中图分类号:O641

文章编号:1007-2985(2013)05-0074-05

应用 ab initio 方法和 ABEEM $\sigma\pi$ 模型研究含铝金属酶

杨忠志,宁方达

(辽宁师范大学化学化工学院,辽宁大连 116029)

摘 要:应用原子-键电负性均衡方法中的 σπ 模型(ABEEMσπ 模型),通过大量量子化学计算,拟合确定了含铝金属酶 体系的 ABEEMσπ 参数.将这些参数应用到含铝金属酶大分子体系的电荷分布及 Fukui 函数的计算,结果显示,ABEEMσπ 模型计算得到的电荷分布及 Fukui 函数与从头算和实验结论均有很好的一致性.还进一步计算分析了 1L3R 酶与丝氨酸结 合前后的分子各区域的电荷分布,结果表明,Al³⁺ 是 1L3R 酶的活性中心,根据结合后分子的 Fukui 函数可以得出丝氨酸会 使 1L3R 酶的活性降低.另外,通过比较两者结合前后 Al³⁺ 的广义 Fukui 函数,证明了广义 Fukui 函数可用于该体系分子间 反应活性的比较,同时也说明利用 ABEEMσπ 模型来预测含铝金属酶的抑制剂是可行的.

关键词:从头算方法;ABEEMoπ模型;电荷分布;Fukui函数

文献标志码:A

DOI:10.3969/j.issn.1007 - 2985.2013.05.018

分子的电荷分布对于解释和预测其结构和性质非常重要^[1].含铝金属酶是受人们关注的重要生命物质,因体系大,对它的研究较困难.笔者应用 ABEEMσπ 模型计算了多个含铝金属酶的原子、化学键和孤对 电子区域的电荷分布,这些分子的 ABEEMσπ 电荷分布与 HF/STO-3G 电荷分布的线性相关系数均在 0. 96 以上,表明 ABEEMσπ 模型可以用于准确地计算大分子的电荷分布.

Parr 和 Yang 提出的 Fukui 函数,使得前线分子轨道(FMO)理论和软硬酸碱(HSAB)理论联系起来. Geerlings 等^[2]提出应用 Fukui 函数研究分子内的反应活性. 笔者的计算结果表明,Al³⁺均是所研究的含 铝金属酶的活性中心,这与实验结论相一致,说明 ABEEMσπ 模型可以用于准确地确定含铝金属酶的活性 中心,此方法可以向其他金属酶推广.

生物体内的一些小分子可以降低酶的反应活性. 笔者计算了当 1L3R 酶与丝氨酸结合后的 Fukui 函数和电荷变化,也计算了 Al³⁺的广义 Fukui 函数. 发现两者结合后,1L3R 酶的活性变小,说明 ABEEMσπ 模型可应用于预测含铝金属酶的抑制剂.

1 计算方法

1.1 从头计算法

利用从头计算方法,基组的选择非常重要^[3-4].大的基组在计算能量和优化结构时准确度高,但计算电荷分布时用小的基组更好,因为当较大的基组应用于某原子时,一定程度上也会将与其相邻的原子包含在内,这样就会对分布在该原子上的 Mulliken 电荷估计过高.Wilson M S 等^[5]认为,采用大的基组计算分子的电荷分布时,对分子内原子间的电荷转移的计算值会过高.Derouane E G 等^[6]研究发现,6-21G 基组比STO-3G 基组计算的电荷值高.Jakalian A 等^[7]指出,6-31G * 基组的计算值比STO-3G 基组的计算值高10%~15%.笔者利用STO-3G 基组计算分子的电荷分布.

* 收稿日期:2013-04-19 基金项目:国家自然科学基金资助项目(21133005) 作者简介:杨忠志(1940-),男,吉林舒兰人,辽宁师范大学化学化工学院教授,博士,博士生导师,主要从事理论与计 算化学及其应用等研究.

1.2 ABEEMσπ 模型

由电负性均衡原理和密度泛函理论,Yang 等提出并发展了原子与键电负性均衡方法(ABEEM)的 σπ 模型(ABEEMσπ模型).在该模型中,双键被划分为1个σ键区域和4个π键区域,σ键区域的电荷中心选 择在成键原子的共价半径之比处,π键区域的电荷中心选择在垂直于双键所在的平面并位于双键原子上 下两侧.

根据电负性均衡原理,分子中各区域的有效电负性与分子的电负性相等.这对于任意包含有 *i* 个单键 原子、*j* 个双键原子、*k* 个单键、*l* 个双键中的σ键区域、4*l* 个π键区域和*m* 个孤对电子区域的分子,就会同 时有(*i*+*j*+*k*+*l*+4*l*+*m*)个方程.再联立分子的总电荷守恒方程,则能够得到分子的电负性和分子中每 一个原子、键和孤对电子的电荷分布.

Fukui 函数的定义式为 $f(\mathbf{r}) = \left[\frac{\delta\mu}{\delta\nu(\mathbf{r})}\right]_{N} = \left[\frac{\delta\rho(\mathbf{r})}{\delta N}\right]_{o}$. 对体系的 Fukui 函数积分,可知 Fukui 函数是 归一化的,Fukui 函数为局域性质,体系不同位点的 Fukui 函数值不同. Fukui 值大的位点,反应活性也大.

2 结果与讨论

2.1 含铝金属酶电荷分布的计算

计算大分子的电荷分布,首先要选择模型分子,选用 HF/STO-3G 方法计算电荷,然后利用最小二乘法,运用相关程序,拟合 Al³⁺等的参数,即价态电负性和价态硬度.该程序中,基点的选择非常关键.基点是指程序中所需要用到的初始电荷.笔者在 Yang 等的研究基础上拟合并确定了含铝金属酶体系的参数, 部分基点和 ABEEMoπ 参数如表 1 所示.

Туре	q^{*}	χ*	$2\eta^*$	Туре	q^{*}	χ*	$2\eta^*$
${\rm Al}^{3+}_{130}$	1	4.090	4.750	O-Al ₍₈₁₁₃₎	0	3.500	77.920
F_{91}^{-}	0	3.094	90.570	F-Al ₍₉₁₁₃₎	0	3.500	31.920
${ m P}^{5+}_{157}$	1	5.100	1.800	lpF_{191}	0	5.991	23.100

表1 含铝金属酶体系的部分基点和 ABEEMσπ 参数

注 q^{*}为基点;χ^{*}的单位是 pauling unit,2η^{*}的单位是 pauling/electron;下脚标为 ABEEMon 程序中所定义的原子、 键和孤对电子的标号

研究发现,ABEEMoπ 模型计算的模型分子的电荷分布可以很好地模拟从头算的结果,因此文中所拟 合的 ABEEMoπ 参数是合理的.ABEEMoπ 模型中的原子、化学键和孤对电子类型是根据其周围的化学环 境恰当定义的,因此它们的参数是可转移的.运用所拟合的参数,自编程序,计算 PDB 代号为 1BS1,1L3R, 3UKD 的含铝金属酶的电荷分布^[8-10].1BS1 的分子式为 C₂₆ H₄₈ AlF₃ N₉ O₁₆ P₂,共含有 105 个原子.1L3R 的分子式为 C₂₆ H₅₇ AlF₃ N₈ O₃₁ P₅,共含有 131 个原子.3UKD 的分子式为 C₂₅ H₄₃ AlF₃ N₁₂ O₂₀ P₃,共含有 107 个原子.对于这 3 种含铝金属酶,ABEEMoπ 模型计算的电荷分布与 HF/STO-3G 方法计算的电荷分 布的线性相关如图 1 所示.

图 1 表明,利用 ABEEMoπ 模型计算的 3 个大分子回归到原子上的电荷分布,与 HF/STO-3G 方法

计算的电荷分布的线性相关方程的斜率和线性相关系数均接近于 1,截距均接近于 0.这说明 ABEEMσπ 模型可以用于准确计算大分子的电荷分布.

2.2 含铝金属酶活性中心的研究

利用本研究所编程序,可计算得到含铝金属酶各区域的 Fukui 函数. 所研究分子的骨架结构及标号如 图 2 所示. 经程序计算所得的其活性区域的 Fukui 函数值列于表 2—4. 从以表 2—4 可以看出,所研究的 3 个酶中,Al³⁺的 Fukui 函数值均最大,因此这些酶的活性中心均为 Al³⁺,这与实验上的结论相一致^[8-10]. 由此可见,ABEEMσπ 模型可以准确地确定含铝金属酶的活性中心.

Ha

a 1BS1

图 2 含铝金属酶的骨架结构及标号 表 2 1BS1 的 Fukui 函数

Type	Al^{3+}	O(1)	F(2)	N(3)	F(4)	O(5)	F(6)	Al-F(2)	Al-F(4)
Fukui values	0.008 1	0.001 5	0.000 3	0.0037	0.000 3	0.003 2	0.000 2	0.000 6	0.000 5
Туре	Al-O(5)	Al-F(6)	lpO(1)1	lpO(2)2	lpF(2)1	lpF(2)2	lpF(2)3	lpN(3)	lpF(4)1
Fukui values	0.000 1	0.000 6	0.007 4	0.0077	0.001 6	0.002 0	0.001 8	0.001 9	0.001 9
Туре	lpF(4)2	lpF(4)3	lpO(5)1	lpO(5)2	lpF(6)1	lpF(6)2	lpF(6)3		
Fukui values	0.001 4	0.001 6	0.007 4	0.0077	0.001 6	0.001 4	0.002 3		

	表 3 1L3R 的 Fukui 函数									
Туре	Al^{3+}	O(1)	N(2)	F(3)	N(4)	F(5)	N(6)	F(7)	O(8)	
Fukui values	0.010 1	0.001 2	0.003 5	0.000 3	0.003 3	0.000 4	0.004 0	0.000 3	0.000 6	
Туре	O(9)	Al-F(3)	Al-F(5)	Al-F(7)	lpO(1)1	lpO(1)2	lpN(2)	lpF(3)1	lpF(3)2	
Fukui values	0.001 8	0.000 8	0.000 9	0.0007	0.004 1	0.005 5	0.000 1	0.001 7	0.001 8	
Туре	lpF(3)3	lpN(4)	lpF(5)1	lpF(5)2	lpF(5)3	lpN(6)	lpF(7)1	lpF(7)2	lpF(7)3	
Fukui values	0.002 3	0.003 3	0.002 1	0.0027	0.002 3	0.002 6	0.001 2	0.002 1	0.001 6	
Туре	lpO(8)1	lpO(8)2	lpO(9)1	lpO(9)2						
Fukui values	0.008 8	0.009 1	0.002 8	0.001 3						

表 4 3UKD 的 Fukui 函数

Туре	Al^{3+}	O(1)	F(2)	N(3)	F(4)	O(5)	F(6)	Al-F(2)	Al-F(4)
Fukui values	0.006 1	0.001 8	0.000 3	0.001 3	0.000 3	0.000 9	0.000 3	0.0007	0.000 6
Туре	Al-F(6)	lpO(1)	lpF(2)1	lpF(2)2	lpF(2)3	lpN(3)	lpF(4)1	lpF(4)2	lpF(4)3
Fukui values	0.000 5	0.001 6	0.001 6	0.002 0	0.002 4	0.004 4	0.002 0	0.002 1	0.0017
Туре	lpO(5)1	lpF(6)1	lpF(6)2	lpF(6)3					
Fukui values	0.000 4	0.001 9	0.0017	0.0017					

2.3 含铝金属酶的抑制剂的研究

笔者考察了丝氨酸 1L3R 酶活性的抑制作用. 丝氨酸与 PDB 代号为 1L3R 的酶结合后的骨架结构如 图 3 所示,表 5 给出了两者结合前后的电荷分布. 由表 5 可知,与丝氨酸结合后,相比较于两者结合之前,

Al³⁺的电荷减小了 0.122e,变化值大于其他位点的 电荷变化,所以,丝氨酸与 1L3R 酶结合时 Al³⁺的电 荷所受的影响最大,可见,Al³⁺确实是 1L3R 酶的活 性中心.

表 6 给出 1L3R 酶分子与丝氨酸结合后的 Fukui 函数. 由表 6 可以看出,与丝氨酸结合后,Al³⁺的 Fukui 函数值不再是最大的,也就是说,1L3R 酶的活 性中心 Al³⁺的活性降低.因此,ABEEMσπ 模型可以 用于预测含铝金属酶的抑制剂.

近来,杨忠志等^[11]提出应用广义活性指标作为 研究分子间的反应活性指标,并指出,广义 Fukui 函 数越大,则反应活性也就越大.笔者改进程序,经计 算可得,1L3R 酶与丝氨酸结合前后,Al³⁺的广义 Fukui 函数分别为 1.325 0 和 0.677 5,可见,结合丝 氨酸以后,1L3R 酶的活性明显变小,也验证了广义 活性指标可作为研究分子间的反应活性指标.

图 3 1L3R 和丝氨酸结合后的骨架结构

			AC ILS	11 11 丝 安 段:		비기개			
Туре	$\mathrm{Al}^{\mathrm{3}+}$	O(1)	N(2)	F(3)	N(4)	F(5)	N(6)	F(7)	O(8)
Active sites	1.123	-0.062	-0.175	-0.006	-0.185	-0.006	-0.173	-0.005	-0.013
Inactive sites	1.001	-0.061	-0.173	-0.005	-0.184	-0.006	-0.172	-0.006	-0.011
Туре	O(9)	O(10)	Al-F(3)	Al-F(5)	Al-F(7)	lpO(1)1	lpO(1)2	lpN(2)	lpF(3)1
Active sites	-0.072	_	-0.050	-0.049	-0.050	-0.193	-0.186	-0.084	-0.137
Inactive sites	-0.073	-0.126	-0.046	-0.047	-0.046	-0.255	-0.240	-0.049	-0.137
Туре	lpF(3)2	lpF(3)3	lpN(4)	lpF(5)1	lpF(5)2	lpF(5)3	lpN(6)	lpF(7)1	lpF(7)2
Active sites	-0.140	-0.136	-0.062	-0.139	-0.137	-0.138	-0.173	-0.135	-0.135
Inactive sites	-0.141	-0.134	-0.064	-0.140	-0.141	-0.139	-0.099	-0.135	-0.137
Туре	lpF(7)3	lpO(8)1	lpO(8)2	lpO(9)1	lpO(9)2	lpO(10)1	lpO(10)2		
Active sites	-0.142	-0.210	-0.183	-0.159	-0.143				
Inactive sites	-0.144	-0.189	-0.194	-0.160	-0.143	-0.060	-0.061		
			表 6 1L3	R 和丝氨酸:	结合后的 Fu	ıkui 函数			
Туре	Al^{3+}	O(1)	N(2)	F(3)	N(4)	F(5)	N(6)	F(7)	O(8)
Fukui values	0.004 7	0.001 1	0.003 9	0.000 2	0.002 9	0.000 2	0.003 8	0.000 2	0.000 6
Туре	O(9)	O(10)	Al-F(3)	Al-F(5)	Al-F(7)	lpO(1)1	lpO(1)2	lpN(2)	lpF(3)1
Fukui values	0.001 5	0.001 5	0.0007	0.0007	0.000 6	0.003 8	0.005 4	0.000 1	0.001 2
Туре	lpF(3)2	lpF(3)3	lpN(4)	lpF(5)1	lpF(5)2	lpF(5)3	lpN(6)	lpF(7)1	lpF(7)2

表 5 1L3R 和丝氨酸结合前后的电荷分布

3 结语

Fukui values

Type

Fukui values

0.001 2

lpF(7)3

0.001 5

0.002 2

lpO(8)1

0.008 6

0.002 1

lpO(8)2

0.008 2

应用 ABEEMσπ 模型计算了多个含铝金属酶的电荷分布,与 HF/STO-3G 的电荷分布结果均有很好的一致性,而且该方法更省时.应用 ABEEMσπ 模型计算的 Fukui 函数表明,Al³⁺均是所研究的含铝金属酶的活性中心,这与实验结论相一致,说明 ABEEMσπ 模型可用于准确地确定含铝金属酶的活性中心.此外,计算了当 PDB 代号为 1L3R 的含铝金属酶与丝氨酸结合后的 Fukui 函数和电荷变化,结果表明,两者

0.001 8

lpO(9)1

0.002 6

0.002 1

lpO(9)2

0.001 1

0.001 3

lpO(10)1

0.002 1

0.002 3

lpO(10)2

0.002 2

0.000 9

0.001 9

结合后 1L3R 酶的活性变小,同时,验证了广义 Fukui 函数可用于比较分子间的反应活性,这表明 ABEEMσπ 模型也适用于预测含铝金属酶的抑制剂.该研究为进一步作含铝金属酶分子的动力学模拟研 究奠定基础,也为 ABEEMσπ 模型应用于其他金属酶开了先例.

参考文献:

- [1] YANG Z Z, WANG C S. Atom-Bond Electronegativity Equalization Method. 1. Calculation of the Charge Distribution in Large Molecules [J]. J. Phys. Chem. A, 1997, 101:6 315 6 321.
- [2] GEERLINGS P, PROFT F D, LANGENAEKER W. Conceptual Density Functional Theory [J]. Chem. Rev., 2003, 103:1 793-1 873.
- [3] KANG Y K, SCHERAGA H A. An Efficient Method for Calculating Atomic Charges of Peptides and Proteins from Electronic Populations [J]. J. Phys. Chem. B, 2008, 112:5 470 - 5 478.
- [4] REED A E, WEINSTOCK R B, WEINHOLD F. Natural Population Analysis [J]. J. Chem. Phys., 1985, 83:735 746.
- [5] WILSON M S, ICHIKAWA S. Comparison Between the Geometric and Harmonic Mean Electronegativity Equilibration Techniques [J]. J. Phys. Chem., 1989, 93:3 087 - 3 089.
- [6] DEROUANE E G, FRIPIAT J G, BALLMOOS R V. Quantum Mechanical Calculations on Molecular Sieves. 2. Model Cluster Investigation of Sillcoaluminophosphates [J]. J. Phys. Chem., 1990, 94:1 687 - 1 692.
- [7] JAKALIAN A, BUSH B L, JACK D B, et al. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method [J]. J. Comput. Chem. ,2000,21(2):132-146.
- [8] KÄCK H,SANDMARK J,GIBSON K J, et al. Crystal Structure of Two Quaternary Complexes of Dethiobiotin Synthetase, Enzyme-MgADP-AlF₃-Diaminopelargonic Acid and Enzyme-MgADP-Dethiobiotin-Phosphate; Implications for Catalysis [J]. Protein Science, 1998, 7:2 560 - 2 566.
- [9] MADHUSUDAN, AKAMINE P, XUONG N H, et al. Crystal Structure of a Transition State Mimic of the Catalytic Subunit of cAMP-Dependent Protein Kinase [J]. Nature Structural Biology, 2002, 9(4):273 277.
- [10] SCHLICHTING I, REINSTEIN J. Structures of Active Conformations of UMP Kinase from Dictyostelium Discoideum Suggest Phosphoryl Transfer is Associative [J]. Biochemistry, 1997, 36:9 290 - 9 296.
- [11] 杨忠志,徐珍珍.应用 Fukui 函数探讨双苯基-取代的自由基闭环反应的区位选择性 [J]. 辽宁师范大学学报:自然科学版,2012,35(2):193-196.

Study on Aluminum Metalloenzymes by *ab initio* Method and ABEEM $\sigma\pi$ Model

YANG Zhong-zhi, NING Fang-da

(School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning China)

Abstract: By applying the atom-bond electronegativity equalization $\sigma\pi$ model (ABEEM $\sigma\pi$ model), a large number of quantum chemistry calculations were performed to determine the ABEEM $\sigma\pi$ parameters of aluminum metalloenzymes. Then these parameters were employed to study the charge distributions and Fukui function of aluminum metalloenzymes. Calculated results obtained by ABEEM $\sigma\pi$ model are in good agreement with those by the *ab initio* method and experimental conclusions. Further analysis of the charge distributions between 1L3R and 1L3R-serine indicates that Al³⁺ is the active center of 1L3R, and serine would reduce the activity of 1L3R according to Fukui function. In addition, comparing the generalized Fukui function of Al³⁺ in 1L3R with that in 1L3R-serine, generalized Fukui function is proved to be appropriate in this system, and ABEEM $\sigma\pi$ model is feasible to predict the inhibitors of aluminum metalloenzymes.

Key words: ab initio method; ABEEMoπ model; charge distributions; Fukui function (责任编辑 向阳洁)