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ABSTRACT 
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Among renewable energy resources, wind power is poised to contribute most 

significantly to meeting future wholesale electricity demand.  However, the intermittent 

nature of wind power makes maintaining system reliability a challenge as the share of 

installed wind capacity on the grid increases.  In New England, wind plants are currently 

unable to receive automatic dispatch instructions from the regional grid operator, but a 

centralized wind forecasting system under development will enable wind plants to be 

dispatched by ISO New England’s automatic dispatch software by 2016.  Wind plants 

will receive an upper bound to their production through so-called Do Not Exceed (DNE) 

dispatch limits.  This study evaluates how the automatic dispatch of wind plants in the 

ISO New England control area will impact wind plant output, emissions, wholesale 

energy market prices, and the system-wide generation mix. 

Wind generation is modeled using 10-minute time-series wind speed data from 

the National Renewable Energy Laboratory’s Eastern Wind Dataset.  Market outcomes 

for 2020 are then simulated using the spreadsheet-based Oak Ridge Competitive 

Electricity Dispatch (ORCED) model which mimics the economic dispatch of power 

plants in deregulated wholesale electricity markets.  Results show that imposing DNE 

dispatch limits reduce total wind generation by a small amount – 6.47% over the course 

of the study year.  The study finds that DNE dispatch limits constrain wind generation 

often – 28.4% of the year on average – but that the levels of wind generation avoided 
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were typically small – 72.4% of DNE limit curtailment events were at levels below 5% of 

plant nameplate capacity. 

 

 

 Keywords: Wind, wholesale electricity markets, Oak Ridge Competitive Dispatch 

(ORCED) model, Do Not Exceed dispatch 
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CHAPTER 1 

WIND POWER AND THE ELECTRIC GRID 

 

1.1 Introduction 

Wind energy is experiencing a period of rapid growth in the United States.  In a time 

where concern is building over fossil fuel emissions and climate change, wind offers an 

emissions-free alternative.  Furthermore, an increasingly diversified generation mix that 

contains a higher share of wind provides a valuable hedge against volatility in the price of 

natural gas and electricity (Bolinger and Wiser 2009).  This point is especially relevant in 

systems largely dependent on natural gas for electricity production such as New England, 

where pipeline constraints and residential heating demands driven by periods of cold 

weather often result in significant price increases during winter months (EIA 2013).  

Greater turbine efficiency driven by technological advancements, federal tax incentives, 

and subsidies related to state renewable energy targets, have helped drive down the cost 

of wind power relative to other generation sources. Because of these factors wind plants 

are now able to compete with conventional thermal generators in electricity markets 

across the country.  While critics correctly point out that a rapid adoption of intermittent 

renewables can pose a threat to grid reliability, the shift toward utility-scale production 

from wind and solar will continue unabated.  New England has excellent wind potential, 

and as of January 1, 2013 nearly a third of planned capacity additions in the region were 

from wind plant projects (ISO New England 2013b). 

With wind plants economically viable and expanding in many areas, the challenge 

becomes integrating these intermittent resources into an electrical grid not equipped to 
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manage them.  Wind speeds, and by extension plant output, are a function of complex 

meteorological processes that are difficult to predict in the long-term.  Over the short-

term though, five-to-ten minutes into the future, wind plant output can be estimated fairly 

accurately using simple forecasting methods (Brower 2011).  Without accurate short-term 

forecasts the cost of delivering electricity to the grid becomes increasingly expensive as 

the level of wind penetration rises.  System reserve requirements, whose costs are born by 

all ratepayers, must be increased to handle the variability in wind output.  System 

operators, having no knowledge of future wind output, are forced to curtail wind 

resources in order to maintain system reliability.  Wind plant managers, lacking the 

ability to store electricity, must pitch turbine blades thereby forgoing potential electricity 

market revenues.  The greatest variable cost for thermal generating units are their fuel 

inputs, so when they receive curtailment instructions from the grid operator and are 

forced to forgo energy revenues it has a less pronounced effect on the economics of the 

plant.  Wind on the other hand pays no fuel costs, the operations and maintenance costs 

are relatively low, and in many jurisdictions wind plants receive a subsidy for each 

megawatt (MW) of energy they deliver to the grid in the form of Renewable Energy 

Credits (RECs).  The inefficient use of wind power results in the wind plant operator 

losing significant energy market revenues and the system bearing higher costs of energy 

by not dispatching a plant with a zero marginal cost.  

Independent System Operators (ISOs) and Regional Transmission Organizations 

(RTOs) that administer regional electricity markets sensitive to these grid reliability and 

system efficiency concerns, have taken steps to adjust market rules in order to 

accommodate the growing share of wind capacity.  The New England grid operator, ISO 
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New England, is the last remaining ISO or RTO in the United States without a centralized 

wind forecasting system (Rogers and Porter 2011).  A short-term centralized forecasting 

system allows wind resources to receive automatic dispatch instructions in the form of 

‘Do Not Exceed’ (DNE) dispatch limits, which effectively set an upper bound output 

limit for each individual wind plant on the grid.  Under the current system wind plants are 

classified as self-scheduled generators, meaning they deliver as much electricity to the 

grid as they can unless the grid operator manually contacts the plant to instruct the 

resource to limit output based on system conditions. ISO-NE plans to introduce 

centralized wind forecasting by the end of 2013, and beginning in 2015 or 2016 wind 

resources will start to receive automated DNE dispatch limits (Lowell 2012). 

The integration of wind energy into the New England grid is a complex issue that 

has become a regional priority.  With wind dispatched according to DNE limits, the 

system will potentially reduce wind curtailments, be able to respond to changing weather 

conditions more readily, and send the appropriate price signals to generators when wind 

does get curtailed.  Simulating future scenarios in which wind plants are managed using 

DNE dispatch limits will be helpful in understanding how emissions levels and energy 

market prices may respond in the period after the market rule changes occur.  This study 

builds on the work carried out in the New England Wind Integration Study (NEWIS) 

which was commissioned by ISO-NE to assess the operational effects of large-scale wind 

integration, and adds to that study by focusing specifically on the change in economic 

and environmental outcomes between scenarios in which wind plants produce at 

maximum output and scenarios in which there is an upper bound to output imposed by 

DNE dispatch limits. 
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1.2 Objectives 

This study sets out to answer two questions associated with the transition to a wholesale 

electricity market with automatic wind plant dispatch using DNE dispatch limits.  The 

first objective is to quantify the impacts of DNE limits on wind energy generation in a 

system where no wind curtailment is assumed. Annual electricity generation in 2020 is 

calculated for wind plants dispatched manually, as they are currently in New England, 

and for wind plants dispatched by automatic DNE limits. The expected difference in 

electricity generation between these two dispatch regimes is then quantified. The second 

objective is to quantify how that difference in annual electricity generation from wind 

plants affects emission rates, the generation mix, and energy market prices in New 

England.   

 Data on wind speed and wind plant capacity is used to address the first objective.  

To approach the second objective, a model of the wholesale electricity market in New 

England is used to simulate competitive power plant dispatch and calculate market 

outcomes for 2020. 

The comparison of dispatch regimes outlined by the objectives is framed in three 

scenarios representing potential 2020 levels of installed wind capacity in New England.  

At increasing levels of installed wind capacity, the difference between wind plant 

generation in the two dispatch regimes will have non-linear effects on emission rates, the 

generation mix, and wholesale energy prices.   

Three levels of installed wind capacity are modeled in the study.  The level of 

installed wind capacity in the Low scenario is equal to the sum of wind plant capacity 
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from currently operational wind plants and proposed wind plants in the ISO New 

England interconnection queue as of January 1st, 2013.  Installed wind capacity increases 

from scenario to scenario linearly.  That is, the installed wind capacity in the Low 

scenario is increased by 100% to arrive at the level of installed wind capacity in the 

Medium scenario, and 200% to arrive at the level of installed wind capacity in the High 

scenario.  Defining installed wind capacity in this way allows the identification of any 

non-linear effects of dispatch regime change on the market outcomes outlined in the 

second objective.   

The Low case includes those wind plants in New England that are currently 

operating or have applied for interconnection, totaling 3.25 gigawatts (GW) of installed 

capacity.  In the Medium and High scenarios, installed wind capacity equals 6.5 GW and 

9.75 GW respectively. 

Results indicate that wind generation is impacted only slightly by the 

implementation of DNE limit dispatch.  Wind generation only decreases by 6.47% over 

the course of the study year after DNE limits are introduced.  Given that the study 

assumes no wind curtailment due to transmission constraints or wind forecast uncertainty 

in the period before DNE dispatch implementation, which is unlikely in reality, the 

decrease in wind generation found here is likely an overestimate of the true effect.  The 

corresponding effects on regional emissions and wholesale electricity prices are also 

found to be unsubstantial. 

Furthermore, although wind plants have their generation constrained by DNE 

limits often – 28.47% of the season on average – the amounts of potential generation 

avoided is generally small, with only 3.3% of curtailment events occurring at levels 



6 

above 15% of plant nameplate capacity.  The findings show that implementing DNE 

limits will have minimal effects on the ability of wind plants to produce energy, and will 

in all likelihood provide meaningful financial benefits to wind plants contingent on 

current levels of wind curtailment that will be alleviated by DNE dispatch. 

 

1.3 Thesis Outline 

The remaining chapters of this thesis are organized as follows.  Background on the New 

England wholesale electricity markets and wind power technology is provided in Chapter 

2, and the contributions of this study to the literature on wind plant grid integration is 

established.  Chapter 3 describes the data and modeling inputs used, including the method 

by which wind plant output is estimated.  Chapter 4 outlines the model used to simulate 

competitive generator dispatch in the New England wholesale electricity market.  Results 

from modeled annual outcomes of the wholesale electricity market in 2020 under the 

study scenarios are presented in Chapter 5.  Finally, Chapter 6 provides a discussion of 

the results and points to viable extensions of this research. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 The New England Wholesale Electricity Market 

New England electricity markets have been integrated to some extent since 1971 when 

the New England Power Pool was formed in reaction to the 1965 Northeast Blackout.  

The major structural change occurred during the late 1990s, when wholesale electricity 

markets in the United States began undergoing deregulation. Vertically integrated electric 

utilities once regulated by Public Utilities Commissions were dissolved and competition 

was introduced, primarily on the generation side.  ISO New England is a not-for-profit 

organization that was created in 1997 by the Federal Energy Regulatory Committee 

(FERC) to help transition the regional wholesale electricity market through deregulation.  

Today ISO New England administers the wholesale electricity markets, manages the 

high-voltage transmission system on behalf of market participants, and ensures 

competitive balance through regulatory activity.   

For several years ISO New England acted as something of a consultant to 

stakeholders in the region, primarily implementing market designs and changes that 

participants decided upon.  That changed in 2003 when FERC changed ISO New 

England’s status to that of an RTO, which conferred on it the directive to take a 

leadership role in crafting market design and oversight.  ISO New England cannot 

unilaterally change market rules, nor can it discipline market participants.  If an 

investigation by the ISO determines that a participant has violated a market rule they 

must refer them to FERC which exclusively can determine penalties. The ISO itself 
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answers to FERC, and both an internal and external market monitor exist to observe the 

organization’s behavior. 

 The New England power system serves 6.5 million households and businesses, 

supporting a population of 14 million people.  Over 300 generators provide roughly 

32,000 megawatts (MW) of total supply, and the system all-time peak demand of 28,130 

MW was set on August 2, 2006.  ISO New England facilitates the dispatch of electricity 

for Vermont, New Hampshire, Maine, Massachusetts, Rhode Island and Connecticut on 

8,000 miles of high-voltage transmission lines.  The system is interconnected to the New 

York, Quebec, and New Brunswick grids (Brandien and Rourke 2011).  

All generators in the region, including several participants from Canada and New 

York, submit daily supply offers for each of their available generating units. ISO-NE then 

schedules these units to meet the real-time power needs of New England.  By way of the 

“merit order” process, the next cheapest generator delivers the marginal unit of energy to 

the grid as transmission constraints and reserve requirements allow (van Welie 2005).  

The wholesale electricity market at large is actually comprised of three distinct markets; 

one for each energy, for capacity, and for reserves and ancillary services such as voltage 

control.   

The energy market itself is a multi-settlement system, meaning there is a day-

ahead and real-time component.  In the simplest terms, the ISO takes all the supply offers 

and demand bids from the day-ahead market and intersects the derived supply and 

demand curves to find the energy market clearing prices for each hour of the day in each 

sub-region in the day-ahead unit commitment process (van Welie 2005).  Price discovery 
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occurs in the day-ahead market.  Minute-to-minute regional power needs are then 

balanced in the real-time market.  

Electricity markets are unique from an economic perspective because they depend 

as much on the laws of physics as they do on the forces of supply and demand.  Every 

five minutes at the ISO New England facility computers solve a linear programming 

problem that considers rapidly changing physical conditions on the grid in addition to 

demand and generator availability. 

 

2.2 Wind Resources 

Total energy production costs from different forms of generation are often compared 

using levelized energy cost analysis, in which the net present value of future costs related 

to capital investments, fuel costs, and operations costs, are calculated according to the 

time value of money.  In 2012-2013 the levelized cost of wind energy in the U.S. was 

estimated to be at an all-time low of $40/MW, and it is projected to decrease 25% further 

by 2030 (Wiser and Lantz 2012).   

Effects from rising capital costs have been offset by improvements in turbine and 

blade technology, making wind plants more efficient in geographic locations with 

historically sub-optimal wind resources (Wiser and Lantz 2012).  Federal incentives and 

state renewable energy policies are playing an even larger role in reducing the cost of 

wind energy.  As wind developers rush to meet RPS targets there are signs that some 

grids are becoming saturated with cheap energy at certain times.  In 2011, FERC ruled 

that the Bonneville Power Administration’s curtailment of wind resources in favor of 
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hydropower was discriminatory (Runyon 2011).  Without extensive transmission 

upgrades or advancements in energy storage similar problems will arise. 

 

2.2.1 Policies Driving Wind Adoption 

Two major policy developments have fueled the expansion of wind plant construction in 

the United States in the last decade; the federal renewable electricity production tax credit 

(PTC) and state renewable portfolio standards (RPS).  Initially enacted in 1992, the PTC 

has been revised and expanded several times since, most recently on January 2, 2013.  

The credit for wind resources is equal to $0.022/kilowatt hour (kWh), or $22/MWh, and 

lasts for ten years from the date the facility enters service (DSIRE 2013).  Due to the 

long-term process of permitting and planning utility scale wind projects, uncertainty 

surrounding the extension of the PTC has been linked to sharp declines in U.S. wind 

installations (Union of Concerned Scientists 2013). 

 Twenty-nine states and Washington D.C. have some form of RPS enacted 

currently.  Despite sharing the same policy name, significant heterogeneity exists from 

one state RPS to the next.  RPS policies are implemented as a requirement that relevant 

firms generate a percentage of their energy supply from renewable sources.  This 

requirement can be thought of in terms of two parts; the terminal percentage goal and the 

yearly incremental requirements towards that goal.  Typically the RPS will be broken into 

two or more tiers.  These represent different requirements for different technologies.  In 

addition, some states give preferential treatment to certain technologies or in-state 

generation according to unique policy aims.  States that permit REC trading often do so 

in acknowledgement of the fact that renewable generation in-state would be insufficient 
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to meet RPS goals.  Judging by the various designs, the RPS policy is motivated by 

aspirations for economic development as much as environmental concerns. 

Table 1.  State RPS targets in New England 

 
      (Source: DSIRE 2013) 

 Most firms have the option of paying a penalty or alternative payment in lieu of 

meeting their requirement, and all New England states with a RPS have an alternative 

payment mechanism in place.  This creates an upper bound as to how costly the policy is 

for firms.  A large body of literature exists on the effects of RPS policy on electricity 

rates, as this was a serious concern for most states during the period when the policy was 

being debated.  Certain states exempt individual firms or entire classes of market 

participants from the RPS, but in New England the respective RPSs apply to both 

investor-owned utilities and municipal utilities. 

 The success of these policies in making utility-scale wind projects economically 

viable can be seen in transmission interconnection queues around the country.  At the end 

of 2011 there was nearly 220 GW of wind power in U.S. interconnection queues, which 

was 50% more than the next-largest resource, natural gas (Wiser and Bolinger 2012).  Of 

course all of these resources will not be built, but it shows a pronounced shift in new 

development from a decade ago. 
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2.2.2 Wind Energy in New England 

In New England there is currently 2583 MW of wind in the interconnection queue, 

representing 31% of the total capacity.  Combined cycle natural gas plants comprise 51% 

of the total capacity in the queue at 4247 MW (ISO New England 2013b).  With wind 

only representing 3% of total installed capacity in New England today, the amount of 

wind generation capacity in the queue represents a significant shift.  By comparison, the 

share of natural gas in the queue is roughly equivalent to amount of natural gas 

generation capacity in operation. 

 

(Source: Levitan & Associates 2007) 

Figure 1.  New England onshore wind resources 

Wind resource potential in the ISO New England control area is not on par with 

that in the Midwest or Texas but it is significant.  Peaking at Class 7, higher wind class 

ratings indicate the most ideal locations for wind plant operation, and sites with wind 

speeds that fall below class 3 are generally regarded as unsuitable.  The majority of 

operational and planned wind plants are located in Maine along the Canadian border, and 
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in pockets of Vermont and New Hampshire.  Figure 1 shows that the best onshore 

locations for wind development in New England are far from load centers, meaning 

extensive transmission upgrades will be required to take full advantage of the region’s 

resources (GE Energy 2010).  

Localized congestion is a problem in the region, and overcapacity concerns are 

causing developers to scale back their proposals in some cases (Rubenstein 2013).  For 

instance, the 99 MW Granite Reliable Power plant in New Hampshire, one of New 

England’s largest wind farms, is attempting to pay Coos County only half of the 2013 

property tax payment stipulated in an agreement made in 2008.  The plant is contesting 

payment on the grounds that ISO New England curtailed their output down to 45.835 

MW in 2012 and therefore cannot be held fully responsible for smaller than anticipated 

operation level (Tetrault 2013). 

 

(Source: Levitan & Associates 2007) 

Figure 2.  New England offshore wind resources 
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The region possesses exceptional offshore wind resources, which are some of the 

best and most accessible in the nation.  Massachusetts alone has offshore wind resources 

totaling roughly 200 GW, while the entire region has between 350-400 GW (Schwartz 

and Heimiller 2010).  The ocean depths along the eastern seaboard are shallow compared 

to those on the west coast due to a large continental shelf, a fact that is conducive to 

engineering and constructing offshore wind farms.  Permitting issues have been a major 

hurdle for potential developments, as exemplified by the 468 MW Cape Wind project 

proposed for Nantucket Sound.  Originally proposed in 2001, it has been embroiled in 

constant legal challenges for twelve years.  It has finally received final approval and 

recently signed a $2 billion agreement with the Bank of Tokyo to finance construction 

beginning in 2013 or 2014, and is poised to be the first offshore wind project in the U.S. 

(Richardson 2013).  With the U.S. Department of the Interior planning to sell leases for 

two sites on the outer continental shelf in Rhode Island and Virginia, the hope is that a 

new streamlined development process will result in more offshore wind generation 

(Smith 2012). 

 

2.3 Integrating Intermittent Resources into the Grid 

Wind is a variable source of energy that has a propensity to change rapidly and 

dramatically.  It is driven by complex atmospheric factors, as well as local terrain, which 

can create extremely disparate wind profiles even at two proximate locations.  Integrating 

wind resources effectively into an electric grid requires sophisticated medium term 

forecasts and short-term forecasts that rely on second-by-second telemetry data from 

wind plants.  Furthermore, wind turbine power curves - which represent how much 
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electricity a wind turbine can generate as a function of wind speed - are highly non-linear, 

and small errors in the wind forecast will translate to large errors in forecasted output 

(Brower 2011). 

 
       (Source: The Windpower Project 2013) 

Figure 3.  Sample wind turbine power curve 

The low level of installed wind capacity is one reason there has not been much 

impetus to develop centralized wind forecasting systems until recently.  Data suggests 

that forecasting becomes essential for effective grid management at wind concentrations 

above 5% of capacity (Brower 2011).  ISO New England, still not at the 5% threshold for 

installed wind capacity, is implementing a centralized forecasting system before grid 

management becomes a serious concern.  Grid operators in regions with large amounts of 

installed wind capacity are at the forefront of developing market rules to accommodate 

intermittent resources.  Principal amongst these is the Midwest Independent System 

Operator (MISO), which has been assigning DNE exceed dispatch to wind plants since 

2010.  The procedure to determine DNE dispatch limits for wind plants proposed by ISO 
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New England is analogous to the system developed by MISO, and study adopts the same 

methodology (Lowell 2012b). 

MISO predicts wind output at a particular plant for the period five minutes ahead 

using the average output of the last twelve five-minute periods (Exeter Associates and 

GE Energy 2012).  This simple technique referred to as ‘persistence forecasting’ is the 

performance benchmark for short-term (up to an hour ahead) wind forecasts.  Despite the 

enormous investment in wind forecasting since 2000, state-of-the-art hour-ahead 

forecasts are not much more accurate than hour-ahead persistence forecasts as measured 

by mean absolute error (Brower 2011).  Advanced forecasting models are superior to 

persistence forecasting methods when predicting day-ahead wind speeds and at 

identifying wind ramp events that jeopardize system reliability, but in the very short term 

there is no improvement in forecast performance. 

Today wind plants are treated as self-scheduled generators, meaning they produce 

energy at their own discretion when wind is available.  In the absence of accurate 

forecasting, wind resources cannot be dispatched automatically by unit dispatch software, 

therefore ISO New England must use manual curtailment procedures.  The system 

operator must physically call the wind plant and give dispatch-down instructions if 

system reliability is at risk.  Manual wind curtailments also tend to be excessive, as 

system operators must take a conservative approach (Lowell 2012).  Critically, when 

wind generation is curtailed under manual dispatch, wholesale electricity prices on that 

part of the grid do not separate and reflect the curtailment of resources with low marginal 

costs.  If a wind plant is being curtailed manually, other local generators find an 
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economic incentive to produce more electricity when the system would benefit from 

those same generators reducing output (Lowell 2012b). 

Implementing wind DNE dispatch will minimize wind curtailment, enable 

operators to more efficiently manage the grid during volatile weather conditions, and 

align production incentives with efficient market outcomes (Lowell 2012b).  Using 

telemetry data from the wind farm and centralized forecasting, ISO New England will 

produce an expected wind generation forecast for the next dispatch interval.  

Additionally, ISO New England will determine the DNE limit based on persistence 

forecasts, transmission constraints, and offers and operating statuses of the wind plant as 

well as non-wind plants (Lowell 2012b).  The wind plant will have the freedom to 

operate anywhere beneath the DNE limit as conditions allow.  In MISO wind plants are 

able to exceed the DNE by 8% without being penalized, and nearly all wind plants are 

able to achieve compliance (Exeter Associates and GE Energy 2012). 

 

2.4 Contributions of this Study 

There has been limited research into the implementation of DNE dispatch limits on 

wholesale electricity markets, and none focused on the New England market.  Calculating 

the change in electricity production from wind plants when transitioning to a market 

where wind plant production is capped by DNE dispatch limits provides insight into how 

the rule change will impact the New England electricity markets.  

 It is important to highlight that the assumption of unconstrained wind plant 

production, used as a starting point to gauge the effect of implementing DNE dispatch 

limits, seldom holds in reality.  In fact, a primary motivation for introducing DNE 
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dispatch limits is to avoid the excessive curtailment of wind plant production that arises 

from uncertainty in relation to their short term electricity generation.  However, because 

wind plant operators regard data on the curtailments as highly sensitive and potentially 

damaging, there is no available information on where and when wind curtailments occur 

in New England and beyond.  Further, assuming levels of curtailments without reliable 

data is no more tenuous than assuming no wind curtailment, and it could potentially be 

worse. 

 The first objective is to quantify how much wind generation is avoided when 

moving from a manual wind plant dispatch to a dispatch regime where wind plants are 

given DNE dispatch limits.  Initial findings from this first objective will serve as a point 

of comparison when data on curtailments becomes available in 2014, pending new data 

that will be collected upon implementing the centralized wind forecast system in New 

England at the end of 2013.  Although relaxing the assumption of no wind curtailment 

could possibly result in different findings, performing this study can only enhance the 

understanding of DNE limit wind dispatch. 

The second objective is to quantify how the reduction in wind generation realized 

upon moving to DNE limit dispatch impacts wholesale electricity prices, annual 

emissions levels, and the generation mix in New England  This will shed light on how 

sensitive the New England wholesale electricity market is to different levels of installed 

wind capacity.  It is important to distinguish between the counteracting effects of 

increasing the level of installed wind capacity in the three scenarios and the effects of the 

decrease in electricity generation from wind plants subjected to DNE dispatch limits 

within each scenario. 
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For example, the percent of the year certain power plant types spend on the 

margin may be differ at increasing levels of installed wind capacity.  In deregulated 

wholesale energy markets the clearing price is set by the power plant providing the last 

MW of electricity to meet demand, otherwise known as the generator on the margin.  

Power plants offer to supply electricity at variable cost, and all power plants dispatched 

prior to the marginal generator receive the variable cost of the marginal demand for all 

the energy they produce in that period. 

The amount of curtailed electricity generation from wind plants receiving DNE 

dispatch limits, relative to those receiving no such instructions, might have a much more 

significant impact on marginal generators and resulting wholesale electricity prices in the 

‘High’ installed wind capacity scenario.  At the same time, when just observing wind 

plant production under DNE dispatch limits, the marginal generators setting price for 

most of the year in the ‘Medium’ and ‘High’ installed wind capacity scenarios might be 

very similar.  
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CHAPTER 3 

DATA 

 

3.1 Generating Units 

The data on generators used in this study comes from the Energy Information 

Administration’s (EIA) National Energy Modeling System (NEMS) database.  NEMS is 

the source of data for all of the analyses and projections made by the EIA, and as such it 

is constantly updated and the most comprehensive resource in the public domain.  The 

EIA uses numerous data sources to construct the NEMS database, but the majority of 

information on generators comes from Form EIA-923.  Survey information is collected at 

the plant and generator level on a monthly basis from approximately 1,900 power plants, 

and on an annual basis for over 4,100 power plants nationwide (EIA 2012).  One power 

plant can comprise multiple generators, and those generators may burn different fuels.  It 

is not uncommon for one power plant to retire and add individual generators over time. 

The Oak Ridge Competitive Electricity Dispatch (ORCED) Model is used to 

simulate the dispatch of generators to meet New England load demand for this study.  

ORCED comes loaded with the full database of generators contained in the NEMS 

dataset from 2011.  Both ORCED and NEMS are regional models, breaking the U.S. into 

study areas based on the National Electric Reliability Council regions.  Several 

generators across the southeastern Connecticut border in New York state that are not in 

the ISO New England control area are classified in the NEMS data as being in the New 

England region. These were subsequently removed before analysis. 
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 Data from NEMS is used to sort generators by plant type, fuel type, and variable 

cost.  Once generators are sorted, they are aggregated into representative “power plants” 

according to their operational characteristics.  ORCED does this for computational 

efficiency, and can accommodate a maximum of 200 of these power plants for use in 

Dispatch.  A more detailed explanation of the Supply module methodology complete 

with the formula used to calculate generator variable cost is presented in Chapter 4. 

Table 2.  Variables from NEMS database used for aggregation 

 

 Fuel data contained in NEMS are used during the initial sorting and aggregation 

of generators in the Supply module as well.  Before the model dispatches generators in 

the Dispatch module fuel prices can be set to levels expected for the study year, in this 

case 2020.  However, estimating fuel prices seven years into the future is nearly 

impossible to do with much confidence.  Natural gas prices in New England are 

especially volatile. The region lies at the end of the natural gas pipeline distribution 

system and over 50% of the electric generation comes from natural gas fired plants.  This 

study assumes the same fuel prices for 2020 as those contained in the NEMS dataset from 

2011. 

Outage factors refer to times in which a plant will be unavailable for dispatch, for 

either planned or unexpected reasons.  ‘Planned’ outage factors relate to periods of 
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scheduled maintenance, while ‘forced’ outage factors relate to periods of unplanned 

unavailability.  Outage factors vary from season to season, which is one reason why it is 

critical that ORCED divides the year into three seasons before dispatching generators to 

meet annual hourly load. 

In addition to the planned retirement dates of generators in the database, NEMS 

contains assumptions about regional capacity retirements of different plant types through 

the year 2035.  NEMS also projects the amount of unplanned capacity additions required 

in each region to meet future load growth.  Data from the ISO New England 

interconnection queue support the NEMS projection, but the implicit assumption in the 

NEMS data is that there will be no new generation built until 2025 (ISO New England 

2013b).  In contrast, this study simulates scenarios in which there is significant installed 

wind capacity additions by 2020.  

 

3.2 Wind Plant Production 

Time-series data on wind speeds taken from the NREL Eastern Wind Dataset was used to 

estimate wind plant output.  Originally created for the Eastern Wind Integration and 

Transmission Study, the dataset “contains three years (2004-2006) of 10-minute wind 

speed and plant output values for 1,326 simulated wind plants as well as next-day, six-

hour, and four-hour forecasts for each plant (NREL 2012).”  An additional 4,948 sites in 

the Atlantic Ocean at least 8 km from shore at water depths of no more than 30 m were 

modeled as well.  AWS Truepower, an industry leader in wind forecasting, constructed 

the dataset using their MASS v.6.8 mesoscale model that has a grid output resolution of 

2km. 
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Wind speeds at each site were combined with a composite turbine power curve to 

solve for power output at each location after controlling for wind gusts, wake losses, and 

other factors (NREL 2012).  Below a certain ‘cut-in’ speed wind turbines are unable to 

produce any power, which is typically between 3-4 meters per second.  In order to protect 

mechanical components from strong winds, at a particular ‘cut-out’ speed the turbine 

ceases to produce any power as well. With wind turbines becoming more efficient and 

realizing better capacity factors, the Eastern Wind Dataset was updated in June 2012 in 

part to better reflect future turbine technology. 

 

3.2.1 Hourly Wind Plant Output 

In an attempt to capture the most realistic level of output that would be achieved under a 

full build-out of wind resources in the interconnection queue, latitudinal and longitudinal 

coordinates of operational and planned wind plants were used to identify proximate sites 

from the Eastern Wind Dataset.  Instead of using the wind plants and output simulated by 

AWS Truepower’s MASS model directly, the power output for each site was converted 

to a capacity factor for each 10-minute observation in the time series and then the hourly 

average was taken.  Average hourly capacity factors for each site were then multiplied by 

the nameplate capacity of the appropriate wind farm to arrive at the power output for that 

plant’s particular specifications.   

 

𝐺𝑖,ℎ = �{𝐶𝑖 × �𝑃𝑖,𝑡 ÷ 𝑆𝑖�}
6

𝑡=1

÷ 6 
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Where:    

𝐺𝑖,ℎ = generation at wind plant i in hour h (MW) 

ℎ = hour 

𝑡 = time periods ending every 10th minute within hour h 

𝐶𝑖 = capacity of wind plant i (MW) 

𝑃𝑖,𝑡 = generation at Eastern Wind Dataset site matched to plant i in time t (MW) 

𝑆𝑖 = capacity of Eastern Wind Dataset site matched to wind plant i (MW) 

 

Once the annual hourly electricity generation is calculated for each wind plant the 

results can be aggregated to arrive at total hourly electricity generation for New England.  

At that point the data is ready to be fed into the Demand module, where it is subtracted 

from the escalated hourly load demand for 2020.  In the Medium and High scenarios, the 

wind generation from the Low scenario is simply doubled and tripled, respectively.  In all 

cases daylight savings time was reflected in both the wind output data and the hourly load 

demand profile it modified. 

 Wind follows both diurnal and seasonal patterns.  Generator output and wind 

speeds are at their lowest during the summer months, and are at their highest during the 

winter months.  On a daily basis, wind speeds pick up during the nighttime and early 

morning hours, but the pattern is slightly different during the winter versus the summer. 

Figure 4 shows the hourly average electricity generation from wind plants in the Low 

installed wind scenario during January and July, assuming no wind curtailment.  In 

January the wind output starts increasing at 1pm and continues rising through the 

evening, finally dropping down after midnight.  In July, wind output is at its peak 
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between 12am and 6am before dropping down to negligible levels of production from 

7am to 4pm, after which it rises slowly through the evening.  

 

Figure 4.  Average hourly wind plant generation in January and July 2020 

From a system operator’s perspective, it is a problem that wind contributes the 

least to meeting demand during the most critical times for the system.  Net load 

represents demand on the system that remains after subtracting the contribution from 

wind generation.  Figure 5 compares load demand to net load in the Low-DNE and High-

DNE installed wind capacity scenarios on the highest summer demand day in 2020. 

 
(Wind plants subject to DNE dispatch limits) 

Figure 5.  Hourly net loads on 2020 summer peak 
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The contribution from wind plants toward meeting demand is low, especially during the 

peak hours.  If the wind is not blowing when the grid operator requires the most 

resources, even endless amounts of installed wind capacity will be unable to displace 

fossil fuel plants from the generation mix.  This highlights an important truth of 

renewable energy; due to the intermittent and unpredictable nature of energy sources such 

as wind and the sun, these resources cannot supplant traditional thermal generators on a 

MW-for-MW basis. 

While some fossil fuel peaking plants might only be used for a very small amount 

of time each year, they are nonetheless indispensable as they provide needed reserves to 

maintain system reliability.  As competition from intermittent generators increases, these 

peaking plants will see less revenue in the energy market.  Capacity and ancillary 

services markets revenues will be vital in keeping the rarely called upon peaking plants 

from being mothballed.  Due to the dynamic between peaking plants and intermittent 

generators, the contribution of demand response is seen as essential to flattening seasonal 

peaks and reducing the power system’s reliance on peaking plants to provide reserves 

(Borlick 2012).  

Aggregate wind generation contributes significantly to meeting regional load 

demand in the winter, notably during the peak hours from 6pm to 8pm.  These are the 

months and hours in which the biggest shift in marginal generators will occur with 

greater installed wind capacity.  Passive demand response contributions will have an 

additive effect in these months, reducing the amount of load to be served by dispatchable 

thermal generators even further. 
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Figure 6 highlights the different story that plays out during the winter and 

shoulder months from that in the summer.  Again total system load demand is compared 

to system net load under the Low-DNE and High-DNE installed wind capacity scenarios, 

but on the highest winter load demand day in 2020.  On January 18th, electricity 

generation from wind plants subject to DNE dispatch limits in the Low and High installed 

wind capacity scenarios reduce peak load demand, from 4pm to 6pm, by 9.6% and 28.8% 

respectively.  In contrast, on July 27th, the projected 2020 peak load day, demand during 

the peak hours from 2pm to 6pm is only reduced by 1.7% and 5.2% for each scenario. 

 
(Wind plants subject to DNE dispatch limits) 

Figure 6.  Hourly net loads on 2020 winter peak 
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With hundreds of megawatts of wind capacity installed already, wind power development 

in the Midwest is at an advanced state by U.S. standards.  The grid operator that controls 

those resources, the Midwest Independent System Operator (MISO), is at the forefront of 
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methodology proposed by ISO New England to set DNE limits for individual wind plants 

is analogous to that pioneered by MISO, and the same procedure is adhered to in this 

study. 

In November 2010, MISO submitted a filing to FERC that contained their 

proposal to designate resources as Dispatchable Intermittent Resources (DIRs).  A DIR is 

a resource that is limited by “forecast-dependent fuel availability (Midwest ISO 2010).”  

The resources in question cannot control the amount of fuel they have access to, but they 

can control the amount of accessible fuel they use.  Therefore a DIR can only be 

dispatched downward.  Prior to the rule change intermittent resources in MISO were 

treated exactly as they are in ISO New England today.  If the dispatcher needed to curtail 

wind plants downward to manage congestion she would have to manually call 

instructions into the wind plant (Exeter Associates and GE Energy 2012). 

Under the current system in MISO, the DIR submits a Forecast Maximum Limit, 

which represents the current capability of the plant and serves as the upper limit for 

dispatch, to the system operator automatically every five minutes.  The Forecast 

Maximum Limit, which is equivalent to the DNE dispatch limit in the ISO New England 

proposal, is calculated using a rolling persistence forecast of the last twelve 5-minute 

periods (Exeter Associates and GE Energy 2012).  For the purposes of this study, because 

data on 5-minute output is unavailable, a rolling persistence forecast of the last six 10-

minute periods is used instead.  The benefit of calculating the DNE dispatch limit in this 

way is that the current data on hourly wind output can be used to construct the DNE 

dispatch limit for each plant.  MISO accepts DIR production within an 8% ‘tolerance 

band,’ so wind plants can effectively generate power at up to 108% of their DNE dispatch 
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limit (Exeter Associates and GE Energy 2012).  The same custom is adopted for this 

study. 

Table 3.  DNE limit calculations for Cape Wind plant 

 

Table 4 presents the additional steps used to calculate the DNE dispatch limit for 

an individual wind plant.  For each 10-minute period the average of the previous six 10-

minute periods is calculated, which produces the simple persistence forecast in 10-minute 

increments.  The lesser of the unconstrained converted net power or the simple 

persistence forecast, the hypothetical 10-minute DNE dispatch limit, is taken to be the 

generation level for each 10-minute period, t.  Then the selected 10-minute generation 

levels are averaged by hour to achieve the necessary scale for use as an hourly load 

modifier in the Demand module.  The last row in Table 4 is highlighted to show that in 

that 10-minute period the DNE limit ceases to constrain wind plant production, resulting 

in total generation below the DNE limit. 
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𝐷𝑁𝐸𝑖,𝑡 = {�(𝑁𝑡−1 + 𝑁𝑡−2 + ⋯+ 𝑁𝑡−6) ÷ 6} × 1.08 

𝐿𝑖,𝑡 = 𝑀𝐼𝑁�𝐷𝑁𝐸𝑖,𝑡,𝑁𝑖,𝑡� 

𝐷𝑁𝐸𝑖,ℎ = �(𝐿𝑖,𝑡  ∀ 𝑡 ∈ ℎ) ÷ 6 

Where: 

 𝐷𝑁𝐸𝑖,𝑡 = generation under Do Not Exceed limit at wind plant i in period t (MW) 

𝑁𝑖,𝑡 = generation at wind plant i in period t (MW) 

 𝐿𝑖,𝑡 = effective generation at wind plant i in period t (MW) 

 𝐷𝑁𝐸𝑖,ℎ = generation under Do Not Exceed limit at wind plant i in hour h (MW) 

 

The wind data and hourly load data used is from the year 2005.  Since there is 

2004 wind data available a DNE dispatch limit can be calculated for the first hour of the 

year, whereas if only one year of data were available that would be impossible. 

It is assumed that wind plants maximize their electricity generation by always 

producing at the DNE limit or, if wind conditions make reaching the DNE limit 

physically impossible, the maximum possible level below that point.  The wind plants are 

assumed to not be curtailing their own generation.  This assumption seems reasonable 

considering that MISO reported DIRs generated electricity at their Forecast Maximum 

Limit 95.2% of the time during the first six months of the program, when the limit would 

have been binding (Midwest ISO 2011). 
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3.3 Load Demand 

ORCED utilizes hourly system load data from various utilities and control areas to create 

the demand profiles for each study region.  The National Electric Reliability Council 

region for New England corresponds directly to the control area of ISO New England, so 

system load data can be taken from ISO New England’s publicly available data.  This is 

not true of most areas of the country, and in those cases the regional load is the weighted 

average of the component system loads.  Once an hourly system load profile is input into 

the Demand module, ORCED steps the hourly loads up to the study year based on 

projections from the NEMS database.  A detailed description of the method by which 

ORCED steps-up the hourly load profile is presented in the Demand section of Chapter 4. 

 

Figure 7.  Weekly net load standard deviations in no-DNE High and Low scenarios 

Net load is what demand remains to be served by conventional generators after 

electricity production from wind is subtracted out.  Over the course of the study year, the 

average net load decreases when moving from the Low scenario to the High scenario, 

with larger reductions occurring in the winter and offpeak seasons.  Most importantly 
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from a system reliability and forecasting standpoint, as Figure 7 illustrates, variability in 

net load increases significantly as wind capacity is added to the grid. 

Although the model comes equipped with demand profiles for each region using 

2010 data, a 2005 system load profile taken from ISO New England is used in this study 

in order to remain consistent with the available wind data.  ORCED can only accurately 

simulate year-to-year operations of regional electricity markets, so looking at the entire 

period from 2004-2006 is unfeasible.   

Wind speeds, and the associated electricity generation by wind plants, can be 

correlated to some extent with load demand.  Therefore, using hourly load and wind 

generation data from the same year is essential in avoiding any potential bias in the 

results (Orwig, et al. 2012).  Upon analyzing the available wind data from January 1, 

2004 to January 1, 2007, it appeared that 2006 exhibited below-average wind speeds for 

the region.  Although the sample size was small, 2004 and 2005 were similar and 

assumed to be representative of the typical yearly wind resources available to New 

England.  The other consideration in choosing a representative year to study is the 

presence of any abnormal seasonal load events.  While 2005 witnessed no major events, 

during January 14-16, 2004 New England experienced “unusually extreme weather and 

electricity demand conditions (ISO New England 2004).” 

 

3.3.1 Demand Response 

Like wind, the contribution of demand response to meeting system load enters the model 

by adjusting downward hourly load demand.  The demand response programs that ISO-

NE administers have evolved to include two main categories: (1) a program that reduces 
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load to support system reliability and includes the Real-Time Demand Response and 

Real-Time Emergency Generation resources; and (2) a program that reduces load through 

energy-efficiency and other non-dispatchable measures which includes On-Peak and 

Seasonal-Peak resources.  There is a third program in which consumers can reduce their 

demand according to electricity prices in the real-time and day-ahead markets, but it 

makes up a very small portion of total demand response and is currently in a transitional 

phase (ISO New England 2012b).   

In response to concerns that energy and reserve markets alone would not provide 

sufficient price signals to ensure that forecasted generation capacity needs would be met, 

ISO New England implemented a capacity market.  Annual capacity obligations are 

acquired through the Forward Capacity Auction (FCA), which is binding for the period 

three years in the future.  In the most recently completed FCA 6, which applies to 

resources committed in 2015/2016, a total of 4257 MW of demand response resources 

were committed. 

Table 5.  Demand response resources cleared in Forward Capacity Auction 6 

 
                    (Source: ISO New England, CELT Report, 2012) 

Demand response resources must clear the FCA and subject themselves to audits 

from ISO New England to prove that the capacity they claim in the auction is actually 

available.  Real-Time Demand Response and Real-Time Emergency Generation assets 
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are classified as ‘active’ resources, meaning that the system operator can dispatch them 

according to the needs of the system.  On-Peak and Seasonal-Peak assets are classified as 

‘passive’ resources, in that they are not dispatchable. 

ISO New England does not forecast future demand response beyond what clears 

in the FCAs, but incremental gains through energy efficiency do appear in current 

forecasts for passive demand response.  The total contribution of passive demand 

response will most likely be higher than the amounts forecasted today, but this number 

serves as an acceptable estimate because energy efficiency resources comprise the largest 

share of passive demand response assets that clear in the FCA.   

Active demand response gets used sparingly, perhaps once or twice a year for 

only a few hours when the system is experiencing highly unusual conditions that leave it 

short of available generating capacity.  Since active demand response resources do not 

impact serviceable load on a daily basis, it is not essential to model them precisely.  For a 

study such as this, the most important aspect of demand response to capture is the 

contribution by passive demand response resources. 

Aided by the fact that Seasonal-Peak makes up a comparatively small percentage 

of total passive demand response, both Seasonal-Peak and On-Peak resources are 

grouped together to modify demand according to the On-Peak dispatch methodology.  

On-Peak demand resources are triggered automatically, every day during peak seasonal 

hours.  ISO New England defines peak seasonal hours in the winter as 6pm to 8pm, and 

summer hours as 1pm to 5pm (ISO/RTO Council 2013).  Applicable winter months, 

including winter shoulder months, are December, January, February, and March.  The 

summer months, including shoulders, are April, May, June, July, August, September, 
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October, and November.  Passive demand response MWs from Table 5 are subtracted 

from hourly load demand in both cases with and without DNE dispatch limits. 
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CHAPTER 4 

OAK RIDGE COMPETITIVE ELECTRICITY DISPATCH MODEL 

 

4.1 History and Organization 

The Oak Ridge Competitive Electricity Dispatch (ORCED) model can simulate the 

operations and costs of wholesale electric power markets for any year up to 2035.  Using 

a historical hourly load profile for one region of the U.S., ORCED projects hourly load in 

a future year using energy consumption forecasts from FERC.  Public data available 

through the Energy Information Administration’s (EIA) National Energy Modeling 

System (NEMS) is used to calculate operational costs for generating units in the study 

region.  ORCED then dispatches generating units to meet projected demand after 

accounting for limited electricity imports and exports. The model assumes no 

transmission constraints (Hadley 2008). 

 

Figure 8.  ORCED Model flow diagram 

 Originally developed in the mid-1990s as the Oak Ridge Financial Model to 

investigate the effects of wholesale electricity market deregulation on a single utility, 

ORCED has evolved into a tool used to assess the effect of technological change on a 

single region (Hadley 2008).  Adaptability is one of the model’s strengths, as it can be 
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easily modified to suit the needs of a particular study.  In 2012, ORCED was used in a 

national plug-in hybrid electric vehicles study (Hadley and Tsvetkova 2012), and a DOE-

funded study on demand response potential in the Eastern Interconnection (Baek, et al. 

2012).   

ORCED is comprised of four spreadsheet-based modules that are linked with 

various macros.  The Demand module starts with an hourly load profile, adjusts that 

profile to capture contributions from demand modifiers like wind plants and demand 

response, then converts the modified hourly load profile into seasonal Load Duration 

Curves (LDCs).  The Supply module sorts all generating units by region, calculates the 

variable cost of electricity for each, and aggregates the generating units into 200 bins to 

mimic power plants.  In the Dispatch module the composite power plants are dispatched 

to meet annual demand represented by the LDCs. 

This is the first research effort using ORCED to focus on wind energy integration 

issues, and certain modifications to the model were required to better represent how wind 

plants satisfy load.  In order to remain consistent with the approach taken in other wind 

integration studies, electricity generation from wind plants enters the model as an hourly 

load modifier.  Hourly production for each wind plant in the study is first calculated 

outside of ORCED, then introduced to the Demand module where it is subtracted from 

hourly load demand.  The hourly demand remaining after subtracting contributions from 

wind plant generation and passive demand response is defined as net load, and represents 

the load demand to be served by conventional dispatchable generators.  Wind plants 

submit supply bids into wholesale electricity markets that are near zero or even negative 

after accounting for subsidies. The net load concept reflects the fact that energy from 
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wind plants will always clear in the market before generators with fuel costs barring 

transmission constraints, which this study assumes are nonexistent. 

 

4.2 Supplies 

 In the Supply module generators in the study region are aggregated into power 

plant groups based on operational characteristics.  ORCED bins all of the power plants in 

a region by plant and fuel type in order to limit the amount of generating units it has to 

use in the dispatch routine.  Power plant groups function as pseudo-power plants within 

the model to reduce the computational burden.  The power plant groups are sorted in 

increasing order by their variable cost of producing electricity, creating a merit order of 

generation assets, and then exported into the Dispatch module. 

Due to the energy-limited nature of hydro and pumped storage plants, water is not 

always available in reservoirs or rivers to drive turbines, they are modeled separately 

within the Dispatch module.  Wind plants, although treated as dispatchable generators in 

previous studies using ORCED, enter into the Demand module as a load modifier. 

ORCED starts by calculating the variable cost for each power plant using energy 

input, generation, and emissions data, then converts the figure to $/kWh. 

 

𝑉𝐶𝑖 = 𝐹𝑖 + 𝑂𝑀𝑖 + 𝑆𝑖 + 𝑁𝑖 + 𝐶𝑖 

Where: 

 𝑉𝐶𝑖 = variable cost for generator i ($/MWh) 

 𝐹𝑖 = fuel expense for generator i ($/MWh) 

 𝑂𝑀𝑖 = variable operations & maintenance for generator i ($/MWh) 
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 𝑆𝑖 = SO2 allowance cost for generator i ($/MWh) 

 𝑁𝑖 = NOx allowance cost for generator i ($/MWh) 

 𝐶𝑖 = CO2 allowance cost for generator i ($/MWh) 

   

Once variable cost is determined the plants are sorted by fuel type (ex. bituminous and 

subbituminous coal), plant type (ex. combined cycle, steam turbine, coal, etc.), and 

variable cost.  With the plants categorized and ranked, ORCED can go about assigning 

them to one of the 200 groups that will act as power plants to be used in the Dispatch 

routine (Hadley 2008). 

 

𝐵𝑟 = 𝑟𝑜𝑢𝑛𝑑{� 𝐶(𝑥)
𝑥∈𝑆𝑟

÷ 𝑍𝑟} 

Where: 

𝐵𝑟 = number of plant groups created for unique combination r of plant type i and  

          fuel type j 

∑𝐶(𝑥) = total capacity of power plants x (MW) 

𝑆𝑟 = set of power plants x for unique combination r of plant type i and fuel type j 

𝑍𝑟 = user determined average plant group size for unique combination r of plant  

         type i and fuel type j (MW) 

 

 The order in which power plant groups are sorted reflects their role in the system 

as peaking or baseload generation.  Oil plants and non-combined cycle gas plants provide 

much of the peaking power for the system.  Combined cycle plants are highly efficient 

and are supplanting coal as baseload.  The renewable plant group contains biomass and 
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municipal solid waste plants that are typically baseload.  ‘Must-run’ plants are non-

dispatchable cogeneration facilities, those that provide electricity and heat, and the four 

New England nuclear plants. 

 ORCED calculates variable and fixed operating characteristics for each of the 200 

plant groups as a weighted average of the component generators’ characteristics.  

Variable characteristics include emission rates, plant efficiency (heat rate), and variable 

operation and maintenance costs.  Fixed characteristics include fuel costs, fixed operation 

and maintenance costs, and plant age. (Hadley 2008). 

 

4.3 Demands 

After inputting hourly load data from a past year, ORCED escalates that historical load 

profile to the future year being studied using forecasts of net energy for load from ISO 

New England.  Net energy for load is defined as all electricity generated within a 

particular region, plus imports to that region, and transmission losses, less exports to 

other regions. 

 

𝐴𝑡 = 𝐷𝑡 × (𝑌 ÷ 𝑆𝑁) 

𝑁𝐿𝑡 = 𝐷𝑡 − 𝑃𝑡 −𝑊𝑡 − 𝐸𝑡 

Where: 

 𝐴𝑡 = adjusted (stepped-up) demand in hour t (MW) 

 𝐷𝑡 = reference hour demand from historical profile in hour t (MW) 

 𝑌 = total load demand in reference year – 2005 (GW) 

 𝑆𝑁 = forecasted net energy for load in study year - 2020 (GW) 
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 𝑁𝐿𝑡 = net load in hour t (MW) 

 𝑃𝑡 = passive demand response in hour t (MW) 

 𝑊𝑡 = electric generation from wind plants in hour t (MW) 

 𝐸𝑡 = exports of electricity in hour t (MW) 

   

Any adjustments to inter-regional electricity trade can be made in the Demand 

module.  In New England, imports and exports occur over interfaces with New 

Brunswick, Quebec, and New York.  This study assumes the same levels of imports and 

exports as the ORNL study on demand response potential in the Eastern Interconnection 

(Baek, et al. 2012). 

Electricity generation from wind plants enters the Demand module like passive 

demand response.  After the historical hourly profile has been escalated to the future year, 

in this study 2020, hourly contributions to servicing load from wind plants and passive 

demand response resources are subtracted to arrive at the hourly net load to be served by 

dispatchable power plants in the supply stack. 

 

4.3.1 Conversion to Load Duration Curves 

Generators have capacity ratings that change over the course of a year, so ORCED 

analyzes demand by breaking the year into three seasons; summer, winter, and offpeak.  

Seasonal lengths can be customized within the model to fit the study region because loads 

are not uniform across the U.S. (Hadley 2008).  ISO New England breaks the year into 

four categories: (1) winter performance months (December-January); (2) winter shoulder 

months (February-March); (3) summer performance months (June-August); and (4) 
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summer shoulder months (September-November and April-May) (ISO New England 

2013).  Since ORCED cannot accommodate four distinct seasons, and because the 

historical load profiles of certain months in the ISO-defined shoulder months did not fit 

being included together in the offpeak season, some of the months in ISO New England’s 

shoulder months were included in the summer and winter seasons.  In this study summer 

is defined as June-September, winter as December-February, and the offpeak season as 

October-November and March-May.  The ISO-defined seasons are used to determine 

seasonal demand response contributions in ORCED. 

 An LDC represents the percent of time in a season that load demand is at a certain 

power level.  ORCED calculates the load demand range in each season to create 200 bins 

that all other hourly observations in that season get assigned to (Hadley 2008).  

Observations in each bin are summed together, translated into a cumulative curve of 

hours at the respective load demand levels defined by the bin limits, and then converted 

into the LDC.  For example, in the summer season containing 2,928 hours the first bin 

will contain only the observations in that bin, the second bin will contain all observations 

from the first and second bins, and so forth until the 200th bin contains all 2,928 hours.  

To derive the LDC, each bin is divided by the total number of hours in that particular 

season to obtain the percentage of time demand equals or exceeds a given power level. 

(Hadley 2008).  To reduce computation time requirements, the 200-point LDCs are 

converted to twelve-point LDCs before they are exported into the Dispatch module.  A 

macro in Excel fits the twelve points to the original LDC so that variance is minimized 

while keeping total demand constant (Hadley and Tsvetkova 2012). 
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Figure 9.  Load duration curves under High installed wind capacity  

 LDCs are indicative of the electric power system being studied.  A system with 

many peaking plants will have steep curves, while flat curves indicate a system where 

plants are used evenly.  This is especially noticeable on the segment of the LDC between 

0% and 10% of the season.  Notice that the summer LDC is above the winter LDC in 

Figure 9.  This reflects the fact that New England is a summer-peaking system, meaning 

the annual peak is during the summer when cooling loads are at their highest. 

 

4.4 Dispatch 

The dispatch of power plants to meet annual load can be simulated once electric 

generation from hydro and pumped storage plants is accounted for and system operating 

reserve requirements are specified.  In the dispatch procedure the power plant required to 

meet the last MW of demand in each segment of the LDC is assigned according to the 

merit ordering of plants by variable cost.  The variable cost of the marginal power plant 

determines the wholesale market price of electricity in that segment of the LDC for all 
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plants.  After assigning marginal generators to each segment of the LDC, ORCED 

calculates the energy market revenues and environmental costs for each power plant. 

 

4.4.1 Hydro and Pumped Storage 

Unlike thermal generating units that always have the ability to purchase fuel, most hydro 

plants are constrained by available water supplies.  These hydro plants can be described 

as energy limited.  There is a strong seasonal component involved, as annual weather and 

precipitation cycles affect production.  In areas with significant snowpack, like New 

England, the late-winter and spring months witness a jump in hydro output (EIA 2012c). 

Since water comes at no cost to hydro plants, their variable cost of producing 

electricity is extremely low.  System operators dispatch hydro units during periods in 

which demand is high to minimize generation from expensive peaking plants.  ORCED 

reduces demand by total hydro capacity until all the electric generating potential from 

hydro plants is exhausted.  In Figure 10, the space between the original LDC and the 

hydro-adjusted LDCs reflects the total available hydro generation. 

 

Figure 10.  Load duration curve after hydro adjustment 
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Through the first 4-5% of the season, up to the fourth point on the LDC, hydro units are 

able to reduce demand by their full capacity.  After that point the generators become 

limited by available water for generation and cease producing electricity at full capacity.  

ORCED drops each point of the initial LDC down by the total hydro capacity then 

recalculates the amount of available energy remaining from hydro generation.  The 

process is repeated for subsequent points until no hydro energy remains.   

Of course, hydro generators will not exclusively be dispatched during those times 

in which demand is highest.  Run-of-river facilities, as opposed to hydro units that use 

reservoirs, still have incentive to operate at other times during the season.  One of the 

aggregated power plants from the Supply module can be used to capture a portion of 

hydro capacity to be dispatched regularly.  Hydro power plants dispatched in this way 

would in effect shift the LDC downward by the capacity of the plants, as the low variable 

cost of hydroelectricity lends itself to baseload operation. 

 

Figure 11.  Pumped storage sales and purchases 
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In addition to reducing demand during those periods of the year when demand is 

the highest, pumped storage hydro plants also increase demand when loads are at their 

lowest (Hadley and Baek 2012).  Pumped storage plants purchase electricity from the 

grid when wholesale prices are low in order to pump water into elevated reservoirs. 
 

 

When prices rise during times of peak demand water is released down from the reservoirs 

to power turbines, allowing the plant to realize a profit from the price differential.  

Pumped storage plants help balance the system by utilizing cheap electricity from 

efficient baseload plants that generate energy even when demand is low.  Figure 11 

shows the electricity generated and purchased by hydroelectric and pumped storage 

plants during the summer season. 

The pumped storage plants in New England were built during the 1970s primarily 

to take advantage of the abundant cheap electricity from regional nuclear plants 

constructed during the same period.  New England has over 1600 MW of pumped storage 

on the system, all but 7 MW of which comes from two plants.  The 1000 MW Northfield 

Mountain pumped storage plant on the Connecticut River was the largest facility of its 

kind in the world when it entered service in 1972 (GDF Suez 2013). 

 

4.4.2 Dispatch Routine 

ORCED calculates the percent of time in each season that demand exceeds 213 power 

levels.  These power levels are determined by the cumulative capacities of the 200 power 

plant groups in the merit order (201 points total) and the twelve points from the LDC.  

Between each of these power levels and the associated percent of season that demand 
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exceeds those levels, a plant group is determined to be on the margin and setting price for 

all plant groups behind it in the merit order. 

 

(Source: Oak Ridge National Lab, ORCED Documentation, 2012) 

Figure 12.  Dispatch curve showing marginal time segments 

The method by which ORCED dispatches power plant groups hinges on the way 

forced outage rates are treated in the model.  Forced outages are instances when a power 

plant goes out of service due to unplanned circumstances, such as mechanical failures or 

sudden fuel unavailability.  ORCED can represent the impact of forced outage rates on 

generation probabilistically or by derating the power plant group’s capacity.  If a plant 

group is derated, its maximum capacity is reduced by the forced outage rate.  Power plant 

groups treated probabilistically are dispatched at their full summer and winter seasonal 

capacities, but the impact of forced outages on these plants manifests itself by increasing 

the amount of time more expensive plant groups are forced to run. 

Instead of assuming that all plant groups are always available at a reduced 

capacity, treating plant groups probabilistically reflects more accurately what occurs 

during forced outage events.  Probabilistic dispatch simulates circumstances in which a 

large power plant unexpectedly goes offline, forcing more expensive peaking plants to 
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quickly make up the difference in generation.  ORCED selects large baseload plant 

groups towards the bottom of the merit order for probabilistic dispatch so the effects of 

forced outages are more pronounced.  Up to 25 power plant groups can be treated 

probabilistically, but 10-12 is ideal because calculations become exponentially more 

computationally demanding as additional plant groups are included. 

 

𝑇𝑖(𝑝) = (1 − 𝐹𝑂𝑅𝑖) × 𝑇𝑖−1(𝑝) + 𝐹𝑂𝑅𝑖 × 𝑇𝑖−1(𝑝 − 𝐶𝑖) 

𝑇𝑖−1(𝑝) = (1 − 𝐹𝑂𝑅𝑖−1) × 𝑇𝑖−2(𝑝) + 𝐹𝑂𝑅𝑖−1 × 𝑇𝑖−2(𝑝 − 𝐶𝑖−1) 

… 

𝑇0 = 𝐿𝐷𝐶(𝑝) 

Where: 

𝑇𝑖(𝑝) = time (percent of season) that demand plus outages would exceed power 

 level p with i number of plant groups treated probabilistically 

 i = the number of plant groups being treated probabilistically up to power level p 

𝑝 = power level (MW) 

𝐹𝑂𝑅𝑖 = forced outage rate for probabilistic plant i 

𝐶𝑖 = capacity of probabilistic plant group i (MW) 

𝐿𝐷𝐶(𝑝) = a linear interpolation of the percentage of season that the load duration 

     curve equals power level p 

 

 If 12 power plant groups are dispatched probabilistically, as is the case in this 

study, and the remaining plant groups are derated, then i will equal 12 beginning at the 

power level associated with the probabilistically dispatched plant group highest in the 
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merit order.  For each subsequent power level, i will equal 12.  As i→∞ for a constant 

power level p, Ti(p)→∞. 

 During the summer and winter peaks capacity is only impacted by the forced 

outage factor.  In the offpeak season capacity is impacted exclusively by planned outages.  

The planned outage factor captures the propensity of power plants to perform 

maintenance and refueling operations during the offpeak season when demand is low.  

When calculating the derating amount for the offpeak season, differences in summer and 

winter lengths and capacities must be accounted for because planned outage factors are 

based on annual generation. 

 

𝐺𝑇𝑜𝑡𝑎𝑙 = 𝐺𝑆𝑢𝑚𝑚𝑒𝑟 + 𝐺𝑊𝑖𝑛𝑡𝑒𝑟 + 𝐺𝑂𝑓𝑓𝑝𝑒𝑎𝑘 

𝐺𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑆 × (1 − 𝐹𝑂𝑅𝑆 − 𝑃𝑂𝑅) × 𝛾𝑆 + 𝐶𝑊 × (1 − 𝐹𝑂𝑅𝑊 − 𝑃𝑂𝑅) × (𝛾𝑊 + 𝛾𝑂) 

Where: 

𝐺 = generation (MW) 

𝐶 = capacity (MW) 

𝐹𝑂𝑅 = forced outage rate 

𝑃𝑂𝑅 = planned outage rate 

𝛾 = seasonal percentage of year 

 

Define seasonal generation to internalize planned outage rate within season in order to 

isolate the planned outage effect on offpeak capacity:  

𝐺𝑆 = 𝐶𝑆 × (1 − 𝐹𝑂𝑅𝑆) 

𝐺𝑊 = 𝐶𝑊 × (1 − 𝐹𝑂𝑅𝑊) 
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𝐺𝑂 = 𝐶𝑂 × (1 − 𝐹𝑂𝑅𝑊) 

 

Rearranging the first equation and substituting: 

𝐶𝑂 = {[𝐶𝑊 × (1 − 𝐹𝑂𝑅𝑊) × 𝛾𝑂 − 𝑃𝑂𝑅 × (𝛾𝑂 + 𝛾𝑊)]− 𝐶𝑆 × 𝑃𝑂𝑅 × 𝛾𝑆} 

÷ [(1 − 𝐹𝑂𝑅𝑊) ÷ 𝛾𝑂] 

 

Note that winter capacity and offpeak capacity are equal.  Typically the winter capacity 

rating for a power plant will apply for the offpeak season as well.  Because planned 

outage factors do not have an effect in the summer or winter seasons, they have no 

impact on the probabilistic dispatch of plant groups. 

 

4.4.3 Operating Reserves 

Wholesale electricity markets require reserves on the system to meet rapid changes in 

load.  In New England there are several different products sold in the ancillary services 

market that provide assurances on the availability of reserves over different time frames.  

ORCED simulates reserve revenues to power plant groups in a simplified manner.  The 

user specifies an amount of reserves required at any individual segment of the dispatch 

curve as a percentage of demand.  In this study the reserve requirement is set at 7%. 

 

𝑅𝑖,𝑡 = (𝑀𝐶𝑖 − 𝑃𝑡) × 𝐿𝑖 ÷ 𝐴𝑖 

Where: 

𝑅𝑖,𝑡 = marginal cost of supplying reserves for power plant i over segment t ($) 

𝑡 = dispatch curve segment (% of season) 
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𝑖 = power plant in dispatch merit order not at full generation 

𝑀𝐶𝑖 = marginal cost of power plant group i ($) 

𝑃𝑡 = energy market price over segment t ($) 

𝐿𝑖 = minimum generation level of power plant group i (MW) 

𝐴𝑖 = capacity available to supply reserves of power plant group i (MW) 

 

A power plant group required for reserves will receive revenues equal to the 

marginal cost of supplying those reserves.  The marginal cost of a plant group supplying 

reserves will always be greater than the energy market price, or else the plant group 

would be generating electricity already. 

In each segment of the dispatch curve, ORCED calculates the marginal cost of 

supplying reserves for each power plant group not being fully dispatched to meet load.  

The last plant group needed to meet the reserve requirement will set the reserve market 

price for all plant groups supplying reserve capacity.  In order to accommodate minimum 

generation requirements of certain power plants, there can be instances when a power 

plant group is dispatched to meet load demand has a portion of its capacity held back for 

reserves.  This is referred to as ‘posturing’. 

For example, assume that the final 50 MW of system reserves are needed from 

Plant B that has a minimum generation requirement of 100 MW. Plant A, a 200 MW 

plant with a minimum generation requirement of 100 MW which cleared the energy 

market and is generating electricity at full capacity, would be postured.  Plant A would 

reduce generation by 50 MW to supply reserves, still above its minimum generation 

requirement, and Plant B would be able to start-up and generate at its minimum 
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generation level.  Plant B would receive reserve market revenues on 50 MW of 

generation, and energy market revenues on the other 50 MW.  Plant A would not be 

penalized for providing system reserves, and would still receive the higher energy market 

price on all of its generation.  

 

4.4.4 Pricing and Revenues 

The last power plant in the merit order required to meet load demand in each segment of 

the dispatch curve is described as being ‘on the margin’.  This marginal generator sets the 

energy market price for that segment of the dispatch curve, and all plants operating 

beneath the marginal generator will realize a profit because the energy market price is 

greater than their variable costs.  For a single segment of the dispatch curve in one 

season, energy market revenues are calculated by multiplying power plant group 

generation by the length of the segment and by the number of hours in that season.  This 

is repeated for every segment in all three seasons to determine annual revenues from the 

energy market 

 

𝐺𝑖,𝑆 = �(𝐶𝑖,𝑡 × 𝐻𝑆 × 𝐿𝑡)
𝑡∈𝑆

 

𝑅𝑖,𝑆 = �(𝐶𝑖,𝑡 × 𝐻𝑆 × 𝐿𝑡 × 𝑃𝑡)
𝑡∈𝑆

 

𝑅𝑖,𝑇𝑜𝑡𝑎𝑙 = 𝑅𝑖,𝑠𝑢𝑚𝑚𝑒𝑟 + 𝑅𝑖,𝑤𝑖𝑛𝑡𝑒𝑟 + 𝑅𝑖,𝑜𝑓𝑓𝑝𝑒𝑎𝑘 

Where: 

 𝐺𝑖,𝑆 R = generation of power plant i in season S (MWh) 

 𝐶𝑖,𝑡 = dispatched capacity of power plant i in segment t (MW) 
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 𝐻𝑆 = hours in season S 

 𝐿𝑡 = length of dispatch segment t (% season) 

 𝑅𝑖,𝑆 = energy market revenue for power plant i in season S ($) 

 𝑃𝑡 = energy market price in dispatch curve segment t ($/MWh) 

  

 The marginal power plant group that sets price in each segment of the dispatch 

curve does not generate energy uniformly throughout the segment like the plant group 

beneath it in the merit order.  To obtain a value of C for the marginal power plant, 

ORCED takes the average of the dispatched capacity across segment t of the dispatch 

curve.  If the dispatch curve segment represents the fraction from 45% to 50% of the 

season, and the power levels at those fractions of the season were 600 MW and 500 MW 

respectively, then the marginal plant’s dispatched capacity in that segment would equal 

550 MW. 

 Energy market revenues realized by wind plants cannot be determined within 

ORCED because wind generation is pulled out of supply before the dispatch routine.  For 

the six model runs, two dispatch regimes for each of the three installed wind capacity 

levels, data on hourly loads from the Demand module and seasonal price data by power 

level from the Dispatch module are used to calculate revenues to wind generators.  The 

net load for each hour is matched to the corresponding energy price at that power level 

for the appropriate season the hour falls in.  Wind plants have a variable cost of zero, and 

act as price takers in the market.  Taking the extra step to calculate wind revenues outside 

of ORCED is beneficial in general, as it allows the user to observe the prevailing market 

price at every hour of the year which would be otherwise impossible. 
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 With hourly energy market prices in hand, the price and total wind generation for 

each hour are simply multiplied to arrive at hourly energy market revenue.  If necessary, 

this step can be taken for any of the individual wind plants, though this study focuses 

only on the entire cohort of wind plants in New England.  Total wind plant revenue is the 

sum of energy market revenues and subsidies for generation from renewable energy, 

which come in the form of Renewable Energy Credits (RECs) and the federal renewable 

energy production tax credit.  RECs are market-based, representing the environmental 

benefit of producing a MW of energy from renewable sources.  This study assumes a 

REC price of $40/MWh.  The production tax credit, pegged at 2.3 ₵/𝑘𝑊ℎ for wind 

plants, is available for the first 10 years of operation.  Because the amount of installed 

wind capacity that would not qualify for the production tax credit in 2020 is very small, 

that capacity built before 2010, it is assumed that every MW of electricity generated by 

wind plants receives the subsidy.  

 

𝑊𝑅ℎ = (𝑃ℎ + 𝑅𝐸𝐶 + 𝑃𝑇𝐶) × 𝐺ℎ 

Where: 

 𝑊𝑅ℎ = aggregate wind revenue in hour h ($) 

 𝑃ℎ = energy market price in hour h ($/MW) 

 𝑅𝐸𝐶 = renewable energy credit price ($/MWh) 

 𝑃𝑇𝐶 = production tax credit benefit ($/MWh) 

 𝐺ℎ = aggregate wind energy generation in hour h (MW) 
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4.4.5 Environmental Costs 

ORCED calculates environmental costs in terms of carbon dioxide (CO2), sulfur dioxide 

(SO2), and nitrogen oxide (NOX) emissions.  Power plant emissions are a function of 

generation amounts, fuel inputs, plant efficiency, and emission mitigation factors – such 

as NOX catalytic reduction equipment and flu scrubbers.  Energy from coal, natural gas, 

biomass, uranium, residual oil, and other sources of fuel for power plants emit different 

levels of pollutants.  To calculate primary energy usage for each plant, measured in 

millions of British thermal units (mmBtu), total annual generation is multiplied by a 

measure of power plant efficiency, the heat rate (Btu/kWh). 

 CO2 emissions depend solely on the carbon content of the various fossil fuels.  

The fuel source CO2 emission rate, measured in kilograms of carbon per mmBtu (kg 

C/mmBtu), is multiplied by a power plant’s primary energy usage to determine annual 

plant CO2 output.  Unlike CO2, SO2 and NOX emission levels are determined by plant 

specific factors that can reduce the amount of pollutant emitted.  The EPA regulates 

power plant emissions of SO2 and NOX, so there is detailed data on the types of 

combustion controls and mitigating technologies employed at each power plant in New 

England.  SO2 is produced almost exclusively by coal plants, but NOX is emitted by all 

fuel sources during combustion.   

ORCED allows the user to specify the price per ton of emitting the three 

pollutants.  However, since this study focuses only on how implementing DNE dispatch 

limits impacts the level of annual emissions realized in the various scenarios, default 

emission input prices from NEMS are used to calculate power plant variable cost.  
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CHAPTER 5 

RESULTS 

 

5.1 Overview 

This study sought to first calculate the change in wind plant generation that will be 

realized when moving from a system in which wind plants self-schedule their generation 

to a system in which dispatch is characterized by DNE limits.  Total wind generation was 

found to decline by 6.47% in the study year after DNE limits were imposed.  The second 

objective was to quantify the effects that change in wind generation will have on market 

outcomes: generation from non-wind power plants, energy market prices, power plant 

revenue, and emission levels.  Results showed that the small reduction in wind generation 

due to DNE limits had muted effects on corresponding market outcomes. 

Three levels of installed wind capacity are modeled in the study.  The level of 

installed wind capacity in the Low scenario is equal to the sum of wind plant capacity 

from currently operational wind plants and proposed wind plants in the ISO New 

England interconnection queue as of January 1st, 2013.  Installed wind capacity increases 

from scenario to scenario linearly.  That is, the installed wind capacity in the Low level is 

increased by 100% to arrive at the level of installed wind capacity in the Medium 

scenario, and 200% to arrive at the level of installed wind capacity in the High scenario.  

Defining installed wind capacity in this way allows the identification of any non-linear 

effects of dispatch regime change on the market outcomes outlined in the second 

objective. 
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A total of six simulations form the basis of this study; DNE dispatch and no-DNE 

self-scheduled dispatch regimes run for each of the three installed wind capacity 

scenarios.  ORCED was used to run the six simulations of power plant dispatch for New 

England wholesale electricity markets for the study year 2020 and generate results on 

market outcomes.  Results tables for the six simulations can be found in the Appendix. 

 

5.2 Wind Plant Generation 

Under DNE limit dispatch, wind plant production is constrained frequently by small 

amounts.  DNE limits are found to be binding in 28.47% of the season, but often by less 

than 2% of plant nameplate capacity.  Figure 13 shows the cumulative frequency of DNE 

constrained events, which are measured by the amount of wind energy avoided as a 

percentage of nameplate capacity in order to standardize measurements across different 

sized plants. 

 

Figure 13.  Wind energy avoided as percent of plant nameplate capacity in periods 

where DNE limit is binding 
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In a large number of constrained events the wind energy avoided is at levels less than 2% 

of plant nameplate capacity, and in over 90% of constrained events the wind energy 

avoided is under 10% of plant nameplate capacity.  Only in 3.3% of DNE constrained 

events do curtailments exceed 15% of plant nameplate capacity.  

Because the modeled wind levels are linear increases of the installed capacity in 

the Low scenario, the change in wind generation realized by moving from no-DNE self-

scheduled wind dispatch to DNE limit dispatch remains the same in all three installed 

wind scenarios.  For the Low, Medium, and High wind scenarios, Table 5 shows the 

effect of implementing DNE limit dispatch on wind generation. 

Table 5.  Change in aggregate wind plant generation under DNE limit dispatch 

 

Percentage changes for annual results are from the weighted averages of the three 

seasons weighted by the length of the season and seasonal wind plant generation.  The 

comparatively high generation from wind plants in the winter and offpeak seasons, 
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although both seasons are shorter than the summer season, will contribute more to the 

annual average because of higher absolute amounts of generation.  Further, the changes 

in wind generation listed for peak hours should be only be compared to the average of the 

respective season in order to understand how generation is affected in peak hour periods 

relative to the rest of season.  

 Wind plant generation decreased by 6.47% over the course of the study year after 

DNE limit dispatch implementation.  A slightly higher percentage of summer wind 

generation is avoided compared to the yearly average, while the percentage of winter 

wind generation lost to DNE limits is a little less than the yearly average.  DNE limits 

have a greater limiting effect on wind generation at times when wind speeds are ramping 

up. Wind speeds, and as an extension wind generation, are characterized by more 

pronounced up-ramping events in the summer, while average wind speeds are more 

consistent in the winter. 

 During the winter season, wind generation avoided under DNE limit dispatch 

occurs disproportionately in the peak load hours when wholesale energy prices are the 

highest.  This is because the peak load hours in the winter coincide with the time that 

wind speeds ramp up the most.  In the summer peak hours, the change in wind generation 

after DNE limit dispatch implementation is essentially the same as that observed for the 

summer average.  This result is expected given that more wind generation is avoided 

under DNE limit dispatch in periods when wind generation is increasing. 

 

 

 



60 

5.3 Non-Wind Plant Generation 

For each power plant group the total annual electricity generation was calculated, as well 

as the percent of the year that the power plant acted as the wholesale energy price setter 

by being the last plant dispatched.  When a power plant in the merit-order sets the 

wholesale energy price by meeting the last MW of demand in a time period, it is referred 

to as being ‘on the margin’ or the marginal generator.  The wholesale market price is 

directly impacted by the amount of time in a given year certain power plant types are on 

the margin.  If power plants with higher variable electricity production costs are on the 

margin more frequently, such as unscrubbed coal plants or oil plants, wholesale prices 

will be higher on average.  In this section both of these metrics are evaluated for all 

power plants other than wind plants, and in the following section wholesale electricity 

prices are evaluated. 

 Several power plants generate the same amount of electricity across all of the 

model runs. That is, no change in dispatch regime or increase in wind capacity impacts 

their operation.  Generation from wind capacity additions will displace inefficient and 

polluting fossil fuel plants before any other generator.  Nuclear power plants have such 

low variable costs, $10/MWh to $12/MWh, that they are nearly guaranteed to run at full 

capacity most of the year.  Once a nuclear power plant starts up it only shuts down to 

refuel, which occurs once every 18-24 months.  Similarly, hydroelectric and pumped 

storage plants do not realize changes in generation at increasing installed wind capacity 

levels due to their low fuel costs.  ORCED dispatches hydroelectric and pumped storage 

plants under the assumption that they will generate electricity during those periods in 

which demand, and wholesale energy prices, is highest.  Other power plants in the study 
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are classified as “must-run” plants. Must-run plants are always on, often because they 

function as combined heat and power plants.   

Results show that oil fueled steam turbine power plants produce at full generation 

in all model runs as well.  Given the nature of oil as a peaking fuel this may seem 

surprising at first glance, but there is a logical explanation.  Not only is a large portion of 

oil steam turbine power plant capacity represented by a single must-run plant, but oil 

steam turbine power plants are typically called upon during the summer peak hours when 

wind generation is virtually non-existent.  During these peak summer hours, inefficient 

coal and gas-fired combustion turbine power plants, having higher variable costs, are 

displaced by increases in wind generation before oil fired steam turbine plants. 

Interestingly, in the High installed wind capacity scenario, nuclear power plants 

begin setting the energy market price for a portion of the year.  During the hours in which 

nuclear power plants are generating on the margin, wind plant electricity generation is 

high enough to drive all fossil fueled plants, even combined cycle gas plants, out of the 

market.  These periods occur during the winter, most likely overnight, when load demand 

is low and wind speeds are peaking. 

At each level of installed wind capacity, the decrease in wind generation caused 

by DNE dispatch implementation is offset by generation increases from coal, natural gas, 

municipal solid waste, and biomass plants.  However, the share of electricity generation 

provided by these four types of plants to offset the loss in wind generation is not 

consistent across installed wind capacity levels.  Capacity factors, which represent power 

plant generation relative to maximum capability, indicate how frequently power plants 

are called upon by the grid operator.  If a certain power plant type exhibits non-constant 
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changes in capacity factors from one installed wind capacity level to the next, it points to 

a disproportionate change in generation.   

Due to generation from wind plants in the Medium scenario, coal plants not 

equipped with flu scrubbers realize a 66% reduction in generation over the Low wind 

capacity scenario, with a corresponding capacity factor decline.  Moving from the 

Medium to High installed wind capacity level, these “dirty” coal plants realize a further 

50% reduction in generation to 16% of their generation in the Low installed wind 

scenario.  Coal plants fitted with flu scrubbing equipment, or “clean” coal plants, 

experience linear reductions in generation as wind capacity increases, indicated by the 

constant 7% decrease in capacity factor observed in successive installed wind capacity 

scenarios. 

New England relies heavily on natural gas, which as a fuel source supplies 50% 

of electricity in the region under current conditions.  Increased wind generation displaces 

more MW of natural gas than any other fuel source, but natural gas actually sets the 

market price more often at higher wind capacity levels.  For power plants, trends in 

generation do not have to coincide with trends in the time spent on the margin.  The 

capacity of natural gas plants in New England is so high that even when wind is 

displacing a portion of natural gas in a given hour, there is almost too much for wind 

generation to offset.  Only in the High wind scenario do there start to be hours in which 

enough wind generation is coming on the system to supplant all natural gas, indicated by 

nuclear plants occupying time as the price setting marginal plants.  In reality, nuclear 

plants cannot easily reduce their electricity generation to follow load as the  marginal 
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generator, so generation from wind plants would be curtailed before nuclear plants were 

called upon to reduce electricity production. 

In the Low scenario, under self-scheduled wind dispatch, combined cycle gas 

plants generate 46.71% of the energy for the region, and set prices as the marginal 

generator almost 75% of the year.  As installed wind capacity levels increase from the 

Low scenario to the Medium scenario, natural gas fueled plants set prices in 76.55% and 

83.67% of the season respectively – a 7.1% rise.  This despite a decline in generation by 

9,000 GW.  Scrubbed coal plants almost double the time they spend on the margin – from 

4.92% to 9.14%. 

Natural gas and scrubbed coal plants have the lowest variable cost of all these 

groups, so they get dispatched first.  Biomass and municipal solid waste plants have 

slightly higher variable generation costs, and unscrubbed coal plants offer into the market 

higher still because of SO2 emission costs.  During the winter, when peak loads are lower 

than the summer, wind plant generation is high enough throughout the season to ensure 

that only natural gas and scrubbed coal power plants are on the margin.  Natural gas and 

scrubbed coal plants therefore realize lower levels of generation like all other non-wind 

plants, but they set prices more frequently. 

Moving from the Medium to High installed wind capacity scenario something 

slightly different happens.  There is again an increase in the time natural gas plants spend 

on the margin, rising to 87.77% of the year, but scrubbed coal plants spend nearly a third 

less time as marginal generator, falling to 6.78% of the year.  In this case, wind 

generation forces scrubbed coal off the margin in the winter, like it did to unscrubbed 
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coal and biomass previously, leaving the stack of combined cycle plants to occupy the 

margin almost exclusively.   

There is an exception to this in short periods when wind generation at its 

strongest.  Occasionally, there is so much cheap electricity coming onto the grid that all 

the generation from combined cycle natural gas plants is rendered unnecessary, resulting 

in nuclear power plants setting the wholesale energy price.  As mentioned in the 

beginning of this section, nuclear power for the first time operates on the margin, 1.29% 

of the year, during those periods in which wind generation is high enough to reduce net 

load levels below nuclear capacity. 

Across installed wind capacity scenarios, changes in generation and marginal 

supply for the two dispatch regimes are comparable.  The one significant exception 

occurs in the Medium installed wind capacity scenario.  Moving from self-scheduled 

wind plant dispatch to DNE limit dispatch in the Medium scenario, the time scrubbed 

coal plants spend on the margin falls by 2.25%.  This is a large difference compared to 

the change within the Low scenario (-0.6%) and the High scenario (0.5%).  The deviation 

is an interesting result that can be explained by two competing forces.  First, the small 

increase in time that unscrubbed coal plants spend on the margin in the DNE dispatch 

limit case may offset the decrease realized by scrubbed coal somewhat.  Under DNE 

dispatch limits wind generation is reduced from self-scheduled levels.  Logically, when 

generation from wind plants decreases net load increases, and more capacity must be 

dispatched from more expensive generators to meet load.  Unscrubbed coal has slightly 

higher variable costs than scrubbed coal, so when scrubbed coal is on the margin and 

wind generation falls, unscrubbed coal is the first to come online.   
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The less intuitive reason for the sharp decline is the reduction in wind generation 

variability that DNE dispatch ushers in.  Natural gas plants spend an additional 1.5% of 

the year on the margin under DNE limit dispatch in the Medium scenario, which at first 

glance goes against the dispatch logic just described between scrubbed and unscrubbed 

coal plants.  Although natural gas plants have lower variable costs than coal, they manage 

to capture time on the margin from coal during periods when net load is increasing.  

Since the DNE limits are based on moving averages, the level of wind generation is 

reduced but variability is reduced and the wind production curve becomes smooth.  It is 

likely that during the winter and offpeak seasons, the slight change in wind production 

brought about by implementing DNE dispatch limits is at just the right level to 

consistently deny scrubbed coal plants hours on the margin.  

 

5.4 Wholesale Energy Price 

 In Table 6, the second row contains the percent price change observed when 

moving to DNE limit dispatch holding installed wind capacity level constant, and the 

third row indicates the percent price change from the previous installed wind capacity 

level holding dispatch regime constant. 

As expected, moving to a dispatch regime using DNE limits results in price 

increases on average.  When there is less generation from wind plants resulting from 

DNE limits, more generation from power plants with non-zero variable energy costs are 

required to meet the increase in net load.  The effect on annual average price increases 

becomes more pronounced at successively higher levels of installed wind capacity, as the 

amount of MW lost to DNE limits rises in absolute terms. 
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Table 6.  Simulated energy market prices 

 

 During the summer season, the average and peak wholesale energy prices increase 

somewhat after implementing DNE limits.  However, the increases are economically 

insignificant and likely caused by the peculiarities of the ORCED dispatch routine related 

to probabilistic plants and hydroelectric calculations.  Because wind plants generate such 

a low amount of electricity in the summer, implementing DNE limit dispatch has almost 

no effect on summer prices until installed wind capacity levels are at their highest. 

 Looking at the percent change in peak and average summer prices across installed 

wind capacity scenarios holding dispatch constant, when moving to the Medium scenario 

from the Low scenario the effect on prices during peak hour is greater than in all hours.  

In moving from the medium to high installed wind capacity scenario that trend is 

reversed.  Installed wind capacity increases meaningfully impact peak wholesale prices, 

in both the summer and the winter, before average wholesale prices due to the steepness 
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of the supply curve is at higher power levels.  Only small amounts of generation can have 

the effect of forcing a generator off the margin that is twice as high as the next most 

expensive power plant. 

 

Figure 14.  New England marginal supply curve – Medium-DNE scenario 2020 

 Average wholesale energy prices are impacted more in the winter and offpeak 

seasons when generation from wind plants is at a maximum.  The average annual, 

summer, and winter wholesale energy prices decrease at an increasing rate at higher 

levels of wind capacity, holding the dispatch regime constant.  This same phenomenon 

does not occur in the offpeak season, nor is it observed during the peak hours in any 

season.  As discussed previously, wholesale energy prices are at their most sensitive to 

changes in generation during the peaks hours when expensive plants are on the margin.  

During offpeak hours, it takes more wind generation to impact the already low wholesale 

energy prices.  The price-setting marginal power plant would be on the flat part of the 

marginal supply curve, and so price is less sensitive to changes in generation. 

Wholesale energy prices increase after the implementation of DNE limit dispatch, 

and they do so to a greater degree at successive levels of installed wind capacity.  The 

offpeak season is the only part of the year that does not follow this trend.  Within the 
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Medium scenario during the offpeak season, the power plants forced off the margin by 

wind generation under no DNE limits likely have similar variable costs to those plants 

that take their place on the margin when DNE limits are implemented.  For instance, in 

the offpeak season wind generation could be pushing more expensive coal plants off the 

margin to the benefit of combined cycle gas plants at the Low scenario, while in the 

Medium scenario, wind generation could be forcing combined cycle plants off the margin 

to the benefit of slightly cheaper combined cycle plants. 

 

5.5 Wind Plant Revenue 

Wind plants receive revenue from sales of electricity in the energy market and through 

subsidies tied to their generation.  REC prices in New England are currently trading at 

their cap of $65/MWh. This study assumes a lower REC price of $40/MWh for 2020, 

since it is unlikely that prices will remain at the maximum level as more qualified 

renewable energy projects come online and begin selling RECs.  After accounting for the 

production tax credit, wind plants receive a total subsidy of $63/MWh of generation.   

With subsidy per MW of electricity roughly 50% higher than the wholesale 

energy market price, wind plants realize far higher revenues outside the energy market.  

Subsidizing generation in this way alters the production decision of wind plants, 

effectively incentivizing them to produce electricity even when wholesale energy prices 

are negative.  This is not a problem in New England at the levels of installed wind 

capacity examined in the study, but negative prices would probably be seen at capacity 

levels slightly above the High scenario. 
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 Trends observed in wind plant revenues from the energy market follow from 

patterns in wind generation and wholesale energy price previously discussed.  Whereas 

wholesale prices respond to DNE dispatch implementation by decreasing more at 

successive wind levels, revenues increase at a slower rate compared to the preceding 

installed wind capacity level.  As average wholesale prices rise disproportionately, 

revenues fall by similar proportions. 

 On average, wind plants earn 12.5% of their summer season revenue during peak 

hours, and only 6.8% of their winter hours during peaks.  In the summer it’s most likely a 

case of small amounts of wind generation profiting from very high energy prices.  In the 

winter, wind plants earn the most money when the volume of their generation is highest 

throughout the night and morning hours, despite low energy prices in those periods. 

  

5.6 Emissions 

 Emissions are measured in thousands of tons, or kTons.  For every 3.2 GW of 

wind capacity added to the grid, emissions of CO2, SO2, and NOX are reduced by about 

5,000 kTons, 6.6 kTons, and 1.5 kTons respectively.  All changes in emissions are driven 

by shifts in generation by coal, gas, and to a lesser extent, biomass fueled power plants.  

Holding dispatch regime constant, CO2 reductions pick up pace slightly when moving 

from the Medium to High scenario, while SO2 and NOX emission reductions slow down.  

This discrepancy is driven by unscrubbed coal plants and combustion turbine oil plants 

seeing the sharpest decline in generation occur when the installed wind capacity is 

increased to the Medium scenario from the Low scenario.  Overall, installing more wind 
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capacity will have a greater downward effect on the percentage of CO2 emitted, 17% 

average, relative to SO2 and NOX, 10% average. 

 Changing wind dispatch regimes from self-scheduled generation to DNE limit 

dispatch reduces wind generation, which increases output and pollution from fossil fuel 

generators.  Moving to DNE limit dispatch has small effects on SO2 and NOX emissions, 

increasing them by 2.1% and 1.7% respectively at the highest wind capacity level.  The 

increase in NOX emissions caused by switching to DNE dispatch rises more when 

moving from the Medium to High installed capacity scenario.  This can be explained by a 

proportionately greater decrease in combined cycle gas plant generation.  The opposite 

holds true for SO2, with a larger drop in emissions occurring when installed wind 

capacity levels increase from the Low to Medium scenario.  Again, the quick decline in 

production from coal plants that occurs at the Medium installed wind capacity level is the 

driving influence. 
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CHAPTER 6 

DISCUSSION, EXTENSIONS, AND CONCLUSION 

 

6.1 Discussion 

Electricity generation by wind plants is going to expand rapidly as a share of total 

electricity generation in the next decade.  To manage the influx of generation from wind 

plants in New England, these plants will be dispatched according to DNE limits 

beginning in 2015.  This study adds to the understanding of how implementing DNE 

limit dispatch will impact wind plants specifically and the wholesale energy market in 

general.   

Findings show that DNE limit dispatch will reduce wind generation by 6.47% 

compared to the current self-scheduled wind plant dispatch regime.  That reduction in 

production from wind equals 700 MW, 1400 MW, and 2100 MW in the Low, Medium, 

and High wind scenarios respectively.  Although the share of summer wind generation 

avoided was higher than the average for the year, and the percentage of winter wind 

generation avoided was lower than the average for the year, in absolute terms more 

generation was lost in the winter and offpeak seasons.  

In the winter a proportionately greater share of wind generation is lost during 

peak demand hours than in the season at-large.  This phenomenon is likely driven by 

exaggerated periods of upward wind speed ramping during winter peak demand hours.  It 

also indicates that wholesale prices in the winter will increase proportionately more 

during peak hours than the non-peak hours. 
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The key assumption made here is that of no wind curtailment caused by 

transmission constraints or wind forecast uncertainty in either dispatch regime.  Making 

this assumption overestimates the reduction in wind generation post-DNE limit dispatch 

if wind plants are not generating energy under the no-DNE self-scheduled dispatch 

regime at the maximum level that the physical availability of wind will permit.  It is 

possible that under DNE limit dispatch certain wind plants might in fact produce more 

electricity depending on how severe they are being curtailed and how effective DNE 

limits are at alleviating issues leading to said curtailment.   

It is possible that those DNE-constrained events that are very small as a 

percentage of plant nameplate capacity, which comprise the majority of occurrences, are 

just the kind of curtailment events that will be mitigated by having DNE dispatch limits 

in place.  For policy governing the dispatch of wind plants, the implication is that DNE 

limits will negatively impact wind generators ability to produce electricity by a very 

small amount at worst. 

 This study also sought to quantify the effects that a change in dispatch regime 

would have on non-wind power plant generation, wholesale energy prices, and emissions.  

To calculate these market outcomes, the New England wholesale electricity market was 

modeled as a single priced market using the ORCED model.  Wind plant generation 

estimates for the year 2020 under both dispatch regimes were fed into ORCED, and the 

competitive dispatch of power plants to meet annual load demand was simulated for the 

six scenarios. Effects on power plant generation, wholesale energy prices, and emissions 

levels after implementation were found to be unsubstantial. 
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Adding more installed wind capacity to the system shifts the supply curve to the 

right, but the extent of the supply curve shift depends on the amount of wind available in 

each hour of the year.  Even at low installed wind capacity levels, implementing DNE 

dispatch will have a  pronounced effect on marginal generators and wholesale energy 

prices during high demand hours, as peaking plants are required in far fewer periods.  

Data on wholesale energy prices post-DNE implementation supports this.  After DNE 

limit dispatch is implemented in the Low scenario and generation from wind plants falls, 

wholesale prices increase more during the winter peak hours than they do on average. In 

the Medium and High scenarios, post-DNE dispatch implementation there is not a similar 

increase in wholesale energy prices during peak hours.  Baseload generation begins to be 

impacted at higher installed wind capacity levels as wind generation reaches a critical 

mass that enables it to force combined cycle gas plants off the margin as price setting 

units.   

Wholesale prices during the summer are unaffected by implementing DNE limit 

dispatch at the Low and Medium wind scenarios.  At the highest level of installed wind 

capacity small effects are seen on summer prices - reflecting the fact that wind generation 

will contribute little to reducing summer net demand and, as an extension, wholesale 

prices in the summer, until wind energy has a significant presence in the region. 

 Estimating levels of wind generation in 2020 under no-DNE self-scheduled wind 

dispatch and DNE limit dispatch has shown that a substantial amount of wind generation 

is avoided when implementing DNE limits.  However, the caveat is that these findings 

rest upon the unrealistic assumption that no wind is curtailed under the self-scheduled 

dispatch regime, and thus are likely an overestimate of the actual reductions that can be 
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expected.  Results indicate that the effects of DNE dispatch implementation on wholesale 

energy prices and emissions are small relative to the associated reductions in wind 

generation.  Interestingly, because of the shape of the supply curve, and the hourly and 

seasonal deviations in average wind speeds, the effects on these market outcomes are 

inconsistent for linear increases in installed wind capacity.  Extensions to this study are 

discussed in the next section, and the chapter concludes with a comment on the successes 

and limitations of this research.  

 

6.2 Extensions  

More research is needed to understand the effect that integrating wind energy, as well as 

other renewable resources, will have on wholesale electricity markets.  The methods 

developed through this research were conceived as a precursor to more in-depth studies 

regionally.  Assuming no wind plant curtailment under a self-scheduled dispatch regime 

is tenuous at best.  Relaxing that assumption and investigating the impacts of curtailment 

in particular areas of the grid is the logical next step of future research. 

 Wind plants, in New England and beyond, are often connected to parts of the grid 

far from concentrations of customers where the transmission infrastructure was not 

designed to accommodate large generation assets.  These weaker parts of the grid are 

joined to the rest of the system over low voltage transmission lines, typically 115 

kilovolts, which have a propensity to get overloaded under high wind generation.  

Whether it be motivated by the existence of government subsidies or simply a lack of due 

diligence in the planning process, potential losses from curtailment have been overlooked 

by wind plant owners.  Whatever the cause, state renewable portfolio standard targets 
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guarantee that thousands of MW of wind capacity will be added to the grid in coming 

years.  That generation needs to be integrated intelligently to fully capture the beneficial 

effects wind power has on wholesale price and emissions reductions. 

 The next phase of research will focus on two issues: first, how effective DNE 

limit dispatch is at reducing wind curtailments, and second, identifying areas in which 

upgrades to the transmission system would be most economically efficient.  At this time 

there are no data on wind plant curtailments in New England, but that is poised to change 

by year end.  Once the centralized wind forecasting system being implemented by ISO 

New England is fully operational, scheduled for the second half of 2013, data on 

curtailments will start to be collected for the first time. 

This study focused on what implementing DNE dispatch would do to wind 

generation in a controlled environment where self-scheduled wind plants are 

unconstrained.  It is the counterfactual to the future study in which curtailment data are 

made available.  By the second half of 2014, with one year of curtailment data collected, 

the model used in this study could be updated to show the effect of DNE limit dispatch 

implementation on constrained wind generation.  The results would likely be different, 

given that the reduction in curtailments attributed to implementing DNE limit dispatch 

may offset the 6.47% decline in wind generation found here. 

Understanding how effective DNE limit dispatch is at reducing curtailments is 

essential to quantifying the economic benefit of transmission system expansions.  

Transmission projects are expensive and have long lead times to completion.  Even if the 

money was available to build the necessary high-voltage lines to connect all future wind 

projects, they would not get done quickly.  Stakeholders faced with limited funds, 
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including ratepayers, need to decide what lines to upgrade first.  Introducing curtailment 

assumptions to the model provides the accurate context to identify marginal benefits from 

upgrading parts of the transmission system. 

A touted benefit of DNE limit dispatch is that wind plants will be more apt to 

participate in the day-ahead energy market in New England.  The day-ahead market acts 

as hedge against volatility in the real-time market and acts as the starting point for next-

day generation commitment.  Wind resources have historically avoided participating 

because it was difficult to predict what their next day generation would be, leaving them 

vulnerable to wind volatility if they made commitments in the day-ahead market.  With 

the centralized forecasting system and DNE dispatch, wind plants will have access to the 

information on future generation that will enable them to participate. Although it is 

beyond the capabilities of ORCED, it would be useful to estimate the potential benefit to 

wind plants realized by committing generation in the day-ahead market.  The financial 

benefit associated with participation in the day-ahead market is an additional component 

to consider when calculating the total effect on wind plant revenue. 

 

6.3 Conclusion 

This study was conducted to quantify the amount of wind plant generation that would be 

lost after the planned implementation of DNE dispatch limits in New England, and to 

calculate the effects of that decrease on power plant generation, wholesale energy prices, 

power plant revenue, and emissions levels.  Evaluating the transition to DNE limit 

dispatch was conducted at three levels of installed wind capacity.  This was done in order 

to determine if the changes brought on by DNE limit implementation to power plant 
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generation, wholesale energy prices, power plant revenue, and emissions levels respond 

non-linearly to increased wind generation. 

As one of the few studies on DNE limit dispatch, the findings from this research 

offer a valuable point of comparison for subsequent inquiries.  The methods and model 

design employed here will be applicable to future studies when data on curtailments 

becomes available. 

Results show that imposing DNE dispatch limits reduce total wind generation by 

a small amount – 6.47% over the course of the study year.  Considering that the study 

assumes no wind curtailment due to transmission constraints or wind forecast uncertainty, 

6.47% is the maximum reduction that would be witnessed under otherwise ideal market 

conditions for wind generators.  The study finds that DNE dispatch limits constrain wind 

generation often – 28.4% of the year on average – but that the levels of wind generation 

avoided were typically small – 72.4% of DNE limit curtailment events were below 5% of 

plant nameplate capacity. 

DNE limit dispatch is a necessary step forward in integrating intermittent 

renewable resources into the New England electricity markets.  The potential 

disadvantage to wind plants in terms of lost revenue during DNE-constrained periods is 

shown to be small even under the most conservative estimate.  Further research efforts 

should consider the effectiveness of DNE limit dispatch on reducing curtailments to 

develop a more accurate picture of what wind plants in New England, and the grid at 

large, stand to gain from the new dispatch regime. 
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APPENDIX 

SUMMARY DATA TABLES 

 
 

A1. WIND PLANT GENERATION 
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A2. POWER PLANT GENERATION AND MARGINAL PRODUCTION 
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A3. WHOLESALE ENERGY PRICE 
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A4. ENERGY MARKET REVENUE – WIND PLANTS 
 
 

 
 
 
 

 
A5. SUBSIDY REVENUE TO WIND PLANTS FROM RECs AND PTC (M$) 
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A6. ENERGY MARKET REVENUE – ALL PLANTS 
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A7. EMISSIONS - PLANT TYPE 
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A8. EMISSIONS - FUEL TYPE 
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A8. FUEL PRICES AND POLUTANT CONTENT 
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