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The ~2 km-thick Late Triassic Sugarloaf Arkose is the basal unit of the half-

graben Deerfield basin, Massachusetts.  Valley-river, piedmont-river, and alluvial-fan 

depositional facies within the arkose are defined by paleocurrent data and style of 

sedimentation.  The valley rivers flowed from northeast to southwest, and the facies is 

present from the bottom to the top of the formation.  Piedmont rivers built a megafan 

eastward into the basin, beginning about in the middle of the arkose.  The local alluvial-

fan built from east to west in the upper third of the formation. 

The petrology of the medium sand and conglomerate was used to delineate the 

source areas for each facies.  The medium sand in the valley rivers is mostly granite and 

granite gneiss fragments, coarsely-polycrystalline quartz grains, and twinned plagioclase.  

This assemblage is a mixture of granite from continental basement uplift, granite gneiss 
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from a dissected magmatic arc, and phyllites and schist from a recycled collision orogen.  

The medium sand in the piedmont-river facies lacks granite fragments, and untwinned 

plagioclase is more abundant than twinned: the provenance is continental basement uplift 

and recycled collision orogen.  The alluvial-fan provenance is similar to the valley rivers, 

combining recycled collision orogen and dissected magmatic arc.  Unlike the valley 

rivers, granite gneiss and untwinned plagioclase in the alluvial fan are dominant over 

granite and twinned plagioclase.  Quartz provenance in the three facies was granite, 

trending to granite gneiss in the piedmont-river and alluvial-fan facies. 

In all facies, plagioclase feldspar is more common than K-feldspar in the medium 

sand.  The conglomerate pebbles, however, are dominated by K-feldspar, most likely due 

to erosion of pegmatites in the source terrane.  Gray quartzite, white and translucent 

varieties of quartz, and pink granitoid pebbles are also common. 

The post-depositional diagenesis of the Sugarloaf Arkose affects provenance 

determination.  Diagenetic events include: hematite grain coats, mechanical compaction, 

albitization of feldspars, albite and quartz overgrowths, authigenic hematite cement, 

carbonate cement, and illite replacement of feldspars. 

Within the dry-dominated monsoonal paleoclimate, each facies formed in 

response to tectonism.  The initial appearance of each facies is used to determine the 

timing of tectonic events.  The valley rivers flowed from the northeast in an early NNE-

SSW-trending ‘sag’ basin, associated with minor normal faulting.  The initial appearance 

of the east-flowing piedmont rivers about half way up the section implies an early, down 

to the west, basin-bounding normal fault, which formed perpendicular to N70E-S70E 

extension.  This fault propagated, and, on reaching the northeast corner of the basin, the 

v 
 



 

alluvial fan built to the west off the fault scarp.  The Amherst block is a relay ramp 

between basin-bounding faults in the Deerfield and Hartford basins.  Linkage of the two 

basin-bounding faults through the Amherst block created an integrated basin linking the 

Triassic strata in the early Hartford and Deerfield basins, and may have caused the 

unconformity present at the top of the arkose. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Objective 

 This thesis determines the petrology of sandstones and lithology of conglomerates 

in each of the three depositional facies of the Sugarloaf Arkose.  To help determine 

potential source terranes of the arkose the data are integrated with regional tectonism and 

lithology, extensional sedimentary basin and river processes, and weathering and 

diagenetic effects on petrology. 

1.2 Newark Supergroup 

 The early Mesozoic rift basins of the Newark supergroup along the Central 

Atlantic Margin (CAM) formed during the breakup of Pangea (Figure 1) (Froelich and 

Olsen, 1984; Luttrell, 1989).  Buried and exposed basins are located from off-shore 

Newfoundland to Florida (Olsen, 1997).  The basins filled with terrestrial strata and 

basalts as North America drifted northward at about 21oN paleolatitude during the Late 

Triassic to Early Jurassic (Olsen, 1997).  The exposed basins are typically half-grabens 

(Hibbard et al., 2006), although some are grabens (Hutchinson and Klitgord, 1988).   

 Rifting thinned the lithosphere sufficiently for extrusion of flood basalts of the 

Central Atlantic Magmatic Province (CAMP) (Marzoli et al., 2004).  The basalt flows in 

the basins north of the Culpeper basin of Virginia date at about 201 Ma and were 

extruded in approximately 600,000 years (Olsen, 1997).  The lavas covered an area of
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Figure 1.  Rift basins in eastern North America of the Newark supergroup, and related 

basins in North Africa.  CAM Basins modified from Olsen et al. (2000).  Diagonal lines 

indicate early Mesozoic latitude.  Crosses indicate modern latitude and longitude 

(unlabeled); north arrow in legend indicates present magnetic north for Deerfield basin. 
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10-11x106 km2 across the CAM (Rampino and Stothers, 1988; Marzoli et al., 1999; 

McHone, 2000; Schlische et al., 2002).  Traditionally, the CAMP event was thought to 

have preceded the mass extinctions at the Triassic-Jurassic boundary by as little as a few 

hundred thousand years (Courtillot, 1996; Pálfy et al., 2000).  Dunning and Hodych 

(1990) redefined the Triassic-Jurassic boundary using CAMP basalts; they also observed 

that the last terrestrial fossils of Triassic age are commonly found a few meters, perhaps 

as little as a few thousand years, below the oldest basalt in each basin (Olsen et al., 1990; 

Olsen, 1997).  However, recent correlation between marine and non-marine stratigraphic 

markers challenges the placement of the Triassic-Jurassic boundary before the oldest 

basalt units, and instead places the boundary after the first CAMP eruptions (Lucas and 

Tanner, 2007). 

 The proximity of the last Triassic-aged fossils to the CAMP event led to the 

suggestion that volcanic degassing was the primary cause of the extinction event 

(Courtillot, 1996; Cohen and Coe, 2002).  However, Tanner et al. (2001) found that CO2 

increase during the CAMP event was insufficient to cause the mass extinction.  In 

addition, marine and non-marine extinctions were not simultaneous, but began just before 

201 Ma (pre-CAMP) and continuing into the CAMP event (Lucas and Tanner, 2007).  

Olsen (1997) and Olsen et al. (2003) have also suggested that a bolide impact may have 

caused the climatic and biotic crisis. 

 The Deerfield basin of western Massachusetts formed in the Late Triassic, and 

filled with terrestrial sediments and flood basalt to at least the Early Jurassic (Figure 2) 

(Olsen, 1997).  Approximately 6-7 km of terrestrial strata and basalt flows are inferred to 

have filled the basin, though only 4 km are preserved (Pratt et al., 1988; Hubert and 
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Figure 2. A. Geologic map after Zen (1983), showing Deerfield basin stratigraphic units, 

normal faults, and structural blocks buried by Mesozoic strata.  Cross section X-X’ is 

Figure 3.  B. Locations of areas depicted in Figures 1A, 4, and 6.  S is Springfield, W is 

Worcester, G is Greenfield, and A is Amherst.  C. Distribution of continents during early 

Pangean break-up at ~200 Ma, with location of Deerfield basin. 
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Dutcher, 1999).  The basin is a half-graben bounded by the west-dipping, listric Eastern 

Border Fault (EBF) (Figure 3). 

 The Deerfield and Hartford basins are separated by the Amherst block, an inlier of 

Paleozoic basement down-faulted by the EBF (Willard, 1951; Balk, 1956).  The 

Sugarloaf Arkose thins across the block through Hatfield and Northampton, and thickens 

south of the Amherst block in Holyoke as the New Haven arkose (Chandler, 1978).  The 

Hartford basin is also a half-graben bound by the EBF, though locally a western border 

fault creates a graben (Zen, 1983).  The Deerfield and Hartford basins together comprise 

the Connecticut Valley basin. 

 Stratigraphically, the basins are similar: 1) Triassic fluvial arkose, 2) basalt flows 

near the Triassic-Jurassic boundary, and 3) early Jurassic lacustrine and playa strata and 

border-fault fanglomerates (Figure 4) (Wessel, 1969; Handy, 1977; Luttrell, 1989; Hubert 

and Reed, 1978; Olsen, 1997).  Notably absent in the Deerfield basin are the Hampden 

and Talcott basalts below and above the Holyoke basalt.  The Talcott thins northward in 

the Hartford basin, ending by erosion or non-deposition. 

 The Northfield basin is ~1.3 km north of the Deerfield basin, and is also bounded 

on the east by the EBF.  The basin comprises ~1000 m of Mt. Toby Conglomerate, 

thinning to the southwest by erosion to 0 m (Wessel, 1969; Zen, 1983).  The basin is 

truncated on the north by a WNW-ESE-striking, down to the SW normal fault that splays 

from the EBF (Figure 5).  A once continuous Northfield/Deerfield basin is implied by 

proximity and similar basin fills. 
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Figure 3. E-W transverse cross section of the Deerfield basin through Greenfield, after 

Zen, 1983.  Stratigraphic units are the same as Figure 1.  Dashed lines in pre-Triassic 

crystalline rocks are basement nappes and faults. 
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Figure 4. Stratigraphic columns of the Deerfield, Hartford, and Pomperaug basins 

compiled from Hubert et al. (1992), LeTourneau and Huber (2005), Olsen et al. (1992), 

Rogers et al. (1985), and Zen (1983).  The Granby tuff of the Hartford is ‘Jtb’ to avoid 

confusion with the Turners Falls Formation of the Deerfield basin. 
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Figure 5. Basement and structural features proximal to the Deerfield basin.  Regional 

extension during the Late Triassic to Early Jurassic was orthogonal to N20oE (Wise, 

1992).  Tectonic features deviate from this general trend at the Pelham Dome and the 

Belchertown Igneous Complex, pre-existing structures which created basement strength 

anisotropies. 
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The Pomperaug basin of western Connecticut is about 20 km west of the Hartford Basin; 

it filled with sediment and basalts similar to the Hartford basin (Rodgers, 1985).  

However, fluvial paleocurrents and sandstone petrology with eastern and western sources 

indicate they were isolated basins (Hubert et al., 1992; LeTourneau and Huber, 2007).  

The Deerfield, Hartford, Northfield, and Pomperaug basins share a common overall 

stratigraphic sequence, style and age (Figure 4). 

 Re-evaluation of fluvial paleocurrents in the Deerfield basin by Hubert et al. 

(2008) demonstrates that the Sugarloaf Arkose rivers not only flowed northeast to 

southwest, but also west to east.  The west-to-east pattern is present in the southern two-

thirds of the basin, at the same stratigraphic levels as the northeast-southwest flowing 

rivers in the northern third of the basin. 

 Apatite and zircon fission-track data date major normal motion on the EBF to 

Late Jurassic-Early Cretaceous time (Roden-Tice and Wintsch, 2002; 2007; Wintsch et 

al., 2003; Roden-Tice et al., 2008).  Similar late post-depositional tilting and half-graben 

formation was called upon by Faill (2003) in the southern Newark basins. 

 This thesis presents a tectono-sedimentary model that integrates sedimentary 

facies, paleocurrents, and sandstone petrology.  The paleocurrents and petrology 

determined the source areas for the arkose.  The timing of the early faulting is based on 

spatial and temporal changes in paleocurrents and sedimentary facies. 

1.3 Allogenic Controls and Geologic Setting 

 Before describing the Deerfield basin in detail, the tectonic and paleoclimatic 

allogenic controls on sedimentation must be addressed (Miall, 1996).  A third allogenic 

control is base-level, determined by the interplay of eustasy and tectonism; in a non-
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marine basin, however, eustasy is not a factor, and tectonic subsidence controls 

accommodation space (Miall, 1996; Boggs, 2006).  In addition to syn-depositional 

tectonism, the Paleozoic orogenies are discussed because orogenic events led to 

deposition and emplacement of the basement rocks, which are potential source terranes 

around the basin.  Also, Paleozoic deformations created basement anisotropies, the major 

controls on Mesozoic tectonism (Swanson, 1986; Wise, 1992; Wintsch et al., 2003).  

Pleistocene and Holocene cover are also described. 

 1.3.1 Pre-Mesozoic Basement 

 The basement rocks are Proterozoic and Paleozoic metamorphic and igneous 

rocks of the Connecticut Valley belt and Bronson Hill zone (Figure 5) (Zen, 1983).  East 

of the basin is the Bronson Hill anticlinorum (BHA) made of Upper Proterozoic to 

Ordovician rocks (Dry Hill Gneiss to Collinsville Formation) and Pennsylvanian 

intrusives (Pauchaug Gneiss; Robinson, 2003).  These rocks are unconformably overlain 

by Middle Ordovician volcanic rocks (Ammonoosuc volcanics) and black shales 

(Partridge Formation; Zen, 1983).  The BHA package is interpreted as a volcanic island 

arc (Bronson Hill arc), the eastern-most member of “medial New England” (Robinson et 

al., 1998).  This arc-terrane docked on the Laurentian margin in the Late Ordovician, 

generating the structural and metamorphic features of the Taconian orogeny (Robinson 

and Hall, 1979; Robinson, 2003). 

 West of the basin is the Connecticut Valley synclinorum (CVS), comprising rocks 

of Silurian (Clough Quartzite to Russel Mountain Formation) to Lower Devonian age 

(Littleton Formation to Putney Volcanics).  These metamorphic rocks were shallow-

water sediments and minor volcanics deposited in a back-arc basin in the Middle 
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Devonian, as the Avalon plate docked onto the margin of the amalgamated Laurentia and 

medial New England.  Although the rocks in the CVS were deposited east of the BHA, 

they now lie to the west.  The CVS rocks were evidently structurally emplaced over the 

BHA by nappe folding and thrust faulting to the west and subsequently eroded to expose 

the BHA (Thompson et al., 1968; Robinson et al., 1991; and Robinson, 2003). 

 Both the BHA and CVS were affected by the Acadian (410-385 Ma), Quaboagian 

(formerly Neo-Acadian; 370-350 Ma), and Northfieldian orogenies (305-285 Ma; 

Robinson and Hall, 1979; Robinson, 2003).  The Acadian orogeny involved an early 

nappe stage, where fold nappes transported CVS rocks undergoing regional 

metamorphism tens of kilometers westward (Robinson et al., 1991).  Later thrust nappes 

cut the earlier fold nappes, again moving rocks westward (Thompson, 1985; Robinson, 

2003). 

 During the Quaboagian and Northfieldian orogenies, backfolding and cataclasis 

occurred as the BHA was overturned to the east (Robinson and Hall, 1979; Robinson, 

2003).  This was followed by dome formation through density-driven upward movement 

of BHA gneisses through overlying rocks.  Mantled domes from these orogenic stages are 

responsible for the Pelham dome and Ordovician gneiss domes of the BHA, as well as the 

‘Vermont Line’ of domes along the suture of the Laurentian/medial New England margin 

and the BHA (Figure 5) (Robinson and Hall, 1979; Robinson, 2003). 

 Tectonic to post-tectonic gabbroic to granitic plutons were intruded beginning 

during the Acadian orogeny.  Among the earliest was the Ashuelot pluton of the Kinsman 

quartz monzodiorite of southern New Hampshire (Clark and Lyons, 1986; Lyons, 1997).  

The Belchertown igneous complex is a zoned, two-pyroxene quartz monzodiorite that 
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intruded BHA rocks southwest of the Pelham dome some time between the Acadian and 

Quaboagian orogenies (Zen, 1983; Robinson, 2003).  The last intrusive events occurred 

during the Northfieldian orogeny, when granitic pegmatites of the Warwick dome and 

Kempfield anticline intruded the BHA (Robinson, 2003).  All plutons were affected by 

regional metamorphism, and now typically display gneissic foliation. 

 The Late Permian Alleghanian orogeny (270-260 Ma) resulted from collision of 

Gondwana and the amalgamated Laurentian margin (Robinson et al., 1998; Robinson, 

2003).  In southern New England, Acadian to Quaboagian metamorphism west of the 

EBF was overprinted by Alleghanian metamorphism, whereas Northfieldian 

metamorphism east of the EBF was not overprinted. 

 1.3.2 Mesozoic Tectonism 

 Continental extension across the CAM began in the Middle Triassic, with 

increasing rates of extension in Late Triassic time (Olsen, 1997; Roden-Tice and 

Wintsch, 2002; Wintsch et al., 2003; Wise and Hubert, 2003).  Seismic studies in 

southern and central New England, New York, and New Jersey show crustal thinning is 

closely linked to and most likely accommodated by Newark basin faults and other 

Mesozoic normal faults (Wenk, 1989; Schlische, 2003).  Early extension in the brittle 

upper crust was accommodated by listric, normal faulting and corresponding formation of 

half-grabens: a process reproduced in sand box tectonic experiments and observed in 

deep imaging of active rift zones (Wernicke and Burchfield, 1982; Rosendahl, 1987; 

McClay et al., 2002; Morley, 2002).  Listric normal faults in eastern North America 

likely soled into master, southeast-dipping detachments at mid-crustal depths.  These 
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detachments are hypothesized to be Paleozoic thrust faults reactivated with low-angle, 

normal motion (Ando et al., 1984; Crespi, 1988; Marple and Talwani, 2006). 

 In both crystalline basement and Mesozoic basin fills, numerous Middle Triassic 

to Middle Jurassic faults and joints have an average strike of N20oE, as do basalt dikes 

across northeastern North America and northern Africa (de Boer and Clifton, 1988; 

McHone, 1988; de Boer, 1992; McHone, 2000; Wise and Hubert, 2003).    Although 

faults may be deflected by pre-existing anisotropies in the crust, as discussed below, 

dikes form perpendicular to σ3 and are therefore good indicators of paleo-stress vectors 

(McHone, 1988; de Boer, 1992; Schlische, 2003).  Similar NNE-SSW strikes are 

observed in Middle to Late Triassic quartz veins throughout western Massachusetts and 

Connecticut (Eberly, 1985).  The common strike amongst basalt dikes, quartz veins, and 

brittle features indicates extension normal to N20E (110o to 290o) from Middle Triassic 

to Middle Jurassic (Wise, 1992; Withjack et al., 1998; Schlische, 2003). 

 Extension and crustal thinning in the Triassic led to adiabatic rise of the 

asthenosphere and generation of basalt magma, a common feature in ancient and modern 

rift systems (Wilson, 1989).  Basalt magma was intruded and erupted during the CAMP 

event near the Triassic-Jurassic boundary (Dunning and Hodych, 1990; Courtillot, 1996; 

Pálfy et al., 2000; Lucas and Tanner, 2007).  CAMP basalts are present in the northern 

Newark basins, as well as across northeastern South America, western Africa, and Iberia.  

The basalt bodies include basalt feeder dikes and sea-ward dipping reflectors (SDRs) 

along the Atlantic margins, and extensive flood basalts (McHone, 2000). 

 Extension continued into the Early Jurassic, when new faults formed, pre-existing 

faults propagated, and rider blocks were created as motion was abandoned along one fault 
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and taken up by another (Rosendahl, 1987; McClay et al., 2002; Schlische, 2003).  The 

greatest displacement and throw are near the centers of fault segments because faults 

nucleate, then propagate at each end (Schlische and Anders, 1996; Contreras et al., 1997). 

 Fault-bounded basins 1) deepen at the center; 2) widen perpendicular to fault 

strike due to hanging wall on-lap; and 3) lengthen parallel to fault strike as the fault tips 

propagate (Withjack et al., 1990; Barnett et al., 1987; Cowie, 1998; Gawthorpe and 

Leeder, 2000).  In some cases, fault linkage across relay ramps leads to a composite 

basin, formed of two former basins that down drop as an integrated hanging wall basin 

(Schlische, 2003).  Differential subsidence along, and linkage between, normal faults 

leads to syn- and post-depositional transverse folding.  The hanging wall basement and 

basin-fill synclines are at the center of fault segments, whereas anticlines are at fault tips 

(Schlische, 1995; 2003). 

 In the Newark basins, regional extension changed to transpression at about 180 

Ma, reactivating many normal faults with reverse and strike-slip motions, and creating 

small-scale thrust faults and folds.  The most likely reason for regional transpression and 

basin inversion was formation of the mid-Atlantic ridge, and transition from continental 

rift to drift (Withjack et al., 1995; Wintsch et al., 2003; Wise and Hubert, 2003).  Farther 

afield, Mesozoic sedimentary rocks in the Abda and Essaouira basins of Morocco were 

also affected by post-early Jurassic compression events (Le Roy et al., 1997; Echarfaoui 

et al., 2002). 

 Transpression across the central Atlantic margin reverted to extension in the Late 

Jurassic to Early Cretaceous, although the cause is unknown.  Fission-track thermometers 

show major Middle Jurassic-Cretaceous motion along the EBF in New Hampshire, 
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Massachusetts, and Connecticut; similar studies of the border faults of the Newark basins 

also show the tilting of strata was post-Middle Jurassic (Harrison et al., 1989; Steckler et 

al., 1993; Roden-Tice and Wintsch, 2002).  Regional Cretaceous normal motion also 

occurred south of Long Island, in the eastern Adirondacks, and in coastal and offshore 

Maine (Hutchinson and Grow, 1985; Hutchinson et al., 1988; Roden-Tice et al., 2000; 

West and Roden-Tice, 2003). 

 The Deerfield basin and surrounding basement rocks record all stages of 

Mesozoic tectonism (Figure 5).  Early normal faults provided the accommodation space 

for Late Triassic fluvial redbeds; the faults possibly soled into Paleozoic thrust sheets 

similar to the Acadian thrust exposed just west of the basin.  Basement faults, including 

the EBF north of the Mt. Toby block, and basalt dikes strike N20oE.  The dikes and 

basalts are typical CAMP intrusive and extrusive bodies.  Post-CAMP extension in the 

Early Jurassic allowed continued sedimentation, and locally deformed the basin fill, 

including normal faults and transverse synclinal folds near Greenfield (Figure 2).  The 

transpression at 180 Ma is recorded by reverse and strike-slip reactivation of normal 

faults in the basin (Wise and Hubert, 2003).  Late Jurassic-Cretaceous extension tilted the 

basin fill to the east along the EBF (Roden-Tice and Wintsch, 2002; Wintsch et al., 

2003). 

 1.3.3 Paleoclimate 

 The basin was drifting north at about 12oN paleolatitude when deposition of the 

Sugarloaf Arkose began (~218 Ma), and at about 23oN by the time of the Deerfield Basalt 

flows at 201 Ma (Kent and Tauxe, 2005).  Paleoclimate modeling cited by these workers 

shows northward-drift brought the basin into a subtropical arid belt between equatorial 
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and temperate humid belts.  This aridity is reflected in the ventifacts widely found in the 

Sugarloaf Arkose.  Poorly-formed ventifacts with incipient facets are also common.  Both 

types may have desert varnish (Hubert et al., 2008). 

 The latitude-induced aridity was modulated by seasonal monsoon rains, part of 

the Late Triassic megamonsoon that affected much of Laurentia in the Late Triassic-

Early Jurassic (Dubiel et al., 1991; Kent and Muttoni, 2003; Loope et al., 2004).  The 

megamonsoon was caused by the large area of Pangea centered on the equator with the 

Tethys Sea the source of moisture-laden air moving inland on tropical easterlies 

(Chandler et al., 1992).  The abundant ventifacts in the Sugarloaf Arkose indicate the dry 

season greatly dominated over the wet (Hubert et al., 2008).  Other indicators that the 

paleoclimate was strongly dry-dominated are: 1) calcrete paleosols in fluvial sandstones 

and thin eolian sandstones of the New Haven arkose (Sugarloaf Arkose equivalent, 

Hartford basin); and 2) early Jurassic eolian sandstones in the Cass Brook and Portland 

formations of the Pomperaug and Hartford basins, respectively (Smoot, 1991; 

LeTourneau and Huber, 2006; Rasbury et al., 2006). 

 Milankovitch climate-forcing cycles modified the length and intensity of 

monsoonal wet and dry seasons (Olsen, 1986; Smoot and Olsen, 1994; Olsen and Kent, 

1996).  Relatively thick gray to black mudstones in the Early Jurassic Turners Falls 

Formation record wet cycles due to long (400 ka) eccentricity cycles (Olsen et al., 1992).  

Lower-order cyclicity of about 23 ka is referred to as the Van Houten cycle, and is seen 

in couplets about 8-10-m thick of lacustrine gray and black mudstone and playa redbeds 

(Olsen, 1986; Smoot and Olsen, 1994; Olsen and Kent, 1996; Olsen et al., 2005; 

Drzewiecki and Zuidema, 2007). 
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1.4 The Deerfield Basin 

 Before erosion, the Deerfield basin extended at least over the Belchertown 

igneous complex west of the Amherst block (Figure 5).  In Whately, this Devonian pluton 

locally contains abundant joints filled with pink, poorly consolidated siltstone (Wise and 

Hubert, 2003).  Mesozoic silt filled the void spaces of the joints, which apparently 

formed on the hinge zone of the hanging wall, possibly created during the Late Jurassic-

Cretaceous motion of the EBF.  Post-depositional normal movements of the EBF 

significantly tilted the basin fill eastward toward the EBF, resulting in erosion that 

preserves only the ‘keel’ of the basin along the EBF. 

 1.4.1 Stratigraphy 

 There are about 4 km of terrestrial strata and basalt flows in the deepest part of the 

basin near Greenfield (Figures 2, 3).  Hydrocarbon maturation data suggest that 2-3 km of 

strata were removed by erosion, mostly in the mid-Jurassic to Cretaceous (Pratt et al., 

1988; Hubert and Dutcher, 1999). 

 The Sugarloaf Arkose is the basal unit in the basin, deposited by braided rivers 

and alluvial fans over ~16.5 Ma, from the Late Triassic Carnian-Norian boundary at ~218 

Ma to the earliest Jurassic (Olsen, 1997).  The arkose is thickest (2300 m) at Greenfield, 

thinning to the northeast by erosion to 0 m at the edge of the basin, and southward to 

~800 m at the type section at Mount Sugarloaf in South Deerfield (Figure 6).  The 

basement between Greenfield and South Deerfield is faulted, causing variations in 

thickness from <1 km to almost 2 km. 
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Figure 6. N-S longitudinal cross section of the Sugarloaf Arkose, Fall River beds, and 

Deerfield Basalt.  A. No vertical exaggeration.  Cross section is about parallel to strike of 

beds.  Faults that cut the basalt are not shown.  B. 5x vertical exaggeration.  Numbers 

indicate the stratigraphic positions of outcrops.  C. Map of cross section.  EBF is the 

Eastern Border Fault. 
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 An angular (~3o) unconformity separates the arkose from the lacustrine and 

paludal strata of the Fall River beds (Olsen, 1992; Hubert and Dutcher, 1999).  Although 

the angular difference is slight, the unconformity represents a major transition from 

fluvial strata deposited in a hydraulically-open basin to deposition in a closed-basin of 

mostly lacustrine and playa strata, with some alluvial fan and fluvial strata, and basalt 

lavas (Tectono-sedimentary stages III and IV of Olsen, 1997; Hubert et al., 2008).   

 Cornet (1977) used spores and pollen to date the 0-9-m-thick Fall River beds as 

Early Jurassic, leading Zen (1983) to arbitrarily place the Triassic-Jurassic boundary 100 

m below the top of the Sugarloaf Arkose on the geologic map of Massachusetts.  More 

recent work suggests the Triassic-Jurassic boundary was removed by the erosional 

unconformity (Hubert and Dutcher, 1999; Lucas and Tanner, 2007).  The Fall River beds 

have been mapped between Gill and Greenfield (Figure 2) (Olsen et al., 1992).   

 The 0-133-m-thick Deerfield Basalt comprises two flows (Wise and Hubert, 

2003).  Pillows, pipe vesicles, and wet-sediment folds indicate the lower flow traveled 

downslope eastward into a shallow lake at the top of the Fall River beds (Hubert and 

Dutcher, 1999).  The high-iron, quartz-normative basalt correlates with the Holyoke and 

Orenaug basalts of the Hartford and Pomperaug basins, respectively (Philpotts et al., 

1996; Philpotts, 1998), and is similar to basalt flows in the Newark basin (Olsen, 1997).  

The Deerfield and Holyoke basalts are a once-continuous lava-flow unit now separated 

by erosion (Philpotts, 1998).  The Deerfield Basalt has an intermediate composition 

between a tholeiitic basalt and spillite, enriched in Na and depleted in Ca and Sr; the 

basalt was evidently diagenetically altered in the hot intraformational brines (O’Toole, 

1981; Hubert and Dutcher, 1999).  The age of the basalt  
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is ~200 Ma by correlation with the isotopically-dated Palisades sill in New Jersey 

(McHone and Philpotts, 1995; Schlische et al., 2002). 

 The Deerfield Basalt pinches out on Mt. Toby Conglomerate east of Mount 

Sugarloaf (Figure 3).  The 300-2000-m thick conglomerate was deposited by four west-

building alluvial fans with apices at the EBF (Wessel, 1969).  The fanglomerate 

interfingers to the west with the Turners Falls Formation, which consists of ~2 km of 

interbedded playa redbeds, gray to black lacustrine strata, and minor fluvial redbeds 

(Handy, 1977; Hubert et al., 2008). 

 1.4.2 Basin Cross Sections 

 It is likely that in the Early Jurassic the basin was a half-graben created by a 

normal fault.  The evidence is: 1) west-building alluvial fans in the Sugarloaf Arkose and 

Mt. Toby Conglomerate (Figure 3) (Wessel, 1969; Hubert et al., 2008); 2) lack of syn-

depositional antithetic faults on the western edge of the basin or further to the west (Wise, 

1992; Zen et al, 1983); and 3) eastward flow down the hanging block of piedmont rivers 

in the Sugarloaf Arkose, Deerfield Basalt flows, and some rivers in the Turners Falls 

Formation (Hubert and Dutcher, 1999; Hubert et al., 2008). 

 Figure 6 shows the N-S longitudinal cross section of the basin from the basement 

to the Deerfield Basalt.  The basin has two ‘deeps’ near Greenfield and Deerfield.  Depth 

to basement decreases between these ‘deeps’ in steps, apparently due to faulting.  The 

horst near Ball Mountain in the northwest corner of the basin modifies the Greenfield 

‘deep’ by the basement shallowing over the horst and deepening on the flanks.  This horst 

cuts Triassic redbeds, indicating it formed after Sugarloaf Arkose deposition (Wise, 

1992). 
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1.5 Depositional Facies in the Sugarloaf Arkose 

 This section summarizes the three depositional facies of the Sugarloaf Arkose 

(Hubert et al., 2008).  Each facies is defined by paleocurrent vector means and 

sedimentary style (Figure 7).  This thesis uses petrologic attributes to further define each 

facies (Chapter 2). 

 1.5.1 Valley-River Facies 

 Seventeen outcrops in the valley-river facies have average paleocurrent flow to 

the southwest, with individual outcrop vector means ranging from southwest to southeast. 

 The strata are predominantly pale red channel sandstones.  Trough cross-bed sets 

and horizontally-laminated sandstones are common; less common are planar cross-beds 

of gravel and pebbly sandstone and ripple cross-laminated fine-grained sandstones.  Mud 

drapes on cross-bed sets occur locally, in places contributing rip-up clasts in subsequent 

channel-fills.  Grayish-red overbank mudstones make-up 10-20% of outcrop strata.  The 

mudstones are poorly-sorted with significant sand and coarse silt, and are pervasively 

bioturbated.  Traces to abundant ventifacts are found in pebbly sandstone strata, many 

from 10 to 40 cm in size.  Camborygma isp. (crayfish) burrows, log casts, plant debris, 

and root casts are locally present. 

 The facies crops out in the northern third of the basin, from the bottom to the top 

of the arkose.  The channel sandstones and overbank mudstones were deposited by a 

channel-overbank river system with a gravel and sand bedload.  The river was mostly 

braided, as shown by numerous graded channel fills within individual channel bodies,
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Figure 7. Paleocurrent and facies map of the Sugarloaf Arkose (Hubert et al., 2008).  The 

solid arrows show paleoflow vector means for the fluvial redbeds.  Open arrows are flow 

directions for the Deerfield Basalt.  Numbers correspond to locations in Figure 6. 
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combined with the absence of lateral accretion surfaces and crevasse splay deposits.  

Similar braided river channels are present in the Massachusetts section of the Hartford 

basin (Figure 7) (Franz, 1978; Hubert et al., 1992). 

 1.5.2 Piedmont-River Facies 

 Paleocurrents are predominantly west to east, with flow vectors at 15 outcrops 

ranging from northeast to southeast. 

 The stacked channel fills of pebbly sandstone are mostly single stories made of 

fining-upward trough-cross-bed sets and minor horizontally-laminated sandstones.    

Planar cross-bed sets of gravel or pebbly sandstone are common near channel banks, or 

are present isolated within trough cross-bed cosets.  Gleying and ‘rainbow stone’ occur 

locally.  Scoyenia isp. burrows are pervasive, locally obliterating sedimentary structures.  

Pebble means of the 10 largest clasts range from 20-30 cm, with large boulders >50 cm.  

Overbank mudstones are rare, and do not make up a significant proportion of outcrop 

strata.  Ventifacts are widespread. 

 The facies is present in the southern two-thirds of the basin, including the entire 

type section at Mount Sugarloaf.  The lowest known occurrence of the facies is about in 

the middle of the arkose.  The pebbly sandstones were deposited by braided rivers that 

drained highlands west of the basin.  Individual river ‘fans’ coalesced on the east-dipping 

slope of the hanging wall, creating a megafan, which, compared to modern megafans, is 

relatively small, apparently limited by the size of the basin (Gawthorpe and Leeder, 2000; 

Leier et al., 2005). 
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 1.5.3 Alluvial-Fan Facies 

 Two of the four outcrops have east to west paleocurrents, and two are to the 

southwest.  At the best-exposed outcrop on West Gill Road, the beds grade upward from 

cobble-boulder conglomerate to pebbly sandstone.  The beds have erosional bases, 

standing wave/antidune bedforms, minor pebbly sandstone plane beds, and subangular to 

rounded boulders.  The mean of the 10 largest clasts is 25 cm.  Ventifacts are present. 

 The facies crops out in the northeastern corner of the basin, about two-thirds up 

from the base of the arkose.  Turbulent, shallow flash floods flowed westward from 

eastern highlands to build the alluvial fan.  The floods spread, decelerated, and thinned on 

the fan surface, depositing the graded beds.  The strata of this alluvial fan continue into 

the Mt. Toby Conglomerate, where it is named the Pisgah Mountain fan (Wessel, 1969). 

 Alluvial fan strata are also located along I-91 near the power plant just south of 

the Amherst block in the Massachusetts section of the New Haven arkose (Franz, 1979). 

1.6 Pleistocene and Holocene Cover 

 The Connecticut River valley is located between the central Massachusetts 

uplands to the east and the Berkshire Mountains to the west.  Pleistocene tills, glacial 

outwash, and varved lake-bottom clays and delta sands of glacial-lake Hitchcock are 

present in and around the valley, and cover Mesozoic strata of the Deerfield and Hartford 

basins (Brigham-Grette and Rittenour, 2003).  Holocene alluvium of the Connecticut 

River blankets both glacial sediments and bedrock in the valley (Skehan, 2001).  Pre-

Mesozoic and Mesozoic rocks crop out predominantly along road cuts and river banks. 
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CHAPTER 2 

 

PETROLOGY OF THE SUGARLOAF ARKOSE 

2.1 Methods of Study 

 Except where noted, all data presented in this thesis was collected by the author 

using the methods described below. 

 2.1.1 Field Methods 

 Sandstones were collected from 17 outcrops distributed throughout the Sugarloaf 

Arkose.  A hand lens and visual comparator were used to select samples made mostly of 

medium sand (0.25-0.5 mm).  Three sandstones from each outcrop were selected for 

petrographic study.  The locations of sampled outcrops in the valley-river facies are listed 

in Appendix A1, piedmont-river facies in A2, and alluvial-fan facies in A3. 

 Field work included 16 counts of pebble lithology (100 pebbles each) from 12 

outcrops.  Pebbles were randomly selected, and their long axis measured prior to 

determining lithology on a fresh surface.  To reduce the effects of clast size on 

composition, only pebbles with long axes between 2.5 and 7.5 cm were tabulated; the 

lithology of larger clasts was also noted.  Pebble data was combined with unpublished 

data from Stevens (1977).  Pebble data generated from outcrops also sampled for medium 

sand are listed in Appendices A1, A2, and A3.  Outcrops with only pebble counts are in 

Appendix A4. 

 Paleocurrent data from Hubert et al. (2008) were combined with additional 

paleocurrent azimuths.  Cross-beds, parting lineations, flute and groove casts, and 
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channel axes were measured using a Brunton® compass.  All paleocurrent measurements 

from strata dipping >10° were rotated to horizontal prior to plotting. 

 2.1.2 Laboratory Methods 

 Petrographic thin sections were made from 34 sandstones collected in the field.  

These thin sections were combined with existing thin sections from Taylor (1991) to 

yield 51 thin sections: 21 from the valley-river facies, 24 from the piedmont-river facies, 

and six from the alluvial-fan facies.  Each thin section was impregnated with blue epoxy 

to minimize grain plucking during preparation.  The thin sections were etched with HF 

acid prior to staining with sodium cobaltinitrate to distinguish K-feldspar from untwinned 

plagioclase, and with potassium ferrycyanide and Alizarin red-S to identify carbonates 

(Friedman, 1971). 

 Each thin section was examined using a Leitz model Laborlux 11 POL 

petrographic microscope and a point-count stage.  Modal analyses were performed based 

on 400 counts per slide in four random traverses, using a modified Gazzi-Dickinson (G-

D) point-counting method (Gazzi, 1966; Dickinson, 1970; Dickinson, 1985; Ingersoll et 

al., 1984). 

 The G-D method minimizes the effect of grain size on petrographic composition 

by separately tabulating the individual minerals within all rock fragments larger than the 

matrix (>0.0625 mm) as if they were detrital grains not in rock fragments.  Dickinson 

(1985) cautioned that the G-D method does not correct for inherent or genetic variations 

in composition with grain size.  For example, all plagioclase crystals in a source rock 

may be smaller than 0.25 mm, and can not be in a modal analysis of medium sand. 
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 Grain size is a fundamental control on mineralogy.  The G-D method of modal 

analysis used in this thesis is based on medium-sized sand (0.25-0.5 mm) and reduces the 

inherent correlation of composition with grain size.  Evidence for this effect is seen in the 

work on mineralogy in modern sediments by Whitmore et al. (2004).  They used 27 

sample suites to demonstrate the range of variation of 34 modal and geochemical 

variables.  Their results include variation: 1) from analytical error; 2) between different 

years in the same locality; 3) between multiple localities downstream; and 4) across grain 

sizes.  Using variation expressed as a % departure from the average abundance of each 

mineral, the variation across grain sizes is generally greater than 50%, and variations due 

to analytical error (~10%), time (15-25%), and transport (~<50%) contributed less to 

overall compositional variation.  Medium-sand samples generally displayed average 

values for most variables, with coarser and finer grain sizes plotting as outliers on ternary 

and “caterpillar” plots. 

 The first 100 points counted in each thin section determined the volume 

proportions of the whole-rock components, namely framework grains of all sizes, 

authigenic cements, accessory minerals, matrix, and pore space.  The next 300 points 

were medium sand only, ignoring larger and smaller framework grains, cements, matrix, 

and pore space.  Petrographic operational definitions are in Appendix B.  Results of 

sandstone modal analyses using the G-D point-counting methodology for the valley-river, 

piedmont-river, and alluvial-fan facies are in Appendices C1, C2, and C3, respectively. 

 The degree of undulosity and number of subunits for 100 medium-sized quartz 

grains were noted during point-counting for use in provenance determination (Basu et al., 

1975; Basu, 1985; Tortosa et al., 1991).  To estimate roundness and sphericity of quartz, 
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grains were compared with visual standards (Pettijohn et al., 1987).  Degree of sorting 

was estimated using visual comparators from Longiaru (1987).  Results of sandstone 

modal analyses using the Basu-Tortosa method and textural estimations for the valley-

river, piedmont-river, and alluvial-fan facies are in Appendices C4, C5, and C6, 

respectively. 

 Micrographs of representative grains were taken using a 10-bit Olympus® Q-

Color 5 down-scope digital camera. 

2.2 Sandstone Petrology 

 Table 1 summarizes the definitions of each ternary-plot pole and its components; 

Table 2 summarizes the mean values and 95% confidence limit for all ternary plots.  

Values may not add up to 100% due to rounding errors.  WR is whole-rock and MS is 

medium-sand compositions. 

 2.2.1 Valley-river Facies 

 Detrital quartz grains are on average subangular and moderately-poorly sorted 

(Appendix C4).  Quartz grains with high sphericity (52%) are more common than low 

(48%) (Pettijohn et al., 1987). 

 Figure 8.  The major framework grain in whole rock and medium sand is unit 

quartz, comprising 26% and 28%, respectively.  Granitoid grains and unit plagioclase are 

also major framework components.  Interstitial detrital matrix (<30 µm; Appendix B) is 

ubiquitous.  The proportions of cements and Fe-oxide-stained matrix are excluded from 

the medium-sand composition.  Detrital micas are typically larger than medium-sand 

sized, reducing their contribution to the medium-sand.  Medium-sand framework grains 

have more quartzite and monocrystalline vein quartz than the whole-rock. 
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WR Mean MS Mean WR Mean MS Mean WR Mean MS Mean

Q 56.3±4.5 64.6±2.1 59.7±2.5 70.9±1.9 63.6±7.4 66.5±3.7
F 33.4±3.0 29.1±2.4 29.0±2.2 23.4±1.7 26.3±5.8 25.3±3.0

L or R 10.3±3.6 6.2±1.5 11.3±1.3 5.7±1.0 10.1±3.2 8.2±3.5

Qm 40.6±5.3 43.1±2.8 42.0±2.1 49.4±2.1 39.9±5.4 42.4±1.0
F 33.4±3.0 29.1±2.4 29.0±2.2 23.4±1.7 26.3±5.8 25.3±3.0
Lt 26.1±4.9 27.8±3.5 29.0±1.8 27.2±2.2 33.8±6.1 32.3±2.5

Qm 53.9±4.9 59.7±2.4 59.2±2.8 68.0±2.2 60.4±7.0 62.7±2.9
P 32.4±5.9 28.3±3.5 24.8±1.5 20.0±2.6 22.2±5.9 25.2±3.2
K 13.7±4.0 12.1±2.7 16.0±2.3 12.0±1.5 17.4±10.0 12.1±4.6

Qtzte 30.5±5.9 38.0±6.0 31.5±5.2 35.4±3.9 30.4±9.6 39.7±4.4
Gr 40.9±5.8 34.0±4.5 12.2±3.0 2.8±1.8 13.1±13.1 7.2±12.9
Gn 28.6±5.6 27.9±4.7 56.3±4.3 61.8±4.6 54.5±12.4 53.1±13.6

K 35.2±9.2 33.2±7.5 43.9±4.4 40.0±5.3 43.9±19.2 31.9±11.1
Tp 23.4±4.9 41.4±4.6 35.0±3.3 22.3±3.2 44.4±17.0 16.9±9.1
Up 41.4±6.4 25.5±4.0 21.1±2.5 37.7±4.1 11.6±8.5 51.2±8.7

P 69.5±7.4 69.8±6.6 61.5±3.5 61.6±4.7 59.2±17.7 68.1±10.4
Uk 17.8±6.7 24.0±5.2 28.4±3.8 32.5±4.6 20.0±20.0 22.7±9.6
M 12.7±6.7 6.2±2.3 10.1±3.6 5.9±1.5 20.7±10.1 9.1±4.3

Qnu - 21.7±3.7 - 20.7±2.7 - 9.7±1.7
Qu - 56.1±4.1 - 59.3±3.0 - 72.2±4.9

Qp(2-3) - 18.5±1.6 - 13.1±1.4 - 10.0±2.6
Qp(≥4) - 3.6±0.8 - 7.0±1.0 - 8.2±2.1

Valley-river Facies Piedmont-river Facies Alluvial-fan Facies

Table 2: Summary of Sandstone Composition
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Figure 8. Pie diagrams of whole rock (A) and medium-sand (B) petrographic 

compositions of the valley-river facies.  Micas are muscovite, biotite, and chlorite.  Kspar 

is K-feldspar; Poly. is polycrystalline quartz; RF is rock fragment.  For 7A, vein quartz 

includes monocrystalline and polycrystalline. 
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 The means of the whole-rock and medium-sand samples are minerlogically-

immature arkose on the Q-F-R classification diagram. (Pettijohn, 1975) (Figure 9).  

Whole-rock sample 13 is a lithic arenite and 14 and 15 are lithic arkoses.  For medium 

sand, the samples shift away from the R pole and towards the Q pole.  The quartz 

enrichment in the medium sand is due to abrasion of micaceous rock fragments and 

increase in monocrystalline vein quartz and quartzite (Figure 8B).  The tighter cluster of 

points in the medium sand compared to the whole rock reflects the interaction between 

grain size and mineralogy (Section 2.1.2). 

 Figure 9.  Whole-rock and medium-sand samples 1-6 are more mineralogically-

mature sublitharenites and quartz arenites.  These samples are from I-91 location 1 and 

Lower Rd., Greenfield.  Detrital feldspars and albite cement in these samples were 

replaced by illite during a hydrothermal event about 184 Ma (Taylor, 1991; Hubert et al., 

2001).  Although relict grain boundaries of feldspar can occasionally be discerned, the 

data remain non-representative of original rock petrology, and so were not used to 

calculate means (Helmold, 1985). 

 Figure 10A.  On the Qt-F-L plot, eight samples plot in the transitional field of the 

continental block provenance, and seven in the recycled orogen provenance (Dickinson, 

1985).  There are no trends of maturity or stability among the data.  The mean is on the 

transition between continental block and recycled orogen provenance. 

 Figure 10B.  Combining polycrystalline quartz with lithic fragments on the Qm-F-

Lt plot shifts the samples towards the Lt pole (Figure 10B).  Only one sample remains in 

the continental block provenance; six now plot in the dissected arc field of the magmatic 

arc provenance, and the remaining points and the mean plot within the ‘mixed’ 
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Figure 9. Q-F-R plots of whole rock (A) and medium-sand (B) in the valley-river facies 

(Pettijohn, 1975).  A circled point is the mean, and a dashed hexagon shows the 95% 

confidence interval around the mean.  A shaded field indicates samples from the illite 

diagenetic pattern (Taylor, 1991; Hubert et al, 2001).  The poles are defined in Table 1; Q 

is quartz, F is feldspar, and R is rock fragments.  Numbers correspond to sample numbers 

in Appendix C. 
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Figure 10. Qt-F-L (A) and Qm-F-Lt (B) plots of medium sand in the valley-river facies 

(Dickinson, 1985).  For 10B, the center field is mixed provenance.  A circled point is the 

mean, and a dashed hexagon shows the 95% confidence interval around the mean.  The 

poles are defined in Table 1; Qt is total quartz, F is feldspar, L is lithic fragments, Qm is 

monocrystalline quartz, and Lt is total lithic fragments.    Numbers correspond to sample 

numbers in Appendix C. 
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field at the center of the diagram. 

 Figure 11A.  Monocrystalline framework grains are plotted on the Qm-P-K 

diagram (Dickinson, 1985).  Samples 1-6 are omitted because of illitization of feldspars.  

The valley-river facies is enriched with monocrystalline quartz, with only one sample 

plotting at <50% Qm.  Plagioclase is more abundant than K-feldspar by a ratio of ~4:1 

(Table 2).  Samples 13, 14, and 15 are furthest towards the P pole, a position described by 

Dickinson and Suczek (1979) as an immature or unstable continental block provenance.  

Positions closer to the Qm pole indicate increasing maturity or stability. 

 Figure 11B.  Here granite is defined as felsic, phaneritic grains with non-sutured 

quartz, twinned plagioclase, and microcline and/or untwinned K-feldspar (Figure 12 A; 

Appendix B).  Granite gneiss has the same minerals, but metamorphism tended to 

produce untwinned plagioclase with or without sericitization, and quartz with sutured 

and/or crenulated boundaries (Figure 12B).  Granite grains are slightly more common 

than granite gneiss in the valley-river facies, but none of the samples plots closer than 

48% towards either pole.  The mean is close to the center of Figure 11B, indicating that 

the three rock fragments plotted are subequal. 

 Figure 13A.  Twinning of feldspars in rock fragments is a key part of the 

operational definitions of granites and granite gneisses used in this thesis.  No valley-

river samples have more than 50% untwinned plagioclase, and the mean is 41.4% 

twinned plagioclase.  Diagenetic albitization of detrital plagioclase occasionally obscures 

twinning, so only grains with minor albite replacement or albite overgrowths were plotted 

(Figure 14A). 
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Figure 11. Qm-P-K (A; Dickinson, 1985) and Qtzte-Gr-Gn (B) plots of medium sand in 

the valley-river facies.  Samples 1 through 6 are omitted from 11A due to diagenetic 

illitization of feldspars.  A circled point is the mean, and a dashed hexagon is the 95% 

confidence interval around the mean.  The poles are defined in Table 1; Qm is 

monocrystalline quartz, P is plagioclase, K is K-feldspar, Qtzte is quartzite, Gr is granite, 

and Gn is gneiss.    Numbers correspond to sample numbers in Appendix C. 
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Figure 12. Micrographs of granite (A) and granite gneiss (B).  P is plagioclase (twinned 

in A; untwinned in B); K is K-feldspar; Q is quartz; SQ is stretched quartz with 

crenulated grain boundaries (white arrow); M is muscovite; and A is albite overgrowth in 

optical continuity with albite replacement of plagioclase (black arrow).  Crossed nicols; 

scale bars are 0.5 mm.   
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 Figure 13B.  The ratio of untwinned K-feldspar, including orthoclase and perthite, 

to microcline in the valley-river samples is ~4:1.  Most samples have less than 10% 

microcline; samples 7-9 were collected from I-91 location 3, Greenfield, and contain the 

most microcline, with an outcrop mean of 13%.  Again, only grains with minor albite 

replacement are plotted (Figure 14B). 

 Figure 15A.  The undulosity and polycrystallinity of quartz grains are plotted on 

modified provenance diagrams (Basu et al., 1975; Basu, 1985).  These workers 

constructed a polygonal plot from two ternary plots that share a common baseline that 

links monocrystalline non-undulose quartz (Qnu) and undulose quartz (Qu) (Appendix 

B).  In the upper triangle, the Qp pole is polycrystalline quartz with ≥75% polycrystalline 

quartz composed of two or three subunits.  In the lower, inverted triangle, the Qp pole has 

>25% polycrystalline quartz composed of four or more subunits. 

 All valley-river samples plot in the upper triangle, indicating coarsely-

polycrystalline quartz is more common than finely-polycrystalline quartz.  Of the 21 

samples, 18 plot in the low-rank (<500oC) metamorphic field (Figure 15A).  Samples 19, 

20, and 21, collected just below the Deerfield Basalt at Poet’s Seat in Greenfield, contain 

considerably more non-undulose monocrystalline quartz than the other samples and are in 

the middle- and upper-rank metamorphic field, (500-700oC). 

Figure 15B.  Here the provenance fields are added to the polygonal diagram 

(Tortosa et al., 1991).  These authors generated the fields by examination of Holocene 

sands in first-order streams that drain terrains of granitic, gneissic, and low-rank 

metamorphic rocks.  The boundary between low- and high-rank gneisses is the 500oC line 

in Figure 15A. 
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Figure 13.  K-Tp-Up (A) and P-Uk-M (B) plots of medium sand in the valley-river facies.  

A circled point is the mean, and a dashed hexagon is the 95% confidence interval around 

the mean.  The poles are defined in Table 1; K is K-feldspar, Tp is twinned plagioclase, 

Up is untwinned plagioclase, P is plagioclase, Uk is untwinned K-feldspar, and M is 

microcline.    Numbers correspond to sample numbers in Appendix C.  Samples 1 

through 6 are omitted due to diagenetic illitization of feldspars. 
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Figure 14. Micrographs of grains of twinned plagioclase (A) and untwinned K-feldspar 

(B; at extinction).  H1 is early hematite rim formed by dehydration of yellow-brown 

surface stain; H2 is late hematite cement (Taylor, 1991; Hubert et al., 2001); Q is quartz; 

P is plagioclase; A is albite replacement along mineral fractures; and C is Fe-dolomite 

with minor Fe-calcite cements.  White arrows point to albite overgrowths.  Crossed 

nicols; scale bars are 0.25 mm. 
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Figure 15. A. Qp-Qnu-Qu modified plot of provenance of medium-sand quartz in the 

valley-river samples (Basu, 1985).  B. Qp-Qnu-Qu modified plot of Tortosa et al. (1991).  

The plots are truncated at 50% Qp.  A circled point is the mean, and a dashed hexagon is 

the 95% confidence interval around the mean.  The poles are defined in Table 1; Qp 2-3 

is polycrystalline quartz with two or three subunits, Qp ≥4 is polycrystalline quartz with 

four or more subunits, Qnu is non-undulose monocrystalline quartz, and Qu is undulose 

monocrystalline quartz.    Numbers correspond to sample numbers in Appendix C. 
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The samples plot in the same positions as Figure 15A, with 19 samples in the granite 

field.  Samples 19, 20, and 21 are closer to upper-rank gneiss.  Samples 10 and 12 plot 

just above the granite field, because the provenance fields are gradational. 

 Summary.  Whole-rock and medium-sand framework grains in the valley-river 

samples are dominated by unit quartz, granite, granite gneiss rock fragments, and 

plagioclase (Figures 8 and 9).  The medium sands contain fewer rock fragments and more 

quartz than whole-rock samples, indicating a mixed continental block and recycled 

orogen provenance (Figure 10A).  Combining polycrystalline quartz with rock fragments 

shifts the samples away from a continental block provenance towards a mixed 

provenance including dissected arc (Figure 10B).  Monocrystalline framework grains are 

mostly quartz with plagioclase, and minor K-feldspar (Figure 11A); polycrystalline 

framework grains contain slightly more quartzite and granite than granite gneiss (Figure 

11B).  Twinned is more abundant than untwinned plagioclase (Figure 13A), and 

microcline is rare compared to untwinned K-feldspar (Figure 13B).  Medium-sized quartz 

grains are mostly monocrystalline and undulose.  Polycrystalline quartz with two or three 

subunits is more common than aggregates of four or more subunits (Figure 15). 

 2.2.2 Piedmont-river Facies 

 The piedmont-river pebbly sandstones are immature, first cycle sediments.  The 

quartz grains typically have low sphericity, are mostly subangular, and moderately to 

poorly sorted.  Feldspar grains are more angular and less spherical than quartz, and, 

during diagenesis, grain boundaries were etched and replaced by hematite, illite, and 

carbonates.  
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Figure 16. Pie-diagrams of whole-rock (A) and medium-sand (B) compositions of the 

piedmont-river facies.  Micas are muscovite, biotite, and chlorite.  Kspar is K-feldspar; 

Poly. is polycrystalline quartz; RF is rock fragment.  Vein quartz includes 

monocrystalline and polycrystalline varieties. 
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Figure 17. Q-F-R plots of whole rock (A) and medium sand (B) of the piedmont-river 

facies (Pettijohn, 1975).  A circled point is the mean, and a dashed hexagon shows the 

95% confidence interval around the mean.  For 9B, the 95% confidence interval is 

smaller than the symbol for the mean.  A shaded field indicates samples from the illite 

diagenetic pattern (Taylor, 1991).  The poles are defined in Table 1; Q is quartz, F is 

feldspar, and R is rock fragments.    Numbers correspond to sample numbers in Appendix 

C. 

 
 60



 

 
 61



 

 Figure 16A.  The whole-rock composition of the piedmont-river facies shows that 

unit quartz (27%) and granitoids (13%) are the most abundant framework grains, similar 

to the valley-river facies.  Plagioclase is less abundant than polycrystalline quartz, 

schistose rock fragments, and micas. 

 Figure 16B.  More than 50% of the medium sand is unit quartz and granitoids; 

vein quartz, polycrystalline quartz, and quartzite are more abundant than plagioclase.  Fe-

oxide-stained matrix comprises 4% of whole-rock volume. 

 Figure 17A.  The Q-F-R classification shows the whole-rock mean is arkose, with 

samples plotting as arkose, lithic arkose, and subarkose.  Samples 19 through 24 are 

excluded because feldspars are replaced by illite. 

 Figure 17B.  Medium sands are in the subarkose and arkose fields, and the mean 

is subarkose.  Again, narrowing counted grains to medium sand enriches the proportions 

of quartz at the expense of rock fragments.   

 Figure 18A.  On the Qt-F-L whole-rock samples are a mix of transitional 

continental block and recycled orogen provenance.  The mean is slightly more 

quartzofeldspathic than the boundary between the two provenance fields. 

 Figure 18B.  On the Qm-F-Lt plot, all samples except those affected by illite-

replacement plot in the ‘mixed’ provenance field, similar to the valley-river samples.  A 

difference is that on the Qm-F-Lt plot none of the piedmont-river samples is in the 

magmatic arc provenance. 

 Figure 19A.  In the plot of monocrystalline framework grains, K-feldspar is 

slightly more common in the piedmont-river samples than in the valley river, but the 

piedmont-river samples have slightly less plagioclase.  Quartz is more abundant in the
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Figure 18. Qt-F-L (A) and Qm-F-Lt (B) plots of medium sand of the piedmont-river 

facies (Dickinson, 1985).  For 10B, the center field is mixed provenance.  A circled point 

is the mean, and a dashed hexagon shows the 95% confidence interval around the mean.  

For 10A, the 95% confidence interval around the mean is smaller than the symbol for the 

mean.  The poles are defined in Table 1; Qt is total quartz, F is feldspar, L is lithic 

fragments, Qm is monocrystalline quartz, Lt is total lithic fragments.  Numbers 

correspond to sample numbers in Appendix C. 
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Figure 19. Qm-P-K (A; Dickinson, 1985) and Qtzte-Gr-Gn (B) plots of medium-sand in 

the piedmont-river facies.  Samples 19 through 24 are omitted from 19A due to 

illitization of feldspars.  A circled point is the mean, and a dashed hexagon is the 95% 

confidence interval around the mean.  The poles are defined in Table 1; Qm is 

monocrystalline quartz, P is plagioclase, K is K-feldspar, Qtzte is quartzite, Gr is granite, 

and Gn is gneiss.    Numbers correspond to sample numbers in Appendix C. 
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 Piedmont-river facies than in the other two facies. 

 Figure 19B.  Of the 24 samples, 11 entirely lack granite, and only one has more 

than 10% granite.  Granite grains comprise only 3% of the mean, and the confidence 

interval shows that the mean has a 95% chance of being <5% (Table 2).  The ratio of 

quartzite to the polycrystalline rock fragments is slightly lower than in the valley-river 

samples. 

 Figure 20A.  In the piedmont-river samples, untwinned plagioclase is more 

abundant than twinned by almost 4:1, unlike the twinned-plagioclase-rich composition of 

the valley-river facies.  No piedmont-river samples contain more than 40% twinned 

plagioclase.  Samples 5, 8, 9, and 14 have K-feldspar as the dominant feldspar. 

 Figure 20B.  Samples 5, 8, 9, and 14 have the largest amount of untwinned K-

feldspar among all piedmont-river samples.  Microcline comprises ~6% of all feldspars, 

as in the valley-river samples. 

 Figure 21.   In all piedmont-river samples, more than 25% of the polycrystalline 

quartz grains had four or more subunits, and plot on the inverted lower triangle.  

Undulose  monocrystalline quartz is more abundant than non-undulose.  The mean is in 

the low-rank metamorphic field in Figure 21A, but in the granite field in Figure 21B. 

 Summary.  Framework grains in the piedmont-river samples are predominantly 

unit quartz and granitoids (Figure 16).  The medium sand is quartz-rich compared to the 

whole rock.  The sandstones vary from arkose and lithic arkose to subarkose; subarkose 

is more common in the medium-sand samples (Figure 17). 

 The provenance is a mixture of transitional continental block and recycled orogen, 

with no clear contribution from a magmatic arc (Figure 18).  Unit quartz is the dominant
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Figure 20.  K-Tp-Up (A) and P-Uk-M (B) plots of medium sand in the piedmont-river 

facies.  A circled point is the mean, and a dashed hexagon is the 95% confidence interval 

around the mean.  The poles are defined in Table 1; K is K-feldspar, Tp is twinned 

plagioclase, Up is untwinned plagioclase, P is plagioclase, Uk is untwinned K-feldspar, 

and M is microcline.    Numbers correspond to sample numbers in Appendix C.  Samples 

19 through 24 are omitted due to diagenetic illitization of feldspars (Taylor, 1991; Hubert 

et al, 2001). 
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Figure 21. A. Qp-Qnu-Qu modified plot of provenance of medium-sand quartz in the 

piedmont-river facies (Basu, 1985).  B. Qp-Qnu-Qu modified plot of Tortosa et al. 

(1991).  The plots are truncated at 50% Qp.  A circled point is the mean, and a dashed 

hexagon is the 95% confidence interval around the mean.  The poles are defined in Table 

1; Qp 2-3 is polycrystalline quartz with two or three subunits, Qp ≥4 is polycrystalline 

quartz with four or more subunits, Qnu is non-undulose monocrystalline quartz, and Qu 

is undulose monocrystalline quartz.  Numbers correspond to sample numbers in 

Appendix C. 
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monocrystalline grain, with plagioclase less abundant, and K-feldspar more abundant 

than in the valley-river samples.  Granite gneiss is the major polycrystalline fragment; 

granite is virtually absent.  Plagioclase and K-feldspar are mostly untwinned (Figures 19 

and 20).  In all samples, more than 25% of the polycrystalline quartz has four or more 

subunits, and undulose monocrystalline quartz is more abundant than non-undulose 

(Figure 21). 

 2.2.3 Alluvial-fan Facies 

 Quartz grains are subangular, with low sphericity and poor sorting.   

 Figure 22.  The major framework grains in the whole rock are unit quartz (22%) 

granitoids (14%) and polycrystalline quartz (11%).  Medium sand is almost 75% unit 

quartz (25%) and rock fragments (45%).  None of the outcrops was affected by 

illitization of feldspars. 

   Figure 23.  All samples in whole rock and medium sand are arkose and 

subarkose on the Q-F-R diagram.  The means of whole rock and medium sand are arkose 

and subarkose, respectively.  The 95% confidence interval around both means spans the 

fields of arkose, subarkose and lithic arkose. 

 Figure 24.  The alluvial-fan mean plots in the recycled orogen provenance of the 

Qt-F-L diagram.  Individual samples plot in recycled orogen and transitional continental 

block.  In Figure 24B, the mean and four of the six samples are the ‘mixed’ provenance 

field, and two are dissected magmatic arc.  On both plots, the alluvial-fan samples plot in 

similar positions to the valley-river and piedmont-river samples.   Some valley-river 

samples also plot in the dissected magmatic arc. 
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Figure 22. Pie diagrams of whole rock (A) and medium-sand (B) petrographic 

compositions of the alluvial-fan facies.  Accessories are micas and garnet; Micas are 

muscovite, biotite, and chlorite; Kspar is K-feldspar; Poly. is polycrystalline quartz; RF is 

rock fragment.  Vein quartz includes monocrystalline and polycrystalline. 
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Figure 23. Q-F-R plots of whole rock (A) and medium sand (B) compositions in the 

alluvial-fan facies (Pettijohn, 1975).  A circled point is the mean, and a dashed hexagon 

shows the 95% confidence interval around the mean.  The poles are defined in Table 1; Q 

is quartz, F is feldspar, and R is rock fragments.  Numbers correspond to sample numbers 

in Appendix C. 
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Figure 24. Qt-F-L (A) and Qm-F-Lt (B) plots of medium sand in the alluvial-fan facies 

(Dickinson, 1985).  For 24B, the center field is mixed provenance.  A circled point is the 

mean, and a dashed hexagon shows the 95% confidence interval around the mean.  The 

poles are defined in Table 1; Qt is total quartz, F is feldspar, L is lithic fragments, Qm is 

monocrystalline quartz, and Lt is total lithic fragments.  Numbers correspond to sample 

numbers in Appendix C. 
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 Figure 25.  The alluvial-fan samples have an average ratio of plagioclase to K-

feldspar of 2:1.  Unit quartz is the dominant monocrystalline grain in all three facies.  

Granite gneiss is the most abundant rock fragment in the alluvial-fan facies.  Like the 

piedmont-river facies, granite is a minor component.  The variability of granite and 

granite gneiss among the samples is large, with 95% confidence intervals of ±13% and 

±14%, respectively. 

 Figure 26.  The majority of plagioclase grains are untwinned, and commonly 

contain vacuoles and sericite (Figure 27A).  K-feldspar is mostly untwinned, but 

microcline is more abundant than in the valley-river and piedmont-river facies (Figure 

27B). 

 Figure 28.  The alluvial-fan samples are similar to the piedmont-river, plotting in 

the low-rank metamorphic or granite provenance of the lower, inverted triangle.  Fine-

grained polycrystalline quartz makes up more than 25% of all polycrystalline quartz, and 

most monocrystalline quartz grains are undulose. 

 Summary.  Medium-sand samples are subarkose and are almost 75% unit quartz 

and rock fragments; whole-rock samples include more polycrystalline quartz and are 

classified as arkose (Figures 22 and 23).  Provenance of medium-sand samples is a mix of 

recycled orogen and magmatic arc (Figure 24).  Plagioclase is more abundant than K-

feldspar, and granite gneiss is much more abundant than granite (Figure 25).  Most of the 

plagioclase is untwinned, and microcline is more abundant in alluvial-fan samples than 

valley-river and piedmont-river samples (Figure 26).  Most monocrystalline quartz is 

undulose, and more than 25% of polycrystalline quartz has four or more subunits.  Quartz 

provenance is low-grade metamorphic or granite (Figure 28).  
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Figure 25. Qm-P-K (A) and Qtzte-Gr-Gn (B) plots of medium sand in the alluvial-fan 

facies.  A circled point is the mean, and a dashed hexagon is the 95% confidence interval 

around the mean.  The poles are defined in Table 1; Qm is monocrystalline quartz, P is 

plagioclase, K is K-feldspar, Qtzte is quartzite, Gr is granite, and Gn is gneiss.  Numbers 

correspond to ample numbers in Appendix C. 
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Figure 26. K-Tp-Up (A) and P-Uk-M (B) plots of medium sand in the alluvial-fan facies.  

A circled point is the mean, and a dashed hexagon is the 95% confidence interval around 

the mean.  The poles are defined in Table 1; K is K-feldspar, Tp is twinned plagioclase, 

Up is untwinned plagioclase, P is plagioclase, Uk is untwinned K-feldspar, and M is 

microcline.  Numbers correspond to sample numbers in Appendix C. 
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Figure 27. Micrographs of untwinned plagioclase in a gneiss grain (A) and microcline in 

a granite grain (B).  M is muscovite; Q is quartz; H is hematite fracture fill and cement; P 

is plagioclase; A is albite replacement along mineral fractures; and C is Fe-dolomite with 

minor Fe-calcite cements.  White arrows point to albite overgrowths, and black arrow 

points to quartz overgrowth.  Crossed nicols; scale bar in A is 0.5 mm; in B, 0.25 mm.   
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Figure 28. A. Qp-Qnu-Qu modified plot of provenance of medium-sand quartz in the 

alluvial-fan facies (Basu, 1985).  B. Qp-Qnu-Qu modified plot of Tortosa et al. (1991).  

The plots are truncated at 50% Qp.  A circled point is the mean, and a dashed hexagon is 

the 95% confidence interval around the mean.  The poles are defined in Table 1; Qp 2-3 

is polycrystalline quartz with two or three subunits, Qp ≥4 is polycrystalline quartz with 

four or more subunits, Qnu is non-undulose monocrystalline quartz, and Qu is undulose 

monocrystalline quartz.  Numbers correspond to sample numbers in Appendix C. 
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2.3 Diagenesis 

 The diagenetic history of the Deerfield basin is described in Taylor (1991) and 

Hubert et al. (2001).  Diagenetic modification of framework grains, especially feldspars, 

must be recognized during provenance analysis (Dickinson, 1970; Helmold, 1985). 

 Post-depositional fluids altered the detrital mineralogy of the Sugarloaf Arkose 

through 1) intrastratal dissolution of Fe-rich heavy minerals and feldspars; 2) albite 

replacement of feldspar; and 3) clay-mineral replacement of feldspar (Carozzi, 1993; 

Helmold, 1985; Taylor, 1991; Hubert et al., 2001). 

 2.3.1 Early Mesogenesis 

 Early mesogenesis starts after effective burial to a few tens of meters at near 

surface temperature, and continues to depths of 2-3 km and 70-100oC (Morad et al., 

2000; Boggs, 2006).  Early diagenetic events include hematite grain coats, mechanical 

compaction, albitization of feldspars, and precipitation of albite and quartz cements 

(Figure 29).  The relative timing of diagenetic effects is based on thin-section 

observations.  The percentages of all cements in the valley-river, piedmont-river, and 

alluvial-fan samples are shown in Figures 30 and 31A. 

 Hematite grain coats are common in all three facies because they are derived from 

soil stains of yellow-brown limonite iron-hydroxides (Hubert and Reed, 1978; Hubert et 

al., 2001) (Figure 14, 27B, 30, 31A, 32B, 33).  Dehydration of the limonite in oxidizing, 

alkaline water produces hematite in about 300 to 3.000 ka (Walker, 1976).  The hematite 

coats inhibit overgrowths of other cements, and are negatively correlated with the 

volumes of albite and quartz overgrowths.   
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Figure 29.  Summary of sandstone diagenesis, in part modified from Hubert et al. (2001). 

 
 89



 

 
 90



 

 

 

 

 

 

 

Figure 30.  Pie diagrams of cements in the valley-river (A) and piedmont-river (B) 

samples recalculated to 100%. 
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 The relative importance of mechanical compaction versus cementation in 

reducing porosity is assessed by comparing the intergranular volume (porosity plus 

cements) to cement volume (Loucks et al., 1984; Houseknecht, 1987) (Figure 31B). 

Figure 31B assumes initial surface porosity of 40%, and shows that porosity lost to 

compaction in the valley-river, piedmont-river, and alluvial-fan facies is 66%, 58%, and 

54%.  Ten samples in both the valley-river and piedmont-river facies lost ≥75% of initial 

porosity to mechanical compaction. Two valley-river, four piedmont-river, and two 

alluvial-fan samples contain >20% cement, indicating compaction of the sand is younger 

than major cementation.  Three samples have ~5% remaining porosity, the remainder 

have <3%.  Remaining porosity is likely a combination of original porosity and 

secondary porosity from grain dissolution.  Reduction of porosity from 40% to 15-20% in 

an arkose is consistent with burial to 2-3.5 km (Tucker, 2001). 

 In addition to porosity loss, detrital micas are greatly distorted by compaction, and 

are often bent around relatively rigid framework grains (Figure 32A).  Compaction 

locally modified framework grain contact boundaries (Figure 32B).  Pressure-dissolution 

is uncommon, indicating matrix and/or early cements spread overburden load (Tucker, 

2001). 

 Albitization is a well-documented process in sedimentary basins, and affected 

both the Deerfield and Hartford basins (Boles, 1982; Morad et al., 1990, Hubert et al., 

1992, 2001).  Many grains of plagioclase and K-feldspar have overgrowths of nearly-pure 

albite (Ab99.69An0.08Or0.23; Meriney, 1988) (Figures 12A, 14A, 14B, 27B, 32B).  

Overgrowths are in optical continuity with albite-rich host plagioclase grains and twins 

occasionally continue onto the overgrowths. 
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Figure 31.  Pie diagram of alluvial-fan cements recalculated to 100% (A) and chart 

depicting porosity loss to compaction versus cementation assuming an initial porosity of 

40% (Houseknecht, 1987)  Approximately equal volumes of porosity were lost to 

compaction and cement in the piedmont-river and alluvial-fan facies; compaction was 

more important than cementation in the valley-river facies.  Lightly-shaded points are 

facies means.  Samples affected by illite replacement are plotted as X, because illite 

pseudomorphs are difficult to distinguish from pore-filling cement, and late mesogenetic 

pressure-solution strongly biases towards compaction over cementation.  Primary and 

secondary cements were not differentiated during modal analysis.  Porosity increases 

away from diagonal line, and is the amount of remaining original porosity and secondary 

porosity. 
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Figure 32.  Micrographs of compaction, cement, and grain replacement.  Mx is hematite-

stained matrix; Q is quartz; H is hematite cement; B is biotite bent due to compaction in 

32A and altered by hematite in 32B; P is plagioclase with albite replacement; QTZTE is 

quartzite grain with sutured and crenulated boundaries; IR is illite replacement of 

plagioclase; IC is illite cement; C is ferroan dolomite and calcite cements.  White arrow 

points to albite overgrowth, and black arrow points to compaction-altered grain 

boundary.  Crossed nicols; scale bar is 0.5 mm. 
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 Precipitation of albite overgrowths was accompanied by replacement of 

plagioclase grains by albite along grain boundaries, cleavage planes, and grain fractures; 

replacement proceeded inward into the grains.  Most albitized grains also host albite 

overgrowths, and the replacement domains and overgrowths are commonly in optical 

continuity (Figures 12A and 14B).  Albite pseudomorphs are recognized by lack of 

vacuoles and sericite, and by optical continuity with overgrowths. 

 The timing of alteration events is very difficult to establish.  The vacuoles and 

sericite common in plagioclase and K-feldspar may be inherited from the source rock, 

added during weathering and transport, or developed during diagenesis (Helmold, 1985).  

Vacuoles and sericite are lost during albite replacement, but many albite overgrowths 

have vacuoles as well, which indicates vacuolization and sericite formed prior to and 

after albitization. 

 Interpenetration of quartz and albite overgrowths suggests coeval precipitation 

(Figures 27B and 33A).  Quartz overgrowths are generally in optical continuity with host 

grains, and are discerned by thin hematite rims on grain surfaces.  Quartz and albite 

overgrowths are more common in sandstones with minor hematite rims because the rims 

prevent nucleation of overgrowths. 

 Albitization, including overgrowths, and quartz overgrowths require pore water 

saturated with Na2+ and Si4+, respectively.  Both intra-basinal and extra-basinal sources 

may contribute to the formation waters.  Descending groundwater may have percolated 

down through the unconsolidated sediment and enriched interstitial water with Na2+ and 

Si4+ (Hubert et al., 2001).  Authigenic-quartz fluid inclusions in North Sea sandstones 
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indicate groundwater-derived overgrowths precipitate at temperatures from 75o to 150oC, 

consistent with burial depths of 2-5 km (Morad et al., 2000). 

 2.3.2 Late Mesogenesis 

 Late mesogenesis takes place at depths greater than 3 km and temperatures above 

100oC (Morad et al., 2000).  Following precipitation of albite and quartz cements, late 

hematite cement filled much of the remaining pore space (Figures 14A, 27A, and 32).  

Dissolution of Fe-bearing heavy minerals, including biotite, hornblende, and augite, 

released iron for authigenic hematite (Handy, 1977; Hubert and Reed, 1978).  Biotite 

grains grade from unaltered biotite to complete replacement by hematite. 

 Carbonate cements are present in sandstones from all facies, and comprise 25% of 

the cements in the alluvial-fan facies (Figures 14B, 31A, 32B).  Dolomite and ferroan 

dolomite are younger than pore-filling hematite (Figure 32B), and the dissolution of 

heavy minerals that supplied iron for authigenic hematite may also have supplied 

magnesium.  Calcite and ferroan calcite partially to completely replace older dolomite 

cement.  Carbonate cements younger than quartz overgrowths is a global phenomena, 

evidently related to retrogressive solubility of carbonates and progressive solubility of 

quartz with increasing burial temperature (Morad et al, 2000). 

 Diagenetic reactions plus high-heat flow peaking at about 185 Ma generated hot 

brine deep in the basin.  The brine strongly affected strata in the lower 1400 m of the 

Sugarloaf Arkose, replacing almost all detrital plagioclase and albite overgrowths with 

illite.  Argon spectra for detrital microcline indicate cooling through ~150oC at about 

170-150 Ma, well above the threshold of illite replacement at 130oC (Ehrenberg and 

Nadeau, 1989; Hubert et al., 1991). 
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Figure 33.  Micrographs of overgrowths and pseudomorphs.  Albite and quartz 

overgrowths in original pore space now filled with blue epoxy (A), and illite and 

kaolinite pseudomorph of plagioclase grain (B).  Q is quartz; H is hematite grain coat; 

and I is intraclast.  White arrow points to relict hematite grain coat that separates 

pseudomorph from illite cement.  Kaolinite ‘books’ are first-order gray in 33B.  Plane 

light in 33A, crossed nicols in 33B; scale bar is 0.5 mm. 
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 The small amount of remaining plagioclase is heavily illitized along grain 

boundaries and fractures (Figure 32A).  Illite pseudomorphs of plagioclase are 

identifiable by relict hematite rims; where hematite rims are rare, illite pseudomorphs 

commonly cannot be distinguished from pore-filling illite (Figure 33B).  The remaining 

feldspar is almost entirely K-feldspar in granite and gneiss, though illite replacement 

heavily affects K-feldspar as well.  Pressure-solution contacts between quartz grains are 

more common in rocks that have been illitized, perhaps because removal of plagioclase 

increased lithostatic load on the remaining framework (Hubert et al., 2001).  ‘Books’ of 

hydrothermal kaolinite are commonly found intergrown with or replacing illite (Figure 

33B). 

 Interstitial mosaic albite precipitation occurred in the upper ~600 m of the 

Sugarloaf Arkose during the hydrothermal event, and is characterized by randomly 

oriented tabular to prismatic crystals not in optical continuity with detrital plagioclase or 

albite overgrowths (Hubert et al., 2001).  Mosaic albite pore-fills are often twinned, and 

most are cloudy and turbid due to vacuolization.  The sandstones just below the Deerfield 

Basalt are extensively bleached by removal of hematite rims and cements (Hubert et al., 

2001). 

2.4 Conglomerate Lithology 

 Most of the Sugarloaf Arkose is pebbly sandstone, locally a conglomerate, 

especially adjacent to channel banks (Section 1.5).  Granitoids are common in 

conglomerates in all three facies, and comprise >25% of the valley-river and piedmont-

river conglomerates (Figures 34 and 35A).  Granitoids are: coarse-grained, phaneritic, 

acidic rocks of granite, granodiorite, and tonalite; foliated gneiss; granite pegmatites; and 
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graphic granite of quartz and microcline intergrowths (Streickeisen, 1979; Winter, 2001) 

(Figure 35B).  Quartz and K-feldspar phenocrysts and megacrysts >3 cm are common in 

non-foliated, phaneritic pebbles.  Degrees of foliation vary among granitoids: many 

‘granites’ have weak-moderate gneissic foliation, and many ‘granite gneisses’ become 

less foliated across the observed face. 

 Almost all granites and granite gneisses are rich in K-feldspar with a pink or 

salmon color.  White-hued, medium-grained, muscovite-rich granodiorite to tonalite is 

found rarely among valley-river and piedmont-river conglomerates.  Biotite is the 

common mafic mineral in the phaneritic rocks, amphibole less so.  Pyroxenes and 

amphibole are more common in the granite gneisses.  Pegmatites commonly do not have 

mafic minerals, and graphic granite pebbles always lack mafic minerals.  Muscovite is 

common, especially in pegmatites and gneisses.  Many granitoids are heavily altered by 

hematite infiltration along fractures and feldspar dissolution and replacement, especially 

in the illite diagenetic zone. 

 Conglomeratic beds in the valley- and piedmont-river facies commonly have 

‘floods’ of granitoids and K-feldspar, quartz, and K-feldspar-quartz megacrysts (Figure 

36).  Again, K-feldspar is colored pink or salmon due to microscopic inclusions of 

hematite in the crystal lattice (Dyar et al., 2008).  Hematite inclusions form during re-

equilibration of plutonic rocks and late fluids, and may continue as the rocks are uplifted 

and weathered (Kerr, 1994; Putnis et al., 2007).  Pervasive authigenic hematite also stains 

pebbles in the arkose, perhaps further saturating K-feldspar pores with hematite 

inclusions.  Color saturation decreases inward and away from fractures and cleavage 
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Figure 34.  Pie diagrams of conglomerate lithology in the valley-river (A) and piedmont-

river (B) facies. 
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Figure 35.  Pie diagram of conglomerate lithology in the alluvial-fan facies (A) and 

photograph of graphic granite pebbles (B).  Heavy lines indicate orientation of quartz 

intergrowths in pink K-feldspar, presumably microcline.  Pencil is 15 cm; sample on right 

is propped up with gray rock. 
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planes (Figure 36A).  Red-brown hematite coats stain rinds and open fractures of pebbles 

(Figure 36B). 

 Milky-white vein quartz is less common than clear quartz (Figure 36B).  The hue 

is due to fluid and gas inclusions, open vacuoles, and ‘comb-like’ interpenetrating sub-

units (Folk, 1980).  The two types of quartz are combined because no rigorous 

operational definitions exist. 

 Quartzite is the dominant pebble in the alluvial-fan facies (31%), and is present in 

the other facies.  In all facies, gray quartzite with up to 15% muscovite is most common 

(Figure 37A).  Pink to red quartzite with ‘blips’ of white quartz is rare in the piedmont-

river conglomerates; only the gray quartzites appear in the valley-river and alluvial-fan 

facies.  Both types of quartzite are fine-grained and contain relict bedding 1-2-cm thick. 

 Other metamorphic pebbles include phyllites, schist, and amphibolite.  Rarely are 

schists garnetiferous.  The combined lithologies comprise 20% of pebbles in the 

piedmont river, and 17% in alluvial fan. 

 Mud rip-up intraclasts are present throughout the valley-river facies and in the 

upper ~350 m of the piedmont-river facies (Hubert et al., 2008).  The mudstones are 

sandy, micaceous, and occasionally contain calcite caliche nodules, casts of rootlets and 

Scoyenia burrows. 

 The mean sphericity of 16 samples of 100 pebbles each is plotted on a modified 

Zingg classification where shape is based on the ratio of the short, intermediate, and long 

axes (Zingg, 1935; Boggs, 2006) (Figure 37B).  On the plot, sphericity increases on both 

axes to spherical (1.0).  Lithology influences sphericity: granitoid, quartz, and K-feldspar 

are commonly equant, and metamorphic pebbles are oblate.  In theory, sphericity 
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Figure 36.  Photographs of K-feldspar pebbles (A) and quartz and K-feldspar-quartz 

pebbles (B).  In A, K-feldspars have broken along cleavage planes.  Arrows point to areas 

where pink color is absent.  Sample on right is propped up with a gray rock.  In B, pebble 

A is mostly K-feldspar with clear quartz (white arrow) and propped up with a gray rock; 

pebble B is milky-white vein quartz with hematite-stained fractures (black arrow).  

Pebble C is uncharacteristic dark-gray, slightly translucent quartz.  Pencil is 15 cm. 
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Figure 37.  Photograph of quartzite pebble (A) and modified Zingg (1935) diagram of 

pebble sphericity (B).  In A, thin-bedded, gray quartzite is propped up by gray rock chip; 

pencil is 15 cm.  In B, means of 16 samples (100 pebbles each) are plotted for average 

sphericity.  Facies means (not shown) plot in the equant field for valley river; oblate field 

for piedmont river; and triaxial field for alluvial fan. 
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increases with distance of transport due to abrasion; however the sphericities are similar 

in each facies.  The valley-river pebbles are slightly more rounded than the other facies, 

as might be expected, but the large scatter and small number of samples does not provide 

much support for this conclusion.  Pebbles in each facies are dominantly sub-rounded, 

with sub-angular pebbles nearly as common as sub-rounded in the alluvial-fan 

conglomerates. 

 When using pebble lithologies to infer source terranes, they must be compared to 

medium-sand compositions because grain-size is strongly related to composition.  Schist 

and phyllites pebbles are easily reduced to sand during weathering and transport, whereas 

quartzite resists abrasion.  Granites weather to particles from finely-phaneritic sand to 

pegmatitic boulders.  Table 3 compares pebble and medium-sand composition.  G+K is 

granitoids plus K-feldspar.  For conglomerates, K includes K-feldspar and K-feldspar-

quartz pebbles.  In medium sands, G+K includes quartz, plagioclase, K-feldspar, and 

micas in granite and granite gneiss, plus unit K-feldspar.  Qtzte is quartzite, and Mtx is 

phyllite, schist, and amphibolite.  For medium sand, Mtx includes quartz and micas in 

schist and schistose quartz (Appendix C). 

 Figure 38.  Conglomerate in the valley-river facies is G+K-rich (64%), with 

granitoids more common than K-feldspar by 2:1 (Appendix D).  Qtzte and Mtx are about 

equal, with mean values <20%.  In medium sand, the percentage of Qtzte doubles at the 

expense of G+K; Mtx is the same in conglomerate and medium sand. 

 Figure 39.  The piedmont-river conglomerates have the same G+K as in the valley 

river, but the ratio of G:K is >4:1.  Qtzte is less common and Mtx more common in 

piedmont-river conglomerates than in the other two facies.  Similar to the valley rivers,  
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Figure 38.  G+K-Qtzte-Mtx plots of conglomerate (A) and medium sand (B) in the 

valley-river facies.  A circled point is the mean, and a dashed hexagon shows the 95% 

confidence interval around the mean.  The poles are defined in the text.  Numbers 

correspond to sample numbers in Appendix C. 
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Figure 39.  G+K-Qtzte-Mtx plots of conglomerate (A) and medium sand (B) in the 

piedmont-river facies.  A circled point is the mean, and a dashed hexagon shows the 95% 

confidence interval around the mean.  The poles are defined in the text.  Numbers 

correspond to sample numbers in Appendix C. 
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Qtzte abundance increases in medium sand.  Unlike the valley rivers, Mtx and G+K 

abundances decrease in response to quartzite-enrichment. 

 Figure 40.  Alluvial-fan conglomerates have equal amounts of Qtzte and G+K.  

The ratio of G:K is about 2:1.  Mtx are more common than in valley-river conglomerates, 

but less than in piedmont rivers.  Alluvial-fan medium sand has more G+K than Qtzte, 

but is still Qtzte-rich compared to medium sand in the other facies. 

 Summary.  G+K dominates composition of valley-river and piedmont-river 

conglomerates, making up almost two-thirds of all pebbles in each facies.  However, the 

valley-river conglomerates contain twice as much K-feldspar as piedmont-river 

conglomerates.  Qtzte is slightly more abundant in the valley rivers; the same is true of 

Mtx in piedmont rivers.  Medium-sand compositions are more Qtzte-rich than the 

conglomerates in both facies; Mtx is less common in piedmont-river medium sands than 

in conglomerate.  The alluvial-fan conglomerates contain equal amounts of Qtzte and 

G+K, and more Mtx than the valley-river facies.  Unlike the other facies, the medium 

sand contains less Qtzte, and more G+K. 
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Figure 40.  G+K-Qtzte-Mtx plots of conglomerate (A) and medium sand (B) in the 

alluvial-fan facies.  A circled point is the mean, and a dashed hexagon shows the 95% 

confidence interval around the mean.  The poles are defined in the text.  Numbers 

correspond to sample numbers in Appendix C. 
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CHAPTER 3 

 

PROVENANCE AND TECTONO-SEDIMENTARY HISTORY 

 

3.1 Provenance of the Sugarloaf Arkose 

 Each of the depositional facies has aspects of two or three of the provenance 

fields (Figures 10, 18, and 24).  This is in part because of the complicated regional 

geology created by multiple orogenies.  Mixed provenance signals may also be related to 

limits and shortfalls of the Qt-F-L and Qm-F-Lt provenance diagrams (Dickinson, 1985). 

The empirically-derived models have been criticized because not all sandstones plot in 

the proper tectonic setting; however, other workers have shown the method is valid when 

average values are used (Boggs, 2006). 

 3.1.1 Valley-river Facies 

 The valley-river facies has a mixed provenance of continental block, magmatic 

arc, and recycled orogen (Table 4; Figures 41 and 10).  The high ratio of quartz to 

feldspar indicates a mixture of feldspathic basement uplift and quartzose craton interior 

(Figures 41 and 10).  Uplift sources are traditionally associated with rift-basin sands shed 

from basement granites and gneiss, whereas cratonic sources imply mature quartzose 

sand recycled from a continental shield or deposited in deep-water (Dickinson and 

Suczek, 1979).  The valley-river sands have a 4:1 ratio of plagioclase to K-feldspar, 

which favors immature basement-derived sand over mature, plagioclase-poor cratonic 

sand (Figures 41 and 11A). 
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Figure 41. Summary of petrologic plots.  The means and 95% confidence 

intervals of the valley-river (blue), piedmont-river (red), and alluvial-fan (yellow) 

facies are shown.  Pole abbreviations are as follows: Qt is total quartz; F is 

feldspar; L is lithic fragments; Qm is monocrystalline quartz; Lt is lithic 

fragments and polycrystalline quartz; P is plagioclase; K is K-feldspar; Qtzte is 

quartzite rock fragments; Gr is granitic rock fragments; Gn is gneissic rock 

fragments; Tp is twinned plagioclase; Up is untwinned plagioclase; Uk is 

untwinned K-feldspar; M is microcline; Qp2-3 is polycrystalline quartz with two 

or three subunits; Qp>3 is polycrystalline quartz with more than three subunits; 

Qnu is non-undulose monocrystalline quartz; and Qu is undulose monocrystalline 

quartz.  Field abbreviations are as follows: RO is recycled orogen; CI is 

continental interior; TC is transitional continental; BU is basement uplift; DA is 

dissected arc; TA is transitional arc; UA is undissected arc; QR is quartzose 

recycled; TR is transitional recycled; LR is lithic recycled; PLU is plutonic; 

M&U-R Mtx is  medium- and upper-rank metamorphic; L-R Mtx is lower-rank 

metamorphic; M&U-R Gn is medium- and upper-rank gneiss; L-R Gn is lower-

rank gneiss; and S&S is slate and schist. 
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 The criteria to differentiate continental and magmatic-arc plutons are gradational, 

shifting toward magmatic arc with increasing lithic fragments (Dickinson, 1985).  When 

polycrystalline quartz is removed from the Q pole, the valley river mean becomes more 

feldspathic, with all but two sands having <50% monocrystalline quartz, and the sands 

shift strongly towards the Lt pole (Figures 41 and 10B).  This shift indicates that the 

arkose in the valley rivers reflects continental and magmatic-arc plutons.  Regardless of 

the tectonic heritage, the plutonic source rocks were granite and granite gneiss (Figures 

41 and 11B), although the quartz grains indicate granite was more important than gneiss 

(Figures 41 and 15). 

 The valley-river sands lack chert and volcanic grains, and are enriched with schist 

and schistose quartz, quartzite, polycrystalline quartz, and feldspar, which is typical of a 

recycled collision orogen (Dickinson and Suczek, 1979; Dickinson, 1985) (Appendix C).  

During crustal collisions, continental and/or arc plutons are draped with metasedimentary 

rocks transported by nappes or thrust sheets.  Subsequent erosion produces sands not only 

typical of a continental block or magmatic arc, but also with substantial amounts of slate, 

phyllite, schist, and quartzite (Dickinson and Suczek, 1979). 

 The valley-river sands most likely came from the mantled gneiss domes of the 

Oliverian plutonic suite and their nappe-emplaced metasedimentary cover, and the 

Kinsman granodiorite of the New Hampshire plutonic suite (Figure 42; Zen, 1983; 

Lyons, 1997).  These rocks lie upstream of the paleocurrents in the area northeast of the 

Deerfield basin, where the BHA extends into southwestern New Hampshire (Figure 7). 

 The Late Ordovician Oliverian suite are variably metamorphosed mantled gneiss 

domes of the BHA, with granite, granodiorite, and tonalite (Lyons, 1997).  These rocks  
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Figure 42.  Summary cartoon of provenance.  ‘Bubbles’ summarize the three source 

terranes for the Sugarloaf Arkose.  Blue arrows indicate approximate sediment dispersal 

paths into the Deerfield basin.  B.I.C. is Belchertown igneous complex. 
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are the core of the Bronson Hill island arc, modified to gneiss during their emplacement 

in the Taconian orogeny (Robinson, 2003).  The Warwick dome of Massachusetts and 

New Hampshire is notable among them because the gneiss is pegmatitic; this dome may 

be the source of some of the quartz and K-feldspar megacrysts in the valley-river 

conglomerates (Zen, 1983). 

 The metamorphosed shallow-water sediments of the CVS were emplaced over the 

BHA by nappe folding during the Acadian, and include Ordovician schists of the 

Partridge Formation, Silurian Cough quartzite, and Devonian mica schists and phyllites 

of the Littleton Formation (Zen, 1983; Robinson, 2003).  The underlying gneiss rose as 

domes after nappe folding, creating the Ordovician mantled gneiss domes of the BHA.  

Probably medium sand from the mantled domes provides the signal of the dissected arc 

and collision orogen, plus schist, quartzite and granite gneiss.  The valley-river 

conglomerates contain similar proportions of schist, phyllite, and quartzite derived from 

the same source (Table 3, Appendix D). 

 The Devonian Kinsman is a medium- to coarse-grained granodiorite emplaced 

during and after the Acadian orogeny (Dorais, 2003).  This compound pluton would yield 

quartzo-feldspathic sand characteristic of an uplifted continental basement: namely 

monocrystalline non-undulose quartz, unit plagioclase and K-feldspar, and granite.  The 

granodiorite locally includes white to light pink K-feldspar megacrysts up to 15-cm long, 

which may be another source of the K-feldspar-rich conglomerates (Lyons, 1997; Dorais, 

2003). 
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 3.1.2 Piedmont-river Facies 

 The piedmont-river samples have a mixed continental block and recycled orogen 

provenance (Figures 41 and 18).  Monocrystalline quartz is more abundant than 

polycrystalline (Figures 41 and 21), implying there is no magmatic arc component to the 

sandstone provenance (Figures 41 and 18B).  The piedmont-river sands are rich in 

plagioclase and lack volcanic grains, indicating basement uplift and collision orogen 

sources similar to the valley-river sands.  Quartz provenance is also somewhat similar: 

both facies are dominated by undulose monocrystalline quartz and so belong to granite-

derived fields.  Piedmont-river polycrystalline quartz is fine-grained, implying the granite 

was commonly slightly metamorphosed (Figures 41 and 21). 

 A major delineation between valley- and piedmont-river sands is the difference 

between granitic and gneissic rock fragments and the feldspar component of those rock 

fragments (Figures 41, 18 and 21).  The valley rivers contain approximately equal 

amounts of granite and granite gneiss, and twinned and untwinned plagioclase.  Granite is 

all but absent from the piedmont rivers, and twinned plagioclase is uncommon (Table 4).  

Granite gneiss is the most common quartzo-feldspathic rock fragment, and untwinned 

plagioclase the most common feldspar (Figures 41, 19B and 20A).  In addition, K-

feldspar grains are about twice as abundant as in the valley-river facies (Table 4). 

 The piedmont rivers also transported granitoid pebbles of unfoliated granite that 

grades into strongly foliated granite gneiss.  K-feldspar is much less common among 

piedmont-river conglomerate than in the other facies; however, K-feldspar is still more 

common than granitoid pebbles by 2:1.  Reduced abundance of K-feldspar indicates 

pegmatite is less common in the source rock west of the basin. 
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 The delineation of granite gneiss from granite in thin section is based in-part on 

lack of twinning in plagioclase.  This operational definition is based on the observation 

that surface defects, like twin boundaries, tend to ‘heal’ as temperature rises during 

metamorphism (Yardley, 1989).  Dislocation climb and cross-slip in experimentally-

deformed plagioclase occurs at pressures and temperatures of 10-15 kbar and 600-900oC.  

In naturally-deformed samples, plagioclase recovers at temperatures >550oC (Yardley, 

1989).  Hydrolitic weakening can lower the temperature required to induce slip by 200oC 

per ~0.1 wt % water (Tullis, 1983).  In the piedmont-river sands, individual untwinned 

grains are more common than twinned, further supporting the inferred gneissic source 

(Figures 41 and 20A). 

 Paleocurrents in the piedmont-river facies indicate eastward flow into the 

Deerfield basin from the west, and potential source rocks include Devonian strata of the 

CVS (Figure 42).  The Littleton, Erving, Goshen, Waits River, and Gile Mountain 

Formations are composed of schists and phyllites locally interbedded with amphibolite 

and granofels.  The Goshen and Gile Mountain Formations have extensive gray quartzite 

members west of the Deerfield basin (Zen, 1983).  The formations are interpreted to be 

shallow-water sediments emplaced during the nappe stage of the Acadian orogeny, and 

locally warped by the ‘Vermont Line’ of gneiss domes (Robinson, 2003).  Sands derived 

from these metamorphic rocks have the characteristics of collision recycled orogeny, rich 

in schist, schistose quartz, and quartzite grains.  Schist, phyllites, and quartzite pebbles 

are produced by weathering of these rocks. 

 The piedmont rivers drained a terrane of intruded metasediments.  Devonian 

granodiorite gneiss, foliated granite and pegmatite of the Williamsburg and Middlefield 
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intrusions are common surface rocks west of the Deerfield basin (Zen, 1983).  Dikes and 

larger plutonic bodies of these intrusives are present in all of the metasediment units cited 

above, especially west of the southern part of the basin.  The Belchertown igneous 

complex now exposed in Whately may have contributed quartz monzodiorite, perhaps 

including the local boulder-sized clasts.  The rivers transported grains of gneiss, 

untwinned plagioclase, and finely-polycrystalline quartz grains characteristic of uplifted 

continental basement and a recycled collision orogen. 

 3.1.3 Alluvial-fan Facies 

 The medium sand has a mixed provenance, with basement uplift and collision 

recycled orogen like the other two facies, but also a dissected magmatic arc, similar to the 

valley rivers (Figures 41 and 24).  Also similar to the valley-river facies is the abundance 

of K-feldspar pebbles (Table 4). 

 The similarity of the alluvial-fan and piedmont-river is striking because the 

sources are on opposite sides of the basin.  Medium sand in the alluvial fan is rich in 

gneiss, untwinned plagioclase, finely-polycrystalline quartz, and K-feldspar grains, but 

poor in granite and twinned plagioclase (Figures 41, 25, 26, and 28). 

 Gray quartzite pebbles are as abundant as granitoid and K-feldspar.  Other 

metamorphic pebbles are about as common as in the valley-river facies (Table 3).  Thus 

the source area of the alluvial fan had mantled plutons as did the valley river, but with the 

addition of significant amounts of quartzite. 

 A proximal source is implied by the boulders up to 0.5-m long and the alluvial fan 

itself.  Alluvial-fan paleocurrents were from the northeast, off the northern flank of the 

Pelham Dome (Figures 42 and 7).  Another source could be the Warwick dome on the 
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Massachusetts-New Hampshire line mantled by CVS metasedimentary Erving and 

Littleton Formations, and Ordovician Ammonoosuc metavolcanic rock (Zen, 1983). 

 In general, weathering of a mantled gneiss dome provides gneiss, untwinned 

plagioclase, schist, and schistose quartz.  The accompanying pebbles are pegmatite, 

granitoid, and schist and phyllite.  These types of grains and pebbles are present in the 

alluvial-fan and valley-river facies. 

 The abundant quartzite pebbles are not adequately explained by either the Pelham 

or Warwick dome.  The Silurian Clough quartzite crops out northeast of the alluvial fan, 

but the Clough is a metaconglomerate that does not resemble the quartzite pebbles.  A 

more likely scenario is that the quartzite-rich member of the Gile Mountain Formation 

was present, but removed by erosion.  This possibility is supported by cross-sections in 

Zen (1983) (sheet 2, section A-A’). 

3.2 Tectono-sedimentary History of the Sugarloaf Arkose 

 The three sedimentary facies appear in the basin due to changes in one or more of 

the sedimentary controls.  Paleoclimate was monsoonal and arid-dominated throughout 

deposition (Section 1.3.3), and therefore not responsible for changes in depositional 

facies.  Thus tectonism was the major determinate of paleocurrent flow, sedimentary 

style, and source terrane. 

 In this section, tectonic events in the pre-CAMP Deerfield basin are reconstructed 

(Figure 43).  Each facies constrains the time of formation, location, and motion of basin-

defining normal faults, herein referred to as basin-bounding faults (BBF).  The Eastern 

Border Fault (EBF) is a separate faulting event that is younger than and incorporates parts  
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Figure 43.  Schematic tectono-sedimentary evolution of the Sugarloaf Arkose in the 

Deerfield basin.  In A-D, only active fault scarps, channels, and fans are shown; 

abandoned and buried features are not.  Channels are darker where paleocurrents are 

available.  The scale in A applies to all panels.  A. Valley rivers flowed SSW down an 

early ‘sag’ basin.  One or more valley rivers probably were present in areas to the south 

now covered or eroded.  B. Formation of the Deerfield BBF redirects the valley rivers 

and causes east-flowing piedmont rivers to begin building a megafan.  C. Propagation of 

the Deerfield BBF to the NNE and SSW increases the size of hanging wall 

accommodation space and thus the megafan.  Alluvial fans build from the fault scarp.  

The Central graben BBF (Wise, 1992) propagates NNE as well, and the two faults 

overlap at the Amherst block, forming a relay ramp.  D.  The Deerfield BBF and Central 

graben BBF connect across the Amherst block, forming an integrated BBF.  Channels are 

lighter where paleocurrent data are unknown. 
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of Triassic BBFs in the Deerfield and Hartford basins.  The three facies record the 

formation of a hydraulically-open ‘sag’ basin, widening and deepening of the basin, and 

the change to a hydraulically-closed basin. 

 3.2.1 Sag Basin and Valley Rivers 

 Initial faulting parallel to N20E was widespread across much of the northern 

CAM area, including Massachusetts (Section 1.3.2, Figure 5).  The relatively small throw 

on the numerous nascent faults led to a Deerfield ‘sag’ basin, similar to those observed in 

early East African rifts (Wise, 1992; Morley, 2002).  Minor horst and graben topography 

within the synformal sag probably led to shallow valleys trending NNE-SSW; the uneven 

topography at the base of the Deerfield basin may partly be valleys created at this time 

(Figure 6, A2 to A8). 

 Re-direction of the previous, probably east-to-west, drainage pattern into the horst 

valleys led to deposition of the valley-river facies in numerous isolated depocenters 

(Wintsch et al., 2003) (Figure 43A).  Antecedent drainage may also have incised into 

relatively easily eroded areas of basement, especially low-rank metasediments in the 

CVS.  The fluvial redbeds indicate the sag basin was hydraulically-open and the rate of 

sedimentation exceeded subsidence.  The braided rivers filled horst valleys and avulsed 

over growth folds into newly created or unoccupied valleys, thereby connecting isolated 

mini-basins (Gawthorpe and Leeder, 2000).  The high rate of avulsions reduced the 

amount of time detritus spent exposed on interfluves, and so few ventifacts formed (Table 

3).  Not shown on Figure 43A are tributaries to the valley rivers that drained areas 

underlain by Ordovician mantled gneiss domes and Devonian plutons (Section 3.1.1).  
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 Valley rivers are the earliest depositional facies in the Deerfield basin (Figure 7).  

Deposition began at about 218 Ma (Olsen, 1997), so the onset of rifting and basin 

formation was no older than late Carnian (Figure 44).  The valley-river facies continues 

through the arkose to the unconformity at the top of the formation (Figure 4, Section 

1.4.1) 

 3.2.2 Basin-bounding Fault and Piedmont-River Megafan 

 The lowest known outcrop of the piedmont rivers is at the base of the type section 

along Route 116 at Mount Sugarloaf in South Deerfield, about 600 m below the Deerfield 

Basalt (Figure 6).  Assuming uniform depositional rates, the piedmont-river facies 

appears in the middle Norian, ~210 Ma (Figure 44).  Whether valley-river redbeds 

underlie the piedmont-river megafan is unknown because there are no outcrops between 

the western margin and the outcrop along Route 116.  However, SSW-flowing valley 

rivers are preserved in the Hartford basin from about this time on, suggesting that 

through-going valley rivers existed in both basins (Figure 7).   

 The formation of the Deerfield BBF led to initiation of the piedmont-river facies 

and increased variability in valley-river paleocurrents (Figure 43B).  Several piedmont 

river fans coalesced into the prominent, low-angle megafan that built eastward into the 

basin (Gawthorpe and Leeder, 2000) (Figure 43B).  Ventifacts are abundant in the 

piedmont-river facies, indicating substantial storage time on megafan interfluves.  Coeval 

with the megafan was increased variation in valley-river paleocurrent vectors (Figure 7). 

 The Deerfield BBF perhaps formed from two or more of the minor normal faults 

that linked into a larger fault (Section 1.3.2).  The initial location of the BBF is based on: 

1) a location east of the lowest occurrence of the megafan; 2) the western edge of the 
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Figure 44.  Summary of Deerfield basin history.  Sedimentation in the early fluvial basin 

(TS III of Olsen, 1997) begins at ~218 Ma, and is modified through time by formation 

and interaction of basin-bounding faults (BBF).  Above the unconformity, the basin is 

topographically closed, with playas, lakes, BBF fanglomerates, and minor fluvial strata.  

Hydrothermal diagenesis of the sands peaked at 185 Ma. Opening of the spreading center 

at the Mid-Atlantic Ridge started basin inversion at 180 Ma.  The EBF formed after 

deposition, diagenesis, and inversion of basin strata (Roden-Tice and Wintsch, 2002). 
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Amherst block is cut by a down-to-the-west normal fault on strike with the EBF north of 

the Mt. Toby block (Chandler, 1978); 3) the fault formed normal to N20E-S20W 

extension (Section 1.3.2); and 4) the Mt. Toby Conglomerate rests on Paleozoic basement 

of the Mt. Toby block, suggesting that the Sugarloaf Arkose was never deposited on the 

block (Hubert et al., 2008).  The dip of the fault was controlled by the foliation of the 

west flank of the Pelham dome, locally 40o W (Wise, 1992). 

 Displacement previously accommodated by smaller normal faults was transferred 

to the larger Deerfield BBF, leading to the ‘deaths’ of many of the faults (Gawthorpe and 

Leeder, 2000).  Without the minor NNE-SSW faults to channel them, valley rivers shifted 

to a more southerly flow.  It seems likely that several alluvial fans built off the Deerfield 

BBF.  These fans would be earlier members of the alluvial-fan facies that identifies the 

next tectono-stratigraphic stage, described below.  Fans from this time are not observed 

because they are buried by the early Jurassic alluvial fans of the Mt. Toby Conglomerate 

(Figure 2). 

 Increased displacement along the Deerfield BBF initiated eastward-flowing 

piedmont rivers that drained Devonian rocks in highlands west of the basin.  The 

resulting hanging wall megafan probably forced the valley rivers eastward, another 

potential source of paleocurrent variation. 

 The valley and piedmont rivers coexisted from about half-way through deposition 

of the Sugarloaf Arkose to the top of the unit (Figure 44).  The piedmont rivers evidently 

discharged into the through-flowing valley rivers (Figure 43B). 
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 3.2.3 Propagation and Integration of the Basin-Bounding Faults 

 As extension continued through the late Triassic, the Deerfield BBF propagated 

NNE along the northwest flank of the Pelham dome (Figure 43C).  The relative timing of 

propagation is based on the appearance of the alluvial-fan facies in the northeast corner of 

the Deerfield basin.  The Deerfield BBF extended into the Hartford basin, where the 

alluvial fan in the New Haven arkose built from the scarp as seen on I-91 next to the 

power plant (Handy, 1977; Wise, 1992).  Alluvial fans may have existed along the entire 

length of the normal fault, but are buried by Jurassic strata. 

 The presence of mud intraclasts in the upper two-thirds of the megafan indicates 

the preserved strata become increasingly distal with time (Hubert et al., 2008).  Widening 

and deepening of the basin increased the drainage catchment westward, and the megafan 

on-lapped the flexural margin.  The megafan also grew to the north, overlapping 

previously-deposited valley river sediment in the middle of the basin, but did not build 

southeast into the Hartford basin.  The Belchertown igneous complex in Whately may 

have formed highlands that limited the southern extent of the megafan. 

 Valley-river redbeds are present north and south of the megafan (Figure 7).  There 

is no evidence of closed-basin lake or playa strata below the unconformity at the base of 

the Fall River beds unconformity, which suggests the valley rivers flowed past the toe of 

the megafan into the Hartford basin.  At times of high sediment flux, the piedmont rivers 

may have choked and obstructed the valley rivers.  Discharge choking would force 

avulsions in the valley rivers, presumably toward the BBF (Gawthorpe and Leeder, 2000) 

 As the Deerfield BBF propagated SSW, the Central graben BBF of the Hartford 

basin grew to the NNE (Wise, 1992, 2008 pers. com.).  The faults overlapped in the 
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vicinity of Amherst, forming a relay ramp between the Central graben BBF to the east 

and the Deerfield BBF to the west (Figure 43C).  The relay ramp formed a ‘soft linkage’ 

zone between the Deerfield BBF footwall anticline and the hanging wall syncline of the 

Central graben BBF (Walsh and Watterson, 1988) (Figure 43B). 

 Relay ramps provide topographic lows between fault segment anticlines, which 

may be breached by rivers (Anders and Schlische, 1994; Gawthorpe and Leeder, 2000; 

Trudgill, 2002).  Valley rivers flowing NNE to SSW prior to relay ramp formation may 

have been captured and re-directed down the ramp (Trudgill, 2002).  Redirection of 

earlier rivers explains the presence of Sugarloaf Arkose on the otherwise topographically-

high Amherst block. 

 Joints and faults commonly form on relay ramps as the fault tips continue to 

propagate past each other.  If extension continues long enough, the cross-ramp faults link 

the fault segments, forming an integrated fault with an along-strike kink or bend (Peacock 

and Sanderson, 1991).  The Deerfield BBF and Central graben BBF were linked by such 

cross-ramp faults along the west flank of the Pelham dome (Figure 5).  The tightly-

spaced fault package just south of the Mt. Toby block is typical of én échelon ramp 

faulting: overlapping, synthetic faults step basinward down the relay ramp (Moustafa, 

2002).   

 The connection across the Amherst block formed an integrated basin-bounding 

fault linking the early Deerfield and Hartford ‘sag’ basins in a composite basin (Schlische 

and Anders, 1996; Schlische, 2003) (Figure 43D).  The Amherst block became an 

anticlinal, hanging-wall structural high, which subsided along the integrated BBF.  The 
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Deerfield and Holyoke basalts were once-continuous, indicating substantial subsidence 

and burial of the block by about 201 Ma (Philpotts, 1998). 

 The unconformity between the Sugarloaf Arkose and Fall River beds represents 

the change from a fluvial deposition in an open basin to lacustrine and paludal strata 

deposited in a closed basin.  Hard linkage between the Deerfield BBF and the Central 

graben BBF probably coincided with this depositional change: the rate of subsidence 

along the integrated BBF was greater than the rate of sedimentation, capturing through-

flowing rivers and forming standing water bodies (Leeder and Gawthorpe, 1987; 

Gawthorpe and Leeder, 2000) (Figure 44).  The unconformity itself formed due to 

sinking, slight tilting and erosion of Sugarloaf strata prior to deposition of the Fall River 

beds in a closed basin (Hubert et al., 2008). 

 The integrated BBF controlled basin subsidence into the Lower Jurassic.  The 

local alluvial fan in the Sugarloaf Arkose continued as the Pisgah Mountain fan of the 

Mt. Toby Conglomerate (Wessel, 1969).  The heads of the four alluvial fans of the Mt. 

Toby Conglomerate lie along the integrated BBF, as do fanglomerates in the Portland 

Formation of the Hartford basin (Hubert and Reed, 1978). 

 Post-depositional tectonism led to displacement along the EBF in the Late 

Jurassic to Cretaceous (Roden-Tice and Wintsch, 2002; 2007; Wintsch et al., 2003; 

Roden-Tice et al., 2008).  The strata in the integrated basin were tilted to the east, and 

folded by differential displacement along the EBF (Schlische and Anders, 1996).  Since 

the EBF stopped moving, erosion modified the once-continuous integrated basins: 1) the 

western edge of the integrated basins was removed, leaving only the deepest keel closest 
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to the EBF; 2) the strata that connected the Deerfield and Northfield basins were 

removed; and 3) the thickness of Mesozoic strata on the Amherst block was greatly 

thinned, partially separating the Deerfield and Hartford basins. 
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CHAPTER 4 

 

SUMMARY AND CONCLUSIONS 

 

1) The Sugarloaf Arkose is a ~2-km-thick fluvial arkose deposited in late Triassic 

time in the Deerfield basin, Massachusetts.  The strata are mostly pebbly 

sandstones with minor conglomerate and mudstone.  There are three depositional 

facies based on paleocurrent vectors and sedimentary style.  The valley-river 

facies has dominantly NNE to SSW paleocurrent flow, and consists of channel 

sandstones with interbedded overbank mudstones.  The piedmont-river facies 

(megafan) has stacked channel-fill bodies with or without overbank mudstones 

and W to E paleocurrents.  An alluvial fan is the third facies: boulder-bearing 

graded beds with antidune/standing wave-forms deposited by E to W-flowing 

flash floods. 

2) Modal analysis was made of 51 thin sections: three from each of 17 outcrops.  In 

each thin section 300 medium-sand grains were counted.  A sub-count was made 

of the polycrystallinity and undulosity of quartz.  The whole-rock assemblage was 

measured by 100 points per thin section of grains, cements, matrix, and porosity.  

The lithology and size of 100 pebbles from 16 locations were combined with data 

from Stevens (1977) to assess conglomerate composition. 

In provenance analysis, the Gazzi-Dickinson point-count method minimizes 

the effects of grain size on composition.  This type of modal analysis is restricted 
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to medium-size sand grains because medium sand best reflects source rock 

lithology, and they are abundant. 

Valley-river medium sand is dominated by unit quartz, granite, granite gneiss, 

and plagioclase grains.  Monocrystalline framework grains are mostly quartz and 

plagioclase, and minor K-feldspar; polycrystalline grains contain slightly more 

quartzite and granite than granite gneiss.  Twinned is more abundant than 

untwinned plagioclase, and microcline is rare compared to untwinned K-feldspar.  

Medium-sized quartz grains are mostly monocrystalline and undulose.  

Polycrystalline quartz with two or three subunits is more common than aggregates 

of four or more subunits. 

Piedmont-river medium sand is dominantly unit quartz and granitoids.  The 

sand is quartz-rich compared to the whole rock.  The sandstones vary from arkose 

and lithic arkose to subarkose.  Unit quartz is the dominant monocrystalline grain, 

with plagioclase less abundant, and K-feldspar more abundant than in the valley 

rivers.  Granite gneiss is the major polycrystalline grain; granite is virtually 

absent.  Plagioclase and K-feldspar are mostly untwinned.  In all samples, more 

than 25% of the polycrystalline quartz has four or more subunits, and undulose 

monocrystalline quartz is more abundant than non-undulose. 

Alluvial-fan medium sand is subarkose and almost 75% unit quartz and rock 

fragments.  Plagioclase is more abundant than K-feldspar, and granite gneiss is 

much more abundant than granite.  Most of the plagioclase is untwinned, and 

microcline is more abundant in alluvial-fan samples than valley-
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river and piedmont-river sands.  Most monocrystalline quartz is undulose, and 

more than 25% of polycrystalline quartz has four or more subunits. 

3) The tectonic provenance signals of each of the three facies are mixed on the 

Dickinson plots, reflecting the regional geology with its history of multiple 

collisional orogenies, intrusions, and metamorphism. 

Valley-river sand has a combined continental block and recycled orogen 

provenance.  Combining polycrystalline quartz with rock fragments shifts the 

samples away from a continental block provenance towards a ‘mixed’ provenance 

signal including dissected magmatic arc. 

Mantled gneiss domes emplaced during the Acadian orogeny are the likely 

source of valley-river sands.  The gneiss domes are the plutonic core of the 

Bronson Hill arc, and are draped by metasediments of the Connecticut Valley 

synclinorium.  Granite plutons and pegmatites northeast of the Deerfield basin 

evidently contributed to the bedload of the valley rivers as well. 

Piedmont-river sand is a mixture of transitional continental block and recycled 

orogen, with no clear contribution from a magmatic arc.  Sources west of the 

basin most likely were the metasediments of the Connecticut Valley 

synclinorium, Devonian intrusives, and the Belchertown igneous complex 

(Figures 42 and 43). 

Alluvial-fan sand is a mix of recycled orogen and magmatic arc provenance.  

The fan is adjacent to the Pelham Dome.  The mantling Devonian metasediments 

must have been quartzite-rich. 
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Conglomerates in all three facies contain abundant pink K-feldspar and 

granitoid pebbles, plus quartz, phyllite, schist, and amphibolite.  Quartzite is 

common, and a major constituent of the alluvial-fan conglomerates.  Comparison 

of medium sand and pebbles shows a major size-controlled difference. 

4) The paleoclimate was continually dry-dominated monsoonal, with superimposed 

wetter/dryer Milankovitch cycles.  

Tectonism controlled the existence of each facies.  This allows the timing of 

the sedimentary facies to be used to date the tectonic events.  The valley rivers 

flowed from NNE to SSW in an elongate sag basin, oriented perpendicular to the 

regional N70W-S70E extension.  The broad basin likely had minor horst and 

graben topography, which was in-filled by fluvial redbeds.  The basin was 

hydraulically-open because rate of sedimentation exceeded subsidence, and the 

rivers flowed probably SSW into what is now the Hartford basin.  The earliest 

strata in the Sugarloaf Arkose are ~218 Ma, so tectonic subsidence began just 

before this time. 

The piedmont rivers began to build a megafan into the basin about half-way 

up in the Sugarloaf Arkose.  The accommodation space for the megafan was 

generated by a basin-bounding fault (BBF) to the east.  The BBF was oriented 

NNE-SSW, and continued regional extension caused the fault to propagate at the 

fault tips. 

As the Deerfield BBF lengthened, the basin widened westward onto the 

footwall and deepened as throw increased on the fault.  The megafan responded 

by increasing in size, on-lapping valley-river strata.  The major valley river was 
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redirected, to flow NE-SW past the toe of the megafan and downslope into the 

Hartford basin. 

The Central graben BBF in the Hartford basin propagated NNE, passing the 

Deerfield BBF on the east and forming the relay ramp of the Amherst block 

between them.  The faults became hard linked by cross-ramp faults, forming an 

integrated basin-bounding fault: the eastern margin of a composite basin, into 

which CAMP basalts flowed about at the Triassic-Jurassic boundary.  The 

unconformity separating the Sugarloaf Arkose and Fall River beds may have 

formed at this time. 

5) Diagenetic effects are divided into early and late mesogenetic stages.  Early 

mesogenesis (burial to 2-3 km) included dehydration of limonite soil stains to 

hematite grain coats, mechanical compaction, and coeval precipitation of albite 

and quartz cements.  Albite overgrowths were accompanied by partial to complete 

albite replacement of many plagioclase and K-feldspar grains.  Late mesogenesis 

(burial to >3 km) included precipitation of carbonate and authigenic hematite 

cements, illite replacement of feldspar, and mosaic albite cement. 

Accelerated late Jurassic-Cretaceous motion on the integrated basin-bounding 

fault created the Eastern Border Fault.  Pronounced subsidence in the Deerfield and 

Hartford basins generated hanging-wall synclines.  Subsequent erosion has removed most 

of the Mesozoic strata on the Amherst block, leaving only ~1 km of west-dipping, 

anticlinally folded Sugarloaf Arkose along the west flank of the block.  The Deerfield 

basin was tilted to the east, and the western margin eroded, leaving only the keel of the 

original basin.  
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APPENDIX A 

 

SAMPLE LOCATIONS 

 Appendices A1, A2, and A3 list the locations of all thin sections from the valley-

river, piedmont-river, and alluvial-fan facies, respectively.  Each thin section is 

numbered, corresponding to numbers on figures presented earlier in this work.  The 

nearest public street, town, latitude, and longitude for sampled outcrops have been noted.  

Appendix A4 includes the locations of outcrops where pebble petrology (only) was 

observed for use in this study. 
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APPENDIX A1: SAMPLE LOCATIONS FOR VALLEY RIVER FACIES

ID NO. SAMPLE STREET TOWN LATITUDE LONGITUDE

1 10.13-4 I-91 Deerfield River Greenfield 42o32'24" N 72o37'32" W
2 10.13-5 I-91 Deerfield River Greenfield " "
3 SF-I91-1A I-91 Deerfield River Greenfield " "

4 SF-D1 Lower Rd. Deerfield 42o32'55" N 72o37'08" W
5 SF-D2B Lower Rd. Deerfield " "
6 SF-D3 Lower Rd. Deerfield " "

7 SF-G11 I-91 Exit 27 Greenfield 42o36'53" N 72o35'44" W
8 SF-I91-3A I-91 Exit 27 Greenfield " "
9 SF-I91-3B I-91 Exit 27 Greenfield " "

10 8.23-5 Leyden Rd. Greenfield 42o36'39" N 72o36'51" W
11 8.23-7 Leyden Rd. Greenfield " "
12 RS75-192 Leyden Rd. Greenfield " "

13 4.29-1 Bernardston Rd. Greenfield 42o36'34" N 72o35'09" W
14 4.29-2 Bernardston Rd. Greenfield " "
15 4.29-4 Bernardston Rd. Greenfield " "

16 01-CP-H1 Cheapside St. Greenfield 42o34'21" N 72o35'22" W
17 SF-CS4 Cheapside St. Greenfield " "
18 SF-CS6 Cheapside St. Greenfield " "

19 9.11-1 North Parkway St. Greenfield 42o35'36" N 72o35'13" W
20 10.5-3 North Parkway St. Greenfield " "
21 RS75-113 North Parkway St. Greenfield " "
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APPENDIX A2: SAMPLE LOCATIONS FOR PIEDMONT RIVER FACIES

ID NO. SAMPLE STREET TOWN LATITUDE LONGITUDE

1 7.7-1 Mountain Rd. Deerfield 42o28'15" N 72o35'31" W
2 7.7-5 Mountain Rd. Deerfield " "
3 SF-SR2 Mountain Rd. Deerfield " "

4 9.21-2 River Rd. Deerfield 42o28'52" N 72o34'43" W
5 9.21-5 River Rd. Deerfield " "
6 9.21-6 River Rd. Deerfield " "

7 10.11-1 French's Ferry St. Sunderland 42o28'40" N 72o34'29" W
8 10.11-2 French's Ferry St. Sunderland " "
9 10.11-3 French's Ferry St. Sunderland " "

10 10.11-9 North Silver Ln. Sunderland 42o28'15" N 72o34'20" W
11 10.11-10 North Silver Ln. Sunderland " "
12 RS75-S3 North Silver Ln. Sunderland " "

13 10.13-7 Bull Hill Rd. Sunderland 42o26'45" N 72o32'42" W
14 10.13-8 Bull Hill Rd. Sunderland " "
15 SF-BH6 Bull Hill Rd. Sunderland " "

16 11.13-4 Rice's Ferry Rd. Deerfield 42o32'51" N 72o35'26" W
17 11.13-6 Rice's Ferry Rd. Deerfield " "
18 SF-PR1 Rice's Ferry Rd. Deerfield " "

19 10.16-1 Kellogg St. Hatfield 42o23'38" N 72o35'24" W
20 10.16-2 Kellogg St. Hatfield " "
21 10.16-3 Kellogg St. Hatfield " "

22 10.16-9 Meadow St. Hadley 42o23'47" N 72o35'21" W
23 10.16-10 Meadow St. Hadley " "
24 10.16-11 Meadow St. Hadley " "
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APPENDIX A3: SAMPLE LOCATIONS FOR ALLUVIAL FAN FACIES

ID NO. SAMPLE STREET TOWN LATITUDE LONGITUDE

1 SF-FR1B Scout Rd. Gill 42o38'03" N 72o32'50" W
2 SF-FR2B Scout Rd. Gill " "
3 SF-FR3 Scout Rd. Gill " "

4 10.9-2 West Gill Rd. Gill 42o37'42" N 72o32'27" W
5 SF-WGR1 West Gill Rd. Gill " "
6 SF-WGR2 West Gill Rd. Gill " "
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APPENDIX A4: ADDITIONAL PEBBLE COUNT LOCATIONS

ID NO. SAMPLE STREET TOWN LATITUDE LONGITUDE

- RS-221 Elm and Colrain St. Greenfield 42o35'15" N 72o36'40" W
- RS-225 Elm and Colrain St. Greenfield " "

- RS-251 Country Club Rd. Greenfield 42o36'47" N 72o35'57" W
- RS-252 Country Club Rd. Greenfield " "
- MW-3 Country Club Rd. Greenfield " "

- RS-201 South Cross Rd. Gill 42o37'23" N 72o32'13" W

- RS-151 Main Rd. Gill 42o37'33" N 72o31'24" W
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APPENDIX B 

 

PETROGRAPHIC OPERATIONAL DEFINITIONS 

 The following definitions were used during point-counting of thin sections to 

determine modal analyses using the Gazzi-Dickinson point-counting method.  Definitions 

have been adapted from Basu et al., 1975, Carozzi, 1993, Folk, 1980, Hubert, 2007 pers. 

com., Taylor, 1991, and Tortosa et al., 1991. 

QUARTZ 

Unit monocrystalline: 1 unit grain with straight to slightly undulose extinction.  

Grains are typically subequant, and rarely contain microlites and/or vacuoles. 

Vein monocrystalline: 1 unit grain with 2 or more planes of fluid inclusions.  

Grains are typically subequant, and rarely contain microlites and/or vacuoles. 

Annealed polycrystalline: 2 or more units with smooth, non-sutured boundaries, 

containing up to 10% mica (undifferentiated).  Extinction may be straight to 

slightly undulose, with different optical orientations among sub-units.  Vacuoles 

are uncommon. 

Vein polycrystalline: 2 or more units with smooth, non-sutured boundaries and 2 

or more planes of fluid inclusions.  Extinction is semi-composite straight to 

undulose, with parallel sub-units almost in optical continuity (partly due to comb 

structure).  Abundant vacuoles may impart milky color. 
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FELDSPAR 

Untwinned plagioclase: Unstained, differentiated from quartz microlites and 

cleavage.  Plagioclase in the Sugarloaf Arkose is commonly altered by albitization 

along cleavage and albite replacement domains in optical continuity with albite 

overgrowths.  Plagioclase grains may contain up to 25% albite or illite alteration. 

Twinned plagioclase: Unstained grains differentiated from quartz by twinning 

(commonly albite twinning law), microlites, and cleavage.  Grains are commonly 

altered, as above.  Plagioclase grains may contain up to 25% albite or illite 

alteration. 

Albitized plagioclase: Plagioclase grains with more than 25% albitization, or 

grains that cannot be differentiated between prior categories due to degree of 

albititzation. 

Untwinned K-feldspar: Stained yellow by sodium cobaltinitrate.  K-feldspar may 

contain up to 25% albite or illite alteration. 

Microcline K-feldspar: Stained yellow, displays polysynthetic twinning (scotch 

plaid).  K-feldspar may contain up to 25% albite or illite alteration. 

Illite replacement of feldspar: Feldspar grains with more than 25% illitization 

(typically K-feldspar), or grains that cannot be differentiated between prior 

categories due to degree of illitization (mostly plagioclase?). 
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ROCK FRAGMENTS 

Granite: Rock fragment composed of 10% or more subequant quartz units with 

smooth, non-sutured boundaries, 10-90% feldspar units, and with or without mica.  

Feldspars may be partly to completely replaced by illite. 

Granite gneiss: Rock fragment composed of 10% or more equidimensional to 

elongate quartz units with sutured and/or crenulated boundaries, 10-90% feldspar 

units, and with or without mica.  Extinction of quartz units is strongly undulose.  

Plagioclase (if any) is untwinned.  Feldspars may be partly to completely replaced 

by illite. 

Schistose quartz: Rock fragment composed 60-90% quartz and 10-40% mica. 

Schist: Rock fragment composed of 10% or less quartz and 40% or more mica. 

Quartzite: 2 or more elongate, sub-parallel units with crenulated, sutured, and/or 

smooth, non-sutured boundaries, containing up to 10% mica.  Extinction of quartz 

units is strongly undulose.  Some microlites and vacuoles may be present. 

Groundmass: Fine-grained (<0.625 mm) matrix in metamorphic rock fragments.  

Only counted when 1.) the entire rock fragment was 0.25-0.5 mm 2.) mineral 

under cross-hairs could be identified; and 3.) rock fragment did not include 

mineral subunits greater than 0.25 mm. 

 

ACCESSORIES, POROSITY, MATRIX 

Muscovite: Colorless in plane light, no pleochroism. 

Biotite: Brown, green or red-brown in plane light, commonly alters to hematite. 

Chlorite: Pale green in plane light, may flash blue at extinction. 
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Garnet: Colorless in plane light, high relief, fracture grain, may have one or more 

recognizable crystal faces, but typically rounded. 

Hematite-stained matrix: Particles less than 30 microns in size coated by hematite 

or hydrated iron oxides. 

Porosity: Typically filled with blue epoxy, black under crossed nicols.  Pore space 

not filled with blue epoxy was not counted, due to potential grain plucking as thin 

sections were polished. 

 

CEMENTS 

Hematite rim: “Early” hematite (Taylor, 1991), includes rims on detrital grains 

and stained clay coats on detrital grains. 

Hematite cement: “Late” hematite (Taylor, 1991), post-dates pore-filling albite 

and quartz.  Includes stains on prior cements and biotite alteration to hematite. 

Interstitial albite: Mosaic of randomly-oriented microcrystalline albite, commonly 

intergrown with quartz overgrowths.  Not present in illite diagenetic zones. 

Albite overgrowth: Cement precipitated as overgrowth on plagioclase and K-

feldspar grains.  Overgrowth may be twinned if parent grain is twinned, and is 

commonly in optical continuity with host plagioclase grains.  Not present in illite 

diagenetic zones. 

Illite: Distinguished from detrital micas by lack of large sheet-like plates or 

flakes.  This category does not include illite replacement of feldspar grains. 

Kaolinite: Characteristic ‘book’ grain groups or individual grains, within illite 

matrix (cement or replacement). 
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Quartz overgrowth: Anhedral quartz lacks inclusions and is intergrown with 

interstitial albite. 

Carbonates: Calcite is stained pink by potassium ferrycyanide and Alizarin red-S; 

ferroan calcite is purple; dolomite unstained; and ferroan dolomite sky blue. 

 

BASU-TORTOSA METHOD 

Non-undulose: Medium sand-sized (0.25-0.5 mm) unit quartz that undergoes 

complete extinction with stage rotation of 5o or less. 

Undulose: Medium sand-sized unit quartz that undergoes sweeping extinction 

with stage rotation greater than 5o. 

Coarsely-polycrystalline: Medium sand-sized polycrystalline quartz composed of 

2 or 3 units and less than 10% of another mineral phase. 

Finely-polycrystalline: Medium sand-sized polycrystalline quartz composed of 4 

or more units and less than 10% of another mineral phase. 
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APPENDIX C 

 

MODAL ANALYSES 

 Appendix C1 shows Gazzi-Dickinson method results for 21 thin sections from the 

valley-river facies, Appendix C2 shows results for 24 thin sections from the piedmont-

river facies, and Appendix C3 shows results for six thin sections from the alluvial-fan 

facies.  In Appendices C1-C3, WR indicates point-counts of all grains that fell under the 

cross-hairs, whereas MS indicates that only medium sand-sized grains were counted.  Q 

is quartz, F is feldspar, R is rock fragment, Plag. is plagioclase feldspar, Kspar is K-

feldspar, Micro. is microcline, ACC. is accessory minerals, HEM. is hematite, ALB. is 

albite, and CO3
- is carbonate minerals. 

 Appendix C4 shows Basu-Tortosa method results for thin sections from the 

valley-river facies, Appendix C5 shows results from the piedmont-river facies, and 

Appendix C6 shows results from the alluvial-fan facies.  The number of thin sections 

analyzed from each facies is the same as Appendices C1-C3. 

All analyses were performed by the author.  Sample locations are given in 

Appendix A.  Operational definitions of petrographic constituents are in Appendix B. 
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APPENDIX C1: MODAL ANALYSES FOR VALLEY RIVER FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 10.13-4 10.13-5 I91-1A MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 41.0 38.0 40.0 39.7
Vein monocrystalline 3.0 1.0 1.0 1.7
Annealed polycrystalline 10.0 5.0 10.0 8.3
Vein polycrystalline 1.0 0.0 4.0 1.7

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 1.0 2.0 2.0 1.7

Granite 1.0 0.0 1.0 0.7
Granite gneiss 2.0 1.0 2.0 1.7
Schistose quartz 0.7 0.0 0.0 0.2
Groundmass in schistose quartz 0.3 0.0 0.0 0.1
Schist 1.0 0.0 1.0 0.7
Groundmass in schist 2.0 0.0 0.0 0.7
Quartzite 5.0 1.0 1.0 2.3
Groundmass in quartzite 1.0 1.0 2.0 1.3

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 3.0 2.0 2.0 2.3
Illite replacement in granite gneiss 3.0 5.0 1.0 3.0

Granite 1.0 1.0 1.0 1.0
Granite gneiss 1.0 0.0 0.0 0.3
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 3.0 0.0 2.0 1.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 79.0 57.0 70.0 68.7
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 10.13-4 10.13-5 I91-1A MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.0 4.0 8.0 4.7
Biotite single grain 1.0 5.0 2.0 2.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 5.0 2.0 1.0 2.7
Porosity 0.0 1.0 5.0 2.0

ACC., POROSITY, MATRIX TOTAL 8.0 12.0 16.0 12.0

CEMENTS

Rim 5.0 8.0 1.0 4.7
Cement 1.0 5.0 1.0 2.3

Interstitial 0.0 0.0 0.0 0.0
Overgrowth 0.0 0.0 0.0 0.0

Illite 7.0 15.0 11.0 11.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 0.0 3.0 1.0 1.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 13.0 31.0 14.0 19.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ACC.

HEM.

ALB.

 I-91 Location 1
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 10.13-4 10.13-5 I91-1A MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 35.7 32.0 38.3 35.3
Vein monocrystalline 5.0 4.7 6.0 5.2
Annealed polycrystalline 10.0 11.0 9.7 10.2
Vein polycrystalline 4.0 2.0 1.7 2.6

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 7.3 13.0 11.0 10.4

Granite 2.7 4.0 3.3 3.3
Granite gneiss 6.7 7.0 7.0 6.9
Schistose quartz 1.0 0.7 1.0 0.9
Groundmass in schistose quartz 0.0 1.0 0.0 0.3
Schist 1.0 0.3 0.0 0.4
Groundmass in schist 0.7 0.7 1.0 0.8
Quartzite 5.0 5.0 4.0 4.7
Groundmass in quartzite 4.0 0.3 0.7 1.7

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 2.0 3.7 4.3 3.3
Illite replacement in granite gneiss 3.3 4.7 3.7 3.9

Granite 0.0 0.3 0.3 0.2
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.3 0.1
Schistose quartz 0.0 1.7 0.7 0.8
Schist 1.7 0.3 1.0 1.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.7 0.2

FRAMWORK TOTAL 91.0 92.3 93.7 92.3
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 10.13-4 10.13-5 I91-1A MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 7.7 6.0 5.7 6.5
Biotite single grain 1.3 1.7 0.7 1.2
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 9.0 7.7 6.4 7.7

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

HEM.

ALB.

 I-91 Location 1

ACC.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: D-1 D-2B D-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 40.0 34.0 34.0 36.0
Vein monocrystalline 4.0 0.0 2.0 2.0
Annealed polycrystalline 9.0 12.0 12.0 11.0
Vein polycrystalline 1.0 1.0 2.0 1.3

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 3.0 5.0 5.0 4.3

Granite 0.0 1.0 2.0 1.0
Granite gneiss 1.0 2.0 2.0 1.7
Schistose quartz 0.0 0.0 0.0 0.0
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 1.0 0.3
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 3.0 3.0 2.0 2.7
Groundmass in quartzite 1.0 3.0 0.0 1.3

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 1.0 2.0 1.0 1.3
Illite replacement in granite gneiss 0.0 2.0 3.0 1.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 1.0 0.3
Quartzite 1.0 1.0 1.0 1.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 1.0 0.0 2.0 1.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 65.0 66.0 70.0 67.0
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: D-1 D-2B D-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 5.0 6.0 6.0 5.7
Biotite single grain 4.0 6.0 4.0 4.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 7.0 8.0 1.0 5.3
Porosity 2.0 2.0 0.0 1.3

ACC., POROSITY, MATRIX TOTAL 18.0 22.0 11.0 17.0

CEMENTS

Rim 0.0 1.0 4.0 1.7
Cement 2.0 3.0 2.0 2.3

Interstitial 0.0 0.0 0.0 0.0
Overgrowth 0.0 0.0 0.0 0.0

Illite 10.0 7.0 8.0 8.3
Kaolinite 2.0 0.0 3.0 1.7
Quartz overgrowth 3.0 1.0 2.0 2.0

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 17.0 12.0 19.0 16.0

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ALB.

CO3-

ACC.

HEM.

 Lower Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: D-1 D-2B D-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 26.7 40.3 34.3 33.8
Vein monocrystalline 14.3 9.3 8.3 10.7
Annealed polycrystalline 14.0 8.3 11.0 11.1
Vein polycrystalline 4.0 0.7 2.3 2.3

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 6.3 6.7 6.0 6.3

Granite 7.0 6.0 4.3 5.8
Granite gneiss 0.0 3.3 4.3 2.5
Schistose quartz 2.0 1.7 2.0 1.9
Groundmass in schistose quartz 0.3 1.0 0.3 0.5
Schist 0.0 0.0 0.0 0.0
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 12.0 4.0 9.3 8.4
Groundmass in quartzite 3.3 2.3 2.0 2.5

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 1.0 1.7 1.0 1.2
Illite replacement in granite gneiss 1.0 2.0 3.7 2.2

Granite 0.0 0.0 1.3 0.4
Granite gneiss 0.0 0.7 0.0 0.2
Quartzite 1.3 0.3 1.0 0.9
Schistose quartz 0.3 0.0 0.0 0.1
Schist 2.0 0.0 1.0 1.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.3 0.3 0.2
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 95.7 88.7 92.1 92.2
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: D-1 D-2B D-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.7 8.3 5.7 5.9
Biotite single grain 0.7 3.0 2.3 2.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.3 11.3 8.0 7.9

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ALB.

HEM.

CO3-

ACC.

 Lower Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: I91-3A I91-3B SF-G11 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 28.0 30.0 20.0 26.0
Vein monocrystalline 0.0 4.0 0.0 1.3
Annealed polycrystalline 5.0 3.0 7.0 5.0
Vein polycrystalline 0.0 1.0 0.0 0.3

Untwinned single grain 4.5 3.5 2.0 3.3
Twinned single grain 5.5 3.5 6.0 5.0
Albitized single grain 1.0 2.0 0.0 1.0

Untwinned single grain 3.0 4.0 6.0 4.3
Perthite single grain 1.0 3.0 0.0 1.3
Microcline single grain 1.0 0.0 1.0 0.7

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 5.0 2.0 4.0 3.7
Granite gneiss 2.0 3.0 6.0 3.7
Schistose quartz 0.0 0.0 0.3 0.1
Groundmass in schistose quartz 0.0 0.0 0.7 0.2
Schist 0.0 0.0 0.7 0.2
Groundmass in schist 0.0 0.0 0.3 0.1
Quartzite 4.0 3.0 1.0 2.7
Groundmass in quartzite 1.0 0.0 0.0 0.3

Untwinned granite 1.0 0.0 1.0 0.7
Twinned granite 2.0 2.0 1.0 1.7
Untwinned granite gneiss 0.0 0.0 2.0 0.7
Twinned granite gneiss 1.0 0.0 4.0 1.7

Untwinned granite 1.5 1.0 1.0 1.2
Perthite granite 0.5 0.0 0.0 0.2
Micro. granite 2.0 0.0 1.0 1.0
Untwinned granite gneiss 1.0 0.0 1.0 0.7
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 1.0 0.3

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 1.0 0.3
Granite gneiss 0.0 0.0 1.0 0.3
Quartzite 0.0 1.0 1.0 0.7
Schistose quartz 0.0 1.0 0.0 0.3
Schist 2.0 1.0 1.0 1.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 1.0 1.0 0.7

FRAMWORK TOTAL 72.0 69.0 72.0 71.0
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: I91-3A I91-3B SF-G11 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.0 6.0 2.0 3.3
Biotite single grain 0.0 2.0 0.0 0.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 1.0 8.0 3.0 4.0
Porosity 1.0 1.0 2.0 1.3

ACC., POROSITY, MATRIX TOTAL 4.0 17.0 8.0 9.7

CEMENTS

Rim 2.0 1.0 2.0 1.7
Cement 7.0 8.0 3.0 6.0

Interstitial 6.0 4.0 4.0 4.7
Overgrowth 0.0 0.0 3.0 1.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 0.0 0.0 2.0 0.7

Calcite 1.0 0.0 5.0 2.0
Fe-calcite 2.0 1.0 1.0 1.3
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 6.0 0.0 0.0 2.0

CEMENT TOTAL 24.0 14.0 20.0 19.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: I91-3A I91-3B SF-G11 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 36.0 47.3 41.0 41.4
Vein monocrystalline 1.0 0.0 0.7 0.6
Annealed polycrystalline 11.0 7.0 8.3 8.8
Vein polycrystalline 0.0 0.0 0.0 0.0

Untwinned single grain 6.0 4.0 4.7 4.9
Twinned single grain 7.0 6.7 2.0 5.2
Albitized single grain 0.0 0.7 0.0 0.2

Untwinned single grain 4.9 5.0 7.5 5.8
Perthite single grain 2.0 1.2 0.0 1.1
Microcline single grain 2.1 2.8 2.0 2.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 5.0 2.7 3.7 3.8
Granite gneiss 4.0 3.7 5.3 4.3
Schistose quartz 1.0 0.7 1.3 1.0
Groundmass in schistose quartz 2.0 0.3 1.0 1.1
Schist 0.3 0.0 0.0 0.1
Groundmass in schist 0.0 0.3 0.0 0.1
Quartzite 6.3 9.3 5.0 6.9
Groundmass in quartzite 0.0 0.0 2.0 0.7

Untwinned granite 1.7 0.0 0.0 0.6
Twinned granite 2.0 0.3 0.3 0.9
Untwinned granite gneiss 1.0 1.0 0.7 0.9
Twinned granite gneiss 0.0 2.3 3.0 1.8

Untwinned granite 1.0 1.1 1.7 1.3
Perthite granite 0.6 0.0 0.0 0.2
Micro. granite 1.4 0.0 0.5 0.6
Untwinned granite gneiss 0.7 1.0 1.0 0.9
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.3 0.9 1.0 0.7

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.3 0.0 0.1
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.3 0.3 0.2
Schist 1.7 0.3 0.7 0.9

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.3 0.0 0.3 0.2

FRAMWORK TOTAL 99.4 99.3 99.0 99.2
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: I91-3A I91-3B SF-G11 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 0.7 0.7 1.0 0.8
Biotite single grain 0.0 0.0 0.0 0.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 0.7 0.7 1.0 0.8

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

 I-91 Location 3
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 8.23-5 8.23-7 RS75-192 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 14.0 11.0 18.0 14.3
Vein monocrystalline 2.0 8.0 4.0 4.7
Annealed polycrystalline 5.0 3.0 7.0 5.0
Vein polycrystalline 1.0 2.0 2.0 1.7

Untwinned single grain 4.5 3.5 3.0 3.7
Twinned single grain 4.5 7.5 3.0 5.0
Albitized single grain 2.0 1.0 9.0 4.0

Untwinned single grain 6.0 3.0 2.0 3.7
Perthite single grain 1.0 2.0 3.0 2.0
Microcline single grain 3.0 5.0 8.0 5.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 4.0 2.0 2.3
Granite gneiss 3.0 7.0 3.0 4.3
Schistose quartz 0.0 0.0 1.0 0.3
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 1.0 0.0 0.0 0.3
Groundmass in schist 1.0 0.0 0.0 0.3
Quartzite 4.0 2.0 8.0 4.7
Groundmass in quartzite 1.0 2.0 0.0 1.0

Untwinned granite 1.0 1.0 1.0 1.0
Twinned granite 2.0 2.0 1.0 1.7
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 1.0 0.0 0.0 0.3

Untwinned granite 3.7 0.5 1.5 1.9
Perthite granite 0.3 0.5 0.5 0.4
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.0 0.0 0.0 0.7
Perthite granite gneiss 0.0 0.0 1.0 0.3
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 1.0 1.0 1.0 1.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 2.0 0.0 1.0 1.0
Schistose quartz 1.0 2.0 0.0 1.0
Schist 3.0 4.0 4.0 3.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 71.0 72.0 84.0 75.7
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 8.23-5 8.23-7 RS75-192 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.0 5.0 4.0 4.0
Biotite single grain 2.0 2.0 1.0 1.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 5.0 3.0 3.0 3.7
Porosity 1.0 2.0 0.0 1.0

ACC., POROSITY, MATRIX TOTAL 11.0 12.0 8.0 10.3

CEMENTS

Rim 2.0 1.0 2.0 1.7
Cement 3.0 4.0 2.0 3.0

Interstitial 4.0 5.0 2.0 3.7
Overgrowth 4.0 1.0 1.0 2.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 2.0 1.0 0.0 1.0

Calcite 3.0 2.0 1.0 2.0
Fe-calcite 0.0 2.0 0.0 0.7
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 18.0 16.0 8.0 14.0

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ALB.

HEM.

CO3-

ACC.

 Leyden Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 8.23-5 8.23-7 RS75-192 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 19.3 22.7 21.3 21.1
Vein monocrystalline 11.7 13.3 14.3 13.1
Annealed polycrystalline 11.7 6.7 7.3 8.5
Vein polycrystalline 1.7 4.3 3.3 3.1

Untwinned single grain 2.0 5.0 4.3 3.8
Twinned single grain 8.0 4.7 4.6 5.8
Albitized single grain 3.0 1.7 2.3 2.3

Untwinned single grain 4.4 1.5 2.4 2.8
Perthite single grain 1.0 0.5 2.0 1.2
Microcline single grain 1.6 0.6 0.7 1.0

Illite replacement of feldspar 7.0 0.0 3.3 3.4

Granite 2.0 2.3 3.0 2.4
Granite gneiss 2.0 2.0 1.0 1.7
Schistose quartz 3.0 1.0 4.7 2.9
Groundmass in schistose quartz 0.3 5.0 1.0 2.1
Schist 1.0 0.3 0.7 0.7
Groundmass in schist 0.0 1.7 2.0 1.2
Quartzite 9.3 11.0 10.3 10.2
Groundmass in quartzite 0.0 1.0 0.0 0.3

Untwinned granite 2.0 0.0 0.0 0.7
Twinned granite 1.0 1.3 0.7 1.0
Untwinned granite gneiss 0.7 0.0 1.0 0.6
Twinned granite gneiss 0.0 1.0 1.0 0.7

Untwinned granite 2.0 1.0 0.9 1.3
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.3 0.7 0.0 0.3
Perthite granite gneiss 0.0 0.0 1.0 0.3
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 2.7 0.0 0.3 1.0
Granite gneiss 0.7 0.3 1.3 0.8
Quartzite 1.3 0.0 0.3 0.5
Schistose quartz 0.0 2.0 1.3 1.1
Schist 0.0 3.0 0.7 1.2

Granite 0.3 1.0 0.0 0.4
Granite gneiss 0.0 0.0 0.7 0.2
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.3 0.1
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 100.0 95.7 98.0 97.9
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 8.23-5 8.23-7 RS75-192 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 0.0 2.7 1.7 1.5
Biotite single grain 0.0 1.7 0.3 0.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 0.0 4.3 2.0 2.1

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 Leyden Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 4.29-1 4.29-2 4.29-4 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 7.0 12.0 9.0 9.3
Vein monocrystalline 3.0 3.0 4.0 3.3
Annealed polycrystalline 4.0 6.0 10.0 6.7
Vein polycrystalline 0.0 0.0 2.0 0.7

Untwinned single grain 6.0 4.0 3.0 4.3
Twinned single grain 7.0 6.0 12.0 8.3
Albitized single grain 1.0 0.0 2.0 1.0

Untwinned single grain 0.0 1.0 0.0 0.3
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 5.0 2.0 1.0 2.7
Granite gneiss 1.0 2.0 2.0 1.7
Schistose quartz 2.0 2.0 1.3 1.8
Groundmass in schistose quartz 6.0 0.0 3.7 3.2
Schist 3.0 4.0 1.0 2.7
Groundmass in schist 7.0 0.0 6.0 4.3
Quartzite 2.0 6.0 4.0 4.0
Groundmass in quartzite 1.0 0.0 0.0 0.3

Untwinned granite 2.0 2.0 3.0 2.3
Twinned granite 3.0 2.0 5.0 3.3
Untwinned granite gneiss 0.0 1.0 2.0 1.0
Twinned granite gneiss 1.0 3.0 3.0 2.3

Untwinned granite 2.0 0.0 0.0 0.7
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 3.0 0.8 1.0 1.6
Granite gneiss 1.0 0.3 0.0 0.4
Quartzite 2.0 1.0 0.0 1.0
Schistose quartz 3.0 1.0 2.0 2.0
Schist 5.0 5.0 3.0 4.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 2.0 0.0 0.7
Schist 1.0 2.0 1.0 1.3

FRAMWORK TOTAL 78.0 68.0 82.0 76.0
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 4.29-1 4.29-2 4.29-4 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.0 4.0 2.0 2.7
Biotite single grain 10.0 14.0 8.0 10.7
Chlorite replacement single grain 1.0 0.0 1.0 0.7
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 1.0 3.0 0.0 1.0
Porosity 0.0 1.0 0.0 0.3

ACC., POROSITY, MATRIX TOTAL 14.0 22.0 11.0 15.3

CEMENTS

Rim 1.0 0.0 1.0 0.7
Cement 2.0 4.0 1.0 2.3

Interstitial 2.0 1.0 1.0 1.3
Overgrowth 0.0 0.0 0.0 0.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 0.0 0.0 1.0 0.3

Calcite 0.0 1.0 1.0 0.7
Fe-calcite 1.0 3.0 0.0 1.3
Dolomite 2.0 0.0 0.0 0.7
Fe-dolomite 0.0 1.0 2.0 1.0

CEMENT TOTAL 8.0 10.0 8.0 8.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

 Bernardston Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 4.29-1 4.29-2 4.29-4 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 22.7 20.3 18.7 20.6
Vein monocrystalline 7.3 8.3 6.7 7.4
Annealed polycrystalline 8.7 13.3 5.0 9.0
Vein polycrystalline 1.7 1.3 3.7 2.2

Untwinned single grain 10.0 4.7 7.0 7.2
Twinned single grain 11.3 12.0 10.0 11.1
Albitized single grain 0.3 0.3 1.3 0.7

Untwinned single grain 1.0 0.0 2.0 1.0
Perthite single grain 0.3 0.0 1.6 0.6
Microcline single grain 0.0 0.0 1.4 0.5

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 4.0 2.0 2.0 2.7
Granite gneiss 1.0 4.0 3.0 2.7
Schistose quartz 4.0 0.0 1.7 1.9
Groundmass in schistose quartz 2.0 0.7 4.0 2.2
Schist 0.0 0.7 1.0 0.6
Groundmass in schist 0.0 2.3 0.0 0.8
Quartzite 15.7 8.0 16.3 13.3
Groundmass in quartzite 0.0 4.0 0.0 1.3

Untwinned granite 1.0 2.3 2.7 2.0
Twinned granite 2.0 4.0 2.0 2.7
Untwinned granite gneiss 1.0 1.0 1.0 1.0
Twinned granite gneiss 1.3 2.0 1.0 1.4

Untwinned granite 0.3 0.0 0.4 0.2
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.2 0.1
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.3 0.3 0.0 0.2
Quartzite 0.7 0.3 0.0 0.3
Schistose quartz 1.3 0.7 0.0 0.7
Schist 2.0 2.7 2.3 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.3 0.1
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.3 0.1

FRAMWORK TOTAL 97.2 95.3 95.7 96.1
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 4.29-1 4.29-2 4.29-4 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.3 4.0 2.0 2.8
Biotite single grain 0.3 0.0 1.0 0.4
Chlorite replacement single grain 0.3 0.7 1.3 0.8
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 2.9 4.7 4.3 4.0

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 Bernardston Rd.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: CS-4 CS-6 01-CP-H1 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 22.0 28.0 24.0 24.7
Vein monocrystalline 3.0 1.0 2.0 2.0
Annealed polycrystalline 5.0 2.0 4.0 3.7
Vein polycrystalline 2.0 1.0 1.0 1.3

Untwinned single grain 4.0 1.0 6.0 3.7
Twinned single grain 8.0 2.0 5.0 5.0
Albitized single grain 2.0 2.0 1.0 1.7

Untwinned single grain 1.0 1.0 1.0 1.0
Perthite single grain 0.0 1.0 0.0 0.3
Microcline single grain 1.0 0.0 0.0 0.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 3.0 0.0 3.0 2.0
Granite gneiss 1.0 0.0 4.0 1.7
Schistose quartz 1.0 0.0 0.0 0.3
Groundmass in schistose quartz 0.0 0.0 1.0 0.3
Schist 0.0 0.3 0.0 0.1
Groundmass in schist 1.0 1.7 0.0 0.9
Quartzite 2.0 5.0 5.0 4.0
Groundmass in quartzite 0.0 3.0 0.0 1.0

Untwinned granite 2.0 1.0 1.0 1.3
Twinned granite 3.0 3.0 1.0 2.3
Untwinned granite gneiss 0.0 0.0 2.0 0.7
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 4.0 1.0 2.0 2.3
Perthite granite 1.0 0.0 0.0 0.3
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 1.0 0.0 0.0 0.3
Granite gneiss 0.0 0.0 1.0 0.3
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 0.0 0.0 0.3
Schist 3.0 2.0 2.0 2.3

Granite 0.8 0.0 0.0 0.3
Granite gneiss 0.3 0.0 0.0 0.1
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 72.0 56.0 66.0 64.7

 Cheapside St.

Q
U

A
R

TZ
FE

LD
SP

A
R

Plag.

Kspar
M

us
co

vi
te

B
io

tit
eM
IC

A
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T
Q

U
A

R
TZ

 IN
 R

O
C

K
   

 
FR

A
G

M
EN

T
FE

LD
SP

A
R

 IN
 R

O
C

K
   

   
   

   
   

FR
A

G
M

EN
T

Plag.

Kspar

181



APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: CS-4 CS-6 01-CP-H1 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.0 8.0 6.0 5.7
Biotite single grain 0.0 2.0 0.0 0.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 4.0 22.0 15.0 13.7
Porosity 5.0 1.0 2.0 2.7

ACC., POROSITY, MATRIX TOTAL 12.0 33.0 23.0 22.7

CEMENTS

Rim 3.0 0.0 1.0 1.3
Cement 4.0 10.0 8.0 7.3

Interstitial 0.0 1.0 1.0 0.7
Overgrowth 6.0 0.0 0.0 2.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 3.0 0.0 1.0 1.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 16.0 11.0 11.0 12.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: CS-4 CS-6 01-CP-H1 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 32.3 28.3 23.3 28.0
Vein monocrystalline 3.0 3.7 4.0 3.6
Annealed polycrystalline 5.0 4.0 7.0 5.3
Vein polycrystalline 0.3 1.0 1.0 0.8

Untwinned single grain 5.7 3.0 5.7 4.8
Twinned single grain 5.0 9.0 10.0 8.0
Albitized single grain 0.3 0.7 0.7 0.6

Untwinned single grain 4.0 2.7 1.3 2.7
Perthite single grain 2.3 1.0 1.0 1.4
Microcline single grain 0.0 0.0 0.4 0.1

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 6.3 5.7 6.0 6.0
Granite gneiss 2.0 6.0 6.3 4.8
Schistose quartz 0.0 0.0 0.3 0.1
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 1.0 0.3
Groundmass in schist 3.7 1.0 1.0 1.9
Quartzite 12.0 12.0 15.0 13.0
Groundmass in quartzite 0.0 3.3 2.7 2.0

Untwinned granite 1.0 2.0 2.0 1.7
Twinned granite 2.0 2.0 1.7 1.9
Untwinned granite gneiss 0.0 1.0 1.0 0.7
Twinned granite gneiss 1.7 1.7 0.0 1.1

Untwinned granite 3.0 2.0 0.8 1.9
Perthite granite 0.9 0.3 0.0 0.4
Micro. granite 0.1 1.7 0.0 0.6
Untwinned granite gneiss 0.2 0.0 0.0 0.1
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.5 0.3 0.2 0.3

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.7 0.2
Granite gneiss 0.0 0.0 0.3 0.1
Quartzite 0.0 0.3 1.0 0.4
Schistose quartz 0.3 0.0 0.0 0.1
Schist 3.0 3.3 3.3 3.2

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.7 0.7 0.5

FRAMWORK TOTAL 94.7 96.7 98.7 96.7
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: CS-4 CS-6 01-CP-H1 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 5.3 3.0 0.7 3.0
Biotite single grain 0.0 0.3 0.7 0.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 5.3 3.3 1.3 3.3

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-
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HEM.
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 Cheapside St.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 9.11-1 10.5-3 RS75-113 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 37.0 28.0 35.0 33.3
Vein monocrystalline 1.0 0.0 5.0 2.0
Annealed polycrystalline 14.0 4.0 6.0 8.0
Vein polycrystalline 1.0 2.0 0.0 1.0

Untwinned single grain 0.0 1.5 2.0 1.2
Twinned single grain 4.0 5.5 10.0 6.5
Albitized single grain 5.0 8.0 2.0 5.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 12.0 7.0 6.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 2.0 1.0 1.0
Granite gneiss 4.0 1.0 1.0 2.0
Schistose quartz 0.0 0.0 0.0 0.0
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 1.0 0.3 2.0 1.1
Groundmass in schist 0.0 0.7 0.0 0.2
Quartzite 4.0 1.0 1.0 2.0
Groundmass in quartzite 1.0 1.0 0.0 0.7

Untwinned granite 1.0 1.0 1.0 1.0
Twinned granite 2.0 1.0 1.0 1.3
Untwinned granite gneiss 1.0 0.0 0.0 0.3
Twinned granite gneiss 0.0 0.0 1.0 0.3

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 6.0 0.0 0.0 2.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 3.0 0.0 0.0 1.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 1.0 0.0 0.3
Granite gneiss 1.0 0.0 0.0 0.3
Quartzite 2.0 1.0 0.0 1.0
Schistose quartz 1.0 0.0 1.0 0.7
Schist 2.0 3.0 1.0 2.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 92.0 74.0 77.0 81.0
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 9.11-1 10.5-3 RS75-113 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 1.0 2.0 5.0 2.7
Biotite single grain 0.0 3.0 3.0 2.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 0.0 4.0 0.0 1.3
Porosity 0.0 1.0 1.0 0.7

ACC., POROSITY, MATRIX TOTAL 1.0 10.0 9.0 6.7

CEMENTS

Rim 0.0 0.0 0.0 0.0
Cement 0.0 8.0 1.0 3.0

Interstitial 0.0 1.0 0.0 0.3
Overgrowth 2.0 3.0 5.0 3.3

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 5.0 4.0 5.0 4.7

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 1.0 0.3
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 2.0 0.7

CEMENT TOTAL 7.0 16.0 14.0 12.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ALB.

CO3-

HEM.

 North Parkway St.

ACC.
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APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 9.11-1 10.5-3 RS75-113 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 16.0 20.3 17.7 18.0
Vein monocrystalline 23.7 22.3 19.3 21.8
Annealed polycrystalline 6.7 7.7 5.7 6.7
Vein polycrystalline 5.3 3.7 6.7 5.2

Untwinned single grain 0.0 1.0 2.0 1.0
Twinned single grain 6.0 8.0 5.0 6.3
Albitized single grain 8.0 7.3 8.7 8.0

Untwinned single grain 5.0 3.7 5.0 4.6
Perthite single grain 2.0 2.0 1.3 1.8
Microcline single grain 2.3 4.0 3.3 3.2

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.3 2.3 2.0 1.9
Granite gneiss 2.0 0.0 2.0 1.3
Schistose quartz 1.0 0.7 0.3 0.7
Groundmass in schistose quartz 2.3 2.0 3.0 2.4
Schist 0.0 0.0 0.0 0.0
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 2.7 1.3 1.0 1.7
Groundmass in quartzite 0.0 0.0 1.0 0.3

Untwinned granite 2.0 2.0 1.3 1.8
Twinned granite 1.0 3.3 3.0 2.4
Untwinned granite gneiss 2.0 1.0 1.0 1.3
Twinned granite gneiss 2.3 1.0 2.0 1.8

Untwinned granite 3.8 1.0 2.7 2.5
Perthite granite 0.2 0.0 0.0 0.1
Micro. granite 0.0 0.6 0.0 0.2
Untwinned granite gneiss 1.0 0.8 2.0 1.3
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.3 0.7 0.3

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.7 0.0 0.2
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.3 0.0 0.1
Schistose quartz 1.0 0.0 1.3 0.8
Schist 0.7 0.7 0.7 0.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 96.0 98.0 98.7 97.6

Q
U

A
R

TZ
 IN

 R
O

C
K

   
 

FR
A

G
M

EN
T

M
IC

A
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T M
us

co
vi

te
B

io
tit

e

FE
LD

SP
A

R
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T

Plag.

Kspar

FE
LD

SP
A

R
Plag.

Kspar

Q
U

A
R

TZ

 North Parkway St.

187



APPENDIX C1, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 9.11-1 10.5-3 RS75-113 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.0 1.3 0.7 2.0
Biotite single grain 0.0 0.7 0.7 0.5
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.0 2.0 1.4 2.5

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 North Parkway St.
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APPENDIX C2: MODAL ANALYSES FOR PIEDMONT RIVER FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 7.7-1 7.7-5 SF-SR2 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 23.0 19.0 25.0 22.3
Vein monocrystalline 1.0 1.0 1.0 1.0
Annealed polycrystalline 6.0 4.0 4.0 4.7
Vein polycrystalline 5.0 1.0 2.0 2.7

Untwinned single grain 1.0 3.0 3.0 2.3
Twinned single grain 1.0 2.0 2.0 1.7
Albitized single grain 1.0 3.0 3.0 2.3

Untwinned single grain 1.5 1.0 2.0 1.5
Perthite single grain 0.5 0.0 1.0 0.5
Microcline single grain 0.0 1.0 0.0 0.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 2.0 2.0 1.7
Granite gneiss 3.0 5.0 3.0 3.7
Schistose quartz 0.3 0.3 0.3 0.3
Groundmass in schistose quartz 0.7 1.7 0.7 1.0
Schist 0.3 0.0 0.0 0.1
Groundmass in schist 1.7 1.0 1.0 1.2
Quartzite 4.0 8.0 2.0 4.7
Groundmass in quartzite 2.0 2.0 2.0 2.0

Untwinned granite 1.0 0.5 0.0 0.5
Twinned granite 1.0 0.0 0.0 0.3
Untwinned granite gneiss 2.0 3.0 3.0 2.7
Twinned granite gneiss 2.0 0.5 1.0 1.2

Untwinned granite 1.0 1.0 0.0 0.7
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 2.5 1.0 1.5
Perthite granite gneiss 1.0 0.5 1.0 0.8
Micro. granite gneiss 0.0 0.0 3.0 1.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 1.0 1.0 0.7
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 2.0 1.0 2.0 1.7
Schist 1.0 2.0 4.0 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 2.0 1.0 1.0

FRAMWORK TOTAL 65.0 69.0 71.0 68.3
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 7.7-1 7.7-5 SF-SR2 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.0 2.0 3.0 2.7
Biotite single grain 1.0 1.0 1.0 1.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 5.0 1.0 7.0 4.3
Porosity 4.0 2.0 0.0 2.0

ACC., POROSITY, MATRIX TOTAL 13.0 6.0 11.0 10.0

CEMENTS

Rim 4.0 5.0 3.0 4.0
Cement 2.0 3.0 6.0 3.7

Interstitial 10.0 12.0 7.0 9.7
Overgrowth 1.0 2.0 1.0 1.3

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 2.0 1.0 1.0 1.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 1.0 0.0 0.0 0.3
Dolomite 1.0 2.0 0.0 1.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 22.0 25.0 18.0 21.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

 Sugarloaf Mt. Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 7.7-1 7.7-5 SF-SR2 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 32.7 34.3 30.0 32.3
Vein monocrystalline 9.7 4.3 9.0 7.7
Annealed polycrystalline 7.3 9.3 10.0 8.9
Vein polycrystalline 1.0 0.0 0.7 0.6

Untwinned single grain 6.3 8.3 4.3 6.3
Twinned single grain 2.0 4.0 3.0 3.0
Albitized single grain 1.0 0.7 0.3 0.7

Untwinned single grain 2.0 3.2 2.7 2.6
Perthite single grain 1.9 0.0 2.0 1.3
Microcline single grain 1.1 0.5 0.3 0.6

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 6.0 5.3 5.7 5.7
Schistose quartz 2.3 3.3 2.0 2.5
Groundmass in schistose quartz 2.0 2.0 4.0 2.7
Schist 0.7 0.0 0.3 0.3
Groundmass in schist 1.0 1.7 1.7 1.5
Quartzite 12.0 10.0 12.0 11.3
Groundmass in quartzite 1.3 1.3 2.3 1.6

Untwinned granite 0.0 1.0 0.7 0.6
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.7 3.3 2.0 2.0
Twinned granite gneiss 0.0 2.0 1.0 1.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 1.1 0.0 0.7
Perthite granite gneiss 0.3 0.5 0.7 0.5
Micro. granite gneiss 0.7 0.8 0.3 0.6

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.3 0.7 0.3 0.4
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 2.0 0.3 0.7 1.0
Schist 1.7 0.0 1.3 1.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.0 0.0 0.1
Schist 0.0 1.0 0.3 0.4

FRAMWORK TOTAL 97.3 98.0 97.6 97.6
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 7.7-1 7.7-5 SF-SR2 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 0.7 0.7 0.3 0.5
Biotite single grain 0.7 0.7 1.0 0.8
Chlorite replacement single grain 1.3 0.7 1.0 1.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 2.7 2.0 2.3 2.3

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

ACC.

HEM.

 Sugarloaf Mt. Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 9.21-2 9.21-5 9.21-6 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 22.0 21.0 25.0 22.7
Vein monocrystalline 2.0 2.0 5.0 3.0
Annealed polycrystalline 5.0 6.0 7.0 6.0
Vein polycrystalline 1.0 0.0 3.0 1.3

Untwinned single grain 6.0 2.0 2.0 3.3
Twinned single grain 2.0 2.0 1.0 1.7
Albitized single grain 2.0 4.0 5.0 3.7

Untwinned single grain 2.0 0.5 2.0 1.5
Perthite single grain 1.0 0.5 2.0 1.2
Microcline single grain 0.0 1.0 0.0 0.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 2.0 2.0 0.0 1.3
Granite gneiss 4.0 8.0 2.0 4.7
Schistose quartz 0.0 0.0 1.3 0.4
Groundmass in schistose quartz 1.0 0.0 0.7 0.6
Schist 0.0 0.0 1.0 0.3
Groundmass in schist 1.0 1.0 0.0 0.7
Quartzite 2.0 2.0 7.0 3.7
Groundmass in quartzite 3.0 1.0 0.0 1.3

Untwinned granite 1.0 1.0 1.0 1.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 3.0 4.0 2.7
Twinned granite gneiss 2.0 1.0 3.0 2.0

Untwinned granite 2.0 0.0 0.0 0.7
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 1.0 1.0 0.7
Untwinned granite gneiss 2.0 2.7 4.0 2.9
Perthite granite gneiss 0.0 0.3 1.0 0.4
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 1.0 0.0 0.3
Granite gneiss 1.0 1.0 1.0 1.0
Quartzite 0.0 1.0 0.0 0.3
Schistose quartz 1.0 2.0 2.0 1.7
Schist 4.0 4.0 4.0 4.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 1.0 0.0 0.0 0.3
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 1.0 0.3
Schist 0.0 0.0 1.0 0.3

FRAMWORK TOTAL 71.0 71.0 87.0 76.3
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 9.21-2 9.21-5 9.21-6 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 8.0 3.0 3.0 4.7
Biotite single grain 2.0 5.0 2.0 3.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 7.0 0.0 1.0 2.7
Porosity 0.0 2.0 0.0 0.7

ACC., POROSITY, MATRIX TOTAL 17.0 10.0 6.0 11.0

CEMENTS

Rim 2.0 2.0 2.0 2.0
Cement 8.0 2.0 2.0 4.0

Interstitial 2.0 4.0 1.0 2.3
Overgrowth 0.0 10.0 2.0 4.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 0.0 1.0 0.0 0.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 12.0 19.0 7.0 12.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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 River Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 9.21-2 9.21-5 9.21-6 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 28.3 29.3 32.7 30.1
Vein monocrystalline 12.3 12.0 14.3 12.9
Annealed polycrystalline 9.3 7.3 6.0 7.5
Vein polycrystalline 2.7 2.3 3.0 2.7

Untwinned single grain 4.0 2.0 2.0 2.7
Twinned single grain 2.0 2.2 3.0 2.4
Albitized single grain 1.3 1.0 0.0 0.8

Untwinned single grain 2.0 2.7 3.3 2.7
Perthite single grain 1.7 3.0 2.0 2.2
Microcline single grain 0.0 0.3 0.0 0.1

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 0.3 0.3 0.2
Granite gneiss 6.0 5.0 5.0 5.3
Schistose quartz 1.7 2.0 2.7 2.1
Groundmass in schistose quartz 2.0 2.0 1.0 1.7
Schist 0.3 0.3 0.3 0.3
Groundmass in schist 1.7 1.0 1.0 1.2
Quartzite 11.7 8.7 7.3 9.2
Groundmass in quartzite 0.0 1.0 0.0 0.3

Untwinned granite 0.0 1.0 0.0 0.3
Twinned granite 0.0 0.3 0.0 0.1
Untwinned granite gneiss 1.0 2.0 2.7 1.9
Twinned granite gneiss 1.7 1.0 2.0 1.6

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.0 2.3 2.0 2.1
Perthite granite gneiss 0.7 1.0 0.3 0.7
Micro. granite gneiss 0.3 0.3 0.0 0.2

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.3 0.1
Granite gneiss 0.7 1.0 0.3 0.7
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.7 1.7 0.9
Schist 2.3 1.7 0.7 1.6

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.3 0.0 0.2
Schist 0.0 0.3 0.3 0.2

FRAMWORK TOTAL 96.3 95.3 94.3 95.3
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 9.21-2 9.21-5 9.21-6 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 1.3 2.7 2.3 2.1
Biotite single grain 2.3 1.7 2.7 2.2
Chlorite replacement single grain 0.0 0.3 0.7 0.3
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 3.7 4.7 5.7 4.7

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 River Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: 10.11-1 10.11-2 10.11-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 14.0 10.0 20.0 14.7
Vein monocrystalline 2.0 7.0 2.0 3.7
Annealed polycrystalline 3.0 5.0 5.0 4.3
Vein polycrystalline 2.0 3.0 7.0 4.0

Untwinned single grain 2.0 4.0 3.5 3.2
Twinned single grain 1.0 2.0 1.5 1.5
Albitized single grain 3.0 2.0 0.0 1.7

Untwinned single grain 1.5 3.0 2.0 2.2
Perthite single grain 1.5 1.0 1.0 1.2
Microcline single grain 2.0 4.0 3.0 3.0

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 2.0 2.0 0.0 1.3
Granite gneiss 7.0 4.0 5.0 5.3
Schistose quartz 0.0 2.0 0.3 0.8
Groundmass in schistose quartz 1.0 0.0 0.7 0.6
Schist 0.0 0.0 1.0 0.3
Groundmass in schist 1.0 1.0 0.0 0.7
Quartzite 5.0 7.0 7.0 6.3
Groundmass in quartzite 2.0 0.0 0.0 0.7

Untwinned granite 2.0 2.0 1.0 1.7
Twinned granite 1.0 0.0 0.0 0.3
Untwinned granite gneiss 1.0 3.0 0.0 1.3
Twinned granite gneiss 3.0 1.0 4.0 2.7

Untwinned granite 0.0 1.0 0.0 0.3
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 1.0 1.0 0.7
Untwinned granite gneiss 2.0 2.0 3.0 2.3
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 2.0 4.0 1.0 2.3

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 1.0 1.0 2.0 1.3
Quartzite 0.0 0.0 1.0 0.3
Schistose quartz 2.0 1.0 1.0 1.3
Schist 3.0 4.0 3.0 3.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 2.0 0.0 0.7
Schist 1.0 0.0 2.0 1.0

FRAMWORK TOTAL 68.0 79.0 78.0 75.0
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: 10.11-1 10.11-2 10.11-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 5.0 5.0 4.0 4.7
Biotite single grain 3.0 4.0 3.0 3.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 2.0 0.0 3.0 1.7
Porosity 1.0 0.0 0.0 0.3

ACC., POROSITY, MATRIX TOTAL 11.0 9.0 10.0 10.0

CEMENTS

Rim 1.0 3.0 1.0 1.7
Cement 4.0 1.0 2.0 2.3

Interstitial 9.0 4.0 3.0 5.3
Overgrowth 2.0 1.0 1.0 1.3

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 2.0 0.0 1.0 1.0

Calcite 1.0 2.0 2.0 1.7
Fe-calcite 2.0 1.0 2.0 1.7
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 21.0 12.0 12.0 15.0

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: 10.11-1 10.11-2 10.11-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 34.3 31.3 25.3 30.3
Vein monocrystalline 8.7 6.3 4.7 6.5
Annealed polycrystalline 11.0 10.7 13.3 11.7
Vein polycrystalline 3.0 2.3 4.0 3.1

Untwinned single grain 4.0 2.0 3.0 3.0
Twinned single grain 1.0 2.3 0.7 1.3
Albitized single grain 2.3 3.0 2.3 2.6

Untwinned single grain 2.0 4.8 7.2 4.7
Perthite single grain 2.0 2.0 1.0 1.7
Microcline single grain 0.0 0.7 1.1 0.6

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 4.3 0.0 1.0 1.8
Granite gneiss 4.3 5.7 6.3 5.5
Schistose quartz 0.3 1.0 2.3 1.2
Groundmass in schistose quartz 1.3 1.0 1.0 1.1
Schist 0.0 0.0 0.7 0.2
Groundmass in schist 0.3 0.3 1.0 0.5
Quartzite 9.0 11.0 10.0 10.0
Groundmass in quartzite 0.0 1.0 0.7 0.6

Untwinned granite 0.3 0.0 0.3 0.2
Twinned granite 1.0 0.0 0.0 0.3
Untwinned granite gneiss 1.0 4.0 2.0 2.3
Twinned granite gneiss 1.0 0.0 3.3 1.4

Untwinned granite 1.2 1.0 0.2 0.8
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.2 0.0 0.1 0.1
Untwinned granite gneiss 2.7 3.0 2.0 2.6
Perthite granite gneiss 0.3 0.5 0.0 0.3
Micro. granite gneiss 0.3 0.5 1.0 0.6

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.7 1.3 0.7
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.3 0.7 0.4
Schist 0.7 1.3 2.0 1.3

Granite 0.0 0.3 0.0 0.1
Granite gneiss 0.3 0.0 0.0 0.1
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 95.3 97.0 98.6 97.0
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: 10.11-1 10.11-2 10.11-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.0 2.7 1.3 2.7
Biotite single grain 0.7 0.3 0.0 0.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.7 3.0 1.3 3.0

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-
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 French's Ferry St.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 10.11-9 10.11-10 RS75-S3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 26.0 21.0 23.0 23.3
Vein monocrystalline 1.0 7.0 1.0 3.0
Annealed polycrystalline 4.0 6.0 6.0 5.3
Vein polycrystalline 0.0 2.0 1.0 1.0

Untwinned single grain 2.5 3.0 2.0 2.5
Twinned single grain 0.5 1.0 2.0 1.2
Albitized single grain 5.0 2.0 4.0 3.7

Untwinned single grain 5.0 3.5 2.5 3.7
Perthite single grain 1.0 0.5 0.5 0.7
Microcline single grain 1.0 1.0 0.0 0.7

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 1.0 2.0 1.3
Granite gneiss 5.0 4.0 4.0 4.3
Schistose quartz 1.0 0.0 0.3 0.4
Groundmass in schistose quartz 0.0 0.0 0.7 0.2
Schist 1.0 1.0 1.3 1.1
Groundmass in schist 1.0 1.0 0.7 0.9
Quartzite 5.0 4.0 2.0 3.7
Groundmass in quartzite 0.0 2.0 0.0 0.7

Untwinned granite 0.0 0.0 1.0 0.3
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 0.5 3.0 1.5
Twinned granite gneiss 2.0 1.5 0.0 1.2

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.7 1.0 4.0 2.6
Perthite granite gneiss 0.3 0.0 1.0 0.4
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 1.0 0.3
Granite gneiss 3.0 0.0 3.0 2.0
Quartzite 1.0 0.0 0.0 0.3
Schistose quartz 2.0 0.0 1.0 1.0
Schist 2.0 4.0 3.0 3.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 2.0 1.0 1.0
Schist 0.0 3.0 1.0 1.3

FRAMWORK TOTAL 74.0 72.0 72.0 72.7
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 10.11-9 10.11-10 RS75-S3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.0 5.0 3.0 4.0
Biotite single grain 1.0 3.0 1.0 1.7
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 3.0 1.0 7.0 3.7
Porosity 0.0 1.0 0.0 0.3

ACC., POROSITY, MATRIX TOTAL 8.0 10.0 11.0 9.7

CEMENTS

Rim 3.0 1.0 3.0 2.3
Cement 3.0 2.0 4.0 3.0

Interstitial 8.0 5.0 8.0 7.0
Overgrowth 2.0 8.0 1.0 3.7

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 2.0 2.0 1.0 1.7

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 18.0 18.0 17.0 17.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 10.11-9 10.11-10 RS75-S3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 30.3 27.0 33.7 30.3
Vein monocrystalline 6.3 11.3 8.0 8.6
Annealed polycrystalline 9.7 9.3 10.0 9.7
Vein polycrystalline 0.3 0.7 0.7 0.6

Untwinned single grain 7.0 5.0 7.3 6.4
Twinned single grain 5.0 4.7 4.0 4.6
Albitized single grain 0.7 0.0 0.3 0.3

Untwinned single grain 2.1 5.0 4.0 3.7
Perthite single grain 0.0 0.4 0.5 0.3
Microcline single grain 1.3 1.0 0.7 1.0

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 7.0 6.3 7.0 6.8
Schistose quartz 1.0 1.0 0.0 0.7
Groundmass in schistose quartz 0.3 0.0 0.7 0.3
Schist 2.0 1.0 1.3 1.4
Groundmass in schist 1.0 0.7 0.7 0.8
Quartzite 6.7 10.0 8.0 8.2
Groundmass in quartzite 0.0 0.7 0.3 0.3

Untwinned granite 0.0 1.0 0.7 0.6
Twinned granite 0.0 0.7 0.0 0.2
Untwinned granite gneiss 4.0 3.0 3.0 3.3
Twinned granite gneiss 5.0 2.3 1.0 2.8

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.0 2.0 2.0 2.0
Perthite granite gneiss 0.3 0.0 0.1 0.1
Micro. granite gneiss 0.0 0.3 0.0 0.1

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 1.0 0.0 0.7 0.6
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 2.7 2.7 1.7 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.3 0.0 0.1
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 95.7 96.4 96.4 96.1
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 10.11-9 10.11-10 RS75-S3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.3 2.3 3.7 3.5
Biotite single grain 0.0 1.3 0.0 0.4
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.3 3.7 3.7 3.9

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

 North Silver Ln.

HEM.

ACC.

204



APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 10.13-7 10.13-8 SF-BH6 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 30.0 25.0 31.0 28.7
Vein monocrystalline 0.0 1.0 0.0 0.3
Annealed polycrystalline 14.0 10.0 6.0 10.0
Vein polycrystalline 0.0 0.0 0.0 0.0

Untwinned single grain 6.0 6.0 8.0 6.7
Twinned single grain 2.0 4.0 4.0 3.3
Albitized single grain 0.0 0.0 1.0 0.3

Untwinned single grain 1.0 2.0 2.5 1.8
Perthite single grain 0.0 0.0 0.5 0.2
Microcline single grain 0.0 0.0 1.0 0.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 2.0 1.0 1.3
Granite gneiss 2.0 5.0 3.0 3.3
Schistose quartz 0.0 1.0 1.0 0.7
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 2.0 0.7
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 3.0 2.0 8.0 4.3
Groundmass in quartzite 0.0 0.0 0.0 0.0

Untwinned granite 1.0 0.0 1.0 0.7
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 1.0 2.0 1.3
Twinned granite gneiss 2.0 1.0 1.0 1.3

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 3.0 1.0 0.0 1.3
Untwinned granite gneiss 0.0 0.0 2.0 0.7
Perthite granite gneiss 0.0 0.0 1.0 0.3
Micro. granite gneiss 1.0 0.0 2.0 1.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 1.0 0.0 0.3
Granite gneiss 1.0 1.0 0.0 0.7
Quartzite 3.0 1.0 0.0 1.3
Schistose quartz 0.0 2.0 1.0 1.0
Schist 0.0 1.0 4.0 1.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 1.0 0.3
Schist 0.0 1.0 2.0 1.0

FRAMWORK TOTAL 71.0 68.0 86.0 75.0
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 10.13-7 10.13-8 SF-BH6 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 1.0 3.0 3.0 2.3
Biotite single grain 4.0 5.0 1.0 3.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 3.0 1.0 0.0 1.3
Porosity 1.0 1.0 0.0 0.7

ACC., POROSITY, MATRIX TOTAL 9.0 10.0 4.0 7.7

CEMENTS

Rim 5.0 6.0 2.0 4.3
Cement 5.0 4.0 3.0 4.0

Interstitial 3.0 2.0 1.0 2.0
Overgrowth 1.0 4.0 2.0 2.3

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 3.0 2.0 0.0 1.7

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 3.0 2.0 2.0 2.3
Fe-dolomite 0.0 2.0 0.0 0.7

CEMENT TOTAL 20.0 22.0 10.0 17.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 10.13-7 10.13.8 SF-BH6 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 38.3 42.0 45.3 41.9
Vein monocrystalline 7.3 4.3 3.3 5.0
Annealed polycrystalline 9.7 7.7 8.7 8.7
Vein polycrystalline 0.0 0.0 0.0 0.0

Untwinned single grain 6.0 5.0 5.0 5.3
Twinned single grain 3.0 1.7 3.0 2.6
Albitized single grain 0.0 0.3 0.0 0.1

Untwinned single grain 4.0 5.0 4.0 4.3
Perthite single grain 1.0 0.3 0.7 0.7
Microcline single grain 1.0 1.3 0.3 0.9

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 5.3 11.7 8.3 8.4
Schistose quartz 1.7 1.0 2.3 1.7
Groundmass in schistose quartz 1.0 2.0 0.0 1.0
Schist 0.3 1.0 2.0 1.1
Groundmass in schist 2.0 0.3 0.0 0.8
Quartzite 3.0 4.3 4.0 3.8
Groundmass in quartzite 0.7 0.0 0.0 0.2

Untwinned granite 0.3 0.0 0.0 0.1
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 4.0 2.0 0.0 2.0
Twinned granite gneiss 0.3 1.3 3.3 1.6

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 3.8 2.0 2.3
Perthite granite gneiss 0.8 1.0 0.2 0.7
Micro. granite gneiss 1.8 1.2 1.8 1.6

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 0.3 0.7 0.7
Schist 2.7 0.7 1.3 1.5

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.7 0.7 0.5

FRAMWORK TOTAL 96.3 99.0 95.9 97.1
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 10.13-7 10.13.8 SF-BH6 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 1.7 1.0 2.0 1.6
Biotite single grain 1.7 0.0 1.0 0.9
Chlorite replacement single grain 0.3 0.0 1.0 0.4
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 3.7 1.0 4.0 2.9

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

HEM.

ALB.

ACC.

 Bull Hill Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: 11.13-4 11.13-6 SF-PR1 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 24.0 23.0 26.0 24.3
Vein monocrystalline 1.0 1.0 1.0 1.0
Annealed polycrystalline 2.0 4.0 4.0 3.3
Vein polycrystalline 1.0 0.0 2.0 1.0

Untwinned single grain 4.5 2.0 4.0 3.5
Twinned single grain 3.5 1.0 4.0 2.8
Albitized single grain 3.0 3.0 2.0 2.7

Untwinned single grain 3.0 2.0 3.0 2.7
Perthite single grain 1.0 1.0 0.0 0.7
Microcline single grain 3.0 0.0 0.0 1.0

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 1.0 1.0 0.7
Granite gneiss 1.0 5.0 4.0 3.3
Schistose quartz 1.0 2.0 1.0 1.3
Groundmass in schistose quartz 0.0 1.0 0.0 0.3
Schist 1.0 0.3 0.0 0.4
Groundmass in schist 1.0 0.7 1.0 0.9
Quartzite 1.0 6.0 4.0 3.7
Groundmass in quartzite 1.0 1.0 2.0 1.3

Untwinned granite 1.0 0.0 1.0 0.7
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.0 3.0 4.0 3.0
Twinned granite gneiss 2.0 2.0 2.0 2.0

Untwinned granite 0.0 1.0 0.0 0.3
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.5 6.0 4.0 3.8
Perthite granite gneiss 0.5 0.0 0.0 0.2
Micro. granite gneiss 3.0 0.0 0.0 1.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 1.0 1.0 0.7
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 1.0 2.0 1.3
Schist 4.0 1.0 2.0 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 1.0 1.0 2.0 1.3

FRAMWORK TOTAL 68.0 70.0 77.0 71.7

FE
LD

SP
A

R
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T

Plag.

Kspar

M
IC

A
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T M
us

co
vi

te
B

io
tit

e

 Rice's Ferry Rd.

Q
U

A
R

TZ
FE

LD
SP

A
R

Plag.

Kspar

Q
U

A
R

TZ
 IN

 R
O

C
K

   
 

FR
A

G
M

EN
T

209



APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: 11.13-4 11.13-6 SF-PR1 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 5.0 2.0 3.0 3.3
Biotite single grain 1.0 1.0 2.0 1.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 12.0 9.0 2.0 7.7
Porosity 1.0 0.0 1.0 0.7

ACC., POROSITY, MATRIX TOTAL 19.0 12.0 8.0 13.0

CEMENTS

Rim 3.0 4.0 2.0 3.0
Cement 7.0 12.0 4.0 7.7

Interstitial 2.0 2.0 3.0 2.3
Overgrowth 1.0 0.0 5.0 2.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 0.0 0.0 1.0 0.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 13.0 18.0 15.0 15.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ACC.

HEM.

ALB.

CO3-

 Rice's Ferry Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: 11.13-4 11.13-6 SF-PR1 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 37.3 38.1 38.7 38.0
Vein monocrystalline 1.3 1.3 1.7 1.4
Annealed polycrystalline 8.0 9.5 10.3 9.3
Vein polycrystalline 1.0 0.7 0.0 0.6

Untwinned single grain 10.3 8.5 6.7 8.5
Twinned single grain 5.0 6.0 5.0 5.3
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 1.0 2.1 1.1 1.4
Perthite single grain 1.7 1.0 2.0 1.6
Microcline single grain 0.7 0.7 0.9 0.8

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 9.0 5.9 6.0 7.0
Schistose quartz 0.3 0.0 1.0 0.4
Groundmass in schistose quartz 1.0 1.5 0.0 0.8
Schist 0.0 0.0 0.0 0.0
Groundmass in schist 0.3 0.0 0.3 0.2
Quartzite 7.0 2.0 11.0 6.7
Groundmass in quartzite 0.7 8.5 0.7 3.3

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 6.0 4.0 5.0 5.0
Twinned granite gneiss 1.3 4.1 1.0 2.1

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.7 1.0 3.0 1.9
Perthite granite gneiss 0.0 1.0 0.3 0.4
Micro. granite gneiss 0.0 1.7 1.3 1.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.3 0.3 0.2
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.7 0.3 0.7 0.5
Schist 0.7 0.0 1.0 0.6

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.4 0.0 0.2
Schist 0.0 0.0 0.3 0.1

FRAMWORK TOTAL 95.3 98.6 98.3 97.4

Plag.
Q

U
A

R
TZ

M
IC

A
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T M
us

co
vi

te
B

io
tit

e

FE
LD

SP
A

R
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T

Plag.

Kspar

Q
U

A
R

TZ
 IN

 R
O

C
K

   
 

FR
A

G
M

EN
T

FE
LD

SP
A

R

Kspar

 Rice's Ferry Rd.

211



APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: 11.13-4 11.13-6 SF-PR1 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.3 1.4 1.7 2.5
Biotite single grain 0.3 0.0 0.0 0.1
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.7 1.4 1.7 2.6

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

ACC.

HEM.

 Rice's Ferry Rd.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 10.16-1 10.16-2 10.16-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 38.0 30.0 44.0 37.3
Vein monocrystalline 4.0 3.0 5.0 4.0
Annealed polycrystalline 9.0 7.0 8.0 8.0
Vein polycrystalline 4.0 2.0 2.0 2.7

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 3.0 5.0 6.0 4.7

Granite 0.0 1.0 0.0 0.3
Granite gneiss 2.0 3.0 1.0 2.0
Schistose quartz 0.0 0.0 2.0 0.7
Groundmass in schistose quartz 0.0 1.0 0.0 0.3
Schist 0.0 1.0 0.0 0.3
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 5.0 4.0 7.0 5.3
Groundmass in quartzite 0.0 0.0 1.0 0.3

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 0.0 0.0 0.3
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 2.0 0.0 0.7
Illite replacement in granite gneiss 3.0 4.0 1.0 2.7

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 1.0 0.0 0.3
Quartzite 1.0 0.0 0.0 0.3
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 70.0 64.0 77.0 70.3
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 10.16-1 10.16-2 10.16-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.0 4.0 3.0 3.3
Biotite single grain 5.0 3.0 8.0 5.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 5.0 8.0 6.0 6.3
Porosity 0.0 1.0 0.0 0.3

ACC., POROSITY, MATRIX TOTAL 13.0 16.0 17.0 15.3

CEMENTS

Rim 0.0 1.0 0.0 0.3
Cement 1.0 2.0 1.0 1.3

Interstitial 0.0 0.0 0.0 0.0
Overgrowth 0.0 0.0 0.0 0.0

Illite 13.0 12.0 5.0 10.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 3.0 5.0 0.0 2.7

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 17.0 20.0 6.0 14.3

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

HEM.

ALB.

 Kellogg St.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 10.16-1 10.16-2 10.16-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 32.0 40.7 41.3 38.0
Vein monocrystalline 12.3 11.3 10.0 11.2
Annealed polycrystalline 9.7 8.7 10.0 9.5
Vein polycrystalline 3.3 2.7 0.7 2.2

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 1.0 1.5 0.7 1.1
Perthite single grain 0.3 0.2 0.0 0.2
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 9.7 9.3 8.7 9.2

Granite 0.0 0.0 0.0 0.0
Granite gneiss 9.7 7.3 8.0 8.3
Schistose quartz 0.0 0.0 1.0 0.3
Groundmass in schistose quartz 0.7 2.0 2.0 1.6
Schist 0.0 0.3 0.0 0.1
Groundmass in schist 0.0 0.0 0.7 0.2
Quartzite 8.0 6.0 4.0 6.0
Groundmass in quartzite 0.7 0.7 0.7 0.7

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 0.3 0.0 0.4
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.7 1.3 3.3 1.8
Perthite granite gneiss 1.0 0.0 0.0 0.3
Micro. granite gneiss 0.3 0.0 0.0 0.1

Illite replacement in granite 0.0 0.7 0.0 0.2
Illite replacement in granite gneiss 3.3 3.0 4.0 3.4

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.3 0.3 0.3 0.3
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 0.3 0.3 0.5
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 95.0 96.6 95.7 95.8
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 10.16-1 10.16-2 10.16-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 1.7 0.7 1.0 1.1
Biotite single grain 3.3 2.7 3.3 3.1
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 5.0 3.4 4.3 4.2

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.
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HEM.

 Kellogg St.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 22 23 24 -

SAMPLE: 10.16-9 10.16-10 10.16-11 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 42.0 48.0 40.0 43.3
Vein monocrystalline 3.0 3.0 8.0 4.7
Annealed polycrystalline 15.0 9.0 11.0 11.7
Vein polycrystalline 2.0 1.0 3.0 2.0

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 0.0 0.0 0.0 0.0
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.0 0.0 0.0 0.0

Illite replacement of feldspar 2.0 5.0 8.0 5.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 2.0 4.0 2.0 2.7
Schistose quartz 0.0 0.0 0.0 0.0
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 1.0 1.0 0.7
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 3.0 3.0 5.0 3.7
Groundmass in quartzite 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 0.0 0.0
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 1.0 0.0 0.3
Illite replacement in granite gneiss 4.0 3.0 2.0 3.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 2.0 0.0 1.0 1.0
Schist 4.0 2.0 1.0 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 2.0 0.0 0.0 0.7

FRAMWORK TOTAL 81.0 80.0 82.0 81.0

Q
U

A
R

TZ
 IN

 R
O

C
K

   
 

FR
A

G
M

EN
T

FE
LD

SP
A

R
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T

Plag.

Kspar

M
IC

A
 IN

 R
O

C
K

   
   

   
   

   
FR

A
G

M
EN

T M
us

co
vi

te
B

io
tit

e

 Meadow St.

Q
U

A
R

TZ
FE

LD
SP

A
R

Plag.

Kspar

217



APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 22 23 24 -

SAMPLE: 10.16-9 10.16-10 10.16-11 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.0 1.0 4.0 2.3
Biotite single grain 4.0 5.0 7.0 5.3
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 0.0 0.0 0.0 0.0

Hematite-stained matrix 5.0 2.0 0.0 2.3
Porosity 0.0 0.0 1.0 0.3

ACC., POROSITY, MATRIX TOTAL 11.0 8.0 12.0 10.3

CEMENTS

Rim 0.0 1.0 0.0 0.3
Cement 1.0 1.0 2.0 1.3

Interstitial 0.0 0.0 0.0 0.0
Overgrowth 0.0 0.0 0.0 0.0

Illite 5.0 8.0 4.0 5.7
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 2.0 2.0 0.0 1.3

Calcite 0.0 0.0 0.0 0.0
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 8.0 12.0 6.0 8.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

ALB.

CO3-

ACC.

HEM.

 Meadow St.
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 22 23 24 -

SAMPLE: 10.16-9 10.16-10 10.16-11 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 45.0 46.7 33.3 41.7
Vein monocrystalline 7.3 5.3 6.7 6.4
Annealed polycrystalline 4.3 4.0 9.3 5.9
Vein polycrystalline 0.0 0.7 1.0 0.6

Untwinned single grain 0.0 0.0 0.0 0.0
Twinned single grain 0.0 0.0 0.0 0.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 1.6 0.3 0.0 0.6
Perthite single grain 0.0 0.0 0.0 0.0
Microcline single grain 0.4 0.3 0.0 0.2

Illite replacement of feldspar 11.0 14.7 14.7 13.5

Granite 0.0 0.0 0.0 0.0
Granite gneiss 10.3 9.3 8.0 9.2
Schistose quartz 0.7 0.7 0.0 0.5
Groundmass in schistose quartz 0.0 0.0 1.0 0.3
Schist 0.0 0.3 0.0 0.1
Groundmass in schist 0.0 0.0 1.0 0.3
Quartzite 5.0 7.0 10.0 7.3
Groundmass in quartzite 0.0 0.0 0.3 0.1

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.7 0.3 0.7 0.6
Twinned granite gneiss 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 2.7 0.0 0.0 0.9
Perthite granite gneiss 1.0 0.7 0.0 0.6
Micro. granite gneiss 0.0 0.0 0.0 0.0

Illite replacement in granite 0.0 0.3 0.0 0.1
Illite replacement in granite gneiss 7.7 6.3 8.0 7.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.3 0.1
Schist 0.0 0.7 1.0 0.6

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.3 0.0 0.7 0.3
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.0 0.0 0.0 0.0
Schist 0.0 0.0 0.0 0.0

FRAMWORK TOTAL 98.0 97.6 96.0 97.2
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APPENDIX C2, CONTINUED

LOCATION:
FIGURE ID NO.: 22 23 24 -

SAMPLE: 10.16-9 10.16-10 10.16-11 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 0.7 0.3 1.0 0.7
Biotite single grain 1.3 2.0 3.0 2.1
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 2.0 2.3 4.0 2.8

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 Meadow St.
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APPENDIX C3: MODAL ANALYSES FOR ALLUVIAL FAN FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: FR-1B FR-2B FR-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 27.0 26.0 18.0 23.7
Vein monocrystalline 0.0 2.0 2.0 1.3
Annealed polycrystalline 14.0 8.0 20.0 14.0
Vein polycrystalline 0.0 0.0 1.0 0.3

Untwinned single grain 5.0 6.0 1.0 4.0
Twinned single grain 1.0 0.0 0.0 0.3
Albitized single grain 0.0 2.0 1.0 1.0

Untwinned single grain 0.0 1.0 10.0 3.7
Perthite single grain 0.0 0.0 4.0 1.3
Microcline single grain 1.0 0.0 1.0 0.7

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 1.0 1.0 1.0
Granite gneiss 2.0 5.0 3.0 3.3
Schistose quartz 0.0 0.0 2.0 0.7
Groundmass in schistose quartz 0.0 0.0 0.0 0.0
Schist 1.0 1.0 0.0 0.7
Groundmass in schist 0.0 0.0 0.0 0.0
Quartzite 4.0 9.0 4.0 5.7
Groundmass in quartzite 0.0 0.0 0.0 0.0

Untwinned granite 0.0 0.0 0.0 0.0
Twinned granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 1.0 3.0 1.0 1.7
Twinned granite gneiss 1.0 2.0 1.0 1.3

Untwinned granite 0.0 2.0 0.0 0.7
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.0 0.0 1.0 0.3
Perthite granite gneiss 0.0 0.0 1.0 0.3
Micro. granite gneiss 3.0 0.0 2.0 1.7

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 1.0 1.0 1.0 1.0
Quartzite 1.0 1.0 2.0 1.3
Schistose quartz 1.0 0.0 1.0 0.7
Schist 1.0 2.0 3.0 2.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 0.0 1.0 0.7
Schist 1.0 0.0 1.0 0.7

FRAMWORK TOTAL 67.0 72.0 83.0 74.0
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: FR-1B FR-2B FR-3 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 2.0 4.0 0.0 2.0
Biotite single grain 3.0 2.0 1.0 2.0
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet 1.0 0.0 0.0 0.3

Hematite-stained matrix 2.0 0.0 0.0 0.7
Porosity 2.0 0.0 1.0 1.0

ACC., POROSITY, MATRIX TOTAL 10.0 6.0 2.0 6.0

CEMENTS

Rim 2.0 3.0 2.0 7.0
Cement 4.0 4.0 3.0 11.0

Interstitial 3.0 2.0 2.0 7.0
Overgrowth 3.0 3.0 3.0 9.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 5.0 3.0 0.0 8.0

Calcite 4.0 2.0 2.0 8.0
Fe-calcite 0.0 2.0 1.0 3.0
Dolomite 2.0 3.0 2.0 7.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 23.0 22.0 15.0 20.0

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

 Scout Rd.

ACC.
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: FR-1B FR-2B FR-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 23.7 23.7 25.3 24.2
Vein monocrystalline 6.0 4.7 6.0 5.6
Annealed polycrystalline 10.0 7.7 10.0 9.2
Vein polycrystalline 1.3 0.0 0.7 0.7

Untwinned single grain 9.3 7.7 9.7 8.9
Twinned single grain 3.0 0.0 0.0 1.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 1.0 2.0 2.0 1.7
Perthite single grain 0.6 0.2 0.0 0.3
Microcline single grain 1.0 0.8 0.7 0.9

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 0.3 0.0 0.0 0.1
Granite gneiss 10.3 12.0 11.7 11.3
Schistose quartz 1.0 4.0 2.7 2.6
Groundmass in schistose quartz 1.0 1.3 1.0 1.1
Schist 0.0 0.0 0.0 0.0
Groundmass in schist 0.3 0.0 0.0 0.1
Quartzite 14.0 14.0 14.0 14.0
Groundmass in quartzite 1.7 0.0 0.0 0.6

Untwinned granite 1.0 0.3 0.7 0.7
Twinned granite 0.3 0.0 0.0 0.1
Untwinned granite gneiss 2.0 6.0 3.3 3.8
Twinned granite gneiss 3.3 3.3 5.0 3.9

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 0.5 2.0 1.0 1.2
Perthite granite gneiss 0.3 0.3 0.0 0.2
Micro. granite gneiss 0.6 0.7 0.7 0.6

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.3 0.0 0.0 0.1
Quartzite 0.3 0.0 0.0 0.1
Schistose quartz 0.3 0.7 0.0 0.3
Schist 0.7 4.7 1.7 2.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.7 0.0 0.3 0.3
Schist 1.0 0.0 0.3 0.4

FRAMWORK TOTAL 96.0 96.0 96.8 96.2
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: FR-1B FR-2B FR-3 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.3 2.3 3.3 3.0
Biotite single grain 0.7 1.7 0.0 0.8
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 4.0 4.0 3.3 3.8

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0

CO3-

ALB.

HEM.

ACC.

 Scout Rd.

224



APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 10.9-2 WGR-1 WGR-2 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

FRAMEWORK GRAINS

Unit monocrystalline 22.0 20.0 19.0 20.3
Vein monocrystalline 1.0 2.0 2.0 1.7
Annealed polycrystalline 10.0 8.0 5.0 7.7
Vein polycrystalline 0.0 0.0 1.0 0.3

Untwinned single grain 6.0 4.5 5.0 5.2
Twinned single grain 1.0 0.5 1.0 0.8
Albitized single grain 2.0 3.0 1.0 2.0

Untwinned single grain 0.0 1.0 0.0 0.3
Perthite single grain 0.0 2.0 0.0 0.7
Microcline single grain 3.0 2.0 2.0 2.3

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.0 0.0 2.0 1.0
Granite gneiss 4.0 5.0 5.0 4.7
Schistose quartz 2.0 0.0 0.3 0.8
Groundmass in schistose quartz 0.0 0.0 0.7 0.2
Schist 3.0 1.0 1.0 1.7
Groundmass in schist 0.0 1.0 0.0 0.3
Quartzite 4.0 2.0 2.0 2.7
Groundmass in quartzite 1.0 1.0 2.0 1.3

Untwinned granite 0.0 1.0 2.0 1.0
Twinned granite 0.0 0.0 1.0 0.3
Untwinned granite gneiss 2.0 2.5 3.0 2.5
Twinned granite gneiss 0.0 1.5 2.0 1.2

Untwinned granite 0.0 0.0 0.0 0.0
Perthite granite 0.0 0.0 0.0 0.0
Micro. granite 0.0 1.0 3.0 1.3
Untwinned granite gneiss 1.0 1.0 2.0 1.3
Perthite granite gneiss 0.0 0.0 0.0 0.0
Micro. granite gneiss 0.0 3.0 3.0 2.0

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 1.0 1.0 0.7
Granite gneiss 0.0 2.0 0.0 0.7
Quartzite 0.0 0.0 1.0 0.3
Schistose quartz 2.0 1.0 1.0 1.3
Schist 4.0 3.0 2.0 3.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 1.0 1.0 1.0 1.0
Schist 3.0 2.0 0.0 1.7

FRAMWORK TOTAL 73.0 73.0 71.0 72.3
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 10.9-2 WGR-1 WGR-2 MEAN
COUNT TYPE: WR WR WR WR

N: 100 100 100 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 4.0 5.0 3.0 4.0
Biotite single grain 2.0 2.0 2.0 2.0
Chlorite replacement single grain 0.0 0.0 1.0 0.3
Garnet 0.0 0.0 1.0 0.3

Hematite-stained matrix 3.0 0.0 5.0 2.7
Porosity 1.0 2.0 2.0 1.7

ACC., POROSITY, MATRIX TOTAL 10.0 9.0 14.0 11.0

CEMENTS

Rim 4.0 0.0 3.0 2.3
Cement 3.0 2.0 6.0 3.7

Interstitial 2.0 7.0 4.0 4.3
Overgrowth 3.0 2.0 1.0 2.0

Illite 0.0 0.0 0.0 0.0
Kaolinite 0.0 0.0 0.0 0.0
Quartz overgrowth 3.0 2.0 1.0 2.0

Calcite 2.0 5.0 0.0 2.3
Fe-calcite 0.0 0.0 0.0 0.0
Dolomite 0.0 0.0 0.0 0.0
Fe-dolomite 0.0 0.0 0.0 0.0

CEMENT TOTAL 17.0 18.0 15.0 16.7

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 10.9-2 WGR-1 WGR-2 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

FRAMEWORK GRAINS

Unit monocrystalline 25.3 22.3 27.0 24.9
Vein monocrystalline 5.0 6.3 5.7 5.7
Annealed polycrystalline 5.7 4.0 6.0 5.2
Vein polycrystalline 0.7 0.0 1.0 0.6

Untwinned single grain 9.0 6.0 7.0 7.3
Twinned single grain 0.3 1.3 1.3 1.0
Albitized single grain 0.0 0.0 0.0 0.0

Untwinned single grain 1.7 2.4 3.1 2.4
Perthite single grain 2.0 2.0 0.0 1.3
Microcline single grain 2.3 2.0 3.6 2.6

Illite replacement of feldspar 0.0 0.0 0.0 0.0

Granite 1.3 3.7 0.7 1.9
Granite gneiss 7.7 7.3 8.3 7.8
Schistose quartz 1.7 2.0 1.7 1.8
Groundmass in schistose quartz 2.0 1.0 2.0 1.7
Schist 0.7 1.0 1.3 1.0
Groundmass in schist 2.0 0.3 2.0 1.4
Quartzite 11.0 13.0 10.0 11.3
Groundmass in quartzite 1.0 0.3 2.0 1.1

Untwinned granite 1.0 1.0 0.0 0.7
Twinned granite 0.0 0.7 1.0 0.6
Untwinned granite gneiss 4.0 4.0 2.0 3.3
Twinned granite gneiss 2.0 2.0 0.7 1.6

Untwinned granite 0.7 2.5 0.0 1.1
Perthite granite 0.0 0.5 0.0 0.2
Micro. granite 0.0 0.0 0.0 0.0
Untwinned granite gneiss 3.0 5.0 1.0 3.0
Perthite granite gneiss 0.3 0.7 0.2 0.4
Micro. granite gneiss 0.0 0.0 0.5 0.2

Illite replacement in granite 0.0 0.0 0.0 0.0
Illite replacement in granite gneiss 0.0 0.0 0.0 0.0

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.3 0.1
Quartzite 0.3 0.3 0.7 0.4
Schistose quartz 1.0 0.3 1.7 1.0
Schist 3.3 1.7 5.0 3.3

Granite 0.0 0.0 0.0 0.0
Granite gneiss 0.0 0.0 0.0 0.0
Quartzite 0.0 0.0 0.0 0.0
Schistose quartz 0.3 0.0 0.3 0.2
Schist 1.0 1.7 1.0 1.2

FRAMWORK TOTAL 96.3 95.4 97.0 96.2
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APPENDIX C3, CONTINUED

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 10.9-2 WGR-1 WGR-2 MEAN
COUNT TYPE: MS MS MS MS

N: 300 300 300 -

ACCESSORIES, POROSITY, MATRIX

Muscovite single grain 3.0 4.0 1.7 2.9
Biotite single grain 0.7 0.7 1.3 0.9
Chlorite replacement single grain 0.0 0.0 0.0 0.0
Garnet - - - -

Hematite-stained matrix - - - -
Porosity - - - -

ACC., POROSITY, MATRIX TOTAL 3.7 4.7 3.0 3.8

CEMENTS

Rim - - - -
Cement - - - -

Interstitial - - - -
Overgrowth - - - -

Illite - - - -
Kaolinite - - - -
Quartz overgrowth - - - -

Calcite - - - -
Fe-calcite - - - -
Dolomite - - - -
Fe-dolomite - - - -

CEMENT TOTAL - - - -

THIN SECTION TOTAL 100.0 100.0 100.0 100.0
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APPENDIX C4: MODAL ANALYSES FOR VALLEY RIVER FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 10.13-4 10.13-5 I91-1A MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 26.0 24.0 28.0 26.0
Undulose 53.0 56.0 51.0 53.3
Coarsely-polycrystalline 18.0 16.0 17.0 17.0
Finely-polycrystalline 3.0 4.0 4.0 3.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low High High -
Roundness S-R S-A S-R -
Sorting M-P P-V.P. M-P -

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: D-1 D-2B D-3 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 19.0 21.0 22.0 20.7
Undulose 56.0 61.0 60.0 59.0
Coarsely-polycrystalline 19.0 14.0 17.0 16.7
Finely-polycrystalline 6.0 4.0 1.0 3.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High High High -
Roundness A S-A S-A -
Sorting P-V.P. P M-P -

 I-91 Location 1

 Lower Rd.
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APPENDIX C4, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: I91-3A I91-3B SF-G11 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 12.0 21.0 17.0 16.7
Undulose 70.0 61.0 66.0 65.7
Coarsely-polycrystalline 18.0 16.0 16.0 16.7
Finely-polycrystalline 0.0 2.0 1.0 1.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low High Low -
Roundness S-R S-R S-R -
Sorting M M-P M-P -

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 8.23-5 8.23-7 RS75-192 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 11.0 16.0 14.0 13.7
Undulose 51.0 59.0 55.0 55.0
Coarsely-polycrystalline 29.0 20.0 25.0 24.7
Finely-polycrystalline 9.0 5.0 6.0 6.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High High Low -
Roundness A S-A S-A -
Sorting M-P M-P M -

 I-91 Location 3

 Leyden Rd.
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APPENDIX C4, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 4.29-1 4.29-2 4.29-4 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 21.0 15.0 24.0 20.0
Undulose 58.0 56.0 63.0 59.0
Coarsely-polycrystalline 16.0 24.0 10.0 16.7
Finely-polycrystalline 5.0 5.0 3.0 4.3

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High Low Low -
Roundness A A S-A -
Sorting M-P P P -

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: CS-4 CS-6 01-CP-H1 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 15.0 12.0 12.0 13.0
Undulose 70.0 65.0 67.0 67.3
Coarsely-polycrystalline 14.0 20.0 19.0 17.7
Finely-polycrystalline 1.0 3.0 2.0 2.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low Low -
Roundness A A S-A -
Sorting M-P P M -

 Bernardston Rd.

 Cheapside St.
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APPENDIX C4, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 9.11-1 10.5-3 RS75-113 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 42.0 43.0 41.0 42.0
Undulose 32.0 34.0 35.0 33.7
Coarsely-polycrystalline 22.0 20.0 19.0 20.3
Finely-polycrystalline 4.0 3.0 5.0 4.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low High -
Roundness S-A S-A S-R -
Sorting V.P. P P -

 North Parkway St.
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APPENDIX C5: MODAL ANALYSES FOR PIEDMONT RIVER FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: 7.7-1 7.7-5 SF-SR2 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 15.0 6.0 10.0 10.3
Undulose 69.0 71.0 70.0 70.0
Coarsely-polycrystalline 11.0 17.0 14.0 14.0
Finely-polycrystalline 5.0 6.0 6.0 5.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low Low -
Roundness A S-A A -
Sorting P-V.P. M-P M-P -

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 9.21-2 9.21-5 9.21-6 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 29.0 25.0 20.0 24.7
Undulose 43.0 50.0 65.0 52.7
Coarsely-polycrystalline 20.0 15.0 6.0 13.7
Finely-polycrystalline 8.0 10.0 9.0 9.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low High Low -
Roundness A A S-A -
Sorting M-P P P -

Sugarloaf Mountain Rd.

 River Rd.

233



APPENDIX C5, CONTINUED

LOCATION:
FIGURE ID NO.: 7 8 9 -

SAMPLE: 10.11-1 10.11-2 10.11-3 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 24.0 22.0 25.0 23.7
Undulose 53.0 49.0 43.0 48.3
Coarsely-polycrystalline 14.0 17.0 15.0 15.3
Finely-polycrystalline 9.0 12.0 17.0 12.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High High Low -
Roundness S-A S-R S-A -
Sorting P-V.P. P M -

LOCATION:
FIGURE ID NO.: 10 11 12 -

SAMPLE: 10.11-9 10.11-10 RS75-S3 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 22.0 23.0 24.0 23.0
Undulose 60.0 52.0 62.0 58.0
Coarsely-polycrystalline 9.0 17.0 8.0 11.3
Finely-polycrystalline 9.0 8.0 6.0 7.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High Low Low -
Roundness S-A A A -
Sorting P-V.P. M M-P -

 French's Ferry St.

 North Silver Ln.
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APPENDIX C5, CONTINUED

LOCATION:
FIGURE ID NO.: 13 14 15 -

SAMPLE: 10.13-7 10.13.8 SF-BH6 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 15.0 22.0 21.0 19.3
Undulose 67.0 56.0 59.0 60.7
Coarsely-polycrystalline 13.0 16.0 14.0 14.3
Finely-polycrystalline 5.0 6.0 6.0 5.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low Low -
Roundness A S-A A -
Sorting M-P M M-P -

LOCATION:
FIGURE ID NO.: 16 17 18 -

SAMPLE: 11.13-4 11.13-6 SF-PR1 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 6.0 8.0 10.0 8.0
Undulose 72.0 70.0 70.0 70.7
Coarsely-polycrystalline 16.0 16.0 14.0 15.3
Finely-polycrystalline 6.0 6.0 6.0 6.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low High -
Roundness A S-A A -
Sorting M-P M P-V.P. -

 Bull Hill Rd.

Rice's Ferry Rd.
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APPENDIX C5, CONTINUED

LOCATION:
FIGURE ID NO.: 19 20 21 -

SAMPLE: 10.16-1 10.16-2 10.16-3 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 25.0 26.0 27.0 26.0
Undulose 53.0 54.0 59.0 55.3
Coarsely-polycrystalline 16.0 14.0 10.0 13.3
Finely-polycrystalline 6.0 6.0 4.0 5.3

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low High High -
Roundness V.A. S-A A -
Sorting M-P P M-P -

LOCATION:
FIGURE ID NO.: 22 23 24 -

SAMPLE: 10.16-9 10.16-10 10.16-11 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 33.0 30.0 28.0 30.3
Undulose 59.0 58.0 58.0 58.3
Coarsely-polycrystalline 5.0 8.0 10.0 7.7
Finely-polycrystalline 3.0 4.0 4.0 3.7

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity Low Low Low -
Roundness V.A. S-A S-A -
Sorting P-V.P. P P -

Kellogg St.

Meadow Rd.
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APPENDIX C6: MODAL ANALYSES FOR ALLUVIAL FAN FACIES

LOCATION:
FIGURE ID NO.: 1 2 3 -

SAMPLE: FR-1B FR-2B FR-3 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 12.0 8.0 10.0 10.0
Undulose 62.0 76.0 73.0 70.3
Coarsely-polycrystalline 14.0 7.0 7.0 9.3
Finely-polycrystalline 12.0 9.0 10.0 10.3

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High High Low -
Roundness A A S-A -
Sorting M-P M M-P -

LOCATION:
FIGURE ID NO.: 4 5 6 -

SAMPLE: 10.9-2 WGR-1 WGR-2 MEAN
N: 100 100 100 -

QUARTZ

Non-undulose 9.0 7.0 12.0 9.3
Undulose 74.0 79.0 69.0 74.0
Coarsely-polycrystalline 11.0 8.0 13.0 10.7
Finely-polycrystalline 6.0 6.0 6.0 6.0

TOTAL 100.0 100.0 100.0 100.0

VISUAL ESTIMATES

Sphericity High High High -
Roundness S-A A S-A -
Sorting P M-P M-P -

 West Gill Rd.

 Scout Rd.
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APPENDIX D 

 

PEBBLE PETROLOGY 

 Appendix D1 shows pebble petrology based on nine counts from locations in the 

valley-river facies.  I-91 L1 is I-91 Location 1, I-91 L3 is I-91 Location 3, LR is Leyden 

Rd., CCR is Country Club Rd, G is granitoid rock, Q is quartzite rock, and M is 

metamorphic rock.  Appendix D2 shows pebble petrology based on 14 counts from 

locations in the piedmont-river facies.  The abbreviation T2-3 is 2-3 m from the bottom 

of the type section (Mount Sugarloaf, road outcrop along Massachusetts Route 116), and 

RFR is Rice’s Ferry Rd.  Appendix D3 shows pebble petrology based on eight counts 

from locations in the alluvial-fan facies.  WGR is West Gill Rd., and SCR is South Cross 

Rd. 

Analyses performed by the author include MW in the sample designation.  Other 

pebble counts are from Stevens (1977) and include RS in the sample designation.  

Sample locations are given in Appendix A. 
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I-91 L2 I-91 L1 I-91 L1 Elm St. Elm St.
MW-1 RS-61 MW-2 RS-221 RS-225

100 100 100 97 100

15 13 28 42 39
0 32 24 0 0

15 45 52 42 39
68.2 59.2 65.0 66.7 63.9

3 21 22 10 11
13.6 27.6 27.5 15.9 18.0

4 10 6 11 11
18.2 13.2 7.5 17.5 18.0

22 76 80 63 61

38 24 20 32 39
0 0 0 0 0

40 0 0 2 0

78 24 20 34 39

100 100 100 97 100

S-R - R - -
4.0 - 4.2 - -

Average intermediate axis 2.7 - 3.0 - -
2.0 - 2.1 - -

equant - equant - -
5 - 7 - -
9 - 15 - -
2 - 0 - -

APPENDIX D1: PEBBLE PETROLOGY FOR VALLEY-RIVER FACIES

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite gneiss, granite, pegmatite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish

239



LR CCR CCR CCR -
MW-3 RS-251 RS-252 MW-4 MEAN

100 100 98 100 -

25 35 23 29 27.7
14 6 31 19 14.0
39 41 54 48 41.7

51.3 50.0 76.1 62.3 61.7

20 16 2 9 12.7
26.3 19.5 2.8 11.7 18.8

17 25 15 20 13.2
22.4 30.5 21.1 26.0 19.6

76 82 71 77 67.6

18 17 25 21 26.0
0 0 0 0 0.0
6 1 2 2 5.9

24 18 27 23 31.9

100 100 98 100 99.4

S-R - - S-R -
4.5 - - 3.9 -

Average intermediate axis 2.1 - - 3.3 -
1.9 - - 1.5 -

prolate - - oblate -
5 - - 0 -

25 - - 12 -
1 - - 0 -

APPENDIX D1, CONTINUED

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite gneiss, granite, pegmatite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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T2-3 T18 T157 T210 T252
RS-1 RS-2 RS-3 MW-5 RS-4
100 100 100 100 101

26 61 50 19 46
30 10 0 34 2
56 71 50 53 48

73.7 86.6 62.5 72.6 60.0

2 3 5 12 3
2.6 3.7 6.3 16.4 3.8

18 8 25 8 29
23.7 9.8 31.3 11.0 36.3

76 82 80 73 80

24 18 13 27 15
0 0 7 0 4
0 0 0 0 2

24 18 20 27 21

100 100 100 100 101

- - - S-R -
- - - 5.1 -

Average intermediate axis - - - 3.4 -
- - - 2.0 -
- - - oblate -
- - - 12 -
- - - 18 -
- - - 1 -

APPENDIX D2: PEBBLE PETROLOGY FOR PIEDMONT-RIVER FACIES

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite, gneiss, graphic granite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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T257 T352 T410 T410 T410
MW-6 RS-5 RS-6 MW-7 MW-8

100 98 100 100 100

16 35 38 35 68
15 0 0 21 1
31 35 38 56 69

35.6 53.0 47.5 67.5 74.2

25 2 12 17 15
28.7 3.0 15.0 20.5 16.1

31 29 30 10 9
35.6 43.9 37.5 12.0 9.7

87 66 80 83 93

12 15 20 17 7
1 10 0 0 0
0 7 0 0 0

13 32 20 17 7

100 98 100 100 100

S-R - - S-R S-R
5.0 - - 4.8 5.1

Average intermediate axis 3.2 - - 3 3.7
1.9 - - 2.5 2.3

triaxial - - prolate oblate
24 - - 12 2
32 - - 30 14
6 - - 2 2

APPENDIX D2, CONTINUED

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite, gneiss, graphic granite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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T459 T620 RFR RFR -
RS-7 RS-21 MW-9 MW-10 MEAN
100 100 100 100 -

35 75 45 50 42.8
1 3 3 6 9.0

36 78 48 56 51.8
52.9 87.6 59.3 62.2 64.3

1 4 15 10 9.0
1.5 4.5 18.5 11.1 11.2

31 7 18 24 19.8
45.6 7.9 22.2 26.7 24.6

68 89 81 90 80.6

18 8 19 10 15.9
13 3 0 0 2.7
1 0 0 0 0.7

32 11 19 10 19.4

100 100 100 100 99.9

- - S-A S-R -
- - 4.2 4.0 -

Average intermediate axis 3.0 2.7
- - 1.6 1.3 -
- - oblate oblate -
- - 2 7 -
- - 16 10 -
- - 3 1 -

APPENDIX D2, CONTINUED

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite, gneiss, graphic granite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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WGR WGR WGR WGR SCR
MW-11 MW-12 MW-13 MW-14 RS-201

100 100 100 100 100

6 13 18 16 23
23 15 14 14 0
29 28 32 30 23

37.7 37.3 40.0 41.1 33.8

42 27 30 28 20
54.5 36.0 37.5 38.4 29.4

6 20 18 15 25
7.8 26.7 22.5 20.5 36.8

77 75 80 73 68

23 25 20 27 32
0 0 0 0 0
0 0 0 0 0

23 25 20 27 32

100 100 100 100 100

S-R S-A S-A S-R -
4.4 5.9 5.0 4.9 -

Average intermediate axis 3.2 3.9 3.2 3.0
2.0 2.5 2.1 1.7 -

oblate triaxial triaxial triaxial -
6 12 8 8 -
7 10 12 2 -
4 1 8 1 -

APPENDIX D3: PEBBLE PETROLOGY FOR ALLUVIAL-FAN FACIES

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite, gneiss, graphic granite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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SCR Main Rd. Scout Rd. -
MW-15 RS-151 MW-16 MEAN

100 100 100 -

20 37 14 18.4
8 0 20 11.8

28 37 34 30.1
32.6 43.5 41.0 38.4

41 32 29 31.1
47.7 37.6 34.9 39.7

17 16 20 17.1
19.8 18.8 24.1 21.9

86 85 83 78.4

14 15 17 21.6
0 0 0 0.0
0 0 0 0.0

14 15 17 21.6

100 100 100 100.0

S-A - S-R -
5.3 - 5.6 -

Average intermediate axis 3.2 3.4
1.9 - 2.3 -

triaxial - prolate -
3 - 4 -

13 - 15 -
7 - 6 -

APPENDIX D3, CONTINUED

LOCATION:
SAMPLE:

N:

GQM PEBBLES

Granite, gneiss, graphic granite, 
Kspar

G TOTAL
G RECALCULATED GQM

Quartzite
Q RECALCULATED GQM

Schist, phyllite, amphibolite
M RECALCULATED GQM

GQM TOTAL

OTHER PEBBLES

Quartz, vein quartz
Granulite
Intraclast

OTHER TOTAL

PEBBLE COUNT TOTAL

Average roundness
Average long axis

Average short axis
Average shape
Number of ventifacts
Number of poor ventifacts
Number with desert varnish
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