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Meson Equation of Surface Type
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Abstract: This paper provides a meson functional equation which is extracted from counting maps(root-
ed) on all orientable surfaces with vertex partition vector given. The well-definedness of its solution is
shown on an extension of the integral domain. Then the solution is explicitly expressed in a compact form
via considering graph symmetry.
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1 Background
Let ¥ and 7 be, respectively, the vector space spanned by the basis {1,y,,v,,*,y;,+} and the
function space by the basis {1,y,y%,*,y",++} over the real field R.

The transformation denoted byJ from 7 to 1'is called a meson functional. The shadow functional
y

used by Rota G CM!,is the case of the meson functional when {1,y,sy,s**sy, =} is replaced by {(y),,
(y)l 7(y)2 [ ,(y); [ } where
1 when 7 =0,

(y),: i—1
(y —7) when 7 > 1.

j=0
The both functionals are as a type of Blissard operator®. An equation involving with the meson function-
al is called meson equation.

Although such an equation has been used for enumerating maps with vertex partition as parameter
since the 80s of last century™’ ,the word “meson functional” has not been distinguished from Blissard op-
erator or shadow functional until 2010“. However, Tutte’s enumerating maps with vertex partition ap-
peared in literature much early without use of an equation”. In ref. [4,6] there are a number of meson
equations, particularly in surface type,but no solution.

The purpose of this paper is to provide a new meson equation of surface type,its well-definedness in

a certain domain and an explicit expression of the solution via considering related symmetry.
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2 Maps and Embeddings

The concepts of polyhedra,surfaces,embeddings and maps are clarified in ref. [7](or Appendix I in
ref. [4]) with relationships among them. In this section,only results related to this paper are overlooked
in certain detail.

LLet G=(V,E) be a graph of vertex set V and edge set E. Two Graphs G, =(V,,E,) and G,=(V,,
E,) is called isomorphic if there exists a 1 =1 mapping z:V,—>V, such that for any u.,v€V,,(u,v) EE,
S (r(u),r(v))EE,. For such a mapping t,both r and ¢ ' are called an isomorphism between G, = (V,,
E,) and G, =(V,,E;). An automorphism on G is an isomorphism between G and itself. The set of all
automorphisms of a graph form a group called the automorphism group,denoted by Aut(G),of G.

For our purpose,let us see another model of a graph G=(V,E). Let B={0,1} be the group of two

elements. For any x €E ,let Bx ={x,,x,} where 2, =x(0) and x, =x (1) as in ref. [4](firstly in ref.

[8]). The graph G is seen to be such a partition k on y = ZBI that V=P. Such a model of a graph ena-

rE€E

1
bles us to define a ?fautomorphism of a graph G=(V,E) a1l -1 mapping z on y itself that for z,y €y,

1
€K, Kooy =Ky . Lhe set of all automorphisms of a graph forms a group as well, called the ?—auto-

morphism group.denoted by Aut,,, (G),of G.

Lemma 1 Graph G is connected if and only if y is transitive under ¥y, ,the group generated by 8
and « where for any x (i) €y,

x (0) when i =1,
Blx(i)) = ]
x (1) when 7 =0.

Proof Because of {1,8}==B,f is the only element not the identity.similarly to what was shown in
ref. [4].

Let aut(G) = | Aut(G) | and auty;, (G) = | Auty, (G) | ,1i. e. , the orders of groups, respectively,
Aut(G) and Aut,, (G).

Lemma 27t For a graph G with [ self-loopssaut,, (G) =2"aut(G).

Proof See (14.4) in ref. [4].

This lemma tells us that Aut,;, (G) is different from Aut(G) if and only if G has an edge which is a
self-loop.

An embedding of a graph G (connected,default without loss of generality from lemma 1) is a topolo-
gical mapping from G into a surface,i. e. ,a compact 2-dimensional manifold without boundary. It has
been shown in ref. [4] that an embedding of G is combinatorially equivalent to a permutation = on y
transitive under ¥y ..

Lemma 3 Let n,(G) be the number of distinct embeddings on orientable surfaces,then the number

of embeddings on all surfaces is
no(G) =[] G—1D1 ), (D

where n; is the number of vertices of degree i in G.
Proof See (1.10) in ref. [4].
Given a graph G=(V,E),let K={1,a,3,7} where y=af,a”="=1 and hence ¥ =1. In other

words, K is the Klein group of order 4,denoting that x = EK.T where Ko ={x,a,8,7} is called a quad-

r€E
ricell. A map,or super map of G,is defined to be such a permutation = on z that 2 is partitioned into con-

jugate pairs {(x).,(ax),} of orbits for x € = and the group ¥, 4., is transitive on z (because of the con-

nectedness on G).
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It is easy to see that the graph formed by each conjugate pair of orbits as a vertex and a quidricell as
a edge is isomorphic to G. The map is denoted by M ,or precisely,M; = (z,7m). It is easily shown that M
is an embedding of G.

Two maps M, =(z,,m,) and M,=(z,,m,) are said to be isomorphic if there exists a 1 =1 mapping

(bijection in discrete case) t:2,—> 2, such that the diagrams

T

for 91 =9, =a .9 =7, =pf,and for 5y =, and 5, =m,,are all commutative. The bijection z is an isomor-
phism.

If a map has an element in 2 is specified and called the root,then it is called a rooted map. Two root-
ed maps with their roots,respectively,r, and »; are said to be isomorphic if there exists an isomorphism
z between them such that z(r,)=r,.

Theorem 1  The number of nonisomorphic rooted super maps of a graph G on all orientable sur-
faces is

2¢(G)
Elutl,’g (G)

where «(G) is the size of G,aut;, (G) and n, (G) are,respectively,the order of 1/2-automorphism group

n()(G), (2)

and the number of distinct embeddings on all orientable surfaces of G.
Proof Sece (11.4.4) in ref. [6] (firstly in ref. [8] for the petal bundles).

3 Decomposition Via Partitions

Let M be the set of rooted maps on all orientable surfaces. For M = (z,x) with its root r=r (M) ,let
m(M)=|{r},.| and n (M) be,respectively, the root-vertex valency and the partition vector of nonroot-
vertices where the i-th component n; (M) of n (M) is the number of nonroot-vertices with valency 7,
i=1.

On the basis of availability which will be seen in what follows, # can be partitioned into three classes
My s My and M, as

M= My~ My A A, (3
where M, has the single vertex map &, 4, is the set of all maps with their root-edges a selfloop and A, is
the set of all maps with their root-edges a link.

Lemma 4  Let My, ={M—Kr|VYME M },then My, =i

Proof For any M= (z.7) € ., ,because of Kr as a selfloop,M' =M —Kr=(z—Kr,z') € i, with
7" different from = in {r’}, ={r}, —{r,yr} and its conjugate where r'=mr. Therefore,M' € . This im-
plies M, & .

Conversely.for any M (z ,7) € M,we may construct M’ =(z+Kr',n’) where r' &z and n’ are dif-
ferent from 7 only in (+"), =",< >, ,¥r") and its conjugate. It is easy to check that M is a map and
hence M=M'—Kr’. Because of Kr’ as a selfloop,M’ € ., and hence M € ,,,. Therefore, 4= M, .

It is seen from the converse part in the proof that all M; =(z+Kr,.n;) € M , 0 i << m (M) —1,
constructed from M are nonisomorphic where x; is different from = only in

(Fi sl ot s oo o o Y1y s g eee y e M7 1) when 0 : <m(M)—1,

(ri), =
! (risyri o) when i =m (M)

4)
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and their conjugates.
Lemma 5 For M€ M,let Sy={(M,| 0< i< m(M)},then we have

Ay =D Sy (5)

Me .4

Proof From (4),Sy1Sy=0®M%N. From lemma 4,(5) is then obtained.

Lemma 6 Let Mo ={M « Kr| YME M, } ,then My, = .

Proof For any M= (%,x) € M, ,because of Kr as a link,M'=M « Kr=(%—Kr,x') € My, with x’
different from = only in

G = yrsm®yr s sn Yyrsmr sl i)
and its conjugate where ' =nyr. Therefore,M’ € . This implies M, =M.

Conversely.for any M= (2 ,7) € M, we may construct M'=(z+Kr',n’) where r' &z and ' is dif-
ferent from 7 in (+'), =G") and (yr'), =(yr’,<r>,) with their conjugates. Easy to check that M is a
map and hence M=M" « Kr'. Because of Kr' as a link, M' € .#, and hence M € M, . Therefore, #=
My .

By observing the converse part in the proof of lemma 6,it is seen that that all M; =(z+Kr; ,n;) €
My 1< i< m (M) +1,constructed from M are nonisomorphic where #; is different from = in

[(rl)n1:(7’1>9(77’1)n]:(77’1,<r>,{) when i =1,

(ro)e, = o™ ) s (rro) ., = (rrysrsmr s oee s 720) when i =2,

“ ) (6)
(rl_)”l :(rl_’Trm(M)ﬂflr’_”’n_m(M)flr)’(},ri)ﬂl :(,},rl’r’.“,nmm\/l)ﬂ’r)
L when 3 << i < m(M) +1

with their conjugates for 1< << m (M) 1.
Lemma 7 For M€ M,let Ty={M,| 1< i< m(M)+1},then we have

My = >y (1

Me M

Proof From (6), 9y (| In =DM 24 N. From lemma 6,(7) is then obtained.

Nothing should be done for the decomposition of .#, because of only one map & considered.

4 Meson Equation

Given the set 4 of rooted maps on all orientable surfaces. For a map M € #,let m (M) and n (M) =
(n, (M) yny (M), ,n,(M),-+) be,respectively, the root-vertex valency and the vertex partition vector
of M where n; (M) is the number of nonroot-vertices with valency i ,i=> 1.

The function f, determined by

f//(.l‘ ,2) = Z T W(M)XH(M) ©
Me .
is called the enumerating function,or in short enufunction of # where y"™ = Hyl-"(m.
i=1

For the integral domain % of all integers,i. e. ,the integral ring with the cancelation law considered,
let #{z,y} be the extension of # with x and y (called undeterminate) involved. Because of % infinity,
R x ,2} is still a domain. Denote by %, {x ,2} the set of all functions in #{x ,2} with coefficients in %, ,
the set of all nonnegative integers. Apparently, f ,(z.y) €% {x,y ) TAHx,y}.

Lemma 8(Theorem 1. 3.5 in ref. [6]) Let S and 7 be two sets of maps. If there exists a mapping
A from 7 to S such that A(T)ES for any T € 7 with the properties: (i) [A(T) | =am (T)+b where m =

m (T) is an isomorphic invariant on maps and both a and & are constants; (ii) S = 2/\ (T); Gi) m(S)
TEs

=m (T)+c where ¢ is a constant for any S€ S,then the enufunction of S with parameter m,gs(x) =
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al

7

d
x(bg,+tax ).

dx

Proof DBecause A is a 1 to an(T) +6b correspondence for T € 7, properties (i —iii) yield gs(x) =

x° Z Cam (T) +b)x"™,

Ted
Further more, by considering that Zm(T)z' = g %, the theorem is soon found.
TET <
Theorem 2 For ., ,we have
fo =z ?;: St xS (9

Proof On account of

Sfu = E "My (by lemma 4) x* Z "My (by lemma 5 and lemma 8)

Me .y M—Kre& M,

,, ofu

x (x o

+ L)

the theorem is obtained.
Lemma 9(Theorem 1. 6.3 inref. [6]) Let S and 7 be two sets of maps. If there exists a mapping A
from 7 to S,A(T)={S,,S;,*,S,.cm+1) for any T € 7 such that S; 1 -1 corresponds to {7 ,m (T)+2—

i} where i and m(T)+2—1: are,respectively,the contributions to the first and the second parameters,:

=1.2,+.m(T)+1,with the condition that S = > ,A(T), then

Ted

Fs(x,y) =230, Czfr), (10)
where fr= fr(z.y).

Proof By virtue of the way determining A ,we have

mDH , (DAL ym(D
Fs(x,y) = 2 E iy DTy — gy 2 T =238, (2 fr).
TeT i=1 o TET xr =y -
This 1s (10).
Theorem 3 For ., ,we have
f,/lz :J yal-,y(qu). (11D)

y

Proof On account of

Sfu, = 2 x" My (by lemma 6)x 2 "M y*™ (by lemma 7 and lemma 9)

1\/]6,//2 M-Kre A

(l‘J yé\,z'.y (Zf//)) ’

the theorem is obtained.

(2)

Theorem 4  The enufunction f, of general rooted maps on all orientable surfaces with x for root-
vertex valency and y for partition vector of nonroot-vertices satisfies the following meson equation about
/as

f=1+1?3%+1?2f+xJ vo.., (zf). (12)
)

Proof Because of ¢ with no edge, f, =1. On the basis of (3),from (9) and (11),The theorem is

soon obtained.

5 Well-Definedness

Now,we discuss the well-definedness of the meson equation as
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[, of j
1+ a-— — :
41 5e =+ ( ) f—x )‘yé‘m(zf) (13)
fimo=0 =1
on M,y
By observing the limitation of domain considered, f enables us to write in form as
f=2F,.(yz", (14)
m=0
where
F,,,(y)-Z(ZA,,, s (15)
[n|=n
II//()
and [n|=n,+2n,+3n;,+-+in,+-
Then,we can get
af m—1 m
gZEmFm(l)I =>n +DF, (»a", (16)
m=1 m=0
and
m—+1
O (2f) =D F, ()8, =" = D>F, (y) 21’ e an

m=0 m=0
On the basis of (17),we have

m+1

Jyaz V) = 20Fn () 2y ymis = 25 20 Fil@yim)a” (18)

m=0 m=1 izm—1

From the initial condition of (13),we have
Fo(y)=1. (19)
For the convenience of logical reasoning,the equivalent form (12) of (13) is employed in what fol-

lows. On the basis of (14),(15),(16) and (18),we have
[EFI(X).V'H when m =1,

i= 0

F,,,(l)Z{lJrZFi(l)yi when m =2, (20

iz 1

L(m —DF,.(y)+ 2 Fi(y)yime when m = 3.

izm—1

Lemma 10  for any integer m =0 and integral vector n== 0,m +n=0(mod 2).
Proof On the basis of (15),let

Fo,(y)=2>1A,,y", 21)

[n]=n
n=0

then we have

F,(y) = >F,.(y. (22)

n=0

By induction on m+n= 0 and in virtue of (9) and (11),from m=n=0 on,for any m +n= 0, the palr
(m ,n) is obtained in two available possibilities:from a pair (m’ o ") such that m +n"<<m=+n by m=m’
+2 while n=n" as in (9) or by m =m’+1 while n=n"+1. In the both cases,m +n=m"+n"+2. Moreo-
ver,from (19),the initial condition,the lemma is done.

This lemma enables us to take s=(m +n)/2,a nonnegative integer. For s=0,1,2,+*,do our proce-
dure to determine all F,, (y) via (20).

Theorem 5 The meson functional equation in form as (13) does have,and only have a solution in
R {x ’X}'

Proof The does case of the theorem is from theorem 4. The only case is from the uniqueness of the

procedure for determining all F,, (y) via A, shown in (21) and (22) step by step from (19) on the ba-
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sis of (20) in H{x,y}.

6  Solution

Theorem 4 and theorem 5 enable us to extract the solution of equation (13) by either solving (13)
directly in %{x,y}.or enumerating all general rooted map on orientable surfaces with the root-vertex va-
lency m and the partition vector n of nonroot-vertices. Because the former is not a suitable way founded
yet,we have to consider the later first. This is what the paper is concentrated on.

According to (14),(15),(21) and (22),in order to determine the solution of equation (13),it is on-
ly necessary to find A,,., for all available integer m =0 and integral vector n=0.

Lemma 11 Let ¢, [m ,n ] be the set of all graphs whose super maps are with root-vertex valency m ,
vertex partition vector of nonroot-vertices n and ¢t =aut,, (G) ,then the number of nonisomorphic rooted
maps with Gn,n) is

> @ | pLmand | (m—D1 =D 7,

tel

man

1
where I,,,, is the set of all orders of Efautomorphism groups in ¢, [ m ,Q] »0=(1,2,3,4,++,0,++) and 1=

(1,1,1,1,++,1,+++). The factorial of a vector is defined to be the product of its component factorials.
Proof From (1) and (2),the lemma is soon found whenever notifying that m + [n|=2¢ where ¢ is
the size of graphs in 4, [m ,Q]ggm,g.
This lemma enables us to get an explicit expression of the solution of equation (13).

Theorem 6 The solution of equation (13) is

"+
F=20 m%\g,[m,g]\ (m—1D1 L—1D1 Dyt (23)
m=0 tel
n=0 e

Proof Because of

g E : M M E :
f= e )lg( PR ‘ '/%m-,g ‘ "y,

Me n=0

m="0

we see that A, , = | A, | is the number of nonisomorphic rooted maps with (m ,n). Hence from lemma

11,the proof is done.

7 Conclusions

(1) On lemma 5 and lemma 7,(20),(21) and (22) have already presented a recursive formula for
determining all A,,, and hence the solution of meson functional equation (13),it is still necessary to
make the formula more simple, particularly more compact.

(2) The solution of equation (13) obtained in § 6 enables us to access other surface types of meson
functional equations appeared in ref. [6].

(3) Although all meson functional equations of planar type shown in ref. [6] can also be done in a
similar way, their solutions look more complicate in company with (23) because the number of distinct
planar embeddings depending on splitting pairs of the graph.

(4) The solution of equation (13) shown in (23) is not hard to calculate for the order of maps not
1
too big by using the computing program mentioned in ref. [ 8] because the order of graph ?fautomorf
phism groups can be done by a program.

1
However,it is absolutely not easy yet for determining all ——-automorphism groups of a graph in gen-

2
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eral even in a number of manners suggested in ref. [4] to access.
(5) A further important and difficult case is for # and a surface of genus not zero given,to establish

a meson functional equation satisfied by the enufunction (8) restricted and then to get the solution.
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