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ABSTRACT 

 

DOCUMENTING THE HISTORY OF OXYGEN DEPLETION IN LAKE ST. CROIX, 

MINNESOTA, USING CHIRONOMIDAE REMAINS IN THE SEDIMENTARY 

RECORD  

 

SEPTEMBER 2009 

 

CAITLIN EYRE STEWART, B.S., SUNY COLLEGE AT ONEONTA 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Donna Francis 

 

 
 

Lake St. Croix is a natural impoundment located at the southern end of the St. Croix 

River. Land use changes since European settlement (c. 1850) have resulted in nutrient 

runoff, eutrophication, and periodic oxygen depletion in the hypolimnion of Lake St. 

Croix. Establishing sound lake management practices requires knowledge of historical 

conditions obtained through paleoecological studies. Remains of non-biting midges 

(Insecta: Diptera Chironomidae) in lake sediments have been shown to be reliable 

indicators of past hypolimnetic oxygen conditions. Cores from two sub-basins in the lake 

were collected in 2006. Midge analysis indicated that shifts in species assemblages 
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correspond to the times of land use change.  Chironomus and Procladius, which are 

tolerant of low oxygen levels, increased in relative abundance as land use changes 

adversely impacted the St. Croix River’s watershed. Volume-weighted hypolimnetic 

oxygen concentrations were estimated using a transfer function developed for southern 

Ontario.  Mean post-settlement chironomid reconstructed average volume-weighted 

hypolimnetic oxygen values were 0.73 mg/L lower than mean pre-settlement values for 

sub-basin 1, near Prescott, WI and 0.45 mg/L lower for sub-basin 3, near Lakeland, MN.  

These results indicate that oxygen depletion has occurred in the lake since the time of 

European settlement, and are supported by increases in the relative abundance of 

eutrophic midge bioindicators and the decrease in relative abundance of bioindicators of 

less productive conditions since the 1850s.  This study, in conjunction with other 

historical and paleoecological studies of Lake St. Croix, provides historical data for 

setting management goals and strategies for Lake St. Croix.   
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CHAPTER 1  

INTRODUCTION 

1.1 Purpose and Approach 

 Humans have the ability to adversely affect the integrity of the environment, and 

these actions often harm river and lake ecosystems (Meybeck and Helmer, 1989; Smith, 

2003).  Land use change in the St. Croix River’s (hereafter, SCR) watershed beginning at 

the time of European settlement has resulted in nutrient runoff, eutrophication, and 

periodic oxygen depletion in the hypolimnion of Lake St. Croix (hereafter, LSC), 

Minnesota (hereafter MN)/Wisconsin (hereafter WI) (Troelstrup et al., 1993; Triplett et 

al., 2009;  Edlund et al., 2009; Lafrancois et al., 2009).  LSC is a riverine lake at the 

lower end of the SCR whose water quality is impacted by the inlet of the river and 

tributaries that flow into the lake.  Total phosphorus and other pollutants enter the lake 

through these inlets.  In addition, deforestation, agricultural practices, urbanization, and 

recreation have resulted in changes to the SCR watershed that impact LSC.      

 The hypolimnion is the bottom, most dense layer in a thermally stratified lake 

with inadequate light penetration for photosynthesis to occur (Brönmark & Hansson, 

1998).  In addition, oxygen concentration is naturally low in this layer compared to the 

epilimnion (upper, wind mixed layer of a thermally stratified lake) and metalimnion 

(transition zone where the thermocline, or the depth where temperature gradient is 

greatest during the summer, occurs) due to the absence of wind mixing that contributes 

oxygen from the atmosphere to the lake.  Hypolimnetic oxygen depletion occurs when 

organic matter in the epilimnion sediments down to the benthos, and bacterial 

decomposition of organic matter depletes the hypolimnion of oxygen (Little and Smol, 
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2001).  In addition, aerobic respiration consumes oxygen in the hypolimnion (Cornet, 

1989).         

 Indicators of eutrophication, including altered diatom communities and increased 

phosphorus loading, occurred in the late 1800s and in the 1950s, and have raised concern 

in both the scientific and public communities for the health of the LSC ecosystem 

(Triplett et al., 2009).  In the 1990s, sediment and nutrient loading were designated as the 

focus of riverway management strategies (Davis, 2004).  In 2008, the states of MN and 

WI placed LSC on their list of impaired waters due to excess nutrients and eutrophication 

(Magdalene, 2009).   In order to effectively implement plans that will improve the water 

quality of LSC, it is important to understand what conditions were like before European 

settlement and how those conditions changed over time as a result of human disturbance.   

 The purpose of this project was to reconstruct historical oxygen conditions in 

Lake St. Croix and test previous historical and paleoecological eutrophication studies that 

conclude LSC has been adversely impacted by land use change since the time of 

European settlement.  Water quality of LSC has been monitored by the Metropolitan 

Council Environmental Services (hereafter MCES) since 1976, providing recent data on 

variables including total nitrogen, total chlorophyll a, and total phosphorus (Lafrancois et 

al., 2009).  In order to determine if modern day aquatic conditions in LSC are the result 

of anthropogenic eutrophication or are natural, it is essential to understand what lake 

conditions were like before European settlement. Paleoecology uses information in the 

sediment record to reconstruct past environmental conditions.  In this study, another 

indicator of eutrophication, deep-water oxygen loss, was examined using subfossil midge 

(Chironomidae) remains from two sediment cores.  Results of this study will provide 
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historical data for the interagency St. Croix Basin Planning Team who determines goals 

and management strategies for the SCR, as well as other concerned organizations, 

residents, and visitors.  Objectives of this study were to:  

 1)  Reconstruct historical oxygen conditions in LSC using subfossil 

  Chironomidae remains from lake sediment cores.  

 2)  Identify changes in Chironomidae communities in LSC resulting from 

       eutrophication and low oxygen conditions. 

 3)  Correlate Chironomidae community shifts and oxygen depletion with other 

                   signals of eutrophication that have been studied in LSC, including diatom 

                  species shifts and increased phosphorus concentrations.  

 

1.2  Site Description 

 LSC is a 37 km-long natural impoundment located at the southern end of the 266-

km SCR, stretching from Stillwater, MN to Prescott, WI, where the SCR flows into the 

Mississippi River (Troelstrup et al., 1993) (Figure 1).  LSC was created c. 9500 years BP 

by two events (Eyster-Smyth et al., 1991).  First, at the confluence of the Mississippi and 

Chippewa Rivers, an alluvial fan formed that impounded the Mississippi River, forming 

Lake Pepin (Troelstrup et al, 1993).  The alluvial fan impounded water that was forced 

upstream.  Second, outflow from glacial Lake Agassiz decreased that resulted in the 

formation of an alluvial deposit at Point Douglas, impounding LSC (Troelstrup et al, 

1993).  Four sub-basins were created in LSC as a result of secondary deposition from side 

valley tributaries of the Kinnickinnic River, Valley Creek, and Willow River (Figure 2).  

Table 1 describes the four sub-basins. 
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Figure 1.  Map of the St. Croix River watershed, the St. Croix National Scenic Riverway, 
and Lake St. Croix (modified from the National Park Service National Scenic Riverway). 
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19,900 km2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Locations of 1B and 6B coring sites and corresponding sub-basins in Lake St. 
Croix (modified from Edlund et al., 2009).    

6B 

1B 
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Table 1.  Description of the 4 sub-basins in Lake St. Croix. 

 

  

 LSC is classified as riverine, meaning that the transportation of water, sediment, 

and nutrients occurs along one linear flow axis (Triplett et al., 2008).  The total drainage 

area of the SCR that empties into LSC is 22,196 km2 (Graczyk, 1986).  Lake surface area 

is 35 km2, and water residence time is 20 to 50 days (Triplett et al., 2008).  Fine grained 

sediments have been deposited on the bottom of LSC beginning at the time of formation, 

and the substrate is composed of organics and sand (Anderson and Varro, 2002).   

 In 1968, 406 km of the SCR and Namekagon River, WI, the SCR’s largest 

tributary, were designated the St. Croix National Scenic Riverway under the National 

Wild and Scenic Rivers Act because of its scenic, recreational, and environmental 

qualities (Anderson and Varro, 2002).  The lower portion of the SCR below St. Croix and 

Taylors Falls was incorporated in 1972, and the riverway presently stretches from 

northern WI to the Mississippi/SCR confluence.  The National Park Service administers 

the Riverway from the St. Croix and Namekagon River headwaters to Stillwater, MN, 

and the Minnesota Department of Natural Resources (hereafter DNR) and the Wisconsin 

DNR administer the section below Stillwater.  Under the designation of National Scenic 

Basin Location Maximum depth 
Four Stillwater to Willow River 

Bar, Hudson, WI 
c. 10 m 

Three Willow River Bar to Catfish 
Bar (Valley Creek mouth), 
Afton, MN 

c. 20 m 

Two Afton, MN to the 
Kinnickinnic Bar 

>22 m 

One Kinnickinnic Bar to mouth 
of St. Croix River, Prescott, 
WI 

>17 m 
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Riverway, scenic easements and private lands were acquired, and land and water use is 

regulated.  Despite these protection measurements, the NPS does not regulate tributaries 

emptying water contaminated with nutrients and sediment into the SCR.  Federally listed 

endangered species that reside in this area include the Higgins’ eye and winged mapleleaf 

mussels, cougars, wolves, peregrine falcons, bald eagles, and the Karner blue butterfly 

(Jennings and McGuiness, 2009).  The river provides the necessary habitat to support an 

ecosystem rich in biodiversity, and also provides fertile soils for agriculture, and a 

landscape that is sought after by recreationists and developers alike.   

 

1.3  Land Use Change 

 The SCR watershed is 19,900 km2 and has undergone a sequence of land use 

changes that have impacted LSC.  Before 1850, Native Americans impacted the land by 

intentional and unintentional burning of vegetation, but these land use changes did not 

significantly alter water quality (Curtis, 1959 as cited in Triplett et al., 2009).  By 1840, 

European milling and logging operations were impacting the landscape.  Throughout the 

1900s, agriculture was a major land use in the region, and after 1950, urbanization and 

increasing population impacted the watershed (Triplett et al., 2009).  In the early 1990s, 

the northern portion of the SCR watershed is dominated by forested areas, while the 

southern portion is dominated by agriculture and developed areas (Figure 3).       

 The St. Croix Valley was first inhabited by the Dakotas, hunters and gatherers 

who established villages on large lakes in present day Minnesota and Wisconsin 

(McMahon and Karamanski, 2002).  The Ojibwa Indians were also early peoples of the 

SCR.  At the start of the 18th century, French fur traders navigated up the Mississippi 
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River and in 1679, Daniel Greysolon, Sieur du Luth declared Dakota territory on the SCR 

for the French (McMahon and Karamanski, 2002).  British fur traders arrived in the 

region in the 1780s followed by the Americans.  European colonists arrived in the region 

in the 1830s, and as trappers exhausted animal populations in the region, milling and 

logging operations began in the 1840s.   

 Lumbering was Minnesota’s major industry during the mid 1800s, and the SCR 

was used for log driving (Bachmann, 1945).  In 1838, the Dakota and Ojibwa Indians 

signed treaties that allowed logging practices in the SCR Valley.  White pines were 

heavily harvested from the tributaries to the SCR and areas north of St. Croix Falls and 

Taylors Falls.  During the winter months, logs were cut and stacked near the tributaries.  

Snowmelt during the spring raised water levels and logs were driven from the tributaries 

to the SCR.  In the late 1800s, the SCR’s logging era peaked and gave way to land 

clearance and agricultural practices.    

 By 1880, the St. Croix valley prairies were completely settled and spanning the 

early 1900s, agricultural operations cycled from wheat to dairy to corn (Triplett et al., 

2009).  In 1920, population in the St. Croix watershed reached 250,000, and by 1992, had 

increased to 400,000.  St. Paul and Minneapolis saw a population explosion in the 1950s 

and 1960s.  These increases in population resulted in urban and recreation stress to the 

SCR (Davis, 2004).   

 Today, the northern portion of the St. Croix Basin there is increasing development 

around small lakes and riparian areas as large lakes have reached full development 

(Anderson and Varro, 2002).  The northern portion is not suitable for farming, and is 

forested.  The southern portion is dominated by agriculture, including dairy operations, 
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and grain and vegetable production (Figure 3).  From 1973 to 1993, recreational uses in 

the southern portion of the Saint Croix Basin doubled.  Despite the classification of the 

lower SCR as wild and scenic, zoning decisions have allowed large structures to be 

erected as close as 4 m from the riverbank, threatening the integrity of the river (Jennings 

and McGuiness, 2009).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  St. Croix River watershed 1992 land cover (from Davis, 2004, map produced 
by the National Park Service).   
 
 

Lake St. Croix 
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1.4  Eutrophication of Lake St. Croix 
 
 Since the time of European settlement, the water quality of LSC has been altered 

as a result of land use change (Troelstrup et al., 1993, Triplett et al., 2009, Edlund et al., 

2009, Lafrancois et al., 2009).  Recently, LSC has been impacted by pressures from an 

increasing population in Washington County, MN and St. Croix County, WI, urban 

development in the Minneapolis/St. Paul metropolitan area, and the annual influx of over 

1 million recreationists.  Tributaries and the main stem of the SCR have contributed 

elevated nutrient loads to LSC, and eutrophication has resulted (Troelstrup et al., 1993).  

In the 1990s, environmental organizations and resource managers raised concerns about 

the intense recreation and land development that had been impacting LSC (Davis, 2004).    

In 2008, the Minnesota Pollution Control Agency (hereafter MPCA) classified LSC as 

impaired due to high phosphorus levels (MPCA, 2008).  In addition, the MPCA classifies 

LSC as eutrophic based on Secchi depth, total phosphorus, and chlorophyll a (a green 

photosynthetic pigment found in plants and algae ) measurements (MPCA, 2001).           

 The productivity of a lake, or its trophic status, is measured in terms of total 

phosphorus levels that promote algal growth and decrease water clarity (Carlson, 1977).  

Robert Carlson developed a trophic state index that measures lake productivity using 

Secchi depth readings, chlorophyll a and total phosphorus data (Carlson, 1977).     

Phosphorus is a limiting factor for algae growth; that is, the concentration of this nutrient 

will inhibit or promote algae and plant productivity, abundance, and growth.  Water 

transparency is determined by the amount of algae in the water column as well as 

suspended sediments (Simpson, 1991).  Under this index, lakes may be classified into 4 

categories: oligotrophic (clear water, oxygen present year round in the hypolimnion), 
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mesotrophic (moderately clear water, hypolimnetic anoxia may occur during the 

summer), eutrophic (anoxia occurs in the hypolimnion during the summer, plants are 

abundant, and transparency is low), and hypereutrophic (heavy algal blooms persist 

during the summer, dense macrophytes grow but light penetration limits abundance) 

(Carlson, 1977).   

 From the time of its formation, a lake naturally ages as it fills in with organic 

matter, sediments, and silt (Simpson, 1991).  This aging process may be accelerated by 

anthropogenic activities, such as agricultural runoff, waste water treatment plant 

overflows, or urban runoff, that increase the amount of nutrients in a body of water.  High 

levels of nutrients promote the abundance of algae and plants and decrease water 

transparency.  As dead plants and algae sink to the bottom of the lake, decomposition 

takes place, depleting the water of oxygen.  Hypoxia (low amounts of oxygen) or anoxia 

(no oxygen) may occur in the hypolimnion that could result in fish kills and dead zones 

(Brönmark and Hansson, 2005).      

 Phosphorus sources to LSC include point sources discharged from a visible pipe, 

factory, or outlet, and non-point sources, where rain or snowmelt picks up pollutants and 

carries them into a water body.  Natural background non-point sources to LSC, such as 

surface runoff of nutrients, groundwater discharge of nutrients, and windblown 

sediments, have remained constant at 166 T/yr since 1880 (Triplett et al., 2009).  

Anthropogenic nonpoint source pollution to LSC includes human-induced stream bank 

erosion, surface runoff from concentrated animal feeding operations, urban runoff, 

inorganic fertilizers, livestock feed supplements, and individual sewage treatment 

systems.  Anthropogenic point source pollution to LSC includes wastewater treatment 
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facilities, industrial discharges, separated or combined sewer outfalls, construction sites, 

and municipal separate storm water sewer systems.  Anthropogenic nonpoint source 

pollution accounted for 60 % of total nonpoint source pollution to LSC in the 1990s, 

while anthropogenic point source pollution, calculated from wastewater treatment 

discharge data, accounted for 11 % of total anthropogenic point source loads in the 1990s 

(Magdalene, 2009).   

 

1.5  Previous Studies of Eutrophication 

 A number of paleolimnological studies have shown that a plethora of eutrophic 

signals have occurred in LSC since European settlement.  Troelstrup et al. (1993) 

extracted sediment cores from LSC near Bayport, MN (LSC1), Lakeland, MN (LSC2), 

and Afton, MN (LSC3) in order to analyze trophic changes since the time of European 

settlement.  Times of deforestation and agricultural practices correlated to times of 

increased sediment organic matter and carbonates.  European settlement and white pine 

harvests in the late 1840s and early 1850s correspond to peaks in organic matter.  

Beginning in the 1950s, primary production has shown a large increase, and since the 

1960s, cynaobacterial blooms have been documented in LSC (Brook, 1966 as cited in 

Troelstrup et al., 1993).  Chlorophyll, carbonate, and organic levels increased since the 

1950s, and these increases resulted from anthropogenic eutrophication of LSC 

(Troelstrup et al., 1993).   

 Troelstrup et al. (1993) also analyzed 18 to 20 core sections of all 3 cores for 

subfossil chironomids based on the stratigraphic patterns in organic matter, carbonate, 

and chlorophyll content.  Chironomids were often identifiable to genus, but graphs were 



 13

constructed using subfamily data at a low resolution.  No quantitative reconstructions 

were performed.  Midge density was higher in the deepest core sections and displayed an 

up core decrease.  Density was low, ranging from 1 to c. 15 per cm3.  For normal 

temperate lakes, midge densities should be greater than 100 per cm3 (Walker, 1993).  

Troelstrup et al. (1993) attributed low midge densities to anoxic conditions in LSC.  Taxa 

ranged from 4 to 16 genera per section.  Troelstrup et al. (2003) discovered that the 

communities of all 3 cores were dominated by Chironomus and Procladius.  Taxa 

richness in LSC2 extracted in sub-basin 3 was highest in the upper core sections.  The 

majority of taxa found in high abundance were classified as littoral or profundal.  

Dissolved oxygen levels were at or near 0 in the LSC sub-basins, resulting in the high 

relative abundance of Chironomus.     

 Triplett et al. (2009) extracted 24 cores from 8 transects in the 4 sub-basins of 

LSC in 1999.  The rate of sediment accumulation and phosphorus loading were analyzed.  

Sediment accumulation showed an increase in 1850, and a peak occurred from 1950-

1960.  These accumulation levels were 8 times higher than pre-European settlement 

levels.  Total phosphorus (TP) load to LSC showed a significant increase after 1940, with 

post-settlement values 4 times higher than pre-settlement values.  Logging and 

agricultural practices from 1850 to 1890 resulted in minor impacts to LSC.  The sediment 

and phosphorus load peaks that occurred in the 1950s caused by urbanization lend to the 

conclusion that during this time, land use change significantly contributed to the 

eutrophication of LSC more than land use change in the mid 1800s.   

 Cores from the Triplett et al. (2009) study from sub-basins 1 and 3 were used for 

diatom, biogenic silica, and fossil pigment analysis in a study conducted by Edlund et al. 
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(2009) in order to reconstruct historical water column total phosphorus.  It was concluded 

that a 3-fold increase in inorganic sediment accumulation took place from the 1850s to 

the present.  After the mid 1950s, a 6-fold increase was seen in biogenic silica 

accumulation, a 20 to 50 fold increase was seen in diatom accumulation and a shift from 

benthic to planktonic diatom taxa occurred.  Schelske (1999) reported that in Lake 

Apopka, Florida, increased phosphorus levels drove the shift from a benthic dominated 

diatom community to one dominated by planktonic taxa.  Diatom bioindicators of 

eutrophy, including Fragilaria crotonensis, Cyclostephanos invisitatus, and C. 

tholiformis, increased in abundance after 1950 (Edlund et al 2009).  Fossil pigment 

concentrations showed an increase in the 1960s, and diatom-inferred total phosphorus 

doubled from 1910 to 1990.  As was concluded in the Triplett et al. (2009) study, land 

use changes in the late 1800s and early 1900s had little impact on nutrient mass transport 

and water quality; however, the mid 1900s showed many eutrophication signals that 

indicated water quality was degraded.   

 In addition to these paleolimnological studies, recent water quality measurements 

indicate LSC is eutrophic.  Based on the Carlson Trophic State Index, LSC is classified 

as eutrophic (MPCA, 2001).  Transparency was measured with a Secchi disk, and the 

mean depth in LSC from 1997 to 2006 was 1.2 m; mean total phosphorus (1997 to 2006) 

was 45 ppb; and mean chlorophyll a (1997 to 2006) was 16.7 ppb (MPCA, 2001).  

Troelstrup et al. (1993) reported that LSC experiences hypolimnetic oxygen depletion via 

decomposition, and anoxia occurs at the sediment-water interface.   

 In 2007, the Great Lakes Inventory and Monitoring Network initiated a water 

quality monitoring program in the St. Croix National Scenic Riverway, with 3 stations on 
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LSC (VanderMeulen and Elias, 2008).  High nitrate+nitrite-nitrogen levels were reported 

in the Willow and Kinnickinnic Rivers resulting from fertilizer application for 

agricultural development and increasing urbanization.  The ratio of nitrogen to 

phosphorus helps to determine which of these 2 nutrients is impacting primary 

productivity the most.  Phosphorus is limited when TN:TP values are high, and nitrogen 

is limited when TN:TP values are low.  High TN:TP values were reported in LSC, with 

most greater than 15.  Even though these results indicate phosphorus is the limiting 

nutrient in LSC, algal blooms of nitrogen fixers have been reported in the lake since the 

1960s (Brook, 1966 as cited in Troelstrup 1993), and nitrogen-fixing cyanobacteria 

flourish in low, not high, TN:TP conditions.  During the summer, LSC became stratified 

in relation to dissolved oxygen and temperature.  Stratification prevents oxygen from 

mixing throughout the lake, and near-bottom dissolved oxygen levels were 1.18 and 0.07 

mg/L at 2 LSC stations.  VanderMeulen and Elias (2008) concluded that water quality 

was degraded in downstream locations in LSC.   

 Lafrancois et al. (2009) analyzed long-term water monitoring data from 1976 to 

2004 at the inlet and outlet of LSC and compared these values to diatom inferred total 

phosphorus that was reconstructed in Edlund et al. (2009) study.  At the inlet of LSC, a 

decrease in ammonium and total phosphorus concentrations was seen from 1976 to 2004, 

probably due to strict regulations of point source pollution sources.  Nitrate 

concentrations increased at the inlet during this time period due to point source pollution 

changes and nonpoint source pollution increases.  Modern day total phosphorus 

concentrations are significantly higher than the levels seen before 1950.  Today, 

agriculture and urbanization contribute to point and nonpoint source pollution.  Trends in 
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water quality variables were similar at the inlet and outlet of LSC.  Reconstructed 

phosphorus levels were similar to measured phosphorus in the 1980s and 1990s.   

 In a study conducted by Lafrancois et al. (2006), dissolved oxygen and 

temperatures were taken at 7 to 9 sample sites in August 2005 and August-September 

2006 in LSC.  Dissolved oxygen levels in the deepest portions of the lake often were 

below 4 mg/L. Lafrancois et al. (2006) concluded that oxygen loss does occur in LSC, 

resulting in hypoxic conditions, and these conditions are widespread throughout the lake.   

 

1.6  Chironomid Ecology 

 Non-biting midges (Insecta: Diptera: Chironomidae), or chironomids, are a family 

of macroinvertebrates that are diverse and abundant in freshwater ecosystems, often 

greatly outnumbering all other invertebrate families (Ferrington et al., 2008).  Ten 

subfamilies comprise the Chironomidae, with 8000 to 20,000 species existing from the 

Himalayas to equatorial east Africa to Antarctica (Porinchu and MacDonald, 2003), but 

only 5,000 species have been described by entomologists (Brooks et al., 2007).  Larvae 

occupy habitats ranging from lentic (standing water) to lotic (moving water) 

environments, from hot springs and glacial melt trickles to brackish water and marine 

environments, and from phytotelmata (minute aquatic environments held by plants) to 

hydrated soil (Pinder, 1995b).  They form an essential link in freshwater ecosystems; 

their niche is both prey and consumer (Ferrington et al., 2008).   

 Chironomids are holometabolous, undergoing complete metamorphosis from the 

aquatic egg, larvae, and pupae stages  to two-winged adults emerging from the water 

(Brooks et al., 2007) (Figure 4).  The chironomid life cycle is complete in one year in 



 17

temperate regions or up to three years in higher latitudes.  Mating occurs in aerial 

swarms, and adult females oviposit eggs on the water surface along with a gelatinous 

matrix for protection.  Often, the egg matrix will become attached to leaf litter or 

macrophytes (Pornichu and MacDonald, 2003).  Water temperature is the most influential 

environmental variable that determines the rate of egg development (Pinder, 1995a), with 

interspecific and intraspecific competition, pH, DO, salinity, and photoperiod also being 

important variables (Pornichu and MacDonald, 2003).  The number of eggs in a mass 

varies from 20 to 2,000 depending on the size of the species (Pinder, 1995a).    

 

 

 

 

 

 

 

 

 

Figure 4.  Complete metamorphosis of the Chironomidae (from Porinchu and 
MacDonald, 2003).   
  

 Larvae emerge from eggs within a few days to a month (Pornichu and 

MacDonald, 2003) and consume coarse detrital matter (shredders), medium detrital 

particles from sediments (gatherers and scrapers), fine detrital particles in suspension 

(filter-feeders), transport (gatherers), or deposited (scrapers), algae (scrapers, gatherers, 
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filter-feeders), vascular plants (miners), fungal spores and hyphen (gatherers), animals 

(predators or parasites) (Ferrington et al., 2008).  Four larval stages, or instars, are present 

in all subfamilies, and ecdysis, or molting of the exoskeleton, occurs between each instar.  

As larvae, some taxa construct a case and filter feed while others are free-living 

(Ferrington et al., 2008).  Most larvae range in length from 2 to 30 mm, and may be red, 

green, or pale yellow in color (Brooks et al., 2007).  The thorax is composed of 3 

segments, and the abdomen, 9 segments.  One pair of ventral prolegs, or false legs, 

protrudes from the prothorax as well as the terminal end (Bouchard, 2004).  Hooks are 

present at the terminus of the prolegs.  The anal segment has paired procerci with setae 

(Cranston, 1995b).   The sclerotized (hardened integument or skin) head capsule is non-

retracting with mandibles moving on a horizontal plane.   

 Head capsule morphology is diverse among Chironomidae subfamilies.  

Chironominae (Figure 5) and Orthocladiinae (Figure 6) head capsules possess 

ventromental plates and a mentum.  The mentum is a double-walled plate with teeth, and 

the ventromental plates extend posterolaterally or laterally from the mentum and are well 

developed in the Chironominae and poorly developed in the Orthocladiinae.  The number 

of mandibular teeth is also diagnostic.  Antennae of the Chironominae have 5 to 8 

segments, the mentum is well developed, and ventromental plates of almost all taxa are 

striated.  The Orthocladiinae are a morphologically diverse subfamily and span a wide 

variety of environments (Epler, 2001).  Antennae are well developed with 3 to 7 

segments, and the mentum and premandibles are also well developed.     
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Figure 5.  Subfossil Chironominae (Chironomus) head capsule showing mentum and 
ventromental plate. 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 6.  Subfossil Orthocladiinae head capsule (Cricotopus/Orthocladius) showing 
mentum and ventromental plates.   
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 Subfossil specimens of the Tanypodinae are sometimes difficult to identify 

because diagnostic features, such as antennae, claws, and maxillary palpi (sensory 

structures located on the maxilla, or mouthpart) are often missing (Rieradevall and 

Brooks, 2001).  Taxa of this subfamily always possess a ligula, or a toothed plate that is a 

component of the feeding apparatus (Figure 7).  Antennae are retractile, and 

premandibles are not present.  Cephalic setation patterns on the head capsule are 

diagnostic, and ventral (lower or bottom side) and dorsal (upper or top side) sockets and 

pores are almost always visible on head capsules (Rieradevall and Brooks, 2001).  

Cephalic setae are tactile mechano-receptors and pores are sensory pits that respond to 

mechanical forces.  Larvae are predacious with an apical tooth on the mandible that aids 

in capturing prey (Epler, 2001).   
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Figure 7. Subfossil Tanypodinae (Procladius) head capsule showing ligula, mandible, 
cephalic seta socket, and paraligula.   
  

 During the fourth instar larval stage, the thorax that houses pupal and adult 

features becomes swollen and the exuvia (larval skin) is shed.  Pupae, as with larvae, may 

be sedentary and housed in a case or free living (Oliver, 1971).  This life stage lasts a few 

hours to a few days.  Eclosion occurs when the pupae swim to the surface of the water 

and the adult emerges.   

 Adult life stages are short; they mate in swarms and die within 2 weeks after 

emergence.  If they feed at all, it is not on blood, but on nectar, pollen, or honeydew 

(Brooks et al, 2007).  Adults resemble mosquitoes, but wings do not have scales, and the 

proboscis is short (Pornichu and MacDonald, 2003).    

Cephalic seta socket 

Ligula 

Paraligula 

Mandible 



 22

1.7  Chironomids as Bioindicators of Water Quality 

 A biological indicator organism is one that, through its absence or presence in a 

community, indicates specific environmental conditions such as pH, oxygen, or 

temperature.  Chironomid larvae are useful in aquatic biological monitoring because they 

are ubiquitous, abundant, and distributed world-wide in freshwater ecosystems (Porinchu 

and  MacDonald 2003).  Unlike chemical or physical water quality parameters that show 

short term changes in streams or lakes, these organisms are indicative of changes that 

occur over time scales as great as centennial to millennial.  Because chironomids are 

sensitive to changes in their aquatic environment, species compositions indicate specific 

gradients of water quality, such as oxygen levels, over time (Pornichu and MacDonald, 

2003).  Short life cycles allow chironomids to respond quickly to perturbations, and 

species distributions are in near equilibrium with their aquatic environment (Pornichu et 

al., 2003).   

 Larvae are impacted by aquatic conditions, and respond to fluctuating variables 

such as temperature and oxygen in different ways (Brodersen and Quinlan, 2006).  Larval 

growth and survival is most dependent on temperature, food availability, and oxygen 

concentration (Brodersen and Quinlan, 2006) (Figure 8). Habitat and food web links 

affect chironomids on smaller temporal and spatial scales. 
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Figure 8.  Interacting environmental factors that effect living chironomid communities 
and subfossil assemblages (from Brodersen & Quinlan, 2006).     
  

  

 Chironomids are often used as biological indicators of lake trophic status because 

chironomid abundance is often regulated by concentrations of dissolved oxygen (Kajak, 

1997).  Brodersen et al. (2004) discovered that oxy-regulatory capacity adaptations allow 

some chironomid taxa, such as Chironomus, Dicrotendipes, and Procladius to thrive in 

low oxygen conditions, while other taxa, such as Micropsectra and Heterotrissocladius, 

cannot tolerate low oxygen conditions.  Concentrations of hemoglobin allow some 

chironomid taxa, such as Chironomus, to survive periods of hypoxia and anoxia.  In 

addition, some taxa such as Chironomus have the ability to slow their metabolic rates, or 
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transition to anaerobic metabolism (Hamburger et al., 1994).  Size is another factor that 

allows chironomids to tolerate low amounts of dissolved oxygen.  For taxa  such as 

Chironomus, Stictochironomus, and Procladius, large body size allows for more adequate 

ventilation of larval tubes (Int Panis et al, 1996).   

 Chironomid community distributions are affected not only by exposure to low 

amounts of oxygen, but by duration of exposure (Brodersen and Quinlan, 2006).  For 

example, hypoxia-intolerant (oligotrophic) taxa are impacted by decreasing amounts of 

oxygen, while mesotrophic and eutrophic taxa may be able to withstand months of 

hypoxia (Hamburger et al, 1995).   

 In the past, a simplistic relationship was thought to exist between lake trophic 

status, hypolimnetic oxygen, and midge ecology, with high oxygen and the bioindicator 

Micropsectra equating to oligotrophic lakes, while low oxygen and the bioindicator 

Chironomus equated to eutrophic lakes (Brodersen and Quinlan, 2006).  These over-

simplistic relationships are not fully accurate in the real world because the rate of oxygen 

depletion and the concentration of oxygen in the hypolimnion are caused by interacting 

biological, physical, and chemical conditions, such as lake volume, depth, fetch (the 

available distance for air to flow over a lake), the annual retention of phosphorus, mean 

summer water temperature, ice cover duration and thermal stratification strength and 

timing (Papst et al., 1980, Cornett, 1989, Ohlendorf et al., 2000).   

 In 1921, German freshwater biologist Dr. August Thienemann was the first 

scientist to use chironomids in limnology (Smol, 2002).  He developed a system to 

classify lake trophic status based on the dominant chironomid species found in the lake 

(Smol, 2002). He discovered that oligotrophic lakes were dominated by Tanytarsus, a 
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species that thrives in clear, cold, nutrient poor water, while eutrophic lakes were 

dominated by Chironomus, a species that thrives in nutrient rich water.  In addition, he 

also determined that summer hypolimnetic oxygen concentration affected deep-water 

profundal species composition (Crisman, 1988).   

 Thienemann’s classification was modified by Lars Brundin in 1949, who believed 

that trophic state was associated with specific profundal chironomid species and that 

profundal taxa were greatly influenced by the amount of oxygen present in the 

hypolimnion (Brodersen and Quinlan, 2006).  Brundin’s classification system associated 

ultra-oligotrophic lakes (very low nutrients) with Heterotrissocladius subpilosus, 

oligotrophic lakes with Tanytarsus lugens, mesotrophic lakes with Stictochironomus 

rosenschöldi and Sergentia coracina, eutrophic lakes with Chironomus anthracinus and 

C. plumosus, and dystrophic lakes (variable nutrients, humic compounds result in brown 

water color) with C. tenuistylus.      

   Data sets spanning centennial time scales are not in existence for lakes, making 

it difficult to determine if low oxygen conditions are caused by natural variables or are 

the result of anthropogenic impacts to the landscape (Quinlan and Smol, 2001).    Proxy 

data retrieved from lake sediment cores, such as chironomid head capsules, are useful in 

estimating paleoenvironmental conditions (Quinlan and Smol, 2001). Chironomids are 

used as paleoenvironmental indicators of oxygen conditions and lake trophic state for a 

number of reasons.  During the larval stages, or instars, chironomids undergo ecdysis and 

molt their sclerotized chitinous head capsules, which then sink to the lake bottoms where 

they are preserved in the sediment (Smol, 2002).  Head capsules retain diagnostic 

features that are essential for taxonomic identification.  Secondly, some chironomid taxa 
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are stenotopic, that is, they are capable of tolerating only a narrow range of aquatic 

environmental conditions (Brooks et al., 2007).  Third, short life cycles allow 

chironomids to respond quickly to aquatic perturbations, and distributions are in near 

equilibrium with the aquatic environment (Pornichu and MacDonald, 2003).  Because 

species vary in their tolerance to environmental factors, changes in species assemblages 

over time can be used to infer historical environmental change.  Chironomidae larvae are 

relatively stationary in their environment, and this in situ metamorphic stage ensures 

assemblages respond to local environmental changes such as point source pollution.       

 Meriläinen et al. (2000) conducted a paleolimnological study on the progression 

of trophic status in Lake Lappajärvi, Finland and how profundal chironomid taxa altered 

as a result of eutrophication and decreased hypolimnetic oxygen levels.  

Heterotrissocladius subpilosus, Paracladopelma nigritula, and Micropsectra spp., all 

bioindicators of oligotrophic conditions, typified the pre-industrial era before 1935.  

Heterotrissocladius subpilosus became extinct with increased nutrient loading from 1935 

– 1960, and Micropsectra, Paracladopelma, and Sergentia decreased in numbers.  With a 

period of increased erosion and heightened nutrient loading from 1960 to 1970 came 

significant increases in Chironomus type anthracinus, a bioindicator of moderate 

eutrophy.  The succession to meso-eutrophic conditions saw an increase in Chironomus 

type plumosus, another bioindicator of eutrophication.         

 Warwick (1980) used chironomids as biological indicators of anthropogenic 

eutrophication of the Bay of Quinte, Ontario, Canada, and expected to find chironomid 

assemblages characteristic of eutrophic lakes.  Instead, the data showed that littoral 

(shallow water) chironomids declined while cold-stenothermous, profundal (deep water) 
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oligotrophic-tolerant chironomids dominated the sediment samples.  Deforestation eroded 

nutrient poor soils into the Bay of Quinte, resulting in low primary productivity that 

explained the oligotrophic-tolerant chironomids found in the sediments in place of the 

expected eutrophic-tolerant chironomids.  As eroded soil entered the bay, turbidity 

increased, displacing the thermocline which resulted in the decline of littoral 

chironomids.  Phytophilous, or plant feeding chironomid populations decreased as 

turbidity increased. Water clarity decreased due to increased turbidity, and deep water 

macrophyte populations declined due to a lack of sunlight entering the water.  In the late 

1900s, eutrophic-tolerant chironomids replaced oligotrophic chironomids, as Warwick 

expected (1980).   

 

1.8  Quantitative Reconstructions 

 Lake monitoring data, such as measured dissolved oxygen, covers short time 

periods on the scale of decades, while long term data sets cover longer time periods on 

the scale of centuries.  In order to understand the changes that occur in the present, past 

conditions must be known for comparison, and long term data sets are useful in showing 

what conditions were like before the impact of European settlement.  Quantitative 

reconstructions use paleo biological data, such as chironomid head capsules recovered 

from sediment cores, to reconstruct an environmental variable, such as oxygen 

conditions, over long periods of time (Quinlan and Smol, 2001).  Inferences of 

fluctuating levels of hypolimnetic oxygen over centennial time scales are useful 

components of eutrophication studies in freshwater lakes (Quinlan et al., 1998).  Fossil 
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Chironomidae proxy data sets in lake sediments are useful in reconstructing the 

hypolimnetic oxygen conditions of the past (Quinlan et al., 1998).   

 A transfer function is a mathematical model that relates modern day species 

distributions to biological, physical, and chemical environmental gradients.  That model 

is then used to interpret fossil assemblages.   Multivariate statistical techniques are used 

to obtain transfer function equations, and these techniques express how valuable an 

environmental variable is in terms of the faunal composition data, quantifying the 

relationship between species distribution and environmental variables.  Several steps are 

involved in developing a transfer function.  Environmental data and surficial sediment 

samples are collected from a suite of lakes along an environmental gradient.  Taxa are 

sorted and identified from each sample site.  Ordination methods (the arrangement of 

species along environmental gradients) are used to determine which environmental 

variables are most influential on species distributions.  The transfer model can then be 

developed using statistical techniques such as weighted-averaging regression.  Error 

estimation techniques, such as jackknifing, bootstrapping, and cross validation, are 

methods used to evaluate the robustness of the transfer function.  Finally, the transfer 

function is run using down-core chirionomid assemblage data for paleo-reconstructions 

(Pornichu and MacDonald 2003).        

 A number of assumptions are made when running a transfer function (Birks, 

1998).  First, taxa identified in the training set are related to the habitat they were 

sampled from.  Second, the reconstructed environmental variable is either significant in 

the ecological system or linearly linked to an environmental variable that is significant in 

the ecological system.  Third, the response of the training set taxa and the fossil taxa to 
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aquatic perturbations is the same.  Fourth, regression and calibration techniques 

sufficiently model taxa responses to the environmental variable.  Fifth, all other 

environmental variables are insignificant to the organisms of interest.     
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CHAPTER 2 

METHODS 

2.1 Coring 

 On 7 June 2006, a Livingston corer outfitted with a 2.5 m polycarbonate tube (6.5 

cm inner diameter) and operated with rigid drive rods from an anchored boat (Wright 

1991), was used to extract four sediment cores from LSC at two different sample sites 

(Figure 2).  Two cores were taken at each sample site to ensure enough sediment would 

be available for sediment processing and for chironomid head capsules.  Core 1B was 

extracted from sub-basin 1 upstream of Prescott, WI at 44°45'27.6"N and 92 °48'25.6"E 

from a water depth of 12.11 m, and was 1.57 m long.  Core 6B was extracted from sub-

basin 3 near Lakeland, MN at 44°56'50.7"N and 92 °45'20.6"E from a water depth of 

14.98 m and was 1.96 m long.  Sub-basins 1 and 3 were chosen as coring sites due to 

spatial variability that occur in upstream (core 6B) and downstream (core 1B) locations.    

In addition, these coring sites were chosen to make comparisons to other studies that 

were previously conducted in the same sub-basins (Troelstrup et al., 1993; Edlund et al., 

2009; Lafrancois et al., 2009; Triplett et al., 2009)   Table 1 details the sub-basins in LSC.  

Cores were kept upright in the boat and taken to shore.     

 Cores were secured upright to posts in the boat, and once the boat reached shore, 

cores were carried upright off the boat, taking care not to disturb the uppermost sections 

of the cores that had high water content.  Disturbance leads to unreliable chironomid 

subfossil data, decreasing the accuracy of historical reconstructions (Tomkins et al., 

2007).  The uppermost sections of each core were sectioned immediately in the field, and 

the remainders of the cores were sectioned after magnetic susceptibility analysis.  Down-
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core smearing was removed from core exteriors by using a spatula to remove sediment.  

Before magnetic susceptibility was analyzed, the upper 22 sections of core 1B-1 and 6B-

2 were sectioned on shore at a high resolution of 16 cm for the uppermost 16 cm and 2 

cm for 18 – 22 cm.   

 After magnetic susceptibility analysis was complete, cores were sectioned at the 

St. Croix Watershed Research Station at 2 cm intervals for 16 to 120 cm, and at 5 cm 

intervals for the bottommost 120 to 150 cm.  Before magnetic susceptibility was 

analyzed, the upper 21 sections of core 6B-1 and 6B-2 were sectioned on shore at a high 

resolution of 1 cm intervals.  After magnetic susceptibility analysis was complete, the 

cores were sectioned at the St. Croix Watershed Research Station at 2 cm intervals for 22 

to 140 cm and 5 cm intervals for 140 to 150 cm.  Samples were placed in screw-top 

polypropylene jars and stored at 4oC.  The upper sections of the cores were sectioned at a 

high resolution in order to show changes taking place at the time of European settlement 

through the present.   

 

2.2 Dating Sediment Cores 

 Dating young sediment cores (100-150 years) with lead-210 (210Pb) is a popular 

high-resolution method that involves uranium decay (Cohen, 2003).  Radioactive decay is 

the process by which an unstable atom, or radioactive nuclide, emits radiation and 

changes into a different species as the ratio of protons to neutrons alters, until no 

radioactivity remains and the atom becomes stable.  During decay, alpha or beta particles, 

or gamma rays are emitted from the nucleus of an atom.   The radioactive element 

uranium (U) decays to a sequence of nuclides having known half-lives (Rapp and Hill, 
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1998).  Uranium-series dating utilizes this uranium decay sequence terminating in stable 

lead to estimate the age of a sediment core (Bradley, 1999).    

 Two intermediate isotopes (an atom of an element that is composed of the same 

number of protons, but a different number of neutrons) in the 238U decay series, Radium-

226  (226Ra) and Radon-222 (222Rn), naturally occur in rock, soil, and water and are 

released from the earth’s crust into the atmosphere (Bradley, 1999).  Radium-226 decays 

at a half life of 1622 years to the gas 222Rn that is found in the atmosphere (Cohen 2003).  

Radon-222 rapidly decays to 210Pb, and is re-deposited as unsupported 210Pb that either 

precipitates from the atmosphere or returns to the earth as dry fallout and collects in 

lacustrine sediments (Preiss et al., 1996).  Manganese and iron oxides, as well as organic 

matter, carry re-deposited 210Pb to lakes where sedimentation and decay to bismuth-214 

(214Bi) take place (Cohen, 2003).  Once the sedimented 210Pb is buried, decay results in 

stable 206Pb (Cohen, 2003).  Not only is unsupported 210Pb atmospherically deposited, but 

supported 210Pb exists in all samples due to the decay of its parent isotopes in situ 

(Cohen, 2003).  If it is assumed that 226Ra is in equilibrium with supported 210Pb, total 

supported 210Pb can be inferred by measuring mean 226Ra (Cohen, 2003).  Unsupported 

210Pb is calculated by subtracting total supported 210Pb from total 210Pb (Cohen, 2003).           

 The sediment cores for this study were recovered from the same locations as cores 

recovered in a 1999 study by Triplett et al. (2009) for comparative purposes.  Triplett et 

al. (2009) determined chronology of the cores by analyzing the concentration of 210Pb in 

18-25 samples from each core through its grand-daughter product, polonium-210 (210Po).  

The short half life of 210Po (138 days) allows for the assumption that it is in equilibrium 

with 210Pb (Cohen, 2003).  Polonium-209 was added as an internal yield tracer to freeze-
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dried sediment, carbonate was removed from samples by a treatment of concentrated 

HCl, and finally, isotopes were distilled at 550oC.  Polonium isotopes were plated on 

silver planchettes from a solution of 0.5 M hydrochloric (HCL).  An Ortec alpha 

spectrometry system measured activity for 0.8-3 x 105 s.  Unsupported 210Pb was 

quantified by subtracting lower core mean activity levels (supported 210Pb) from activity 

in the upper samples.  Asymptotic activity was used to determine supported 210Pb in the 

lower core samples, and supported 210Pb was subtracted from measured total activity in 

the upper core samples to determine unsupported 210Pb activity.   

 The constant rate of supply (CSR) model was used to calculate sedimentation 

rates and core dates (Appleby and Oldfield, 1978).  Cores 1B and 6B displayed 

monotonic downcore declines in 210Pb activity and surface activities were low.  Change 

in slope in 210PB activity profiles resulted from fluctuations in sediment flux, justifying 

the use of the CSR model that allows for such sediment accumulation fluctuations while 

presuming a constant 210PB flux.         

 The same core increments that were 210Pb-dated were also analyzed for Cesium-

137 in order to check the accuracy of the chronology (Edlund et al., 2009).  From 1963-

1964, maximum atmospheric deposition of 137Cs occurred during the period of nuclear 

bomb testing.  Extremely well defined peaks of 137CS occurred in the sediment 

chronology, allowing the dates of 1963-1964 to be precisely placed at the depths where 

peaks occurred.   

 In addition, terrestrial organic matter samples from the lower sections of cores 8C, 

5B, 3A and 1B were radiocarbon dated.  Depths were chosen based on fluctuations in 

magnetic susceptibility in order to correlate 14C dates to other cores (Edlund et al., 2009).  



 34

Lead-210 results were cross-checked with 137Cs peaks, and results indicated that 210PB 

dates displayed a reasonable correlation to 137Cs date, supporting the reliability of 210Pb 

dates from the mid 1900s to the present (Edlund et al., 2009).  CALIB returned 1 possible 

calendar date for 1B samples of 1413 AD.  CALIB returned 3 possible calendar dates for 

5B samples of 1330, 1350, and 1390 AD, but no date overlapped with 210Pb dates and the 

median (1350) was used.    A single pre-European settlement sediment accumulation rate 

was calculated using calibrated 14C dates for cores 8C, 5B, 3A and 1B that represented 

the block of time from 14C sample depth to European settlement around 1850.  The 

calibrated 14C date for 5B was applied to transect 6, where core 6B was extracted.  In 

core 1B, the ratio of post- to pre-settlement sediment accumulation was determined.  

Post-settlement was designated as 1838 (marked by a rise in magnetic susceptibility) to 

modern times.  Pre-settlement was designated as 1838 to the date 1413 that was 14C 

calibrated.       

 Figures 9a and 9b display lead-210 chronologies with error bars for both cores 

using the Pb-210 dates from Edlund et al. (2009) study.  Oldest dates showed the greatest 

amount of error, while the youngest dates displayed little error.  Estimated uncertainty for 

the age models was relatively low, verifying the use of the Pb-210 dates from Edlund et 

al. (2009) in this study.       
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Figure 9a.  Core 1B calculated age (Years AD) versus base of core interval (cm) based on 
the constant rate of supply model.  (Data are from Edlund et al., 2009).     
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Figure 9b.  Core 6B calculated age (Years AD) versus base of core interval (cm) based on 
the constant rate of supply model.  (Data are from Edlund et al., 2009).     
 

 

 

2.3  Magnetic Susceptibility 

 Measuring the magnetic susceptibility of a sediment core is a non-destructive 

method that applies a magnetic field that magnetizes the iron-bearing minerals in the 

sample, and the ease of magnetization is recorded (Thompson et al., 1975).  A lake’s 

sediment record may be impacted by variables such as climate change, soil erosion, and 

anthropogenic land use changes (Guerrero et al., 2000), which can all lead to fluctuations 

18001820184018601880190019201940196019802000
0

12

24

36

48

60

72

84

96

108

120

Pb-210 Dates (Years AD)

B
as

e 
of

 in
te

rv
al

 (c
m

)
LSC Core 6B (Edlund et al., 2009)



 37

in the magnetic properties of a sediment core.  These fluctuations can be linked to times 

of human induced environmental change as indicated by paleo-proxy data (Guerrero et 

al., 2000).    

 Magnetic susceptibility analysis for cores 1B and 6B took place at the 

Limnological Research Center Core Facility at the University of Minnesota using a 

Geotek Multisensor Core Logger (MSCL) with an automated track and a Bartington MS2 

core logging sensor.  Cores were brought to room temperature and sectioned at 1.6 m in 

the polycarbonate tubes to fit the automated track.  Measurements were logged every 

centimeter.   

 The major and minor tie points in the magnetic susceptibility profiles of cores 1B 

and 6B from Edlund et al. (2009) and 1B-1 and 6B-1 from this study were used to 

correlate cores for dating (Figures 10a and 10b).  It is important to note that the 

sensitivity of the MSCL has changed from when the Edlund et al (2009) cores were 

logged.  In addition, the length of the cores was not the same.  Core 1B (Edlund et al., 

2009) was longer than core 1B-1, and core 6B (Edlund et al., 2009) was shorter than core 

6B-1.  Magnetic susceptibility of the undated cores of this study was plotted against 

depth and age (Years AD) of the dated cores from Edlund et al., 2000 (Figures 10a and 

10b).  Patterns in the magnetic susceptibility profiles were used to determine major and 

minor tie points of the dated and undated cores.  Ages from the dated Pb210 cores were 

assigned to the tie points of the undated cores, and linear interpolation was assumed 

between tie points.  Even though core lengths were different, figures 9a and 9b were 

produced using the same number of core sections for each core.    
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Figure 10a.  Core 1B core matching.  Major and minor tie points are circled.  The Pb-210 
dates of core 1B in years AD (data are from Edlund et al., 2009) were applied to the tie 
points in core 1B-1.     
 

 

Figure 10b.  Core 6B core matching.  Major and minor tie points are circled.  The Pb-210 
dates of core 6B in years AD (data are from Edlund et al., 2009) were applied to the tie 
points in core 6B-1.     
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2.4  Sediment Analysis for Chironomid Head Capsules 

 Aliquots of 6.99 – 35.08 g of wet sediment were processed with the addition of 

approximately 100 ml of 10 % hydrochloric acid (HCl) and allowed to digest overnight to 

remove carbonates.  The amount of sediment that was processed was determined by the 

total number of head capsules extracted from each core section, as a minimum of 40 head 

capsules per section was necessary for statistical accuracy (Quinlan et al., 1998).  

Sediment was rinsed with deionized water through a 100 µm sieve, backwashed into a 

glass beaker, digested in approximately 100 ml of 5 % potassium hydroxide (KOH) for 

20 minutes at 80°C in order to remove organic matter.  Once cool, sediment was rinsed a 

final time through the 100 µm sieve with deionized water and backwashed into the glass 

beaker.  The surfactant Brij® 35 was added to each sample in order for the head capsules 

to be picked more easily from the sample, and ethyl alcohol (EtOH) was added as a 

preservative to prevent fungal growth.  Chironomid head capsules were picked from the 

sample using a dissecting microscope at 50x, a Bogorov counting tray (Gannon, 1971), 

and a wire loop.  Head capsules were placed in a drop of deionized water on glass cover 

slips.  Deionized water was allowed to evaporate, leaving head capsules on cover slips.  

Glass microscope slides were prepared by mounting cover slips to slides using Euparal®.  

Slides have been archived at the University of Massachusetts Geoscience Department 

Quaternary Laboratory.     

 Head capsules were identified to the lowest taxonomic level possible using a 

compound microscope at 400x and taxonomic keys of Ferrington et al. (2008), Brooks et 

al. (2007), Epler (2001), Oliver and Roussel (1983), Rieradevall and Brooks (2001), and 
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Walker (2007).  If differentiation between 2 genera was not possible, they were 

documented together (Corynoneura/Thienemanniella).  Chironominae early instar, tribe 

Tanytarsini, tribe Macropelopiini, tribe Pentaneurini, and Tanypodinae early instar 

groups were used to categorize head capsules that could not be identified to lower 

taxonomic levels. 

 

2.5 Quantitative Reconstruction of average Volume-Weighted Hypolimnetic Oxygen  

 This study used a chironomid-based inference model for end-of-summer 

hypolimnetic oxygen developed by Dr. Roberto Quinlan, York University, Toronto, 

Ontario and Dr. John P. Smol, Queen’s University, Ontario (Quinlan and Smol, 2001).  

Developing a transfer function specific to LSC was beyond the scope and budget of this 

study.  The use of the transfer function developed by Quinlan and Smol for this study is 

justified by the fact that the geographic area in which data was collected showed similar 

land use changes to LSC.  In the mid 1800s, the Muskoka-Haliburton area was 

completely deforested for the logging industry and land clearance for agriculture 

(Quinlan and Smol, 2001).  After the decline of the logging industry in the early 1900s, 

the region was re-forested, and today is dominated by mixed deciduous-coniferous 

successional forest (Quinlan and Smol, 2001).  The region is almost void of agriculture 

due to poor soils, however, recreational activity adds a great amount of stress to the 

watershed.  Resorts, residential areas, and golf courses, as well as undeveloped areas, are 

prevalent in the region.           

 Surficial sediments of 86 lakes in the District Municipality of Muskoka and the 

County of Haliburton, south-central Ontario, Canada were analyzed for subfossil 
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chironomid head capsules.  The lake sites spanned a variety of land uses such as 

undeveloped, residential, and resort and a range of environmental conditions  from 

shallow to deep, ultra-oligotrophic to eutrophic, and anoxic to oxic.  Sediment cores were 

extracted from the deepest locations of each lake and 210Pb dated.  A YSI dissolved 

oxygen meter profiled temperature and oxygen measurements in each lake.  End-of-

summer, spring turnover, or year-round measurements were taken.      

 Hypolimnetic volume was calculated using the Lind method, which defines the 

top of the hypolimnion as the point of intersection of 1 tangential line drawn through the 

thermocline and a second tangential line drawn through the bottom portion of the 

temperature profile.  End-of-summer volume-weighted hypolimnetic oxygen (VWHO) 

was determined using bathymetric maps and measured oxygen-temperature profiles 

(Quinlan and Smol, 2001).  Measurements in the hypolimnion were taken at 1, 2, 5, or 10 

m intervals.  Temperature and oxygen values were linearly interpolated at 1m intervals 

between the hypolimnetic oxygen measurements.  VWHO values were determined from 

the interpolated profiles.   The percentage of hypolimnetic area and lake surface area that 

was underlain by anoxic ([DO] < 1 mg L-1) and hypoxic ([DO] < 4 mg L-1) water was 

determined from oxygen profiles.  Bottom oxygen ([botO2]) was defined as the DO 

concentration 1m above sediments at the deepest point.   

 Of the 86 lakes, 59 were used for numerical analysis with assemblages of 44 

chironomid taxa.  Taxa with less than 2 occurrences with a relative abundance less than 

2% were eliminated.  Principal components analysis (PCA) is an unconstrained 

ordination technique that assumes unimodal distributions (Holland, 2008), and in this 

study, was used to identify the sample sites to be excluded from ordination analysis.  If, 
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on the first 2 axes of PCA of environmental data, sample sites fell outside the 95 % 

confidence limits of sample score means, then they were excluded (Quinlan and Smol, 

2001).  Detrended correspondence analysis (DCA) is an ordination technique that 

corrects for two problems that arise in PCA (Holland, 2008).  DCA corrects for the arch 

effect that occurs on the second axis by detrending.   DCA also corrects for the uneven 

spacing of samples along the first axis by rescaling.  If, on the first 2 axes of DCA of 

screened species data, sample sites fell outside the 95 % confidence limits of sample 

score means, then they were excluded (Quinlan and Smol, 2001).   

 In order to determine if unimodal-or linear-based ordination techniques would be 

the most useful in conducting numerical analyses, DCA with detrending by segments, 

non-linear rescaling, and downweighting of rare taxa was used to determine the gradient 

length of chironomid composition in relation to environmental variables for the first 2 

DCA axes.  Direct gradient analysis such as redundancy analysis (RDA) and canonical 

correspondence analysis (CCA) determine which environmental variables best explain 

species abundance.  The gradient length of chironomid composition in relation to 

environmental variables was determined using detrended canonical correspondence 

analysis (DCCA) with detrending by segments, non-linear rescaling, and downweighting 

of rare taxa determined.  The environmental variables that best explained chironomid 

assemblages, as determined by forward selection in RDA (linear model) and CCA 

(unimodal model) were VWHO and [botO2], with P > 0.05.   

   Oxygen inference models were developed from linear- and unimodal-based 

modeling because the first and second DCA axes both showed intermediate gradient 

lengths.  Linear regression models used partial least squares (PLS), and unimodal 
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regression models used weighted averaging (WA) with inverse or classical deshrinking 

with or without tolerance downweighting.  In addition, weighted averaging partial least 

squares regression (WA-PLS) was also utilized.  WA is a reciprocal averaging technique 

that utilizes the modern training set to determine the optimum environmental variable of 

interest for all species.  PLS is a linear technique that relates response variables (Y) to 

explanatory variables (X) in order to determine the linear combination of X variables that 

best model Y dependent variables.  WA-PLS is a unimodal based technique that is best 

used for gradients of intermediate length.  The predictive error (root mean square error of 

prediction) was used to assess the models.  Jackknifed RMSEP values were compared 

among models to assess error.  The inference models that were developed were 

statistically robust with moderate predictive power for measured VWHO and [botO2].   

 Oxygen inference models were utilized in conjunction with the Clerk et al (2000) 

fossil chironomid data in order to reconstruct VWHO and [botO2].  The Clerk et al (2000) 

fossil chironomid dataset from Peninsula Lake, Ontario Canada displayed chironomid 

fluctuations in response to European land use change including logging and deforestation.  

Quinlan and Smol (2001) concluded that oxygen inference models are accurate, based on 

the results seen in the reconstruction of VWHO and [botO2] using the Clerk et al. (2000) 

chironomid dataset.  

 The transfer function developed by Quinlan and Smol (2001) was applied to the 

LSC fossil chironomid dataset from cores 1B and 6B in order to reconstruct average 

VWHO in LSC.  Hypolimnetic oxygen is a crucial environmental variable that greatly 

impacts the survival and distribution of aquatic life (Little and Smol, 2001).  In addition, 

hypolimnetic oxygen is an important indicator of eutrophication because as nutrients 
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promote the production of plant growth in the epilimnion, organic matter dies and sinks 

to the benthos of the lake, and decomposition decreases the amount of oxygen in the 

hypolimnion.  Average VWHO was used in this study as opposed to other variables that 

impact chironomids because Quinlan and Smol (2001) concluded that the strongest 

explanatory variables for sub-fossil chironomid assemblage variation were average end-

of-summer VWHO and bottom oxygen concentration.       

 The program C2 (Juggins, 2003) was used to run the transfer function.  Oxygen 

inference models were developed for LSC using WA, WAPLS, and PLS.  Leave-one-out 

cross validation method and square root species transformation were selected for all 

regressions.  Performance statistics showed that estimated avgVWHO by weighted 

averaging (inverse deshrinking) was a robust inference model based on the moderate 

coefficient of determination (r2
jack = 0.49) and a low predictive error (RMSEP = 2.32) 

(Table 2).   
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Table 2.  Performance statistics for avgVWHO inference models.  RMSE, RMSEP, Max. 
Bias units are mg O2 L-1. 

 
 
 
 
2.6  Chironomid Analysis 

 A number of equations and mathematical operations were used to analyze 

chironomid taxa data.  Taxa richness is the number of different taxa that are present in 

each core section.  This measure of biodiversity is widely used due to its ability to make 

comparisons among different taxonomic groups (Prendergast et al., 1993).   Relative 
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abundance measures the amount of each taxon in a core section by dividing the 

abundance of each taxon by the total abundance of all taxa, and multiplying that result by 

100.  Head capsule concentration was determined by dividing the total number of head 

capsules in each core section by the grams of wet sediment that were used in processing 

the head capsules.   

 Diversity indices are used to quantify taxa rarity and commonness in a 

community.  The Shannon-Wiener diversity index (H’) measures the degree of 

uncertainty of predicting a taxon in a random sample.  For example, a community that is 

dominated by a single taxon has a lower uncertainty of prediction than a community that 

is biologically diverse.  As diversity increases, uncertainty increases.  Figure 10 shows 

the equation where S is the total number of taxa in the community (richness) and pi is the 

proportion of S made up of the ith taxa (Whittaker, 1975).  If H’ is 0, then there is only 1 

taxon in the sample.  If H’ is the maximum calculated value, then all taxa are equally 

abundant.  The meaning of median values is obscure, an obvious draw back in this index.     

A large H’ value indicates a great amount of taxa diversity, while a small H’ value 

indicates low biodiversity.   

 

 

Figure 11.  Shannon-Wiener diversity index equation.   
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 The programs Tilia and TGView 2.0.2 (E. Grimm, Illinois State Museum, 

Research and Collections Center, Springfield, Illinois, USA) were used to generate 

chironomid profiles.  Taxa with less than 3% abundance were eliminated.  A cluster 

analysis was generated with CONISS (Grimm, 1987) using chironomid count data with a 

dendrogram scale of total sum of squares.  Zones were determined based on major 

species shifts seen in the dendrogram clusters. 
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CHAPTER 3 

RESULTS 

3.1  Magnetic Susceptibility 

 Cores 1B and 6B displayed the same general trends of low, constant values in the 

deepest core sections, followed by an increase to peak susceptibility values, and a 

decrease in the upper core sections.  Figure 12a shows magnetic susceptibility profiles for 

cores 1B-1 and 1B-2.  Core 1B-1 values ranged from 35.5 SI – 113.6 SI.  A decrease in 

values occurred from c. 1389 – 1515 AD, followed by fairly constant values from c. 1515 

1819 AD with local minima of 56.7 SI (c. 1661 AD), 57.6 SI (c. 1737 AD), and 56.9 SI 

(c. 1819 AD). Susceptibility values increased from c. 1819 – 1949 AD, then decreased up 

core to modern times.  In core 1B-2, values ranged from 29.8 SI (114 cm) – 116.3 SI (36 

cm), and showed a similar profile to core 1B-1.  An increase in susceptibility values 

occurred from 114 cm (29.8 SI) – 108 cm (60 SI), followed by fairly constant values 

from 107 - 36 cm.  The same up core decrease in susceptibility values to modern times 

occurred in core 1B-2. 
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Figure 12a.  Magnetic susceptibility profiles for cores 1B-1 and 1B-2. 
 

 Figure 12b shows magnetic susceptibility profiles for cores 6B-1 and 6B-2.  In 
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Core 1B-1 Magnetic Susceptibility

0

20

40

60

80

100

120

1200 1300 1400 1500 1600 1700 1800 1900 2000

Pb-210 Dates (Years AD)

M
ag

ne
tic

 S
us

ce
pt

ib
ili

ty
 

(S
I)

Core 1B-2 Magnetic Susceptibility

0
20
40
60
80

100
120
140

1500 1600 1700 1800 1900 2000

Pb-210 Dates (Years AD)

M
ag

ne
tic

 S
us

ce
pt

ib
ili

ty
 

(S
I)



 50

susceptibility was fairly uniform with a local maximum of 47.7 SI at c. 1851 AD.  An 

increase to the highest peak at c. 1945 AD began at 1904 AD, and susceptibility 

decreased to modern times, with a small increase occurring between c. 1967 – 1969 AD.  

Relatively uniform susceptibility values occurred up core to modern times.  In core 6B-2, 

values ranged from 14.1 SI to 930.2 SI.  Values increased from c. 1495 – 1523 AD, then 

decreased to 30.9 SI at c. 1553 AD.  Values remained relatively uniform, until an 

increase to 52.7 SI occurred at c. 1745 AD.  Very large spikes in magnetic susceptibility 

were seen from c. 1757 – 1775 AD.  Values fell sharply and quickly to 46.3 SI at c. 1798 

AD, and then increased rapidly to 921.9 SI at c. 1813 AD.  An up core decrease in values 

began in c. 1945 AD.  Magnetic susceptibility profiles of cores 1B-1 and 6B-1 showed 

excellent correlation to core 1B and 6B from the Edlund et al. (2009) study (Figures 9a 

and 9b).   
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Figure 12b.  Magnetic susceptibility profiles for cores 6B-1, and 6B-2. 
 

 

3.2  Chironomids 
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the most abundant, followed by the Tanytarsini, the Tanypodinae, the Orthocladiinae, and 

the Pseudochironomini (Figure 13b).  In both cores, the Chironominae were the most 

abundant subfamily.   

 The majority of chironomid taxa identified in core 1B and 6B were littoral.  

However, profundal taxa, including Chironomus, Cryptochironomus, Endochironomus, 

Glyptotendipes, Lauterborniella, Pagastiella, Orthocladius, and Procladius, were present 

in both cores (Ferrington et al., 2008).  Total head capsules of all taxa were summed for 

all core sections, and in core 1B, Procladius showed the most occurrences (1397 head 

capsules), followed by Chironomus (604 head capsules), Cricotopus/Orthocladius (336 

head capsules), and Polypedilum (183.5 head capsules).  In core 6B, Chironomus showed 

the most occurrences (392 head capsules), followed by Procladius (356 head capsules), 

Cladotanytarsus mancus type (294.5 head capsules), Polypedilum (227 head capsules), 

and Cricotopus/Orthocladius (176 head capsules).  LSC cores showed a good 

representation of both littoral and profundal taxa, and even though more taxa were 

classified as littoral, profundal taxa showed the most occurrences in both cores.              
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Table 3. Chironomid taxa found in Lake St. Croix sediment cores with associated 
subfamily and tribe information.                           
 

Chironomid Taxa Core 
Subfamily Chironominae  
Tribe Chironomini  
     Chironomus 1B, 6B 
     Cladopelma 6B 
     Cryptochironomus 1B, 6B 
     Cryptotendipes 1B, 6B 
     Dicrotendipes 1B, 6B 
     Endochironomus 1B, 6B 
     Endochironomus sp. A 1B 
     Glyptotendipes 1B, 6B 
     Harnischia 1B, 6B 
     Lauterborniella/Zavreliella 1B, 6B 
     Microchironomus 1B, 6B 
     Microtendipes 1B, 6B 
     Pagastiella 1B, 6B 
     Parachironomus 1B, 6B 
     Paracladopelma 6B 
     Paralauterborniella 1B, 6B 
     Paratendipes 1B, 6B 
     Phaenopsectra 1B 
     Polypedilum 1B, 6B 
Subfamily Chironominae   
Tribe Chironomini   
     Robackia 1B, 6B 
     Saetheria 1B 
     Sergentia 1B, 6B 
     Stenochironomus 6B 
     Stictochironomus 1B, 6B 
     Tribelos 1B, 6B 
     Xenochironomus 1B 
Tribe Tanytarsini  
     Cladotanytarsus group A 1B, 6B 
     Cladotanytarsus mancus type  1B, 6B 
     Micropsectra type 1B, 6B 

Continued on page 54 
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Tribe Tanytarsini (continued)  
     Paratanytarsus 1B, 6B 
     Stempellina 1B, 6B 
     Stempellinella/Zavrelia 1B, 6B 
     Tanytarsus lugens/Corynocera oliveri  type 1B, 6B 
Tribe Pseudochironomini  
     Pseudochironomus  1B, 6B 
Subfamily Orthocladiinae  
Tribe Orthocladiini  
     Corynoneura/Thienemanniella 1B, 6B 
     Cricotopus/Orthocladius 1B, 6B 
     Eukiefferiella/Tvetenia 1B, 6B 
     Epoicocladius 1B 
     Euryhapsis 1B 
     Limnophyes 1B 
     Metriocnemus 6B 
     Nanocladius 1B, 6B 
     Parakiefferiella 1B, 6B 
     Parakiefferiella sp. B 1B, 6B 
     Psectrocladius 1B, 6B 
     Rheocricotopus 1B 
     Synorthocladius 1B 
     Zalutschia 1B, 6B 
Subfamily Tanypodinae  
Tribe Coelotanypodini  
     Coelotanypus  1B, 6B 
Subfamily Tanypodinae (continued)  
Tribe Macropelopiini  
     Djalmabatista 1B, 6B 
     Procladius 1B, 6B 
Tribe Pentaneurini  
     Ablabesmyia  1B, 6B 
     Labrundinia 1B, 6B 
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Figure 13a.   Core 1B relative abundance profiles for Chironomidae groups.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L.     
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Figure 13b.  Core 6B relative abundance profiles for Chironomidae groups.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L.     
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 Number of head capsules per grams wet sediment (HC / g wet sediment) was low 

in both cores, and many samples did not result in a head capsule count of 40 after the first 

processing and picking.  More sediment was processed to reach the appropriate total.  HC 

/ g wet sediment for core 1B ranged from 1.02 - 7.71 (Figure 14a).  The average of HC/g 

wet sediment for core sections before European settlement (2.17) was slightly lower than 

the average for core sections following European settlement (2.26).  Low values were 

seen in the lowest sections of the core, with increasing values at c. 1541 AD, followed by 

lower values at the time of European settlement and increasing values in the upper 

section of the core to modern times.  HC / g wet sediment values were higher for core 6B 

than 1B, ranging from 2.06 - 5.44 (Figure 14b).  The average of HC/g wet sediment for 

core sections before European settlement (4.23) was higher than the average for core 

sections following European settlement (3.40).   HC / g wet sediment values were high at 

c. 1809 AD, with lower values seen after settlement, followed by higher values after c. 

1965 AD.   

 

 

 

 

 

 

 

 

 



 58

 

 

  

 

 

 

 

 

 

  

 

 

 

Figure 14a.  Core 1B total head capsules per grams wet sediment.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L. 
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Figure 14b.  Core 6B total head capsules per grams wet sediment.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L. 
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 Core 1B taxa richness ranged from 6 – 23 taxa (Figure 15a).  The average of taxa 

richness values for core sections before European settlement (16.26) was higher than the 

average for core sections following European settlement (12.28).  Taxa richness values 

showed a significant decrease c. 1363 AD, with higher values seen in c. 1566 – 1900 AD.  

Lower values were seen up core to modern times with higher variation.  Core 6B taxa 

richness ranged from 10 – 24 taxa (Fig. 15b).  Values increased to a peak c.1809 AD.  

Another peak occurred c. 1941 AD, followed by significantly lower values from c. 1948 

– 1969 AD.  Higher values occurred up core to modern times.  Taxa richness values were 

higher in core 6B than in 1B.       

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15a.  Core 1B Chironomid taxa richness (total number of taxa) and Shannon 
Wiener diversity index.  Chironomid reconstructed average volume-weighted 
hypolimnetic oxygen in mg/L.     

 

0
5

10
15

20

25
30

35
40

45
50

55

60
65

70
75

80
85

90
95

100

105
110

115
120

125
130

135
140

145

150

D
ep

th
 (c

m
)

1389

1819

1949

1976

P
b-

21
0 

D
at

e 
(Y

ea
rs

 A
D

)

20
Total # of taxa

Taxa
 R

ich
ne

ss

1 2 3

Sha
nno

n-W
iene

r D
ive

rsi
ty 

Ind
ex

1 2 3
mg/L

av
g V

W
HO

European Settlement

LSC Core 1B



 61

 

 

 

 

 

 

 

 

 

 

 

Figure 15b.  Core 6B Chironomid taxa richness (total number of taxa) and Shannon-
Wiener diversity index.  Chironomid reconstructed average volume-weighted 
hypolimnetic oxygen in mg/L.     
  

 

 The Shannon-Wiener diversity index (H’) for core 1B ranged from 0.36 – 2.60 

(Figure 15a).  Values closest to 0 occurred in c. 1945 and 1951 AD, while largest values 

occurred in c. 1330, 1730, 1855, and 1864.  Pre-settlement values ranged from 1.56 - 

2.60.  Post-settlement values ranged from 0.36 – 2.11.  The H’ for core 6B ranged from 

1.65 – 2.64 (Figure 15b).  Values closest to 0 occurred in c. 1911, 1948, and 1952 AD, 

while largest values occurred in c. 1689, 1809, 1839, 1982, 1984, and 1987.  Pre-

settlement values ranged from 2.28 – 2.62.  Post-settlement values ranged from 1.65 – 

2.64.           
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 Analysis of species shifts in the dendrograms resulted in the establishment of 5 

chironomid zones in core 1B (Figure 16a), and 3 zones in core 6B (Figure 15b).  Core 1B 

Zone I spanned from c. 1297 – 1541 AD.  Chironomus relative abundance peaked in c. 

1397 AD, with decreasing values towards the top of the zone.  Dicrotendipes first 

appeared in c. 1330 AD, then was absent from c. 1395 – 1490 AD.  Glyptotendipes first 

appeared in c. 1363 AD with few occurrences throughout the zone.  Polypedilum, 

Cricotopus/Orthocladius, and Procladius were ubiquitous throughout this zone, with 

high abundance.  Stempellina first appeared in c. 1503 AD.  Of all 5 zones, the highest 

relative abundance value for Nanocladius, Cricotopus/Orthocladius and Polypedilum 

were seen in Zone I.  Harnischia, Lauterborniella/Zavreliella, Parachironomus, and 

Paratanytarsus relative abundance values were absent from this zone.     
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Figure 16a.  Summary diagram for core 1B of chironomid zones established from species 
shifts.  Chironomid taxa used to reconstruct oxygen are arranged according to subfamily 
from right to left: Chironominae, Orthocladiinae, and Tanypodinae.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L.     
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Figure 16b.  Summary diagram for core 6B of chironomid zones established from species 
shifts.  Chironomid taxa used to reconstruct oxygen are arranged according to subfamily 
from right to left: Chironominae, Orthocladiinae, and Tanypodinae.  Chironomid 
reconstructed average volume-weighted hypolimnetic oxygen in mg/L.       
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 Core 1B Zone II spanned from c. 1541 – 1705 AD.  Chironomus relative 

abundance began to significantly increase in c. 1667 AD to a peak in c. 1693 AD.  

Polypedilum peaked in c. 1629 AD.  Cricotopus/Orthocladius displayed high values from 

c. 1617 – 1642 AD.  Harnischia, Parachironomus, and Sergentia were absent from this 

zone, with Lauterborniella/Zavreliella first appearing in c. 1655 and Paratanytarsus first 

appearing in c. 1553.   

 Core 1B Zone III spanned from c. 1718 – 1909 AD.  Chironomus relative 

abundance significantly increased in c. 1718 AD, peaking in c.  1756.  Values were low 

at the time of European settlement, but increased towards the top of the zone.  

Cricotopus/Orthocladius relative abundance was high at the time of European settlement, 

and Procladius displayed a peak in c. 1873 AD.  Lauterborniella/Zavreliella, 

Microchironomus, Micropsectra, Nanocladius, Corynoneura/Thienemanniella, and 

Cricotopus/Orthocladius showed peaks at the time of European settlement.   Harnischia 

first appeared in c.  1730 AD with low values throughout this zone, and Parachironomus 

first appeared after European settlement in c. 1873 AD then decreased to 0%.  Of all 5 

zones, the relative abundance value was highest for Stempellina in Zone III.   

 Core 1B Zone IV spanned from c. 1909 – 1973 AD.    Chironomus relative 

abundance values were high throughout this zone.  Glyptotendipes displayed a peak in 

1934.  Procladius displayed 2 peaks in 1951 and 1957 AD.  Polypedilum was absent 

from 1912 – 1960 AD, and reappeared in c. 1936 AD.  Sergentia, Stempellina, 

Lauterborniella/Zavreliella, Parachironomus, Tanytarsus Lugens/Corynocera, 

Nanocladius, Psectrocladius, and Zalutschia were absent from this zone.  Of all 5 zones, 

the relative abundance value for Chironomus and Procladius was highest in Zone IV.      
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 Core 1B Zone V spanned from c. 1973 – 1999 AD.  Chironomus showed 2 peaks 

in c. 1982 and 1990 AD.  Polypedilum relative abundance values were low throughout 

this zone.  Procladius values remained high.  Stempellina was rare.  Harnischia, 

Lauterborniella/Zavreliella, Microchironomus, Tanytarsus Lugens/Corynocera, and 

Zalutschia were absent from this zone.   

 Core 6B Zone I spanned from c. 1640 – 1896 AD.  Chironomus relative 

abundance displayed peaks in c. 1640, 1719, and 1839 AD, followed by low values at the 

time of European settlement, followed by a decrease beginning in c. 1794 AD.  An 

increase in values began in c. 1839 AD, with large values occurring towards the top of 

the zone.  Procladius relative abundance values displayed a significant increase 

beginning in c. 1749 AD to a peak in c. 1809 AD, and values decreased at the time of 

European settlement followed by a peak in c. 1851 AD.    Cricotopus/Orthocladius 

relative abundance values displayed a peak in c. 1704 AD, and an increase in values 

began in c. 1764 AD to a peak in c. 1851 AD, with values remaining high.  Dicrotendipes 

displayed a peak in c. 1779 AD, while Polypedilum displayed a peak in c. 1824 AD.   

Stempellina relative abundance values were high before settlement, with low values 

occurring after settlement, and dropping to 0% following settlement.  Of all 3 zones, the 

highest relative abundance value for Stempellina and Cricotopus/Orthocladius was 

highest in Zone I.  Psectrocladius was absent from this zone.   

 Core 6B Zone II spanned from c. 1896 – 1973 AD.  Chironomus relative 

abundance displayed peaks in c. 1911, 1948, 1952, and 1965 AD.  Procladius relative 

abundance values were high, and displayed peaks in c. 1955, 1959, and 1967 AD.  

Cricotopus/Orthocladius relative abundance peaked in c. 1926 AD, and with lower 
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values occurring throughout the rest of the zone with 2 peaks in c. 1965 and 1969 AD.  

Polypedilum relative abundance values were low, displaying peaks in c. 1959 and 1969 

AD.  Glyptotendipes, Microchironomus, Psectrocladius, and Ablabesmyia were absent 

from this zone.  Of all 3 zones, the highest relative abundance value for Nanocladius, 

Procladius, and Chironomus was highest in Zone II.  Lauterborniella/Zavreliella and 

Paracladopelma were absent from this zone.                

 Core 6B Zone III spanned from c. 1978 – 1999 AD.  Chironomus relative 

abundance values were consistently low in this zone.  Procladius relative abundance 

values increased to a peak in c. 1976 AD.  Cladotanytarsus mancus group, 

Cricotopus/Orthocladius and Polypedilum both displayed consistently high relative 

abundance values throughout this zone.  Of all 3 zones, the highest relative abundance 

value for Polypedilum was seen in Zone III.  Psectrocladius did not occur in this zone 

until c. 1998 AD.  The only occurrence of Sergentia in all zones was in c. 1998 AD.  

Stempellina, Lauterborniella/Zavreliella, Microchironomus, and Paracladopelma were 

absent from this zone.   

 

3.3  Average Volume-Weighted Hypolimnetic Oxygen 

 For core 1B and 6B, average VWHO values were used to compare the pre-

settlement mean to the post-settlement mean and percent decrease in oxygen values.  In 

core 1B, post-European settlement depths ranged from 1 – 60 cm, totaling 37 samples.  

Pre-settlement depths ranged from 62 - 150 cm, totaling 37 samples.  The mean of these 

values in post-settlement sediment samples was 0.98 mg/L, and the mean of these values 

in pre-settlement sediment samples was 1.71 mg/L (Table 4).  Therefore, mean pre-
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settlement values were 0.73 mg/L higher than mean post-settlement values.  By 

comparing an equal number of 33 core samples in core 1B for each of pre and post 

settlement average VWHO values, results indicate that an 82 % decrease was seen in 

post-settlement levels compared to pre-settlement values.  Average VWHO values began 

to increase in c. 1427 AD, peaking at 2.17 mg/L in c. 1503 AD (Figure 15a).  Values 

remained high, and a significant decrease to 0.85 mg/L occurred in c. 1837.  At the time 

of European settlement, values were low at 0.68 mg/L (c. 1855) and 1.14 mg/L (c. 1864).  

Values remained low until c. 1945 when an increase began that led to a peak of 1.51 

mg/L in c. 1970 AD.  Values then decreased to 0.60 mg/L in c. 1979, followed by higher 

values up core.    

 

 
Table 4.  Mean pre-European settlement versus mean post-European settlement average 
VWHO values for cores 1B and 6B.   
 
 Core 1B Core 6B 
Mean of Pre-settlement 
average VWHO value 

1.71 mg/L 2.14 mg/L 

Mean of Post-settlement 
average VWHO value 

0.98 mg/L 1.70 mg/L 

 

 

 In core 6B, post-settlement depth ranged from 2 – 92 cm, totaling 38 samples.  

Pre-settlement depths ranged from 96 – 150 cm totaling 13 samples.  The mean of these 

values in post-settlement sediment samples was 1.70 mg/L, and the mean of these values 

in pre-settlement sediment samples was 2.14 mg/L (Table 4).  Therefore, mean pre-

settlement values were 0.45 mg/L higher than mean post-settlement values.  By 

comparing an equal number of 13 core samples in core 6B for each of pre and post 
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settlement average VWHO values, results indicate that a 52 % decrease was seen in post-

settlement levels compared to pre-settlement values.  Average VWHO values increased 

in the deepest sections of the core, reaching a peak in 1838, followed by a significant 

drop to 1.05 mg/L in 1846 AD (Figure 15b).  In 1883 AD, values increased to 2.28 mg/L.  

Values increased and remained high until 1928 AD, when a decrease to 0.36 mg/L 

occurred.  Values increased to a peak of 2.94 mg/L in 1974 AD, followed by lower 

values up core, with a low value of 1.08 mg/L in 1995 AD.   

 Sample-specific errors for the average VWHO reconstructions of both cores 

were calculated using bootstrapping as the cross-validation technique (Figures 17a and 

17b ).  Errors for bootstrapped estimated average VWHO by weighted averaging with 

inverse deshrinking were large for both cores.  The magnitude of changes seen in 

reconstructed VWHO in both cores is less than the error terms.  Despite the high errors, 

the reconstructions are valid because the timing of chironomid species changes is in 

agreement with other indicators of eutrophication.  The increase in relative abundance of 

the eutrophic indicators Chironomus and Procladius correlates well to the timing of up 

core increases of phosphorus levels, biogenic silica and diatom accumulation, a shift from 

benthic to planktonic diatom production, the appearance of eutrophic diatom 

bioindicators, pigment concentrations and the appearance of diatom eutrophic indicators 

beginning after European settlement and significantly increasing in the mid 20th century.   

           

  

 

 



 70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17a.  Core 1B bootstrap 
estimated average VWHO (mg/L) 
with error bars vs. core depth 
(cm). 

Figure 17b.  Core 6B bootstrap 
estimated average VWHO (mg/L) 
with error bars vs. core depth 
(cm). 
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CHAPTER 4 

DISCUSSION 

4.1  Magnetic Susceptibility 

 Clinkers (Figure 18) were found in Core 6B-2, 1 large mass at 88-86 cm, and a 

second at 110-104 cm, accounting for the large spikes in the magnetic susceptibility 

profile (Figure 12b).  Ships that navigated the St. Croix River utilized coal-burning 

boilers to generate steam to run the vessels (Braunschweiger, 2005).  When coal is 

burned, non-combustible metals, such as pyrites, coagulate to form lumps known as 

clinkers (Allen, 2003).  In order to maintain the health of the fire and keep it well 

oxygenated, firemen removed clinkers from the boilers (Braunschweiger, 2005).  When 

clinkers were seen, the fireman sliced the fire, a process that included raking a slice bar 

across the firebars where clinkers were located, holding them above the flames to be 

broken with a slice bar, or removed with a devil’s claw (Braunschweiger, 2005).  A 

pricker bar was used to remove clinkers from the underside of the grating.  Clinkers 

removed from the fire were placed in deck level hoppers, pumped through an inclined 

pipe via pressurized water and ejected away from the ship into the water.    

 

 

 

 

 

 

Figure 18.  Clinker extracted from core 6B-2. 
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 During the period of subsistence and pioneer agriculture in early 1800s, food and 

supplies were shipped up the St. Croix River on steamboats, but these shipments were 

infrequent during favorable weather and non-existent during the colder months (Larson, 

1972).  Market agriculture blossomed in the lower St. Croix River valley during the 

1850s and 1860s (Anderson et al., 1996), and oats, potatoes, and wheat were exported 

downriver on ships (Robinson, 1915).  1838 marked the year of the first steamboat 

voyage on the St. Croix River, docking at the Dalles (Anderson et al., 1996).  Tourists 

enjoyed taking in the sights on a steamboat (Anderson et al., 1996).      

   The magnetic susceptibility profiles of cores 1B-1 and 6B-1 suggest long-term 

land use changes in the LSC region since the time of European settlement as peaks in 

magnetic susceptibility are the result of eroded sediment entering the lake (Triplett et al., 

2009).  The timing of initial susceptibility increases in the mid to late 1800s corresponds 

well to the onset of logging operations in the 1840s, to the complete settlement in the 

prairies by 1880, and to wheat, dairy, and corn agricultural operations in the early 1900s 

(Anderson et al., 1996).  In core 1B-1, a decrease in susceptibility levels occurred at 1800 

AD, with increasing levels beginning in 1813 AD, followed by a continual increase until 

1948 AD.  Core 6B-1 also showed an increase in susceptibility levels, with slight 

decreases occurring from 1841 – 1848 AD and 1902 – 1928 AD.  Despite these slight 

decreases, the times of susceptibility increases in core 6B-1 correlate to times of land use 

change.  The decrease in susceptibility levels to modern times in the second half of the 

20th century in both cores corresponds well to times of decreasing agricultural practices, 

soil conservation, and reforestation beginning in the 1960s (Anderson et al., 1996). 
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 Magnetic susceptibility peak values were higher in downstream core 1B than 

upstream core 6B.  These results were also seen in the Edlund et al. (2009) magnetic 

susceptibility profiles.  Varying sediment mineralogy, grain size, and concentration of 

magnetic grains result in differences in magnetic susceptibility (Triplett et al., 2009).  The 

origin of sediment may be different for the upstream half and the downstream half of 

LSC.  It appears that sediment has been deposited by side-valley tributaries in the 

downstream portion of LSC, leading to higher magnetic susceptibility peaks in core 1B.  

Triplett et al. (2009) reported that dredging of the Kinnickinnic River delta occurred in 

the 1900s in order to allow for ship passage.  Dredging disturbed sediment that initially 

lay undisturbed in the delta, resulting in higher peaks in core 1B than in 6B.    

  

 

4.2  Chironomids 

 The Chironominae are often the most common subfamily in temperate, 

mesotrophic and eutrophic lakes (Sæther, 1979).  In both core 1B and 6B, the 

Chironominae were more abundant than the Orthocladiinae and the Tanypodinae.  

Chironomid communities of both cores were composed mostly of littoral taxa (Figures 

13a and 13b).  Littoral chironomid head capsules are carried from shallow habitats and 

deposited in the benthos of the lake by water movement, resulting in a full representation 

of chironomids associated with different lake habitats in sediment cores (Francis, 2001). 

 Troelstrup et al. (1993) found that in the midge analysis of LSC 2 (extracted near 

Lakeland in the same sub-basin of core 6B of this study), the percentage of Tanytarsini 

and Chironomini showed an up core increase, and Orthocladiinae did not show 
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significant trends.  These results show a good correlation to the results of this study.  

Percentage of Procladius was high in lowest core sections.  In core 6B, the percentage of 

Chironomini and Tanytarsini, like LSC2, showed an up core increase, with Chironomini 

showing a slight decrease in the upper-most core sections.  In core 6B, the Orthocladiinae 

were much more abundant in the lower core sections than in LSC2.  Procladius was 

abundant in the lowest core sections (Figure 14b).  It would be expected that tribe profiles 

for LSC 2 and core 6B would be similar as they both were extracted from sub-basin 3.     

 Head capsules / g wet sediment were low in cores 1B and 6B, and the profiles 

appear to track chironomid reconstructed average VWHO values, indicating that oxygen 

levels may influence head capsule density.  Low head capsules / g wet sediment values 

somewhat correlated to low average VWHO values.  Low head capsule counts were 

consistent with low midge densities seen in 3 LSC cores analyzed in the Troelstrup et al. 

(1993) study.  Troelstrup et al. (1993) attributed low midge densities in LSC to anoxia, 

correlating well to the results of this study with low head capsules / g wet sediment 

occurring at times of low average VWHO.   

 Taxa diversity is considered to consist of several components, including taxa 

richness, or number of taxa.  Healthy ecosystems are often associated with high taxa 

richness.  However, as aquatic conditions degrade, the diversity of pollution tolerant taxa 

may increase.  Troelstrup et al. (1993) discovered that chironomid taxa richness in LSC 

ranged from 4 – 16 taxa; lower values than were seen in this study.   The significant 

increase in total phosphorus load to LSC after 1940 (Triplett et al., 2009), and the 

increase in fossil pigments after 1950 (Edlund et al., 2009) indicate an increase in 

productivity in LSC that could lead to decreased oxygen levels and degraded water 
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quality.  The timing of the two eutrophic signals corresponds well to lower taxa richness 

values seen in core 1B from 1865 – 2006 AD, and significantly low values from 1934 – 

1960 AD, and in core 6B from 1883 – 1974 AD, with significantly low values from 1949 

– 1974 AD.  In core 1B, the post-European average of taxa richness was 12.28, while the 

pre-European average was 16.26, and in core 6B, the post-European average was 16.28 

while the pre-European average was 17.25, indicating richness was greater before 

European settlement.  These results correlate well with the lower average VWHO seen 

after European settlement, and may indicate that land use changes resulting in 

eutrophication and decreased oxygen levels may have resulted in decreased taxa richness.  

The high richness values seen in core 1B beginning in 2002, and in 1986 in core 6B could 

be explained by the decrease in total phosphorus concentrations to LSC beginning in 

1976 due to enforced regulations of point-sources of pollution (Kloiber, 2004).  Enforced 

regulations of pollution in the 1970s may have led to less productive conditions in 

modern times, which may explain why higher average VWHO values which were seen 

up core beginning in 1972 AD in core 1B and 1974 AD in core 6B.         

 Shannon-Wiener diversity index values (H’) for core 1B were closest to 0 in the 

late 1940s and early 1950s, indicating a low amount of taxa diversity during these times, 

and high values occurred in the 1840s, indicating a large amount of diversity and a 

greater parting among taxa.  H’ of core 6B was closest to 0 in 1949, and highest in 2004.  

Core 6B displayed higher H’ values than 1B, indicating a greater amount of biodiversity 

in the upstream sub-basin.  Chironomid reconstructed average VWHO values were low 

during the early to mid 1900s, correlating well to low Shannon-Wiener diversity index 

values and implying low biological diversity resulting from degraded water quality.   
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 Taxa richness appeared to track the Shannon-Wiener diversity index in both 

cores.  When taxa richness was high, H’ was high, and when taxa richness was low, H’ 

was low.  If it is assumed that low taxa richness and H’ values are the result of degraded 

water quality, than the low values of both indices seen after European settlement, 

especially in the 1960s and 1970s correlate well to the appearance of diatom eutrophic 

indicators after 1950 (Edlund et al., 2009), the significant total phosphorus increase seen 

after 1940 (Triplett et al., 2009), and the significant increase in primary production seen 

after 1950 (Troelstrup et al., 2003).         

 The MPCA (2001) reports that LSC is eutrophic based on the Carlson Trophic 

State Index.  Eutrophication is often caused by increased nutrient levels, changes in lake 

morphometry, or alterations in the interactions of intra-lake biota (Whiteside, 1983).  

During the mid and late 20th century, lake eutrophication was often caused by increased 

inorganic nutrients, such as nitrogen and phosphorous (Wetzel, 2001).  When a lake is 

impacted by nitrogen and phosphorus runoff, primary producer productivity accelerates, 

changing the chemical and physical characteristics of the lake.  Physical and chemical 

alterations are seen in the fluctuating species composition of the lake’s fauna and flora 

(Whiteside, 1983).   

 Bioindicators of eutrophy such as Chironomus, Procladius, Dicrotendipes, 

Glyptotendipes, and Polypedilum, all displayed an increase in abundance around the time 

of European settlement in core 1B.  This correlates well with the findings of Edlund et al. 

(2009), who discovered that after the 1950s, significant increases in eutrophication 

signals, including biogenic silica, diatom accumulation, and a shift from benthic to 

planktonic diatom community occurred.   
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 Core 6B displayed an up core decrease in the relative abundance of 

Glyptotendipes, Chironomus and Procladius beginning around the 1970s.  During the 

1970s and 1980s, reconstructed oxygen levels were higher than the early and mid 20th 

century.  Edlund et al. (2009) reported an increase in siliceous microfossil accumulation 

in core 6B from 1950 to 1960s when reconstructed total phosphorus levels were high, 

followed by decrease in accumulation during the 1970s and 1980s that was not seen in 

core 1B.  In addition, in core 6B, Edlund et al. (2009) reported an increase in biogenic 

silica accumulation from 1940 to the mid 1960s, followed by a decrease until around 

1980.  Nutrient loads have been shown to increase diatom productivity (Conley et al., 

1993).  The decreases in siliceous microfossil accumulation and biogenic silica seen in 

the 1970s and 1980s may indicate less productive conditions that would lead to an 

increase in oxygen levels during this time.  This assumption is further strengthened by the 

appearance and persistence of the oligotrophic indicator Stempellina c. 1974 AD, perhaps 

indicating less productive conditions.  The improved aquatic conditions during this time 

may explain the decrease in relative abundance of chironomid bioindicators of eutrophic 

conditions, particularly Chironomus and Procladius.  In 1992 in the northern portion of 

LSC was dominated by development and cultivated/planted land use that may contribute 

nutrients such as fertilizers to the lake that decrease hypolimnetic oxygen.  Beginning c. 

1994, higher relative abundance values of Dicrotendipes, Polypedilum, Chironomus and 

Procladius were seen, perhaps responding to these land uses. 

 Some chironomid taxa are bioindicators of less productive aquatic conditions.  

Stempellina is associated with oligotrophic lakes (Epler, 2001), Sergentia is associated 

with mesotrophic lakes with moderate oxygen depletion (Quinlan et al. 1998), and 
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Paratanytarsus is associated with mesotrophic lakes (Sæther, 1979).  Francis (2001) 

discovered that Sergentia was present in Grapevine Point (Douglas Lake, Michigan) 

before European settlement, but relative abundance decreased to 0% and remained there 

following settlement.  In addition, Stahl (1959) discovered that as Myers Lake, Indiana, 

filled in with sediments, hypolimnetic volume decreased, resulting in a decrease of 

oxygen, as well as a decrease in Sergentia abundance.  In core 1B, Stempellina, 

Sergentia, and Paratanytarsus all decreased in relative abundance after European 

settlement, perhaps indicating deteriorating water quality resulting from more productive 

conditions.  In core 6B, Stempellina occurrences were rare, and abundance reached 0 % 

after European settlement with abundance increasing after 1977 AD.  Perhaps this 

increase was the result of enforced regulations of point-sources of pollution beginning in 

1976 (Kloiber, 2004)   Sergentia appeared only once in 2004, while Paratanytarsus 

values decreased and were rare after settlement.  These findings correlate well with the 

more productive conditions in LSC as indicated by the increase in relative abundance of 

diatom bioindicators of eutrophy after 1950 (Edlund et al., 2009).   

 Meriläinen et al. (2000) studied how profundal chironomid taxa in Lake 

Lappajärvi, Finland were impacted by eutrophication and decreased hypolimnetic oxygen 

levels.  Micropsectra spp., a bioindicator of oligotrophic conditions, typified the pre-

industrial era before 1935.  Micropsectra, Paracladopelma, and Sergentia decreased in 

numbers.  With a period of increased erosion and heightened nutrient loading from 1960 

to 1970 came significant increases in Chironomus type anthracinus, a bioindicator of 

moderate eutrophy.  The succession to meso-eutrophic conditions saw an increase in 

Chironomus type plumosus, another bioindicator of eutrophication.  Chironomid results 
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in the Meriläinen et al. (2000) study correlate well to this study of LSC.  In core 1B, 

relative abundance of Micropsectra was greater before European settlement, and showed 

decreasing abundance following settlement.  In core 6B, Micropsectra displayed a 

significant decrease in relative abundance after settlement.  An increase was seen c. 1984, 

but relative abundance decreased up core.  Nutrient inputs from agriculture and industry 

in the mid 1900s corresponded to an increase in Chironomus in core 1B and 6B.                 

 

 

4.3  Average Volume-Weighted Hypolimnetic Oxygen 

 Reconstructed oxygen levels decreased after European settlement, and average 

VWHO values were low in the 1940s, correlating well with increases in total phosphorus 

load to LSC (Triplett et al., 2009), increases in biogenic silica concentration (Edlund et 

al., 2009), and the appearance of diatom bioindicators of eutrophic conditions (Edlund et 

al., 2009), all occurring in the mid 1900s.  Eutrophication results from increases in 

phosphorus to a lake that promotes primary production, and ultimately decreases oxygen 

levels.  The lower post-European settlement average VWHO values correlate well with 

the previously mentioned eutrophication signals that indicate the water quality of LSC 

has changed since the 1850s.  Oxygen depletion after 1950 may have resulted from an 

increase in primary production after 1950 (Troelstrup et al, 1993), and an increase in total 

phosphorus after 1940 (Triplett et al., 2009).   

  Land use change impacts average VWHO.  In core 1B, a decrease in average 

VWHO occurred in c. 1855 AD, with low values persisting until c. 1954 AD.  In core 6B, 

decreases began c. 1851 AD, with low values persisting until c. 1967 AD.  These low 
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values correspond well to agricultural operations that persisted in the region during the 

late 1800s and early 1900s (Anderson et al., 1996).  Agriculture contributed nutrients to 

the lake, resulting in oxygen depletion.  This conclusion is augmented by the increase 

seen in the diatom reconstructed total phosphorus levels reported by Edlund et al. (2009).          

 Maximum total phosphorous levels occurred in the 1990s, as reported by Edlund 

et al. (2009).  Total phosphorus load to LSC reached a maximum from 1980 to 2000 AD 

(Triplett et al., 2009).  It would be expected that reconstructed oxygen would be lower 

during the 1990s in response to high phosphorus levels, however, oxygen levels were 

higher than levels seen during the mid 1900s in core 1B and 6B.  In both cores, values 

were low in the early 1990s and displayed an up core increase.  However, values during 

the 1990s were still lower than pre-European settlement values.     

 Reconstructed average VWHO values were higher in core 6B than in core 1B.  

The core 1B post-European settlement mean for all core sections of average VWHO was 

0.98 mg/L, while the core 6B mean was 1.70 mg/L.  It would be expected that because 

core 6B displayed a significantly higher historical accumulation of biogenic silica and 

higher siliceous microfossil accumulation than core 1B, reconstructed average VWHO 

values would be lower in core 6B due to the indication of more productive conditions by 

these diatom findings of Edlund et al. (2009).  This introduces some uncertainty in the 

strength of chironomid reconstructed average VWHO.   

 Despite the increase in average VWHO seen in the uppermost sections of both 

cores that do not correlate to increased phosphorus levels and diatom accumulation 

reported by Edlund et al. (2009) and Triplett et al. (2009), the reconstructions of this 

study are reliable.  Even though chironomids respond to a variety of environmental 
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variables, such as water temperature maximum lake depth, and major ion chemistry, 

Quinlan and Smol (2001), concluded that the strongest explanatory variable to 

chironomid data was end-of-summer average VWHO and bottom oxygen concentration.  

Performance statistics of the WA with inverse deshrinking inference model of the 

Quinlan and Smol (2001) study resulted in an r2
jack of 0.544 and a RMSEP of 2.147 

(Quinlan and Smol, 2001), slightly higher values than the performance statistics of this 

LSC study (r2
jack = 0.489, RMSEP = 2.316).   

 Oxygen values from the chironomid reconstructions correlate well to measured 

modern oxygen data, further strengthening the reliability of LSC average VWHO 

reconstructions.  Lafrancois et al. (2009) reported that in August 2005 AD, dissolved 

oxygen at 6-14 m was 4 mg/L, and in August 2006, dissolved oxygen at 6-9 m was 4 

mg/L.  In 2005, 6 out of 7 sample sites showed dissolved oxygen levels close to 0 mg/L 

at approximately below 13 m (Lafrancois et al. 2009).  In 2006, all 9 sample sites showed 

dissolved oxygen levels close to 0 mg/L at approximately below 10 m (Lafrancois et al. 

2009).  It would be expected that average VWHO values would be low in the 1990s due 

to increased phosphorus loads; however, values were higher than the mid 1950s in both 

cores.  Despite this limitation, high values seen in the 1990s were still lower than pre-

European settlement values, helping to supporting the modern measured data.  

VanderMeulen and Elias (2008) collected water quality data that profiled dissolved 

oxygen at 4 sample sites on LSC once a month during the open water season for 2007.  

Mean dissolved oxygen for 4 monitoring sites in LSC were 8.8, 10.97, 9.1, and 8.5 mg/L.  

These results indicate relatively high oxygen concentrations, and may help to explain the 
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higher reconstructed average VWHO values seen in the uppermost sections of core 1B 

and 6B.    

 Using a transfer function developed for Ontario, Canada for a riverine lake in 

Minnesota introduces some uncertainties.  The lakes in Quinlan and Smol’s  training set 

were not riverine in nature.  Bedrock geology was different between these two areas, 

resulting in differences to water chemistry.  Despite these limitations, the use of a transfer 

function developed for Canadian lakes is justifiable for use in this study due to similar 

climate.  The climate of the Muskoka-Haliburton region is moderately moist and cool, 

annual precipitation ranges from 900 – 1200 mm, mean January temperatures are -11.2oC 

and mean July temperatures are 19.1oC (Hutchinson et al., 1994).  The climate of 

southwestern Ontario is humid continental, while the climate of central Ontario is humid 

continental.  The climate of Minnesota is continental, with cold winters and warm 

summers.  Mean January and July temperatures for Minneapolis-St. Paul 23oC and -11oC 

respectively.     
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CHAPTER 5 

CONCLUSION 

 Because of its scenic, recreational, and environmental qualities, a portion of the 

SCR, including LSC, was classified as the St. Croix National Scenic Riverway under the 

National Wild and Scenic Rivers Act (Anderson and Varro, 2002).  Due to this 

classification, it may be incorrectly assumed that water quality is excellent in LSC. 

Conditions have become degraded as a result of land use change since the time of 

European settlement.  Historical oxygen conditions in LSC were reconstructed using 

subfossil Chironomidae remains from lake sediment cores.  Mean post-settlement 

chironomid reconstructed average volume-weighted hypolimnetic oxygen values were 

0.73 mg/L lower than mean pre-settlement values in core 1B and 0.45 mg/L lower in core 

6B.  Both cores appeared to show a significant decrease in post-European settlement 

average VWHO values compared to pre settlement values, with core 1B values 

decreasing by 82 % and core 6B decreasing by 52 %. 

 Changes were seen in the Chironomidae communities in LSC that resulted from 

eutrophication and low oxygen conditions.  In the post-settlement era of LSC, eutrophic 

chironomid bioindicators dominated the communities in core 1B and 6B.  High relative 

abundance values occurred after 1950 for most eutrophic indicators, including 

Chironomus and Procladius.  Even though some chironomid eutrophic indicators 

decreased in relative abundance in core 6B in the later part of the 20th century, values 

were still higher than pre-European settlement.  Indicators of less productive conditions 

often showed up core decreases in relative abundance after European settlement, 
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including Paratanytarsus and Stempellina.  In general, reconstructed average VWHO 

values were low when the relative abundance of Chironomus and Procladius were high.   

 The timing of Chironomidae community shifts and oxygen depletion correlated 

well to other signals of eutrophication that have been studied in LSC.  Up core increases 

in nutrients, biogenic silica and diatom accumulation, a shift from benthic to planktonic 

production, the appearance of eutrophic diatom bioindicators, increases in sedimentation 

rates, pigment concentrations, and the accumulation of organic matter and carbonates are 

all signals of eutrophication.  The majority of these signals did not occur immediately 

after European settlement, but in the early to mid 1900s, when Chironomus and 

Procladius relative abundance values were significantly high and average VWHO values 

were low.  Chironomid community shifts and reconstructed average VWHO values 

provide another eutrophication signal in the LSC record.  This study provides historical 

data for the interagency St. Croix Basin Planning Team which determines goals and 

management strategies for the SCR, as well as concerned environmental planners, policy 

makers and citizens.   
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