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Asymptotic Behavior of the Toda Equation
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Abstract: Using the basic property of the interaction potential of exponential type,the asymptotic behav-
ior of the solutions for the Toda equation is studied. It is proved that every solution of the Toda equation
is asymptotically linear at infinity.
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1 Introduction
Classical Toda equation is a system of second order ordinary differential equations which describes
the behavior of a set of finite many particles moving along a straight line with exponential neighboring in-
teraction. Explicitly,it reads as:
[qh (1) =—en 2,
{qi (1) = et 4 — el 4 i=2,mn—1,

qul (t) =1,

Q)

This is an integrable Hamiltonian system and was first studied by Toda). It has appeared in many areas
of mathematicas and physics. Recently,its deep relation with the entire solutions of certain nonlinear par-
tial differential equation,for example,the Allen-Cahn equation, has been revealed,see ref. [2]. It turns
out that the asymptotic behavior of this system is extremely important. On the other hand, recent ad-
vances of the classification of four-end solutions to the Allen-Cahn equation™ tells us that the under-
standing of the asymptotic behavior of a Toda type equation will be a first step towarding the classifica-
tion of finite Morse index entire solution to the Allen-Cahn equation in R?. The long time scattering be-
havior of this Toda equation is first studied by Moser'"', based on the Flaschka transform. In this paper.
we wish to consider this problem from classical ODE point of view and using elementary tool to prove
that the solution is asymptotically linear based on the internal stucture of the exponential potential of the
Toda equation. We remark that our method could be generalized to more general nonliearities than the

one appeared in the Toda equation. Our result states as what follows
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Theorem 1  Suppose (g, ,°**,q,) is a solution of the Toda system (1). Then there exist constants
a; sa; s sBi si=1,++,n, such that:
q: (1) > alt +p/ t >+ o,
q;(t) >a;t+ 67 t —>— oo,
Addtionally,for cach 1<C i <{n—1,there holds o, <<a;\1.a; =>a; .

2  Proof of the Main Theorem

We first remark that the equation (1) is a second order Hamiltonian system whose Hamiltonian

function is given by
n—1

1 &
Hpoq) =5 2 pi+ e o,
i=1 i=1
where p=1(p s p,)q=1C(q,+**+q,). As a consequence, letting p, =gq;» equation (1) could also be
0 -n
o)

easy to see that for each solution x =(p,q) ,there holds H(p (¢),q(¢)) =C =constant. This implies par-

written as a first order Hamiltonian system x'(t) =JV H(x),where x=(p,q)",J tis

ticularly that for a solution (g, ,+**.q,) of equation (1),we have
Lpi) =l g | <C, (2)
where the constant C depends on this solution.
To prove the main theorem,we first of all show the following:
Proposition 1 There exist costants a; and a; ssuch that p;(z) a7, as t—>*tco,
Proof Let us first of all consider the first particle ¢,. From the first equation of (1), we know the
velocity p, of this particle is monotonely decreasing. Therefore by equation (2),we find easily that there

exists some constants ai ssuch that p, (z) = ai ¢t —>= o, In particular, this implies
i»:x)
| J e dt |=[at — p,(0) |<C.
0
Now using the second equation of (1) and the above estimate,recalling that | p,| << C,we deduce that

| J?)e"f“s d¢ | must be bounded. As a consequence,there exist constant a3 ,such that
. :
P2 (&) = p,(0) +Le"f"2 dr — J()e"f"ﬁ dt = a7 t = oo,

Similar arguments lead to p,; (z) = a ,¢ == oo,

The above proposition tells us that the particles ¢, have limiting velocities at infinity. The next prop-
osition states that the velocities are indeed ordered.

Proposition 2 o <<a; | and a; a1 i =1, ,n—1.

Proof We first claim

qiv1 —Qq; —— ©o t —>—F oo, (3)
We only prove this for the case i =1, the other case is quite similar. Suppose on the contrary that there
exist {¢;},"7 and M>>0,with ¢,—+°o,such that ¢,(z,) —q, (t;) <<M ,then using the fact that | p. () |
, O M
< C and that ¢, = —e? % ,we easily find thata] —q, (¢,) <— Z e M c’ contradicting with the fact that
i=1

a; is a real number. Therefore the claim holds.

The above claim in particular implies that a;” < a7 1. We now proceed to show that a; <<a, . In fact,
by equation (3),there exists 7, such that p, (¢z,)<<p, (z,). Then from the identity q"l *q:, = —eh 92—
etn—1"% < 0,we infer that ai <a, .

Now to prove that all a; are strictly ordered,without loss of generality.,we could suppose to the con-
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trary that
al <af=-=a,, <a,. (4)
From equation (1),we have
Qo — Guy =—e% 1 — elz Dt el T el
By equation (4),we know that ¢, —¢, and ¢, , —q, are much smaller than ¢, —¢q; and ¢, —q, for ¢
large. Hence there must exists T >0 such that
— e — ezt el el < () t >T.
But this will lead to a; <<a, ,contradicting with equation (4).
Similarly,one could also show that for 1<.i<{n.a; ~>a;.,. This finishes the proof.
Now we are ready to prove theorem 1,which we restate as the following:
Theorem 2 There exists >0, such that ¢; () =at+p7 +0(e sy jp—>-4oo,
Proof Consider the function ¢, (1) =q,(¢) —a; t. First of all we wish to show that there exists 8" ,

such that ¢, (1) as 1=+, Obviously.,

$: (1) =p, (1) —a] :—J

Here we have denoted g,=—°°,q,+, = +°°, Using proposition 2,we know that

oo
(et17% — e%i %1 ) ds,
t

q:(t) —qi (1) :J[ (p; — pi1)ds =6t for ¢ large enough.
0

It follows that for ¢ large, | ¢, (1) [<<Ce °""', which impliesJ | $:(s) | ds<<C. As a consequence, ¢, (¢)

0

"t
0

:¢,(O) +J ¢;(5)d‘5 AB, 714>+OO.

Now with this understood, we consider the function g, (¢) : =gq; (t) —a/t — 8, , which satisfies
lg:(t)|<<Ce ™ for t >0 and g, (t) >0 as t >+ oo; therefore, one could deduce ¢, (1) =a;t + B +
OCe ")t =+ oo,

Analogously,one could show ¢, (z) =a;t + 8 +OCe?""),t >— oo, for certain constants ; . This

completes the proof.
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