

Based on a thorough examination of museum and field Climactichnites 

specimens, two species of this trace, which is restricted to North America, are 

recognized, each representing a unique behavioral variant.  C. wilsoni represents surface-

produced trackways, whereas C. youngi is re-erected for subsurface burrows.  Burrowing 

behavior is supported by the presence of C. youngi within beds, the orientation of 

burrows inclined to bedding, and the presence of distinct burrow fills.  Burrows are 

distinguished from surface traces by characteristics including the absence of lateral ridges 

and the presence of mm-sized striations superimposed on the trace.  Burrowing behavior 

was previously unknown and represents a new behavior for the animal.  A new 

ichnospecies, Musculopodus sedentarius, is erected for sedentary impressions of the 

animal.  In the future Musculopodus may be expanded to include the resting traces of 

other soft-bodied animals known from fossils. 

Analysis of Climactichnites indicates that the trackmaker was elongate, bilaterally 

symmetric, dorsoventrally flattened, and soft-footed.  These characteristics are consistent 

with the trackmaker being a primitive mollusk or mollusk-like animal.  Unlike other 

Neoproterozoic and Cambrain mollusks, such as Matthevia, Wiwaxia, and 
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Odontogryphus, the Climactichnites trackmaker could reach considerable size.  At up to 

29 cm wide and possibly 67 cm long, it was one of the largest animals of its time. 

During locomotion, the animal generated muscular waves along the sole of its 

foot, which was extended and clamped into the substrate.  Contraction of pedal muscles 

then pulled the body forward.  This method of locomotion is similar to that employed by 

some gastropods, including Bullia and Polinices, which make Climactichnites-like 

trackways in exposed intertidal settings today.  However, these modern trackways are not 

preserved because they are eroded by wind, waves, flood tides and subsequent 

bioturbation, as experiments confirm.  Abundant microbial sedimentary structures 

associated with Cambrian occurrences suggests that microbial binding may have 

mediated the preservation of Climactichnites. 

Two lines of evidence suggest that the Climactichnites trackmaker may have been 

one of the first animals to venture onto land: the co-occurrence of subaerially-produced 

sedimentary structures, such as adhesion structures and raindrop impressions, and 

trackways with variable preservation quality along their length. 
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PREFACE 

Climactichnites is a unique fossil trackway that has generated endless controversy 

since it was found in 1859.  Over 20 professional papers have been published on 

Climactichnites and yet no consensus exists as to what type of animal made the trackway 

and how it was made.  Indeed, some researchers have even called into question the 

identification of Climactichnites as a trace fossil.  The reason for such disparate 

hypotheses about the origins of this enigmatic fossil is its morphology.  No other fossil is 

known to have ripple-like bars and furrows bound by lateral ridges.  Additionally, despite 

the occurrence of similar trackways in modern intertidal environments, most workers 

have not explored the link between the fossil and its modern analogues. 

The purpose of the present study was to examine Climactichnites both in the field 

and in museums in an attempt to answer the basic questions of “what was the 

trackmaker?” and “how did it make the trackway?” that have vexed the paleontological 

community for so long.  This study took advantage of a greatly expanded knowledge base 

about Late Cambrian environments in which the trackmaker lived, which aided in the 

development of new interpretations about the fossil.  For example, since the last study of 

Climactichnites was published in 1993, a whole body of knowledge has developed about 

the influence of microbial mats on Neoproterozoic and late Cambrian siliciclastic 

sediments.  With this knowledge in hand, sedimentary structures have been identified in 

Climactichnites-bearing deposits, and even on the same beds, that indicate that microbial 

mats may have flourished in the same areas that the trackmaker traversed.  The presence 

of these mats may have aided in the preservation of Climactichnites and, with the 
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disappearance of widespread mat-bound surfaces by the early Ordovician, may also 

explain why Climactichnites is unique in the fossil record.   

The present study was also greatly aided by neoichnological experimentation with 

modern gastropods, a practice that has not been used widely in the analysis of 

Climactichnites in recent years.  This type of research allowed certain hypotheses to be 

tested that had hitherto remained speculative.  For example, the question of how such a 

fossil could have been preserved in wave- and tidally-influenced environments was a 

matter of conjecture.  The analysis of modern gastropods and their mucus-bound 

trackways allowed the hypothesis that mucus secreted by the foot of the Climactichnites 

animal preserved the fossil (Yochelson & Fedonkin 1993) to be tested and rejected.   

Every known occurrence of Climactichnites was examined, with special emphasis 

placed on the Krukowski Quarry in Mosinee, Wisconsin.  This quarry has by far the 

largest number of Climactichnites exposures in one locality, with 19 exposed beds 

preserving the trackway.  Additionally, the Krukowski Quarry is flanked by numerous 

smaller quarries in which Climactichnites is found.  With quarrying operations continuing 

throughout the timeframe of this study, new specimens were discovered each field 

season, thus adding greatly to the number of specimens available for study.  Additional 

fieldwork was conducted at Climactichnites-bearing localities in Missouri, New York, 

Quebec, and Ontario. 

The results of this research project are presented in two chapters, each of which 

will be submitted to a different journal for publication.  The first chapter deals with the 

taxonomy of Climactichnites.  Over the course of this study it became apparent that the 

trackmaker engaged in burrowing behavior, which has not been reported before for the 
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animal.  Because the burrows are morphologically distinct from surface-produced 

trackways it was necessary to give the burrows a distinct name and to define explicitly 

the differences between the two types of traces.  Further, it was necessary to erect a new 

ichnogenus (a generic name for a trace fossil) for resting traces of the trackmaker, which 

are often found independently of the trackway or burrow.  The taxonomy chapter will be 

submitted to the Journal of Paleontology. 

The second chapter deals with the paleobiology of the trackmaker and will be 

submitted to the journal Lethaia.  This chapter addresses the fundamental questions about 

Climactichnites discussed earlier, but it also addresses much more.  For example, the 

large amount of data that was collected permits discussion about the possible growth 

habits of the trackmaker, a topic that was not previously considered because of the 

limited nature of most previous studies.  Additionally, new lines of evidence about the 

quality of preservation of the trackway are presented that can help constrain whether or 

not the trackmaker made subaerial excursions.   

It is important to note here that this study was part of a collaborative work 

between my advisor and me.  However, I conducted the lion’s share of data collection 

and analysis, with notable exceptions including the collection of data at the Miller 

Museum of Queens University, Royal Ontario Museum, and University of Missouri 

being done by Whitey Hagadorn.  Dr. Hagadorn also examined localities, such as the 

Minke quarry in Wisconsin and Big Springs State Park in Missouri, which I was unable 

to visit, and took the photographs used in figures 5G, 9C, 15F and 25.  Dr. Hagadorn also 

collected portions of the data included in Appendix 1 and Table 3 and figures 11, 15B, 

15C, and 16.  Numerous students at Amherst College, including Jed Bernstein, Megan 
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Dickoff, Charlie Hoxie, Ariel Morales, Kate Raddock, Lydia Tarhan, Zalmi Yawar, and 

Anna York assisted in collecting data in the field.  The data that they collected was 

integral to composing the graphs in figures 11, 12, and 14, as well as the sketch maps in 

figures 21 and 22.  Lydia Tarhan conducted an in-depth study of the surface at 9.13 m up 

section in the Krukowski quarry (PRI-100-9.13), and I have relied on the results of her 

work when discussing Climactichnites specimens from that surface.  Numerous other 

collaborators, including Jeff Chiarenzelli, Dan Damrow, Al Donaldson, Bob Dott, Mark 

Erickson, Dave Franzi, Bill Gillingham, Pierre Groulx, Rob MacNaughton, and Bruce 

Stinchcomb aided in locating Climactichnites-bearing field localities, and Dan Damrow, 

Pierre Groulx, and Bruce Stinchcomb helped collect specimens as well as permitted 

examination of specimens from their private collections.  
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CHAPTER I 

INTRODUCTION 

 

The ichnogenus Climactichnites was erected in 1860 by William Logan to 

encompass unusual trackways consisting of two parallel ridges, between which are 

undulating bars and furrows (Fig. 1).  Since then, our understanding of trace fossil 

taphonomy and microbially influenced siliciclastic environments has changed 

substantially (Hagadorn & Bottjer 1999; McIlroy & Logan 1999) and new 

Climactichnites morphotypes have been identified (Yochelson & Fedonkin 1993; Getty 

& Hagadorn 2005, 2006). These morphotypes result from variation in trackmaker 

behavior and morphology as well as sediment consistency and taphonomy.  These new 

morphotypes permit more constrained interpretations of the trackmaker’s behavior and 

morphology, and require re-examination and revision of the systematics of 

Climactichnites-related trace fossils. 

Climactichnites only occurs in Late Cambrian sandstones of North America.  

Specimens occur in three generalized regions including Wisconsin (Elk Mound Group, 

which includes the Mt. Simon Sandstone and Wonewoc Formation), Missouri (Lamotte 

Sandstone and Gunter Sandstone member of the Gasconade Formation) and the St. 

Lawrence-Lake Champlain regions of Ontario, Quebec, and New York.  Climactichnites 

is found in upper portions of the Potsdam Group, including the Nepean Sandstone of 

Ontario, Cairnside Formation of Quebec, and Keesville member of the Potsdam 

Formation in New York (Yochelson & Fedonkin 1993; Getty & Hagadorn 2005, 2006; 

Fig. 2, Table 1).   These units represent a range of marine, aeolian, and fluvial 
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environments; however, Climactichnites is restricted to shallow tide and wave influenced 

marine environments (Houseknecht & Ethridge 1978; Driese et al. 1981; Yesberger 

1982; Wolf & Dalrymple 1984, 1985; Dott et al. 1986; Bjerstedt & Erickson 1989; 

Yochelson & Fedonkin 1993; Runkel et al. 1998).   Sedimentary structures associated 

with some Climactichnites trackways, including raindrop impressions, adhesion 

structures, and polygonal desiccation cracks, suggest that the Climactichnites trackmaker 

may have traversed tidal flats under subaerial as well as subaqueous conditions, making 

the trackmaker, along with euthycarcinoid-like arthropods, among the first terrestrial 

pioneers (MacNaughton et al. 2002, 2003; Hoxie & Hagadorn 2005).   

Because Climactichnites is limited stratigraphically and geographically to the 

Late Cambrian of North America, and because no similar trace fossils are known from 

the Phanerozoic, contradictory hypotheses about the morphology, locomotion, and 

identity of the animal have been proposed.  Nearly a century and a half after the fossil 

was first described no consensus exists as to what type of organism made the trail (see an 

historical account in Yochelson & Fedonkin 1993).  Yochelson and Fedonkin (1993) 

suggested that the trail resulted from feeding activity of an unknown phylum of animals 

with anterior and lateral muscular flaps.  However, it is unlikely that the trackmaker had 

lateral flaps because the trackway does not disturb sedimentary structures adjacent to the 

trail (e.g. Malz 1968, fig. 1), which would have occurred if the animal were pulling sand 

in towards the body with these flaps (see below).  Damrow et al. (2001) proposed that 

Climactichnites represents siphonophore-like zooplankton that washed ashore, but the 

depth of many trackways indicates that the fossil was produced within the sediment by 

plowing activity of an animal.  Further, Climactichnites never exhibits folding, twisting, 
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tearing, or transport, which would be expected in at least some examples if the fossil 

were that of a long, strap-like organism.  In contrast, other soft-bodied organisms, such as 

jellyfish, that were washed ashore in Climactichnites-bearing deposits exhibit all of these 

features (Hagadorn et al. 2002; Hagadorn and Belt in press).  Evidence presented in this 

paper supports the hypothesis of Seilacher-Drexler and Seilacher (1999), who proposed 

that Climactichnites was made by a mollusk or mollusk-like animal.  

A variety of modern gastropods, including Polinices, Littorina, Hydrobia, and 

Bullia produce Climactichnites-like trackways with lateral ridges and transverse bars 

when crawling about on subaerially exposed intertidal sand flats  (Raymond 1922; Abel 

1935; Häntzschel 1938; Gräff 1956; Brown 1971; Schäfer 1972; Trueman & Brown 

1976; Knox & Miller 1985; Fig. 3). The method of locomotion inferred for the 

Climactichnites trackmaker is similar to that employed by Bullia and Polinices, which 

extend the flexible anterior part of the foot and then clamp it down on the sediment to 

obtain purchase during trackmaking (Trueman & Brown 1976; Knox & Miller 1985).  

The similarity between these modern trackways and Climactichnites suggests that 

gastropods are the most appropriate modern analogue for the Climactichnites trackmaker 

and that the preservation and paleoecological role of Climactichnites, rather than its 

morphology, are its most unique characteristics.   

In order to develop a better understanding of trackmaker morphology, 

locomotion, and behavior, as well as to better constrain the paleoenvironment in which 

the trackway was produced and preserved, an extensive field study of Climactichnites 

was conducted.  Both previously published and new track localities were examined, with 

special emphasis being placed on the Krukowski Stone Quarry in Mosinee, WI, from 
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which thousands of trackways were excavated during quarrying operations.  Additionally, 

all known museum specimens were examined.   Finally, modeling experiments were 

conducted in which modern gastropods produced Climactichnites-like trackways to test 

hypotheses about how the fossil was preserved (Getty & Hagadorn 2006, this study). 

Some Climactichnites were produced as burrows, rather than as surface trails, and 

the name C. youngi is re-erected to encompass them. C. youngi has a morphology distinct 

from surface traces, including a lack of lateral ridges and the presence of commonly 

bifurcate transverse bars and fine striations superimposed on transverse bars and furrows.  

The recognition of C. youngi as a burrow sheds new light onto the biology and ecology of 

the trackmaker, suggesting that the animal was not a short-term visitor of intertidal sand 

flats that was occasionally stranded when the tide receded (Burling 1917), but probably 

inhabited the intertidal zone, including the moist subsurface, on a more permanent basis.   

A new genus, Musculopodus, is erected to encompass body impressions of the 

Climactichnites trackmaker.  This is necessary because body impressions represent trace 

morphology distinct from the trackway and burrow and were produced by a different 

behavior:  body impressions are representative of the trackmaker’s foot while it was 

stationary, whereas trackways and burrows represent locomotion on or below the surface.  

Additionally, many body impressions are not directly associated with a trackway and as 

such do not fit within the definition of Climactichnites.  Finally, the erection of the new 

genus permits the naming of other ovoid body impressions from the fossil record that 

until now have remained unnamed (Gehling 1996; Seilacher 1997; Ivantsov & 

Malakovskaya, 2002; Fedonkin, 2003). 
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CHAPTER II 

SYSTEMATIC PALEONTOLOGY 

 

Repositories.—Specimens are housed at the American Museum of Natural 

History (AMNH), Amherst College Museum of Natural History (ACM and ACM UC), 

Geological Survey of Canada, Ottawa, Ontario (GSC), Miller Museum, Queens 

University (MMQ), Minna Anthony Common Nature Center, Wellesley Island, NY 

(WINC), New York State Museum, Albany, New York (NYSM), Parc archeologique de 

la Pointe du Buisson, Melocheville, Quebec (JF), Peabody Museum, Yale University 

(YPM), Redpath Museum, McGill University (RM), Royal Ontario Museum, Toronto 

(ROM), Science Museum of Minnesota, Saint Paul (SMM), Smithsonian Institution, 

Washington D.C. (NMNH), Springfield Science Museum, Springfield, MA (SSM), 

University of Missouri at Rolla (UMR), University of Wisconsin at Madison (UW). 

Morphological terminology.—The terms lateral ridge, transverse bar, furrow, and 

medial ridge are adopted from Yochelson and Fedonkin (1993).  However, we use the 

terms “resting trace” and “body impression” rather than “oval impression” because the 

new term more accurately reflects the origin of the trace as the impression of the animal 

while at rest.  
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Ichnogenus Climactichnites Logan 1860 

 

Type species.—Climactichnites wilsoni Logan 1860 

Included species.—Climactichnites youngi Todd 1882 

Emended diagnosis.—A trackway or burrow consisting of undulating bars and 

furrows oriented at an angle to the direction of travel. 

Description.— Transverse bars straight-, sinusoidal-, zipper-, V-, U-, or arch-

shaped.  Straight bars can be perpendicular to or at an angle to the direction of travel; V- 

and U-shaped bars usually open in the direction of travel, with a few exceptions.  In 

burrows, and rarely surface traces, the transverse bars often exhibit tuning fork 

bifurcations.  Medial ridge occasionally present within the trackway; can be straight, 

ovoid, sinusoidal, or irregularly shaped.  

Occurrence.— Quartz arenites in Wisconsin (Elk Mound Group), Missouri 

(Lamotte and Gunter Sandstones), Quebec, Ontario, and New York (Potsdam Group). 

Discussion.—Previous diagnoses included the presence of ridges bounding the 

trackway; however, Climactichnites specimens often lack lateral ridges as a result of 

taphonomy (Fig. 4A, 4B) or of infaunal burrowing behavior (Fig. 4C).  Because burrows 

never have lateral ridges, it is necessary to exclude the ridges as a defining characeristic 

of the ichnogenus.  As a result, two ichnospecies of Climactichnites are recognized: C. 

wilsoni for epifaunal trackways in which lateral ridges were produced, and C. youngi, in 

which lateral ridges are absent due to burrowing within the substrate. Trackways in which 

lateral ridges are absent due to taphonomic processes, such as when lateral ridges remain 
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within the cast of the trackway or are washed away before preservation (Fig. 4A, 4B), are 

referred to C. wilsoni.   

Climactichnites has been used twice as the name for traces found outside of North 

America.  C. mathieui Sun (1924) was erected for a trackway collected from the Lower 

Cambrian Manto Shale in Luanchou, China; it was removed from Climactichnites by 

Yochelson and Fedonkin (1993) because the species lacked lateral ridges.  C. youngi, a 

burrow, lacks lateral ridges; therefore, the absence of this characteristic alone can not be 

used to justify removing C. mathieui from the ichnogenus.  However, C. mathieui was 

preserved as a cast on the sole of an overlying bed and thus the original trace was 

produced on the bed surface, like C. wilsoni.  Thus, this trace is unlike surface-produced 

C. wilsoni in lacking lateral ridges (see below).  The trackway in question is much 

smaller (3.5 mm) than even the smallest Climactichnites found in North America (1.4 

cm) and is found in Lower Cambrian marine shales rather than Upper Cambrian 

sandstones, as are all North American examples.   Thus I remove C. mathieui from 

Climactichnites based on morphology, size, geographic, and stratigraphic distribution.   

De et al. (1994) reported Climactichnites from the Early Cambrian Tal Formation 

of India.  This trace is also very narrow (4 mm) and is found in siltstones exhibiting 

desiccation cracks.  Interestingly, Tiwari and Parcha (2006) did not report 

Climactichnites in their study of trace fossils from the Tal Formation, but did list eight 

other ichnotaxa, six of which are thought to have been made by arthropods.  Many of 

these ichnotaxa have similar widths to the purported material of Climactichnites 

described by De et al. (1994) and thus it is possible that the specimen described by De et 

al. (1994) is a preservational variant of the taxa described by Tiwari and Parcha (2006).  
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As with C. mathieui, I remove the traces described by De et al. (1994) from 

Climactichnites because of differences in morphology, size, geographic, and stratigraphic 

distribution.  Both C. mathieui and the trace described by De et al. (1994) likely belong 

to another ichnogenus having v- or stitch-shaped structures, such as Gyrochorte. 

 

Climactichnites wilsoni Logan 1860 

Figures 1, 4A, 4B, 5 

Climactichnites wilsoni LOGAN 1860, p. 279-295, figs. 1-5; DAWSON 1890, p. 595-

618, fig 4. 

Climactichnites fosteri TODD 1882, p. 277, pl. 1. 

Climactichnites wilsoni WOODWORTH 1903, p. 959-966, fig. 1, pl. A and B; 

WALCOTT 1912 (in part), p. 259-261, pl. 40, fig. 2, non pl. 40, fig. 1; BURLING 1917, 

p. 390-397, figs. 4, 5; ABEL 1935, p. 242-249, figs. 214, 215; YOCHELSON AND 

FEDONKIN 1993 (in part), p. 1-74, frontispiece, figs. 1, 3-5, 7, 8, 10-14, 16, 17-24, 28, 

35-43, 45-50, 52, 53-56, non 15, 16, 20, 25-27, 29-34, 44, 51.  

 

Emended diagnosis.—A trackway consisting of lateral ridges between which are 

undulating transverse bars and furrows. 

Description.—  Lateral ridges straight, crenulated, or packeted.  Transverse bars 

straight, sinusoidal, V- or U-, zipper-, or double arch-shaped.  Straight bars can be 

perpendicular or at a high angle to the direction of travel; V- and U-shaped bars usually 

open in the direction of travel, with a few exceptions.  Bars occasionally exhibit 

bifurcation.  Intercalcated half-bars may occur.  Sub-millimeter wide ovate striations are 
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known only from one specimen on a surface that may have been microbially-bound; they 

are superimposed on transverse bars and furrows (MacNaughton et al. 2003).  Medial 

ridge, which may be straight, ovoid, sinusoidal, or irregularly shaped, occasionally 

present within the trackway. 

Material examined.—ACM 68/1, ACM 68/2, ACM 68/3, ACM UC 232, ACM 

UC 235, ACM UC 236, ACM UC 242,  AMNH 51449, GSC 6299, JF 16 FC, JF 18 FC, 

MMQ 2380, MMQ 2381, NMNH 532847, NMNH 532849, NMNH 532851, NMNH 

532852, NYSM E-3436, NYSM 6, NYSM unnumbered, RM 206837, RM 206840, RM 

206841, RM 206843, ROM 22171, SMM-P- 76.21.1 (III-IV), SMM-P- 76.21.1 (39 

pieces), SSM 2006/20-1, SSM 2006/20-2, SSM 2006/20-3, SSM 2006/20-4, SSM 

2006/20-5, UMR 7283, UW 4019, UW 4020, UW 4021, WINC unnumbered, YPM 

150696, YPM 150698, YPM 150699, YPM 150700, YPM 150701, YPM 174721, YPM 

174722, YPM 203860, YPM 203874.    

Other material examined.—Hundreds of additional trackways were examined in 

the field (Fig. 2, Table 1). 

 Discussion.—The trackway’s morphology is quite variable due to the complex 

interactions between the animal and the substrate over which it moved (Fig. 5E).  

Individual trackways often exhibit multiple transverse bar morphotypes over their length 

(Fig. 5F) as a result of slightly different foot placement during locomotion, which was 

dependent on behavior and/or sediment consistency.  Plowing activity produced lateral 

ridges as the animal displaced sediment from in front of the body to the side as it moved 

across the surface.   Crenulated lateral ridges appear only in trackways with low vertical 

relief (e.g., Fig. 5A, 5C) whereas straight ridges generally occur in trackways with greater 
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relief (Fig. 1, 5B, 5D).  Packeted lateral ridges (Fig. 5G) are rare and appear to have been 

generated by the animal as it moved over a cohesive surface; as the animal moved 

forward, the cohesion caused the sediment to fold like a like a rug when one drags a foot 

across it (MacNaughton et al. 2003).   

  

 

Climactichnites youngi Todd 1882 

Figures 4C, 6, 7, 8 

 

Climactichnites youngi TODD 1882, p. 276-281, pl.1; DAWSON 1890, p. 595-

618; WALCOTT 1912 (in part), p. 259-261, pl. 38, fig. 1, pl. 39, figs. 1, 2, pl. 40, fig. 1; 

BURLING 1917, p. 390-397, figs. 2, 3; ABEL 1935, p. 242-249, figs. 216; 

YOCHELSON AND FEDONKIN 1993 (in part), p. 1-74, figs. 15, 16, 31, 32, 44, 51. 

 

Emended diagnosis.—Burrows occurring within beds (may be inclined to and 

crosscut bedding) or at bed interfaces, consisting of undulating bars and furrows which 

are often oriented at a high angle to the direction of travel.  Lateral ridges absent. 

Description.— Transverse bars straight, sinusoidal, V-, U-, or stitch-shaped.  

Straight bars can be perpendicular or at an angle to the direction of travel; V- and U-

shaped bars most often open in the direction of travel.  Bars often exhibit bifurcation 

(Fig. 6B, 6C) and sometimes have backwards-pointing lateral extensions (Fig. 8D). Sub-

millimeter- to millimeter-sized linear grooves may be superimposed on the transverse 

bars and furrows, and are oriented parallel or subparallel to the long axis of the trackway 
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(Fig. 8C); ovoid striations may also be superimposed atop transverse bars and furrows 

(Fig. 6C, 6D).  The fossil may be composed of a discrete burrow fill (Fig. 7) or may be 

preserved as a trace on an exposed surface (when excavated; Fig. 8).  When present, the 

burrow fill is elliptical in cross-section, and is thickest in the middle and tapers towards 

the edges (Fig. 7C).  

Types. —Neotypes NMNH 58544, NMNH 58545, NMNH 58546, NMNH 58547 

(Fig. 6).  

Other Material examined.— ACM UC 237, ACM UC 238, JF 05 FC (Fig. 6, 7). 

Discussion.— Several characteristics of C. youngi suggest that it was produced as 

a burrow: 1) it may appear at bedding interfaces as discrete burrow fills, 2) it may be 

inclined to and crosscut bedding, 3) it may be found within beds when thick beds are 

split, 4) it is often loaded, deformed, and stretched, and 5) it is never directly associated 

with surface-produced sedimentary structures such as ripples and raindrop impressions.  

C. youngi was erected by Todd (1882) in part to include trackways without lateral 

ridges.  Unfortunately, the type specimens were lost and were not available to Yochelson 

and Fedonkin when they revised the ichnogenus in 1993.  Consequently, these authors 

examined other slabs to determine the validity of the ichnospecies and, upon examination 

of trackways on a slab at Amherst College (ACM 68/1), concluded that C. youngi should 

be synonymized with C. wilsoni based on their interpretation that lateral ridges were 

present only intermittently on some of the trackways.  Yochelson and Fedonklin (1993) 

suggested that the presence and absence of lateral ridges was likely the result of variation 

in sediment consistency and individual trackmaker behavior.  There are some cases in 

which C. wilsoni lacks lateral ridges; for example, in some part-counterpart specimens 
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the lateral ridges adhere to the overlying bed (Fig. 4A, 4B), giving the impression that the 

original trackway lacked ridges.  However, even in cases in which C. wilsoni lacks lateral 

ridges it is often possible to determine that they are surface traces because they are 

associated with raindrops or other surface-produced sedimentary structures (Fig. 4A, 4B). 

In contrast, C. youngi is the result of a fundamentally different locomotive behavior 

(burrowing) and lacks lateral ridges. The lateral ridges are absent because the body was 

completely encapsulated by sand and thus sediment was unable to accumulate at the sides 

of the animal.  Therefore, the re-erection of C. youngi is warranted. 

Other Paleozoic burrows, such as Plagiogmus and Psammichnites, have 

transverse bars and therefore share some morphological characteristics with C. youngi 

(Seilacher 1995; McIlroy & Heys 1997).  However, Plagiogmus is a structurally complex 

burrow with a bilobed upper surface expression that has not been seen thus far in C. 

youngi.  The burrow fill in Plagiogmus is quite unlike that of the surrounding rock: it has 

laminations oriented at 20° to horizontal and is enriched in clay minerals (McIlroy & 

Heys 1997).   C. youngi have been found that consist of a burrow fill but they have not 

been examined petrographically to determine if laminae are present or to quantify any 

possible difference in lithology to the host rock.  

The morphology and lithology of Plagiogmus led McIlroy and Heys (1997) to 

suggest that the burrower fed by sucking up organic-rich detritus from the sea floor by 

using a snorkel that protruded through the overlying sediment up to the sediment-water 

interface.  The consumed material was then excreted into the burrow where it formed the 

burrow fill.  This feeding strategy is quite different than the one proposed for the 

Climactichnites trackmaker (see below).  Transverse bars in Plagiogmus are thought to 
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have formed at the posterior of the animal (McIlroy & Heys 1997), whereas in 

Climactichnites the position of transverse bars at the front of body impressions indicate 

that the bars were produced by a locomotory organ located at the front of the body (see 

below).  

 

Musculopodus new ichnogenus 

Figure 9 

Type species.—Musculopodus sedentarius by monotypy 

Diagnosis.—Ovoid to elongate impressions that are relatively flat in cross-

section.  Impression is shallow relative to its linear dimensions.  In soft substrates, largest 

dimensions of impression are oriented approximately parallel to bedding.  

Etymology.—Latin, musculus, muscle, for the muscular foot that likely made this 

trace. 

Occurrence.— Cambrian intertidal to subtidal quartz sandstones in Wisconsin 

(Elk Mound Group), Missouri (Lamotte and Gunter Sandstones), Quebec, Ontario, and 

New York (Potsdam Group). 

Discussion.— When Musculopodus appears with Climactichnites the two can be 

considered a compound trace fossil (Pickerill 1994).  However, numerous examples of 

isolated body impressions occur in New York, Quebec, and Wisconsin.  For example, of 

the 25 Musculopodus prints illustrated by Clarke (1905, plate 3), 19 are associated with 

trackways but six are not.  Isolated Musculopodus are found on Climactichnites-bearing 

surfaces such as NYSM unnumbered (e.g., Yochelson & Fedonkin 1993, figs. 25 and 27) 

and ACM 68/2. Other ovate body impressions have been reported in coeval Laurentain 
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sandstones and in Ediacaran deposits (Gehling 1996; Seilacher 1997; Ivantsov & 

Malakhovskaya, 2002; Stinchcomb personal communication, 2005; Murray Gingras, 

personal communication, 2006) and merit inclusion within Musculpodus. 

 

 

Musculopodus sedentarius new ichnospecies 

 

Diagnosis.—Elongate to ovoid body impressions.  Length to width ratio between 

1.9 and 2.7 to 1.  Impressions are shallow relative to their linear dimensions.  When 

produced in soft substrates, largest dimensions of impressions are oriented parallel or 

subparallel to bedding. 

Description.— Impressions may be associated with C. wilsoni (Fig. 9A, 9B) or C. 

youngi (Fig. 6D, 9D, 9E) or may be isolated (Fig. 9C).  Lateral ridges of sediment may be 

present at the edges of impressions on bed surfaces (Fig. 9B).  The anterior portion of the 

impression (see discussion below for determining the orientation of isolated body 

impressions), when present, may have subtriangular and anteriorly directed projections 

whereas the rear of the impression is generally rounded (Fig. 9A).  The interior of the 

impression is typically smooth but may have transverse bars at its anterior end (Fig. 9B) 

or along its sides (Fig. 9E, 9F) and/or ovoid lineations superimposed on top of it (Fig. 6C, 

6D, 9E, F).   One specimen (Fig. 9E, F) has a ruffled to wavy margin surrounding an 

ovate, raised and striated region.   
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The impression is not always complete.  In some cases where Climactichnites is 

associated with Musculopodus, the anterior portion of the impression is missing (Fig. 6D, 

9D).  Portions of isolated impressions may be missing as well (Fig. 9C).  

Etymology.—Latin, sedentarius, sedentary, for the presumed habit of the animal 

during production of the trace. 

Types.— NYSM unnumbered-1-1 and NYSM unnumbered-1-2. 

Other material examined.— ACM 68/2, ACM UC 239, JF 20 FC , NMNH 58544 

Occurrence.— Cambrian quartz arenites in Wisconsin (Elk Mound Group), 

Missouri (Lamotte and Gunter Sandstones), Quebec (Napean Formation), Ontario  

(Napean Formation), and New York (Potsdam Sandstone). 

Discussion. —Orientation of M. sedentarius may be determined when the 

impression is associated with Climactichnites, because all known trackways and burrows 

extend away from the sedentary impression (Clark & Usher 1948; Yochelson & Fedonkin 

1993; this study). When found in isolation it is difficult to determine orientation, but 

orientation may be inferred based on the shape of the margins of the impression.  The 

ovate terminations of some incomplete impressions (e.g., Fig. 9C) may represent the 

posterior of the body because it is the posterior of the complete specimens that is 

typically round.  The criteria for determining the orientation of isolated, partial specimens 

outlined above is only valid for those specimens found in deposits in which 

Climactichnites has been found.  New criteria may be needed for additional species as 

they are added to the ichnogenus.   

The amount of morphological detail is variable in M. sedentarius and is likely the 

result of where the impression was produced.  Impressions found on bedding planes and 
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associated with C. wilsoni only show gross morphological detail and are for the most part 

smooth on the inside (e.g., Fig. 9A, 9C).  In contrast, M. sedentarius that were produced 

below the surface and are associated with C. youngi show millimeter to sub-millimeter 

striations (Fig. 6D, 9D) or ruffles (Fig. 9E), as do C. youngi.  The production of C. youngi 

and associated M. sedentarius below the surface permanently protected these traces from 

erosion and permitted fine morphological details, which are the result of interactions of 

the (mucus-producing?) foot and substrate, to be preserved.   
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CHAPTER III 

PALEOBIOLOGY OF THE CLIMACTICHNITES TRACKMAKER 

 

Methods 

 

Thousands of trackways were examined in the field and hundreds more in 

museum collections.  From this large sample, two hundred ninety-six well-preserved 

trackways (including lateral ridges, transverse bars, and furrows) were examined in 

detail, with as many as twelve measurements being recorded from each trackway. 

Quantitative measurements (Fig. 10) included inner and outer track width, transverse bar 

height and wavelength, and lateral ridge height.  Qualitative track observations include 

lateral ridge shape, transverse bar completeness, transverse bar shape, transverse bar 

cross-sectional shape, presence or absence of intercalcated bars, presence or absence of a 

medial ridge, and cross cutting relationships with sedimentary structures and other trace 

fossils.  Hundreds of additional trackways were examined in the field for only a few of 

these parameters because of poor preservation.  Topographic profiles of trackways were 

generated by placing a carpenter’s contour gauge over the trackway; the resulting profile 

was then traced onto paper for study.  Finally, maximum length, maximum width, and 

maximum depth were measured from body impressions.   

Some trackways were serially sectioned both longitudinally and perpendicular to 

the long axis of the trackway to look for disrupted bedding.  Slab thicknesses ranged 

between 4.4 and 13.6 mm.  These trackways were examined visually and with X-
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radiography.  X-ray imaging was conducted at the University of Massachusetts Health 

Services and slabs were exposed at 60kv and 5 mA. 

Experimental trackways were produced by the gastropod Viviparus intertextus, 

which were collected from local ponds and placed in a plastic container measuring 65 x 

46 x 8 cm.  The container was partly filled with medium- to coarse-grained sand (Table 

2), which was sculpted into a hill and valley with a slope of 8º.  The topography 

permitted the snails to rest in pooled water so that they would not dehydrate from 

prolonged periods of subaerial track production (V. intertextus is normally aquatic; 

however, the snails did move subaerially).   After the trackways were produced the snails 

were removed from the apparatus and the trackways were allowed to remain exposed for 

approximately 40 minutes to 1 hour.  Then the tank was filled with water to simulate 

incoming tides.  The effects of the simulated tides on the V. intertextus trackways were 

then recorded.   

Museum specimens were examined at 15 institutions, whose abbreviations can be 

found in the “List of Abbreviations” section above.  Field specimens were examined in 

New York, Quebec, Ontario, Wisconsin, and Missouri (Fig. 2; Table 1). 
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Paleoenvironmental Context 

 

Climactichnites is restricted to fine- to coarse-grained Late Cambrian marginal 

marine sandstones of North America (Fig. 11), including the Elk Mound Group of 

Wisconsin, the Potsdam Group of New York, Quebec, and Ontario, and Lamotte and 

Gunter Sandstones of Missouri (Logan 1860; Todd 1882; Hall 1889; Walcott 1912; 

Summerson 1951; Stinchcomb 1997; Fig. 2).  These formations are of mixed terrestrial 

and marine origin, with marine deposits recording intertidal and shallow subtidal facies 

(Selleck 1975; Houseknecht & Ethridge 1978; Dott et al. 1986; Runkel et al. 1998). 

During the Late Cambrian the Laurentian craton straddled the equator, with 

present day Canada to the east of what is now the United States (Dott & Batten 1981).  

Most of the United States was submerged beneath an epeiric sea while Canada and 

Greenland had considerable topographic highs.  Portions of Missouri formed a peninsula 

that extended southeast to northwest from a north-south-running shoreline that roughly 

paralleled the present day boundaries between the United States and Canada. Wisconsin 

and the St. Lawrence lowlands of New York, Quebec, and Ontario were oriented along 

the north-south trending shoreline at this time. 

The sea was very shallow, with an estimated depth of no more than 100 m and a 

slope of about 0.1 m/km (Byers & Dott 1995; Runkel et al. 1998).  Palmer (1971) 

proposed three marine depositional environments that graded into each other as the water 

gradually deepened to the west (the current continental United States): an inner detrital 

belt consisting of siliciclastic sediments, a middle detrital belt in which carbonates were 

deposited, and an outer detrital belt where fine-grained sediments were deposited.  The 
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sea provided considerable moisture to the continent and Dott et al. (1986) proposed that, 

during the deposition of the Mt. Simon sandstone in Wisconsin (the lowermost unit in the 

Elk Mound Group), the climate was humid due to the inferred location of the area near 

the equator and along a tropical trade-winds belt.  Houseknecht (1975) proposed that the 

climate in Missouri during the deposition of the Lamotte was also humid due to the 

intensely weathered nature of feldspar grains in the sandstone.  He also noted the 

presence of laterally extensive longitudinal bar deposits in the braided fluvial facies, 

which indicate a constant source of water.  It seems plausible that a humid climate also 

prevailed in the New York-Quebec-Ontario region.   

 In spite of the humid climate, the terrestrial realm was probably devoid of 

vegetation at this time, permitting sand seas to develop over large portions of the 

Laurentian continent (Horodyski & Knauth 1994; Eriksson et al. 1998; Prave 2002).  

Thus, detritus was relatively unhindered in its transport to the sea and large quantities of 

sand were moved via wind and water from the continent and deposited in nearshore 

environments.  Extensive microbial mats existed in portions of the intertidal zone as is 

evidenced by numerous sedimentary structures found in these environments, including 

sand chips, sand roll-ups, exfoliating sand laminae, old elephant skin, domal build-ups, 

and patchy ripples (Hilowle et al. 2000; Donaldson & Chiarenzelli 2004; York et al. 

2005; Getty & Hagadorn 2006; Hagadorn & Belt in press).  Climactichnites occasionally 

occurs with domal build-ups on erosionally resistant surfaces.  It has been suggested that 

biofilms may have mediated the preservation of the trackways and may have served as a 

food source for the trackmaker (Seilacher 1997; York et al. 2005; Getty & Hagadorn 

2006). 
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Beds on which Climactichnites is found exhibit numerous sedimentary structures 

suggesting that the animal inhabited an intertidal environment.  For example, in the 

Lamotte Sandstone, Summerson (1951) described a Climactichnites-bearing slab 

exhibiting cross-bedding, whereas a slab described by Stinchcomb (1997) exhibits 

ripples, poorly defined cross-beds, and small channels in cross section.  Slabs built into a 

gate at the entrance to Columbia Park, in Park Hills, MO exhibit small trackways 

imprinted on round crested ripples.  More recently, Hagadorn and Belt (in press) 

identified small zones of emergent tidal flat facies preserving polygonal desiccation 

cracks, flat-topped ladder-back ripples, adhesion structures, and oscillation ripples in the 

Potsdam Sandstone in the Au Sable area of northeast New York that bound beds 

preserving Climactichnites.  In Wisconsin, Climactichnites is found in beds that preserve 

sedimentary structures, such as polygonal desiccation cracks, gas escape structures, and 

raindrop imprints that indicate intermittent subaerial exposure for the beds on which the 

animal crawled (see below).  Thus the trackmaker inhabited a shallow marine 

environment that was intermittently subjected to subaerial exposure.   

 

 

What did the Climactichnites trackmaker look like? 

 

 Body impressions of the trackmaker, which indicate the shape of the animal at 

rest, are roughly bilaterally symmetric and elongate and have a semicircular posterior 

(Fig. 9, 12A, 12B, 15A).  Laterally, the sides of the body were roughly parallel to each 

other unless the animal was contracting or expanding the foot.  While at rest the animal 
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often extended one side of its anterior margin as a broad flap that tapered distally (e.g. 

Yochelson & Fedonkin 1993, figs. 20 & 26).  The ventral portion of the anterior of the 

animal was capable of being extended in many ways, as can be determined from the wide 

variety of irregularly shaped partial transverse bars at the beginning of trackways (Fig. 

15A).  Had the foot been more rigid the morphology of the resultant transverse bars 

would be more conservative; that is, there would be fewer bar types (Woodworth 1903).  

Fine striations produced at the rear of the animal that are superimposed over the 

transverse bars and furrows indicate that, unlike the front of the foot, the rear of the 

animal retained a constant arcuate shape during locomotion (Fig. 6D, 12B).   It is unclear 

how the ovate striations, as well as the linear striations (Figs. 6D, 6.E) that appear on 

some of the infaunal burrows were produced.   If in fact the trackmaker was a stem-group 

mollusk (see below) it is possible that linear striations were produced by a series of 

sclerites on the dorsal and lateral parts of the body.   

The animal was dorsoventrally flattened based on evidence from both burrows 

and surface trackways.  For example, on slab JF 05 FC, a burrow 11.4 cm wide has a 

vertical thickness of only 1.5 cm, or approximately 13% of the track width (Fig. 12C). 

Although this burrow likely underwent compression during diagenesis, it demonstrates 

that the animal was at least 1.5 cm tall.  More accurate estimates of the trackmaker’s 

height cannot be determined without observing crosscutting relationships of intrastratal 

trackways with overlying sedimentary structures. Large animals must have been at least 

2-3 cm tall because trackways excavated by the animal to this depth do not have sediment 

collapsing back into the trackway from above; that is, they are not burrows.  Most of the 

sediment was excavated to the side and piled into lateral ridges.  One trackway at PRI-
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100-8.22 is 20 cm wide and 2.5 cm deep (Fig. 12D).  If the trace were produced as a 

burrow, sediment displaced by the animal would have refilled the space left by the 

burrower.  However, this is not the case, as sediment was piled to the sides of the 

trackmaker into tall lateral ridges, indicating that the trace was made on the surface.  The 

ridges are unusually large: they are up to 6 cm wide and 0.5 cm high.  In comparison, 

other, shallower (~0.5 cm deep) trackways of similar width occur on this surface and 

have lateral ridges up to 3 cm wide and 0.5 cm high (Fig. 12D).  The depth of the 

trackway, 2.5 cm (or about 13% of the trackway width), is a minimum estimate of this 

trackmaker’s height.  Thus, data from both trackways and burrows suggest that the 

Climactichnites animal was relatively squat, with a height roughly 10-15% of its width. 

The ventral surface of the animal was muscular and flexible.  Individual 

trackways appear uniformly wide but upon closer inspection nearly all trackways are 

slightly variable in width; some vary considerably in width over short distances.  Thus 

the sole of the foot was capable of lateral expansion and contraction.  For example, a 

trackway only 34 cm long on slab T-302 from PRI-100 decreases in width from 8.7 to 7.3 

cm along its length (Fig. 12E).  Additionally, on RM 206837 a trackway decreases in 

width from 17.1 to 15.5 cm (Yochelson & Fedonkin 1993, figs. 48 & 55) in a distance of 

only 12.3 cm, which is less than the inferred body length of 36 cm (determined from 

length to width ratios calculated from body impressions; see below).   

 The variation in transverse bar morphology within trackways also indicates that 

the sole of the foot of the Climactichnites trackmaker was flexible (Todd 1882; Burling 

1917; Yochelson & Fedonkin 1993; this study); a stiff foot would have been able to 

produce one or at most a few of the wide variety of bar morphologies seen in individual 
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trackways (Woodworth 1903).  Yochelson and Fedonkin (1993) noted that the 

symmetric, V-shaped bars that are depicted in many illustrations are rare.  Often, the bars 

are asymmetric in shape, with one side of the V much longer than the other; the sides are 

usually offset slightly at the V’s apex (Fig. 12 E, 12F).  Additional bar morphotypes 

include straight bars (both at an angle and perpendicular to lateral ridges), U- or arch-

shaped bars, stitched bars, and sinusoidal bars (Todd 1882; Burling 1917; this study).  In 

a few cases bars point in the direction of travel, but this is very rare.  More typically, the 

V- and U-shaped bars open up in the direction of travel (Clark & Usher 1948).  The 

transverse bar shape within a trackway can change with a single advance of the foot (Fig. 

12F), and individual trackways often exhibit multiple bar morphologies along their 

lengths.  Offset V’s and the insertion of partial transverse bars indicate that the animal 

was capable of alternate left-right motions of the body (Todd 1882).  Bar bifurcation 

occurs as well, usually in association with intrastratal trackways (Figure 12G), further 

illustrating the pliability of the foot.   

 Additional evidence for the soft-bodied nature of the foot of the Climactichnites 

trackmaker comes from turning trackways.  Within these trackways the posterior end of 

the trackmaker’s foot does not swing outside portions of the trackway made by the 

anterior of the foot (Yochelson & Fedonkin 1993).  This indicates that the trackmaker 

could flex its foot tightly to the side and contrasts with the trackways of hard-shelled 

arthropods, such as limulids, whose telson swings to the side of the legs during tight 

turns, leaving a tail drag outside the trackway (e.g., Malz 1964, figs. 12 and 15; Barthel et 

al., 1990, figs. 5.5 and 7.35). 
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Morphological features of Climactichnites, such as the smoothness of the 

trackway and the fine striations, suggest that the trackmaker may have had mucus-

secreting glands and/or a ciliated foot.   Experiments with V. intertextus (Getty & 

Hagadorn 2006) showed that the mucus secretions produced by the snails smoothed the 

sediment over which they crawled, a feature that is common in Climactichnites 

(Yochelson & Fedonkin 1990, 1993).  The fine striations, such as those on NMNH 

58544, 58545, and 532848, could also have been made by mucus secretions in which 

sand was entrained.  Longitudinal striations were originally interpreted as drag marks 

produced by bristles along the ventral surface of the animal (Todd 1882; Walcott 1912; 

Burling 1917).  Yochelson and Fedonkin (1993), however, suggested that the striations 

were the result of cilia brushing sand forward as the animal fed on microbes within the 

sediment.  It is also possible that the striations result from the mucus band being 

corrugated by beating cilia as it was shed off of the rear of the animal. 

Based on the presence of a purple stain on the lateral ridges and transverse bars of 

trackways from Battersea, Ontario (MMQ 2380 and 2381), Yochelson and Fedonkin 

(1990, 1993) proposed that the Climactichnites-trackmaker produced copious amounts of 

mucus during locomotion.  The stain was interpreted as the degradation byproduct of the 

mucus.   However, the stain appears on other parts of the slab and in these areas is 

unassociated with trackways.  It is unlikely that the animal would have secreted large 

amounts of mucus to cover these surfaces and it is therefore unclear if the stain in fact 

represents the byproduct of mucus or an inorganic diagenetic process.   

There is no evidence indicating the presence of a ventrally oriented mouth, as was 

proposed by Yochelson and Fedonkin (1993) based on circular structures on some slabs.  
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The structure on NMNH 532847 (Yochelson & Fedonkin 1993, fig. 34) is not associated 

with a resting trace or a trackway and cannot be confidently interpreted as having been 

made by the Climactichnites animal.  Rather, the concentric rings of sediment are on a 

rough, slightly ripple marked surface between trackways and are similar to a collapsed 

sand volcano.  Water-saturated sand probably flowed onto the surface in successive 

pulses, creating the concentric circles.  The presence of other sand volcanoes on this 

surface, and on horizons at locality PRI-100 supports this interpretation.  Yochelson and 

Fedonkin (1993) also suggested that the mouth produced circular structures within 

trackways on AMNH 51449 and MPM 28389; however, circular structures also occur 

outside of the trackways on these surfaces, suggesting that the structures may have been 

made by sedimentary processes acting over the whole surface. 

Neither is there evidence for lateral flaps of musculature, which Yochelson and 

Fedonkin (1993) suggested were responsible for the production of lateral ridges.  Had 

muscular flaps pulled sediment in towards the animal to produce the lateral ridges, any 

sedimentary structures to the sides of the animal would be disrupted.  However, this is 

not the case.  On slabs where trackways crosscut sedimentary structures, including other 

trackways, the boundary between the structures is sharp (e.g. Malz 1968, fig. 1; Fig. 1).  

Lateral ridges were generated by sediment that was pushed outward and laterally as the 

animal moved forward.  This interpretation is supported by observations made from cross 

sectional profiles of trackways of uneven depth, in which the deeper side of the trackway 

had taller lateral ridges than the shallow side (Fig. 13A, 13B).  A preliminary plot of 

trackway depth vs. lateral ridge height (Fig. 13C) also shows a slight increase in lateral 
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ridge height as trackway depth increases, also suggesting that sediment was excavated 

from in front of and beneath the animal to produce the ridges. 

 

Did the trackmaker grow allometrically? 

 

There is evidence to suggest that the animal may have grown allometrically.  

Examination of 181 trackways of different sizes demonstrates that large trackways are 

not simply larger versions of small trackways; the proportions of trackway features 

change as the trackway increases in width.  Relative to trackway width, the wavelength 

between transverse bars is much greater in small trackways than it is in large trackways 

(Fig. 14A-C).  As trackways increase in width the wavelength increases at a much slower 

rate (Fig. 14D).  It is possible that during growth the pedal musculature grew more slowly 

than the rest of the body.   

 

What type of animal was the trackmaker? 

 

Yochelson and Fedonkin (1993) rejected the possibility that arthropods, worms, 

and mollusks could have produced Climactichnites and instead suggested that the 

trackmaker was a member of a completely extinct phylum of animals with lateral flaps 

used in locomotion.  The presence of lateral flaps was inferred from the regularly spaced 

crenulations seen in some trackways.  New observations indicate that the animal did not 

have lateral flaps and that the lateral ridges are mounds of sediment pushed out from 

around the muscular foot of the animal.  Additionally, crenulations may be seen in the 
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lateral ridges of modern gastropod trackways (e.g. Brown 1971, fig. 1).  In fact, there are 

no characteristics that can be inferred for the Climactichnites trackmaker that would 

indicate a completely unique morphology deserving of a new phylum.  We are left with 

an elongate, bilaterally symmetric, dorsoventrally flattened animal with a soft, muscular 

foot. 

The characteristics listed above are common in extant gastropods and are found in 

Ediacaran and Cambrian soft-bodied mollusks or mollusk-like animals (Runnegar et al. 

1979; Conway Morris 1985; Conway Morris & Peel 1990; Fedonkin & Waggoner 1997; 

Vinther & Nielsen 2005; Stinchcomb & Angeli 2002; Caron et al. 2006; Conway Morris 

& Caron 2007).  Among these, Kimberella and Odontogriphus reached the widths of 

small- to medium-sized Climactichnites trackways and had a similar body shape 

(Fedonkin & Waggoner 1997; Caron et al. 2006).  It is possible that a large, related form 

evolved to inhabit marginal marine sand flats during the Late Cambrian and produced 

Climactichnites.   

Additional evidence supporting a molluscan trackmaker comes from extant 

gastropods, many of which produce Climactichnites-like trackways (Fig. 3).  Bullia 

digitalis, Bullia rhodostoma, Hydrobia ulvae, Littorina littorea, Lunatia heros and 

Polinices duplicatus, which live in intertidal settings, produce trackways with lateral 

ridges and transverse bars (Raymond 1922; Abel 1935; Häntzschel 1938; Gräff 1956; 

Brown 1971; Schäfer 1972; Trueman & Brown 1976; Knox & Miller 1985).  These 

animals produce lateral ridges by displacing sand with their muscular foot; both Abel 

(1935) and Brown (1971) figured crenulated lateral ridges in Bullia trackways.   
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The mechanisms by which these gastropods produce the transverse bars, however, 

are poorly understood.  According to Raymond (1922), L. littorea produces transverse 

bars by bulldozing sediment in front of the foot as it advances forward, thus building a 

ridge over which the body then moves.  In contrast, Schäfer (1972) suggested that L. 

littorea produces transverse bars as the shell and visceral mass of the animal are suddenly 

pulled forward over the advancing foot.  The additional weight of the shell on top of the 

foot depresses it into the substrate before it is extended again, creating depressions at 

regular intervals.  L. heros and H. ulvae trackways also contain transverse bars, but it is 

unknown how they are produced (Raymond 1922; Schäfer 1972).  Neither author 

indicated how the transverse bars were formed. The gastropods B. digitalis, B. 

rhodostoma, and P. duplicatus produce transverse bars and furrows by extending the 

foot, which then anchors to the substrate while the animal is pulled forward by the 

contraction of pedal musculature (Brown 1971; Trueman & Brown 1976; Knox & Miller 

1985).  Thus these gastropods produce trackways in a manner similar to that inferred for 

the Climactichnites trackmaker (see below). 

 

How big was the animal? 

 

Because the inner width of trackways corresponds closely with the width of body 

impressions, trackways of relatively constant width may be used as a proxy for the body 

size of the trackmaker (Fig. 15A).  In addition, because there is a rough correlation of 

length to width of body impressions, with an average length to width ratio of 

approximately 2.3 to 1 (Fig. 15B), it is possible to estimate how long the trackmaker’s 
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body was.  Figure 6C shows the inner widths of 296 C. wilsoni, and thus offers a rough 

indication of the size of the animals that made the trackways.  The widths fall into an 

approximately normal distribution with most trackways between 2 and 18 cm wide. The 

smallest trackway, on SSM 2006/20-1 (Fig. 6C), is only 1.4 cm wide, suggesting a body 

length of 3.2 cm.  The largest trackway, on JF 16 FC, has a variable width from 23 cm to 

29 cm and the animal was possibly as long as 53 to 67 cm (Fig. 15C, 15D).  No other 

Cambrian or Neoproterozoic trace fossils reach this size (but see Baldwin 1977).  The 

size of this trackway indicates that rarely the Climactichnites trackmaker attained much 

larger sizes than previously thought. 

The range in size for C. youngi, which represents the burrowing habit of the 

trackmaker, is also quite large.  The smallest trackways are around 1.8 cm wide whereas 

the largest are 15 cm wide or more (Fig. 16), and yield body lengths of 4.1 to 34.5 cm.  

Comparison of the size ranges for C. wilsoni and C. youngi might suggest that infaunal 

burrowers were smaller than epifaunal ones.  However, due to the variability in width, 

overlapping nature of some of these trackways, and lack of bounding ridges, it is more 

difficult to determine the size of animals from burrows.  Additionally, some C. youngi are 

incomplete or highly irregular (e.g. Fig. 15E), with some having fine backwards-oriented 

striations at the sides of the burrow.  

There are very few small C. wilsoni; only 16 trackways are less than 3 cm wide. 

Small trackways are occasionally found individually among much larger trackways (Fig. 

15F), but two bedding planes, PRI-100-6.5 and PRI-101 from Wisconsin exhibit large 

numbers of trackways of small individuals, as do loose slabs from New York and Quebec 

(Fig. 15G).  Conspicuously, large trackways are absent from these surfaces.   
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Grain sizes for 61 distinct bedding planes and slabs containing large C. wilsoni (> 

6 cm width) and 8 beds containing small- to medium-sized C. wilsoni were examined.  

Twenty-six of the beds, over 80%, with large Climactichnites consisted of coarse or 

medium sand and twenty-three beds, less than 20%, had a dominant lithology of fine 

sand.  In contrast, five beds (63%) containing small- to medium-sized trackways were 

composed of medium sand and three beds (~37%) consisted of fine sand; none of the 

beds had a considerable quantity of coarse sand (Fig. 11).  Thus, it appears that large 

trackmakers were not restricted to beds of certain grain sizes, but that small trackmakers 

were.  It is evident that small trackmakers inhabited the same beds as large individuals 

(Fig. 15F); therefore it is unlikely that the restriction of small trackways to beds of fine 

and medium sand represents an actual habitat restriction or taphonomic bias.  Rather, it is 

likely that sediment grain size played a considerable role in the generation of 

Climactichnites, with small animals being unable to produce trackways in coarse sand, 

even though they may have inhabited coarse-grained beds.  This hypothesis is supported 

by observations made by Brown (1971), who noted that small individuals of the 

gastropod Bullia rhodostoma produced trackways in fine sand but had considerable 

difficulty producing trackways in coarse sand.  In contrast, larger B. rhodostoma were not 

hindered by grain size during trackway production.   

Another variable that probably influenced the production of Climactichnites, and 

therefore the size distribution of trackways, was the relative water content of the sand.  

Sand is more cohesive, and thus more difficult to sculpt, when it has minor amounts of 

interstitial liquid, such as water (Hornbaker et al. 1997; Tegzes et al. 1999, 2003; Schiffer 

2005).  When saturated, water lubricates the grains and allows them to flow past one 
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another (Tegzes et al. 1999, 2003).  Small animals, therefore, would be more likely to 

produce trackways in the sand as water content increased.  Presumably, larger individuals 

would have been less hindered by the water content of the sand.  Thus, if the animal 

moved about on exposed, partly dry tidal flats (see below) it is more likely that large 

animals would have produced trackways while small animals would not.   

As a consequence of the variables outlined above, the number of small trackways 

in Figure 14 probably reflects the relative abundance of individuals that were able to 

produce trackways more than it reflects the relative abundance of small individuals in 

populations of Climactichnites trackmakers.  In contrast, the number of large trackways is 

probably more reflective of the size distribution of the number of individuals of that size 

in actual populations. 

Although grain size and sediment saturation clearly influenced the distribution of 

small Climactichnites, this mechanism is insufficient to completely explain the selective 

distribution of larger trackways.  Some bedding planes that preserve Climactichnites only 

show slight variation in trackway width (Fig. 17).  Thus, medium-sized trackways appear 

with medium-sized trackways and large trackways appear with other large trackways 

(e.g. Figs. 12A, 15G, 20A, 22).  It is possible that populations of the trackmaker at any 

given locality were size and/or age dependent, thus accounting for the small variation in 

width.  Alternatively, populations may have been sexually dimorphic, with the sexes 

inhabiting different areas.  Yet other possibilities are that the same animal or only a few 

animals may have produced multiple trackways on the same surface or that these surfaces 

were exposed to some type of environmental gradient that may have restricted the size 

range of animals that inhabited the locality. 
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How did the animal move? 

 

 Locomotion of the Climactichnites trackmaker must be inferred from a 

combination of features observed in numerous specimens.  The position of transverse 

bars at the front of Musculopodus body impressions indicates that locomotion was 

initiated at the front end of the trackmaker’s body (Figs. 12A, 12B, 15A).  The anterior 

portion of the foot advanced forward, possibly through contraction of a hydrostatic 

skeleton, and dug into the sand to obtain purchase.  Clamping the foot into the sand 

generated furrows.  After the foot clamped onto the sand, contraction of the foot pulled 

the body forward.  Transverse bars were produced as sediment was compressed between 

the anterior part of the foot and the advancing body.  Muscular contractions may have 

moved posteriorly over the entire foot based on lightly impressed, partial bars along the 

lateral margins on several body impressions, or these structures may have been made by 

the lateral margins of the body independently of locomotive contractions (Fig. 12A).  The 

rear of the animal glided over the transverse bars, sculpting them into a dune-like shape 

(Yochelson & Fedonkin 1993) with a steep slope directed anteriorly and a shallow slope 

toward the rear (Fig. 10, inset).  Often, before locomotion commenced one half of the 

foot was extended and the side opposite it was advanced in multiple steps until it “caught 

up” with the extended side, thus producing half bars next to the extended portion of the 

resting trace (Fig. 15A).  Once the trailing side caught up, locomotion commenced.  Half-

bars were also inserted on one side of the trackway when that side of the animal lagged 

behind the other side; by taking partial steps that produced partial bars the trailing portion 
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of the foot caught up with the opposite side.  Most often, the animal extended sides of the 

body in an alternating fashion; while one side of the foot was in motion the other was 

clamped onto the substrate.   

The locomotive process presented here is similar to that inferred by Yochelson 

and Fedonkin (1993, fig. 57), except that the animal did not have lateral flaps.  Two 

strides (defined as the movements that produce a single complete set of transverse bars) 

of the trackmaker are illustrated in Figure 18, beginning with the animal at rest (Fig. 

18A), with the right anterior of the foot extended.  The animal subsequently extended the 

left half of the anterior of the foot until it was next to the right side (Fig. 18B), and 

clamped it onto the surface, producing a partial transverse bar.  The left portion of the 

foot was extended again until it reached beyond the right side (Fig. 18C), and again 

clamped into the substrate.  After the left side of the foot had fully extended and obtained 

purchase in the sand, the right side of the foot was advanced and then clamped into the 

sand next to the left side to complete the first stride (Fig. 18D).  Thus, a complete 

transverse bar was produced.  The second stride, resulting in a second full transverse bar, 

was completed by alternately extending the left side of the foot (Fig. 18E), which then 

clamped into the substrate, and then the right side (Fig. 18F). 

Each transverse bar shape reveals how the foot was emplaced at the time 

contraction occurred.  Contraction could be monotaxic, meaning that the entire front of 

the animal was advanced as a unit, or ditaxic, indicating that the animal moved by 

alternately extending the left and right sides (e.g. Fig. 18).  Monotaxic locomotion is 

indicated by single arched, straight, crescentic, U-shaped, and some V-shaped bars, 

whereas ditaxic locomotion is indicated by double-arched, multi-crescentic, some V-
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shaped, zipper-shaped, sinusoidal, and half bars (Fig. 5).  Multiple bar morphologies 

could be produced in short distances, indicating that foot morphology could be rapidly 

changed (Fig. 12F).  Partial bars on the sides of the trackway separated by undisturbed 

areas might indicate that only the lateral edges of the foot were used, or might indicate 

that sediment consistency was not conducive to bar formation or preservation (Yochelson 

& Fedonkin 1993, fig. 52).  However, the latter seems unlikely over such short distances.  

Because some trackways narrow and end just after the bars become incomplete 

(Yochelson & Fedonkin 1993, fig. 54) it is possible that the animal may have 

subsequently engaged in a different behavior that altered the morphology of the 

trackway.  

Most trackways meander slightly (e.g. Summerson 1951, fig. 1) whereas a few 

show abrupt turns (Clark & Usher 1948).  Of 28 turning trackways examined in this study 

(e.g. Fig. 15D, 19A, 19B, 19D), in 26 trackways the transverse bars on the outside of the 

turn have a greater wavelength than the transverse bars on the inside of the turn (Table 3), 

suggesting that when the trackmaker made turns it often extended the side of the foot on 

the outside of the turn more than the side of the foot that was turning.  The portion of the 

foot on the turning side advanced only slightly and the transverse bars on the turning side 

were positioned close together.  When the animal turned tighter the wavelength between 

transverse bars on the outside of the turn increased correspondingly.  Greater extension 

on the opposite side of the turn coincides with the slightly longer distance that the outer 

portion of the foot had to travel while the animal turned.  

Lateral ridge height and trackway width also vary during turns.  Lateral ridges on 

the outside of turning trackways are sometimes taller than those on the inside of the turn 
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because the animal dug in more on the outside of the turn (Fig. 13A, 19A).  For example, 

as an animal made a 90° turn to the right on UW 4019, it held the right side in place 

while the left side of the body turned; the entire body narrowed around the turn (Fig. 

19B).  The large trackway on JF 16 FC shows the opposite trend; the trackway widened 

as the animal executed a hairpin turn with an internal radius of only 6.5 cm (Fig. 15D). 

In some cases where the animal traversed a surface perpendicular to sharp-crested 

oscillation ripples, the animal modified the ripples into transverse bars.  The animal also 

used the transverse bars of previously made trackways in making its own tracks (Fig. 

19C).  In one spectacular example of a turning animal crossing an oscillation ripple 

marked surface, an animal that produced a trackway on NYSM unnumbered greatly 

extended the foot on the outside of the turn in order to anchor the foot onto the ripples 

(Fig. 19D).  Thus, the animal selectively used sedimentary structures to aid in 

locomotion.  

The Climactichnites animal burrowed below the surface, creating C. youngi trails 

with morphology distinct from surface trackways (Figs. 6, 7, 8, 12B, 12G, 15E, 20).  

Subsurface trails lack lateral ridges and the transverse bars show considerable 

morphological variability: the transverse bars often bifurcate and have lateral extensions 

pointing to the rear that decrease significantly in wavelength and amplitude (Fig. 15E, 

upper left portion of trace).   Despite the lack of lateral ridges, the trackways show 

distinct boundaries, which are smoother than the surrounding matrix (Figs. 12G, 15E).  

Burrows may have a more irregular outline than surface traces  (e.g. Fig. 15E), 

suggesting that, when burrowing beneath the sediment surface, the animal often increased 

and decreased the width of the foot in irregular intervals.  
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What did the animal eat? 

 

The reinterpretation of the supposed mouth impressions and lateral ridges as 

outlined above suggests that the animal must have employed another feeding mechanism 

than the one proposed by Yochelson and Fedonkin (1993).  Seilacher-Drexler and 

Seilacher (1999) hypothesized that Climactichnites was made by an epibenthic mollusk 

that grazed on microbial mats.  In their view, the presence of the mollusk feeding trace 

Radulichnus in deposits of similar age in Saudi Arabia suggested that similar animals 

could have been responsible for both Radulichnus and Climactichnites.  In addition, body 

impressions similar to Musculopodus (the impression left by the Climactichnites 

trackmaker when at rest) have been found associated with Radulichnus in Neoproterozoic 

deposits of Australia and Russia (Gehling 1996; Seilacher 1997; Fedonkin 2003).  If 

Climactichnites were made by a mollusk, then the animal would have had a radula; 

however Radulichnus has not been found associated with Climactichnites. 

It is possible that some trackways may represent grazing behavior.  For example, 

on PRI-100-6.5 (Fig. 21), the trackways are of similar width (~6.0-6.6 cm) and appear to 

show the same looping pattern: the animal(s) first traversed the substrate, which is 

covered with domal sand build-ups (a.k.a. sand stromatolites), at approximately 70-75°.  

The trackmaker(s) then took a sharp turn to their right and proceeded at about 110°.   One 

animal clearly looped to the left and continued at 290°; the other trackmaker may have 

turned to the left too, but the portion where the turn would be is covered.  The second 

trackway appears to then traverse the slab at 290°, as the first trackway does.  The similar 
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size and pattern of locomotion of these two trackways suggests that the same animal 

might have made them.  Alternatively, similarly sized individuals could have made them.  

Regardless of whether these trackways represent one or two animals, their complex, yet 

similar directional pattern suggests some sort of systematic behavior, and their presence 

on a surface covered with suspect-microbial structures suggests that the animal(s) could 

have been grazing on microbial mats. 

Elsewhere, trackways have been observed following the ripple troughs.  For 

example, at PRI-100-9.54 (Fig. 22), 23 of 62 trackways are found exclusively within 

troughs and segments of 29 others are within the troughs.  Only 10 trackways on this 

surface cross ripples without moving in the troughs.  The preferred direction of travel by 

the animals through the troughs of the ripples may be the result of the animals feeding on 

material that was growing in or was deposited within the troughs. 

Rarely, medial ridges occur within trackways (e.g. Logan 1860, figs. 1, 3, 4, 5; 

Fig. 23).  Yochelson and Fedonkin (1993) proposed that the ridges were the remnants of 

fecal strands that the animal excreted as it grazed.  If the medial ridge is a fecal strand 

then the animal must have consumed large quantities of sand along with its food.  

However, other researchers have suggested different origins for the ridge.  For example, 

Woodworth (1903) suggested that the ridge was formed by a fold on the bottom of the 

animal’s foot. 

To test the hypothesis that the medial ridge represents a fecal strand we serially 

sectioned a ridge-bearing Climactichnites perpendicular and parallel to the long axis of 

the trace (Fig. 23).  This ridge was selected for study because it had a tight sinusoidal 

shape (Fig. 23A), was clearly distinct from the transverse bars, and was from a part-
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counterpart specimen in which the layer that buried the trackway was also preserved. 

When viewed in cross section the trackway cuts through a laminated bed; however, the 

medial ridge lacks the well-developed laminations that are present immediately below it 

(Fig. 23B, 23C).  The ridge is less compact than and contains slightly smaller grains than 

the underlying laminated bed.  Like the upper portions of the laminated bed, the ridge has 

higher concentrations of mud, hematite, and limonite.  The ridge is not enriched in 

organic matter.  

Some of the observed features are consistent with the hypothesis that this medial 

ridge is a fecal strand.   For example, the sinuous shape of the ridge is consistent with a 

coherent string of material being excreted.  Additionally, if the ridge were the result of an 

inward fold on the sole of the animal’s foot one would expect laminations to be present, 

but in a deformed state.  However, laminae are absent and the sediment appears to 

represent a homogenized mixture of grains in adjacent laminae.  It is difficult to explain 

the mixing of sediment, the lack of laminae, and the sinusoidal shape of the ridge as the 

result of a sulcus on the sole of the foot.  It is also possible that the medial ridge in 

question is the lateral ridge of one trackway that is partly superimposed on top of another 

trackway, as is the case in some other trackways (e.g. Fig. 19C).  However, this 

explanation does not easily account for the distinctive shape of the studied ridge, and no 

other trackways that may have interfered with it are preserved.   

Many animals that graze algae or eat organic detritus consume sand and silt from 

the uppermost layers of the bed on which they are feeding (Schäfer 1972).  Thus it is 

possible to envision, based on evidence from ACM-UC 233, a large slug-like animal 

grazing on a mud-draped sandy layer and excreting a mud- and sand-laden fecal strand.  
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However, evidence for such an origin is still equivocal.  For example, one must wonder 

why, if a grazing animal produced the surface traces, medial ridges are so rare.  The 

preservation of other fecal-pellet-like structures in the same deposits as Climactichnites 

and the preponderance of microbial binding in Climactichnites-bearing deposits argues 

against widespread taphonomic removal of medial ridges from trackways.  Further 

sectioning of trackways with medial ridges is needed to refine or falsify the fecal strand 

hypothesis.   

 

Did the trackmaker make subaerial excursions? 

 

 Climactichnites is often found on beds preserving sedimentary structures such as 

adhesion warts, foam marks, polygonal desiccation cracks, and raindrop imprints, 

indicating that the substrates upon which the animal tread were intermittently subaerially 

exposed (MacNaughton et al. 2003).  At PRI-100 the Climactichnites animal moved in 

and out of tidal channels, and in some cases crossed over channel levees, characterized by 

polygonal mud cracks (MacNaughton et al. 2003).  However, the co-occurrence of the 

trackway and these sedimentary structures is not definitive evidence that the trackmaker 

made subaerial excursions.  Where desiccation cracks are present they often crosscut the 

trackway, indicating that the cracks formed after track production.  Thus it is possible that 

the trackways were produced subaqueously and that the tide went out after the trackway 

was formed.  Similarly, some trackways were produced in wind-dominated settings, such 

as QUE-PH-101, in which wind-blown sand adhered to previously made trackways (Fig. 

24). Although one other surface has been found with Climactichnites associated with 
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adhesion structures (PRI-100-7.82) no trackways have been found that crosscut adhesion 

structures to date.  Such crosscutting relationships are critical for constraining possible 

evidence of subaerial exposure. 

Raindrop impressions might provide more conclusive evidence for subaerial track 

formation because it is possible for an animal to produce a trackway during a shower.  

This would produce a trackway that both crosscuts and is crosscut by raindrop 

impressions, thus suggesting that the trackway was produced during or between rain 

events.  For example, at PRI-100-9.13 both Climactichnites and raindrop impressions are 

preserved (Fig. 25).  The trackways are crosscut by the raindrop impressions, indicating 

that the surface was rained on after track formation, which may have been under water.  

Alternatively, the trackways may have been produced subaerially before the shower.  In 

any case, the evidence for subaerial track making on this surface is equivocal. 

Another line of evidence that could indicate that the trackmaker made subaerial 

excursions is the preservation of the trackway.  Knox and Miller (1985) demonstrated 

that the preservation quality of Polinices duplicatus trackways made in sand varied 

depending on whether the trackway was produced subaerially or subaqueously.  Under 

subaerial conditions, P. duplicatus produced Climactichnites-like trackways that had 

well-defined lateral ridges and transverse bars and furrows.  However, when P. 

duplicatus trackways were produced in wet, less compact sediment the lateral ridges and 

transverse bars were faint.  Under water the animal burrowed and produced a trackway 

whose sides collapsed due to the high water content of the sand, producing a trace with a 

v-shaped cross section.  The varying track morphotypes reflect trails made in sediments 

of variable sediment consistency (Knox & Miller 1985).   It is possible that some well-
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preserved Climactichnites trackways were produced under subaerial conditions and that 

the preservation quality of the fossil is at least in part due to production either subaerially 

or subaqueously.  For example, Climactichnites moving out of channels on PRI-100-

10.45 have variable morphologies (Fig. 26).  At the bottom of the channel no trackways 

are visible, but about halfway up the channel trackways with well-pronounced straight 

lateral ridges were observed.  These trackways do not exhibit transverse bars and 

furrows.  However, toward the top of the channel some of the trackways exhibit 

transverse bars and furrows.  The variable track morphology suggests that the sediment 

had different degrees of saturation; one possible interpretation is that animals were 

moving out of a submerged channel onto a subaerially exposed portion of the channel.  

Another possibility is that the animal may have been buoyed up more by deeper water at 

the bottom of the channel, thus not producing trackways. 

 

Inter- and intra-specific relationships 

 

Climactichnites is often the only trace fossil found on beds on which it occurs 

(Table 4).  Of the 77 discrete bed surfaces and museum specimens analyzed, only 19 had 

additional trace fossils on them.  In cases in which Climactichnites does occur with other 

traces, these are primarily arthropod trackways such as Diplichnites and Protichnites; 

however, Arenicolites, Diplopodichnus, Planolites, and indeterminate arthropod 

trackways also occur on some surfaces (Table 4).  There is no direct evidence of 

interaction between the Climactichnites trackmaker and other trackmakers; most often 

one trackway is superimposed on the other, indicating that they were made at different 
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times.  This is particularly true of Arenicolites, which often punctures traces on 

underlying beds (Bjerstedt & Erickson 1989; Hagadorn & Belt in press).  The paucity of 

other trace fossils on Climactichnites-bearing beds suggests that the trackmaker was one 

of the few animals of its time to be adapted to the extremes of the upper intertidal zone, 

where physical conditions such as ultraviolet light, temperature, salinity, water saturation, 

and oxygen concentration vary considerably (Yochelson & Fedonkin 1993). 

C. wilsoni can occur as an isolated trackway or in abundance on bedding planes.  

Surface disruption, characterized by bedding plane bioturbation indices of Miller and 

Smail (1997), ranges from very low (Figs. 21, 25), to high (Figs. 15G, 24).  When 

Climactichnites is abundant on bedding planes they may have a common direction of 

travel.  For example, on PRI-100-9.54 trackways run through the troughs of high-

amplitude, high-wavelength ripple marks, both parallel and antiparallel to each other 

(Fig. 22, see discussion above).  Thus, these animals were selectively choosing the 

troughs through which to move.  

C. youngi also can occur in large numbers within beds (e.g. Fig. 20).  The 

occurrence of these traces within beds indicates that the trackmaker was capable of 

burrowing with its body completely buried within the sediment.  The bifurcation of bars 

and their change in wavelength and amplitude laterally in some trackways implies that 

the method of locomotion may have varied somewhat from that inferred from surface 

trails; for example, the lateral edges of the foot may have made much shorter steps than 

more medial portions of the foot, thus leading to the short wavelength and amplitude bar 

striations seen in some trackways (Fig. 8.4).    
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How was the trackway preserved? 

 

It is possible that the Climactichnites trackmaker produced copious amounts of 

mucus during locomotion and that the mucus led to preservation of the trackway 

(Yochelson & Fedonkin 1990, 1993).  However, in modern intertidal deposits mucus-

laden epifaunal gastropod trackways similar to C. wilsoni are rarely, if ever, preserved 

because of obliteration by wave and current action.  To test the hypothesis that mucus is 

sufficient to preserve epifaunal, mucus-bound trackways, a series of experiments was 

undertaken with the gastropod Viviparus intertextus in an experimental tank (Getty & 

Hagadorn 2006).  V. intertextus, on rare occasions, produced trackways with lateral 

ridges, transverse bars, and furrows (Fig. 27A), which were formed by the animal 

pressing its shell into the sand, presumably in an attempt to burrow.  Although this 

method of transverse bar production is different from that inferred for the Climactichnites 

trackmaker, it posed no problem for this experiment, which was intended only to 

determine how mucus-bound trackways with transverse bars and furrows are preserved.  

After some time the animal would move a short distance and begin pressing its shell into 

the sediment again.  As the foot moved over the transverse bars and furrows it deposited 

a mucus band over them.  Experiments were conducted with these trackways in which the 

apparatus was filled slowly with water poured from a beaker.  Water was poured from the 

other side of the tank to prevent the stream of water from directly touching the trackway; 

thus the disturbance from the water was limited to minute oscillatory waves generated as 

the water reflected off the side of the tank.  Even these waves were enough to disrupt the 

sand around the trackway and thereby undermine it.  Additionally, the mucus floated to 
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the surface of the water and as a consequence did not provide any protection for the 

trackway (Fig. 27B).  These experimental observations suggest that mucus secretions are 

not enough to preserve trackways.  In light of the problems preserving gastropod 

trackways bound by mucus in similar environments, it is unlikely that mucus played a 

major role in preserving Climactichnites.   

The presence of epifaunal arthropod, annelid, and other invertebrate trackways on 

the same surfaces as Climactichnites (e.g. Summerson 1951; Yochelson & Fedonkin 

1993, fig. 55; Table 4) further weakens the mucus preservation hypothesis.  Because 

these traces are not bound by mucus and occur on surfaces composed of loose sand, they 

should have been washed away.  There are two possible reasons that the arthropod 

trackways were preserved: they are undertracks or the surface on which they were 

impressed was cohesive enough to resist erosion due to tidal cycles.  Goldring and 

Seilacher (1971) demonstrated that telson drags only occur on or very close to the surface 

on which trackways are produced; therefore, the presence of continuous telson or 

abdominal drag marks in trackways such as Protichnites on the same surfaces as 

Climactichnites suggest that these trackways are true trackways rather than underprints.  

It appears that at least in some cases entire surfaces on which Climactichnites and other 

traces were impressed have been preserved.  For example, the type slab at the Geological 

Survey of Canada (GSC 6299) and a large slab at the Redpath Museum (RM 206837), 

both of which are from Perth, Ontario, preserve large Diplichnites and Protichnites (e.g. 

Yochelson & Fedonkin 1993, figs. 18 & 55).  Additionally, some surfaces preserve 

sedimentary structures, such as raindrop impressions, that are not usually preserved in 

sand (Fig. 25).  It follows then that these surfaces were cohesive enough to resist erosion.  
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A striking example of the cohesive nature of some of the beds appears at PRI-100-9.54, 

where numerous channel foresets and bottomsets, consisting of medium to very coarse 

sand, overly a Climactichnites-bearing surface consisting of fine to medium sand (Fig. 

22).  Had the surface not been cohesive, the trackways would have been scoured away by 

the flowing water that produced the channels.  

There are numerous reasons that such surfaces can be cohesive.  Surface tension 

produced by liquids, such as water, provides considerable cohesion between grains of 

sand (Hornbaker et al. 1997; Tegzes et al. 1999, 2003; Schiffer 2005).  However, the 

ability of water to provide cohesion to sand diminishes as grain size increases (R. H. 

Dott, Jr., personal communication), and many Climactichnites-bearing beds consist of 

medium- and coarse-grained sand (Fig. 10), in which aqueous cohesion is less capable of 

holding the grains together.  Furthermore, as the amount of interstitial water increases the 

cohesive properties imparted by water decrease; in saturated sand water acts as a 

lubricant, thus allowing the grains to slip past each other (Tegzes et al. 1999, 2003).  

Trackways under water would have been made in sand with a high degree of water 

content, thus limiting their preservation potential unless the water was very calm.  

Additionally, incoming tides would have increased water content of subaerially exposed 

tidal flat sands and any trackways on these surfaces would be subject to a decreased 

preservation potential when flooded.  Because the observed distribution of 

Climactichnites is grain size dependent, it is likely that surface cohesion was a more 

important factor for the preservation of small trackways, which are found in fine-grained 

sand, than for larger trackways. 
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Clay within the sand also could have imparted cohesive properties to the beds due 

to the Van der Waals forces between the particles (Craig 2004).  However, mudstones 

and shale are rare in the Potsdam Group (Wiesnet 1961; Lewis 1971) and its equivalents 

in Wisconsin and Missouri (Runkel et al. 1998; Ojakangas 1963) and only one bed in the 

Carrieres du Charm quarry and three beds in the Krukowski and Nemke quarries had 

trackways preserved on muddy surfaces.  It has been suggested by some authors that the 

lack of clay is due to strong winds carrying the material out to sea (e.g. Dalrymple et al. 

1985), or that these materials were carried in suspension across the shelf and deposited in 

shallow areas only when permanent currents were weak (Pettijohn et al. 1973; Runkel et 

al. 1998).   Consequently, it is unlikely that clay aided in the preservation of many 

trackways except for those with which clay and the trackways co-occur directly (e.g. Fig. 

28).   

Surface cohesiveness also could have been increased by the presence of biofilms 

or microbial mats covering the trace-fossil-bearing beds.  Numerous microbial 

sedimentary structures have been found in the units that contain Climactichnites, 

including domal build-ups (i.e. sand stromatolites), sand chips, sand curls, exfoliating 

sand laminae, patchy ripples, “Astropolithon”, broached ripples, and elephant skin 

(Hilowle et al. 2000; Donaldson & Chiarenzelli 2004; York et. al 2005; Getty & 

Hagadorn 2006; Hagadorn & Belt in press).  Some of these structures occur on the same 

beds as Climactichnites.  For example, trackways crosscut and are crosscut by sand 

stromatolites on PRI-100-6.35 (Fig. 21), suggesting that these trackways were produced 

on a microbially-bound surface and that the mat continued to grow after the trackways 
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were made.  Thus, the mat may have directly aided in the preservation of these 

trackways.   

Although none of the processes outlined above can explain the preservation of all 

C. wilsoni, it is likely that each played a role in preserving some of the traces, and that 

these processes could have worked together to preserve many of the surfaces in question.   

Preservation of Climactichnites youngi was mediated by their production below 

the surface; sediment shed off of the back of the trackmaker immediately filled in the 

void left as the animal burrowed, allowing for fine structures such as striations to be 

preserved (Fig. 20B).  This is similar to the preservation of other Cambrian infaunal 

burrows with transverse bars, such as Plagiogmus and Psammichnites (Seilacher 1995; 

McIlroy & Heys 1997, and references therein).   
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

 

Since its discovery in 1859, Climactichnites has been subject to continued debate 

due to its unique morphological characteristics among fossil trackways; thus numerous 

contradictory hypotheses have been proposed concerning the identity of the trackmaker.  

Some have suggested that the trackmaker was a member of a completely extinct phylum 

of soft-bodied animals (Yochelson & Fedonkin 1993) that inhabited Late Cambrian, 

marginal marine, siliciclastic environments along the shore of the Laurentian craton.  

These authors suggested that the unique morphology of the trackway reflected a distinct 

and novel body plan that evolved in response to the selective pressure of inhabiting this 

harsh environment.  When the environments inhabited by the Climactichnites trackmaker 

changed at the close of the Cambrian the animal became extinct.  However, my 

sedimentologic, taphonomic, paleoenvironmental, and paleoecologic analyses do not 

support this interpretation.  A more parsimonious framework for interpreting 

Climactichnites and its trackmaker is to examine modern gastropods that produce 

Climactichnites-like trackways and to evaluate the preservation potential of Cambrian 

mollusk trackways in an evolutionary paleoecological context.  

The features inferred for the trackmaker as outlined in this paper are consistent 

with a molluskan trackmaker, a conclusion that is supported by body fossil evidence of 

similarly shaped mollusks from the Ediacaran and Cambrian.  It is possible that soft-
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bodied mollusks or a mollusk-like animal was able to inhabit sand flats during the Late 

Cambrian.  Further support for this hypothesis is the fact that modern gastropods 

inhabiting similar environments make Climactichnites-like trackways.  

Because gastropods produce similar trackway morphologies, the most unique 

feature of Climactichnites is not its morphology, but its preservation.  Given the long 

fossil record of soft-footed mollusks (Fedonkin & Waggoner 1997), why is 

Climactichnites preserved in the Late Cambrian, while similar trackways produced by 

gastropods are absent from the fossil record throughout the remainder of the 

Phanerozoic?  This question implies that there is something unique about the Late 

Cambrian.  During this time microbial mats still predominated in areas where significant 

vertical burrowing was minimal (Hagadorn & Belt in press).  It is possible that the 

trackmaker inhabited one of these environments, for a well-developed Skolithos 

ichnofacies, dominated by vertical burrows, is not observed in association with 

Climactichnites at any of the 25 studied localities.   Additionally, some Climactichnites-

bearing surfaces preserve microbially-produced sedimentary structures, suggesting that 

the preservation of epifaunal trackways may have been mediated by microbes.  

Consequently, the absence of Climactichnites after the Cambrian may not be the result of 

the extinction of the trackmaker or of a particular locomotory behavior, but of the lack of 

a suitable microbially-bound and poorly bioturbated substrate in which to preserve the 

trackway during later times.   
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Conclusions 

 

The Climactichnites trackmaker was an elongate, bilaterally symmetric, 

dorsoventrally flattened, soft-footed animal with a muscular anterior used during 

locomotion.  Most trackmakers were between 1.4 and 18 cm wide and 3.2 to 41 cm long, 

and evidence suggests that the body was about 13% as tall as wide.  One exceptionally 

large trackway measures as much as 29 cm wide, corresponding to an animal 67 cm long.  

The ventral surface of the animal may have had glands that secreted mucus during track 

formation, and the dorsal surface may have been naked or may have borne sclerites.   

The trackmaker was likely a mollusk or mollusk-like animal that inhabited sandy 

intertidal to subtidal environments.  The animal could move epifaunally and infaunally, 

producing trackways like those in Fig. 29.  Infaunal burrows can be identified by the 

presence of fine striations and tapering and bifurcating transverse bars, which are rarely, 

if ever, preserved on surface trackways.  Additionally, subsurface burrows do not have 

lateral ridges.  The trackmaker may have made some trackways under subaerial 

conditions; if the Climactichnites trackmaker was indeed a mollusk and made subaerial 

excursions then mollusks may have been among the first terrestrial pioneers, along with 

arthropods (MacNaughton et al. 2002). 

Locomotion on the surface resulted from manipulation of the soft foot in a 

manner similar to that that employed by extant gastropods such as Bullia and Polinices.  

Transverse bars in Climactichnites were generated as the animal clamped its foot onto the 

substrate, while the lateral ridges resulted from the foot plowing sediment to the side as 

the animal moved forward.  
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Climactichnites is also notable because it is one of the only trace fossils to go 

“extinct”.  The unique morphology of the trackway and its sudden disappearance from 

the fossil record has been viewed as the result of the radiation of a unique group of 

animals that subsequently went extinct.  However, the present evidence suggests that 

Climactichnites trackways were likely as common as the intertidal mollusks that made 

them, and their disappearance from the fossil record is largely tied to the loss of 

environmental conditions suitable for the preservation of horizontal trace fossils in such 

settings.   
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TABLE 1.  Climactichnites field localities. 

 

Region Locality     Coordinates or reference  Taxa Present 

Wisconsin Abandoned Quarry N44º42.739' W89º30.343'  C.w. 

  Black River Falls  Yochelson and Fedonkin (1993) C.w. 

Central Wisconsin Stone  N44º42.873' W89º31.011'  C.w. 

Chippewa River, 2 sites  Yochelson and Fedonkin (1993) C.w. 

Irma     N45º21.088' W89º39.335'  C.w. 

Krukowski Quarry  N44º42.755' W89º30.786'  C.w., C.y., M.s. 

Lemonweir River quarries  Todd (1882)    C.y. 

Mauston    Yochelson and Fedonkin (1993) C.w. 

Minke Quarry   N44º42.295' W89º31.394'  C.w. 

Nemke Quarry   N44º41.709' W89º32.110'  C.w. 

Pointe Quarry    N44º42.500' W89º30.092' C.w. 

Quarry in Marshfield  N44º36.937' W90º13.280'  C.w. 

Missouri  Big Spring State Park   N36º56.837' W90º59.431' C.w. 

  Black River Stone Quarry   N36º58.369' W90º36.617'  C.w., M.s. 

  Columbia Park                  N37º50.516' W90º59.431' C.w. 

Fredericktown    N37º34.626' W90º24.331' C.w. 

  Ste. Genevieve                  N37º50.760' W90º13.920'  C.w. 

Williamsville    N36º58.393' W90º32.988' C.w. 

New York Au Sable Chasm    N44º31.387' W73º27.585' C.w. 

  Bidwell Crossing    N44º55.452' W73º26.640' C.w. 

  Hammond    N44º25.471' W75º46.563' C.w. 

  Gadway SS pavement    N44º58.689' W73º44.847' C.w., C.y. 

  Mooers                                N44º57.549' W73º34.759' C.w., M.s. 

  Port Henry                            Hall (1889)    C.w. 

  Wellesley Island                  N44º18.382' W76º02.005'   C.w. 
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Quebec Carriere Dolomite Quarry   N45º18.747' W73º55.998'  C.w. 

  Les Carrieres du Charm  N45º02.575' W73º46.374'  C.w., C.y. 

  Melochville   N45º18.965 ' W73º55.110' C.w. 

  Réserve Ecol. du Pin-Ridge N45º06.576' W73º52.871' C.w.  

  Rogier’s Farm   N45º19.337' W73º54.788'  C.w. 

  covered by water 

  St. Hermas   N45º36.894' W74º12.453'  C.w. 

Ontario  Battersea   N44º26.264' W76º22.670'  C.w. 

  Perth    Logan (1860); no longer exists      C.w. 
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TABLE 2.  Sediment composition for experiments.  

 

Grain Size (Φ) Percent Composition  

 ≥ 4   3.4 

 3-4   9.8 

2-3   33.2 

1-2   31.8 

0-1   14.2 

-1-0   5.4 

≤-1   2.2 
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TABLE 3.  Bar wavelength (λ) on turning trackways.  Measurements taken on left 

and right sides of 28 curving Climactichnites.  In 26 of the trackways λ increases on 

the outside of the curve, corresponding to the longer distance the portion of the foot 

on the outside of a curve had to travel.   

 

Specimen Track Turn  Left λ Right λ comments 

ACM 68/2 1 right 2.4 2.4  

ACM 68/2 2 left 1.1-1.3 1.6-2.2  

ACM 68/2 3 right 2.3 1.6  

ACM 68/2 4 right 3.0 2.6  

ACM 68/3  left 2.4-3.9 2.7-3.8 No correlation  

ACM UC 235  left 1.9-2.4 2.3-2.9  

NMNH 532849 2 left 1.0 2.2  

NYSM unnumbered 1 right not measured not measured greater outside 

NYSM unnumbered 2 left 1.5-2.0 2.5-3.0  

NYSM E-3436 2 right 2.3 1.3  

NYSM E-3436 3 left 0.9 1.5  

NY-WI 1 left 0.6 1.2  

NY-WI 4 right 0.9-1.5 0.8-1.2  

SMM P.76.21.1 T-1-1 right 1.8-2.2 2.3-3.6 greater outside 

ACM UC 235  left 1.9-2.4 2.3-2.9  

WI-DF-2  right 2.2 1.1  
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WI-DF-80  left 1.2 2.5  

WI-DF-104 1 left 0.9 1.8  

WI-KQ-499 2 right not measured not measured 

WI-KQ-500 2 right 2.3 1.9  

WI-KQ-500 5 left 0.9 1.3  

WI-KQ-501 1 right 2.1 1.5  

WI-KQ-501 2 left not measured not measured 

YPM 150696  left 2.1 2.3  

YPM 150698  left 1.3 2.0  

YPM 150700  right 3.5 2.4  

YPM 174721  right 2.4 3.1  

St. Hermas, Quebec  left 2.3-3.1 2.6-3.4  
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TABLE 4.  Trace fossils associated with Climactichnites. See p. xvii for 

abbreviations.   

 

Surface/Slab Formation Associated Trace Fossils 

ACM 68/2 Potsdam Group? Pl 

AMNH 51449 Potsdam Group D 

GSC 6299 Nepean Fm Pr 

MO-CP-1-2 Gunter Ss member Pr 

NMNH 532847 Cairnside Fm IA 

NYSM no # Potsdam Group D 

QUE-BE-7 Cairnside Fm D, Pl 

SSM 2006/20-4 Cairnside Fm IA 

SSM 2006/20-5 Cairnside Fmn IA 

WI-DF-94 Elk Mound Group Di, Pr 

WI-DF-104 Elk Mound Group Pr 

WI-DF-112 Elk Mound Group Pr 

WI-DF-200 Elk Mound Group D 

PRI-100-6.3 Elk Mound Group IA 

PRI-100-9.13 Elk Mound Group Di 

PRI-101-1 Elk Mound Group Pl 

RM 206837  Nepean Fm Pr, Ar 

UMR 7283 Lamotte Ss Pr 

 



 

 

 

 

 

Figure 1.  ACM 68/01.  Photograph (A) and interpretive drawing (B) of ACM 68/1, of 

the upper surface of a slab of medium-grained sandstone from New Lisbon, Wisconsin 

(probably Mt. Simon Formation).  The slab preserves oscillation ripple marks overprinted 

by Climactichnites.  The trackways are bound by lateral ridges between which are 

undulating transverse bars and furrows. The depth of the trackways indicates that the 

animals were moving at approximately the same depth as the ripple troughs. The sharp 

boundaries between trackways and ripple marks indicates that sediment was not pulled 

inward by lateral flaps to form the lateral ridges; rather, sediment was plowed from in 

front of the animal to the sides.  Approximate order of track formation indicated by 

numbers and direction travel indicated with arrowheads.  Scale bar is 15 cm. 
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Figure 2.  Locality maps and stratigraphic context of formations.  (A) Outline drawings of 

Wisconsin (WI), Missouri (MO), and the St. Lawrence lowlands regions of New York 

(NY), Quebec (QUE), and Ontario (ONT), showing late-Cambrian sandstones in yellow.  

Climactichnites-bearing field localities are indicated by red circles.  (B) stratigraphic 

correlation between the three regions.  Figures modified from Hagadorn et al. (2002) and 

Hagadorn & Belt (in press).  A drafted by J.W. Hagadorn, W. Chen, and J. Collette. 
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Figure 3.  Modern gastropod trackways.  Note the pronounced lateral ridges (lr) and the 

transverse bars (tb).  (A) shows trackways produced by Littorina littorea and was 

modified from Graff (1956), (B-C) show trackways produced by Bullia digitalis and were 

modified from Abel (1935), and (D) shows trackways produced by Polinices duplicatus 

and was modified from Knox and Miller (1985).  The illustration and photographs are 

used with permission from Schweizerbarte, Elsevier, and Society of Sedimentary 

Geology (SEPM) respectively.  No scale was provided with the originals of (A-C); 

however, Raymond (1922) noted Littorina trails up to 1.4 cm wide with transverse bars.  

Bullia digitalis reaches 6 cm long (Branch et al., 1994) and the foot may expand to 

approximately 70% of the shell length (C. L. Griffiths, personal communication), for a 

maximum width of 4.2 cm.   
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Figure 4.  Trackways and burrows lacking lateral ridges.  (A) RM 206840 and (B) RM 

206841, part and counterpart slabs preserving C. wilsoni as an original trackway on a bed 

top and natural cast from the overlying bed sole, respectively.  The slabs are aligned such 

that the cast (B) would fit perfectly on top of the mold (A) if it were flipped over and 

moved to the left.  The mold appears to lack lateral ridges, especially towards the upper 

right of the specimen.  However, inspection of the natural cast reveals that lateral ridges 

were present when the trackway was produced.  When the beds split, the lateral ridges 

cleaved off and were retained in the natural cast (arrowed and labeled lr).  Toward the 

bottom of RM 206841, portions of the transverse bars can be seen adhering to the 

overlying slab (arrowed and labeled tb).  Note also the pustular texture to the upper right 

of the slab in (A).  Sedimentary structures such as these are never found in association 

with C. youngi, such as this part-counterpart specimen from PRI-100 (C), which lacks 

lateral ridges because it was produced as an infaunal burrow.  Scale is 10 cm. 
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Figure 5.  Morphological variability in Climactichnites wilsoni.  All surfaces except (F) 

are bed tops.  (A), YPM 150698, exhibiting crenulated lateral ridges and v-shaped 

transverse bars.  (B), part of SMM-P 76.21.1, the trackway has straight, continuous 

lateral ridges and v-shaped transverse bars that are alternately asymmetric (one limb of 

the v shorter than the other) on the right (towards the bottom of the slab) and then on the 

left (towards the top).  (C), part of SSM 2006/20-1, a plaster reproduction of a trackway 

made from its natural cast showing a zipper-like pattern to the transverse bars and 

crenulated lateral ridges.  At only 1.37 cm wide, this is the narrowest C. wilsoni trackway 

known.  (D), part of ACM UC 232 showing a trackway with straight lateral ridges and 

straight transverse bars, which are oriented perpendicular to the direction of travel.  (E), 

SMM-P 76.21.1 (III-IV), note the trackway oriented perpendicular to the long axis of the 

slab, which has straight transverse bars oriented at an angle to the direction of travel.  

Numerous trackways that overprint each other are oriented roughly perpendicular to the 

trackway with straight bars; these trackways are only partially impressed.  (F), Part of 

ACM UC 240, a slab preserving the sole of an overlying bed and C. wilsoni as natural 

casts.  The well-preserved trackway shows both v-shaped bars (to the right) and u-shaped 

bars (to the left).  (G), Part of ACM UC 244 preserving a trackway on a raindrop- and 

sand ball-bearing surface exhibiting a straight lateral ridge on the left and a packeted 

lateral ridge on the right (arrowed).  The packets are elongate and point in towards the 

direction of travel.  Silicone rubber molds of this trackway are preserved as ACM UC 

241.  All scale bars are 5 cm. 
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Figure 6.  Climactichnites youngi neotypes.  (A), Obverse and (B), reverse of NMNH 

58547, showing multiple generations of burrow production.  One trackway is preserved 

on the top of the slab (A) whereas two are preserved on the bottom (B).  In (B), one 

trackway traverses right to left across the slab and consists of sinuous, bifurcating bars 

and furrows.  Stratigraphically above this trackway (but visible due to spalling of the 

lower layer in a lowercase R-shaped pattern) is an even more irregularly shaped burrow 

with only partial bars visible, over which are superimposed numerous striations 

(arrowhead indicates the location of this trackway).  (C), NMNH 58546, showing bar 

bifurcations characteristic of the burrow.  Partial burrows may be seen on the upper left 

portion of the slab.  (D), NMNH 58544 (counterpart is Fig. 9D), this burrow begins from 

a Musculopodus imprint, over which are superimposed ovate striae (os).  The animal that 

produced this burrow started from rest below the surface and moved from right to left 

across the slab.  (E), NMNH 58545, note the fine longitudinal (ls) and ovate striations 

superimposed on the transverse bars (see arrowheads).  Lateral ridges were not formed in 

any of these specimens.  Also note the irregular surface lateral to the traces in all 

specimens, which corresponds to fracturing of the rock within the bed itself rather than at 

a bedding plane.  Scale bars are 5 cm. 
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Figure 7.  C. youngi from Les Carrieres du Charm Quarry.  (A), JF 05 FC, a large float 

block quarried from the St. Lawrence Seaway, seen in oblique view.  The surface shown 

is the sole of a sandy bed deposited atop a mixed mud and sand bed.  The animals that 

produced the burrows traversed the interface between the two beds before significant 

drying generated desiccation cracks in the underlying muddy layer; the burrows are 

crosscut by the desiccation cracks, which are preserved as sand casts.  The burrows 

appear as discrete fills consisting of sand and mud that are spalling off of the block; one 

such burrow, indicated by a square in (A), is seen in close-up in (B), and in cross-section 

in (C).  The arrow in (B) indicates the direction of view that produces image (C).  These 

burrows have u-shaped transverse bars exhibiting bifurcation.  Scale is 20 cm. 
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Figure 8.  ACM UC 237 and 238.  (A), ACM UC 237, lower portion of a large block that 

when split in half, produced a completely burrowed surface.  These burrows are 

preserved in convex epirelief and concave hyporelief.  Note the wavy appearance of the 

bars in these burrows. (B), ACM UC 238, the overlying portion of the block, preserving 

the casts of these burrows.  (C), A close-up of one of the burrows showing numerous 

linear grooves (indicated by arrowhead) etched into the transverse bars (possibly by part 

of the animal’s body?).   (D), A burrow exhibiting backwards-oriented striations 

(indicated by arrowhead) lateral to the transverse bars.  The white line traces one of the 

bars from the middle of the burrow to its lateral edge, and follows a backwards-oriented 

striation connected to the bar.  Such striations are common in C. youngi.  Pencil, 

approximately 14 cm long, in 1 and 2, and coin, diameter 24.26 mm in 3 and 4 for scale. 
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Figure  9.  Musculopodus sedentarius new ichnogenus and ichnospecies.  (A), NYSM-

unnumbered-1-1 and NYSM-unnumbered-1-2, type specimens.  NYSM-unnumbered-1, 

on the left, is an isolated M. sedentarius specimen, whereas NYSM-unnumbered-1-2, 

second trace from the right, has the beginning of a trackway at its anterior end.  Both 

exhibit triangular projections (ap) at the anterior end of the trace.  (B), A portion of ACM 

68/2, showing a partial M. sedentarius merging into C. wilsoni.  Note that the initial 

transverse bars on the left side are subparallel to the long axis of the trace and extend 

backwards into the body impression, whose anterior margin is marked by a dashed line.  

The bounding lateral ridges are clearly visible in this surface-produced trace.  (C), Close-

up of JF 20 FC showing an isolated, partial M. sedentarius preserved as a natural cast. 

The presumed anterior portion of the body did not impress into the sediment.  The surface 

on which this trace was made consisted of sandy mud that produced desiccation cracks, 

which are preserved as casts, upon drying (cf. Fig. 7).  A smaller M. sedentarius (not 

figured) of similar morphology is also preserved on the slab.  (D), NMNH 58544 

(counterpart to the slab shown in Fig. 6C), showing ovate striations (os) superimposed 

along its length by the rear of the animal.  This body impression, attached to a C. youngi 

burrow, lacks bounding ridges and was produced infaunally.  (E), Close-up of ACM UC 

239 showing another infaunally generated body impression leading into a partial C. 

youngi (tw), and (F), interpretative drawing of the same.  This impression, like other 

infaunal traces, shows more detail than surface traces.  Partial transverse bars (ptb) and 

fine-scale folds (fsf) can be seen within the impression.  All scales are 10 cm. 
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Figure 10.   Quantitative measurements taken from trackways.  YPM 150696, a “typical” 

epifaunal trackway with lateral ridges (LR), transverse bars (B), and furrows (F).  In this 

specimen the ridges are crenulated.  Other lateral ridge morphotypes are described by 

Getty & Hagadorn (in review).  Quantitative measurements taken from trackways include 

inner width (I), outer width (O), wavelength between bars (W), and lateral ridge height 

(H).  W was measured from the crests of transverse bars (see inset), or, in the case of 

natural casts, between the “crests” of inverted troughs.  H was measured from the top of 

the ridge to a line connecting the bottom of the trackway and the surrounding surface (Y-

Y’).  Transverse bar height (not labeled) was measured from the bottom of the furrows 

(F) to the top of the bar.  Direction of travel is from upper right to lower left. 
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Figure 11. Distribution of trackways based on grain size. Phi 1, coarse sand; 2, medium 

sand; and 3, fine sand.  Large trackways  (> 6 cm) are relatively unrestricted by grain size 

whereas small trackways (< 6 cm) occur mostly in fine and medium sand. 
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Figure 12. Morphological characteristics inferred for the trackmaker.  Musculopodus 

(=body impressions, labeled bi), such as those on NYSM-unnumbered-1 (A) indicate that 

the animal was elongate, ovoid, and bilaterally symmetric.  Each impression connects 

with a trackway.  The fine arcuate striations in NMNH 58544 (B) indicate that the rear of 

the animal maintained a constant oval shape during locomotion; these striations may have 

been produced by sand entrained in a mucus band produced by the trackmaker.  C. 

youngi burrows, such as JF 05 FC (C) are much thinner than wide, and together with deep 

trackways, such as the tightly looping one in the center of the field photograph (D), from 

PRI-100 indicate that the animal was dorsoventrally flattened.  Note the shallower 

trackway on the upper right of the photo; the animal that made it avoided entering the 

deeper trackway.  Slab is offset by a joint at upper right.  Some C. wilsoni, such as the 

one on T-302 (E), from PRI-100, change width considerably over short distances, 

indicating that the ventral surface of the animal’s foot lacked a rigid skeleton.  The 

intercalcated half bars (F; the first 7 bars are numbered; the half bars are 3 and 5) in a 

trackway on SSM 2006/20-1, from PRI 102, and the bifurcation of bars, as in a burrow 

on NMNH 532848 (G) further illustrate the flexibility of the foot.  Note in (G) the rapid 

change in transverse bar shape as the animal moved from left to right.  The first two bars 

are V-shaped, the next is an intercalcated half bar, which is in turn followed by a straight 

bar angled to the direction of travel.  The next bar is a wedge-shaped half bar inserted 

opposite to the first half bar.  Then, the bars become v-shaped again.  Also note the 

smooth texture of the burrow in (G) relative to the surrounding matrix.  Scales are 5 cm.  
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Figure 13.  Relationship of ridge height to trackway depth.  The relationship suggests that 

lateral ridges resulted from the plowing of sediment out from under the animal as it 

moved.  When seen in cross sectional profile, trackways of unequal depth, such as those 

in (A), have higher lateral ridges (indicated by arrowheads) on the deeper side of the 

trackway.  Plot of pilot data (B) shows a similar correlation between lateral ridge height 

and trackway depth as that seen in the profiles, although not as pronounced.  The 

correlation may not be strong due to the small sample size and also because 

Climactichnites on different surfaces may have undergone different weathering and 

erosional processes, such as the intensity of wind or water currents washing away 

sediment, that may have affected lateral ridge height.  The data set is small because the 

original trackway height (or depth) measurement included both the height of the lateral 

ridge and depth of the trackway.  Thus, the original measurement had to be modified 

before it could be applied to specimens, which was not done until late in this study.  

Consequently, only those specimens at Amherst College could be usedThe upper profile 

in (A) is taken from the curving trackway is seen in detail in Fig. 11A and the lower 

profile is taken from a trackway on the surface seen in Fig. 17.  These profiles are not at 

the same scale. 
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Figure 14.  Variability due to size.  Line drawings of YPM 150696 (A), and the narrow 

trackway on SSM 2006/20-1 (B) drawn to the same scale (5 cm).  Lateral ridges and 

transverse bars are in white, while furrows are colored black.  When a portion of SSM 

2006/20-1 is expanded to the same width as YPM 150696 (C), it becomes apparent that 

the wavelength is much greater in the narrow trackway, indicating that the wavelength 

between transverse bars does not increase at the same rate as the width of trackways.  The 

scatter diagram (D), which plots maximum width and maximum wavelength for 181 

trackways for which both the inner width and the bar wavelength could be measured, 

shows that wavelength increases at about one fifth the rate of track width. 
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Figure 15.  Width and size distribution of trackways.  In (A) the body impression leading 

into a trackway on ACM 68/2 illustrates the continuity in width often exhibited between 

resting and crawling traces. Thus it is possible to estimate body width from trackways 

without body impressions, provided that the trackway does not change considerably in 

width.  The plot in (B) shows the length and width of 25 body impressions (solid circles), 

with an average length to width indicated by an open circle; the ratio is ~2.3:1.  The 

histogram in (C) shows the width of 296 trackways for which inner width could be 

measured, and thus shows the inferred width of the trackmakers.  Most trackways are 

between ~2 and 18 cm wide.  The trackway on JF 16 FC (D), is currently the largest 

trackway known, and can be seen to the far right of the histogram in (C).  ACM UC 234 

(E) is a highly irregular infaunal burrow and illustrates the difficulty sometimes 

encountered when trying to determine the size of the animal based on subsurface traces.  

The trackway is oriented with its long axis extending from the lower left to the upper 

right.  Note the frilly margin extending from the lateral margin of the burrow at upper left 

and that the burrow is partly buried at lower right.  Compare the frilly margin with the 

lower right portion of Fig. 12B.  The small trackway in (F), indicated by arrows, is 

exceptional in that the animal crosses a surface with abundant larger trackways, whereas 

most surfaces exhibit trackways of only one size range, as in the unnumbered slab from 

WINC (G).  Scales in A and G are 5 cm, in E and F 10 cm, and the head of the hammer in 

D is X cm long.  Arrows in (A) and (D) indicate the direction of locomotion. 
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Figure 16.  Width distribution for C. youngi.  Measured specimens are from 1.8 to 10.6 

cm wide. 
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Figure 17. Surfaces exhibiting limited size variability.  The type slab, GSC 6299, from 

the Nepean Formation of Perth, Ontario, has large trackways ranging from 12.7 to 13.8 

cm in width.  In contrast, a slab at WINC, from the Potsdam Group of northwestern New 

York, bears trackways from 3.2 to 4.7 cm wide, and an in situ surface at the Krukowski 

quarry (PRI 100) bears trackways from 5.6 to 7.3 cm long.   
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Figure 18.  Locomotion of the Climactichnites trackmaker.  Two complete strides are 

shown.  Thick black lines within the outline of the body indicate transverse bars and 

ovate striations produced at the rear of the animal may be seen behind the body as thin 

black lines.  Lateral ridges are omitted for clarity.  See text for details of foot movement.  
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Figure 19.  Turning mechanisms.  While turning, the animal often extended the side of 

the foot on the outside of the turn more than the side on the inside of the turn (A & B).  In 

(A), ACM UC 232, the animal moved from left to right and made a right turn down the 

page; the wavelength between bars reaches over 2X as long on the left side of the turn as 

on the right (0.9 cm vs. 2.2 cm).   In (B), UW 4019, the animal moved from right to left 

and took a 90° right turn up the page.  Although the transverse bars are not visible on the 

outside of the turn, it is clear that the animal would have to have come to a near-complete 

stop on the right while the left side of the body turned.  Two trackways are recorded on 

(C), a portion of SMM P 76.21.1, one on top of the other.  The transverse bars of the 

overlying trackway were emplaced on the tops of the transverse bars of the underlying 

trackway.  The animal presumably selected the transverse bars of the underlying 

trackway as anchor points during locomotion.  As one trackmaker on NYSM-

unnumbered-2 (D) made its turn to the left (the surface is a cast so the turn is opposite to 

what it appears in the photo) on a sharp-crested ripple-marked surface the portion of the 

body on the outside of the turn anchored on the crests of the ripples.  Thus the animal 

selectively used sedimentary structures during locomotion.  Arrowheads indicate 

direction of locomotion.  Scale is 5 cm. 
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Figure 20.  C. youngi.  Photograph of the lower portion of a large block from PRI-100 

(A).  When the block was split in half, this completely burrowed surface became visible.  

(B) is a close-up photograph of one of the trackways showing some of the characteristics 

common in burrows, including the lack of lateral ridges, bifurcating transverse bars, and 

fine striations superimposed on the bars.  The pencil in (A) is ~14 cm long and the scale 

in (B) is 5 cm. 
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Figure 21.  Possible grazing surfaces.  Sketch map of PRI-100-6.35.  This bed preserves 

numerous domal structures, indicated by colored ovals, that are interpreted as microbial 

in origin.  Two trackways on the surface follow the same looping pattern, possibly 

representing feeding. The large gray area is part of an overlying bed.  See text for details.  

Drafted by W. Chen. 
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Figure 22.  Climactichnites moving through ripple troughs. A rippled, fine- to medium-

grained sandstone layer at PRI-100-9.54 preserves numerous Climactichnites moving 

through the troughs of ripples.  Note also the numerous channels, composed of medium- 

to very coarse-grained sandstone, above the rippled and bioturbated surface.  These 

channels do not erode the ripples or trackways, suggesting that the rippled surface was 

cohesive at the time channel scouring occurred.  The lack of clays and evaporite minerals 

in the rippled bed suggest that cohesion must have been achieved by some other means, 

perhaps by microbial mats.  Drafted by W. Chen. 
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Figure 23. A possible fecal strand (mr) within ACM UC 233.  (A) is a plan view of the 

trackway showing the tightly folded nature of the median ridge (indicated by the large 

arrowhead).  This trackway has a lateral ridge (lr) on the left side, but not the right.  The 

area between the two lines represents one of the sections that was cut from the slab for 

analysis.  The small arrowhead next to the lower line indicates the side of the section 

viewed in (B) and (C).  (B) is a photograph of part of the cross section in visible light and 

(C) is an X-radiograph of the same.  Note the conspicuous absence of laminations within 

the medial ridge in both the light and X-ray photos.  Also note the dark black color of the 

ridge in (B), due to concentrated mud, compared to the adjacent sediment.  Thin mud 

laminae are interspersed throughout the slab, including on the track surface, and appear 

black in (B) and white in (C).  Scale is 5 cm. 
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Figure 24.  Adhesion structures atop trackways.  Field photograph of adhesion structures 

superimposed on a Climactichnites-bearing surface.  (A) is an overview of a slab found 

as float at locality PRI-102.  The box marks the boundaries of the close-up viewed in (B).  

The adhesion structures, which are produced subaerially by wind-blown sand, are 

superimposed on the trackways.  It is unclear whether the trackways were produced 

subaqueously and then the water drained away from the surface to allow the adhesion 

structures to form or if the trackways formed subaerially.  Coin in (A) is 19 mm wide. 
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Figure 25.  Raindrop impressions atop trackways.  Field photograph of C. wilsoni on a 

surface preserving raindrops at PRI-100-9.13.  The raindrop craters are shown close-up in 

the right inset.  However, all of the craters observed crosscut the trackways (left inset), 

indicating that the shower occurred after the trackway was produced.  Thus, evidence for 

subaerial excursions by the trackmaker is equivocal on this surface.  Scale is indicated by 

a ruler marked in both inches and centimeters and by a Swiss army knife 8.3 cm long. 
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Figure 26.  Trackways within tidal channels. Field photograph of C. wilsoni in a tidal 

channel at PRI-100.  The deep part of the channel is at the bottom of the photograph and 

the channel progressively shallows up the page; the tidal levee begins at the rubble pile at 

the top of the photograph.  The preservational quality of the trackways varies with the 

depth of the channel.  Toward the channel bottom no trackways are visible, but about 

halfway up the channel trackways consisting of lateral ridges are present.  At the top of 

the channel trackways with transverse bars are visible (indicated by arrowheads).  The 

inset at the upper left of the figure is an enlargement of the leftmost arrowed trackway.  

Variable Climactichnites morphology may offer additional evidence for subaerial 

excursions made by the trackmaker because preservation of the trackway is dependent on 

the amount of water in the sediment.  In this case it is inferred that the channel was only 

partly full when the trackways were made and that saturated sand at the bottom of the 

channel did not preserve trackways, or that they were eroded.  However, as the degree of 

saturation decreased upslope on the channel sides, the sediment was firmer and was able 

to preserve trackways. Tape measure is extended to 1 m. 
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Figure 27.  Experiment with gastropod trackways. Climactichnites-like trackways 

produced by Viviparus intertextus in a sand-filled tank.  (A) Shows a trackway consisting 

of transverse bars and furrows, bound intermittently with lateral ridges, produced 

subaerially on wet sand.  (B) Shows the same trackway as the tank is being filled with 

water.  The large horizontal arrowhead points to the mucus band that draped the 

trackway; note that it is beginning to float on top of the water.  The smaller vertical 

arrowhead points to the water level at the time the photograph was taken.  This 

experiment suggests that mucus may not have been sufficient to preserve Climactichnites.  

Pencil in (A) is 6 mm wide and scale bar in (B) is 2 cm. 
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Figure 28. Clay-rich Climactichnites-bearing slab, ACM-UC 243.  Found as float at PRI-

103, this slab shows a greenish colored clay, which may have played a role in the 

preservation of the trackways.  Scale is 5 cm. 
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Figure 29. Reconstruction of trackmakers. Here they are shown in a partially filled 

channel.  The trackways become more clearly defined as the animal exits the water and 

begins subaerial trackmaking.  Eyes are stylized and only included to indicate the anterior 

of the animal.  The arthropod trackways Diplichnites and Protichnites are also visible.  

Sketch by PRG. 
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APPENDIX A 

TRANSVERSE BAR WAVELENGTH (RIGHT) TO INNER WIDTH (LEFT) FOR 181 

TRACKWAYS.   

DATA USED IN FIG. 14.  MEASUREMENTS IN CM. 

   

8.9 1.8 
8.6 1.7 
9.6 1.5 
9.4 1.9 
8.5 2.2 
8.9 1.9 

10.0 2.4 
9.2 1.9 

10.0 2.1 
10.4 1.3 
12.0 2.7 
15.2 3.1 
7.8 0.8 
5.0 1.5 
7.7 1.2 
9.8 1.2 

10.0 2.5 
12.0 2.0 
11.9 2.3 
9.9 2.8 

15.5 2.3 
12.9 2.1 
7.5 2.0 
8.4 1.9 
7.4 1.5 
8.0 1.9 
8.7 1.5 
8.7 2.1 
8.1 1.9 
8.7 1.9 
7.9 1.7 
8.4 1.9 
7.9 1.7 
8.2 1.5 
6.3 1.6 
6.3 1.0 
6.9 1.3 
5.9 1.6 
6.8 1.3 
6.4 1.7 
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6.4 1.6 
5.6 1.3 
5.8 1.4 
9.2 1.1 
9.2 1.0 
9.6 1.3 
9.5 1.8 
8.0 1.7 
6.6 1.7 
6.4 1.5 
5.0 1.4 
5.1 1.6 
6.1 1.8 
6.8 1.7 
9.0 1.7 

10.6 1.8 
10.2 1.7 
8.9 1.6 

13.2 2.1 
9.8 1.3 
7.6 1.9 
9.2 1.2 
4.6 2.0 
6.4 1.9 
6.2 2.0 
4.7 1.5 
9.5 1.7 
5.4 2.0 
8.5 2.5 
7.8 2.1 
2.9 1.0 

12.4 1.7 
6.1 1.5 
5.8 2.0 
6.5 2.1 
6.6 1.6 
5.9 1.0 
5.8 0.8 
6.0 1.7 
6.4 1.3 
6.4 1.1 
6.0 1.3 
5.7 0.9 
5.7 0.8 
6.4 1.2 
6.3 1.6 
6.0 1.1 
7.1 1.1 
4.1 0.8 
6.9 1.6 
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7.3 1.5 
5.9 2.1 
6.9 2.6 

11.1 3.8 
11 2.3 

13.0 4.0 
11.9 3.7 
10.3 3.2 
11.1 3.7 
10.7 3.0 
16.5 2.9 
2.8 1.5 
2.6 1.2 
2.3 1.4 

12.0 1.4 
4.2 1.5 
3.2 0.9 
3.8 1.2 
3.5 1.1 
3.5 1.0 
4.7 1.5 
5.8 1.2 

15.5 3.4 
13.0 4.0 
9.1 2.6 
2.8 1.7 
2.9 0.6 
3.2 0.8 
4.1 0.9 
2.1 0.9 
4.2 0.8 
4.4 0.8 

13.7 2.2 
6.0 1.8 

10.5 1.6 
10.1 3.0 
7.2 1.0 
5.3 1.7 
6.8 1.8 
9.0 2.3 
5.6 1.4 
6.2 2.8 
7.0 1.5 
5.9 1.7 
6.1 1.7 
6.0 2.1 
7.5 2.2 
7.4 1.5 
8.7 1.8 
8.7 2.5 
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9.0 2.5 
6.8 2.4 
7.4 2.3 
9.1 2.7 

10.4 3.4 
10.1 1.9 
10.1 2.4 
5.9 1.9 
8.2 2.1 
6.9 2.1 
6.1 1.5 
7.0 1.8 
6.7 1.2 
8.3 1.5 
6.7 1.6 
8.2 2.1 
8.0 1.9 
8.4 1.3 
2.7 1.4 
2.4 1.6 
1.4 0.8 
2.8 1.2 
3.8 1.5 
2.4 1.3 
2.1 1.3 

11.7 1.8 
4.9 0.9 
6.0 1.1 
5.0 1.0 

12.4 2.3 
10.1 1.8 
9.8 2.5 
8.8 2.1 
7.4 2.2 
6.5 1.3 

13.7 4.7 
13.3 4.4 
12.9 3.5 
12.7 4.1 
13.8 4.4 
13.5 4.8 
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APPENDIX B 

MUSCULOPODUS SEDENTARIUS LENGTH (LEFT) AND WIDTH (RIGHT). 

 MEASUREMENTS ARE IN CM. 

 
 

4.95 11.26 
3.95 8.65 
3.95 11.22 
4.96 11.79 
4.78 11.05 
4.16 11.28 
4.87 11.51 
4.68 10.93 
4.72 11.76 
4.22 11.18 
4.84 10.27 
4.81 10.45 
4.90 10.59 
5.46 11.00 
4.77 11.83 
4.68 11.29 
4.90 10.85 
5.15 11.05 
4.77 10.56 
4.80 10.93 
5.27 11.79 
4.68 9.23 
4.59 11.43 
4.71 11.40 
4.82 10.91 
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APPENDIX C 

MEASUREMENTS OF INNER WIDTH (IN CM) OF CLIMACTICHNITES FOR FIG. 

15C. 

1.4 
2.1 
2.1 
2.2 
2.3 
2.4 
2.4 
2.5 
2.6 
2.7 
2.8 
2.8 
2.8 
2.9 
2.9 
3.0 
3.0 
3.1 
3.1 
3.2 
3.2 
3.2 
3.5 
3.5 
3.5 
3.6 
3.7 
3.8 
3.8 
3.8 
3.9 
4.0 
4.0 
4.0 
4.1 
4.1 
4.1 
4.2 
4.2 
4.2 
4.2 
4.4 
4.5 
4.6 

4.7
4.7
4.8
4.9
4.9
5.0
5.0
5.0
5.0
5.1
5.1
5.1
5.1
5.3
5.3
5.4
5.4
5.4
5.5
5.5
5.5
5.6
5.6
5.6
5.6
5.7
5.7
5.8
5.8
5.8
5.9
5.9
5.9
5.9
5.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0

6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
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