文章编号: 1000-4750(2011)08-0009-08

拉伸应变硬化 UHTCC 材料的弯曲变形分析

侯利军¹,张秀芳¹,*徐世烺^{1,2}

(1. 大连理工大学海岸与近海工程国家重点实验室,辽宁,大连 116024;
 2. 浙江大学建筑工程学院,浙江,杭州 310058)

摘 要:该文依据弯矩-面积方法给出了弯曲变形计算的理论闭合解,结合所完成的不同厚度超高韧性水泥基复合 材料试件的四点弯曲试验结果,计算了弯矩-曲率曲线、荷载-挠度曲线,通过与挠度简化计算公式及试验结果对 比分析了理论公式的可行性。结果表明:基于闭合解得到的结果与试验实测值吻合最好,最大误差不超过 5%, 且试件厚度对变形计算基本没有影响;而基于简化公式计算的变形与实测值相差很大,最大误差达 30%~50%。 因此,对于有着拉伸应变硬化性能的材料,弯曲变形理论闭合解可以作为其变形计算的合理公式,并为拉伸性能 反预测作准备。

FLEXURAL DEFORMATION ANALYSIS ON TENSILE STRAIN HARDENING UHTCC

HOU Li-jun¹, ZHANG Xiu-fang¹, ^{*}XU Shi-lang^{1,2}

(1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;

2. College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, Hangzhou 310058, China)

Abstract: The paper presents theoretical closed-solution to flexural deformation based on the moment-area method. The moment-curvature curve and load-deflection curve are calculated, and the feasibility of the theoretical closed-solution is further evaluated through a comparison between the results obtained by the simplified equation and the experimental measurements from four-point bending tests on specimens made of ultrahigh toughness cementitious composite. The comparison analysis shows that the results obtained based on closed-solution agree well with the test data with the maximum error of 5%, whereas the result by the simplified equation has significant errors, as high as 30%-50%. The analysis also shows that there is no influence of depth on the calculated deflection based on closed-solution. Therefore, for the tension strain hardening material, the closed solution to flexural deformation is more reasonable and can be regarded as a prediction approach for the inverse evaluation of tension property.

Key words: tension strain hardening; ultrahigh toughness cementitious composite (UHTCC); flexural deformation behavior; closed-solution; depth of specimen

作者简介:侯利军(1981一),男,山西人,博士生,主要从事新型材料与结构,超高韧性水泥基复合材料研究(E-mail:hlj2932@yahoo.cn);

收稿日期: 2009-12-16; 修改日期: 2010-04-20

基金项目: 国家自然科学基金重点项目(50438010); 南水北调工程建设重大关键技术研究及应用项目(JGZXJJ2006-13)

张秀芳(1976一), 女, 山西人, 讲师, 博士, 主要从事混凝土断裂力学和新型高性能材料研究(E-mail: xiufangzhang_cn@yahoo.com.cn); *徐世烺(1953-), 男, 陕西人, 长江学者特聘教授, 博士, 博导, 主要从事混凝土断裂力学基本理论与工程应用、新型材料与结构、超 高韧性水泥基复合材料、非金属纤维编织网增强混凝土结构研究(E-mail: slxu@zju.edu.cn).

20世纪60年代以来,纤维增强混凝土凭借其 优良的韧性性能越来越得到国际上各国学者深入 广泛的研究。依据其拉伸性能的差异,一般可以分 为拉伸硬化及拉伸软化两种类型。对于后者,又可 以根据其变形性能分为变形硬化和变形软化两 类[1]。就传统的纤维增强混凝土而言,其韧性和裂 缝控制能力与普通混凝土相比都有较大的提高[2], 但是大部分均表现为拉应变软化性能,裂缝控制均 达不到裂缝无害化的要求。近年来,一些高性能纤 维增强水泥基材料(HPFRCC)相继出现,其中有碳 纤维增强水泥基材料(CFRC)、SIMCON(Slurry infiltrated mat concrete), SIFCON(Slurry infiltrated fiber concrete), 以及 ECC(Engineered cementitious composites)等^[3]。ECC 为一种三维乱向分布短纤维 增强的新型拉应变硬化超高韧性水泥基复合材料, 由美国密歇根大学的 Victor Li 教授等最早研发成 功^[4]。该材料的主要特点是在直接拉伸荷载作用下 表现出显著的应变硬化特性,在起裂后仍能承受较 高的荷载,体现了类似金属材料的硬化特征,克服 了传统水泥基材料在拉伸荷载下的软化性能,具有 非常显著的非线性变形、优良的韧性和高的能量耗 散能力^[5]。其拉应变能力高达 2%~6%,为普通混凝 土的 200 倍~600 倍,裂缝间距仅为 1mm~2mm,裂 缝宽度可限制在 100µm 以内^[6],断裂能高达 24kJ/m^{2[7]}。在国内,许多研究机构从 2000 年起也 相继开始了这方面的研究, 然而由于该材料较高的 性能要求,研究相对困难。最近,我们通过多年的 研究,已能稳定的实现拉伸应变硬化这一性能,并 将其命名为 UHTCC^[8]。文献[9-11]就钢筋增强 UHTCC 梁(RUHTCC)和UHTCC 控裂钢筋混凝土功 能梯度梁(UHTCC/RC)进行了弯曲理论与试验研 究,并与普通 RC 梁进行对比,发现其延性及变形 性能有很大提高,且有效改善了受拉区的裂缝形态。

当前,就纤维增强水泥基材料的应变硬化性能,均采用直接拉伸试验所测的极限拉应变作为评价指标。然而,由于进行直接拉伸试验的困难,其对试件的制作以及对中加载要求较为苛刻,可操作性较低,不便于实际应用。因此,有必要考虑应用简单易行的弯曲试验来评价其应变硬化性能。文献[12]就 DFRCC(Ductile fiber-reinforced cementitious composites)进行了大量的的直接拉伸试验,结果表明其拉伸性能与试验方法(包括试件尺寸与形状,边界条件)及浇筑方式相关,并比较了四点弯曲

试验反计算的受拉性能与直接拉伸试验结果之间 的差异,认为前者可以作为 DFRCC 拉伸性能的一 种评价方法。文献[13-14]通过四点弯曲试验反预 测了其直接拉伸性能,均表明与直接拉伸试验结果 有较好的一致性。

不管从拉伸性能预测弯曲性能还是从弯曲性 能反预测拉伸性能,均要求拉伸性能与弯曲性能之 间有很好的相互转化关系。对于普通应变软化材料 而言,一般应用简化变形计算公式计算变形,而对 于弯曲变形硬化甚至拉伸应变硬化材料而言,一般 简化公式不能满足要求,很有必要建立在大变形条 件下的变形计算合理公式,从而能够准确地反预测 拉伸性能,并为工程设计中挠度变形验算提供计算 方法。基于此,本文在平截面假定的前提下,依据 弯曲截面分析理论,建立了基于弯矩-面积方法的挠 度理论闭合解,并通过不同厚度 UHTCC 试件的四 点弯曲试验评价了其理论公式的可行性。

1 基本弯曲理论

在进行弯曲性能分析时,假设平截面假定成 立^[15]。对于拉应变硬化 UHTCC,它在开裂后仍要 经历一个较长的荷载增加阶段,因此进行弯曲性能 分析时,需要考虑开裂后材料抗拉能力的贡献。

1.1 UHTCC 的本构关系

为了简化计算,参照文献[16]将曲线形式的 UHTCC本构关系简化为图 1 所示的双线性拉伸及 压缩模型,应力-应变表达式见式(1)、式(2)。

拉伸本构关系:

$$\begin{cases} \sigma_1 = \frac{\sigma_{tc}}{\varepsilon_{tc}} \varepsilon(x), & 0 < \varepsilon(x) \le \varepsilon_{tc} \\ \sigma_2 = \sigma_{tc} + \frac{\sigma_{tu} - \sigma_{tc}}{\varepsilon_{tu} - \varepsilon_{tc}} (\varepsilon(x) - \varepsilon_{tc}), & \varepsilon_{tc} < \varepsilon(x) \le \varepsilon_{tu} \end{cases}$$

$$(1)$$

压缩本构关系:

$$\sigma_{3} = \frac{\sigma_{cc}}{\varepsilon_{cc}} \varepsilon(x), \qquad -\varepsilon_{cc} \leq \varepsilon(x) \leq 0$$

$$\sigma_{4} = -\sigma_{cc} + \frac{\sigma_{cu} - \sigma_{cc}}{\varepsilon_{cu} - \varepsilon_{cc}} (\varepsilon(x) + \varepsilon_{cc}), -\varepsilon_{cu} \leq \varepsilon(x) < -\varepsilon_{cc}$$
(2)

其中: ε_{tc} 、 ε_{tu} 、 ε_{cc} 、 ε_{cu} 分别为开裂拉应变、极限拉 应变、开裂压应变和峰值压应变; σ_{tc} 、 σ_{tu} 、 σ_{cc} 和 σ_{cu} 分别为 ε_{tc} 、 ε_{tu} 、 ε_{cc} 和 ε_{cu} 所对应的应力值。 (3)

依据平截面假定,以底面拉应变*ε*,为自变量,可得截面上任一点的应变*ε*(*x*),见下式:

$$\frac{x_c}{\varepsilon_t} = \frac{x_c - x}{\varepsilon(x)} \Longrightarrow \varepsilon(x) = \varepsilon_t \cdot (1 - x / x_c), \quad 0 \le x \le h$$

其中: *x_c* 为中和轴高度(截面下边缘到中和轴的距离); *x* 为受拉区下边缘到截面计算位置处的距离, 见图 2 所示。

图 1 简化的 UHTCC 本构关系 Fig.1 Simplified constitutive relation of UHTCC

1.2 截面内力平衡关系

整个受弯过程中,随着截面下边缘拉应变 ε_t 的 增加,分为图 2(a)~图 2(c)所示的 3 个阶段: 1) 弹 性阶段($\varepsilon_t \leq \varepsilon_{tc}, \varepsilon_c < \varepsilon_{cc}$); 2) 弹塑性阶段($\varepsilon_{tc} < \varepsilon_t \leq \varepsilon_{tu}$, $\varepsilon_{c} \leq \varepsilon_{cc}$; 3) 弹塑性阶段($\varepsilon_{tc} < \varepsilon_{t} \leq \varepsilon_{tu}$, $\varepsilon_{cc} < \varepsilon_{c} \leq \varepsilon_{cu}$)。截 面内力平衡方程组:

在图 2(a)阶段:

$$\begin{cases} \sum N = \int_{0}^{x_{c}} b \cdot \sigma_{1}(x) dx + \int_{x_{c}}^{h} b \cdot \sigma_{3}(x) dx = 0\\ \sum M = \int_{0}^{x_{c}} b \cdot \sigma_{1}(x) x dx + \int_{x_{c}}^{h} b \cdot \sigma_{3}(x) x dx = M \end{cases}$$
(4)

在图 2(b)阶段:

$$\begin{cases} \sum N = \int_{0}^{g_{1}} b \cdot \sigma_{2}(x) dx + \int_{g_{1}}^{x_{c}} b \cdot \sigma_{1}(x) dx + \\ \int_{x_{c}}^{h} b \cdot \sigma_{3}(x) dx = 0 \\ \sum M = \int_{0}^{g_{1}} b \cdot \sigma_{2}(x) x dx + \int_{g_{1}}^{x_{c}} b \cdot \sigma_{1}(x) x dx + \\ \int_{x_{c}}^{h} b \cdot \sigma_{3}(x) x dx = M \\ g_{1} = x_{c} \cdot (1 - \varepsilon_{tc} / \varepsilon_{t}) \end{cases}$$
(5)

在图 2(c)阶段:

$$\begin{cases} \sum N = \int_{0}^{g_{1}} b \cdot \sigma_{2}(x) dx + \int_{g_{1}}^{x_{c}} b \cdot \sigma_{1}(x) dx + \\ \int_{x_{c}}^{g_{2}} b \cdot \sigma_{3}(x) dx + \int_{g_{2}}^{h} b \cdot \sigma_{4}(x) dx = 0 \\ \sum M = \int_{0}^{g_{1}} b \cdot \sigma_{2}(x) x dx + \int_{g_{1}}^{x_{c}} b \cdot \sigma_{1}(x) x dx + \\ \int_{x_{c}}^{g_{2}} b \cdot \sigma_{3}(x) x dx + \int_{g_{2}}^{h} b \cdot \sigma_{4}(x) x dx = M \\ g_{1} = x_{c} \cdot (1 - \varepsilon_{tc} / \varepsilon_{t}) \\ g_{2} = x_{c} \cdot (1 + \varepsilon_{cc} / \varepsilon_{t}) \end{cases}$$

其中 g1 或 g2 为截面受拉区、受压区应力转折点到 截面受拉区下边缘的距离。根据式(4)~式(6)可以得 到不同状态下截面的中和轴高度,进而确定相应的 弯矩(详见附录所示)。

Fig.2 Distributions of stress and strain along the depth at different stages.

1.3 弯曲变形理论

依据弯矩-面积方法,不论何种加载方式,均可 以通过式(7)~式(9)^[15]计算任意两点 *A*、*B* 之间的转 角及挠度变形:

$$\theta_{AB} = \int_{A}^{B} \varphi(x) \mathrm{d}x \tag{7}$$

$$\delta_{AB} = \int_{-4}^{-8} \varphi(x) x \mathrm{d}x \tag{8}$$

$$\varphi = \varepsilon_t / x_c = (\varepsilon_t - \varepsilon_c) / h \tag{9}$$

$$\varphi = \varphi(M) = \varphi(Fx/2) = \varphi(x) \tag{10}$$

其中: θ_{AB}、δ_{AB}分别为 A、B 两点间的相对转角、 挠度; φ(x)为 AB 段间某一截面的曲率,可通过转 换关系式(10)将弯矩-曲率关系中弯矩 M 换元即可 导出。由于式(7)、式(8)忽略了由剪力作用形成的斜 裂缝所引起的附加变形的影响^[15],因此对不同的加 载方式计算结果的准确性不尽一致。然而,对于四 点弯曲加载方式,一般将跨中纯弯段看作是塑性铰 区而不另外考虑剪弯段的等效塑性铰区^[17],其计算 结果基本与实际变形相符。因此,在下文的分析中, 认为塑性铰发生在纯弯段内,塑性铰区的长度与纯 弯段的长度相等。

对于本文所研究的四点弯曲试验,各个阶段极 限状态下的弯矩分布、曲率分布如图3所示,依据 式(8),分别得到了开裂前及开裂后的挠度计算式, 分别见式(11)和式(12)。然而,对于能够产生大变形的拉应变硬化材料而言,还有一些计算极限状态下挠度变形的简化方法,如假定整个跨度曲率相同^[16]得到的简化计算式(13)和假定在剪跨段曲率基本呈线性分布所得到的简化计算式(14)^[13]。为了能够在设计中准确验算挠度,本文分别根据理论计算公式(式(11)和式(12))及简化计算公式(式(13)和式(14))计算了挠度变形值,并与试验实测结果进行对比。

$$\delta_{cr} = \frac{23}{216} l^2 \varphi_{cr} \tag{11}$$

$$\delta_u = \frac{5}{72} l^2 \varphi_u + \int_0^s \varphi(x) x dx \tag{12}$$

$$\delta_u = \frac{1}{8} l^2 \varphi_u \tag{13}$$

$$\delta_u = \frac{1}{9}l^2\varphi_u \tag{14}$$

事实上,跨中挠度理论表达式(11)、式(12)为半 跨范围内截面曲率对支座截面的面积矩。参照图 3 所示的曲率沿跨度的分布图,可以发现常数曲率分 布的纯弯段对跨中挠度贡献很大,而弯剪段部分的 贡献较小。而且从式(11)、式(12)中还可以发现,挠 度与曲率的关系呈线性相关。

2 弯曲变形曲线的程序计算法则

1) 依据试验所测本构关系曲线,确定各控制点 参数 σ_{tc} 、 σ_{tu} 、 σ_{cc} 、 σ_{cu} 、 ε_{tc} 、 ε_{tu} 、 ε_{cc} 、 ε_{cu} ,将其简 化为双线性模型。

2) 对于任一给定的ε_t,依据式(4)~式(6)中力的 平衡,通过多次迭代确定各拉应变下对应的中和轴 高度 x_c,并依据式(3)、式(9)分别计算相应的受压区 上边缘的压应变ε_c、截面曲率 φ。再将 x_c回代截面 弯矩平衡表达式,则可求出弯矩,进而依据下式计 算对应荷载。

$$F = 6M / l \tag{15}$$

3) 确定开裂弯矩*M_{cr}*和此拉应变点所对应的挠 度计算表达式,并依据式(7)及式(11)或式(12)计算 相应的转角和挠度理论值,同时将计算所得的曲率 φ分别代入简化计算式(13)、式(14)来确定相应的挠 度近似值。

4) 将受拉区下边缘拉应变 0-ε_{tu}分为若干点, 但要在开裂点到 0.01 范围内,取点要密集一些,而 在初始弹性段及拉应变超过 0.01 后,可以取点稀疏 一些。通过反复循环计算 2)步、3)步,从而可以确定 整个变形过程的弯矩-曲率及荷载-挠度的全曲线。

3 弯曲变形试验验证

3.1 试验概况

UHTCC 材料所用的主要成分为水泥、精细砂、 水、矿物材料和 PVA 纤维。其中, PVA 纤维为人 工合成纤维,长度 12mm、直径 40µm、长径比 300, 抗拉弹性模量及强度分别为 40GPa、1600MPa。试 验 UHTCC 材料的直接拉伸试验应力-应变曲线如 图 4 所示。从图 4 中取控制点(ε_{tc} , σ_{tc})、(ε_{tu} , σ_{tu}) 分别为(0.0002, 3.5MPa)、(0.04, 5.5MPa),对应的 拉伸模型屈服后塑性段部分如图 4 中黑粗线所示。 实 测 抗 压 强 度 σ_{cu} =44MPa,并 取 极 限 压 应 变 ε_{cu} =0.005。参考文献[16]所述,受压模型控制参数 的关系取为 σ_{cc} =2 $\sigma_{cu}/3$ 、 ε_{cc} = $\varepsilon_{cu}/3$ 。

Fig.4 The property of UHTCC under uniaxial tension test

为了进一步验证变形计算表达式的可行性,并 评价厚度对它的影响,试件选取 5 种厚度规格,包 括 15mm、30mm、50mm、70mm、100mm,长度 和宽度取为定值 400×100mm,其编号分别命名为 Sf15、Sf30、Sf50、Sf70、Sf100。试验采用三分点 加载方式,试验仪器为 1000kN 液压伺服万能试验 机,荷载由 5t 荷载传感器测定,跨中挠度由两个 LVDT 对称测定,在试件纯弯部位的上表面贴应变 片,安装夹式引伸仪,下表面也安装夹式引伸仪, 以测定上表面、下表面的压应变、拉应变。试验装 置如图 5 所示。

3.2 弯矩-曲率曲线对比

图 6(a)~图 6(e)所示为不同厚度试件弯矩-曲率 曲线的实测与理论计算曲线,每个小图中箭头所示 的数值分别为极限状态下纯弯段的实测和计算的 截面曲率值。图 6(f)所示曲率计算值与实测值之比 约在 1.03 左右,即平均偏差仅约为 3%。从这些图 中可以看出,理论计算曲线基本在实测曲线上下浮动,符合很好。

responses of different depth series

3.3 荷载-挠度曲线对比

图 7(a)~图 7(e)画出了根据前文程序计算得到 的荷载-挠度曲线及试验实测曲线。对比各组曲线, 不难看到,根据基于弯矩-面积方法的式(11)、式(12) 计算所得的挠度值与实测值最为接近,而应用简化 计算公式(13)、式(14)所得的挠度值明显偏大,而且 随着厚度的减小,它们差距越来越明显。表 1 列出 了各方法预测的峰值荷载对应的挠度计算结果及 与实测值的比值,可以看出理论解 Clt1(基于式(11)、 式(12))与实测值 Exp 相当接近,偏差在 5%之内, 简化解 Clt2(式(13))及简化解 Clt3(式(14))与实测值 Exp 相差较大,偏差分别为 50%、30%。图 7(f)所 示为极限状态时不同计算方法所得挠度预测值与 实测挠度的比值。从图 7 中可以清楚地看出依据弯 矩-面积方法得到的挠度比值基本在 1 左右,而依据 简化方法所得的挠度比值分别在 1.5、1.3 左右。其

主要原因在于,在简化公式中假定弯剪段与纯弯段

表 1	极限状态	下不同方	法挠度	预测值及	。
10, 1			141元1又	リ火がり且ひ	いてがりほ

 Table 1
 Deflections of the experimental and the calculated with different methods at ultimate state

编号	Exp/ mm	Clt1/ mm	Clt1/Exp	Clt2/ mm	Clt2/Exp	Clt3/ mm	Clt3/Exp
Sf15	24.700	24.964	1.011	36.661	1.484	32.588	1.319
Sf30	10.600	11.131	1.050	16.473	1.554	14.643	1.381
Sf50	6.670	6.523	0.978	9.668	1.449	8.594	1.288
Sf70	4.760	4.696	0.986	6.956	1.461	6.183	1.299
Sf100	3.610	3.576	0.991	5.268	1.459	4.683	1.297

(f) 挠度预测值与实测值之比

有相同常值曲率分布或是假定曲率在剪跨段基本 呈线性分布,这与实际曲率分布相差较大。因此, 可以认为应用基于弯矩-面积方法的表达式(11)、式 (12)来预测挠度更为准确合理。

4 结论

本文从基本的弯曲截面分析理论出发,对拉伸 应变硬化材料的弯曲变形性能进行了分析,给出了 基于弯矩-面积方法的挠度计算的理论闭合解,进行 了不同厚度超高韧性水泥基复合材料试件的四点 弯曲试验,评价了挠度计算的合理公式。与试验结 果相比较,根据弯矩-面积方法的挠度计算式(11)和 式(12)得到的弯曲挠度与实测值吻合最好,且厚度 对变形计算基本没有影响,而依据假定曲率沿跨度 常数分布的挠度简化计算式(13)和假定剪弯段曲率 基本呈线性分布的式(14)所计算的结果与实测值存 在一定的差异,误差通常在 30%~50%之间。因此, 应用基于弯矩-面积理论的挠度计算方法进行跨中 挠度预测或验算是合理、可行的。

参考文献:

 Naaman A E, Reinhardt H W. Proposed classification of HPFRC composites based on their tensile response [J]. Materials & Structures, 2006, 39(289): 547-555.

- [2] 黄承逵. 纤维混凝土结构[M]. 北京: 机械工业出版社, 2004.
 Huang Chengkui. Fiber reinforced concrete structure [M]. Beijing: China Machine Press, 2004. (in Chinese)
- [3] Andrzej M Brandt. Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering [J]. Composite Structures, 2008, 86: 3-9.
- [4] Li Victor C, Leung C K Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites [J]. ASCE Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
- [5] 徐世烺,李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60.
 Xu Shilang, Li Hedong. A review on the development of research and application of Ultra High Toughness Cementitious Composites [J]. China Civil Engineering Journal, 2008, 41(6): 45-60. (in Chinese)
- [6] Li V C, Hashida T. Engineering ductile fracture in brittle matrix composites [J]. Journal of Materials Science Letters, 1993, 12(12): 898-901.
- [7] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC [J]. ACI Materials Journal, 2001, 98(6): 483-492.
- [8] 徐世烺. 超高韧性绿色 ECC 新型材料研究及应用[R]. 大连: 大连理工大学, 2007.
 Xu Shilang. Research on new ultrahigh toughness green ECC and its application [R]. Dalian: Dalian University of Technology, 2007. (in Chinese)
- [9] Xu S L, Zhang X F. Theoretical analysis and experimental investigation on flexural performance of steel reinforced ultrahigh toughness cementitious composite (RUHTCC) beams [J]. Science in China, Series E: Technological Sciences. 2009, 52(4): 1068– 1089.
- [10] 张秀芳, 徐世烺. 采用超高韧性水泥基复合材料提高 钢筋混凝土梁弯曲抗裂性能研究(I): 基本理论[J]. 土 木工程学报, 2008, 41(12): 48-55.
 Zhang Xiufang, Xu Shilang. Improvement on flexural and cracking behavior of RC beam using ultra-high toughness cementitious composites (I): Theoretical analysis [J]. China Civil Engineering Journal, 2008, 41(12): 48-55. (in Chinese)
- [11] Xu S L, Li Q H. Theoretical analysis on bending behavior of functionally graded composite beam crackcontrolled by ultrahigh toughness cementitious composites [J]. Science in China, Series E: Technological Sciences, 2009, 52(2): 363-378.
- [12] Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 3-17.

- [13] Qian S, Li V C. Simplified inverse method for determining the tensile strain capacity of SHCCS [J]. Journal of Advanced Concrete Technology, 2007, 5(2): 235-246.
- [14] Qian S, Li V C, Qian S, Li V C. Simplified inverse method for determining the tensile properties of SHCCS
 [J]. Journal of Advanced Concrete Technology, 2008, 6(2): 353-363.
- [15] Park R, Pauley T. Reinforced concrete structure [M].

附录:

注: Et、Ec分别为抗拉及抗压弹性模量。 a 阶段: $x_c = k_1 h$, $k_{1} = \begin{cases} \frac{1}{2}, & E_{t} = E_{c} \\ \frac{1 - \sqrt{E_{t} / E_{c}}}{1 - E_{c} / E_{c}}, & E_{t} \neq E_{c} \end{cases},$ $M = \frac{b\varepsilon_t}{6\varepsilon_{cc}\varepsilon_{tc}x_c} [(\sigma_{cc}\varepsilon_{tc} - \sigma_{tc}\varepsilon_{cc})x_c^3 3\sigma_{cc}\varepsilon_{tc}h^2x_c+2\sigma_{cc}\varepsilon_{tc}h^3$], $\varphi = \frac{\varepsilon_t}{x_c} = \frac{\varepsilon_t}{k_1 h} \circ$ b 阶段: $x_c = k_2 h$, $k_2 =$ $\frac{-\sigma_{cc}D_{21}\varepsilon_t^2 + \varepsilon_t\sqrt{-\varepsilon_{cc}\sigma_{cc}D_{21}(D_{22}\varepsilon_t^2 + 2D_{23}\varepsilon_t - \varepsilon_{tc}D_{23})}}{(-\sigma_{cc}D_{21} - \varepsilon_{cc}D_{22})\varepsilon_t^2 - 2\varepsilon_{cc}D_{23}\varepsilon_t + \varepsilon_{tc}\varepsilon_{cc}D_{23}}$ $D_{21} = \varepsilon_{tu} - \varepsilon_{tc}$, $D_{22} = \sigma_{tc} - \sigma_{tu}$, $D_{23} = \varepsilon_{tc} \sigma_{tu} - \sigma_{tc} \varepsilon_{tu}$, $M_2 = \frac{b}{6R_{22}\varepsilon_t^2} (R_{21}\varepsilon_t^3 + 3R_{22}\varepsilon_t^2 - 3\varepsilon_{tc}R_{22}\varepsilon_t + \varepsilon_{tc}^2R_{22}),$ $R_{21} = \sigma_{cc} D_{21} (2h^3 - 3h^2 x_c + x_c^3) + x_c^3 \varepsilon_{cc} D_{22},$ $R_{22} = \varepsilon_{cc} x_c^3 D_{23} ,$ $R_{23} = -\varepsilon_{cc} x_c D_{21} ,$ $\varphi = \frac{\varepsilon_t}{x_c} = \frac{\varepsilon_t}{k_2 h}$

New York: John Wiley & Sons, 1975.

- [16] Maalej M, Li V C. Flexural/tensile-strength ratio in engineered cementitious composites [J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513-528.
- [17] Soranakom C, Mobasher B. Closed-form solutions for flexural response of fiber reinforced concrete beams [J].
 ASCE Journal of Engineering Mechanics, 2007, 133(8): 933-941.

c 阶段:

$$x_c = k_3h$$
,
 $k_3 = -\frac{D_{31}D_{32}\varepsilon_t + D_{31}D_{33}\varepsilon_t^2 + \varepsilon_t \cdot A}{B}$,
 $A = [D_{34}(D_{31}D_{33}D_{35}\varepsilon_t^2 + 2D_{31}D_{33}D_{36}\varepsilon_t + \sigma_{cc}D_{31}^2D_{32} - \varepsilon_{tc}D_{31}D_{33}D_{36})]^{1/2}$,
 $B = (D_{35}D_{34} - D_{31}D_{33})\varepsilon_t^2 + 2(D_{34}D_{36} - D_{31}D_{32})\varepsilon_t - \varepsilon_{tc}D_{34}D_{36} - \varepsilon_{cc}D_{31}D_{32}$,
 $D_{31} = \varepsilon_{tu} - \varepsilon_{tc}$,
 $D_{32} = \sigma_{cc}\varepsilon_{cu} - \varepsilon_{cc}\sigma_{cu}$,
 $D_{33} = \sigma_{cc} - \sigma_{cu}$,
 $D_{34} = \varepsilon_{cu} - \varepsilon_{cc}$,
 $D_{35} = \sigma_{tc} - \sigma_{tu}$,
 $M_3 = -b(R_{31}\varepsilon_t^3 + R_{32}\varepsilon_t^2 + R_{33}\varepsilon_t + R_{34})/R_{35}$,
 $R_{31} = (D_{31}D_{33} - D_{34}D_{35})x_a^2 - 3x_ch^2D_{31}D_{33} + 2h^3D_{31}D_{33}$,
 $R_{32} = 3x_c^3(D_{31}D_{32} - D_{34}D_{36}) - 3x_ch^2D_{31}D_{32}$,
 $R_{34} = x_c^3(\varepsilon_{cc}^2D_{31}D_{32} - \varepsilon_{cc}^2D_{34}D_{36})$,
 $R_{35} = 6x_c\varepsilon_t^2D_{31}D_{34}$,
 $\varphi = \frac{\varepsilon_t}{x_c} = \frac{\varepsilon_t}{k_3h}$.