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 ABSTRACT 

A GEOMETRICAL APPROACH TO TWO-VOICE TRANSFORMATIONS 

IN THE MUSIC OF BÉLA BARTÓK 

DOUGLAS R. ABRAMS, B.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

M.M., MANHATTAN SCHOOL OF MUSIC 

M.M., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Brent L. Auerbach 

 

 A new analytical tool called “voice-leading class” is introduced that can quantify on an 
angular scale any transformation mapping one pitch dyad onto another. This method can be 
applied to two-voice, first-species counterpoint or to single-voice motivic transformations. The 
music of Béla Bartók is used to demonstrate the metric because of his frequent use of inversional 
symmetry, which is important if the full range of the metric’s values is to be tested. Voice-
leading class (VLC) analysis applied to first-species counterpoint reveals highly structured VLC 
frequency histograms in certain works. It also reveals pairs of VLC values corresponding to 
motion in opposite directions along lines passing through the origin in pitch space. VLC analysis 
of motivic transformations, on the other hand, provides an efficient way of characterizing the 
phenomenon of chromatic compression and diatonic expansion. A hybrid methodology is 
demonstrated using Segall’s gravitational balance method that provides one way of analyzing 
textures with more than two voices. A second way is demonstrated using a passage from 
Bartók’s Concerto for Orchestra. Finally, the third movement of the String Quartet #5 is 
analyzed. Families of geometrically related VLC values are identified, and two are found to be 
particularly salient because of their relationship to major and minor thirds, intervals which play 
an important role in the movement. VLC values in this movement are linked to contour, form, 
motivic structure, pitch-class sets and pitch centricity, and are thus demonstrated to be useful for 
understanding Bartók’s music and the music of other composers as well. 
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CHAPTER 1 

INTRODUCTION 

1.1 Context and definitions 

Consider the passage from Béla Bartók’s Contrasts shown in Figure 1 (mvt. II, mm. 1–

18, violin and clarinet parts only). Note that most of the motion in this passage is contrary, one of 

the four categories of contrapuntal motion recognized by Fux. In fact, much of the motion—

almost half, to be precise—is not only contrary, but inversionally symmetrical as well. 

(Inversionally symmetrical motion is indicated in the excerpt with asterisks.) Fux did not 

recognize inversionally symmetrical motion as a category distinct from contrary motion; 

nevertheless, there are compelling reasons to regard it as a category unto itself.1 

Having discovered that inversionally symmetrical motion plays an important role in this 

passage, we might ask the following question: to what degree does the rest of the counterpoint in 

this passage approach or deviate from inversional symmetry? 

Consider now the excerpt from Bartók’s Music for String Instruments, Percussion and 

Celesta shown in Figure 2 (mvt. IV, mm. 28—43, outer voices only). The motion in this passage 

is predominantly similar; in fact it is largely parallel, not just in the diatonic sense but rather in 

the stronger, chromatic sense. Chromatic parallel motion accounts for more than a third of the 

contrapuntal motion in this excerpt, more than half if we discount repeated sonorities. 

(Chromatic parallel motion is indicated in the excerpt with asterisks.) By analogy with the 

example from Contrasts in Figure 1, and likewise given the knowledge that parallel motion is 

strongly represented in this passage, we may wonder, to what extent does the remaining 

                                                           
1 Strictly speaking, Fux only recognizes three categories of motion: similar, contrary and 
oblique. Yet he recognizes a prohibition against parallel perfect intervals, a de facto recognition 
of parallel motion. 
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counterpoint in the passage approach or deviate from parallel motion? The purpose of this thesis 

is to introduce a precise but intuitive metric that can answer questions such as these by 

describing counterpoint not only qualitatively (i.e., parallel, contrary, oblique, etc…), but 

quantitatively as well. It does this by assigning different types of counterpoint places on an 

angular scale. 

 
Figure 1. Bartók’s Contrasts, mvt. II, mm. 1—18 (violin and clarinet parts only). 

Asterisks indicate inversionally symmetrical motion. 
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Figure 2. Mm. 28—43 of the fourth movement of Bartók’s Music for String Instruments, 

 Percussion and Celesta (Outer voices only). Asterisks indicate parallel motion. 

The two examples discussed above embody two types of contrapuntal motion: 

inversionally symmetrical and parallel motion. These two types of motion are, geometrically 

speaking, diametrically opposed to one another. This can be seen by considering how the 

progression of one pitch dyad to the next is modeled by motion in an abstract two-dimensional 

pitch space (see Figure 3(a)). We map pitch dyads onto numerical ordered pairs by choosing zero 

to represent middle C and measuring the directed distance of each voice from middle C in half 

steps. Each pitch dyad corresponds to exactly one ordered pair in pitch space, notated 
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(v1[n],v2[n]), where n represents ordinal position in a sequence of dyads.2 Counterpoint can be 

classified by describing how each dyad progresses to the next.  

As demonstrated by Dmitri Tymoczko in A Geometry of Music (Tymoczko 2011, 68), 

parallel motion is represented by motion parallel to the line v2 = v1 (a change of d units in one 

voice is matched by a change of d units in the other voice), and inversionally symmetrical 

motion is represented by motion parallel to the perpendicular line v2 = - v1 (a change of d units in 

one voice is matched by a change of -d units in the other voice). See Figure 3(b). Parallel and 

inversionally symmetrical motions are therefore geometrical opposites of one another. 

Having divided the Cartesian plane into symmetrical octants (with two sets of 

perpendicular axes rotated 1/8 of a complete turn–45°–with respect to one another), we can now 

see how all types of contrapuntal motion, not just parallel and inversionally symmetrical motion, 

can be represented by directions in the plane (see Figure 4). Starting in the upper right quadrant 

and moving counter-clockwise through the other three, the types of motion represented are 

similar with both voices moving up, contrary with voice 1 moving down and voice 2 moving up, 

similar with both voices moving down and contrary with voice 1 moving up and voice 2 moving 

down. Within each quadrant, similar or contrary motion can be further subdivided according to 

whether the magnitude of the change in voice 1 is greater than or less than the magnitude of the 

change in voice 2 (note the labels in each octant indicating “voice 1 more” or “voice 2 more”). 

Finally, oblique motion is represented by motion along the voice 1 or voice 2 axis, and parallel 

and inversionally symmetrical motion are represented by the perpendicular axes rotated by 45° 

with respect to the voice 1/voice 2 axes. 

 

                                                           
2 Since we are working in pitch space rather than pitch class space, the converse is true as 
well: each ordered pair in two-dimensional pitch space corresponds to exactly one pitch dyad. 
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Figure 3. (a) Motion from one pitch dyad to another as represented in abstract two-dimensional 

pitch space. (b) Parallel and inversionally symmetrical motion represented by 
orthogonal axes in two-dimensional pitch space. 

 

The proposed metric works by assigning to any dyad-to-dyad progression (which will 

hereafter be referred to as a “two-voice transformation”) a direction in the plane, which not only 

describes in qualitative terms the type of contrapuntal motion involved, but actually quantifies 

the counterpoint on the angular scale shown in Figure 4. 

 

Figure 4. The various categories of motion 
represented by directions in the Cartesian plane. 
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To see how this can be done, refer to Figure 5. Pitch dyads are converted to numerical 

ordered pairs as above. The vector connecting the point represented by the first ordered pair (in 

which voices 1 and 2 have the argument “n”) to the point represented by the second ordered pair 

(in which voices 1 and 2 have the argument “n+1”) is calculated by subtracting the first ordered 

pair from the second. The tail of the resulting vector is placed at the origin, and the angle θn 

represents the angle that vector makes with the v1 (horizontal) axis, with positive values 

measured in a counter-clockwise direction. Thus, θn specifies a direction in the plane for the 

transformation from the nth dyad in a series to the subsequent one, and is given by the formula: 

θn = arctan[(v2[n+1]-v2[n])/ (v1[n+1]-v1[n])]. 

Changing the direction of a difference vector by 180° does not change the value of the 

arctan function, because it changes the signs of both the numerator and the denominator of the 

arctan function’s argument. For angles corresponding to difference vectors in the second (upper 

left) quadrant, therefore, we must add 180° to the angles calculated using the formula, and for 

angles corresponding to difference vectors in the third (lower left) quadrant we must subtract 

180° from the angles calculated using the formula. The result is a function that maps pairs of 

pitch dyads onto angles in the range -180° < θn ≤ 180°. The choice of which of this angular 

segment’s endpoints to include and which to exclude is arbitrary. 

Since the same angle value corresponds to many vector differences between ordered pairs 

(positive integer multiples of a given difference vector will all have the same angle value), we 

adopt the term “voice-leading class” (or “VLC”) to refer to the set of two-voice transformations 

described by a particular angle value. The value itself will be referred to as “voice-leading class 

value” or “VLC value.” 
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                     (v1[n],v2[n]) 
 

 
          (v1[n+1],v2[n+1]) 

 
                    θn 

 
 

 
Figure 5. Set-up for calculating the angular metric; 

this shows a negative value of θn. 

 

A few examples will help to clarify how the metric works. 

Example 1. 

Suppose that we are given two pitch dyads, (C4,G4) and (F#4,C#5). Converting to 

numbers we obtain (v1[n],v2[n]) = (0,7) and (v1 [n+1], v2 [n+1]) = (6,13). Using the formula 

given above for θn, we obtain θn = arctan(6/6) = arctan(1) = 45°, which corresponds to parallel 

motion. 

Example 2. 

Suppose we start with the pitch dyads (D3,A3) and (F3,G#3). Converting to numbers we 

obtain (v1 [n], v2 [n]) = (-10,-3) and (v1 [n+1],v2 [n+1]) = (-7,-4). Then θn = arctan(-1/3) = -

18.45°, which corresponds to contrary, but not inversionally symmetrical, motion. Note that in 

this region of the v1-v2 plane, there is more motion in the v1 direction than in the v2 direction, 

whereas an angle value between -45° and -90° would indicate more motion in the v2 direction 

than in the v1 direction. 

Example 3. 

Suppose we are given the two pitch dyads (F3,G#3) and (D3,A3). Converting to numbers 

we obtain (v1 [n], v2 [n]) = (-7,-4) and (v1 [n+1], v2 [n+1]) = (-10,-3). Then θn = arctan(1/-3) = -

18.45°, the same as in the last example. In this example, though, the vector difference between 



(v1 [n], v2 [n]) and (v1 [n+1], v2 [n+1]) 

we add 180° to the value calculated above, obtaining 

Example 4. 

Suppose we start with the pitch dyads (E2,G5) and 

obtain (-20,19) and (-20,20). Then 

of the arctan function, since following the formula exac

corresponds to oblique motion in the v

 Further basic properties of voice

  Having motivated and described the metric to be demonstrated in the rest of this thesis, 

we now provide brief surveys of geometrical methods in music theory

music of Bartók in order to situate the metric within a historical context

 

1.2 Geometrical Methods in Music Theory

 Since the time of Pythagoras, geometrical models and concepts have played a

shaping music theory. Followers of Pyt

geometrical means of representing the number 10 (see Figure 6

representing consonant intervals (the fourth, fifth, octave, twelfth and fifteenth) could be 

obtained as the ratios between the numbers represented by the four rows of the 

and 4 (Mathiesen 2010, 115). 

Figure 6. 
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[n+1]) lies in the second quadrant; thus to calculate VLC value, 

we add 180° to the value calculated above, obtaining θn = 161.55°. 

Suppose we start with the pitch dyads (E2,G5) and (E2,G#5). Converting to numbers we

Then θ = 90° (this must be manually calculated as a limiting value 

of the arctan function, since following the formula exactly entails dividing by zero). 

in the v2 direction. 

Further basic properties of voice-leading class are discussed in Appendix A

Having motivated and described the metric to be demonstrated in the rest of this thesis, 

surveys of geometrical methods in music theory and 

in order to situate the metric within a historical context. 

1.2 Geometrical Methods in Music Theory 

Since the time of Pythagoras, geometrical models and concepts have played a

Followers of Pythagoras ascribed great importance to the 

ting the number 10 (see Figure 6). The ratios of string lengths 

representing consonant intervals (the fourth, fifth, octave, twelfth and fifteenth) could be 

ratios between the numbers represented by the four rows of the tetractys 

 

Figure 6. The Pythagorean tetractys. 

; thus to calculate VLC value, 

Converting to numbers we 

 = 90° (this must be manually calculated as a limiting value 

tly entails dividing by zero). This 

lass are discussed in Appendix A. 

Having motivated and described the metric to be demonstrated in the rest of this thesis, 

and symmetry in the 

Since the time of Pythagoras, geometrical models and concepts have played a role in 

hagoras ascribed great importance to the tetractys, a 

The ratios of string lengths 

representing consonant intervals (the fourth, fifth, octave, twelfth and fifteenth) could be 

tetractys : 1, 2, 3 
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Although the fact is often taken for granted, even the basic form of standard musical staff 

notation is implicitly geometrical, with the temporal dimension represented by a horizontal axis 

and the frequency or pitch dimension represented by a vertical axis. An important step in the 

evolution of modern staff notation was found in the two well-known treatises from the ninth or 

tenth centuries, the Musica enchiriadis and the Scholica enchiriadis, in which horizontal lines 

represented various pitch levels (Cohen 2010, 329-30). 

An important conceptual leap in the progress of geometrical reasoning about music was 

made in 1711 when Johann David Heinichen first published the circle of fifths (Barnett 2010, 

444). What this represented was a concept expressed in its own natural language: a linear 

progression of major and minor keys was transformed by the advent of equal-tempered tuning to 

become cyclical, and connecting the end points of a line segment to form a circle demonstrated 

this transformation perfectly. 

More recent geometrical devices for displaying pitch relationships include Roger 

Shepard’s helical model representing octave equivalence without sacrificing registral distinctions 

completely, and his double-helical model representing the information contained in the circle of 

fifths without sacrificing registral distinctions completely (Hook 2002, 125-6). 

Joseph N. Straus, writing in 2011, stated that “in recent years, music theory has taken a 

geometrical turn, entering what might be called a new space age” (Straus 2011, 46). He was 

referring in large part to the sub-discipline that falls under the heading of “neo-Riemannian 

Theory”, an updated version of work done in the nineteenth century by Hugo Riemann. Richard 

Cohn, in his introduction to an issue of the Journal of Music Theory devoted to the subject, 

describes the foundations of neo-Riemannian theory thus: 

The neo-Riemannian response recuperates a number of concepts… 
[including]...triadic transformations, common-tone maximization, voice-leading 
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parsimony, “mirror” or “dual” inversion, enharmonic equivalence, and the “Table of 
Tonal Relations”….Neo-Riemannian theory strips these concepts of their tonally centric 
and dualist residues, integrates them, and binds them within a framework already erected 
for the study of the atonal repertories of our own century (Cohn 1998, 169). 

A crucial step in the emergence of neo-Riemannian Theory was a dissertation written in 1989 by 

Bryan Hyer that revived the “Table of Tonal Relations” or Tonnetz. 

Although Hugo Riemann made the Tonnetz famous, the first one was introduced by the 

mathematician Leonhard Euler (Tymoczko 2011, 412); another early example was introduced by 

Gottfried Weber (Bernstein 2010, 784–6). Many Tonnetze followed, including one introduced by 

Schoenberg that is very similar to Weber’s version (Bernstein 2010, 804). These tables showed 

relationships between keys such as dominant/sub-dominant, relative major/minor and parallel 

major/minor. Hyer’s Tonnetz is in the form of a four-dimensional hyper-torus, wherein the four 

dimensions correspond to dominant relationships, Leittonwechsel relationships, parallel 

relationships and relative relationships (Hyer 1989, 210). 

 Finally, any discussion of geometrical methods in music theory would be remiss if it did 

not outline some of the contributions made by Dmitri Tymoczko in his book, A Geometry of 

Music (Tymoczko 2011). These contributions include the description and quantitative 

(geometrical) measurement of voice-leading in the context of two or more voices. In that respect, 

the present work is in some sense an alternative to the methods of analysis that Tymoczko 

employs in the analysis of two-voice counterpoint. 

For example, since Tymoczko works predominantly with pitch classes, the musical 

spaces he employs are often more abstract than the two-dimensional non-periodic pitch space 

used here. Tymoczko shows that two-dimensional pitch-class space is topologically equivalent to 

the Möbius strip (Tymoczko 2011, 69), and higher-dimensional pitch-class spaces are shown to 

be equivalent to higher-dimensional analogs of the Möbius strip (Tymoczko 2011, 85-115). As 
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discussed in the next section, however, for our purposes there are compelling reasons to work in 

pitch space rather than pc-space. 

 
1.3 Symmetry and the music of Bartók 

In order to test the validity of voice-leading class as an analytical metric, musical 

examples that utilize the full 360 degrees of VLC’s range are needed. It is for this reason that 

Bartók’s music has been selected for the present study: because of his frequent and variegated 

use of contrapuntal symmetry, it is hypothesized that his music will better meet the above 

requirement than the work of a composer who does not frequently employ symmetry. That is 

because music which makes frequent use of symmetry puts inversionally symmetrical motion on 

an equal footing with parallel motion, thus utilizing all of VLC’s possible values. 

Uses of contrapuntal symmetry in Western music trace their origins far back in history. 

Certainly, by the time of Bach, examples were plentiful. For example, the fugue in B flat minor 

from Book II of the Well-Tempered Clavier contains inverted versions of the subject—a subject 

which is well-suited to inversion because of its use of tritones, which remain the same under 

inversion (see Figure 7). As a matter of fact, this fugue features a recasting of the entire 

exposition in inverted form, and a dual mirror presentation of the fugue subject near the end. See 

Gauldin (1988, 194—197) for a discussion of mirror inversion in fugues. 

Bartók’s contemporaries Schoenberg, Berg, and Webern came upon the notion of 

symmetry as part of a new way of organizing music in the post-tonal era. Bartók’s use of 

symmetry was different, as it was informed by two other traditions that had less of an influence 

on his Germanic contemporaries: the folk idioms of his native Hungary and the impressionism of 

French composers including Debussy (Antokoletz 1984, 2). The music of Debussy, influenced 

by the music of the Russian nationalist composers Glinka, Borodin, Rimsky-Korsakov and 
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Mussorgsky, incorporated symmetrical intervallic spaces in novel ways (Perle 1955, 190–1). 

Debussy’s well-known use of whole-tone scales is an example, but also noteworthy is his use of 

octatonic scales (Forte, 1991). The synthesis of Hungarian folk idioms, French impressionism, 

and the late tonal languages of Wagner and Strauss resulted in a unique style which, though it 

paralleled in certain respects the style of the Second Viennese School, was entirely Bartók’s own 

(Antokoletz 1984, 20-1). 

 

Figure 7. The subject of Bach’s Fugue No. 22 from Book II of the  
Well Tempered Clavier in its original form, mm. 1—4 (top) and inverted form,  

mm. 42—45, (bottom). 
 

Bartók’s early use of symmetry began by highlighting the symmetrical aspects already 

present in Hungarian folk songs: minor-seventh chords and pentatonic scales (Antokoletz 1984, 

29). Furthermore, he frequently transformed diatonic melodies into symmetrical orderings of 

pitches by fourth or fifth (Antokoletz 1981, 9-10). These techniques can be found in the Fourteen 

Bagatelles for piano and the Eight Improvisations for piano (Antokoletz 1984, 28–32 and 55–

62). In the third Improvisation, Bartók utilizes a symmetrical scale (the second mode of the 

acoustic scale), and foregrounds the enharmonically spelled augmented triad based on the first 

scale degree, a symmetrical vertical sub-structure assembled from the symmetrical horizontal 

structure of the scale (Antokoletz 1984 60–62).  
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His later (and arguably more developed) uses of symmetry consist of inversionally 

related tones which may or may not be subsets of symmetrically structured scales other than the 

twelve-note chromatic scale. They include the symmetrical distribution of notes on which the 

fugue subject enters in the first movement of the Music for String Instruments, Percussion and 

Celesta (Bernard 1986, 188). This is an example of “registrally represented symmetry,” which is 

taken to be “more significant structurally” than symmetry that is not “registrally represented” 

(Bernard 1986, 186; see also Bernard 2003). Bartók himself stated that registral placement of 

symmetrical notes is “crucial to their effect” (Bernard 1986, 188, from Bartók 1920). For this 

reason, among others, pitch space rather than pitch-class space is used in this study. 

Bernard points out that “it should be possible…to discover a hierarchy of relationships in 

which smaller symmetries contribute to larger ones” (Bernard 1986, 192). He goes on to identify 

one such case, Mikrokosmos No. 141, in which “the individual [local] axes of symmetry, if taken 

as a series, form a symmetrical pattern of their own” (Bernard 1986, 188). Finally, Robert Katz 

points out a similar situation in Mikrokosmos No. 143, where “the primary axis or tonal center of 

the work is established by the means of the complementary symmetrical balancing of subsidiary 

axes” (Katz 1993, 333–4). 

Thus, drawing on a Germanic tradition more or less shared with his coevals Schoenberg, 

Webern, and Berg, Bartók incorporated Hungarian folk music and French Impressionism as well, 

creating a sophisticated language that made frequent use of symmetrical melodic and harmonic 

inversion. It is for this reason that Bartók’s music has been chosen for this study. 

 The next chapter demonstrates how voice-leading class can be used for analysis, with 

source materials supplied by Constrasts and Music for String Instruments, Percussion and 

Celesta. Chapter 3 shows how VLC analysis can be applied to the phenomenon of chromatic 
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compression and diatonic expansion. Chapter 4 situates voice-leading class analysis in the 

context of other transformational approaches, identifying a promising hybrid methodology. 

Chapter 5 presents an alternative to voice-leading class for use with more than two voices. 

Finally, Chapter 6 presents a case study of VLC analysis applied to the Scherzo of the String 

Quartet #5. 
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CHAPTER 2 

ANALYSIS USING VOICE-LEADING CLASS 

2.1 Overview 

 In this chapter, the two examples from Chapter 1 (Contrasts and Music for String 

Instruments, Percussion and Celesta) will be analyzed using the tools of voice-leading class. 

These tools include: 1) the identification of geometrically related pairs of VLC values in a given 

set of data, 2) VLC multiplicity analysis, in which multiple difference vectors corresponding to a 

single VLC value are taken as evidence of a special importance for that value in structuring the 

passage in question–recall that one VLC value can correspond to more than one difference vector 

between dyads–and 3) VLC frequency analysis, which counts the number of occurrences of each 

VLC value that appears in a given set of data. Global properties of voice-leading class—in 

particular, the forms of highly structured VLC frequency histograms—are taken as evidence that 

voice-leading class is a meaningful musical metric. 

 

2.2 Contrasts 

 The first example is the passage from Contrasts discussed above (mvt. II, mm. 1–18, 

violin and clarinet only). We begin by tabulating the data (see Table 1), with successive columns 

for dyad number, nth violin pitch, nth clarinet pitch, and VLC value corresponding to ordered 

pairs n and n+1. 

 There are several observations we can make that might have a bearing on how we 

understand this passage and how a performer should approach it. In particular, we hypothesize 

that motion in opposite directions along a line in pitch space should be heard and played in such 

a way as to emphasize this relationship; we observe several such directional pairs in the data. For 
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example, the first and sixth VLC values, the third and seventh VLC values, the fifth and eighth 

VLC values, the ninth and twelfth VLC values, and the fourteenth and seventeenth VLC values 

are all supplementary angle pairs. Furthermore, in the case of the third and seventh VLC values, 

this property can only be deduced using voice-leading class or another metric with the same 

information content, because the difference vector corresponding to one direction along the line 

in pitch space, (2,-4), is negative two times the difference vector corresponding to the other 

direction along the line in pitch space, (-1,2). In other words, the ratio of values is what 

determines the correspondence here, not the actual values themselves. 

Table 1. Ordered pitch pairs and corresponding VLC values from Contrasts, mvt. II, mm. 1—18. 

Dyad # Violin Clarinet VLC 
Value 

Dyad # Violin Clarinet VLC 
Value 

1 -3 6 -33.69 26 0 -8 0.00 
2 0 4 -36.87 27 30 -8 135.00 
3 4 1 -63.43 28 7 15 -45.00 
4 6 -3 123.69 29 9 13 -45.00 
5 4 0 126.87 30 12 10 135.00 
6 1 4 146.31 31 9 13 135.00 
7 -2 6 116.57 32 6 16 -45.00 
8 -3 8 -53.13 33 7 15 -45.00 
9 0 4 116.57 34 10 12 168.69 
10 -1 6 -12.72 35 5 13 -45.00 
11 30 -1 154.36 36 7 11 -45.00 
12 5 11 -63.43 37 10 8 135.00 
13 6 9 -90.00 38 7 11 135.00 
14 6 7 -26.57 39 4 14 135.00 
15 8 6 0.00 40 3 15 -45.00 
16 10 6 -45.00 41 9 9 -84.29 
17 11 5 153.43 42 10 -1 111.80 
18 9 6 116.57 43 8 4 135.00 
19 7 10 153.43 44 5 7 -36.87 
20 5 11 135.00 45 9 4 -56.31 
21 3 13 -45.00 46 11 1 135.00 
22 4 12 -108.43 47 10 2 135.00 
23 -2 -6 -45.00 48 8 4 -45.00 
24 -1 -7 -45.00 49 10 2 135.00 
25 1 -9 135.00 50 7 5  
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 Next we turn to a VLC multiplicity analysis, which identifies any VLC values that 

correspond to more than one distinct difference vector. See Table 2. There are two pairs of VLC 

values that have more than one difference vector, the pairs corresponding to motion in opposite 

directions along two axes in pitch space. One of these axes represents inversionally symmetrical 

motion and the other was identified above as corresponding to one of the geometrically related 

pairs of VLC values. Thus, the multiplicity tool supports both the significance of inversional 

symmetry in this passage and the significance of identifying geometrically related pairs of VLC 

values. 

Table 2. VLC multiplicity analysis for Contrasts, mvt. II, mm. 1—18. 
VLC Value Multiplicity 

-45.00° 3 
-63.43° 2 
135.00° 4 
116.57° 2 

 

 

We turn now to a VLC frequency analysis of the passage; this simply entails counting 

how frequently each voice-leading class value appears in the passage. The results are shown as a 

histogram in Figure 8. The form of this histogram bears further investigation. First of all, we see 

that the data are bimodal, centered on -45° and 135°. This is consistent with our observation that 

inversional symmetry is important in this passage. 

That is not the only observation we can make about the data, however; it is tempting to 

superimpose two normal distributions on this histogram as shown in Figure 9. This data is highly 

sensitive with regards to the initial conditions used to fit Gaussian curves to it, though.3 

Therefore the simple expedient of substituting the means and standard deviations of the two 

                                                           
3  This was confirmed by a statistician working for Stata Corp., maker of the statistical 
software used to generate the graphs in this thesis. 
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clearly visible clusters into the expressions for two normal distributions was used to generate 

Figure 9. The structure of this histogram, approximated here by two normal distributions, 

suggests that voice leading class is a meaningful metric. 

 
Figure 8. VLC frequency analysis for the violin and clarinet parts, 

mm. 1—18 of the second movement of Contrasts. 

 

2.2.1 Validity of Voice-Leading Class as a Metric 

In this section, we discuss the proposition that the structure inherent in the VLC 

frequency histogram for Contrasts proves that voice-leading class is a valid numerical metric 

that has the potential to reveal meaningful information about musical passages. We begin with 

the assumption that the composer–intentionally or intuitively–was listening for two-voice 

transformations that are, in some musical sense, “close” to inversionally symmetrical ones. This 

is a reasonable assumption to make given the clearly visible clusters of VLC values around θ = -

45° and θ = 135°; it seems unlikely that this type of structure would manifest itself without the 

action of a compositional will. 
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Given that there are clusters of VLC values around θ = -45° and θ = 135°, which we take 

as evidence of compositional will, intentional or intuitive, what else does the histogram reveal?  I 

propose that it reveals as fact that proximity of voice-leading class value indicates similarity of 

an innate musical quality of two-voice transformations—which we have called “voice-leading 

class”. To see why, imagine for a moment that listeners do not perceive voice-leading class at all, 

but only perceive categories of voice-leading such as parallel, similar, inversionally symmetrical 

and contrary. In this case, although it might be reasonable to expect peaks in the VLC histogram 

corresponding to inversionally symmetrical motion, it is unlikely that there would be clusters of 

VLC values on either side of those peaks, because presumably, listeners would not hear 

transformations with VLC values close to -45.00° or 135.00° as being, in some musical sense, 

close to transformations manifesting inversional symmetry. The fact that the VLC frequency 

histogram for this example exhibits this type of quasi-symmetrical structure about its peaks 

therefore seems to indicate that VLC value measures a musically significant property and is thus 

a useful metric. 

 
Figure 9. Estimated fit of two normal distributions  

to data from the second movement of Contrasts. 
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2.3 Music for String Instruments, Percussion and Celesta 

The second example is the passage from the Music for String Instruments, Percussion, 

and Celesta discussed in Chapter 1 (fourth movement, mm. 28–43), during which a double string 

quartet plays in rhythmic unison. For the sake of simplicity, only the soprano and bass voices 

(i.e. violin I and ‘cello II) are analyzed here. The VLC frequency histogram for this passage is 

shown in Figure 10. (The raw data for this example, as well as for the examples that follow, may 

be found in Appendix B). 

Note that, in Figure 10, the data have been fit with two Gaussian curves. As was the case 

in the previous section, the data for this passage are extremely sensitive with respect to initial 

conditions, so the parameters for the Gaussian distributions were supplied by simply calculating 

the means and standard deviations of the two clearly visible clusters in the data. Note that the 

curve on the right is shifted slightly to the right of the peak at 45°; this is due to the adjacent 

columns in the histogram near 115°. 

Note that the distribution centered on 45° has a much wider spread (larger standard 

deviation) than the one centered on -135°. Musically, this might mean that two-voice 

transformations with VLC values close to -135° are much more perceptible than transformations 

with VLC values close to 45°. In fact, the distribution centered on 45° might not even be 

perceptible at all because it is so wide. This is perhaps a situation in which perception and 

cognition experiments might be useful in revealing the nature of voice-leading class and its 

usefulness as a metric. 

The VLC multiplicity tool supports the primacy of parallel motion in structuring this 

passage; the results are shown in Table 3. The VLC frequency and multiplicity analyses go hand-

in-hand: the only VLC values for which non-trivial multiplicities occur are also the VLC values 

for which the frequency histogram attains its highest values. 
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Figure 10. VLC frequency histogram with estimated 
Gaussian curvefit for Music for String Instruments, Percussion, 

and Celesta, mvt. 4, mm. 28—43, outer voices. 

 

Table 3. VLC multiplicity analysis for 
Music for String Instruments, Percussion and Celesta mvt. 4, mm. 28—43  

VLC Value Multiplicity 
-135.00° 5 
45.00° 2 
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CHAPTER 3 

CHROMATIC COMPRESSION AND DIATONIC EXPANSION 

3.1 Motivic transformation and VLC analysis 

In its original formulation, voice-leading class is rooted in the quantitative description of 

two-voice, first-species counterpoint. However, the tools of voice-leading class, once defined, 

can be removed from their original context and used abstractly to analyze other musical 

situations.4 For example, the tools of voice-leading class can be used to analyze motivic 

transformation. A special case of motivic transformation, frequently encountered in Bartók and 

discussed later in this chapter, is the phenomenon of chromatic compression and diatonic 

expansion.  

The study of motivic transformation has a long history in music theory. In the last 

hundred years, contributors to the field have included Arnold Schoenberg (for a synopsis see 

Carpenter and Neff 1995, 15-44), Robert Morris (1987) and Ian Quinn (2001). Morris provides a 

summary of several measures of similarity (called similarity relations) between motives 

expressed as pc-sets, and Quinn makes the case for a greater degree of affinity between those 

measures than is ordinarily assumed. 

Here it is shown that voice-leading class provides yet another way to quantitatively 

describe the relationships between two forms of a motive. In order use voice-leading class this 

way, the same formula for θ is used as in Chapter 2, but the dyads used in the formula are 

constructed differently. Instead of constructing them from pairs of vertically aligned pitches, they 

                                                           
4 Even within the context of first-species counterpoint, a variety of musical situations can 
arise. For example, in the excerpt from Contrasts discussed in Chapters 1 and 2, the piano part 
does not interfere with the first-species counterpoint between the violin and clarinet. 
Alternatively, there can be more than one pair of voices in note-against-note counterpoint within 
a single texture, as is the case in the third movement of the String Quartet #4. 
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are constructed by taking successive pairs of corresponding pitches from the pair of motive 

forms under consideration. This is illustrated in Figure 11. (At times it will be useful to treat two 

successive motive forms as though they were vertically aligned, as a graphical and conceptual 

expedient.)  

 

 

Figure 11. Construction of dyads for the analysis of motivic transformation. 

 

It is a bit of a conceptual leap to go from note-against-note counterpoint to motivic 

transformation wherein the two forms of the motive to be analyzed are not vertically aligned. In 

fact, one may even question the audibility of any structure ascribed to such a transformation by 

VLC analysis. In the case of vertically aligned dyads, transformations are clearly audible as two-

voice counterpoint, but in the case of horizontally displaced dyads, the aural identity of the 

transformations may not be so clear. This does not mean, however, that motivic transformations 

as described by voice-leading class are not meaningful. 

Jonathan Kramer makes this point more generally, arguing that the fact that a listener 

cannot hear a given structure in a piece of music does not imply that the structure is musically 

unimportant: “[The analyst] realizes that some things which cannot literally by ‘heard’—that is, 

cannot be accurately identified, named, or notated—may still have discernible musical reasons 

for being in a piece” (Kramer 1988, 328). As an example he cites the 12-tone rows used by the 

serialist composers, which are often times inaudible to all but the most expert listeners. 



24 

It would seem that perception and cognition experiments might be in order to test 

whether or not listeners can detect structures involving voice-leading class. In this regard, it is 

worth noting that little is currently known about the perception of the type of melodic structures 

considered here—structures that Patel refers to below as “parallel”. Patel makes this point as 

follows: 

The study of parallelism is based on the measurement of structural and 
perceptual similarity. Since similarity is a matter of degree, and is influenced by 
many factors, the study of parallelism has lagged behind other aspects of music 
which have more discrete and easily measurable characteristics....Thus despite its 
fundamental role in melodic perception, parallelism and its perception is only 
beginning to be investigated in a quantitative framework (Patel 2003, 328-9). 
 

Perhaps our understanding of voice-leading class analysis as applied to motivic transformations 

will improve as our understanding of the perception of parallelism improves. 

 

3.2 Chromatic compression and diatonic expansion 

The music in Figure 12 is taken from Mikrokosmos No. 64. Note that Figure 12(b) is an 

intervallically compressed version of 12(a). This is an example of what is called chromatic 

compression—its opposite is called diatonic expansion. 

 

Figure 12. (a) Mikrokosmos No. 64(a). (b) Mikrokosmos No. 64(b). 

The concept of chromatic compression and diatonic expansion was introduced by Bartók 

in a lecture he gave at Harvard in 1943: 
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The working with these chromatic degrees gave me another idea which led 
to the use of a new device. This consists of the change of the chromatic degrees 
into diatonic degrees...You know very well the extension of themes in their value 
called augmentation, and their compression in value called diminution...Now, this 
new device could be called ‘extension in range’ of a theme. For the extension we 
have the liberty to choose any diatonic scale or mode (Bartók 1976, 381). 
 

This chapter explores the phenomenon of diatonic expansion and chromatic compression 

from three points of view: the modular transformation method of Santa, the pitch-cell method of 

Antokoletz, and the present method of VLC analysis. In comparison to the other two methods, 

VLC analysis is shown to offer a precise and intuitive, though non-explanatory, description of 

the phenomenon. 

 

3.3 Santa’s MODTRANS Function 

To begin, consider how Matthew Santa models chromatic compression and diatonic 

expansion. He introduces a function, MODTRANS, with which any scalar module may be 

mapped onto any other by specifying a point of synchronization and counting up or down 

through what Santa calls “step classes” in each module (Santa 1999, 202). In the example given 

above, Mikrokosmos No. 64, the minor (diatonic) scale of 64(a) maps onto the chromatic scale of 

64(b) with E as the point of synchronization. See Figures 13(a) and 13(b), wherein the numbers 

beneath each staff indicate step class. 

VLC analysis provides an alternative to MODTRANS: we simply calculate VLC values 

using the series of steps described in Section 3.1 for describing motivic transformation. The 

results of this calculation are shown in Figure 13(c), where the two forms of the melody have 

been vertically aligned with one another. Note that where half-steps map to half-steps, the 

relevant VLC value is 45°, corresponding to “virtual parallel motion”, but where two intervals 
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are comprised of different numbers of half-steps, the relevant VLC value differs from 45°.5 Thus 

VLC analysis makes explicit both where compression occurs and how much compression occurs. 

 

 

Figure 13. A simple example of chromatic compression, Mikrokosmos #64, analyzed 
using Matthew Santa’s MODTRANS function (a and b) and voice-leading class (c). 
 
Before continuing, let us deduce what we might expect to obtain from a VLC analysis of 

this phenomenon in general. Suppose we allow voice 2 to represent an intervallically expanded 

form of a given motive in voice 1; that is, suppose that for every interval between notes in the 

first voice, the corresponding interval in the second voice not only has the same direction as the 

interval in the first voice, but is greater than or equal to it in magnitude. Then, by referring to 

Figure 4 (page 5), we see that VLC values for this pair of voices will all lie in one or both of the 

two ranges [45°,90°] or [-135°,-90°] where the end-points are included to allow parallel and 

oblique motion as forms of expansion. If, instead of being an expanded version of the first voice, 

                                                           
5 If the half steps were descending, the relevant VLC value would be -135°. 
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the second voice is a compressed version of the first voice, all VLC values will lie in the range 

[0°,45°] or [-180°,-135°]. 

An alternative situation occurs when a motive is not only expanded, but also inverted. In 

this case, we are interested in the regions in the plane corresponding to contrary motion with the 

label “voice 2 more”: [90°,135°] and [-45°,-90°]. And if voice 2 is inverted and compressed with 

respect to voice 1 we are interested in regions of the plane corresponding to contrary motion with 

the label “voice 1 more”: [-45°,0°] and [135°,180°]. We will see an example of inversion and 

expansion below. 

 

3.4 Music for String Instruments, Percussion and Celesta 

The next, more complex example comes from Bartók’s Music for String Instruments, 

Percussion and Celesta, in which the chromatic fugue subject from the first movement reappears 

at the end of the fourth movement expanded into a form based on the C acoustic scale. These two 

related melodies are shown in Figures 14(a) and 14(b). A number of authors have analyzed the 

relationship between them, including Elliot Antokoletz and Matthew Santa. 

Antokoletz posits that three symmetrical pitch-class cells, customarily labeled X, Y, and 

Z, serve as a bridge between the chromatically compressed fugue subject and its diatonically 

expanded counterpart (2006).6 He also demonstrates how the two tritones in the C acoustic scale 

(Bb–E and C–F#) are compressed back into the two tritones separated by a half-step that together 

comprise cell Z, preparing a return to the chromaticism of the opening movement to end the 

piece (Antokoletz 1984, 134—7). 

                                                           
6  The first two pitch-class cells, X and Y, were introduced by Perle (1955), and the third 
cell, Z, was introduced by Treitler (1959). 
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Figure 14. Fugue subject from Music for String Instruments, Percussion, and Celesta. 
Shown in original (compressed) form (a); in diatonic (expanded) form (b); 

and in both forms compared to one another (c). 

Santa, on the other hand, uses his MODTRANS function to describe how the chromatic 

scale of the first version of the melody maps onto the acoustic scale of the second version of the 

melody–see the numbers corresponding to “step classes” beneath Figures 14(a) and 14(b) (Santa 

1999, 207). The one-to-one correspondence between step classes is impressive. 

Figure 14(c) displays the two forms of the fugue subject vertically aligned with one 

another. The voice-leading class values calculated according to the steps outlined above are 

displayed beneath the staff. They provide a direct description of the transformation as it appears 

on the musical surface, whereas the pitch-cell method and the MODTRANS method operate on a 

higher structural level. Thus the other methods provide an explanatory function that VLC 

analysis lacks, but also preclude efficient, direct descriptions of the transformation as it actually 

occurs. 

Note that, since we have chosen to calculate VLC values corresponding to a 

transformation from the form of the subject on the lower staff to the form of the subject on the 
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upper staff, all values of θ are between 45° and 90° or -90° and -135°. This is in accordance with 

the expectations discussed earlier. 

 

3.5 Inversion and expansion 

We turn, finally, to an inverted and expanded version of the fugue theme from the Music 

for String Instruments, Percussion and Celesta (mvt. IV, mm. 209—212); this is illustrated on 

the top staff in Figure 15. Note that, because of the inconsistent use of half steps in this excerpt 

(the same pitch, A3, in the original form maps to two different pitches in the modified form), it 

would be impossible to assign the modified form to a particular scale or scalar modulus, and thus 

it would be impossible to use Santa’s MODTRANS approach. While Antokoletz does analyze 

this melody in terms of his three prominent symmetrical pitch class sets, voice-leading class 

offers a simple and highly descriptive way of characterizing the transformation of the original 

fugue theme (given on the bottom staff of Figure 15) into this inverted and expanded version. 

VLC values for this transformation are shown beneath the staff in Figure 15. Note that the VLC 

values for this transformation are all in the ranges from 90° to 135° or -45° to -90°, consistent 

with the previous discussion. 

 

Figure 15. Inverted and expanded version of the fugue subject from the Music for String 

Instruments, Percussion and Celesta (top staff), original form (bottom staff) and 
VLC values (below bottom staff) 
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Thus, VLC analysis provides a clear, intuitive and precise way of characterizing 

chromatic compression and diatonic expansion, clearly indicating where compression or 

expansion occurs and to what extent, without being reliant on any particular scales or pitch-class 

sets. 
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CHAPTER 4 

OTHER TRANSFORMATIONAL APPROACHES 

4.1 Overview 

In this chapter we compare the method of voice-leading class to several other 

transformational approaches, including Klumpenhouwer networks, O’Donell’s dual 

transformation approach, and Segall’s gravitational balance approach.7 The gravitational balance 

method is found to be compatible with voice-leading class and a hybrid methodology is 

proposed.  

 

4.2 Klumpenhouwer Networks and Dual Transformations 

The first approach considered here models intervallic relationships using tetrachordal 

Klumpenhouwer networks, or k-nets (Lewin 1992). K-nets provide a means of illustrating 

transpositional and inversional relationships among groups of pitch classes in such a way that 

musically interesting features may be easily discerned. A given set of pitch classes may be 

described by multiple k-nets, depending on the intra-set relationships the analyst wishes to 

highlight. Conversely, due to the fact that k-nets deal only with pitch classes and not actual 

pitches, a single k-net necessarily corresponds to many pitch sets. Figure 16 illustrates this 

property. 

Although it may at first seem that a tetrachordal k-net possessing a pair of T operations 

on opposite edges of a graph might readily yield a VLC value equal to arctan(n/m) for T 

operations with subscripts m and n, bear in mind that k-nets utilize relationships in pc-space 

                                                           
7  References for Klumpenhouwer networks include Lewin (1992) and Lewin (2002). Dual 
transformations are discussed in O’Donnell (1997). The gravitational balance approach may be 
found in Segall (2010).  
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rather than pitch space. Thus, while k-nets embody more information than voice-leading class in 

some ways, such as the analyst’s interpretations of certain pc-relationships as being either 

transpositional or inversional, in other ways they contain less, since information on register is 

lost in constructing a k-net. Therefore, k-nets are incompatible with voice-leading class analysis.8 

 

T4 
    C           E 

T7                 I3 

G           B 
T4 

 
Figure 16. Two pitch sets distinguished from each other  

by register are modeled by the same Klumpenhouwer network  
(one of many that could be used to model these pitch sets). 

 

The second approach considered here is the dual-transformation approach introduced by 

O’Donnell (O’Donnell 1997). In a dual transformation, horizontally adjacent sets are each 

partitioned into two vertically adjacent subsets, and two T/I operations are grouped into a single 

“dual transformation” that operates on the first set by assigning one operation to each of the 

vertically adjacent subsets. Although it may seem that a dual transposition, notated <Tm / Tn>, 
                                                           
8 If we were to modify K-nets, by including information on register–thus constructing them 
with pitches rather than pitch classes–they would become compatible with VLC analysis, but 
only superficially. That is to say they would at best merely become intermediate stages between 
the musical surface and the calculation of VLC values. 
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might readily yield an angle value - arctan(n/m) - that has an analogous interpretation to the two-

voice case, again we are confounded by the use of pitch-class space rather than pitch space. 9 

 

4.3 Gravitational Balance and a Hybrid Methodology 

An approach that does not compromise information on register, but includes it in a 

context based on k-nets, is the “center of gravity” method proposed by Christopher Segall 

(Segall 2010). This method is based on the following observation about K-nets, called 

“Whincop’s Observation”: 

Whincop’s Observation says that any complete (well-formed) K-net N can 
be articulated into two subnetworks N1 and N2, such that all arrows within N1 are 
T-arrows, all arrows within N2 are T-arrows, and all arrows between locations of 
N1 and locations of N2 are I-arrows (Lewin 2002, 221). 

 
“Well-formed” in this context essentially means that the composite operations formed by 

traversing any two paths from a given first node to a given second node of a network will be the 

same (Lewin 2002, 221). The more precise and technical requirement can be found in part D of 

Definition 9.2.1, on page 195 of Lewin 1987. Whincop’s conjecture is proven true by Lewin 

(2002, 221–2). 

Based on this observation, Segall creates pairs of pitch-based (rather than pc-based) T-

nets from a number of different K-nets. He then proceeds to calculate the numerical averages 

(arithmetic means) of each T-net, and from there he averages each pair of averages. He calls the 

results the “gravitational centers” of each pair of T-nets. (Note that these results are dependent 

upon how each k-net is broken down into constituent T-nets). 

                                                           
9 This offers a promising avenue for future exploration, since it might make possible a 
hybrid methodology allowing set relationships, rather than merely relationships between ordered 
pairs of pitches, to be quantified according to voice-leading class. 
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As an example of a gravitational center that shifts and then returns again, Segall presents 

the first four measures of Mikrokosmos no. 131, “Fourths” (Segall 2010, 131), reproduced here 

as Figure 17(a). As stated by Segall, the fact that both of the pianist’s hands play perfect fourths 

throughout the passage “invites either a k-net or a dual transformational approach” (Segall 2010, 

130). The additional approach that Segall offers, however, is the gravitational balance method, 

using the segmentation of the music for the pianist’s right and left hands as the constituent T-nets 

of each tetrachord (Segall 2010, 130). This is shown in Figure 17(b), where the noteheads 

represent the center of gravity of each tetrachord and quarter-tone notation is employed. 

Voice-leading class provides yet another way of understanding the chords in this passage. 

To see how, consider carrying out all but the last step of the preceding analysis. That is, calculate 

the centers of gravity for each tetrachord’s constituent perfect fourths, but do not average them 

together. This yields, in effect, a passage in two-voice counterpoint that can be analyzed using 

voice-leading class. Figure 17(c) shows the values of θ for each transformation mapping one pair 

of centers-of-gravity to the next. It is the deviations from θ=-45° (or 135°) that are of interest, 

showing the places where inversionally symmetrical motion is abandoned in favor of non-

symmetrical contrary motion. Note that applying voice-leading class analysis to the results of the 

intermediate stage of the gravitational balance calculation yields more specific information about 

the interactions of the individual centers of gravity than does the final stage of the gravitational 

balance method. This is therefore a useful combination of methodologies. 
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Figure 17. (a) The first four bars of Bartók’s Mikrokosmos No. 131. (b) Segall’s centers-of-
gravity calculated for each chord in part a. (from Segall 2010, Example 8b).  

(c) Centers-of-gravity for the notes in treble and bass clef, with voice-leading class  
values underneath the bass clef staff. 

A more extended example of this hybrid methodology is shown in Figure 18(a), taken 

from the Sonata for Two Pianos and Percussion, 1st mvt., mm. 57—60. Following the example 

given above, the tetrachords played by the right and left hands form natural T-nets to be 

condensed to one note each. This is illustrated in Figure 18(b), again using quarter-tone notation. 

These ordered pairs of pitches are then analyzed using voice-leading class. 

There are no non-trivial VLC multiplicity values (i.e. each VLC value corresponds to 

only one difference vector), and the VLC frequency analysis does not reveal any clear patterns—

other than a lack of variety of VLC values in this passage. In musical terms, the reason for this 

lack of variety is that the entire passage can be partitioned into descending major thirds in the 
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left-hand and ascending augmented seconds in the right-hand (enharmonically speaking). The 

VLC value for this particular contrapuntal gesture is -143°. All of the other VLC values (there 

are only four) correspond to transitions between successive transpositional levels of the LH and 

RH parts. For example, the VLC value corresponding to a transition between transpositions of 

the gesture separated by positive six units in the LH part and negative one unit in the RH part is  

-9°. 

The VLC values calculated using the partially executed center-of-gravity method thus 

provide a concise description of the counterpoint in this passage. 

 

Figure 18. (a) Sonata for Two Pianos and Percussion, 1st mvt., mm. 57–60, piano 2 
(b) Same passage reduced to two lines using center-of-gravity method 

VLC values are given beneath the staff 

 

This hybrid methodology offers great promise, by providing a means of translating 

textures consisting of many voices into a two-voice form that can be analyzed using the tools of 
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voice-leading class. Intuitively speaking, this hybrid method describes what we might call 

“effective counterpoint”; it describes the type of counterpoint we might expect to hear if our ears 

somehow averaged together registrally similar pitches. It greatly expands the number of passages 

that can be analyzed using voice-leading class. 
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CHAPTER 5 

VLC-TYPE ANALYSIS APPLIED TO MORE THAN TWO VOICES 

Section 5.1 Overview 

 In this chapter we explore an alternative definition of voice-leading class for use with 

more than two voices.10 The musical example chosen here comes from the 2nd movement of the 

Concerto for Orchestra, mm. 123—146, in which a brass choir consisting of two trumpets, two 

trombones and a tuba play in rhythmic unison with few exceptions throughout the entire passage. 

See Figure 19. 

 

Figure 19. Mm. 123—134 of the Second Movement of 
the Concerto for Orchestra (percussion excluded). 

 

                                                           
10 An analogy can be made to the metamorphosis from theory encompassing two voices to 
theory encompassing triads, as described in Crocker 1962. 
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Section 5.2 Definition and Properties 

The alternative method entails calculating the angle between a given difference vector in 

multi-dimensional pitch space and each individual basis vector in the space–that is, each vector 

of the form (0,0,..1..,0), that has only one non-zero element. The angle can be calculated using a 

simple formula relating the cosine of the angle to the scalar product of the vectors: 

cosØ = vB•vD / |vB||vD| 

where vB and vD are the basis vector and the difference vector, respectively, and the absolute 

value signs indicate vector magnitudes. Taking the arc-cosine of both sides of the equation yields 

Ø = arccos (vB•vD / |vB||vD|). 

The symbol Ø (phi) is used here to avoid confusion with θ; additionally, the term “alternative 

voice-leading class value” will be used in place of “voice-leading class value” to refer to Ø. 

First we note that alternative voice-leading class value reduces to the definition given 

previously for voice-leading class value, the only difference being that the formula for alternative 

voice-leading class value maps to a range of [0°,180°] instead of a range of (-180°,180°], as does 

voice-leading class value.11 It is still an informative metric. 

 

Section 5.3 A Sample Analysis Using Alternative Voice-Leading Class 

We turn now to the alternative voice-leading class analysis of the passage from the 

Concerto for Orchestra discussed above. Alternative VLC frequency histograms have been 

calculated for projections on the basis vectors corresponding to each of the five voices and are 

given below in Figures 20-24. The most noteworthy feature of these graphs is that the graphs for 
                                                           
11 To see this, note that in the two-dimensional case, Ø is by definition the angle between 
the difference vector and one of the two basis vectors, which can be chosen to correspond to the 
v1 axis. This equates to the definition of θ given in Section 1.1, except for the fact that reflecting 
a given difference vector about the v1 axis does not change the projection of the difference 
vector onto that axis, so the range of Ø is therefore limited to [0°, 180°]. 
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voices 2,3, and 4 have clearly visible peaks at Ø = 90°. As is the case for θ, Ø = 90° corresponds 

to oblique motion. This can be readily understood by noting that Ø = 90° indicates that the 

difference vector and the basis vector are orthogonal, that is, the difference vector has no 

projection on the basis vector. Thus, if Ø = 90° for a particular voice, that voice does not change; 

if it did, the difference vector would necessarily have a non-zero projection on the corresponding 

basis vector. 

The histograms for voices 1 and 5, however—the outer voices—show a different 

frequency pattern. In particular, they both have visible peaks around Ø = 60° or so; perhaps that 

is motivic for this passage. Further analysis would be necessary in order to understand this 

structure. 

 

Figure 20. Alternative VLC Values Calculated Using 
Basis Vector Corresponding to 1st of 5 Voices 
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Figure 21. Alternative VLC Values Calculated Using 
Basis Vector Corresponding to 2nd of 5 Voices 

 

 

Figure 22. Alternative VLC Values Calculated Using 
Basis Vector Corresponding to 3rd of 5 Voices 
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Figure 23. Alternative VLC Values Calculated Using 
Basis Vector Corresponding to 4th of 5 Voices 

 

 

Figure 24. Alternative VLC Values Calculated Using 
Basis Vector Corresponding to 5th of 5 Voices 
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CHAPTER 6 

CASE STUDY: THE SCHERZO OF THE STRING QUARTET #5 

6.1 Overview 

 In this chapter, the third movement of the String Quartet #5—the Scherzo—is analyzed 

using voice-leading class. It is shown that the tools of voice-leading class (in particular as they 

apply to motivic transformation) are useful in understanding contour, form, motivic structure, 

pitch-class set structure and pitch centricity in this movement. 

 The overall form of the movement is sketched in Figure 25. The basic materials out of 

which the Scherzo and the Scherzo Da capo are constructed are similar: 1) a texture I have called 

“perpetuum mobile”, consisting of continuously changing forms of an eight- or nine-note motive 

initially presented at the beginning of the movement—see Figure 26 (note the great variety of 

motivic form contained therein); 2) a texture identified by its rehearsal letter, “A”, which 

incorporates sixteenth notes and sixteenth note triplets, producing a more boisterous affect than 

“perpetuum mobile”–see Figure 27; and 3) syncopated quarter notes, which intensify the 

rhythmic vigor present throughout the movement–see Figure 28. 

To apply the methods of voice-leading class to this movement, successive pairs of eighth-

note motive forms are used to construct dyads as in Chapter 3. A histogram showing the 

aggregate of all two-voice transformations is given in Figure 29. The fact that it consists of four 

more-or-less normal distributions, centered on the two VLC values for parallel motion and the 

two VLC values for inversionally symmetrical motion, is intriguing. More work is indicated to 

determine whether this is a unique property of this movement or is more or less universal. Or 

perhaps it is correlated with the extremely variegated, at times almost random-sounding, shapes 
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of the motive-forms in this movement, since normal distributions are the most commonly 

occurring distributions among many types of random variables. 

SCHERZO 

1. mm. 1–13: Perpetuum Mobile leads to fermata 

prepared with repeated motive forms 

m. 14: preview of final motive form 

2. mm. 14–23: Perpetuum Mobile 

3. mm. 24–35: “A” prepares syncopated quarters 

with repeats of two motive forms 

4. mm. 36–49: syncopated quarter notes 

5. mm. 50–53: Perpetuum Mobile 

initial motive form returns once 

6. mm. 54–57: prepares transition to trio 

with repeats of two motive forms 

m. 64: Scherzo ends with C# in bass 

(also final note of the movement) 

TRIO  

SCHERZO da capo 

7. mm. 1-8: Perpetuum Mobile 

8. mm. 9-12: alternating motive forms 

D-F-A-C-A-F-D-B, B-D-F-A-F-D-B-G# 

perhaps mirror fermata placement 

in first Scherzo 

9. mm. 13-18: Perpetuum Mobile 

10. mm. 19-28: prepares “A” with alternating 

motive forms C#-E#-G#-B-G-E-C#-A#, 

E-G-B-D-B-G#-E#-C# 

11. mm. 29-40: “A” prepares syncopated quarters 

12. mm. 41-57: Syncopated quarters prepare 

Agitato coda 

 

Figure 25. Sketch of form in the Scherzo of the String Quartet #5. 
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Figure 26. Perpetuum Mobile texture in the Scherzo of String Quartet #5 (mm. 14—23). 
Note the variety of contour present in the various forms of the motive. 

 

 

Figure 27. ‘Letter “A”’ texture in the Scherzo of String Quartet #5 (mm. 24—26). 
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Figure 28. ‘Syncopated quarters’ texture in the Scherzo of String Quartet #5 (mm. 36—38). 

 

 

 

Figure 29. VLC frequency histogram for aggregate of all two-voice  
transformations in the Scherzo of the String Quartet #5. 
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Note, too, that there is an outlier around -50° (-53.13° to be exact). We will return to this 

shortly. For now, however, we turn to an analysis of contour in this movement. 

 

Section 6.2 Contour and Voice-leading Class 

 Figures 30 through 37 show the frequency histograms for the two-voice transformations 

in this movement, grouped according to placement within respective motive form. In other 

words, Figure 30 shows transformations from the first to the second note in each motive form, 

Figure 31 shows transformations from the second to the third, and so on. Although not explicit, 

these graphs contain complete information on the melodic contour of each motive form. To see 

this, note that positive VLC values correspond to positive changes, and negative VLC values to 

negative changes, in the “voice 2” dimension–here corresponding to the second of each pair of 

motive forms under consideration. VLC values, however, contain substantially more information 

than simply an indication of a positive or negative contour direction. 

In particular, VLC values show how an up or down motion of voice 2 relates to the up or 

down motion in the corresponding place in the previous motive form. Note by inspection of 

Figures 30 through 37 that the relationships between corresponding places in successive motive 

forms are primarily similar–in fact, primarily parallel.12 In other words, an ascent (or descent) by 

n half-steps in the first motive form usually corresponds to an ascent (or descent) by n half-steps 

in the second motive form. This means we expect long stretches of “parallel” motion between 

each pair of notes in successive motive forms, interrupted only occasionally by contrary motion. 

Note, however, that by virtue of the fact that we have isolated pairs of notes within each motive 

form, those interruptions need not take place for every pair of notes simultaneously. 

                                                           
12  Some, but not all, of the preponderance of parallel motion is due to repetitions of a given 
motive form in different octaves. 
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Figure 30. VLC frequency histogram for two-voice transformations 
mapping the first to the second pitches of successive motive forms. 

 
 

 

Figure 31. VLC frequency histogram for two-voice transformations 
mapping the second to the third pitches of successive motive forms. 

 

 



49 

 

Figure 32. VLC frequency histogram for two-voice transformations 
mapping the third to the fourth pitches of successive motive forms. 

 

 

Figure 33. VLC frequency histogram for two-voice transformations 
mapping the fourth to the fifth pitches of successive motive forms. 
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Figure 34. VLC frequency histogram for two-voice transformations 
mapping the fifth to the sixth pitches of successive motive forms. 

 

 

 

Figure 35. VLC frequency histogram for two-voice transformations 
mapping the sixth to the seventh pitches of successive motive forms. 
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Figure 36. VLC frequency histogram for two-voice transformations 
mapping the seventh to the eighth pitches of successive motive forms. 

 

 

Figure 37. VLC frequency histogram for two-voice transformations 
mapping the eighth to the ninth pitches of successive motive forms. 
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Having thus demonstrated that VLC values carry more information than simply a 

qualitative description of contour, we may still use the information on contour contained within 

the VLC values described here to make relevant observations about the motive forms employed 

in this movement. To be precise, we infer that the most common direction, up or down, traversed 

by a given pair of notes within a given form of the motive, corresponds to the up or down 

melodic contour of the first form of the motive presented in the movement. (See Figure 38(a)). In 

other words, the first three graphs indicate positive contour direction, corresponding to the first 

four notes in the initial motive form, while the remaining graphs indicate negative contour 

direction, corresponding to the last five notes in the initial motive form. This is only a pair-wise 

description, so there are some motive-forms that do not match the contour of the initial form in 

every pair, but contribute to this correspondence nonetheless. 

A final observation about contour comes from comparing the initial motive form in this 

movement to the final: the contour is completely inverted (see Figure 38(b)). Using VLC values, 

in fact, we can say more: all of the VLC values that result from the hypothetical transformation 

of the initial into the final form of the motive are geometrically related. (See Table 4.) In other 

words, they may be expressed in terms of geometrical operations on a single VLC value, which 

turns out to be the outlier in Figure 29, -53.13°. To see this, let θ0 = -53.13°. Then the angles in 

the transformation in question may be expressed, with the exception of -45° and 135°, as θ0 (-

53.13°), -90° - θ0 (-36.87°), 90° - θ0 (143.13°) and 180° + θ0 (126.87°). These arithmetic 

operations correspond to reflections about the θ = -45° or θ = 135° axes. 

More will be said about geometrically related angles in the next section. 
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Figure 38. (a) Initial form of the motive in the Scherzo of String Quartet #5. 
(b) Final form of the motive in the Scherzo of String Quartet #5. 

 
Table 4. The hypothetical motivic transformation mapping 

the initial form of the motive to the final form 
of the motive in the Scherzo of the String Quartet #5. 

 

 

 

 

 

Section 6.3 VLC Analysis and Form 

Transitions between the sections of the form outlined in Figure 25 are frequently 

announced by repetitions or alternations of eight- or nine-note motive forms (though not all 

repetitions or alternations correspond to formal divisions and not all formal divisions are 

announced with repetitions or alternations). For example, the fermata in the Scherzo is prepared 

with a repeated motive form. Repeated motive forms during letter “A” of the Scherzo prepare the 

syncopated quarters that follow. The transition from the Scherzo to the Trio is prepared with two 

repeated motive forms. 

-45.00° 
-36.87° 
-53.13° 
143.13° 
135.00° 
135.00° 
126.87° 
-45.00° 
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 This pattern resumes in the Scherzo da capo, and it is here that the tools of voice-leading 

class may be brought to bear. That is because of a special property of certain pairs of motive-

forms that are repeatedly alternated in the da capo.  

 This property follows from the fact that in some transformations, pairs of successive VLC 

values sum to 90° (modulo 360°). See Table 5 for an example. What this means from a 

geometrical point of view is that the difference vectors corresponding to the two VLC values that 

sum to 90° are symmetrically positioned with respect to the θ = 45° axis. See Figure 39. 

By comparison, consider what happens when we invert the order of the two motive forms 

being compared. When we do this, voice 1 is effectively exchanged with voice 2, and 

consequently, each difference vector is reflected about the θ = 45° axis. (See Appendix A for 

more on the idea of exchanging voices). 

As a result, a particularly rich network of musical relationships results when a motivic 

transformation possessing one or more pairs of successive VLC values that sum to 90° alternates 

with its voice-exchanged counterpart, which happens when two forms of the motive (or 

transpositions thereof) alternate with one another on the musical surface. When this happens, the 

pairs of complementary VLC values exchange position in each successive transformation, which 

can be considered a kind of special effect utilizing motivic transformation.  

This is exactly what happens in mm. 9–12 of the da capo, where it serves as a 

demarcation point between two perpetuum mobile sections, perhaps reminiscent of where the 

fermata occurs in m. 13 of the Scherzo before the Trio. Refer to Table 6 for a listing of the 

successive motivic transformations in terms of voice-leading class and to Figure 40 for mm. 9—

12 of the score. 
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Table 5. An example of a motivic transformation 
from the Da capo of the Scherzo of SQ #5 exhibiting  

pairs of successive VLC values that sum to 90° (mod 360°). 
 

 

 

 
 
 
 
θ2 = (45 + δ)° 

    45° 
             θ1 = (45 – δ)° 

 

  θ1 + θ2 = 90° 

 
 

Figure 39. Illustration of the fact that angles which are symmetrically distributed 
about the 45° axis in pitch space sum to 90°. 

 

Table 6. Three successive motivic transformations from m. 9-12 of the da capo. 

 
45.00° 45.00° 45.00° 
36.87° 53.13° 36.87° 
53.13° 36.87° 53.13° 

-126.87° -143.13° -126.87° 
-143.13° -126.87° -143.13° 
-135.00° -135.00° -135.00° 
-135.00° -135.00° -135.00° 

 

45.00° 
53.13° 
36.87° 

-143.13° 
-126.87° 
-135.00° 
-135.00° 



56 

 
Figure 40. Alternation of motive forms in m. 9-12 of the da capo of the Scherzo in the 

String Quartet #5.  
 

 
It happens again in mm. 19–28 of the da capo, where it clearly prepares the transition 

from the second perpetuum mobile section to the “A” section (See Table 7 for VLC values and 

Figure 41 for the score for these measures). 

 
Table 7. Three successive motivic transformations from m. 19-28 of the da capo. 

 
36.87° 53.13° 36.87° 
53.13° 36.87° 53.13° 
45.00° 45.00° 45.00° 

-143.13° -126.87° -143.13° 
-135.00° -135° -135.00° 
-143.13° -126.87° -143.13° 
-116.57° -153.44° -116.57° 
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Figure 41. Mm. 19—22 of the da capo, representing alternation between two motive forms. 

 

Finally, note that the effect of exchanging pairwise VLC values on successive motivic 

transformations depends on there being pairs of VLC values that sum to 90°. As a 

counterexample, see Table 8, which displays a fictitious motivic transformation without any 

pairs that sum to 90°, and its inverse, which lacks the effect of swapping pairwise VLC values. 

 
Table 8. Fictitious motivic transformation with 
no pairs of VLC values summing to 90° (left)  
and its voice-exchanged counterpart (right). 

 
45° 45° 
52° 38° 
15° 75° 
22° 68° 
-36° 126° 
-5° 95° 
17° 73° 
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Section 6.4 Pitch class sets and VLC analysis 

Thus far, voice-leading class analysis of this movement has highlighted interesting 

properties related to contour and form. In this section, the structure of the Scherzo and the 

Scherzo da capo will be linked to a pair of important pitch class sets articulated just before and 

during the Trio. 

In what follows it will be useful to define formally families of geometrically related 

angles. These can be divided into families representing similar motion and families representing 

contrary motion. For families representing similar motion, all constituent VLC values are related 

to one another by reflection around the θ = 45° or -135° axis (they amount to the same operation 

mod 360°), or by inversion through the origin. For families representing contrary motion, 

constituent VLC values are related to one another by reflection around the θ = -45° axis or the θ 

= 135° axis, or by inversion through the origin. 

Specifying a single VLC value and whether a family represents similar or contrary 

motion is sufficient to determine all members of a family, which can consist only of two or four 

members. For an example of a family of geometrically related values, refer to Table 4 and the 

accompanying discussion in Section 5.2: 53.13°, 36.87°, -143.13° and -126.87°. 

All of the VLC values discussed in the previous section belonged either to families of 

similar motion or families of contrary motion containing θ = 53.13° or θ = -53.13°. Furthermore, 

these families are by far the most common found in the data for this movement: of the 95 motivic 

transformations in the movement, 33 have at least two distinct VLC values belonging to one of 

these families, while only 10 have more than one member of any other family. This should not 

come as a surprise, since the value 53.13° and its cohorts represent transformations of minor into 
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major or major into minor thirds, and the motive forms in this movement are predominantly 

constructed of thirds. 

Nevertheless, the predominance of thirds in this movement’s motive forms, as well as the 

fact that -53.13° appears as an outlier in the aggregate VLC frequency histogram (see Section 

5.1), suggest that we look for other connections based on thirds as well. Such connections can be 

found in the measures leading up to the Trio and during the Trio itself. 

To be specific, one of the most clearly audible features of the transition to the Trio is the 

dyad (A4,C5) in the viola against the C#2 in the ‘cello (m. 64). See Figure 42. The C# is prepared 

in the four measures leading up to m. 64 with occurances of C# in several registers and in all of 

the instrumental parts. Furthermore, the pitch-class dyad (A,C) recurrs in various registers in the 

first fourteen measures of the Trio, always voiced as a minor third. Departing for a moment fom 

our adopted convention of working with pitches-in-register, then, we may identify the pitch-class 

set (C#,A,C) as being of some significance for this piece. For our analytical purposes, that 

significance lies in the fact that it contains one ic-3 dyad and one ic-4 dyad, in keeping with the 

prominence of major and minor thirds in the movement’s motivic forms. 

This pc-set reappears in the ‘cello part in mm 40-51 of the Trio, inverted to become (B-

flat,C#,D). (See Figure 43). This set is highlighted not only by the insistent repetition of C#3 and 

B-flat2 in the ‘cello part but also by the minor second dissonance with D3 in the’cello part and the 

announcement of the start of this pattern with the octave D’s in the viola part. 

So the prominence of transformations involving major and minor thirds in this 

movement, revealed by voice-leading class, is echoed in two pitch-class sets just before and 

during the Trio. This provides further evidence that major and minor thirds permeate and inform 

multiple aspects of the movement’s structure. 



60 

 

Figure 42. Manifestation of the pitch-class set (C#,A,C) from mm. 63—66 of the Scherzo. 

 

Figure 43. Manifestation of the pitch-class set (D,B-flat,C#) from mm. 40-42 of the Trio. 

 

Section 6.5 Pitch centricity and form 

 This movement relies to a certain extent on the centricity of the pitch-class C#. For 

example, the movement ends with a clear V-i cadence in C#-minor, and C# is articulated as a 
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kind of pitch center in many other places as well. For example, the first motive-form in the 

movement begins and ends on C#. A “5-line” preceded by the lowered sixth scale degree ends on 

C# at the first letter “A”. The first motive-form is repeated several times leading into the 

syncopated quarter notes at measure 35, and again after the syncopated quarter notes at the first 

letter “B”. Even more significantly, the initial Scherzo ends with C# in several octaves, all of 

them preceded with G#2 in the ‘cello. (See the previous section.) In the da capo the initial motive 

form is repeated going into letter “A”, and the aforementioned V-i cadence at the end of the 

movement is even preceded by a secondary dominant, D#7. 

 This D#7 may explain the presence of D# as a conflicting tonal center, beginning with the 

pizzicato ‘cello notes at the very outset of the movement and continued in several other places 

throughout. Other conflicting tonal centers include C (after the first letter “A”) and G (da capo, 

letter “A”); the latter is prepared by a repeated tritone in the ‘cello from C#3 to G2. 

 Here our primary interest lies in the centricity of C#, however, not only because of its 

predominance at the musical surface, but also because its presence in the Scherzo and the 

Scherzo da capo help frame the Trio. This is of interest because this movement serves as a point 

of temporal symmetry for the entire quartet (note the order of movements-Allegro, Adagio, 

Vivace, Andante and Allegro vivace-and their corresponding tempi). The Trio, then, becomes a 

focal point for the entire piece. 

 In the previous section it was demonstrated that the clear articulation of the centricity of 

C# just before the Trio was linked, via the pitch dyad (A4,C5), to the structurally significant 

pitch-class set, (C#,A,C). It was also observed that an inversion of that set, (B-flat,C#,D) was 

clearly articulated in the ‘cello part during mm. 40-51 of the Trio. Noting that the first motive 

form of the da capo begins on D and ends with B-flat and C#, perhaps it makes sense to view the 
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articulation of the transformed set (B-flat,C#,D) as a kind of “modulation” from the centricity of 

C# to the (weaker) centricity of D. This leaves us waiting for the return to the original pitch 

centricity of C#, which occurs at rehearsal letter “C” of the da capo, thus rounding out the 

symmetrical form of the movement and of the piece as a well. 
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CHAPTER 7 

CONCLUSION 

Based on Dmitri Tymoczko’s observation that parallel and inversionally symmetrical 

motion in two voices can be represented by orthogonal axes in two-dimensional pitch space 

rotated by 45° with respect to the original axes, an angular metric has been proposed here that 

can characterize any transformation mapping dyads to dyads in pitch space. This metric works 

by assigning to any two-voice transformation an angle indicating a direction in the Cartesian 

plane. Angles from -180° to -90° or from 0° to 90° correspond to similar motion, while angles 

from -90° to 0° or from 90° to 180° correspond to contrary motion. Parallel and inversionally 

symmetrical motion correspond to 45°/-135° and -45°/135°, respectively, and multiples of 90° 

(including 0°) correspond to oblique motion. 

The metric, called voice-leading class (or “VLC”), applies to numerous musical 

situations, including two-voice first-species counterpoint (which provides the conceptual basis 

for voice-leading class) and textures involving single-voice motivic transformation. In the former 

case, the meaning of voice-leading class is intuitive, representing as it does a generalization and 

quantification of Fux’s categories of counterpoint. In the latter case, however, it must be 

understood as a descriptor of the musical surface which may or may not be easily perceptible. 

In the case of first-species counterpoint, VLC analysis of passages from Contrasts and 

Music for String Instruments, Percussion and Celesta reveals a high degree of structure. For 

example, the data from Contrasts reveals pairs of geometrically related VLC values—in 

particular, VLC values that correspond to motion in opposite directions along a given axis in 

pitch space. VLC multiplicity analysis, which counts the number of distinct difference vectors 

corresponding to each VLC value in a data set, confirms the importance of these geometrically 
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related pairs and also corroborates the importance of inversionally symmetrical and parallel 

motion in Contrasts and Music for String Instruments, Percussion, and Celesta, respectively. 

Finally, VLC frequency histograms exhibiting quasi-normal distributions around the values 

corresponding to parallel or inversionally symmetrical motion lend support to the conclusion that 

voice-leading class is a viable metric. 

Voice-leading class provides a robust descriptor of chromatic compression and diatonic 

expansion. In comparison to the pitch-cell method of Antokoletz or the modular transformation 

method of Santa, it is more direct and more robust because it can describe any succession of 

intervallic transformations, regardless of any particular pitch-cells or scalar modules. (VLC 

analysis, however, is not explanatory in the same way that those methods are, but only 

descriptive.) 

It is worth digressing for a moment to point out the potential usefulness of voice-leading 

class as an aid to the performer, in particular as an aid to determining how dynamics are to be 

used. This is particularly clear in the case of chromatic compression and diatonic expansion: one 

might assume that dynamics would follow the up or down contour of the line, but perhaps we 

can go one step further. When a compressed melody appears again in expanded form, we might 

turn to VLC values as an indicator of the extent to which each note represents an actual 

expansion of the original melody. For large amounts of expansion in an upward directed line, we 

might employ large increases in dynamics; for large amounts of expansion in a downward 

directed line, we might employ large decreases in dynamics. Note that this is not the same as 

making dynamic changes proportional to the size of the intervallic distance between notes in the 

expanded melody; it is a contextual mapping dependent not only on the intervals in the expanded 

version of the melody but also on the intervals in the original, compressed version of the melody. 
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In comparison to other models of atonal voice leading, this metric retains a different 

profile of two-voice transformations than k-nets, dual transformations or Segall’s “center-of-

gravity” method. To reiterate, it generalizes—and quantifies—the types of note-against-note 

counterpoint described by Fux. A crucial difference between VLC on the one hand and k-nets 

and dual transformations on the other is that voice-leading class measures relationships in pitch 

space rather than pitch-class space. Segall’s “center-of-gravity” method, however, operates in 

pitch space and can fruitfully be combined with the tools of voice-leading class to yield a hybrid 

methodology that provides one of several ways of analyzing textures with more than two voices. 

The simplest way to analyze textures with more than two voices is simply to measure θ 

for every possible pair of voices. For three voices, there would be three possible voice-pairings 

and thus three values of θ; for four voices there would be six, and so on. The meaning of the 

metric in this case is clear: each angle calculated has the same interpretation as θ does in the case 

of a simple two-voice transformation. 

There is another way to generalize the metric, however, that is conceptually more 

complicated, but might reveal different layers of structure than the others. Furthermore, it does 

not depend on how we divide vertical simultaneities the way the hybrid methodology does, and it 

does not require pairwise computations for every pair of voices as the previous method does. It is 

to calculate the angle between the vector difference of the two ordered n-tuplets in pitch space 

being compared, and each co-ordinate axis in n-dimensional space. It is worthwhile noting that in 

two dimensions this method reduces to the method for calculating θ discussed above. 

A close study of the Scherzo from the String Quartet #5 reveals multiple uses for the 

VLC metric as applied to motivic transformation. In particular, it is shown that VLC analysis 

interacts profitably with the description of contour, form, motivic structure, pitch-class set and 
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pitch centricity. Perhaps most interestingly, families of VLC values are identified, the members 

of which are related by reflection through the origin and by reflection about either the θ = 45°/-

135° or the θ = -45°/135° axis. Two families stand out in particular because they account for the 

predominance of geometrically related VLC values in the movement: the one containing 53.13° 

and the one containing -53.13°. That is because these values represent transformations mapping 

minor to major thirds or vice-versa, and most of the motive forms in the movement are built in 

thirds. These families in at least two places play a role in articulating the form of the movement. 

One direction for further research is to explore issues of perception and cognition as they 

pertain to voice-leading class. For example, if a listener listens to a passage of music with quasi-

normal distributions centered on certain values, would they classify a transformation played 

afterwards as belonging or not belonging to the passage according to how close it is to the peak 

values? Or if one of the distributions is sharply peaked and the other is broad (as in the example 

presented in Section 2.4), would a listener identify values corresponding to the sharply peaked 

distribution more easily than values corresponding to the broader distribution? 

Another direction for further research, one that might illuminate which aspects of musical 

structure revealed by VLC analysis apply only to Bartók and which are universal, would be to 

apply VLC analysis to a broader range of music. It would be interesting to see if music from the 

common practice period, for example, would exhibit the same type of structure corresponding to 

inversional symmetry as some of the music by Bartók does (the second movement of Contrasts, 

for example). Presumably it would not, since Bartók’s frequent reliance on inversional symmetry 

is not a characteristic found in music from the common practice period. It would also be 

interesting to see whether or not frequency distributions which are symmetrical about their 

respective peaks would be found in music from the common practice period, since that too is a 
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kind of symmetry to which Bartók might have been sensitive while the composers of the 

common practice period were not. 

It is hoped that this work will make a useful contribution to how we think about 

transformations of two or more voices, offering a fresh perspective on the classic categories of 

two-voice counterpoint and a precise but intuitive metric that can be applied to a broad range of 

music. 
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APPENDIX A 

PROPERTIES OF VOICE-LEADING CLASS 

Here we explore some basic properties of voice-leading class, proving some simple 

theorems along the way that are useful for building one’s intuition about voice-leading class. In 

what follows, the nth VLC value for voices vi and vj will be denoted θn(i,j). This enables a third 

voice to be introduced without significantly altering the notational conventions used above. 

To begin with, suppose that the nth VLC value in a series of VLC values for voices v1 and 

v2, denoted θn(1,2), is known. Suppose a third voice is introduced, one that moves in purely 

parallel motion with v2. Then θn(1,3) = θn(1,2). To prove this, simply note that, from the 

definition of VLC value for voices 1 and 2, θn(1,2) = arctan((v2[n+1]-v2[n])/(v1[n+1]-v1[n])), 

while from the definition of VLC value for voices 1 and 3, and from the fact that voices 2 and 3 

move in parallel motion, θn(1,3) = arctan((v3[n+1]-v3[n])/(v1[n+1]-v1[n])) = arctan((v2[n+1]+d-

v2[n])-d)/ (v1[n+1]-v1[n])) = arctan((v2[n+1] – v2[n])/(v1[n+1]-v1[n])) = θn(1,2), where d is the 

constant intervallic separation between voices 2 and 3. 

Suppose now that the situation is the same as in the above paragraph, except that the third 

voice is inversionally symmetrical in relation to the second voice. Then θn(1,3)= - θn(1,2). To 

prove this, return to the definition of VLC value for voices 1 and 3 and use the fact that v3[n+1] – 

v3[n]= - (v2[n+1] – v2[n]) by the definition of inversional symmetry. Then θn(1,3) = 

arctan((v3[n+1]-v3[n])/(v1[n+1]-v1[n])) = arctan(-(v2[n+1]-v2[n])/(v1[n+1]-v1[n]))= - arctan 

((v2[n+1] – v2[n])/(v1[n+1]-v1[n]))= - θn(1,2), where the properties of the arctan function are used 

in the second to last step. 

Next consider a situation in which voices 1 and 2 share the same contour, but not 

necessarily the same intervals. Then θn(1,2) lies in either the first or the third quadrant for all 
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values of n. To see this, simply note that by definition of contour equivalence, all of the motion 

between voices 1 and 2 must be similar (or possibly oblique, depending on whether one admits 

motion in one voice and stasis in another as a form of contour equivalence). Thus, referring back 

to Figure 4 (page 5), we find that θn(1,2) will always lie in the first or third quadrant (possibly 

including the boundaries of those quadrants if oblique motion is admitted). 

The reader may have wondered how the assignment of the labels v1 and v2 to voices on 

the musical surface might affect the outcome of VLC analysis. Naturally, if this method is to be 

useful, arbitrary choices like these cannot affect the outcome – at least not as far as musical 

results are concerned. One might assume that v1 should always be lower than v2, but of course 

this is erroneous, as it would not allow for simple voice-crossings! In fact, all that happens when 

v1 is exchanged for v2 is that all VLC values are reflected across the axis corresponding to 

parallel motion (45°/-135°). In other words, the tabulated results of a VLC multiplicity analysis 

would look different, in the sense that different VLC values would have nontrivial multiplicities, 

but if those results were translated back to the musical surface of the passage in question, the 

same transformations would be singled out as having non-trivial mulitiplicity values. The effect 

on the VLC frequency histogram is slightly more difficult to picture, but applying the simple 

formula θnew = 90° – θold (mod 360°) reveals that the histogram is basically translated along the 

horizontal axis by 90° to the right, and then reflected through the vertical line θ = 90°. Note that 

this will change most VLC values, so that different VLC values stand out prominently in the new 

histogram, but there are some important exceptions to this rule. In particular, note that the pairs 

{45°,-135°} and {-45°, 135°} map onto themselves using the formula given above. This means 

that the musical observation that parallel or inverionally symmetrical motion is prominent in a 
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given passage does not depend on the choice of v1 or v2 on the musical surface – and neither 

does the symmetry or asymmetry of a distribution about the corresponding peak values. 

The ambitious reader may wish to prove that exchanging voices and measuring positive 

integers downward from Middle C simply reflects all VLC values about the axis corresponding 

to inversionally symmetrical motion (-45°/135°), without changing the musical results of the 

analysis. 

Finally we turn to a description of how the number of possible VLC values describing a 

hypothetical two-voice transformation depends on the magnitude of the difference vector 

pertaining to that transformation. Since every difference vector can be represented by an ordered 

pair of integers, it makes sense to illustrate this using concentric squares centered on the origin. 

In particular, it makes sense to use squares with sides of length 2n for positive integer n, since 

every difference vector with at least one component equal to n and no component greater than n 

will fall on the square of side length 2n. This is illustrated in Figure 44, where every possible 

difference vector between ordered pairs of pitches is classified according to the concentric square 

it falls on. Note that each value of n corresponds to 8n possible difference vectors and therefore, 

8n possible VLC values. Thus, for small differences between pairs of notes, there are relatively 

few possible VLC values, but as the magnitude of the difference vectors increase, so do the 

number of possible VLC values. This must be borne in mind when analyzing music using voice-

leading class: for relatively small difference vectors between pairs of notes, recurring VLC 

values may not be very significant; for larger differences, on the other hand, recurring VLC 

values may be more significant. 
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Figure 44. Conceptual diagram showing how the number of possible VLC values increases with 
the magnitude of the difference vector. For a difference vector that falls on a  

concentric square of side length 2n there are 8n possible VLC values.  
The squares shown have side lengths 2, 4, 6, and 8. 
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APPENDIX B 

NUMERICAL DATA 

Section B-1. Music for String Instruments, Percussion and Celesta 4th mvt. Mm. 28—43 

(outer voices only)  

(Read down first column, then down second column) 

violin 1 cello 2 VLC value violin 1 cello 2 

VLC 

value 

-3 

      1 -11 120.96 

 

15 -5 116.57 

6 -14 45.00 

 

17 -6 -26.57 

11 -9 45.00 

 

16 -4 -135.00 

16 -4 45.00 

 

15 -5 116.57 

21 1 -135.00 

 

17 -6 -26.57 

16 -4 45.00 

 

16 -4 -135.00 

18 -2 -143.13 

 

15 -5 116.57 

15 -6 -126.87 

 

17 -6 -26.57 

11 -9 -143.13 

 

16 -4 -135.00 

8 -13 -126.87 

 

15 -5 116.57 

4 -16 45.00 

 

17 -6 -26.57 

6 -14 -78.69 

 

16 -4 -135.00 

-4 -12 78.69 

 

15 -5 116.57 

1 -11 120.96 

 

17 -6 

 6 -14 59.04 

 

17 -6 

 11 -11 35.54 

 

17 -6 

 16 -4 45.00 

 

17 -6 

 21 1 45.00 

 

17 -6 168.69 

26 6 -135.00 

 

19 -16 

 24 4 -135.00 

 

19 -16 

 23 3 -135.00 

 

19 -16 

 20 0 -135.00 

 

19 -16 

 16 -4 -135.00 

 

19 -16 

 

    

19 -16 

 

    

19 -16 -49.90 
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Section B-2. Sonata For Two Pianos and Percussion 

(1st mvt. Mm. 57–60, piano 2 only) 

VLC values appear in right-most column, labeled “hybrid/gravitational”  

LH LH RH RH 

 

LH_avg RH_avg hybrid/gravitational 

5 11 20 25 

 

8 22.5 143.13 

 0 8 23 28 

 

4 25.5 -9.46 

 7 13 22 27 

 

10 24.5 143.13 

 2 10 25 30 

 

6 27.5 -21.80 

 8 14 23 28 

 

11 25.5 143.13 

 3 11 26 31 

 

7 28.5 -80.54 

 5 11 20 25 

 

8 22.5 143.13 

 0 8 23 28 

 

4 25.5 -9.46 

 7 13 22 27 

 

10 24.5 143.13 

 2 10 25 30 

 

6 27.5 -21.80 

 8 14 23 28 

 

11 25.5 143.13 

 3 11 26 31 

 

7 28.5 -9.46 

 10 16 25 30 

 

13 27.5 143.13 

 5 13 28 33 

 

9 30.5 -112.62 

 1 7 16 21 

 

4 18.5 143.13 

 -4 4 19 24 

 

0 21.5 -9.46 

 3 9 18 23 

 

6 20.5 143.13 

 -2 6 21 26 

 

2 23.5 -21.80 

 4 10 19 24 

 

7 21.5 143.13 

 -1 7 22 27 

 

3 24.5 -9.46 

 6 12 21 26 

 

9 23.5 143.13 

 1 9 24 29 

 

5 26.5 -9.46 

 8 14 23 28 

 

11 25.5 143.13 

 3 11 26 31 

 

7 28.5 -80.54 

 5 11 20 25 

 

8 22.5 143.13 

 0 8 23 28 

 

4 25.5 -9.46 

 7 13 22 27 

 

10 24.5 143.13 

 2 10 25 30 

 

6 27.5 -9.46 

 9 15 24 29 

 

12 26.5 143.13 

 4 12 27 32 

 

8 29.5 -9.46 

 11 17 26 31 

 

14 28.5 143.13 

 6 14 29 34 

 

10 31.5 
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Section B-3.  Concerto for Orchestra, 2nd mvt., Mm. 28–43 

(Alternative VLC Values for Voices 1—5 are given in rightmost columns) 

tpt 1 tpt 2 trb 1 trb 2 Tuba 1 2 3 4 5 

6 3 -1 -6 -13 

     4 1 -4 -4 -11 113.58 113.58 126.87 66.42 66.42 

6 3 -1 -6 -13 66.42 66.42 53.13 113.58 113.58 

8 3 -1 -9 -16 64.76 90.00 90.00 129.76 129.76 

9 4 1 -11 -18 74.50 74.50 57.69 122.31 122.31 

4 1 -3 -4 -11 114.27 104.28 109.20 54.87 54.87 

6 3 -1 -6 -13 63.43 63.43 63.43 116.57 116.57 

8 3 -1 -9 -16 64.76 90.00 90.00 129.76 129.76 

10 6 1 -11 -18 66.42 53.13 66.42 113.58 113.58 

11 6 -1 -10 -17 67.79 90.00 139.11 67.79 67.79 

12 4 -5 -12 -24 83.32 103.44 117.71 103.44 144.46 

11 4 -5 -8 -23 103.63 90.00 90.00 19.47 76.37 

10 2 -6 -9 -21 107.55 127.09 107.55 107.55 52.91 

8 3 1 -9 -16 103.00 83.54 38.04 90.00 55.77 

8 3 -1 -9 -16 90.00 90.00 180.00 90.00 90.00 

13 4 -4 -11 -23 57.79 83.88 108.65 102.31 138.26 

11 3 -4 -11 -20 122.31 105.50 90.00 90.00 36.70 

10 1 -6 -11 -18 106.10 123.69 123.69 90.00 56.31 

8 -1 -1 -8 -16 107.15 107.15 42.51 63.75 72.85 

6 3 -1 -6 -13 110.37 45.87 90.00 69.63 58.52 

8 3 -1 -8 -20 74.64 90.00 90.00 105.36 158.00 

4 1 -4 -8 -15 122.98 105.79 114.09 90.00 47.12 

6 4 1 -8 -15 71.07 60.88 35.80 90.00 90.00 

8 4 1 -8 -16 26.57 90.00 90.00 90.00 116.57 

9 4 1 -8 -18 63.43 90.00 90.00 90.00 153.43 

8 4 -1 -8 -11 97.82 90.00 105.79 90.00 17.72 

8 3 -1 -4 -8 90.00 101.31 90.00 38.33 53.96 

6 1 1 -2 -6 116.57 116.57 63.43 63.43 63.43 

6 1 1 -2 -6 
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Section B-4. Scherzo of String Quartet #5 

1 1 -4 33.69 5 15 8 45.00 

 

4 -2 14.04 

 

18 11 45.00 

 

8 -1 -18.43 

 

22 15 45.00 

 

11 -2 -126.87 

 

25 18 -135.00 

 

8 -6 153.43 

 

22 15 -135.00 

 

4 -4 -126.87 

 

18 11 -135.00 

 

1 -8 146.31 

 

15 8 -135.00 

 

-2 -6 -59.04 

 

11 4 -151.39 

 

1 -11 

   

-2 

 

        2 -4 4 63.43 5 8 15 -59.04 

 

-2 8 71.57 

 

11 10 -26.57 

 

-1 11 104.04 

 

15 8 -53.13 

 

-2 15 -135.00 

 

18 4 -135.00 

 

-6 11 45.00 

 

15 1 -153.43 

 

-4 13 -143.13 

 

11 -1 126.87 

 

-8 10 -63.43 

 

8 3 143.13 

 

-6 6 158.20 

 

4 6 -140.19 

 

-11 8 

  

-2 1 

 

        3 4 -4 51.34 7 15 -4 158.20 

 

8 1 33.69 

 

10 -2 153.43 

 

11 3 14.04 

 

8 -1 153.43 

 

15 4 -143.13 

 

4 1 -146.31 

 

11 1 45.00 

 

1 -1 116.57 

 

13 3 -126.87 

 

-1 3 -26.57 

 

10 -1 153.43 

 

3 1 -59.04 

 

6 1 -68.20 

 

6 -4 141.34 

 

8 -4 

  

1 

  

        4 -4 15 30.96 

 

fermata 

  

 

1 18 63.43 8 -11 23 -161.57 

 

3 22 71.57 

 

-14 22 -146.31 

 

4 25 -135.00 

 

-17 20 -143.13 

 

1 22 -63.43 

 

-21 17 33.69 

 

3 18 -143.13 

 

-18 19 -26.57 

 

-1 15 -63.43 

 

-12 16 -161.57 

 

1 11 -114.44 

 

-15 15 -15.95 

 

-4 

   

-8 13 -168.69 

     

-13 12 
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9 23 -4 -108.43 13 8 -1 36.87 

 

22 -7 -123.69 

 

12 2 156.80 

 

20 -10 -126.87 

 

5 5 135.00 

 

17 -14 56.31 

 

1 9 45.00 

 

19 -11 116.57 

 

4 12 18.43 

 

16 -5 -108.43 

 

7 13 -51.34 

 

15 -8 105.95 

 

11 8 -26.57 

 

13 -1 135.00 

 

15 6 -161.57 

 

12 

    

1 

 

        10 -4 4 -126.87 14 -1 -7 18.43 

 

-7 0 146.31 

 

2 -6 33.69 

 

-10 2 -135.00 

 

5 -4 14.04 

 

-14 -2 -18.43 

 

9 -3 -18.43 

 

-11 -3 -18.43 

 

12 -4 -63.43 

 

-5 -5 180.00 

 

13 -6 158.20 

 

-8 -5 -8.13 

 

8 -4 -116.57 

 

-1 -6 -45.00 

 

6 -8 135.00 

  

-7 

  

1 -3 

 

        11 4 15 -123.69 15 -7 0 45.00 

 

0 9 56.31 

 

-6 1 45.00 

 

2 12 -119.74 

 

-4 3 45.00 

 

-2 5 108.43 

 

-3 4 -135.00 

 

-3 8 123.69 

 

-4 3 -135.00 

 

-5 11 90.00 

 

-6 1 45.00 

 

-5 14 104.04 

 

-4 3 -153.43 

 

-6 18 -93.18 

 

-8 1 -21.80 

 

-7 

   

-3 -1 

 

        12 15 8 146.31 16 0 -4 45.00 

 

9 12 -66.80 

 

1 -3 45.00 

 

12 5 -150.26 

 

3 -1 45.00 

 

5 1 45.00 

 

4 0 -135.00 

 

8 4 45.00 

 

3 -1 -123.69 

 

11 7 53.13 

 

1 -4 -63.43 

 

14 11 45.00 

 

3 -8 135.00 

 

18 15 #REF! 

 

1 -6 -111.80 

     

-1 -11 
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letter A 

      17 -3 3 -53.13 21 -1 -13 45.00 

 

0 -1 -53.13 

 

2 -10 45.00 

 

3 -5 -36.87 

 

5 -7 45.00 

 

7 -8 -135.00 

 

8 -4 -135.00 

 

4 -11 -161.57 

 

4 -8 -135.00 

 

1 -12 104.04 

 

1 -11 -135.00 

 

-2 

   

-2 -14 -135.00 

 

1 

   

-5 -17 

 

 

3 

      

    

22 -13 11 45.00 

18 3 -1 143.13 

 

-10 14 45.00 

 

-1 2 143.13 

 

-7 17 45.00 

 

-5 5 135.00 

 

-4 20 -135.00 

 

-8 8 -126.87 

 

-8 16 -135.00 

 

-11 4 -108.43 

 

-11 13 -135.00 

 

-12 1 -14.04 

 

-14 10 -126.87 

  

-2 -90.00 

 

-17 6 -3.37 

  

-5 90.00 

  

5 

 

  

8 

     

    

23 11 -1 45.00 

19 -1 -13 45.00 

 

14 2 45.00 

 

2 -10 45.00 

 

17 5 45.00 

 

5 -7 45.00 

 

20 8 -135.00 

 

8 -4 -135.00 

 

16 4 -135.00 

 

4 -8 -135.00 

 

13 1 -116.57 

 

1 -11 -135.00 

 

10 -5 

 

 

-2 -14 -135.00 

 

6 

  

 

-5 -17 

  

5 

  

 

8 

   

m. 30 

  

    

24 11 4 45.00 

20 -13 -1 45.00 

 

14 7 45.00 

 

-10 2 45.00 

 

17 10 -45.00 

 

-7 5 45.00 

 

20 7 -143.13 

 

-4 8 -135.00 

 

16 4 -146.31 

 

-8 4 -135.00 

 

13 2 -135.00 

 

-11 1 -135.00 

 

10 -1 -135.00 

 

-14 -2 -135.00 

 

6 -5 101.31 

 

-17 -5 

  

5 
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m. 30 

  

29 -11 1 45.00 

25 11 4 45.00 

 

-8 4 45.00 

 

14 7 45.00 

 

-4 8 45.00 

 

17 10 -45.00 

 

-1 11 -135.00 

 

20 7 -143.13 

 

-5 7 -135.00 

 

16 4 -146.31 

 

-8 4 -135.00 

 

13 2 -135.00 

 

-11 1 -135.00 

 

10 -1 -135.00 

 

-14 -2 

 

 

6 -5 101.31 

    

 

5 

  

30 1 -11 45.00 

     

4 -8 45.00 

26 4 0 53.13 

 

8 -4 45.00 

 

7 4 45.00 

 

11 -1 -135.00 

 

10 7 -135.00 

 

7 -5 -135.00 

 

7 4 -126.87 

 

4 -8 -135.00 

 

4 0 -123.69 

 

1 -11 -135.00 

 

2 -3 -126.87 

 

-2 -14 

 

 

-1 -7 -143.13 

    

 

-5 -10 63.43 31 -11 1 45.00 

     

-8 4 45.00 

     

-4 8 45.00 

27 0 0 45.00 

 

-1 11 -135.00 

 

4 4 45.00 

 

-5 7 -135.00 

 

7 7 135.00 

 

-8 4 -135.00 

 

4 10 -143.13 

 

-11 1 -135.00 

 

0 7 -146.31 

 

-14 -2 

 

 

-3 5 -143.13 

    

 

-7 2 -135.00 32 0 1 36.87 

 

-10 -1 -21.80 

 

4 4 53.13 

  

-5 

  

7 8 45.00 

     

10 11 -126.87 

28 0 1 36.87 

 

7 7 -123.69 

 

4 4 53.13 

 

5 4 -135.00 

 

7 8 45.00 

 

2 1 -135.00 

 

10 11 -126.87 

 

-1 -2 -143.13 

 

7 7 -123.69 

 

-5 -5 

 

 

5 4 -135.00 

    

 

2 1 -135.00 
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Syncopated Quarter Notes 37 12 9 36.87 

 

B, m. 50: transition to trio 

 

16 12 53.13 

33 1 -4 26.57 

 

19 16 36.87 

 

5 -2 18.43 

 

23 19 -143.13 

 

8 -1 -18.43 

 

19 16 -126.87 

 

11 -2 -153.43 

 

16 12 -143.13 

 

7 -4 -146.31 

 

12 9 -126.87 

 

1 -8 126.87 

 

9 5 -150.95 

 

-2 -4 -33.69 

    

 

1 -6 -108.43 38 9 -3 45.00 

  

-9 

  

12 0 45.00 

     

16 4 45.00 

34 -4 16 -56.31 

 

19 7 -135.00 

 

-2 13 -71.57 

 

16 4 -135.00 

 

-1 10 -104.04 

 

12 0 -135.00 

 

-2 6 123.69 

 

9 -3 -135.00 

 

-4 9 135.00 

 

5 -7 168.69 

 

-8 13 36.87 

  

-6 

 

 

-4 16 116.57 

    

 

-6 20 -126.87 39 -3 13 -45.00 

 

-9 16 

  

0 10 -45.00 

     

4 6 -53.13 

35 16 7 146.31 

 

7 2 135.00 

 

13 9 146.31 

 

4 5 135.00 

 

10 11 165.96 

 

0 9 135.00 

 

6 12 -45.00 

 

-3 12 135.00 

 

9 9 26.57 

 

-7 16 -86.42 

 

13 11 -53.13 

 

-6 

  

 

16 7 26.57 

    

 

20 9 -128.66 40 13 2 -161.57 

 

16 4 

  

10 1 -153.43 

     

6 -1 -153.43 

36 7 12 63.43 

 

2 -3 -33.69 

 

9 16 56.31 

 

5 -5 -14.04 

 

11 19 75.96 

 

9 -6 -33.69 

 

12 23 -126.87 

 

12 -8 26.57 

 

9 19 -56.31 

 

16 -6 -169.38 

 

11 16 -135.00 

  

-9 

 

 

7 12 -56.31 

    

 

9 9 -119.05 

    

 

4 
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41 2 14 -135.00 

 

Trio 

  

 

1 13 -135.00 

 

Da 

Capo 

  

 

-1 11 -135.00 45 2 -12 -53.13 

 

-3 9 

  

5 -16 -36.87 

     

9 -19 -53.13 

     

12 -23 126.87 

42 -5 7 -135.00 

 

9 -19 143.13 

 

-6 6 -135.00 

 

5 -16 126.87 

 

-8 4 -45.00 

 

2 -12 143.13 

 

-6 2 -161.57 

 

-2 -9 -53.13 

 

-9 1 

  

1 -13 

 

  

-1 

     

  

-2 

 

46 -12 13 165.96 

     

-16 14 146.31 

43 14 26 -135.00 

 

-19 16 165.96 

 

13 25 -135.00 

 

-23 17 0.00 

 

11 23 -135.00 

 

-19 17 -45.00 

 

9 21 -135.00 

 

-16 14 -36.87 

 

7 19 -135.00 

 

-12 11 33.69 

 

6 18 -135.00 

 

-9 13 

 

 

4 16 135.00 

 

-13 

  

 

2 18 -101.31 

    

 

1 13 -135.00 47 13 6 45.00 

 

-1 11 

  

14 7 45.00 

 

-2 

   

16 9 45.00 

     

17 10 

 44 26 -10 -135.00 

 

17 10 -135.00 

 

25 -11 -135.00 

 

14 7 -135.00 

 

23 -13 -135.00 

 

11 4 45.00 

 

21 -15 -135.00 

 

13 6 -155.22 

 

19 -17 -135.00 

  

0 

 

 

18 -18 -135.00 

    

 

16 -20 86.99 48 6 16 -75.96 

 

18 18 -96.95 

 

7 12 -56.31 

 

13 -23 94.97 

 

9 9 -71.57 

 

11 

   

10 6 135.00 

     

7 9 135.00 

     

4 12 75.96 

     

5 16 149.04 

     

0 19 

 

      

16 
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49 16 -6 143.13 53 14 -1 45.00 

 

12 -3 135.00 

 

17 2 36.87 

 

9 0 126.87 

 

21 5 53.13 

 

6 4 -53.13 

 

24 9 -126.87 

 

9 0 -45.00 

 

21 5 -143.13 

 

12 -3 -36.87 

 

17 2 -135.00 

 

16 -6 -45.00 

 

14 -1 -135.00 

 

19 -9 135.00 

 

11 -4 

 

 

16 -6 

     

    

54 -1 2 45.00 

50 -6 9 33.69 

 

2 5 53.13 

 

-3 11 18.43 

 

5 9 36.87 

 

0 12 26.57 

 

9 12 -143.13 

 

4 14 180.00 

 

5 9 -126.87 

 

0 14 -135.00 

 

2 5 -135.00 

 

-3 11 -126.87 

 

-1 2 -135.00 

 

-6 7 146.31 

 

-4 -1 

 

 

-9 9 

     

 

-6 

  

55 2 -13 45.00 

     

5 -10 36.87 

51 9 4 45.00 

 

9 -7 53.13 

 

11 6 45.00 

 

12 -3 -126.87 

 

12 7 45.00 

 

9 -7 -143.13 

 

14 9 

  

5 -10 -135.00 

 

14 9 -135.00 

 

2 -13 -135.00 

 

11 6 -135.00 

 

-1 -16 

 

 

7 2 45.00 

    

 

9 4 

 

56 -13 17 18.43 

     

-10 18 -18.43 

52 4 14 56.31 

 

-7 17 14.04 

 

6 17 75.96 

 

-3 18 -153.43 

 

7 21 56.31 

 

-7 16 -135.00 

 

9 24 -90.00 

 

-10 13 146.31 

 

9 21 -126.87 

 

-13 15 -126.87 

 

6 17 -143.13 

 

-16 11 

 

 

2 14 -56.31 

    

 

4 11 

     

        

        

        

        

        

        



82 

57 17 -10 81.87 61 3 -1 53.13 

 

18 -3 108.43 

 

6 3 33.69 

 

17 0 71.57 

 

9 5 53.13 

 

18 3 -116.57 

 

12 9 -104.04 

 

16 -1 -135.00 

 

11 5 36.87 

 

13 -4 -56.31 

 

15 8 45.00 

 

15 -7 -143.13 

 

18 11 53.13 

 

11 -10 

  

21 15 -119.74 

     

17 8 

 58 -10 5 23.20 

    

 

-3 8 45.00 62 -1 1 36.87 

 

0 11 53.13 

 

3 4 56.31 

 

3 15 -153.43 

 

5 7 36.87 

 

-1 13 126.87 

 

9 10 -165.96 

 

-4 17 135.00 

 

5 9 53.13 

 

-7 20 135.00 

 

8 13 45.00 

 

-10 23 

  

11 16 36.87 

  

19 

  

15 19 156.80 

     

8 22 

 59 5 -11 53.13 

    

 

8 -7 45.00 63 1 -4 53.13 

 

11 -4 36.87 

 

4 0 45.00 

 

15 -1 -116.57 

 

7 3 45.00 

 

13 -5 36.87 

 

10 6 -104.04 

 

17 -2 45.00 

 

9 2 36.87 

 

20 1 53.13 

 

13 5 53.13 

 

23 5 -135.00 

 

16 9 45.00 

 

19 1 

  

19 12 

 

     

22 

  60 -11 3 36.87 

    

 

-7 6 45.00 64 -4 1 45.00 

 

-4 9 45.00 

 

0 5 45.00 

 

-1 12 -165.96 

 

3 8 45.00 

 

-5 11 53.13 

 

6 11 -135.00 

 

-2 15 45.00 

 

2 7 -45.00 

 

1 18 36.87 

 

5 4 -45.00 

 

5 21 -135.00 

 

9 0 -33.69 

 

1 17 

  

12 -2 
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65 1 16 36.87 69 1 4 36.87 

 

5 19 53.13 

 

5 7 53.13 

 

8 23 45.00 

 

8 11 45.00 

 

11 26 -143.13 

 

11 14 -143.13 

 

7 23 -135.00 

 

7 11 -135.00 

 

4 20 -143.13 

 

4 8 -135.00 

 

0 17 -116.57 

 

1 5 -126.87 

 

-2 13 

  

-2 1 

 

        66 16 1 53.13 70 4 -11 53.13 

 

19 5 36.87 

 

7 -7 36.87 

 

23 8 45.00 

 

11 -4 45.00 

 

26 11 -126.87 

 

14 -1 -126.87 

 

23 7 -135.00 

 

11 -5 -135.00 

 

20 4 -135.00 

 

8 -8 -126.87 

 

17 1 -143.13 

 

5 -12 

 

 

13 -2 

  

1 

  

        67 1 4 36.87 

    

 

5 7 53.13 71 -11 -11 56.31 

 

8 11 45.00 

 

-7 -5 53.13 

 

11 14 -143.13 

 

-4 -1 45.00 

 

7 11 -135.00 

 

-1 2 -143.13 

 

4 8 -135.00 

 

-5 -1 -135.00 

 

1 5 -126.87 

 

-8 -4 -135.00 

 

-2 1 

  

-11 -7 

 

     

-14 

  68 4 1 53.13 

    

 

7 5 36.87 72 -11 -11 33.69 

 

11 8 45.00 

 

-5 -7 36.87 

 

14 11 -126.87 

 

-1 -4 45.00 

 

11 7 -135.00 

 

2 -1 -126.87 

 

8 4 -135.00 

 

-1 -5 -135.00 

 

5 1 -143.13 

 

-4 -8 -135.00 

 

1 -2 

  

-7 -11 

 

      

-14 
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73 -11 -11 56.31 77 10 -3 116.57 

 

-7 -5 53.13 

 

9 -1 11.31 

 

-4 -1 45.00 

 

19 1 153.43 

 

-1 2 -143.13 

 

17 2 116.57 

 

-5 -1 -135.00 

 

16 4 153.43 

 

-8 -4 -135.00 

 

14 5 135.00 

 

-11 -7 

  

12 7 -45.00 

 

-14 

   

14 5 

 

     

9 

  74 -11 -11 33.69 

    

 

-5 -7 36.87 78 -3 7 45.00 

 

-1 -4 45.00 

 

-1 9 45.00 

 

2 -1 -126.87 

 

1 11 63.43 

 

-1 -5 -135.00 

 

2 13 45.00 

 

-4 -8 -135.00 

 

4 15 45.00 

 

-7 -11 

  

5 16 26.57 

     

7 17 -153.43 

     

5 16 

 75 -11 14 -36.87 

    

 

-7 11 -53.13 79 7 -24 71.57 

 

-4 7 -53.13 

 

9 -18 26.57 

 

-1 3 143.13 

 

11 -17 45.00 

 

-5 6 135.00 

 

13 -15 45.00 

 

-8 9 135.00 

 

15 -13 63.43 

 

-11 12 19.98 

 

16 -11 -63.43 

  

16 

  

17 -13 116.57 

  

19 

  

16 -11 

 

 

letters A through C 

   

-20 

 76 24 22 -94.76 

    

 

23 10 102.53 80 -24 17 -9.46 

 

21 19 -135.00 

 

-18 16 -63.43 

 

19 17 -153.43 

 

-17 14 -45.00 

 

17 16 -116.57 

 

-15 12 -26.57 

 

16 14 -135.00 

 

-13 11 -45.00 

 

14 12 45.00 

 

-11 9 135.00 

 

16 14 

  

-13 11 -45.00 

  

9 

  

-11 9 -150.95 

     

-20 4 
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81 17 0 -135.00 85 2 16 -53.13 

 

16 -1 -135.00 

 

5 12 -36.87 

 

14 -3 -153.43 

 

9 9 -33.69 

 

12 -4 -108.43 

 

12 7 146.31 

 

11 -7 180.00 

 

9 9 143.13 

 

9 -7 74.05 

 

5 12 126.87 

 

11 0 -100.30 

 

2 16 135.00 

 

9 -11 

  

-1 19 

 

 

4 

   

2 

  

        82 0 2 -116.57 86 16 1 143.13 

 

-1 0 -153.43 

 

12 4 126.87 

 

-3 -1 -116.57 

 

9 8 123.69 

 

-4 -3 -161.57 

 

7 11 -56.31 

 

-7 -4 -90.00 

 

9 8 -53.13 

 

-7 -6 -8.13 

 

12 4 -36.87 

 

0 -7 -169.70 

 

16 1 -45.00 

 

-11 -9 

  

19 -2 

 

        83 2 19 -123.69 87 1 -3 45.00 

 

0 16 -104.04 

 

4 0 45.00 

 

-1 12 -123.69 

 

8 4 45.00 

 

-3 9 108.43 

 

11 7 -135.00 

 

-4 12 116.57 

 

8 4 -135.00 

 

-6 16 108.43 

 

4 0 -135.00 

 

-7 19 116.57 

 

1 -3 -146.31 

 

-9 23 

  

-2 -5 

 

        84 19 2 -126.87 88 -3 -7 45.00 

 

16 5 -143.13 

 

0 -4 45.00 

 

12 9 -146.31 

 

4 0 53.13 

 

9 12 33.69 

 

7 4 -126.87 

 

12 9 36.87 

 

4 0 -135.00 

 

16 5 53.13 

 

0 -4 -135.00 

 

19 2 36.87 

 

-3 -7 -153.43 

 

23 -1 

  

-5 -8 

 

 

19 2 
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89 -7 -9 45.00 93 13 -3 26.57 

 

-4 -6 36.87 

 

15 -2 45.00 

 

0 -3 36.87 

 

17 0 45.00 

 

4 0 -143.13 

 

18 1 -135.00 

 

0 -3 -143.13 

 

17 0 -135.00 

 

-4 -6 -135.00 

 

13 -4 45.00 

 

-7 -9 97.13 

 

15 -2 -129.81 

 

-8 -1 

  

10 -8 

 

        90 -9 1 45.00 94 -3 13 -71.57 

 

-6 4 45.00 

 

-2 10 -56.31 

 

-3 7 53.13 

 

0 7 -75.96 

 

0 11 -126.87 

 

1 3 108.43 

 

-3 7 -135.00 

 

0 6 143.13 

 

-6 4 -126.87 

 

-4 9 56.31 

 

-9 0 -14.04 

 

-2 12 146.31 

 

-1 -2 

  

-8 16 

 

      

13 

 91 1 21 -45.00 

    

 

4 18 -45.00 

    

 

7 15 -45.00 

    

 

11 11 143.13 

    

 

7 14 135.00 

    

 

4 17 135.00 

    

 

0 21 116.57 

    

 

-2 25 

     

        92 21 13 146.31 

    

 

18 15 146.31 

    

 

15 17 165.96 

    

 

11 18 -18.43 

    

 

14 17 -53.13 

    

 

17 13 26.57 

    

 

21 15 -51.34 

    

 

25 10 
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