文章编号: 1000-4750(2013)06-0077-06

大跨越输电塔-线体系的近场脉冲型地震反应分析

武 钢¹,翟长海¹,李 爽¹,谢礼立^{1,2}

(1. 哈尔滨工业大学土木工程学院,黑龙江 150090; 2. 中国地震局工程力学研究所,黑龙江 150080)

摘 要:分析了大跨越输电塔-线体系的动力特性,对比了大跨越输电塔-线体系的近-远场地震反应,研究了大跨 越塔-线体系的近场脉冲地震反应规律。结果表明在同幅值的近场脉冲型地震动作用下,大跨越输电塔-线体系的 动力反应远大于其在一般地震动下的反应,大跨越输电塔-线体系的近场脉冲型地震反应幅值随地震动脉冲周期增 大而增大。将等效脉冲模型引入大跨越输电塔-线体系近场响应分析,结果表明: 塔-线体系在等效脉冲作用下的 响应与实际地震动相近,将等效脉冲用于分析大跨越输电塔-线体系的地震响应能够弥补实际近场脉冲型地震动数 目过少的不足。

关键词:输电塔;大跨越;近场;导线;地震反应

中图分类号: TU391 文献标志码: A

doi: 10.6052/j.issn.1000-4750.2012.02.0093

SEISMIC RESPONSE OF LARGE CROSSING TRANSMISSION TOWER-LINE SYSTEM SUBJECTED TO NEAR-FAULT GROUND MOTIONS

WU Gang¹, ZHAI Chang-hai¹, LI Shuang¹, XIE Li-li^{1,2}

(1. School of Civil Engineering, Harbin Institute of Technology, Heilongjiang 150090, China;

2. Institute of Engineering Mechanics, China Earthquake Administration, Heilongjiang 150080, China)

Abstract: Dynamic characteristics of a large crossing transmission tower-line system (LCTTL) are analyzed. The seismic responses of a large crossing transmission tower-line system subjected to near-fault pulse-like ground motions and ordinary ground motions are compared. The characteristics of responses caused by near-fault pulse-like ground motions are presented. It is shown that the seismic responses of LCTL induced by near-fault pulse-like ground motions are severer than the responses subjected to ordinary ground motions. The amplitude of seismic responses increases with the pulse period of near-fault pulse-like ground motions. An equivalent pulse model is introduced to seismic response characteristics of the near-fault records. The application of equivalent pulse model in seismic responses analysis of LCTL can augment the number of near-fault record set.

Key words: large crossing; transmission tower; conductor; near-fault; seismic response

截至目前,对输电线路破坏最严重的地震是 1999年我国台湾发生的集集地震,该地震中之所以 发生输电塔的严重破坏,其强烈的近场效应被认为 是重要原因,而国内外现行设计规范尚缺少这方面 的特殊考虑^[1-4]。目前的输电塔-线体系抗震研究中 考虑近场脉冲型地震动特殊性的研究仅见于文 献[5],该文献研究结果表明近场地震动下的输电塔 地震反应与一般地震动下的反应无明显差异,但是

收稿日期: 2012-02-17; 修改日期: 2012-05-10

基金项目:国家自然科学基金项目(90815014, 51078117);地震行业科研专项(201208013);黑龙江省重点科技攻关项目(GB06C102)

通讯作者: 武 钢(1979一), 男,河南洛阳人,博士生,从事钢结构与防灾减灾工程研究(E-mail: 5gang@163.com).

作者简介:翟长海(1976-),男,山东淄博人,教授,博士,从事地震工程研究(E-mail: zch-hit@hit.edu.cn);

李 爽(1981-),男,辽宁沈阳人,讲师,博士,从事计算力学与地震工程研究(E-mail: shuangli@hit.edu.cn);

谢礼立(1939一),男,上海人,教授,中国工程院院士,名誉所长,从事地震工程研究(E-mail: llxie@iem.ac.cn).

文献作者也认识到这可能是由于所采用的一般塔-线体系结构固有周期较短,不超过 0.6s 所致的,而 且所用的地震动记录较少,因此研究结果存在局限 性,其结论不适用于较高等级的输电线路。而对于 大跨越输电塔-线体系这种大跨、高柔、长周期的特 殊输电塔-线体系,其在近场脉冲型地震动作用下的 地震反应目前国内外尚未开展相关研究。本文的目 的在于探究大跨越塔-线体系近-远场地震响应的异 同,揭示大跨越输电塔-线体系近场反应与地震动参 数之间的定量关系,探索在输电塔-线耦合体系近场 反应分析中用等效脉冲代替近场脉冲型地震动的 可行性。

1 大跨越输电塔-线体系及其建模

线路跨越通航大河流、湖泊或海峡等,因档距 较大(1000m 以上)或杆塔较高(100m 以上),导线选 型或杆塔设计需特殊考虑,且发生故障时严重影响 航运或修复特别困难的耐张段称为大跨越(large crossing)^[6]。截至目前,国内外不同时期建设的大 跨越工程数量在350处以上,跨越塔形式主要包括 钢筋混凝土塔、组合角钢塔、钢管塔等。钢管塔由 于构件体型系数、断面特性、经济指标方面的优势, 日益成为跨越塔的主流形式,目前国内新建的大跨 越塔多是钢管塔。大跨越输电塔-线体系的布置方式 多采用两个直线塔和两个耐张塔的形式,其主跨跨 越河流或海峡(通航或不通航),跨越段自成一耐张 段,即耐-直-直-耐方式。国内近年来新建的大规模 大跨越输电塔-线体系绝大多数塔高在 200m~ 250m, 跨越档距多在 1500m~2000m, 这一定程度 上是由我国大江大河的跨越条件决定的。为了使研 究具有普遍意义,本文依据近年国内大跨越输电 塔-线体系参数的分布情况,选择了结构参数较为典 型的某 800kV 直流大跨越输电塔-线体系作为研究 对象。其形式为传统的耐-直-直-耐形式,档距分配 为 600m、1650m、600m。跨越塔是钢管塔, 直线 跨越塔呼高约 221m, 全高约 233.5m。大跨越导、 地线形式为 AACSR/EST 4×640/290 特强钢芯高强 铝合金线。

由于耐张塔刚度很大,目前的研究中多数将耐 张塔用导线与基础之间的直接铰接来代替,本文在 有限元模型中也将其视作导、地线与基础的铰接 点。已有研究表明^[7]:绝缘子对塔-线体系水平向地 震激励下响应的极值影响很小,对塔-线体系竖向地 震激励下的响应完全没有影响,而实际工程中绝缘 子串的组装形式分为悬垂组装与耐张组装两大类, 每类绝缘子串随杆塔结构、绝缘子型式、导线根数 与电压变化亦有很大差异,因而在此暂未专门考虑 绝缘子的影响。本文为利用动力松弛法找形,使用 了 ANSYS-LSDYNA 的显式-隐式连续求解,利用 其显式-隐式分析的单元转换功能,在显式-隐式求 解中分别将导线用 link160-link8 单元(多段铰接)来 模拟,依据构件连接状况,将输电塔主材和横隔用 Beam161-Beam4 梁单元(固结)来模拟,斜材和横担 用 link160-link8 桁架单元(铰接)模拟,模型如图 1 所示。

Fig.1 Model of large crossing transmission tower-line system

2 大跨越输电塔-线体系的动力特性

本文从谐响应和模态两方面研究了独立塔和 塔-线耦合体系的动力特性,通过独立塔和塔-线耦 合体系动力特性的对比分析了塔-线耦合对输电塔-线体系的影响,在谐响应分析中,分别考察了独立 塔和大跨越输电塔-线体系在基底荷载激励下的谐 响应,将两者进行了对比,如图2所示。图2(a)、 图2(b)两条曲线分别是独立塔和塔-线耦联体系中 塔头横担处的谐响应(0~10Hz),频率范围覆盖了独 立塔的前二阶模态和塔-线耦合体系的相应模态。从

Fig.2 The harmonic response analysis of freestanding tower and tower-line system

图 2 中可以看出,独立塔的谐响应有 3 个峰值,3 个峰值的横坐标分别等于其前 3 阶固有频率,较低 的频率是 1 阶固有频率,较高的频率是 3 阶固有频 率。塔-线耦合体系的谐响应峰值也与模态相对应, 但与独立塔不同,塔-线耦合体系在 0~10Hz 范围内 有多个峰值。

为了反映塔-线体系与独立塔频率之间的关系,文 献[8]中引入了"分支频率组(The group of branching frequencies)"的概念,其定义为"在独立塔每阶固 有频率周围都有一组塔-线耦合体系固有频率与之 相邻,为方便起见,这些频率组被称为分支频率 组"。这个概念的重要之处在于明确了"塔-线耦合 体系"与"独立塔"两者频率之间是多对一而不是 一对一的关系。然而,它只是根据结构各阶频率的 分布情况进行定义的,当结构频率较为密集时单纯 依靠频率本身的分布情况难以区分各个"分支频 率"的归属关系,因而本文在此基础上进一步提出 "模态组"的概念,来反映塔-线体系与独立塔之间 的模态对应关系。

本文将"模态组"定义为与独立塔某阶模态相 对应的塔-线体系的一组模态,包括分支频率组和相 应的"塔-线体系振型组"。判断塔-线体系模态属 于某阶模态组的依据是包含该阶独立塔振型。"模 态组"的定义更好的解释了塔-线耦合体系模态与独 立塔模态之间是多对一的关系,说明"分支频率组" 与独立塔频率之间多对一的关系,是由"塔-线体系 振型组"与独立塔振型之间多对一的关系决定的, 两种多对一的对应关系之间是直接相关的。

图 3 是塔-线体系前四阶振型,图 4 是独立塔的 前五阶振型,图 5 列出了与独立塔前二阶模态对应 的塔-线耦合体系模态组的振型组。显然,大跨越 塔-线体系固有周期远大于一般塔-线体系,塔-线耦

Fig.3 The first four in-plane mode shapes of tower-line system

图 5 对应独立塔平面内一、二阶模态的塔-线耦联体系 平面内模态组的振型组

Fig.5 The in-plane mode shape groups corresponding to the first two in-plane modes of freestanding tower

合体系低阶模态主要与导线相关,其频率由导线参数决定,而各阶塔-线模态组参数由塔、线参数共同决定。因而,分析塔-线体系近场脉冲地震动反应时,地震动记录的选择需要兼顾到塔和导线的动力特性,脉冲周期范围足够大,才能全面地反应大跨越塔-线体系的近场脉冲型地震动反应特征。

3 大跨越输电塔-线体系的近-远场 地震反应对比

3.1 本文采用的地震动记录

目前,近场地震动记录的数量,尤其是典型脉 冲型地震动的数量仍然十分有限,但研究表明^[9-11]: 由于大脉冲在近场地震动中起到主导作用,这类地 震动可以用简单的脉冲加以等效,等效脉冲地震动 可以较好地反映近场地震动的基本特征和结构在 此类地震动作用下的地震反应特性。 本文采用等效脉冲与实际地震动相结合的方 法来进行研究,通过实际地震动响应的分析来给出 地震响应随脉冲地震动参数的变化规律,通过实际 地震动响应与等效脉冲响应的对比验证在大跨越 输电塔-线体系近场脉冲型地震响应分析中采用等 效脉冲的可行性。所选的地震动记录和等效近场脉 冲模型主要反映了方向性效应。

同时,为了对比大跨越输电塔-线体系近-远场 地震反应的差异,在此选择了广泛采用的 El Centro 地震动、Taft 地震动以及北岭地震(Northridge, 1994) 的4条记录和阪神地震(Kobe, 1995)的4条记录作 为一般地震动记录的代表与近场地震动记录进行 了对比,如表1所示。近场脉冲型地震动选择了记 录较多的北岭地震(Northridge, 1994)和集集地震 (Chi-Chi, 1999)的十条近场脉冲型地震动记录,如 表2所示。与研究框架等结构时去除脉冲周期较长 的地震动^[9]不同,为了全面反映地震动脉冲周期和 结构固有周期的关系,表2中尽量包含了最大范围 的脉冲周期,并依据体系各阶模态组参数使所用地 震动记录脉冲周期在低阶"模态组"周期范围内有 较密的分布,以全面反应大跨越的近场反应规律。

表 1 一般地震动记录 Tabla 1 Ordinary ground mations adopted in the study

Table 1 Ordinary ground motions adopted in the study						
编号	地震	台站(分量)	$M_{\rm w}$	<i>R</i> /km	PGA/g	
1	Imperial Valley(1940)	ELC(180)	6.7	8.3	0.313	
2	Kern County(1952)	TAF(021)	6.7	41	0.156	
3	Northridge(1994)	BIR(090)	6.7	48.9	0.165	
4	Northridge(1994)	BIR(180)	6.7	48.9	0.171	
5	Northridge(1994)	DWN(090)	6.7	46.7	0.158	
6	Northridge(1994)	FAI(095)	6.7	44.8	0.122	
7	Kobe(1995)	HIK(000)	6.9	95.7	0.141	
8	Kobe(1995)	HIK(090)	6.9	95.7	0.148	
9	Kobe(1995)	MZH(090)	6.9	70.3	0.052	
10	Kobe(1995)	OKA(090)	6.9	86.9	0.059	

表う	实际近场脉冲型地震动记录
1X 4	大你赶狗你们主地展的儿子

 Table 2
 Near-fault Pulse-like ground motions adopted in the study

编号	地震	台站(分量)	$T_{\rm p}/{\rm s}$	<i>R</i> /km	PGA/g
N1	Northridge(1994)	PAC(175)	0.67	8.00	0.416
N2	Northridge(1994)	NWH(360)	0.84	7.10	0.590
N3	Northridge(1994)	PUL(194)	0.96	8.00	1.286
N4	Northridge(1994)	RRS(228)	1.39	7.10	0.838
N5	Northridge(1994)	LDM(064)	1.64	2.60	0.512
N6	Chi-Chi(1999)	TCU076(E)	3.77	1.95	0.303
N7	Chi-Chi(1999)	TCU075(E)	5.42	1.49	0.334
N8	Chi-Chi(1999)	TCU052(E)	7.81	0.24	0.348
N9	Chi-Chi(1999)	TCU103(E)	9.59	4.01	0.134
N10	Chi-Chi(1999)	TCU068(E)	11.86	1.09	0.556

3.2 大跨越输电塔-线体系的近-远场地震反应对比

以表1中所示的El Centro 地震动、Taft 地震动 等目前广泛采用的实际地震动记录作为远场地震 动记录的代表,以表2中的近场脉冲型地震动记录 作为近场脉冲型地震动的代表,通过对比大跨越输 电塔-线体系在两组地震动下的反应,能够考察大跨 越输电塔-线体系的近-远场地震反应差异。

图 6 是大跨越输电塔-线体系直线塔在近-远场 地震动作用下的反应对比,纵坐标为输电塔高度, 横坐标是输电塔在 10 条地震动作用下的地震反应 包络线的均值。显然,大跨越输电塔-线体系在近场 脉冲型地震动下的反应远大于在一般地震动下的 反应,两者输电塔顶端的位移反应相差达 65%,底 端部分位置位移反应相差可达 4.2 倍,上部剪力反 应相差可超过1倍,底端剪力反应相差 82%。值得 注意的是,此处所采用的地震动记录经过了调幅, 近-远场地震动记录的加速度峰值均为 0.3g,而一般 近场脉冲型地震动的幅值较远场要高,可见大跨越 塔-线体系的近场脉冲型地震动反应远大于一般地 震动,这一点明显有别于一般输电塔-线体系^[5]。

Fig.6 Seismic responses comparison of transmission towers in LCTL subjected to ordinary and near-fault ground motions

4 大跨越输电塔-线体系的近场脉冲 型地震反应特征

由于大跨越输电塔-线体系中输电塔与导线动

力特性有很大差异,如本文导线的固有周期达到输 电塔固有周期的8倍以上。而结构的地震反应与地 震动成分密切相关,为全面的反应大跨越的近场脉 冲型地震反应特征,本文基于大跨越塔-线体系特 点,采用了选择典型大跨越塔-线体系,固定结构周 期,调整地震动脉冲周期与结构周期相对关系的方 法来分析大跨越输电塔-线体系的近场反应规律。 表 2 中给出了所用近场地震动的参数, 地震动的脉 冲周期范围覆盖了 0.67s~11.86s, 该组地震动脉冲 周期分布较广,能够较为全面地反映结构参数与地 震动参数之间的关系和大跨越塔-线体系的近场反 应特征。本文考察了等效脉冲地震动模型对大跨越 塔-线体系地震响应分析的适用性,将实际近场脉冲 型地震动与等效脉冲地震动模型相结合来分析大 跨越输电塔线体系的近场脉冲型反应。常用等效脉 冲模型的主要参数包括脉冲幅值和脉冲周期,脉冲 幅值的影响是显而易见的,因而本文将所采用的实 际地震动调幅到 0.3g,来考察脉冲周期的影响。

4.1 脉冲周期对大跨越输电塔-线体系实际地震 反应的影响

图 7 中是跨越塔塔体在近场脉冲型地震动下的 剪力和弯矩反应包络图。总体而言,输电塔的位移、 剪力反应都随脉冲周期增加而增大。对于脉冲周期 较长的 N5~N10 这 6 条记录,这种规律十分明显,

图 7 塔-线体系实际近场脉冲地震动反应包络图 Fig.7 Seismic response envelope of transmission towers subjected to near-fault pulse-like ground motions

而 N1~N4 引起的反应较为接近。这是由于在脉冲 周期较短时,其周期在各阶模态组的周期范围内, 因而塔、线的频率都可能对响应有较大影响,而对 于脉冲周期达到导线固有周期 1/3 以上的近场脉 冲,导线动力特性的影响居于主导地位并随脉冲周 期增加逐步显著。

4.2 大跨越输电塔-线体系等效脉冲型地震动反应 与实际地震响应对比

为了弥补目前近场地震动记录数量的不足,本 文在大跨越近场反应分析中引入了等效脉冲模型, 并验证了其在大跨越塔-线体系地震响应分析中的 适用性。

本文中的等效脉冲采用的是正弦等效脉冲模型,其加速度时程表达式如式(1)所示,式中A是加速度幅值,T_p是脉冲周期,t是地震动加速度时程曲线的时间。将式(1)对时间积分可得到相应的速度和位移表达式。图8中是正弦等效脉冲的加速度、速度和位移时间历程曲线示意图。

生成等效脉冲时,调整正弦脉冲参数,使其周 期 T_p与实际地震动脉冲周期一致,速度脉冲幅值 V_{eff}与实际地震动记录 PGV 相等,作为相应实际地 震动的等效脉冲。由于正弦脉冲的加速度幅值 a_{eff} 与速度脉冲幅值 V_{eff}之间固定的数量关系,正弦等 效脉冲的加速度幅值可以方便地得出,如表 3 中所 示。显然在实际脉冲型地震动速度幅值相同的情况 下,等效脉冲加速度幅值有很大差异,整体上随脉 冲周期增加而减小。

表 3 等效脉冲地震动记录 Table 3 The parameters of the equivalent pulses for Near-fault Pulse-like ground motions adopted in the study

等效脉冲	地震动	$T_{\rm p}/{\rm s}$	$a_{\rm eff}/g$	PGA/g	$V_{\rm eff}/({\rm m/s})$	PGV/(m/s)
P1	N1	0.67	0.309	0.3	0.323	0.323
P2	N2	0.84	0.217	0.3	0.284	0.284
P3	N3	0.96	0.161	0.3	0.242	0.242
P4	N4	1.39	0.272	0.3	0.589	0.589
P5	N5	1.64	0.146	0.3	0.374	0.374
P6	N6	3.77	0.105	0.3	0.620	0.620
P7	N7	5.42	0.094	0.3	0.796	0.796
P8	N8	7.81	0.113	0.3	1.371	1.371
Р9	N9	9.59	0.093	0.3	1.386	1.386
P10	N10	11.86	0.050	0.3	0.936	0.936

Fig.9 Seismic response envelope of transmission towers in

LCTL subjected to equivalent pulse mode

图 9 中是跨越塔塔体在等效脉冲地震动下的剪 力和弯矩反应包络图。该组等效脉冲型地震动脉冲 周期与图 7 中的实际地震动一一对应。显然,等效 脉冲引起的剪力响应与实际地震动吻合较好,两者 在基底处的误差不超过 10%。而两图中实际地震动 与等效脉冲引起的大跨越塔-线体系位移反应对比 表明,当脉冲周期较小时,等效脉冲的位移响应与 实际地震动吻合较好,但是与剪力反应不同的是, 当脉冲周期接近于导线固有周期时等效脉冲激起 的位移响应包络图曲线开始不同于实际地震动,上 部位移反应偏大,当脉冲周期增加到 11.86s 时,等 效脉冲激起的大跨越输电塔-线体系的位移响应虽 然整体还以实际地震动位移响应为中心,但是形状 存在明显差异。显然,用简单脉冲等效近场地震动进行大跨越位移响应分析,脉冲周期范围是受限的。

等效脉冲作用下的地震反应规律与图 7 的实际 地震动反应规律相一致,位移、剪力均随脉冲周期 增加而增大,当地震动脉冲周期较长时这种规律表 现更加明显。实际脉冲地震动中的高频成分对大跨 越输电塔-线体系在长脉冲周期范围内的地震响应 规律无明显影响。整体而言,大跨越输电塔-线体系 在实际脉冲型地震动下的反应随脉冲周期的变化 趋势与等效脉冲型地震动一致,地震响应随脉冲周 期增加而增大。

5 结论

本文通过对典型大跨越塔-线体系的动力特性 进行分析,研究了大跨越输电塔-线体系的动力特 性。引入近场脉冲型地震动的等效脉冲模型与实际 地震动记录相结合分析了大跨越输电塔-线体系的 近场脉冲型地震反应。综合前文分析可得如下 结论:

(1)与一般输电塔的近场脉冲响应与一般地震 响应无明显差异不同,在同加速度幅值的近场脉冲 型地震动作用下,大跨越输电塔-线体系的动力反应 远大于其在一般地震动下的反应;

(2)将近场脉冲型地震动的等效脉冲模型应用 于大跨越输电塔-线体系的近场地震反应分析能弥 补目前近场脉冲型地震动数量的不足,简化分析过 程,得到的结果可信;

(3)大跨越输电塔-线体系的近场脉冲型地震反应幅值受地震动的脉冲周期影响。当地震动脉冲周期较长达到导线固有周期 1/3 以上时,体系的位移、加速度等地震反应明显随脉冲周期增大而增大。当脉冲周期较小,与输电塔周期接近时,受地震动高频成分影响,上述变化规律表现不如长脉冲周期时明显。

参考文献:

[1] 台湾地震工程研究中心.九二一集集大地震全面勘灾 精简报告[R].中国,台湾:台湾地震工程研究中心, 1999.

NCREE. Damage report on 921 Chi-chi earthquake (draft) [R]. Taiwan, China: NCREE, 1999. (in Chinese)

(参考文献[2]-[11]转第106页)

钢柱稳定极限承载力的影响[J].四川建筑科学研究, 2008, 34(3): 30-33.

Li Haifeng, Wei Fangfang, Cao Pingzhou. Effect of ultimate stability capacity of steel boxing column with residual stress and induced bending [J]. Sichuan Building Science, 2008, 34(3): 30-33. (in Chinese)

- [10] 李海锋. 大跨度空间结构箱形钢构件抗震性能研究
 [D]. 上海: 同济大学, 2011.
 Li Haifeng. Study on seismic behavior of steel box beam-columns in large span spatial structures [D]. Shanghai: Tongji University, 2011. (in Chinese)
- [11] 沈祖炎,陈扬骥,陈以一. 钢结构基本原理[M]. 北京: 中国建筑工业出版社, 2000: 16-23.
 Shen Zuyan, Chen Yangji, Chen Yiyi. Basic theory of steel structures [M]. Beijing: China Architecture & Building Press, 2000: 16-23. (in Chinese)
- [12] 王文达. 钢管混凝土柱-钢梁平面框架的力学性能研究 [D]. 福州: 福州大学, 2006.

Wang Wenda. Behavior of steel beam to concrete-filled

steel tubular columns frames [D]. Fuzhou: Fuzhou University, 2006. (in Chinese)

- [13] 罗金辉. L 形钢管混凝土柱-H 型钢梁框架节点抗震性 能研究[D]. 上海:同济大学, 2011.
 Luo Jinhui. Study on seismic behavior of connections between concrete-filled L-shaped steel tubular columns and H-shaped steel beams [D]. Shanghai: Tongji University, 2011. (in Chinese)
- [14] 崔大光. 型钢混凝土梁柱框支剪力墙抗震性能研究
 [D]. 上海: 同济大学, 2006.
 Cui Daguang. Cyclic performance of shear wall supported on frame with steel reinforcing [D]. Shanghai: Tongji University, 2006. (in Chinese)
- [15] 张世强,吕杰能,蒋峥,等.关于相关系数的探讨[J]. 数学的实践与认识,2009,39(19):102-107.
 Zhang Shiqiang, Lü Jieneng, Jiang Zheng, et al. Discussion about the correlation coefficient [J]. Mathematics in Practice and Theory, 2009, 39(19):

102-107. (in Chinese)

(上接第82页)

[2] 台湾地震工程研究中心.九二一集集大地震全面勘灾 精简报告-维生线震害调查[R].中国,台湾:台湾地震 工程研究中心,1999.

NCREE. Damage report on 921 Chi-chi earthquake-lifeline system [R]. Taiwan, China: NCREE, 1999. (in Chinese)

- [3] 台湾地震工程研究中心.九二一集集大地震震灾调查 报告[R].中国,台湾:台湾地震工程研究中心,2001.
 NCREE. Damage report on 921 Chi-chi earthquake [R]. Taiwan, China: NCREE, 2001. (in Chinese)
- [4] 尹荣华,李东亮,刘戈林,翟桐. 高压输电塔震害及抗 震研究[J]. 世界地震工程,2005,21(1):51-54.
 Yin Ronghua, Li Dongliang, Liu Gelin, Zhai Tong. Seismic damage and analysis of power transmissions towers [J]. World Earthquake Engineering, 2005, 21(1): 51-54. (in Chinese)
- [5] 岳茂光,王东升,李宏男,翟桐.近场地震动作用下输 电塔-导线体系反应分析[J].地震工程与工程振动, 2005,25(4):116-125.

Yue Maoguang, Wang Dongsheng, Li Hongnan, Zhai Tong. Response of power transmission tower-cable system subjected to near-fault ground motions [J]. Journal of Earthquake Engineering and Engineering Vibration, 2005, 25(4): 116-125. (in Chinese)

- [6] DLT5095-1999, 110~500kV 架空送电线路设计技术规程[S]. 北京:中国电力出版社, 1999.
 DLT5095-1999, Technical code for designing 110~500kV overhead transmission line [S]. Beijing: China Electric Power Press, 1999. (in Chinese)
- [7] Mohamed Mohsen El-Attar. Nonlinear dynamics and seismic response of power transmission lines [D]. McMaster University, 1997: 72-74.
- [8] Ozono S, Maeda J, Makino M. Characteristics of in-plane free vibration of transmission line systems [J]. Engineering Structures, 1988, 10(3): 272-280.
- [9] Alavi B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions
 [J]. Earthquake Engineering and Structural Dynamics, 2004, 33: 687-706.
- [10] Menun C, Fu Qiang. An analytical model for near-fault ground motions and the response of SDOF system [C]. Boston, Massachusetts: Mira Digital Publishing, 2002.
- [11] Hall JF, Heaton TH, Halling MW, Wald DJ. Near-source ground motions and its effects on flexible buildings [J]. Earthquake Spectra, 1995, 11(4): 569-605.